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Abstract

This work is devoted to the study of the main models which describe the motion of incompressible
fluids, namely the Navier-Stokes, together with their hypodissipative version, and the Euler equations.
We will mainly focus on the analysis of non-smooth weak solutions to those equations. Most of the
results have been obtained by using the convex integration techniques introduced by Camillo De Lel-
lis and László Székelyhidi in the context of the Euler equations, which recently led to the proof of the
Onsager’s conjecture on the anomalous dissipation of the kinetic energy. With various refinements of
those iterative schemes we prove ill-posedness of Leray-Hopf weak solutions of the hypodissipative
Navier-Stokes equations, sharpness of the kinetic energy regularity for Euler, typicality results in the
sense of Baire’s category for both Euler and Navier-Stokes, estimate on the dimension of the singular
set in time of non-conservative Hölder weak solutions of the Euler equations. Moreover, building on
different techniques, we also address some regularizing effects of those equations in various classes
of weak solutions with some fractional differentiability in terms of Hölder, Sobolev and Besov reg-
ularity. The latter make use of new abstract interpolation results for multilinear operators which we
developed for our specific context but which may also have independent interests.

Keywords: Incompressible fluids, Euler equations, Navier-Stokes equations, weak solutions,
Leray-Hopf solutions, Ill-posedness, convex integration, Baire category, non-conservative solutions,
regularizing effects.
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Chapter 1

Introduction

For several decades the equations which describe the motions of fluids have attracted the attention
of many mathematicians for both their intrinsic mathematical beauty and their usefulness in several
applications of practical nature. They describe the physics of many phenomena of scientific and
engineering interest. They may be used to model the weather, ocean currents, water flow in a pipe
and air flow around a wing. These equations, in their full and simplified form, help with the design of
aircraft and cars, the study of blood flow, the design of power stations, the analysis of pollution and
many other things.

Even if these models have been proposed almost 200 years ago, many of the main related math-
ematical questions still remain open. Indeed from 2000 the incompressible Navier-Stokes equations,
which are unquestionably the most famous equations in this context, are the content of one of the
Millennium Prize Problems stated by the Clay Mathematics Institute. It is hard to briefly explain
where the difficulty of these problems comes from, but at a first empirical stage it can be related to
the extremely chaotic and irregular motion of the fluid particles along the flow, which can be eas-
ily observed in several everyday phenomena. This complicated, and apparently disordered, behavior
is what physicists named Turbulence, or more specifically a turbulent flow, which is experimentally
known to be a consequence of the accumulation of energy at finer and finer scales that overcomes
the damping coming from the viscosity of the fluid. That is why turbulence is usually observed in
low viscous fluids, or analogously, in a high Reynolds number regime, being the Reynolds number
proportional to the inverse of the viscosity. The complexity, together with the usefulness in real life
applications, of such high Reynolds number flows has driven many physicists from the last century
(Prandtl, Richardson, Taylor, Heisenberg, Kolmogorov, Onsager...) to formulate statistical theories
that were able to predict their chaotic motion. The success of those theories in modeling the statistics
of turbulent fluids has been astounding but to date rigorous results to formally validate many of those
statistical predictions are still missing. The aim of the mathematical theory of fluid dynamics is to
build the missing bridge between the physical theories based on experimental observations and the
rigorous properties of solutions, if they exist. It should be then clear that a possible way to catch the
essence of Turbulence is to consider non-smooth solutions of such equations, namely solutions with
a very low regularity. For instance, solutions of the Navier-Stokes equations are not expected to be
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10 1. Introduction

uniformly smooth when the viscosity parameter goes to 0, thus they can converge to distributional
solutions of Euler with little regularity and which may anomalously dissipate formally conserved
quantities such as the kinetic energy. This is indeed the goal of this thesis: the study of non-smooth
solutions of the main incompressible fluid models considered by the scientific community, namely
the Navier-Stokes, together with their corresponding fractional version, and Euler equations.

This work contains results that have been achieved by the present author during his PhD path and
it is mostly focused on the analysis of the wild, somehow non-physical, weak solutions that naturally
arise in the study of Turbulence. It ranges from basic regularization properties for various regular-
ity classes, ill-posedness problems, conservation and/or dissipation of the main meaningful physical
quantities, typicality results for weak solutions, structure of time singularities etc... Obviously, it is
not an exhaustive reference for the wide available mathematical literature on the topic, for which we
refer to the classical monographs [21, 48, 50] and references therein.

Most of the results contained in this thesis make use of the so called convex integration technique
that has been introduced in the context of fluid dynamics by Camillo De Lellis and László Székelyhidi
in the last 15 years. These new revolutionary ideas have reinvigorated the attention on many of the
physical theories described above, leading to the proof of various results, remained open for decades,
with a huge impact on the whole mathematical community active in the study of partial differential
equations. After explaining in detail what are the equations considered in this work, together with
their main properties and the related open questions, we will also give an historical overview of these
techniques here in the introduction, which will end with a more detailed description about the content
of each chapter of which this work is composed.

Consistently with all the results presented in the next chapters, we fix our spatial domain to be
the 3−dimensional torus T3. Clearly, many of the subsequent properties remain valid also for more
general d−dimensional domains but we prefer to stick with this assumption for a greater clarity of
exposure. There are two main reasons why this particular spatial domain has been chosen: at first it
avoids all the technical difficulties coming from the boundary and, on the other side, it still models
the most physically relevant 3−dimensional case.

1.1 The Navier-Stokes equations
The Navier-Stokes equations are a set of partial differential equations which describe the motion

of viscous fluids, named after the two physicists Claude-Louis Navier and George Gabriel Stokes
∂tu+div(u⊗u)+∇p−µ∆u = 0
divu = 0
u(·,0) = u.

(1.1)

The vector field u : T3× (0,T )→ R3 represents the velocity of the fluid, the scalar function p :
T3× (0,T )→ R the hydrodynamic pressure, u is a given divergence free initial datum and µ > 0 is
the kinematic viscosity of the fluid. When the time T of existence is infinite, we say that the solution



1.1 The Navier-Stokes equations 11

is global in time. We will denote by ui the i−th component of the vector field u. The symbol u⊗ u
denotes the 3× 3 matrix whose components are (u⊗ u)i j = uiu j and consequently, by following the
usual convention, its divergence is obtained by computing it column-wise. Moreover, by using the
incompressibility constraint divu = ∂iui = 0, the latter term can be rewritten as

(div(u⊗u))i = ∂ j
(
u jui)= u j

∂ jui = (u ·∇)ui,

where the usual convention of summing over repeated indexes has been used. Since it appears as a
gradient, it is clear that the pressure is always determined up to a constant which can only depend on
time. This is the reason why equations (1.1) are usually coupled with the constraint

ˆ
T3

p(x, t)dx = 0 ∀t ≥ 0,

which guarantees the uniqueness of the pressure.

The Navier-Stokes equations mathematically express conservation of momentum and conserva-
tion of mass for Newtonian fluids. They arise from applying Isaac Newton’s second law to fluid
motion, together with the assumption that the stress in the fluid is the sum of a diffusing viscous term
(proportional to the gradient of the velocity) and a pressure term. The difference between them and
the closely related Euler equations (discussed in the next section) is that the Navier-Stokes equations
take viscosity into account while the Euler equations model inviscid flows. The presence of viscosity
is due to the internal friction between particles and it is responsible for the kinetic energy dissipation
of the fluid. Indeed by setting the kinetic energy eu to be

eu(t) =
1
2

ˆ
T3
|u(x, t)|2 dx,

for a sufficiently smooth solution of (1.1), we have

eu(t)+µ

ˆ t

0

ˆ
T3
|∇u(x,τ)|2 dxdτ = eu, (1.2)

for every t ∈ (0,∞). The previous global energy equality is obtained by integrating in space-time its
corresponding local version

∂t
|u|2

2
+div

((
|u|2

2
+ p
)

u
)
+µ|∇u|2 = µdiv

(
(∇u)T u

)
= µ∆

(
|u|2

2

)
,

that is obtained by scalar multiply the first equation in (1.1) by u, together with the relations

u ·div(u⊗u) = ui
∂ j(u jui) = u jui

∂ jui = u j
∂ j
|u|2

2
= div

(
|u|2

2
u
)
,

u ·∆u = ui
∂

2
j ju

i = ∂ j
(
ui

∂ jui)−∂ jui
∂ jui = div

(
(∇u)T u

)
−|∇u|2.
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The energy equality (1.2) specifies the dissipation rate of kinetic energy asserting that the latter is
proportional to both the viscosity of the fluid and its averaged gradient: this is not only important
from a physical point of view but it is also the key point in showing the existence of an appropriate
notion of weak solutions, since it guarantees compactness properties to a sequence of solutions of a
suitable regularized version of (1.1).

Equations (1.1) are of great interest in a purely mathematical sense. Despite their wide range
of practical uses, it has not yet been proven whether global smooth solutions always exist in three
dimensions. This is the so called Navier-Stokes existence and smoothness problem and is the content
of one of the Millennium Prize Problems stated by the Clay Mathematics Institute. More precisely
we have

Problem 1.1. Let µ > 0 be given. Is it true that for every u ∈ C∞(T3) there exist a couple u, p ∈
C∞(T3× (0,∞)) solving (1.1)?

As it usually happens in the study of partial differential equations, the difficulty of proving the
existence of regular solutions leads to different notions of weak solutions. The most successful is
surely the notion of Leray weak solution.

Definition 1.2. Let µ > 0 and u ∈ L2(T3) such that divu = 0. A Leray weak solution of (1.1) is a
divergence free vector field u such that u ∈ L∞((0,∞);L2(T3))∩L2((0,∞);W 1,2(T3)) and

ˆ
∞

0

ˆ
T3
(u ·∂tϕ +u⊗u : ∇ϕ +µu ·∆ϕ)dxdt =−

ˆ
T3

u(x)ϕ(x,0)dx, (1.3)

for every test vector field ϕ ∈ C∞
c (T3× [0,∞)) such that divϕ = 0. Moreover the following energy

inequality
1
2

ˆ
T3
|u(x, t)|2 dx+µ

ˆ t

0

ˆ
T3
|∇u(x,τ)|2dxdτ ≤ 1

2

ˆ
T3
|u(x)|2 dx (1.4)

holds for almost every t > 0.

The previous definition (1.3) can be formally obtained by scalar multiplying the first equation in
the system (1.1) by the smooth test vector field ϕ and integrating by parts. Note that, as a consequence
of the solenoidal nature of ϕ , the pressure p does not appear in the weak formulation, but it can easily
be recovered a posteriori as the unique zero average solution of

−∆p = divdiv(u⊗u).

The previous elliptic equation for the pressure can be formally obtained by computing the divergence
of (1.1) and it comes from the fact that relation (1.3) implies that the vector field ∂tu+div(u⊗u)−
µ∆u is (weakly) irrotational. For analysis in which the initial datum u does not play any role, one can
choose the test function ϕ ∈C∞

c ((0,∞)×T3) which makes the term
´
T3 u(x)ϕ(x,0)dx disappear.
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In his seminal work [46] from 1934, the french mathematician Jean Leray proved the existence of
the above described solutions. His proof, later refined by Hopf in [38], relies on a suitable regulariza-
tion of the Navier-Stokes equations which preserves the energy properties described above, obtaining
a sequence of smooth approximate solutions which, thanks to (1.2), are uniformly bounded in the
energy space L2((0,∞);W 1,2(T3)). By compactness, the sequence (up to extracting a converging sub-
sequence) converges to an actual solution of (1.1) and the energy inequality (1.4) is a consequence
of the weak lower semicontinuity of the norms in reflexive Banach spaces. Moreover, by the same
arguments introduced by Leray, it can be proved that these solutions are smooth outside a closed set
of Hausdorff dimension 1/2. This was first obseved by Scheffer in [57], which was also the starting
point of the partial regularity theory for Navier-Stokes which culminated with the Caffarelli-Kohn-
Niremberg result [11] in which, by introducing the notion of suitable weak solutions, the authors
proved that the set of space-time singular point has zero 1−dimensional parabolic Hausdorff mea-
sure. This is still the best partial regularity result available in the literature.

To date the uniqueness and regularity question of such solutions is still open and represents one
of the most challenging problems in fluid dynamics. We remark that a small refinement of Leray’s
argument implies the validity of the following stronger version of (1.4)

1
2

ˆ
T3
|u(x, t)|2 dx+µ

ˆ t

s

ˆ
T3
|∇u(x,τ)|2dxdτ ≤ 1

2

ˆ
T3
|u(x,s)|2 dx, (1.5)

for almost every s ≥ 0 and every t > s. The latter energy inequality gives the additional information
that the total energy of the system is a non-increasing function of time1. Weak solutions satisfying
(1.5) are usually called Leray-Hopf weak solutions.

After the work of Leray several conditional uniqueness and smoothness results have been proved,
culminating in the Prodi-Serrin cryterion [54, 58] (see also [35] for the limit case L∞((0,T );L3(R3)).

Theorem 1.3. Let u be a Leray weak solution of (1.1). If u ∈ Lr((0,T );Lq(T3)) for some r ∈ [2,∞),
q ∈ (3,∞) such that 2

r +
3
q ≤ 1, then u is smooth and unique.

Clearly the short list of results we presented here does not cover all the huge mathematical liter-
ature available on the Navier-Stokes equations but it is enough for the purposes of this thesis. For a
wider and more detailed discussion on the topic we refer to the monographs [36, 48, 60].

1It can be shown that every Leray solution is continuous in time with values in L2(T3) endowed with the weak topology,
thus (1.5) implies that the kinetic energy, being well defined for every time t, is monotone in the classical sense.
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1.2 The Euler equations
In fluid dynamics, the Euler equations are a set of quasilinear hyperbolic equations governing

inviscid flows. They are named after the Swiss mathematician and physicist Leonhard Euler
∂tu+div(u⊗u)+∇p = 0
divu = 0
u(·,0) = u

(1.6)

We observe that the previous system can also be formally obtained from (1.1) by letting µ → 0. By
the absence of viscosity and external forces acting on the fluid, there is no physical reason why the
kinetic energy can be dissipated. Indeed, with the same computations already done in the previous
section, we get

d
dt

eu = 0, (1.7)

for a sufficiently smooth solution u. As in the Navier-Stokes case, it is not known wether smooth
solutions exist globally in time and this represents another big open question in this field.

The most used definition of weak solution of (1.6) is the following

Definition 1.4. Let u∈L2(T3) such that divu= 0. A divergence free vector field u∈L∞((0,T );L2(T3))
is a weak solution of (1.6) if

ˆ T

0

ˆ
T3
(u ·∂tϕ +u⊗u : ∇ϕ)dxdt =−

ˆ
T3

u(x)ϕ(x,0)dx, (1.8)

for every test vector field ϕ ∈C∞
c (T3× [0,∞)) such that divϕ = 0.

It is clear that in the above definition the assumption u ∈ L2(T3× (0,T )) would suffice to make
(1.8) work. The reason why the L∞ in time assumption is used is due to the fact that only solutions
whose kinetic energy is uniformly bounded in time are considered. This is important for the physical
meaning of the model. Clearly, assuming u ∈ L∞((0,T );L2(T3)) does not prohibit to the solution to
increase its kinetic energy in time, which would be an extremely non-physical phenomenon. That is
why a slightly stronger definition of weak solutions has been introduced.

Definition 1.5. An admissible weak solution of (1.6) is a weak solution in the sense of the previous
definition, such that moreover

eu(t)≤ eu(0) (1.9)

for almost every t ≥ 0.

This notion of weak solution can be viewed as the analogous of Definition 1.2 and it plays both a
physical and a mathametical role. Indeed, on one hand it prohibits solutions to generate kinetic energy
from nowhere and on the other side it is also important to get a suitable weak-strong uniqueness result
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[3]. However, the lack of compactness for such equations due to the absence of viscosity does not
allow to prove the existence of such solutions from a general initial datum u ∈ L2(T3). The problem
of existence of weak solutions, as well as the existence of global in time smooth solutions starting
from smooth initial data, remains a formidable open question. We now focus on an issue that has
aroused more interest in recent years: the energy conservation and Onsager’s conjecture.

1.2.1 Non-smooth solutions and Turbulence

In the last decade, considerable attention has been devoted to the study of Hölder continuous weak
solutions of (1.6), since they naturally arise in incompressible hydrodynamics models, starting from
the celebrated prediction of Kolmogorov’s Theory of Turbulence [44]. In this context, one of the most
investigated problems is the Onsager’s conjecture on the kinetic energy conservation for Hölder con-
tinuous weak solutions of (1.6). Indeed, in 1949, for solutions u ∈ L∞((0,T );Cβ (T3)), Lars Onsager
predicted that anomalous dissipation of the kinetic energy eu may occur only in the low regularity
regime β < 1

3 , while in the case β > 1
3 , some rigidity of the equation prohibits the existence of such

wild non-conservative weak solutions. In recent years the Onsager’s conjecture has been completely
solved but the question on what happens in the critical case β = 1

3 is still open. It is worth to mention
that considering weak solutions u ∈ Cβ (T3× [0,T ]) is not more restrictive with respect to the ones
considered by Onsager. Indeed in Chapter 2, it is shown that every u ∈ L∞((0,T );Cβ (T3)) enjoys the
same β−Hölder regularity in time by using simple mollification estimates. This property has been
first observed in [39] where the proof is based on a Littlewood-Paley decomposition of the velocity.

The energy conservation question was first tackled by Eyink in [34] but the first proof for the whole
range β > 1

3 has been given in [22] by Constantin, E and Titi in the slightly more general Besov class

L3
(
(0,T );Bβ

3,∞(T
3)
)

. They noticed that the quadratic commutator obtained by regularizing in space
equations (1.6), enjoys a corresponding improved (quadratic) estimate. We refer to Chapter 2 for a
precise description of the technique, where the same convolution estimates are used to prove some of
the results therein. In particular by using a suitable refinement of the Constantin, E and Titi proof we
prove that

|eu(t)− eu(s)| ≤C|t− s|
2β

1−β , (1.10)

whenever u∈ L∞((0,T );Cβ (T3)), for some β ∈ (0,1). The previous regularity estimate on the kinetic
energy of Hölder continuous weak solutions of Euler implies that even in the range in which it is not
necessarily constant, the energy has however some constraint. Property (1.10) has been first observed
in [39] for any β ≤ 1

3 , thus the real novelty of the proof that we propose in Chapter 2, in addition to
its simplicity, is that it works with no restrictions on β , allowing us to deduce both the Hölder regu-
larity of the kinetic energy and the energy conservation for β > 1

3 , since in the latter case the Hölder
exponent in (1.10) is bigger than 1.
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The negative part of the Onsager conjecture has seen incredible developments in recent years.
The first proof of solutions with a non-constant energy profile was given in [56] by Scheffer. He
constructed L2 weak solutions of Euler with compact support in time, thus strictly speaking they are
not dissipative, as dissipative solutions are required to have non-increasing energy. The existence of
dissipative weak solutions was first proven by Shnirelman in [59], but also in this case they were only
in L2. In the groundbreaking papers [26,27] De Lellis and Székélyhidi Jr. made a significant progress
towards the Onsager’s conjecture providing the first construction of dissipative Hölder continuous
weak solutions by introducing the so called convex integration in the context of fluid dynamics. After
a series of advancements [4, 6, 40], the full range β < 1

3 was eventually achieved by Philip Isett in
[41]. The present thesis develops new aspects of these iterative techniques and leads to the new results
of chapters 5, 6, 7 and 8. They all follow the Hölder-based convex integration of [7], with the excep-
tion of Chapter 8, which follows the Lp−based convex integration introduced in [8], in which Tristan
Buckmaster and Vlad Vicol, by introducing some substantial new ideas which can be summarised
under the word intermittency, proved the non-uniqueness of L2 weak solution to Navier-Stokes. By
pushing further intermittency, it has been proven in the recent paper [14] the sharpness of the Prodi-
Serrin exponents of Theorem 1.3. Being quite technical, we postponed the detailed description of
these techniques to the respective chapters.

If instead of looking at Hölder solutions one considers the Sobolev class Hβ , it is know that
the energy conservation happens if β > 5

6 . This is an easy consequence of the refinement of the

Constantin, E and Titi proof given in [13], together with the embeddings H
5
6 ⊂W

1
3 ,3 ⊂ B

1
3
3,c(N). This

indicates that in the weaker Sobolev regularity, solutions could dissipate the kinetic energy even above
the Onsager barrier 1

3 . The recent remarkable result [9] is the first one in this direction and it shows the
existence of non-conservative weak solutions of Euler in the space L∞((0,T );Hβ (T3)), with β < 1

2 .
This result also represents the first example in which a spatial intermittent convex integration scheme
is implemented to achieve an high regularity for the limit solution, since in the previous ones [5] and
[8] only very small values β were allowed.

1.3 Fractional Navier-Stokes equations

The fractional Navier-Stokes equations have a long history. They have been considered by J. L.
Lions in the sixties. The dissipative term of the classical Navier-Stokes equations is substituted by a
(generally non local) operator (−∆)γ , where γ might be an arbitrary positive real number.


∂tu+div(u⊗u)+∇p+µ(−∆)γu = 0
divu = 0
u(·,0) = u.

(1.11)
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There are different ways to rigorously define the operator (−∆)γ . One of them is to define it as the
symbol |k|2γ in the Fourier space. More precisely, in the periodic setting, we have

(−∆)γu = ∑
k∈Z3

|k|2γuke2πik·x,

where uk is the k−th Fourier coefficient of the vector field u in space. If γ = 1 they coincide with (1.1).
When γ < 1 they are called hypodissipative Navier-Stokes equations, meaning that they dissipate less
kinetic energy with respect to the full Laplacian −∆. If γ > 1 we have the hyperdissipative version.
For the purposes of this work we restrict ourselves to the case γ < 1. As for the equations already
discussed, their corresponding energy equality

1
2

ˆ
T3
|u(x, t)|2 dx+µ

ˆ t

0

ˆ
T3

∣∣∣(−∆)
γ/2u(x,τ)

∣∣∣2 dxdτ =
1
2

ˆ
T3
|u(x)|2 dx

can be derived for smooth solutions by multiplying the first equation in (1.11) by u and integrating
by parts. Also in this hypodissipative regime, the existence of smooth solutions is not known. The
analogous notion of Leray weak solutions can be also given.

Definition 1.6. Let µ > 0 and u ∈ L2(T3) such that divu = 0. A Leray weak solution of (1.11) is a
divergence free vector field u such that u ∈ L∞((0,∞);L2(T3))∩L2((0,∞);W γ,2(T3)) andˆ

∞

0

ˆ
T3
(u ·∂tϕ +u⊗u : ∇ϕ−µu · (−∆)γ

ϕ)dxdt =−
ˆ
T3

u(x)ϕ(x,0)dx, (1.12)

for every test vector field ϕ ∈ C∞
c (T3× [0,∞)) such that divϕ = 0. Moreover the following energy

inequality
1
2

ˆ
T3
|u(x, t)|2 dx+µ

ˆ t

0

ˆ
T3

∣∣∣(−∆)
γ/2u(x,τ)

∣∣∣2 dxdτ ≤ 1
2

ˆ
T3
|u(x)|2 dx (1.13)

holds for almost every t > 0.

For any γ > 0, the same proof of Leray can be used to deduce the existence of solutions in the
sense of Definition 1.6, since the presence of even minimal dissipation gives compactness. Unlike
the full Navier-Stokes equations, it has recently been proved by Colombo, De Lellis and the present
author, that this notion of solution is ill-posed if γ < 1

3 . The proof is based on adapting the Hölder
convex integration to (1.11) by noticing that, if γ < 1

2 , the dissipative term can be incorporated in the
iterative scheme as an error, since in this case, its differential order does not exceed 1, which is the
leading order of differentiability of Euler. The more restrictive γ < 1

3 comes from imposing that our
solutions are of Leray type. This is the content of Chapter 5.

1.4 Outline and description of the thesis
We end the introduction with the organization of the thesis by describing the content of each

chapter.
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Chapter 2

This chapter corresponds to [17], a joint work with Maria Colombo. It contains various regularity
properties for solutions u ∈ L∞((0,T ),Cβ (T3)) to both Euler and the hypodissipative Navier-Stokes
equations. In particular we show that the same β−Hölder regularity transfers in time, while the pres-
sure p enjoys the twice 2β regularity. The technique is based on a space regularization of the equation
and the time regularity is achieved by linking the mollification parameter to the desired time scale.
Moreover, we prove that a suitable Hölder regularity holds for the energies of both equations (1.6)
and (1.11). The latter properties are proved in the slightly more general class of Besov spatial reg-
ularity, while keeping the L∞ assumption in time. To prove the double regularity of the pressure we
show some improved Schauder’s estimate for the Laplace equations with a specific right hand side.
In most of the proofs, the quadratic structure of the commutator introduced in [22], which comes
from the mollification, plays an important role. In the Euler case all these properties have been first
observed in [39], where however the proof is based on different techniques, while for the hypodis-
sipative Navier-Stokes equations they are completely new. In addition to the great simplicity of our
proofs, the real novelty with respect to [39] is the proof of the regularity (1.10) with no restriction on
β , from which also the energy conservation follows in the rigid regime β > 1

3 .

Chapter 3

In this chapter we generalize all the regularising properties of the Euler equations from Chapter 2
to the wider class of Besov and Sobolev weak solutions. It builds on the work [18], jointly obtained
with Maria Colombo and Luigi Forcella. As for the Hölder case, by assuming that the solution has a
Besov or Sobolev regularity in space (together with some integrability in time), we show that the same
fractional weak differentiability transfers in time and the pressure p is always double as regular as u.
The strength of this work is that it builds on an abstract and robust technique: we prove some new
abstract interpolation results for quite general multilinear operators, from which we deduce improved
Calderón-Zygmund estimates for elliptic PDEs with a particular right hand side. In particular the
double spatial regularity of the pressure directly follows. These improved general regularity estimates
are also interesting by themselves, since they are in contrast with some common believes that better
regularity estimates are a consequence of precise cancellations properties that can only be observed
when the kernel which provides the solution is explicit.

Chapter 4

The aim of this chapter is to investigate the Helicity conservation for the incompressible Euler
equations. It is based on the singled authored paper [28]. Helicity is an integral physical quantity that
can be topologically interpreted as a measure of linkage and/or knottedness of vortex lines in the fluid
flow. As for the most known kinetic energy, for sufficiently smooth solutions Helicity is conserved
[12, 13]. Unlike the Onsager’s conjecture, in this case the threshold of the fractional differentiability
needed to imply conservation is 2

3 . Building again on the same mollification technique of Chapter 2,
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we prove that the Helicity of solutions u ∈ L∞((0,T );W β ,3(T3)), enjoys a suitable Hölder regularity.
We also prove a new conservation result by treating the velocity and its curl as two independent
functions, which in general is not implied by the ones already present in the literature. Even if
Helicity had a very little attention in the mathematical community, it could be one of the key points
in the better understanding of the convex integration techniques, since the regularity required would
cross the actual barrier in which those iterative schemes work.

Chapter 5

Here we prove the ill-posedness of the Leray-Hopf weak solutions of the hypodissipative Navier-
Stokes equations when the power of the fractional dissipation is γ < 1

3 . This chapter contains the work
[29] and it represents an improvement with respect to [16] where Colombo, De Lellis and the author
of this thesis proved the non-uniqueness up to γ < 1

5 . Moreover, we also show that dissipative weak
solutions to Euler can be obtained as a vanishing viscosity limit of Leray-Hopf weak solutions of a
suitable fractional Navier-Stokes system. The same problem for the full Navier-Stokes equations (1.1)
represents one of the main open questions in the field. The non-uniqueness proof we propose in this
chapter builds on the Hölder convex integration scheme proposed in [7]. To adapt their scheme in our
dissipative setting we also prove some new stability estimates for linear non-local advection-diffusion
equations, from which we deduce a local in time existence result of smooth solutions to (1.11).

Cahpter 6

This chapter deals with a conjecture of Philip Isett and Sung-Jin Oh [43] on the sharpness of the
energy regularity (1.10). It is the content of [32], obtained in collaboration with Riccardo Tione. The
conjecture asserts that solutions whose energy regularity (1.10) is sharp are residual in the space of all
β−Hölder weak solutions to Euler. We give a (partial) positive answer to this conjecture by proving
that the residuality holds if one considers a space of slightly more regular solutions. Our proof is
based on a refinement of the Hölder-based convex integration scheme, by noticing that using such
iterative techniques it is possible to achieve any energy profile whose regularity is arbitrarily close to
the sharp one. We show how this implies an empty interior condition in the right space of solutions,
from which we conclude the residuality property. We also explain why our proof does not imply
the full conjecture in the natural space, which remains open. Our, even if partial, positive answer
to their question implies that below the Onsager’s threshold, oscillations of the energy are highly
unstable under perturbations of solutions, which clearly confirms the well known fact that instability
phenomena frequently appear in the turbulent regime.

Chapter 7

Following the work [30] obtained in collaboration with Silja Haffter, this chapter deals with the
size of the singular set for the wild Hölder continuous weak solutions constructed via convex integra-
tion. For β < 1

3 , we consider β−Hölder weak solutions of the incompressible Euler equations that
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do not conserve the kinetic energy. We prove that for such solutions the closed and non-empty set of
singular times B satisfies dimH B ≥ 2β

1−β
. This lower bound on the Hausdorff dimension of the sin-

gular set in time is intrinsically linked to the Hölder regularity of the kinetic energy and we conjecture
it to be sharp. As a first step in this direction, for every β < β ′ < 1

3 we are able to construct, via a
convex integration scheme, non-conservative Cβ weak solutions of the incompressible Euler system
such that dimH B ≤ 1

2 +
1
2

2β ′

1−β ′ . This result gives more and new insights on the topic but also leaves
an interesting open question on how to fill the gap to reach the lower bound that seems to be sharp.
The structure of the solutions that we construct in this chapter allows moreover to deduce a strong
non-uniqueness result for weak solutions of the incompressible Euler equations emanating from every
regular initial datum.

Chapter 8

This chapter contains a couple of typicality results for weak solutions of the Navier-Stokes equa-
tions. It follows a joint work with Maria Colombo and Massimo Sorella [19]. By adapting the same
ideas of [32] to the Lp−based convex integration scheme introduced in [8], we prove that the Leray
weak solutions, in the sense of Definition 1.2, are a nowhere dense set in the space of all solutions
with finite kinetic energy and the solutions which are smooth in some open time interval are meager.
The key idea to prove the respectively empty iterior conditions is to localize the convex integration
construction in the (open) time interval in which the Leray solution is smooth. The latter property had
already been observed by Leray himself in his seminal paper [46].

Some other works

While the above mentioned works are all under the same guiding thread of the analysis of non-
smooth solutions to the main incompressible fluid models, we also mention that a couple of results
[31,33] have been obtained in parallel to the main topic of the PhD project. They address a Calculus of
Variations question posed by Denis Serre on the higher integrability of the determinant of divergence-
free matrix fields. In [31] we proved the sharpness of his result relying again on the elegant Baire
category theory as in the Euler equation from above. This subsequently generated [33] in which, in
collaboration with Denis Serre, we showed how this sharp integrability is also linked to the upper
semicontinuity of the corresponding functional in the spirit of the pioneering result of Fonseca and
Müller, that however can not be applied in this context. Since they would be out of context in this
thesis, we preferred not to add them to this manuscript.



Chapter 2

Regularity results for the Fractional
Navier-Stokes equations in Hölder spaces

2.1 Introduction
In the spatial periodic setting T3 = R3/Z3, we consider the fractional Navier-Stokes equations

that we recall here{
∂tu+div(u⊗u)+∇p+µ(−∆)αu = 0
divu = 0 in (0,T )×T3 . (2.1)

We are concerned with a class of distributional solutions of the previous system, which exhibit an
Hölder spatial regularity. Hölder solutions are of particular importance for the Euler equations in
the context of hydrodynamic turbulence, starting from a celebrated prediction of Kolmogorov’s the-
ory [44]: the velocity increments in turbulent flows should obey on average a universal scaling law
corresponding to the Hölder exponent 1

3

< |u(x+δx)−u(x)|p >1/p≤C(p)|δx|1/3.

In the following we exploit a regularizing property of the Euler equations, namely that weak
solutions with spatial Hölder regularity u ∈ L∞((0,T );Cθ (T3)) are in fact θ−Hölder continuous also
in time. Moreover, the associated pressure is almost 2θ−Hölder continuous in space-time and the
corresponding kinetic energy profile is 2θ

1−θ
−Hölder continuous. This property can be observed in all

the non conservative solutions constructed to validate the Onsager conjecture and it was first proved by
Isett [39]. In his work, this regularization is obtained as a consequence of the regularity for advective
derivatives, and involves refined and technical estimates on the Paley-Littlewood decomposition of the
solution. Our proof is based on completely different ideas, involving a regularization of the equation
as in [22] as well as their commutator estimate. The method is quite flexible and indeed we perform
it not only for Euler, but also for the fractional Navier-Stokes system.

21
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Theorem 2.1. Let θ ∈ (0,1), α ∈
(
0, 1

2

)
, µ ≥ 0, and let (u, p) be a weak solution of (2.1) such that

u ∈ L∞((0,T );Cθ (T3)). Then there exists Cµ > 0, depending only on µ , such that

‖u‖Cθ ([0,T ]×T3) ≤Cµ

(
‖u‖L∞((0,T );Cθ (T3))+‖u‖

2
L∞((0,T );Cθ (T3))

)
. (2.2)

Moreover there exists Cθ > 0 and for every ε > 0 small, a constant Cθ ,µ,ε > 0 such that

(i) if θ ∈
(
0, 1

2

)
‖p‖L∞((0,T );C2θ (T3)) ≤Cθ‖u‖2

L∞((0,T );Cθ (T3)) , (2.3)

‖p‖C2θ−ε ([0,T ]×T3) ≤Cθ ,µ,ε

(
‖u‖2

L∞((0,T );Cθ (T3))+‖u‖
3
L∞((0,T );Cθ (T3))

)
; (2.4)

(ii) if θ ∈
(1

2 ,1
)

‖p‖L∞((0,T );C1,2θ−1(T3)) ≤Cθ‖u‖2
L∞((0,T );Cθ (T3)) , (2.5)

‖p‖C1,2θ−1−ε ([0,T ]×T3) ≤Cθ ,µ,ε

4

∑
m=2
‖u‖m

L∞((0,T );Cθ (T3)) . (2.6)

The improved 2θ−Hölder space regularity of the pressure in (2.3) and (2.5) was previously es-
tablished in [20]. The assumption α < 1

2 is absolutely natural in this context: indeed, for α above
this threshold any Hölder continuous solution to the α−Navier-Stokes equation is in fact smooth by
simple bootstrap arguments, based on the regularization of the “fractional heat equation” part of (2.1),
considering the nonlinearity and the pressure as a right-hand side.

In the following result, we consider the kinetic and total energies of the system (2.1)

eu(t) =
1
2

ˆ
T3
|u|2(x, t)dx , Eu(t) = eu(t)+µ

ˆ t

0

ˆ
T3

∣∣∣(−∆)
α/2u
∣∣∣2 (x,r)dxdr (2.7)

which coincide for the Euler equations, namely when µ = 0. We show that, instead of asking u ∈
L∞((0,T );Cθ (T3)), a suitable spatial Besov regularity on the velocity u is enough to guarantee Hölder
regularity of the energies. This is obviously due to their "integral" nature.

Theorem 2.2. Let θ ∈ (0,1), µ ≥ 0, α ∈ (0, 1
2), with α < θ if µ > 0. Let u ∈ L∞((0,T );Bθ

3,∞(T
3)) be

a weak solution of (2.1). Then if µ = 0 (namely, for the Euler system) we have

|eu(t)− eu(s)| ≤Cu,θ |t− s|
2θ

1−θ ,

where Cu,θ =Cθ

(
[u]2

L∞((0,T );Bθ
3,∞(T3))

+[u]3
L∞((0,T );Bθ

3,∞(T3))

)
; if µ > 0 (namely, for the hypodissipative

Navier-Stokes system) and θ ≤ 1/3 we have

|Eu(t)−Eu(s)| ≤Cu,θ ,α |t− s|
2(θ−α)

1−3θ+2(θ−α) , (2.8)
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where Cu,θ ,α =Cθ ,α

(
[u]2

L∞((0,T );Bθ
3,∞(T3))

+[u]3
L∞((0,T );Bθ

3,∞(T3))

)
; if µ > 0 and θ > 1/3 the energy Eu

is constant in time.

Note that the previous theorem implies the energy conservation for (2.1), in particular eu and Eu
are conserved, respectively, if θ > 1

3 and if θ > max{1
3 ,α}, since both the Hölder exponents are

greater than 1.

To prove the time regularities, we look at a regularized version of (2.1) in the spirit of the proof of
conservation of the energy for θ > 1

3 by Constantin, E and Titi in [22]. To do that, let ρ ∈C∞
c (B1(0))

be a standard non negative kernel such that
´

B1(0)
ρ(x)dx = 1. For any δ > 0 we define ρδ = δ−3ρ( x

δ
)

and we consider the mollifications (in space) of u and p

uδ (t,x) = (u∗ρδ )(t,x) =
ˆ

Bδ (x)
u(t,y)ρδ (x− y)dy, pδ (t,x) = (p∗ρδ )(t,x) .

Thus, mollifying equations (2.1) one gets

∂tuδ +div(uδ ⊗uδ )+∇pδ +µ(−∆)αuδ = divRδ , (2.9)

where Rδ = uδ ⊗uδ − (u⊗u)δ . It is easy to see that the energy identity for uδ becomes

d
dt

1
2

ˆ
T3
|uδ |2 dx+µ

ˆ
T3

∣∣∣(−∆)
α/2uδ

∣∣∣2 dx =
ˆ
T3

uδ ·divRδ dx =−
ˆ
T3

Rδ : ∇uδ dx . (2.10)

Then we estimate the variation of u, eu and Eu between two times s < t through uδ , euδ
and Euδ

respectively, and we optimize the choice of δ in terms of |t− s|.

Regarding the pressure, taking the divergence of the first equation in (2.1) p solves

−∆p = divdiv(u⊗u) (2.11)

and the solution is unique up to the renormalization
´
T3 p(t,x)dx= 0, for every t ∈ [0,T ]. By Schauder

estimates we infer

‖p‖L∞((0,T );Cθ (T3)) ≤Cθ‖u⊗u‖L∞((0,T );Cθ (T3)) ≤Cθ‖u‖2
L∞((0,T );Cθ (T3)) . (2.12)

To improve the regularity as stated in (2.3), namely to show that p is not only θ−Hölder con-
tinuous but actually 2θ−Hölder continuous, we exploit the quadratic structure of the right hand side
divdiv(u⊗ u), together with the solenoidal nature of the vector field u. The space regularity of the
pressure in T3 is then a direct consequence of Proposition 2.3 and Lemma 2.4 below. Relying on dif-
ferent representation formulas for the pressure in bounded domains, similar estimates were previously
deduced in [20]. Finally, the time regularity of the pressure is obtained by differentiating (2.11)

∆∂t p = divdivdiv(u⊗u⊗u)+divdiv
(
2∇p⊗u+µ(−∆)αu⊗u+µu⊗ (−∆)αu

)
,

and by exploiting again the structure of the right-hand side. In this case the presence of the
fractional Laplacian in the right-hand side introduces a technical difficulty to the analysis.
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2.2 Some improved Schauder estimates
To prove the space regularity of the pressure we exploit the explicit formulae for the potential

theoretic solution of the Laplace equation in R3. To this end, we denote by Φ(x) = 1
4π|x| the funda-

mental solution of the Laplace operator −∆, which enjoys the estimates
∣∣DkΦ(x)

∣∣≤C(k)|x|−1−k for
all k ∈N. We recall that given R∈Cθ

c (R3;R3×3) compactly supported, the potential theoretic solution
of −∆p = divdivR is the only solution p ∈Cθ (R3) which vanishes at infinity and it is given by the
formula (with the Einstein summation convention)

p(x) =
ˆ

BR0(x0)
∂

2
i jΦ(x− y)

(
Ri j(y)−Ri j(x)

)
dy−Ri j(x)

ˆ
∂BR0(x0)

∂iΦ(x− y)n j(y)dy , (2.13)

where BR0(x0) is any ball containing the support of R (and R is thought to be extended to 0 outside its
support) and n(y) is the normal to BR0(x0) at y. Notice that the first integrand is not singular around x
thanks to the Hölder regularity of R. Given any parameter λ = θ ,µ,ε we will explicitly write Cλ to
denote constants which depend only on λ .

Proposition 2.3. Let β ,γ ∈ (0,1) and v,w,z ∈ C0(R3) be solenoidal vector fields compactly sup-
ported. If p,q : R3→ R are the potential theoretic solutions of

−∆p = divdiv(v⊗w) and −∆q = divdivdiv(v⊗w⊗ z) , (2.14)

then there exist a constant Cβ ,γ > 0 such that the following holds

(i) if β + γ ∈ (0,1) then ‖p‖Cβ+γ (R3) ≤Cβ ,γ‖v‖Cβ (R3)‖w‖Cγ (R3),

(ii) if β + γ ∈ (1,2) then ‖p‖C1,β+γ−1(R3) ≤Cβ ,γ‖v‖Cβ (R3)‖w‖Cγ (R3),

(iii) if β + γ ∈ (1,2) then

‖q‖Cβ+γ−1(R3) ≤Cβ ,γ‖v‖C0(R3)‖w‖Cβ (R3)‖z‖Cγ (R3)

+Cβ ,γ‖v‖Cβ (R3)

(
‖w‖C0(R3)‖z‖Cγ (R3)+‖w‖Cγ (R3)‖z‖C0(R3)

)
.

(2.15)

Taking β = γ = θ in the previous proposition and v=w= u, one obtains that the potential theoretic
solutions p and q of −∆p = divdiv(u⊗u) and −∆q = divdivdiv(u⊗u⊗u) obey

‖p‖C2θ (R3) ≤Cθ‖u‖2
Cθ (R3) if θ ∈

(
0, 1

2

)
, (2.16)

‖p‖C1,2θ−1(R3) ≤Cθ‖u‖2
Cθ (R3), ‖q‖C2θ−1(R3) ≤Cθ‖u‖C0(R3)‖u‖2

Cθ (R3) if θ ∈
(1

2 ,1
)
.

However, the more general nature of Proposition 2.3 will be useful to deal with Theorem 2.1 (ii); in
this case, we will take advantage not only of the structure of the equation for p, ∇p and ∂t p, but also
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of the (previously showed) regularity of u in time, and for this scope we will need Proposition 2.3
in its generality, including the non-symmetric nature of (2.15) with respect to v,w and z. We do not
expect (2.16) to hold for θ = 1

2 due to the usual loss in Schauder estimates in integer Hölder spaces;
for θ = 1

2 the estimate reads ‖p‖C1−ε (R3) ≤Cε‖u‖2

C
1
2 (R3)

.

Proof. (i) We will prove that

[p]Cβ+γ (R3) ≤C‖v‖Cβ (R3)‖w‖Cγ (R3). (2.17)

The estimate for ‖p‖C0(R3) (as well as the one for [p]Cmin{β ,γ}(R3)) follows from the standard Schauder
estimates. For any x1,x2 ∈R3, we define x̄ = x1+x2

2 and λ = |x1−x2|. Since divv = ∂ivi = 0 = divw =
∂iwi, we observe that the equation for p can be rewritten as

−∆p = ∂i j(viw j) = ∂iw j
∂ jvi = ∂i(w j−w j(x2))∂ j(vi− vi(x1))

= ∂i j
(
(vi− vi(x1))(w j−w j(x2))

)
= ∂i j

(
(vi− vi(x1))(w j−w j(x2))− vi(x1)w j(x2)

)
.

Since the function (vi− vi(x1))(w j−w j(x2))− vi(x1)w j(x2) is compactly supported in B1, we con-
clude that the potential theoretic solution associated to it is the same as the potential theoretic solution
associated to viw j, namely by (2.13) applied with BR0(x0) = BR0(x̄) it is given by the representation
formula

p(x) =
ˆ

BR0(x̄)
∂

2
i jΦ(x− y)

[(
vi(y)− vi(x1)

)(
w j(y)−w j(x2)

)
−
(
vi(x)− vi(x1)

)(
w j(x)−w j(x2)

)]
dy

−
[(

vi(x)− vi(x1)
)(

w j(x)−w j(x2)
)
− vi(x1)w j(x2)

]ˆ
∂BR0(x̄)

∂iΦ(x− y)n j(y)dy ,

for every x ∈ R3. Through the isometry y→ x1 + x2− y, using that ∂iΦ is odd and n(y) = −n(x1 +
x2− y), we observe that

ˆ
∂BR0(x̄)

∂iΦ(x1− y)n j(y)dy =
ˆ

∂BR0(x̄)
∂iΦ(y− x2)n j(x1 + x2− y)dy

=

ˆ
∂BR0(x̄)

∂iΦ(x2− y)n j(y)dy .

Hence, we rewrite the incremental quotient as

p(x1)− p(x2)

=

ˆ
BR0(x̄)

[
∂

2
i jΦ(x1− y)−∂

2
i jΦ(x2− y)

](
vi(y)− vi(x1)

)(
w j(y)−w j(x2)

)
dy .
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Splitting the contributions of y ∈ Bλ (x̄) and y ∈ Bc
λ
(x̄),

|p(x1)− p(x2)|

≤
ˆ
(BR0\Bλ )(x̄)

∣∣∂ 2
i jΦ(x1− y)−∂

2
i jΦ(x2− y)

∣∣ ∣∣vi(y)− vi(x1)
∣∣ ∣∣w j(y)−w j(x2)

∣∣dy

+

ˆ
Bλ (x̄)

(∣∣D2
Φ(x1− y)

∣∣+ ∣∣D2
Φ(x2− y)

∣∣) ∣∣vi(y)− vi(x1)
∣∣∣∣w j(y)−w j(x2)

∣∣dy

= I + II (2.18)

Using the decay of
∣∣D2Φ

∣∣ we estimate the second integral in the right-hand side of (2.18) with

II ≤ [v]Cβ [w]Cγ

ˆ
Bλ (x̄)

[
λ

γ
∣∣D2

Φ(x1− y)
∣∣|x1− y|β +λ

β
∣∣D2

Φ(x2− y)
∣∣|x2− y|γ

]
dy

≤C[v]Cβ [w]Cγ

(ˆ
B2λ (x1)

λ γ

|x1− y|3−β
dy+

ˆ
B2λ (x2)

λ β

|x2− y|3−γ
dy

)
≤Cλ

β+γ [v]Cβ [w]Cγ .

By the decay of |D3Φ|, in particular since for every point x̃ ∈ Bλ/2(x̄) and for every y ∈ Bc
λ
(x̄) we

have |x̃− y| ≥ |x̄− y|− |x̃− x̄| ≥ |x̄−y|
2 and

∣∣D3Φ(x̃− y)
∣∣≤ C

|x̃−y|4 ≤
C
|x̄−y|4 , we have

I ≤ λ [v]Cβ [w]Cγ

ˆ
Bc

λ
(x̄)

(ˆ 1

0

∣∣D3
Φ(tx1 +(1− t)x2− y)

∣∣dt
)
|x1− y|β |x2− y|γ dy

≤Cλ [v]Cβ [w]Cγ

ˆ
Bc

λ
(x̄)

|x1− y|β |x2− y|γ

|x̄− y|4
dy

≤Cλ [v]Cβ [w]Cγ

ˆ
Bc

λ
(x̄)

1
|x̄− y|4−β−γ

dy≤Cλ
β+γ [v]Cβ [w]Cγ .

This concludes the proof of (i) (notice that in the last line we used that β + γ < 1).

(ii) If β + γ ∈
(1

2 ,1
)

we have that for every partial derivative ∂k and for every given x ∈ R3

−∆∂k p(y) = ∂
3
i jk(v

i(y)w j(y)) = ∂
2
i j∂k
(
(vi(y)− vi(x))(w j(y)−w j(x))

)
.

Since ∂k
(
(vi− vi(x))(w j−w j(x))

)
is compactly supported we can use again the representation for-

mula (2.13) getting

∂k p(x) =
ˆ

BR0(x0)
∂

2
i jΦ(x− y)∂k

(
(vi(y)− vi(x))(w j(y)−w j(x))

)
dy
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Integrating by parts (this can be easily justified approximating u with smooth functions) and letting
R0→ ∞ we obtain

∂k p(x) =
ˆ
R3

∂
3
i jkΦ(x− y)(vi(y)− vi(x))(w j(y)−w j(x))dy . (2.19)

For every x1,x2 ∈ R3 we define x = x1+x2
2 , λ = |x1− x2| and we write

∂k p(x1)−∂k p(x2) =

ˆ
Bλ (x)

∂
3
i jkΦ(x1− y)(vi(y)− vi(x1))(w j(y)−w j(x1))dy

−
ˆ

Bλ (x)
∂

3
i jkΦ(x2− y)(vi(y)− vi(x2))(w j(y)−w j(x2))dy

+

ˆ
Bc

λ
(x)

(
∂

3
i jkΦ(x1− y)−∂

3
i jkΦ(x2− y)

)
(vi(y)− vi(x1))(w j(y)−w j(x1))dy

+

ˆ
Bc

λ
(x)

∂
3
i jkΦ(x2− y)(vi(y)− vi(x2))(w j(x2)−w j(x1))dy

+

ˆ
Bc

λ
(x)

∂
3
i jkΦ(x2− y)(vi(x2)− vi(x1))(w j(y)−w j(x1))dy ,

and, arguing as in the proof for β +γ < 1, it is easy to see that each of the above integrals is estimated
by Cλ β+γ−1[v]Cβ [w]Cγ from which the estimate on p in (ii) follows.

(iii) We note that for every choice of x1,x2,x0 we can write q = q1 +q2, where

−∆q1 = ∂
2
i j∂k
(
(vi− vi(x1))(w j−w j(x2))(zk− zk(x0))

)
−∆q2 = ∂

3
i jk
(
(vi(x1)w jzk)+∂

3
i jk
(
(viw j(x2)zk)+∂

3
i jk
(
(viw jzk(x0)

)
.

Since the right hand side of the Poisson equation for q2 has exactly the same structure of the one for
∂k p (the only difference are the constants but they do not play any role and they can be estimated
by their respective C0 norm) in the previous computations, we can infer that q2 enjoys the estimate
(2.15). For q1 we can use the same formula as in (2.19) choosing x0 = xm when we have to evaluate
q1(xm). Thus for m = 1,2 we can write

q1(xm) =

ˆ
R3

∂
3
i jkΦ(xm− y)(vi(y)− vi(x1))(w j(y)−w j(x2))(zk(y)− zk(xm))dy



28 2. Regularity results for the Fractional Navier-Stokes equations in Hölder spaces

and again, letting λ = |x1−x2|, x = x1+x2
2 and splitting the contributions in Bλ (x) and Bc

λ
(x) we write

q1(x1)−q1(x2)

=

ˆ
Bλ (x)

∂
3
i jkΦ(x1− y)(vi(y)− vi(x1))(w j(y)−w j(x2))(zk(y)− zk(x1))dy

−
ˆ

Bλ (x)
∂

3
i jkΦ(x2− y)(vi(y)− vi(x1))(w j(y)−w j(x2))(zk(y)− zk(x2))dy

+

ˆ
Bc

λ
(x)

∂
3
i jkΦ(x1− y)(vi(y)− vi(x1))(w j(y)−w j(x2))(zk(x2)− zk(x1))dy

+

ˆ
Bc

λ
(x)

(
∂

3
i jkΦ(x1− y)−∂

3
i jkΦ(x2− y)

)
(vi(y)− vi(x1))

(w j(y)−w j(x2))(zk(y)− zk(x2))dy .

We estimate each term in the same spirit as the previous computations to get

|q1(x1)−q1(x2)|

≤C‖v‖Cβ ‖w‖C0‖z‖Cγ

ˆ
Bλ (x)

1
|x1− y|4−β−γ

dy+C‖v‖C0‖w‖Cβ ‖z‖Cγ

×

(ˆ
Bλ (x)

1
|x2− y|4−β−γ

dy+λ
γ

ˆ
Bc

λ
(x)

1
|x− y|4−β

dy+λ

ˆ
Bc

λ
(x)

1
|x− y|5−β−γ

dy

)
≤Cλ

β+γ−1(‖v‖C0(R3)‖w‖Cβ (R3)‖z‖Cγ (R3)+‖v‖Cβ (R3)‖w‖C0(R3)‖z‖Cγ (R3)

)
,

which concludes the proof of (ii).

In order to adapt the previous proposition to periodic solutions in R3 (thus without any decay at
infinity) we will use the following lemma.

Lemma 2.4. Let θ ∈ (0,1). For any u ∈ Cθ (T3) such that divu = 0, there exists a vector field
ũ ∈Cθ (R3) compactly supported in B12(0) and a positive constant Cθ > 0 such that div ũ = 0, ũ≡ u
in B6(0) and

‖ũ‖Cθ (R3) ≤Cθ‖u‖Cθ (T3) . (2.20)

Proof. Assume for now that
´
T3 u = 0. Since divu = 0 on T3 then there exists a vector potential

A : T3 → R3 such that u = curlA and −∆A = curlu. Moreover by Schauder estimates we have
‖A‖C1,θ (T3) ≤ Cθ‖u‖Cθ (T3). Now think A to be defined periodically to the whole space R3. Choose
a smooth cut-off function 0 ≤ ϕ ≤ 1 such that supp ϕ ⊂ B12, ϕ ≡ 1 on B6 and ‖ϕ‖C2 ≤ C. Define
ũ = curl Ã where Ã = AϕR . Trivially div ũ = 0 and we also have the following estimate

‖ũ‖Cθ (R3) ≤ ‖Ã‖C1,θ (R3) ≤C‖ϕ‖C1,θ (R3)‖A‖C1,θ (T3) ≤Cθ‖u‖Cθ (T3) .

Moreover ũ satisfies ũ = curl Ã = curlA = u in B6(0). When the average of u is not zero, one can
repeat the proof with the only difference that u = curlA+ 1

|T3|
´
T3 u in this case.
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Note that the choice of B6(0) in the previous lemma is to ensure that the cube (and thus the torus)
[−π,π]3 ⊂ B6(0). Since we will work on functions u, p that solve (2.14) in T3, we can take the
extension ũ given by Lemma 2.4 and define p̃, q̃ as

−∆p̃ = divdiv(ṽ⊗ w̃) in R3 .

−∆q̃ = divdivdiv(ṽ⊗ w̃⊗ z̃) in R3 .

Thus we can write p = p− p̃+ p̃ and q = q− q̃+ q̃, where p̃ and q̃ satisfy Proposition 2.3, while p− p̃
and q− q̃ are harmonic in B6(0). Thus we have the following

Corollary 2.5. If v,w,z ∈C0(T3), then Proposition 2.3 holds also for the (unique) zero-average solu-
tions p and q of (2.14) in T3.

2.3 Velocity and pressure regularity
Here we prove Theorem 2.1.

Time regularity of u

To prove (2.2), it is enough to show that u is θ−Hölder in time, uniformly in space. For any
s, t ∈ [0,T ] we estimate vµ

|u(t,x)−u(s,x)| ≤ |u(t,x)−uδ (t,x)|+ |uδ (t,x)−uδ (s,x)|+ |uδ (s,x)−u(s,x)| . (2.21)

Using (B.5) we get

|u(t,x)−uδ (t,x)| ≤Cδ
θ‖u‖L∞((0,T );Cθ (T3))) ∀t ∈ [0,T ] ,

thus we are only left with the second term in the right hand side of (2.21). Using the equation (2.9),
the estimates (2.12) and (B.4), Theorem C.1, we have

|uδ (t,x)−uδ (s,x)| ≤ |t− s|‖∂tuδ‖L∞((0,T )×T3)

≤ |t− s|(‖div(u⊗u)δ‖L∞ +‖∇pδ‖L∞ +µ ‖(−∆)αuδ‖L∞)

≤C|t− s|
(
δ

θ−1‖u‖2
L∞((0,T );Cθ (T3))+µ‖uδ‖L∞((0,T );C2α+ε (T3))

)
,

Since α ∈
(
0, 1

2

)
we can choose ε such that 2α + ε < 1, getting

|uδ (t,x)−uδ (s,x)| ≤C|t− s|δ θ−1(‖u‖2
L∞((0,T );Cθ (T3))+µ‖u‖L∞((0,T );Cθ (T3))

)
,

Finally we choose δ = |t− s|, from which the claim follows.
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Space regularity for p, for θ ∈ (0,1)

Estimates (2.3) and (2.5) follow from Corollary 2.5.

Time regularity for p, for θ < 1
2

For any s, t ∈ [0,T ], such that |t− s|= δ < 1 we estimate via the triangular inequality and thanks
to the space regularity of p and (B.5)

|p(t,x)− p(s,x)| ≤ 2 sup
t∈[0,T ]

|p(t,x)− pδ (t,x)|+ |pδ (t,x)− pδ (s,x)|

≤Cδ
2θ‖p‖L∞((0,T );C2θ (T3))+ |pδ (t,x)− pδ (s,x)|

≤Cδ
2θ‖u‖2

L∞((0,T );Cθ (T3))+ |pδ (t,x)− pδ (s,x)| .

(2.22)

To estimate the last term we consider the equation solved by pδ

−∆pδ = divdiv((u⊗u)δ ) = divdiv(uδ ⊗uδ −Rδ )

and hence the one for pδ (t, ·)− pδ (s, ·)

−∆(pδ (t,x)− pδ (s,x)) = divdiv(Rδ (s,x)−Rδ (t,x)+uδ (t,x)⊗uδ (t,x)−uδ (s,x)⊗uδ (s,x))

= divdiv
[

Rδ (s,x)−Rδ (t,x)+
ˆ t

s

(
d
dr

uδ (r,x)⊗uδ (r,x)+uδ (r,x)⊗
d
dr

uδ (r,x)
)

dr
]

= divdiv
[

Rδ (s,x)−Rδ (t,x)+
ˆ t

s

(
(div(uδ ⊗uδ )−∇pδ −divRδ −µ(−∆)αuδ )⊗uδ

+uδ ⊗ (div(uδ ⊗uδ )−∇pδ −divRδ −µ(−∆)αuδ )
)

dr
]
.

(2.23)

Defining the commutator

T α(uδ ) = (−∆)α(uδ ⊗uδ )− (−∆)αuδ ⊗uδ −uδ ⊗ (−∆)αuδ , (2.24)

and denoting by p1
s,t , p2

s,t , p3
s,t , p4

s,t , p5
s,t the unique 0-average solutions of

−∆p1
s,t = divdiv(Rδ (s,x)−Rδ (t,x)) ,

∆p2
s,t =

ˆ t

s
divdiv((divRδ +∇pδ )⊗uδ +uδ ⊗ (divRδ +∇pδ ))dr ,

−∆p3
s,t =

ˆ t

s
divdiv(div(uδ ⊗uδ )⊗uδ +uδ ⊗div(uδ ⊗uδ ))dr ,
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−∆p4
s,t = µ

ˆ t

s
divdivT α(uδ )dr ,

∆p5
s,t = µ

ˆ t

s
divdiv(−∆)α(uδ ⊗uδ )dr ,

we have that
pδ (t,x)− pδ (s,x) = p1

s,t + p2
s,t + p3

s,t + p4
s,t + p5

s,t .

By Schauder estimates, estimating Rδ by (B.2) and pδ by (B.4) and thanks to the space regularity of
p proved above in (2.3), p1

s,t and p2
s,t enjoy the estimate

‖p1
s,t‖L∞(T3) ≤ ‖p1

s,t‖Cε (T3) ≤C
(
‖Rδ (t, ·)‖Cε (T3)+‖Rδ (s, ·)‖Cε (T3)

)
≤Cδ

2θ−ε‖u‖2
L∞((0,T );Cθ (T3)),

‖p2
s,t‖L∞(T3) ≤ ‖p2

s,t‖Cε (T3) ≤C|t− s|‖(divRδ +∇pδ )⊗uδ‖L∞((0,T );Cε (T3))

≤C|t− s|
(
‖Rδ‖L∞((0,T );C1,ε (T3))+‖pδ‖L∞((0,T );C1,ε (T3))

)
‖uδ‖L∞((0,T );Cε (T3))

≤C|t− s|δ 2θ−ε−1‖u‖3
L∞((0,T );Cθ (T3))

.

Note that p3
s,t is the integral in time of ∆−1divdivdiv(uδ ⊗ uδ ⊗ uδ ), which from Corollary 2.5 and

(B.3) satisfies

‖p3
s,t‖L∞(T3) ≤ ‖p3

s,t‖Cε (T3) ≤C|t− s|‖uδ‖L∞((0,T )×T3)‖uδ‖2

L∞((0,T );C
1+ε

2 (T3))

≤C|t− s|‖u‖L∞((0,T )×T3)

(
δ

θ− 1+ε

2 ‖u‖L∞((0,T );Cθ (T3))

)2

≤C|t− s|δ 2θ−1−ε‖u‖3
L∞((0,T );Cθ (T3))

.

Choosing ε such that ε

2 < α , by Schauder estimates and (C.4) we have

‖p4
s,t‖L∞(T3) ≤ ‖p4

s,t‖Cε (T3)

≤C|t− s|‖T α(uδ )‖L∞((0,T );Cε (T3))

≤C|t− s|‖uδ‖2
L∞((0,T );Cα+ε/2(T3))

.

To estimate p5
s,t we note that every solution of ∆q = divdiv(uδ ⊗uδ ) enjoy the estimate (by Proposi-

tion 2.5) ‖q‖L∞((0,T );C2α+ε (T3)) ≤C‖uδ‖2
L∞((0,T );Cα+ε/2(T3))

, and since p5
s,t =

´ t
s (−∆)αqdr, by Theorem

C.1 we infer

‖p5
s,t‖L∞(T3) ≤C|t− s|‖q‖L∞((0,T );C2α+ε (T3)) ≤C|t− s|‖uδ‖2

L∞((0,T );Cα+ε/2(T3))
.

In the case α < θ , if ε is sufficiently small, we have (since δ < 1)

‖uδ‖2
L∞((0,T );Cα+ε/2(T3)

≤ ‖u‖2
L∞((0,T );Cθ (T3)) ≤ δ

2θ−1‖u‖2
L∞((0,T );Cθ (T3)) ,
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while, if α ≥ θ , using (B.3) we have

‖uδ‖2
L∞((0,T );Cα+ε/2(T3))

≤ δ
2(θ−α)−ε‖u‖2

L∞((0,T );Cθ (T3)) ≤ δ
2θ−1‖u‖2

L∞((0,T );Cθ (T3)) .

Thus we deduce

‖p4
s,t‖L∞(T3)+‖p5

s,t‖L∞(T3) ≤C|t− s|δ 2θ−1‖u‖2
L∞((0,T );Cθ (T3)) .

Since δ = |t− s| we conclude that |pδ (t,x)− pδ (s,x)| ≤C|t− s|2θ−ε , so that (2.4) holds true.

Time regularity for ∇p, for θ > 1
2

By the equation solved by p, for 0 < s < t we have

−∆(p(t)− p(s)) = ∂
2
i j(u

i(t)u j(t)−ui(s)u j(s))

= ∂
2
i j
(
(ui(t)−ui(s))u j(t)+ui(s)(u j(t)−u j(s))

)
By Corollary 2.5 we can apply Proposition 2.3 (ii) with β = 1−θ + ε and γ = θ to obtain

‖∇p(t)−∇p(s)‖Cε (T3) ≤C‖u(t)−u(s)‖C1−θ+ε (T3)‖u‖L∞((0,T );Cθ (T3)).

Interpolating the C1−θ+ε -norm between C0 and Cθ (since θ > 1
2 ) and by the time regularity of u in

(2.2), we have

‖u(t)−u(s)‖C1−θ+ε (T3) ≤ ‖u(t)−u(s)‖
1−θ+ε

θ

Cθ (T3)
‖u(t)−u(s)‖

2θ−1−ε

θ

C0(T3)

≤ ‖u‖Cθ ([0,T ]×T3)|t− s|2θ−1−ε

≤
(
‖u‖L∞((0,T );Cθ (T3))+‖u‖

2
L∞((0,T );Cθ (T3))

)
|t− s|2θ−1−ε ,

which proves that for any x ∈ T3∣∣∇p(t,x)−∇p(s,x)
∣∣≤C|t− s|2θ−1−ε (2.25)

Space regularity for ∂t p, for θ > 1
2

With the previous arguments, p ∈ C0,1([0,T ]×T3). Hence ∂t p ∈ L∞ and we can look at the
equation solved (in distributional sense) by it, obtained by differentiating in time (2.11)

−∆∂t p = divdiv∂t(u⊗u) .

Note that, defining T α(uδ ) as in (2.24), for every δ > 0 we have

∂t(uδ ⊗uδ ) = ∂tuδ ⊗uδ +uδ ⊗∂tuδ

=−div(uδ ⊗uδ ⊗uδ )+divRδ ⊗uδ +uδ ⊗divRδ

−∇pδ ⊗uδ −uδ ⊗∇pδ +µT α(uδ )−µ(−∆)α(uδ ⊗uδ )
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and, since by (B.2) divRδ → 0 uniformly and by Proposition C.3, T α(uδ )→ T α(u) uniformly, we
have that ∂t p solves distributionally

∆∂t p = divdivdiv(u⊗u⊗u)+divdiv
(
2∇p⊗u−µT α(u)+µ(−∆)α(u⊗u)

)
. (2.26)

Hence we can write ∂t p = q1 +q2 +q3 +q4, where

∆q1 = divdivdiv(u⊗u⊗u) ∆q2 = 2divdiv(∇p⊗u)

∆q3 = µ divdivT α(u) −∆q4 = µ divdiv(−∆)α(u⊗u)

In turn by the estimate on q = q1 from Corollary 2.5

‖q1(t)‖C2θ−1(T3) ≤C‖u(t)‖3
Cθ (T3)

and by Schauder estimates, together with the regularity of p, we have

‖q2(t)‖C2θ−1(T3) ≤C‖∇p⊗u‖C2θ−1(T3)

≤C‖∇p(t)‖C2θ−1(T3)‖u(t)‖Cθ (T3) ≤C‖u(t)‖3
Cθ (T3)

.

Applying (C.4) and (C.5) with β = 2(θ −α) (choosing ε small enough such that θ < 1− ε) and by
Schauder estimates we deduce

‖q3(t)‖C2θ−1(T3) ≤C‖T α(u)(t)‖C2θ−1(T3) ≤C‖u(t)‖2
Cθ (T3) ≤C‖u(t)‖2

Cθ (T3) .

Notice that q4 = µ(−∆)α p, thus by (2.5) we have

‖q4(t)‖C2θ−1(T3) ≤C‖p(t)‖C1,2θ−1(T3) ≤C‖u(t)‖2
Cθ (T3) .

Time regularity for ∂t p, for θ > 1
2

For any 0 < s < t, by the equation for ∂t p in (2.26), we have that ∂t p(t,x)− ∂t p(s,x) = p1
s,t +

p2
s,t + p3

s,t where p1
s,t , p2

s,t , and p3
s,t are the unique 0-average solutions in T3 of

∆p1
s,t = divdivdiv(u(t)⊗u(t)⊗u(t)−u(s)⊗u(s)⊗u(s))

= divdivdiv
(
(u(t)−u(s))⊗u(t)⊗u(t)+u(s)⊗ (u(t)−u(s))⊗u(t)

+u(s)⊗u(s)⊗ (u(t)−u(s))
)

∆p2
s,t = divdiv

(
2∇p(t)⊗u(t)−2∇p(s)⊗u(s)−µT α(u(t))+µT α(u(s))

)
∆p3

s,t = µ(−∆)αdivdiv
(
u(t)⊗u(t)−u(s)⊗u(s)

)
.
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To estimate p1
s,t , for any ε small we apply Corollary 2.5, with particular reference to Proposition 2.3

(iii), with β = 1−θ + ε and γ = θ , in such a way that the factor u(t)−u(s) gets each time only the
C1−θ+ε norm and not the Cθ norm. We obtain that

‖p1
s,t‖L∞(T3) ≤ ‖p1

s,t‖Cε (T3) ≤C‖u(t)−u(s)‖C1−θ+ε (T3)‖u‖
2
L∞((0,T );Cθ (T3)).

Next, we interpolate the C1−θ+ε norm between C0 and Cθ and finally we use the Cθ regularity in time
of u to obtain that

‖u(t)−u(s)‖C1−θ+ε (T3) ≤C‖u(t)−u(s)‖
1−θ+ε

θ

Cθ (T3)
‖u(t)−u(s)‖

2θ−1−ε

θ

C0(T3)

≤C‖u‖
1−θ+ε

θ

L∞((0,T );Cθ (T3))
|t− s|2θ−1−ε‖u‖

2θ−1−ε

θ

Cθ ([0,T ]×T3)

≤C|t− s|2θ−1−ε‖u‖Cθ ([0,T ]×T3).

Notice that

T α(u(t))−T α(u(s)) = T α
(
u(t)−u(s),u(t)

)
+T α

(
u(s),u(t)−u(s)

)
.

Now if 2α > θ we use part (i) of Proposition C.3 with k1 = 2α −θ + ε

2 , k2 = θ − ε

2 , β = ε and we
get

‖T α
(
u(t)−u(s),u(t)

)
‖Cε (T3) ≤C‖u(t)−u(s)‖C2α−θ+ε (T3)‖u(t)‖Cθ (T3) ,

while if 2α ≤ θ we choose k1 = ε , k2 = 2α− ε , β = ε , getting

‖T α
(
u(t)−u(s),u(t)

)
‖Cε (T3) ≤C‖u(t)−u(s)‖C3ε/2(T3)‖u(t)‖C2α−ε/2(T3)

≤C‖u(t)−u(s)‖C2ε (T3)‖u(t)‖Cθ (T3) .

Interpolating again between C0 and Cθ and using the Hölder regularity of u in time, we obtain

‖T α
(
u(t)−u(s),u(t)

)
‖Cε/2(T3) ≤C|t− s|2θ−1−ε‖u‖Cθ ([0,T ]×T3)‖u‖L∞((0,T );Cθ (T3)) .

Summarizing we achieved

‖T α(u(t))−T α(u(s))‖Cε/2(T3) ≤C|t− s|2θ−1−ε‖u‖Cθ ([0,T ]×T3)‖u‖L∞((0,T );Cθ (T3)) . (2.27)

Moreover by interpolation we estimate

‖∇p(t)⊗u(t)−∇p(s)⊗u(s)‖Cε/2(T3) ≤ ‖∇p(t)⊗u(t)−∇p(s)⊗u(s)‖
1− ε

2(2θ−1−ε/2)

C0(T3)

‖∇p(t)⊗u(t)−∇p(s)⊗u(s)‖
ε

2(2θ−1−ε/2)

C2θ−1−ε/2(T3)

≤C|t− s|2θ−1−ε‖∇p⊗u‖C2θ−1−ε/2([0,T ]×T3)

≤C|t− s|2θ−1−ε‖∇p‖C2θ−1−ε/2([0,T ]×T3)‖u‖Cθ ([0,T ]×T3) . (2.28)
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By Schauder estimates, together with (2.27) and (2.28), we conclude

‖p2
s,t‖Cε/2(T3) ≤C|t− s|2θ−1−ε .

We note that p3
s,t =−µ(−∆)α(p(t)− p(s)), thus by Theorem C.1 and (2.25) we have

‖p3
s,t‖Cε (T3) ≤C‖p(t)− p(s)‖C1(T3) ≤C|t− s|2θ−1−ε ,

From which we conclude

[∂t p(x)]C2θ−1−ε ([0,T ]) ≤C‖u‖3
L∞((0,T );Cθ (T3))

.

2.4 Energy regularity
Here we prove Theorem 2.2.

The case µ = 0 (Euler)

Let s, t ∈ [0,T ]. We wish to find a proper estimate for |eu(t)−eu(s)|. To do this we split it in three
terms as follows d

|eu(t)− eu(s)| ≤ |eu(t)− euδ
(t)|+ |euδ

(t)− euδ
(s)|+ |euδ

(s)− eu(s)| , (2.29)

for some parameter δ > 0 that will be fixed at the end of the proof. Assume that u∈L∞((0,T );Bθ
3,∞(T

3)).
Using (B.1) and (B.8) with r = 3

2 we can estimate

|eu(t)− euδ
(t)| ≤ 1

2

ˆ
T3

∣∣(|u|2)δ −|uδ |2
∣∣(x, t)dx≤Cδ

2θ [u]2L∞((0,T );Bθ
3,∞(T3))

.

We are now left with the second therm in the right hand side of (2.29). By (2.10) we get

|euδ
(t)− euδ

(s)| ≤ |t− s|
∥∥∥∥deuδ

dt

∥∥∥∥
L∞(0,T )

≤C|t− s|‖Rδ‖L∞((0,T );L3/2(T3))‖∇uδ‖L∞((0,T );L3(T3)) ,

and using (B.7) and (B.8) we obtain

|euδ
(t)− euδ

(s)| ≤C|t− s|δ 3θ−1[u]3L∞((0,T );Bθ
3,∞(T3))

.

Thus we have achieved

|eu(t)− eu(s)| ≤C
(
[u]2L∞((0,T );Bθ

3,∞(T3))
+[u]3L∞((0,T );Bθ

3,∞(T3))

)(
δ

2θ + |t− s|δ 3θ−1
)
,

from which choosing δ = |t− s|
1

1−θ we conclude

|eu(t)− eu(s)| ≤C
(
[u]2L∞((0,T );Bθ

3,∞(T3))
+[u]3L∞((0,T );Bθ

3,∞(T3))

)
|t− s|

2θ

1−θ .
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The case µ > 0 (Hypodissipative Navier-Stokes)

We assume that u ∈ L∞((0,T );Bθ
3,∞(T

3)) and we spilt

|Eu(t)−Eu(s)| ≤ |Eu(t)−Euδ
(t)|+ |Euδ

(t)−Euδ
(s)|+ |Euδ

(s)−Eu(s)| , (2.30)

Using (B.1) and (B.8) with r = 3
2 we can estimate

|Eu(t)−Euδ
(t)| ≤ 1

2

ˆ
T3

∣∣(|u|2)δ −|uδ |2
∣∣dx+µ

ˆ t

0

ˆ
T3

∣∣(|(−∆)
α/2u|2)δ −|(−∆)

α/2uδ |2
∣∣dxdr

Using (B.8) with r = 3
2 and with r = 1 we have respectively

1
2

ˆ
T3

∣∣(|u|2)δ −|uδ |2
∣∣(x, t)dx≤Cδ

2θ [u]2L∞((0,T );Bθ
3,∞(T3))

,

ˆ t

0

ˆ
T3

∣∣(|(−∆)
α/2u|2)δ −|(−∆)

α/2uδ |2
∣∣(x,r)dxdr ≤Cδ

2(θ−α)[(−∆)
α/2u]2

L∞((0,T );Bθ−α

2,∞ (T3))
.

Since ‖(−∆)
α/2u(t)‖W k,2(T3) ≤ ‖u(t)‖W α+k,2(T3) for both k = 0,1, by interpolation we also get

[(−∆)
α/2u(t)]Bθ−α

2,∞ (T3) ≤ ‖u(t)‖Bθ
2,∞(T3).

Thus we have achieved

|Eu(t)−Euδ
(t)| ≤Cδ

2(θ−α)[u]2L∞((0,T );Bθ
3,∞(T3))

.

Note that the second term in the right hand side of (2.30) is estimated by the same expression for the
case µ = 0, thus we get

|Euδ
(t)−Euδ

(s)| ≤ |t− s|
∥∥∥∥dEuδ

dt

∥∥∥∥
L∞(0,T )

≤C|t− s|δ 3θ−1[u]3L∞((0,T );Bθ
3,∞(T3))

.

Thus we have obtained

|Eu(t)−Eu(s)| ≤C
(
[u]2L∞((0,T );Bθ

3,∞(T3))
+[u]3L∞((0,T );Bθ

3,∞(T3))

)(
δ

2(θ−α)+ |t− s|δ 3θ−1
)
.

Hence if θ < 1/3 choosing δ = |t− s|
1

1−3θ+2(θ−α) we conclude the validity of (2.8); if θ > 1/3 we let
δ → 0 in this inequality to deduce the conservation of energy.



Chapter 3

Regularity results for the Euler equations in
Besov and Sobolev spaces

3.1 Introduction
In the spatial periodic setting T3 = R3/Z3, we consider the incompressible Euler equations{

∂tu+div(u⊗u)+∇p = 0
divu = 0 in (0,T )×T3. (3.1)

In the last chapter we analyzed the case of Hölder continuous solutions. The following theorem
provides a regularization property of the Euler equations, for solutions which enjoy some a priori
Sobolev or Besov regularity in space. Roughly speaking, we prove that the pressure associated to
any such solution enjoys double regularity in space with respect to u, and that both u and p enjoy a
corresponding time regularity.

Theorem 3.1. Let (u, p) be a distributional solution to (3.1) in (0,T )×T3, for some T < ∞. For any
θ ∈ (0,1), s ∈ [1,∞], r ∈ (1,∞), the following implications are true:

(i) if u ∈ L2s((0,T );Bθ
2r,∞(T

3)), then u ∈ Bθ
s,∞((0,T );Lr(T3)) and p ∈ Ls((0,T );B2θ

r,∞(T3));

(ii) if u ∈ L3s((0,T );Bθ
4r,∞(T

3)) and θ > 1/2, then p ∈ B2θ−1−β
s,∞ ((0,T );B1+β

r,∞ (T3)) for any β ∈
[0,2θ −1);

(iii) if u ∈ L3s((0,T );Bθ
3r,∞(T

3)) and if θ ≤ 1/2, then p ∈ B2θ−ε
s,∞ ((0,T );Lr(T3)), for any ε > 0.

Moreover in the case θ > 1/2 we have p ∈W 1,s((0,T );B2θ−1
r,∞ (T3));

(iv) if u ∈ L6s((0,T );Bθ
6r,∞(T

3)) and θ > 1/2, then ∂t p ∈ B2θ−1−ε
s,∞ ((0,T );Lr(T3)), for any ε > 0.

Then we obtain the following corollary on the Sobolev solutions by considering suitable embed-
dings between Sobolev and Besov spaces.

37
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Corollary 3.2. Let (u, p) be a distributional solution to (3.1) in (0,T )×T3, for some T < ∞. For any
θ ∈ (0,1), s ∈ [1,∞], r ∈ (1,∞), the following implications hold true:

(i) if u∈ L2s((0,T );W θ ,2r(T3)), then u∈W θ−ε,s((0,T );Lr(T3)) and p∈ Ls((0,T );W 2θ−ε,r(T3));

(ii) if θ ≤ 1/2 and u ∈ L3s((0,T );W θ ,3r(T3)), or if θ > 1/2 and u ∈ L6s((0,T );W θ ,6r(T3)), then
p ∈W 2θ−ε,s((0,T );Lr(T3)).

When s = r = ∞, identifying W θ ,∞ with the corresponding Hölder space, the previous theo-
rem corresponds formally to Theorem 2.1 from the previous chapter: roughly speaking, it says
that if (u, p) is a distributional solution to (3.1), θ ∈ (0,1) and u ∈ L∞((0,T );Cθ (T3)), then u ∈
Cθ−ε((0,T );L∞(T3)), namely u ∈Cθ−ε((0,T )×T3) and p ∈C2θ−ε((0,T )×T3).

Theorem 3.1 follows from two main ingredients: on one side, we obtain the time regularity by
estimating, for any time increment h, some norm ||u(t +h)−u(t)|| by comparison between u and the
convolution of u with a mollification kernel at some scale δ , which is then chosen as an appropriate
function of h. On the other side, to obtain the double regularity of the pressure we look at

−∆p = divdiv(u⊗u), (3.2)

which is the formal equation solved by p. We consider a bilinear operator which associates to two
divergence-free vector fields (u,v) the solution to −∆p = divdiv(u⊗ v) and we apply an abstract
interpolation result for bilinear operators (see Theorem 3.8 below). While the arguments of Chapter
2 were based on the classical representation formulae for potential-theoretic solutions of the Poisson
equation, in this chapter we employ real interpolation methods which seem to be new in the present
context.

3.2 Abstract multilinear interpolation
In this section we provide some estimates for multilinear operators, by means of abstract real in-

terpolation methods. They are the core of this chapter and the proof of Theorem 3.1 relies on them.
We start by recalling some definitions and basic facts about interpolation spaces and we refer the
reader to the classical monographs [2, 49, 61] for further details.

Let (X ,‖ · ‖X) and (Y,‖ · ‖Y ) be two real Banach spaces. The couple (X ,Y ) is said to be an
interpolation couple if both X and Y are continuously embedded in a topological Hausdorff vector
space. For any interval I ⊆ (0,∞) we denote by Lr

∗(I) the Lebesgue space of r-summable functions
with respect to the measure dt/t. Let use notice that in particular L∞(I) = L∞

∗ (I). Moreover, we recall
the definition of the K-function, by introducing the following notation.

Definition 3.3. Given x ∈ X +Y we define Ω(x) = {(a,b) ∈ X ×Y : a+ b = x} ⊂ X ×Y. For every
x ∈ X +Y and t > 0, the K-function is defined by

K(t,x,X ,Y ) = inf
Ω(x)
{‖a‖X + t‖b‖Y}. (3.3)



3.2 Abstract multilinear interpolation 39

If no confusion can occur, we simply write K(t,x) instead of K(t,x,X ,Y ).

Definition 3.4. Let θ ∈ (0,1) and r ∈ [1,∞]. We set

(X ,Y )θ ,r =
{

x ∈ X +Y s.t. t 7→ t−θ K(t,x) ∈ Lr
∗(0,∞)

}
endowed with the norm

‖x‖(X ,Y )θ ,r
= ‖t−θ K(·,x)‖Lr

∗.

For these spaces we have the following inclusions

X ∩Y ↪→ (X ,Y )θ ,r ↪→ (X ,Y )θ ,s ↪→ X +Y, (3.4)

for every θ ∈ (0,1) and r,s ∈ [1,∞] with r≤ s. Moreover if γ > θ we also have (X ,Y )γ,r ↪→ (X ,Y )θ ,s,
for every r,s ∈ [1,∞], provided Y ↪→ X .

The following two remarks will be useful in the proof of Theorem 3.8.

Remark 3.5. When Y ↪→ X, the definition of K in (3.3) does not change if instead of Ω(x) we consider
the set Ω̃(x) = {(a,b) ∈Ω(x) s.t. ‖a‖X ≤ ‖x‖X}; in other words,

K(t,x,X ,Y ) = inf
Ω(x)
{‖a‖X + t‖b‖Y}= inf

Ω̃(x)
{‖a‖X + t‖b‖Y}.

Indeed, since Y ↪→ X, one can choose a = x and b = 0 in (3.3), obtaining K(t,x) ≤ ‖x‖X . On the
other hand, we have that ‖a‖X + t‖b‖Y > ‖x‖X for all (a,b) ∈ Ω̃(x)c.

Remark 3.6. Consider again the case Y ↪→ X. Since a+b = x, we have

‖a‖X +‖b‖X ≤ 2‖a‖X +‖x‖X ≤ 3‖x‖X , ∀(a,b) ∈ Ω̃(x).

It is well known that
(
(X ,Y )θ ,r,‖ · ‖(X ,Y )θ ,r

)
is a Banach space. Furthermore, we recall that a lin-

ear operator T behaves nicely with respect to interpolation, i.e. if T ∈L (X1,Y1)∩L (X2,Y2), then
T ∈L ((X1,X2)θ ,r,(Y1,Y2)θ ,r) for any θ ∈ (0,1) and r ∈ [1,∞].

Instead of linear operators, our aim is to treat the case of multilinear operators, in particular
bilinear and trilinear ones. It is worth mentioning that there exists a wide literature on Interpolation
Theory for multilinear operators, see for example the works [2], [37], [47] and [51], but at the best of
our knowledge the following results are new. We also emphasise that they are precisely designed for
the applications to incompressible fluid models of the next section. In what follows, a conjugate pair
(s,s′) is a couple of reals satisfying the usual duality 1

s +
1
s′ = 1.
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Theorem 3.7. Let (X1,X2) and (Y1,Y2) be two interpolation couples. Let T be a bilinear operator
satisfying

‖T (a1,a2)‖Y1 ≤C0‖a1‖X1‖a2‖X1, (3.5)
‖T (b1,b2)‖Y2 ≤C0‖b1‖X2‖b2‖X2, (3.6)

and
‖T (a,b)‖(Y1,Y2) 1

2 ,∞
+‖T (b,a)‖(Y1,Y2) 1

2 ,∞
≤C0‖a‖X1‖b‖X2 , (3.7)

for some constant C0 > 0 independent of a,a1,a2 ∈ X1 and b,b1,b2 ∈ X2, where we implicitly assume
that T is well defined between the spaces involved in the previous estimates. Then, for any θ ,γ ∈
(0,1), r,s,s′ ∈ [1,∞] with s,s′ a conjugate pair,

‖T (x1,x2)‖(Y1,Y2) θ+γ

2 ,r
≤C0‖x1‖(X1,X2)γ,rs‖x2‖(X1,X2)θ ,rs′

∀x1 ∈ (X1,X2)γ,rs, ∀x2 ∈ (X1,X2)θ ,rs′.

In particular, for γ = θ and s = s′ = 2, we get

‖T (x,x)‖(Y1,Y2)θ ,r
≤C0‖x‖2

(X1,X2)θ ,2r
, ∀x ∈ (X1,X2)θ ,2r.

Proof. Let x1 ∈ (X1,X2)γ,sr and x2 ∈ (X1,X2)θ ,rs′. Then we can write x1 = a1 + b1 and x2 = a2 + b2
for some a1,a2 ∈ X1 and b1,b2 ∈ X2, by definition. Since T is bilinear we have

T (x1,x2) = T (a1,a2)+T (a1,b2)+T (b1,a2)+T (b1,b2).

From (3.7) we know that T (a1,b2) ∈ (Y1,Y2) 1
2 ,∞

, hence for any t,ε > 0 there exist T1 ∈Y1 and T2 ∈Y2

such that T (a1,b2) = T1 +T2 and

‖T1‖Y1 + t‖T2‖Y2 ≤ (1+ ε)K(t,T (a1,b2),Y1,Y2)

≤ (1+ ε)
√

t‖T (a1,b2)‖(Y1,Y2) 1
2 ,∞
≤ (1+ ε)C0

√
t‖a1‖X1‖b2‖X2.

(3.8)

Similarly, we can decompose T (b1,a2) =U1 +U2 with U1 ∈ Y1 and U2 ∈ Y2 with estimate

‖U1‖Y1 + t‖U2‖Y2 ≤ (1+ ε)C0
√

t‖a2‖X1‖b1‖X2. (3.9)

Therefore we can write T (x1,x2) =V +W , where

V = T (a1,a2)+T1 +U1 ∈ Y1,

W = T (b1,b2)+T2 +U2 ∈ Y2.

Summing up (3.5)–(3.9) yields to

‖V‖Y1 + t‖W‖Y2 ≤ (1+ ε)C0
(
‖a1‖X1‖a2‖X1 +

√
t (‖a1‖X1‖b2‖X2 +‖a2‖X1‖b1‖X2)+ t‖b1‖X2‖b2‖X2

)
= (1+ ε)C0

(
‖a1‖X1 +

√
t‖b1‖X2

)(
‖a2‖X1 +

√
t‖b2‖X2

)
,
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which in turn implies

K(t,T (x1,x2),Y1,Y2)≤ (1+ ε)C0K(
√

t,x1,X1,X2)K(
√

t,x2,X1,X2). (3.10)

Multiplying (3.10) by t−(γ+θ)/2 and by taking the Lr
∗(0,∞)-norm we get, by means of the Hölder

inequality with conjugate exponents s and s′,

‖T (x1,x2)‖(Y1,Y2) θ+γ

2 ,r
= ‖(·)−(θ+γ)/2K(·,T (x1,x2))‖Lr

∗

≤ (1+ ε)C0

(
‖(·)−sγ/2Ks(

√
·,x1)‖

1/s
Lr
∗
‖(·)−s′θ/2Ks′(

√
·,x2)‖

1/s′
Lr
∗

)
= (1+ ε)C0‖x1‖(X1,X2)γ,rs‖x2‖(X1,X2)θ ,rs′

,

and since the last inequality holds true for any ε > 0, we are done.

Let us now focus on trilinear operators, for which a similar result as in Theorem 3.7 can be
proved. In what follows, it will be useful to consider interpolation couples (X1,X2) such that X2 ↪→
X1. For sake of clarity, we require that the trilinear operator in the statement is totally symmetric,
i.e. T (a1,a2,a3) = T

(
aσ(1),aσ(2),aσ(3)

)
for every permutation σ , even though a suitable adaptation

would work without this requirement.

Theorem 3.8. Let C0 > 0, (X1,X2) and (Y1,Y2) be two interpolation couples with X2 ↪→ X1. Let T be
a trilinear and symmetric operator satisfying the following conditions

‖T (a1,a2,a3)‖Y1 ≤C0‖a1‖X1‖a2‖X1‖a3‖X1, (3.11)

‖T (b1,b2,b3)‖Y2 ≤C0

(
‖b1‖X1‖b2‖X2‖b3‖X2 +‖b1‖X2‖b2‖X1‖b3‖X2 +‖b1‖X2‖b2‖X2‖b3‖X1

)
, (3.12)

and
‖T (a1,b2,b3)‖(Y1,Y2) 1

2 ,∞
≤C0‖a1‖X1

(
‖b2‖X2‖b3‖X1 +‖b2‖X1‖b3‖X2

)
, (3.13)

where we implicitly assume that T is well defined between the spaces involved in the previous esti-
mates. Then for any γ,θ ∈ (0,1) and r,s ∈ [1,∞], for every x1,x2,x3 we have

‖T (x1,x2,x3)‖(Y1,Y2) θ+γ

2 ,r
≤ 3C0

(
‖x1‖X1‖x2‖(X1,X2)γ,rs‖x3‖(X1,X2)θ ,rs′

+‖x1‖(X1,X2)γ,rs

(
‖x2‖X1‖x3‖(X1,X2)θ ,rs′

+‖x2‖(X1,X2)θ ,rs′
‖x3‖X1

))
.

(3.14)

In particular, for γ = θ and s = s′ = 2, we get

‖T (x,x,x)‖(Y1,Y2)θ ,r
≤ 3C0‖x‖X1‖x‖

2
(X1,X2)θ ,2r

, ∀x ∈ (X1,X2)θ ,2r.
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Proof. We assume without loss of generality that θ ≥ γ. Consider x1 ∈ (X1,X2)γ,rs and x2,x3 ∈
(X1,X2)θ ,rs′. For k = 1,2,3 we write xk = ak +bk with ak ∈ X1 and bk ∈ X2; therefore we expand

T (x1,x2,x3) =U +V +W

where

U = T (a1,a2,a3)+T (b1,a2,a3)+T (a1,b2,a3)+T (a1,a2,b3),

V = T (b1,b2,a3)+T (b1,a2,b3)+T (a1,b2,b3),

W = T (b1,b2,b3).

Since X2 ↪→ X1 we have that bk ∈ X1 for any k = 1,2,3, then by (3.11) we can control U as

‖U‖Y1 ≤C0

(
‖a1‖X1‖a2‖X1‖a3‖X1 +‖b1‖X1‖a2‖X1‖a3‖X1

+‖a1‖X1‖b2‖X1‖a3‖X1 +‖a1‖X1‖a2‖X1‖b3‖X1

)
.

(3.15)

The symmetry of the operator T and (3.13) imply that every term defining V belongs to (Y1,Y2) 1
2 ,∞

.

Let us consider without loss of generality the term T (b1,b2,a3); as already done in Theorem 3.7, for
any t,ε > 0 there exist T1 ∈ Y1 and T2 ∈ Y2 such that T (b1,b2,a3) = T1 +T2 and

‖T1‖Y1 + t‖T2‖Y2 ≤ (1+ ε)K(t,T (b1,b2,a3),Y1,Y2)≤ (1+ ε)
√

t‖T (b1,b2,a3)‖(Y1,Y2) 1
2 ,∞

≤ (1+ ε)C0
√

t‖a3‖X1 (‖b1‖X1‖b2‖X2 +‖b1‖X2‖b2‖X1) .

We point out that the elements T1 and T2 actually depend on a3,b1,b2,ε and t as well. The same
consideration for the other two terms defining V yields, for any t,ε > 0, to the existence of V1 ∈ Y1
and V2 ∈ Y2 such that V =V1 +V2 and

‖V1‖Y1 + t‖V2‖Y2 ≤ (1+ ε)C0
√

t
(
‖a1‖X1

(
‖b2‖X1‖b3‖X2 +‖b2‖X2‖b3‖X1

)
+‖a2‖X1

(
‖b1‖X1‖b3‖X2 +‖b1‖X2‖b3‖X1

)
+‖a3‖X1

(
‖b1‖X1‖b2‖X2 +‖b1‖X2‖b2‖X1

))
.

(3.16)
By using (3.12) we also get

‖T (b1,b2,b3)‖Y2 ≤C0

(
‖b1‖X1‖b2‖X2‖b3‖X2 +‖b1‖X2‖b2‖X1‖b3‖X2 +‖b1‖X2‖b2‖X2‖b3‖X1

)
.

(3.17)
By combining (3.15), (3.16) and (3.17) we obtain, for any t,ε > 0, a decomposition of T (x1,x2,x3) =
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(U +V1)+(V2 +W ), with U +V1 ∈ Y1 and V2 +W ∈ Y2 such that

‖U +V1‖Y1 + t‖V2 +W‖Y2 ≤ (1+ ε)C0

(
‖a1‖X1‖a2‖X1‖a3‖X1 +‖b1‖X1‖a2‖X1‖a3‖X1

+‖a1‖X1‖b2‖X1‖a3‖X1 +‖a1‖X1‖a2‖X1‖b3‖X1 +
√

t
(
‖a1‖X1

(
‖b2‖X1‖b3‖X2 +‖b2‖X2‖b3‖X1

)
+‖a2‖X1

(
‖b1‖X1‖b3‖X2 +‖b1‖X2‖b3‖X1

)
+‖a3‖X1

(
‖b1‖X1‖b2‖X2 +‖b1‖X2‖b2‖X1

))
+ t
(
‖b1‖X1‖b2‖X2‖b3‖X2 +‖b1‖X2‖b2‖X1‖b3‖X2 +‖b1‖X2‖b2‖X2‖b3‖X1

))
≤ (1+ ε)C0

((
‖a1‖X1 +‖b1‖X1

)(
‖a2‖X1 +

√
t‖b2‖X2

)(
‖a3‖X1 +

√
t‖b3‖X2

)
+
(
‖a1‖X1 +

√
t‖b1‖X2

)(
‖a2‖X1 +‖b2‖X1

)(
‖a3‖X1 +

√
t‖b3‖X2

)
+
(
‖a1‖X1 +

√
t‖b1‖X2

)(
‖a2‖X1 +

√
t‖b2‖X2

)(
‖a3‖X1 +‖b3‖X1

))
= R(t)

which clearly implies
K(t,T (x1,x2,x3),Y1,Y2)≤ R(t). (3.18)

Now, by using Theorem 3.5 and Theorem 3.6 and by taking the infima over all the sets Ω̃(xk) =
{(ak,bk) ∈Ω(xk) s.t. ‖ak‖X1 ≤ ‖xk‖X1} for k = 1,2,3 in the right-hand side of (3.18), we achieve

K(t,T (x1,x2,x3),Y1,Y2)≤ 3(1+ ε)C0
(
‖x1‖X1K(

√
t,x2)K(

√
t,x3)

+ K(
√

t,x1)
(
‖x2‖X1K(

√
t,x3)+‖x3‖X1K(

√
t,x2)

))
.

Multiplying by t−(θ+γ)/2 the last inequality, taking the Lr
∗(0,∞)-norm and using the Hölder inequality

with s,s′ as conjugate pair, we obtain (3.14) by letting ε → 0.

We recall that interpolation theory also provides the following useful characterization of Besov
spaces (see for instance [2, Theorem 6.2.4]).

Proposition 3.9. Let Ω⊆Rd be a Lipschitz open set. For any θ ∈ (0,1), r,s∈ [1,∞] and σ1 6= σ2 ∈Z,

(W σ1,r(Ω),W σ2,r(Ω))
θ ,s = B(1−θ)σ1+θσ2

r,s (Ω). (3.19)

Moreover, the same holds if we restrict all spaces in (3.19) to the linear subspace of divergence-free
vector fields.

Even if the previous proposition is also valid for spaces of negative order, for the sake of sim-
plicity, we did not define, in Appendix A, Sobolev and Besov spaces of order less than or equal to
0. However, we will apply Proposition 3.9 only for the Besov spaces of strictly positive θ . The
statement for divergence-free vector fields follows instead from the same proof as (3.19), since the
construction in the interpolation is based on mollification at a suitable scale, and convolutions preserve
the divergence-free structure of the vector fields.
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3.3 Velocity and pressure regularity
The following result about elliptic equations follows by a direct application of Theorem 3.7 and

Theorem 3.8 of the previous section. The reader can compare the following proposition with Propo-
sition 2.3 obtained for Hölder spaces through estimates on a representation formula for p and q.

Proposition 3.10. Let γ,θ ∈ (0,1) and r ∈ (1,∞). Let u,w,z : T3 → R3 be divergence-free vector
fields and let p,q : T3→ R3 be the unique 0-average solutions of

−∆p = divdiv(u⊗w), (3.20)
−∆q = divdivdiv(u⊗w⊗ z). (3.21)

Then, for any s ∈ [1,∞], we have

‖p‖Bγ+θ
r,s
≤C‖u‖Bγ

2r,2s
‖w‖Bθ

2r,2s
. (3.22)

Furthermore, if θ + γ > 1

‖q‖Bγ+θ−1
r,s

≤C
(
‖u‖L3r‖w‖Bγ

3r,2s
‖z‖Bθ

3r,2s
+‖u‖Bγ

3r,2s

(
‖w‖L3r‖z‖Bθ

3r,2s
+‖w‖Bθ

3r,2s
‖z‖L3r

))
. (3.23)

Proof. We denote by W 1,r
div the linear subspace of W 1,r made by divergence-free vector fields (and

similarly for Bθ
r,s,div). Let T (u,w) be the operator that for each couple (u,w) associate the unique

0-average solution of (3.20). By the Calderón-Zygmund theory, we have

‖T (u,w)‖Lr ≤C‖u‖L2r‖w‖L2r .

Moreover since divu = divw = 0 the right-hand side of (3.20) can be rewritten as

divdiv(u⊗w) = ∂
2
i j(u

iw j) = ∂ j(ui
∂iw j) = ∂ jui

∂iw j,

thus we can use again Calderón-Zygmund to get

‖T (u,w)‖W 1,r ≤C‖u‖L2r‖w‖W 1,2r

and
‖T (u,w)‖W 2,r ≤C‖u‖W 1,2r‖w‖W 1,2r .

Since, by Proposition 3.9, we have the embedding W 1,r
div ↪→ B1

r,∞,div = (Lr
div,W

2,r
div ) 1

2 ,∞
, we can apply

Theorem 3.7 with X1 = L2r
div, X2 =W 1,2r

div , Y1 = Lr
div, Y2 =W 2,r

div , hence obtaining (3.22). Note that it is
important that all the spaces above consist of divergence-free vector fields.
The proof of (3.23) follows similarly as a consequence of Calderón-Zygmund and Theorem 3.8, with
X1 = L3r

div, X2 =W 1,3r
div , Y1 =W−1,r

div and Y2 =W 1,r
div once one notices that the solenoidal nature of u,w,z

implies that

divdivdiv(u⊗w⊗ z) = ∂
3
i jk(u

iw jzk) = ∂
2
i j(∂kuiw jzk)+∂

2
i j(u

i
∂kw jzk)

= ∂ j(∂kui
∂iw jzk +∂kuiw j

∂izk)+∂i(∂ jui
∂kw jzk +ui

∂kw j
∂ jzk).
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Remark 3.11. The regularity estimates for the pressure of the proposition above are also a general-
ization of previously known results contained in [1, Lemmas 7.9, 7.10 and 7.14], where some Lipschitz
regularity of the vector fields is assumed. Proposition 3.10 is however more general, both because it
proves the double regularity of the pressure based only on the Besov regularity of the vector field and
because it does not require boundedness or Lipschitz assumptions on the vector field, which are not
satisfied for instance by the solutions built by convex integration methods.

Moreover, the above double regularity results on the pressure do not depend on the specific struc-
ture given by the Laplacian but also apply to more general elliptic operators. Indeed the Calderón-
Zygmund estimates in the extremal spaces Lr, W 1,r and W 2,r is enough to apply our abstract interpo-
lation theorems.

We consider now a weak solution (u, p) of the incompressible Euler equations (3.1). The pressure
p solves

−∆p = divdiv(u⊗u), (3.24)

thus it can be uniquely determined if one imposes that
´
T3 p(t,x)dx = 0, for any time t ∈ (0,T ). For

every θ ∈ (0,1) and r ∈ (1,∞), a direct application of Calderón-Zygmund leads to

‖p(t)‖Bθ
r,∞
≤C‖u(t)‖2

Bθ
2r,∞

. (3.25)

Since our solutions are just weak solutions, we will need to mollify (3.1) in order to justify some
computations; moreover, we will tune the convolution parameter in terms of the time increment h. By
regularizing (in space) the equations (3.1), one gets that the couple (uδ , pδ ) = (u∗ϕδ , p∗ϕδ ) solves{

∂tuδ +div(uδ ⊗uδ )+∇pδ = divRδ

divuδ = 0 , (3.26)

where Rδ = uδ ⊗uδ − (u⊗u)δ . We can now prove our main theorem.

Proof of Theorem 3.1. Let h > 0 be a time increment. When it will help the readability we will also
put in the constants C all the norms of u and p which are already known to be finite. We prove the
theorem for s < ∞, since the case s = ∞ is a simple adaptation and it is easier using the identification
Bθ

∞,∞ =Cθ . In the following, given an interval I, the function χI(·) will denote the usual characteristic
function of the set I.

Proof of (i). Assume that u ∈ L2s((0,T );Bθ
2r,∞(T

3)), for some s ∈ [1,∞). We split

‖u(t +h)−u(t)‖Lr ≤ ‖u(t +h)−uδ (t +h)‖Lr +‖uδ (t +h)−uδ (t)‖Lr +‖uδ (t)−u(t)‖Lr . (3.27)

Using (B.6) we have ‖uδ (t)−u(t)‖Lr ≤Cδ θ‖u(t)‖Bθ
r,∞

for every t ∈ (0,T ), from which we deduce(ˆ T−h

0
‖u(t +h)−uδ (t +h)‖s

Lr dt

) 1
s

+

(ˆ T−h

0
‖u(t)−uδ (t)‖s

Lr dt

) 1
s

≤Cδ
θ‖u‖Ls(Bθ

r,∞)

≤Cδ
θ‖u‖L2s(Bθ

2r,∞)
.
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In the last inequality we used the fact that both the time and spatial domains are bounded. We are
left with the second term in the right-hand side of (3.27). Since uδ solves (3.26), using also (B.7) and
(3.25) we get

‖uδ (t +h)−uδ (t)‖Lr ≤
ˆ t+h

t
‖∂tuδ (τ)‖Lr dτ ≤

ˆ t+h

t

(
‖div(u⊗u)δ (τ)‖Lr +‖∇pδ (τ)‖Lr

)
dτ

≤Cδ
θ−1

ˆ t+h

t

(
‖u⊗u(τ)‖Bθ

r,∞
+‖p(τ)‖Bθ

r,∞

)
dτ ≤Cδ

θ−1
ˆ t+h

t
‖u(τ)‖2

Bθ
2r,∞

dτ.

By the Hölder inequality with conjugate exponents s and s
s−1 we deduce

‖uδ (t +h)−uδ (t)‖s
Lr ≤Cδ

(θ−1)shs−1
ˆ T

0
χ(τ)(t,t+h)‖u(τ)‖2s

Bθ
2r,∞

dτ,

from which, by integrating in time, we conclude

ˆ T−h

0
‖uδ (t +h)−uδ (t)‖s

Lr dt ≤Cδ
(θ−1)shs−1

ˆ T−h

0

ˆ T

0
χ(τ)(t,t+h)‖u(τ)‖2s

Bθ
2r,∞

dτ dt

≤Cδ
(θ−1)shs‖u‖2s

L2s(Bθ
2r,∞)

,

where in the last inequality we also used
´ T−h

0 χ(t)(τ−h,τ) dt ≤ h. By choosing δ = h, we achieve

(ˆ T−h

0
‖u(t +h)−u(t)‖s

Lr dt

) 1
s

≤Chθ

(
‖u‖L2s(Bθ

2r,∞)
+‖u‖2

L2s(Bθ
2r,∞)

)
,

from which, by taking the supremum all over h ∈ (0,T ), we conclude u ∈ Bθ
s,∞((0,T );Lr(T3)). Since

p solves (3.24), we can use (3.22) with u = w = u(t), γ = θ , s = ∞, getting

‖p(t)‖B2θ
r,∞
≤C‖u(t)‖2

Bθ
2r,∞

. (3.28)

Taking the Ls(0,T )-norm, we deduce that p ∈ Ls((0,T );B2θ
r,∞(T3)), namely that (i) holds.

Proof of (ii). Let θ > 1/2 and β ∈ [0,2θ −1). Note that

−∆(p(t +h)− p(t)) = divdiv
((

u(t +h)−u(t)
)
⊗u(t +h)+u(t)⊗

(
u(t +h)−u(t)

))
.

Thus, by using (3.22) with γ = 1−θ +β , s = ∞, we get

‖p(t +h)− p(t)‖
B1+β

r,∞
≤C‖u(t +h)−u(t)‖

B1−θ+β

2r,∞

(
‖u(t +h)‖Bθ

2r,∞
+‖u(t)‖Bθ

2r,∞

)
, (3.29)
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and taking the Ls(0,T −h)-norm in time, by also using the Hölder inequality, we achieve(ˆ T−h

0
‖p(t +h)− p(t)‖s

B1+β
r,∞

dt

) 1
s

≤C

(ˆ T−h

0
‖u(t +h)−u(t)‖

3s
2

B1−θ+β

2r,∞

dt

) 2
3s

‖u‖L3s(Bθ
2r,∞)

. (3.30)

By the interpolation inequality (A.3), the Hölder inequality, and since u ∈ Bθ
3s
2 ,∞

((0,T );L2r(T3)) by

(i), we can estimateˆ T−h

0
‖u(t +h)−u(t)‖

3s
2

B1−θ+β

2r,∞

dt ≤
ˆ T−h

0
‖u(t +h)−u(t)‖

3s
2

2θ−1−β

θ

L2r ‖u(t +h)−u(t)‖
3s
2

1−θ+β

θ

Bθ
2r,∞

dt

≤

(ˆ T−h

0
‖u(t +h)−u(t)‖

3s
2

L2r dt

) 2θ−1−β

θ
(ˆ T−h

0
‖u(t +h)−u(t)‖

3s
2

Bθ
2r,∞

dt

) 1−θ+β

θ

≤Ch
3s
2 (2θ−1−β )‖u‖

3s
2

2θ−1−β

θ

Bθ
3s
2 ,∞

(L2r)
‖u‖

3s
2

1−θ+β

θ

L
3s
2 (Bθ

2r,∞)
≤Ch

3s
2 (2θ−1−β ).

By plugging this last estimate in (3.30), we conclude that p ∈ B2θ−1−β
s,∞ ((0,T );B1+β

r,∞ (T3)), since we
get (ˆ T−h

0
‖p(t +h)− p(t)‖s

B1+β
r,∞

dt

) 1
s

≤Ch2θ−1−β .

Proof of (iii). In order to prove the Besov regularity in time of the pressure, we split

‖p(t +h)− p(t)‖Lr ≤ ‖p(t +h)− pδ (t +h)‖Lr +‖pδ (t +h)− pδ (t)‖Lr +‖pδ (t)− p(t)‖Lr . (3.31)

Using (B.6) and (3.28), we have, for every t ∈ (0,T ),

‖pδ (t)− p(t)‖Lr ≤Cδ
2θ‖p(t)‖B2θ

r,∞
≤Cδ

2θ‖u(t)‖2
Bθ

2r,∞
≤Cδ

2θ‖u(t)‖2
Bθ

3r,∞
,

from which we deduceˆ T−h

0
‖p(t +h)− pδ (t +h)‖s

Lr dt +
ˆ T−h

0
‖p(t)− pδ (t)‖s

Lr dt ≤Cδ
2θs‖u‖2s

L3s(Bθ
3r,∞)

.

It remains to prove the estimate for the middle term ‖pδ (t + h)− pδ (t)‖Lr in the right-hand side of
(3.31). Notice that pδ (t +h)− pδ (t) solves

−∆(pδ (t +h)− pδ (t)) = divdiv
(

Rδ (t)−Rδ (t +h)+uδ (t +h)⊗uδ (t +h)−uδ (t)⊗uδ (t)
)

= divdiv
(

Rδ (t)−Rδ (t +h)+
ˆ t+h

t

( d
dτ

uδ (τ,x)⊗uδ (τ,x)+uδ (τ,x)⊗
d

dτ
uδ (τ,x)

)
dτ

)
= divdiv

(
Rδ (t)−Rδ (t +h)+

ˆ t+h

t

(
(div(uδ ⊗uδ )−∇pδ −divRδ )⊗uδ

+uδ ⊗ (div(uδ ⊗uδ )−∇pδ −divRδ )
)

dτ

)
.
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Thus pδ (t +h)− pδ (t) = q1 +q2 +q3, where q1,q2,q3 are the unique 0-average solutions to

−∆q1 = divdiv(Rδ (t,x)−Rδ (t +h,x)),

∆q2 = 2
ˆ t+h

t
divdiv((divRδ +∇pδ )⊗uδ )dτ,

−∆q3 =

ˆ t+h

t
divdivdiv(uδ ⊗uδ ⊗uδ )dτ.

By Calderón-Zygmund, (B.8) and (B.7) we have that

‖q1(t)‖Lr ≤C
(
‖Rδ (t +h)‖Lr +‖Rδ (t)‖Lr

)
≤Cδ

2θ
(
‖u(t +h)‖2

Bθ
3r,∞

+‖u(t)‖2
Bθ

3r,∞

)
,

and

‖q2(t)‖Lr ≤C
ˆ t+h

t

(
‖divRδ (τ)‖L

3r
2
+‖∇pδ (τ)‖L

3r
2

)
‖uδ (τ)‖L3r dτ ≤Cδ

2θ−1
ˆ t+h

t
‖u(τ)‖3

Bθ
3r,∞

dτ.

Hence, by taking the Ls(0,T −h)-norm, we deduce

‖q1‖Ls(Lr) ≤Cδ
2θ‖u‖2

L3s(Bθ
3r,∞)

. (3.32)

and, similarly to above, by the Hölder inequality we have

ˆ T−h

0
‖q2(t)‖s

Lr dt ≤Cδ
(2θ−1)shs−1

ˆ T−h

0

(ˆ T

0
χ(t,t+h)(τ)‖u(τ)‖3s

Bθ
3r,∞

dτ

)
dt

≤Cδ
(2θ−1)shs‖u‖3s

L3s(Bθ
3r,∞)

. (3.33)

For q3 we can use, for any ε > 0, (3.23) with θ = γ = (1+ ε)/2, s = ∞, u = w = z = uδ (t), getting

‖q3(t)‖Lr ≤ ‖q3(t)‖Bε
r,∞
≤C

ˆ t+h

t
‖uδ (τ)‖L3r‖uδ (τ)‖2

B
1+ε

2
3r,∞

dτ. (3.34)

By (A.4) and the estimate (B.7), we have

‖uδ (t)‖
B

1+ε
2

3r,∞

≤ ‖uδ (t)‖
1−ε

2(1−θ)

Bθ
3r,∞
‖uδ (t)‖

1+ε−2θ

2(1−θ)

W 1,3r ≤Cδ
θ− 1+ε

2 ‖u(t)‖Bθ
3r,∞

.

Plugging this last estimate in (3.34), we achieve

‖q3(t)‖Lr ≤Cδ
2θ−1−ε

ˆ t+h

t
‖u(τ)‖3

Bθ
3r,∞

dτ,
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from which we deduce
‖q3‖Ls(Lr) ≤Cδ

2θ−1−εh‖u‖3
L3s(Bθ

3r,∞)
. (3.35)

Choosing δ = h, from (3.32), (3.33) and (3.35), we conclude(ˆ T−h

0
‖pδ (t +h)− pδ (t)‖s

Lr dt

) 1
s

≤Ch2θ−ε

(
‖u‖2

L3s(Bθ
3r,∞)

+‖u‖3
L3s(Bθ

3r,∞)

)
,

which implies that p∈B2θ−ε
s,∞ ((0,T );Lr(T3)). If now θ > 1/2, we have to prove that p∈W 1,s((0,T );B2θ−1

r,∞ (T3)).
It is enough to show that ∂t p ∈ Ls((0,T );B2θ−1

r,∞ (T3)). Indeed by point (i) of the Theorem 3.1 p ∈
L

3s
2 ((0,T );B2θ

3r
2 ,∞

(T3)) ↪→ Ls((0,T );B2θ−1
r,∞ (T3)). Thus we can write, by using (3.38), ∂t p = q1 + q2

where q1,q2 are the unique 0-average solutions of

∆q1 = divdivdiv(u⊗u⊗u),

∆q2 = 2divdiv(∇p⊗u).

Since, by (3.28),
‖∇p(t)‖B2θ−1

3r
2 ,∞

≤C‖u(t)‖2
Bθ

3r,∞
,

by Calderón-Zygmund we get

‖q2(t)‖B2θ−1
r,∞
≤C‖(∇p⊗u)(t)‖B2θ−1

r,∞
≤C‖∇p(t)‖B2θ−1

3r
2 ,∞

‖u(t)‖Bθ
3r,∞
≤C‖u(t)‖3

Bθ
3r,∞

.

Moreover, by (3.23) with γ = θ , s = ∞ and u = w = z = u(t),

‖q1(t)‖B2θ−1
r,∞
≤C‖u(t)‖3

Bθ
3r,∞

.

Hence, by taking the Ls(0,T )-norm we obtain

‖∂t p‖Ls(B2θ−1
r,∞ ) ≤ ‖q

1‖Ls(B2θ−1
r,∞ )+‖q

2‖Ls(B2θ−1
r,∞ ) ≤C‖u‖3

L3s(Bθ
3r,∞)

,

which concludes the proof of (iii).

Proof of (iv). By Lemma 3.12 we have that ∂t p solves (3.38). Therefore ∂t p(t +h)−∂t p(t) = q1+q2

where

∆q1 = divdivdiv(u(t +h)⊗u(t +h)⊗u(t +h)−u(t)⊗u(t)⊗u(t))

= divdivdiv
(
(u(t +h)−u(t))⊗u(t +h)⊗u(t +h)+u(t)⊗ (u(t +h)−u(t))⊗u(t +h)

+u(t)⊗u(t)⊗ (u(t +h)−u(t))
)
,
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∆q2 = 2divdiv
(
∇p(t +h)⊗u(t +h)−∇p(t)⊗u(t)

)
.

To estimate q1, for any small ε > 0, we apply (3.23) with γ = 1−θ +ε and s = ∞, in such a way that
the factor u(t +h)−u(t) gets only the B1−θ+ε

3r,∞ -norm and not the Bθ
3r,∞-norm. Thus we get

‖q1(t)‖Lr ≤ ‖q1(t)‖Bε
r,∞
≤C‖u(t +h)−u(t)‖B1−θ+ε

3r,∞

(
‖u(t +h)‖2

Bθ
3r,∞

+‖u(t)‖2
Bθ

3r,∞

)
.

Integrating in time on (0,T −h) yields to
ˆ T−h

0
‖q1(t)‖s

Lr dt ≤C
ˆ T−h

0
‖u(t +h)−u(t)‖s

B1−θ+ε

3r,∞

(
‖u(t +h)‖2s

Bθ
3r,∞

+‖u(t)‖2s
Bθ

3r,∞

)
dt

and by the Cauchy-Schwarz inequality we get

ˆ T−h

0
‖q1(t)‖s

Lr dt ≤C

(ˆ T−h

0
‖u(t +h)−u(t)‖2s

B1−θ+ε

3r,∞
dt

) 1
2

‖u‖2s
L4s(Bθ

3r,∞)
.

Now, by (A.3) together with the Hölder inequality in time, we have
ˆ T−h

0
‖u(t +h)−u(t)‖2s

B1−θ+ε

3r,∞
dt ≤

ˆ T−h

0
‖u(t +h)−u(t)‖2s 2θ−1−ε

θ

L3r ‖u(t +h)−u(t)‖2s 1−θ+ε

θ

Bθ
3r,∞

dt

≤

(ˆ T−h

0
‖u(t +h)−u(t)‖2s

L3r dt

) 2θ−1−ε

θ
(ˆ T−h

0
‖u(t +h)−u(t)‖2s

Bθ
3r,∞

dt

) 1−θ+ε

θ

≤Ch2s(2θ−1−ε)‖u‖2s 2θ−1−ε

θ

Bθ
2s,∞(L

3r)
‖u‖2s 1−θ+ε

θ

L2s(Bθ
3r,∞)
≤Ch2s(2θ−1−ε),

where in the last inequality we used u ∈ Bθ
3s,∞((0,T );L3r(T3)) ↪→ Bθ

2s,∞((0,T );L3r(T3)), that comes
from (i). Thus we conclude with

ˆ T−h

0
‖q1(t)‖s

Lr dt ≤Chs(2θ−1−ε). (3.36)

Similarly, we obtain
ˆ T−h

0
‖q2(t)‖s

Lr dt ≤C
ˆ T−h

0
‖(∇p⊗u)(t +h)−∇p⊗u)(t)‖s

Lr dt ≤Chs(2θ−1−ε)‖∇p⊗u‖s
B2θ−1−ε

s,∞ (Lr)

≤Chs(2θ−1−ε)
(
‖∇p‖B2θ−1−ε

2s,∞ (L2r)‖u‖B2θ−1−ε

2s,∞ (L2r)

)s

≤Chs(2θ−1−ε)
(
‖∇p‖B2θ−1−ε

2s,∞ (L2r)‖u‖Bθ
2s,∞(L

2r)

)s
≤Chs(2θ−1−ε),

(3.37)
where we used that u ∈ Bθ

2s,∞((0,T );L2r(T3)) by (i), and ∇p ∈ B2θ−1−ε

2s,∞ ((0,T );L2r(T3)) by (ii).
Summing up (3.36) and (3.37) we obtain ∂t p ∈ B2θ−1−ε

s,∞ ((0,T );Lr(T3)), as desired.
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Lemma 3.12. Let u ∈ L3s((0,T );Bθ
3r,∞(T

3)) for some r,s ∈ [1,∞] and θ ∈ (1/2,1). Then ∂t p solves

∆∂t p = divdivdiv(u⊗u⊗u)+2divdiv(∇p⊗u), (3.38)

in the distributional sense.

Proof. For every δ > 0, we denote by pδ the unique 0-average solution of

−∆pδ = divdiv(uδ ⊗uδ ).

Note that by Calderón-Zygmund, pδ → p in L
3s
2 ((0,T );L

3r
2 (T3)) as δ → 0. Thus ∂t pδ → ∂t p in

distribution. Since ∂tuδ ∈ L
3s
2 ((0,T );C∞(T3)) from (3.26), we can compute

∂tdivdiv(uδ ⊗uδ ) = 2divdiv(∂tuδ ⊗uδ ) =−divdivdiv(uδ ⊗uδ ⊗uδ )

−2divdiv(∇pδ ⊗uδ )+2divdiv(divRδ ⊗uδ ).

Obviously uδ → u in L3s((0,T );L3r(T3)). By (B.8), since θ > 1/2 we have that divRδ → 0 in
L

3s
2 ((0,T );L

3r
2 (T3)). Moreover by (i) in Theorem 3.1 we also have ∇pδ →∇p in L

3s
2 ((0,T );L

3r
2 (T3)).

Thus we conclude that in the distributional sense

∂tdivdiv(uδ ⊗uδ )→−divdivdiv(u⊗u⊗u)−2divdiv(∇p⊗u).

Remark 3.13. In the above proof, one can make explicit quantitative estimates on the quantities
which appear in the statement of Theorem 3.1. For instance, as regards (i) we have

‖u‖Bθ
s,∞(Lr) ≤C

(
‖u‖Ls(Bθ

r,∞)
+‖u‖2

L2s(Bθ
2r,∞)

)
,

‖p‖Ls(B2θ
r,∞)
≤C‖u‖2

L2s(Bθ
2r,∞)

,

for a constant C > 0 depending only on r,s,θ .

Remark 3.14 (The case r = 1). When r = 1, the statements (i) and (ii) of Theorem 3.1 on the pres-
sure may not be true in general. On the positive side, if u ∈ L3s((0,T );W 1,1(T3)), the compensated
compactness methods [15] give that the pressure belongs to L

3s
2 ((0,T );W 2,1(T3)) (namely, the re-

sult with r = 1 and θ = 1 would hold). On the other side, however, if r = 1 and θ = 0, the lack of
the Calderón-Zygmund theory gives us that a solution p to (8.2) is in general not more than in the
weak-L1(T3) space. Trying to repeat the proof of the abstract interpolation result of Theorem 3.7,
as we did in Proposition 3.10 for r = 1, this constitutes a problem because we would need to ap-
ply the interpolation result with Y1 = L1

weak,div, Y2 = W 2,1
div . Hence, Theorem 3.7 would only give us

that p(t) ∈ (L1
weak(T

3),W 2,1(T3))θ ,1 and it is unclear if such space would coincide with a suitable
Besov-type space.

Proof of Theorem 3.2. The proof is just a consequence of (i), (ii) and (iv) of Theorem 3.1 together
with the embeddings W θ ,r ↪→ Bθ

r,∞ ↪→W γ,r, that hold true for any r ∈ [1,∞] and θ ,γ ∈ (0,1) with
θ > γ .
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Chapter 4

Helicity regularity and conservation for
incompressible Euler

4.1 Introduction
In this chapter we consider again the incompressible Euler equations{

∂tu+div(u⊗u)+∇p = 0
divu = 0, (4.1)

in the spatial periodic setting T3 = R3/Z3. Letting ω = curlu, by taking the curl of the first equation
in (4.1) one also gets the evolution equation for the vorticity ω , which is

∂tω + curldiv(u⊗u) = ∂tω +(u ·∇)ω− (ω ·∇)u = 0 . (4.2)

Thanks to the peculiar structure (and its related cancellation properties) of the nonlinearity div(u⊗u)
one can prove that, at least for smooth solutions, we have conservation of the helicity H = H(t) that
is defined as

H(t) =
ˆ

T 3
u(x, t) ·ω(x, t)dx.

The sharpest result in the literature on the helicity conservation has been proved in [13] assuming
u ∈ L3((0,T );B

2/3

3,c(N)(T
3)). Note that the Sobolev spaces used in this work satisfy W θ ,p ↪→ Bθ

p,c(N),

thus one has helicity conservation also for u ∈ L3((0,T );W
2
3 ,3(T3)). Here we propose a different

approach which is to treat the velocity and the vorticity as two different functions. We prove the
following

Theorem 4.1. Let 0 < θ ,α < 1 and 1≤ p,q,r,κ ≤∞ such that 1
p +

1
q = 1

r +
1
κ
= 1. Suppose that u is

a weak solution of (4.1) such that u ∈ L2r((0,T );W θ ,2p(T3)) and ω = curlu ∈ Lκ((0,T );W α,q(T3)).
If 2θ +α ≥ 1 then H is constant.

53
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It is not clear how this result relates to [13] since for general exponents α and θ one does not have
the embeddings in B

2/3

3,c(N).

A similar result to Theorem 4.1 has already been proved in [12]. Indeed in [12] the author proved
the helicity conservation assuming ω = curlu ∈C0((0,T );L3/2(T3))∩L3((0,T );Bα

9/5,∞(T
3)) for every

α > 1
3 . Theorem 4.1 is then a generalization since it treats the velocity and the vorticity separately.

Indeed a direct consequence of our theorem is that in order to prove the helicity conservation it suf-
fices to assume ω ∈ L3((0,T );W α,q(T3)) for any α > 0 and any q > 9

4+3α
. We refer to Remark 4.6

for a precise discussion.

Since in our incompressible setting the velocity u is completely determined by its curlu (thanks
to the existence of a potential) then there is a range in which Theorem 4.1 is just a consequence of
the conservation proved in [13] for u ∈ L3((0,T );B

2/3

3,c(N)(T
3)), and also a range where the hypothesis

on u in Theorem 4.1 is redundant. Thus an interesting case is when the regularity assumption on the
curlu is as weak as possible (see Remark 4.5 for a more precise discussion). For this reason one can
choose p = ∞ and q = 1 getting the following

Corollary 4.2. Let 0 < θ ,α < 1 and 1 ≤ r,κ ≤ ∞ such that 1
r +

1
κ
= 1. If u ∈ L2r((0,T );Cθ (T3))

is a weak solution of (4.1) such that ω = curlu ∈ Lκ((0,T );W α,1(T3)), where 2θ +α ≥ 1, then the
helicity is constant.

Note that the hypothesis used in Corollary 4.2 in general do not imply u ∈ L3((0,T );B
2/3

3,c(N)(T
3)).

A natural question is to ask whether the helicity as some regularity also in the range in which it
is not necessarily constant. To answer this question, instead of the time integrability Lr

t we assume
uniformity, namely L∞

t , showing the following

Theorem 4.3. Let 0 < θ ,α < 1 and 1 ≤ p,q ≤ ∞ such that 1
p +

1
q = 1. Suppose that u is a weak

solution of (4.1) such that u ∈ L∞((0,T );W θ ,2p(T3)) and ω ∈ L∞((0,T );W α,q(T3)). Then there exist
a constant C > 0 such that

|H(t)−H(s)| ≤C|t− s|
α+θ

1−θ . (4.3)

Theorem 4.4. Let 1
2 < θ < 1 and suppose that u is a weak solution of (4.1) such that u∈L∞((0,T );W θ ,3(T3)).

Then there exist a constant C > 0 such that

|H(t)−H(s)| ≤C|t− s|
2θ−1
1−θ . (4.4)

We remark that the assumptions L∞ in time is fundamental in order to get Hölder regularity of
H = H(t), but weaker assumptions as Lr would also imply suitable Sobolev regularity. However,
we are not going to exploit such hypothesis. Moreover the assumption θ > 1

2 is necessary since
u ∈W

1
2 ,2(T3) is the minimal assumption to ensure that the Helicity is well defined.
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The proofs of Theorem 4.3 and Theorem 4.4 make use of the same technique introduced in Chap-
ter 2, since with this kind of equations one can easily prove Hölder regularity of energy and helicity
by looking at the regularized versions of (4.1) and (4.2). Note that the previous theorems still give
the helicity conservation if the two Hölder exponents in (4.3) and (4.4) are bigger than 1, which
is 2θ +α > 1 and θ > 2

3 respectively. The reader might be confused about the critical hypothesis
2θ +α = 1 and θ = 2

3 , which in Theorem 4.3 and Theorem 4.4 respectively just imply Lipschitz
continuity of the helicity instead of conservation, but we remark that the borderline conservation is
achieved in Theorem 4.1 and in [13] thanks to a limit procedure which is missing in Theorem 4.3.

Since our Corollary 4.2 shows the conservation of the helicity if 2θ +α ≥ 1, then choosing θ < 1
3

and the corresponding α = 1− 2θ , there might exist solutions such that H = H(t) is constant but
the energy is not. However we are not able to produce such solutions since in the current works on
Hölder based convex integration techniques we do not have a strong control on the curlu in some
Sobolev space as the one required here. In a similar direction and in view of the helicity conservation
of [13], one could also aim to construct θ−Hölder continuous solutions for some θ ∈

(1
2 ,

2
3

)
, which

do not conserve the helicity, but to date there is no Hölder based convex integration scheme which
crosses the barrier θ = 1

3 . We remark that in the Sobolev setting, this barrier 1
3 has been crossed in

the recent work [9] in which the authors constructed L∞((0,T );H1/2−(T3)) weak solutions of Euler
whose kinetic energy is not constant in time.

4.2 Helicity for smooth solutions
Before proving Theorem 4.1 we start considering the helicity for a smooth solution u of (4.1). By

smoothness we can directly compute the first derivative of H = H(t), using equations (4.1) and (4.2),
getting

d
dt

H(t) =
ˆ
T3
(∂tu ·ω +u ·∂tω)dx

=−
ˆ
T3

(
(u ·∇)u+∇p

)
·ω dx−

ˆ
T3

(
(u ·∇)ω− (ω ·∇)u

)
·udx

=−
ˆ
T3

div

(
pω +u(u ·ω)− |u|

2

2
ω

)
dx = 0 ,

where we used the following relations

ω · (u ·∇)u+u · (u ·∇)ω = div
(
u(u ·ω)

)
u · (ω ·∇)u =

1
2

div
(
|u|2ω

)
ω ·∇p = div(pω) .
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Thus in the smooth setting, the previous computations easily show that the helicity is constant.

In order to deal with weak solutions (and so with low regularity) we have to mollify the equation
(4.1) getting an evolution equation for the smooth quantities (uδ , pδ ), with an "error" forcing term
which is due to the non-linearity. The crucial observation in [22] is that this error has a particular
commutator structure and thus satisfies better estimates than uδ . Since we also have to deal with the
vorticity ω , we will mollify both equations (4.1) and (4.2) and we will see that the commutators have
exactly the same structure.

Before proving our main results we start with two remarks about the hypothesis of Theorem 4.1.

Remark 4.5. Theorem 4.1 is stated for any couple of exponents 1 ≤ p,q ≤ ∞ such that 1
p +

1
q = 1.

The reader may wonder if the assumption on u could be redundant, since it could be a consequence
of the one on the curlu. Indeed in our incompressible setting we have u = curl

(
(−∆)−1curlu

)
. In

particular, if curlu ∈W α,q(T3), 1 < q < ∞, by Calderón-Zygmund we get u ∈W 1+α,q(T3) and by

Sobolev embeddings we have that W 1+α,q ↪→W θ , 2q
1−q if

q >
9

5+2(α−θ)
. (4.5)

In the case q = 1 we have u ∈W 1+α−ε,1(T3) for any ε > 0, but this is obviously not enough to
guarantee any Hölder regularity on u.

Remark 4.6. For any α > 0, we assume ω ∈W α,q(T3) and we choose θ = 1−α

2 , so that the helicity

is preserved. Then by (4.5) we have that u ∈W
1−α

2 , 2q
1−q (T3) if

q >
9

4+3α
.

Thus we have that the assumption α > 1
3 in [12] is not necessary if one assume more on the integra-

bility exponent q.

We highlight that if u ∈ W
1
2 ,2(T3) then the helicity is the action of the distribution curlu ∈

W−
1
2 ,2(T3) on the velocity u and it can be represented as

H(t) =
ˆ
T3
(−∆)

1
4 u · (−∆)−

1
4 curludx . (4.6)

Note that by Cauchy-Schwarz and Calderón-Zygmund we have

|H(t)| ≤
∥∥∥(−∆)

1
4 u(t)

∥∥∥
L2(T3)

∥∥∥(−∆)−
1
4 curlu(t)

∥∥∥
L2(T3)

≤C‖u(t)‖2

W
1
2 ,2(T3)

.
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4.3 Helicity conservation for weak solutions

We first mollify equations (4.1) and (4.2), getting

∂tuδ +div(uδ ⊗uδ )+∇pδ = divRδ , (4.7)
∂tωδ +(uδ ·∇)ωδ − (ωδ ·∇)uδ = curldivRδ , (4.8)

where Rδ = uδ ⊗uδ − (u⊗u)δ . Now we consider the helicity Hδ related to the smooth vector fields
uδ ,ωδ , namely the function

Hδ (t) =
ˆ
T3

uδ (x, t) ·ωδ (x, t)dx . (4.9)

By the regularity of u and ω it is clear that for almost every t ≥ 0, Hδ (t)→ H(t) as δ → 0. We can
now compute the time derivative of Hδ . Using (4.7) and (4.8) as in Section 4.2, we get

d
dt

Hδ (t) =−
ˆ
T3

div
(

pδ ωδ +uδ (uδ ·ωδ )−
|uδ |

2

2
ωδ

)
dx

+

ˆ
T3

ωδ ·divRδ dx+
ˆ
T3

uδ · curldivRδ dx

=−2
ˆ
T3

∇ωδ : Rδ dx , (4.10)

where in the last equality we integrated by parts. Thus we have that

∣∣Hδ (t)−Hδ (0)
∣∣≤ 2

ˆ t

0

ˆ
T3
|∇ωδ |(x,s)|Rδ |(x,s)dxds≤ 2

ˆ t

0
‖∇ωδ (s)‖Lq(T3)‖Rδ (s)‖Lp(T3) ds ,

(4.11)

and by Proposition B.3 we conclude that

∣∣Hδ (t)−Hδ (0)
∣∣≤Cδ

2θ+α−1
ˆ t

0
[ω(s)]W α,q(T3xBδ )

[u(s)]2W θ ,2p(T3xBδ )
ds .

The unusual notation W α,q(T3xBδ ) denotes the sobolev norm restricted to the ball Bδ , see Appendix
A. Note that in the previous estimate we used two conjugate exponents 1 < p,q < ∞. The case in
which one of them is equal to 1 (or equivalently ∞) is analogous. Finally, using Hölder inequality
with exponents r,κ we achieve∣∣Hδ (t)−Hδ (0)

∣∣≤Cδ
2θ+α−1[ω]Lκ ((0,T );W α,q(T3xBδ ))

[u]2L2r((0,T );W θ ,2p(T3xBδ ))
,

thus the claim follows by letting δ → 0.
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4.4 Helicity regularity for weak solutions
Proof of Theorem 4.3

Now we will see how the L∞ in time assumption leads to some Hölder continuity of the helicity,
even without the assumption 2θ +α ≥ 1.

We define Hδ (t) as in (4.9). For any couple of times s, t we estimate∣∣H(t)−H(s)
∣∣≤ ∣∣H(t)−Hδ (t)

∣∣+ ∣∣Hδ (t)−Hδ (s)
∣∣+ ∣∣Hδ (s)−H(s)

∣∣ . (4.12)

By the L∞
t assumption, both the first and the third term can be estimated by using (B.11) with

r = 1 and p = q = 2 as follows∣∣H(t)−Hδ (t)
∣∣+ ∣∣Hδ (s)−H(s)

∣∣≤Cδ
θ+α‖u‖L∞((0,T );W θ ,p(T3))‖ω‖L∞((0,T );W α,q(T3)) ,

where, in order to apply (B.11), we also used the the property H(t) =
´
T3 u ·ω =

´
T3(u ·ω)δ . We are

left with the second summand in the right hand side of (4.12). We have that

∣∣Hδ (t)−Hδ (s)
∣∣≤ |t− s|

∥∥∥∥ d
dt

Hδ

∥∥∥∥
L∞(0,T )

,

and by (4.10), together with Proposition B.3, we get∣∣Hδ (t)−Hδ (s)
∣∣≤C|t− s|δ 2θ+α−1‖u‖2

L∞((0,T );W θ ,2p(T3))‖ω‖L∞((0,T );W α,q(T3)) .

Combining the previous estimates with (4.12) we achieved∣∣H(t)−H(s)
∣∣≤C(δ θ+α + |t− s|δ 2θ+α−1) ,

for some constant C > 0, which depends on both u,ω . Finally, by choosing δ = |t − s|
1

1−θ we can
conclude ∣∣H(t)−H(s)

∣∣≤C|t− s|
α+θ

1−θ .

Proof of Theorem 4.4

The proof runs in the same way as the one for Theorem 4.3. By equation (4.10) and using (B.10)
and (B.11) we have

∣∣Hδ (t)−Hδ (s)
∣∣≤ |t− s|

∥∥∥∥ d
dt

Hδ

∥∥∥∥
L∞(0,T )

≤ 2|t− s|‖∇curluδ‖L∞((0,T );L3(T3))‖Rδ‖L∞((0,T );L3/2(T3))

≤C|t− s|δ 3θ−2[u]3L∞((0,T );W θ ,3(T3))
.
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Since, for every δ > 0,

H(t) =
ˆ
T3
(−∆)

1/4u · (−∆)−
1/4curludx =

ˆ
T3

(
(−∆)

1/4u · (−∆)−
1/4curlu)δ dx ,

by applying (B.11) with r = 1, we deduce that for every t ≥ 0∣∣H(t)−Hδ (t)
∣∣≤Cδ

2θ−1[(−∆)
1/4u]L∞((0,T );W θ−1/2,2(T3))[(−∆)−

1/4curlu]L∞((0,T );W θ−1/2,2(T3))

≤Cδ
2θ−1[u]2L∞((0,T );W θ ,2(T3)) ,

where in the last inequality we also used Calderón-Zygmund estimates. Thus we have∣∣H(t)−H(s)
∣∣≤ ∣∣H(t)−Hδ (t)

∣∣+ ∣∣Hδ (t)−Hδ (s)
∣∣+ ∣∣Hδ (s)−H(s)

∣∣
≤C

(
δ

2θ−1[u]2L∞((0,T );W θ ,2(T3))+ |t− s|δ 3θ−2[u]3L∞((0,T );W θ ,2(T3))

)
,

from which we can conclude by choosing δ = |t− s|
1

1−θ .
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Chapter 5

Nonuniqueness of Leray-Hopf weak solutions
to the hypodissipative Navier-Stokes

5.1 Introduction
In this chapter we consider the Cauchy problem for the incompressible fractional Navier-Stokes

equations 
∂tv+div(v⊗ v)+∇p+(−∆)γv = 0
divv = 0
v(·,0) = v,

(5.1)

in the spatial periodic setting T3 = R3 \Z3.

We are interested in Leray-Hopf weak solutions of (5.1), namely weak solutions v∈L∞(R+,L2(T3))∩
L2(R+,Hγ(T3)) satisfying the global energy inequality

1
2

ˆ
T3
|v|2(x, t)dx+

ˆ t

s

ˆ
T3

∣∣∣(−∆)
γ/2v
∣∣∣2 (x,τ)dxdτ ≤ 1

2

ˆ
T3
|v|2(x,s)dx , ∀0≤ s < t . (5.2)

As for the Navier-Stokes equations (i.e. the case γ = 1), it is known that such solutions exist and it is
also known that, if the power γ of the Laplacian is suitably small, then these solutions are not unique.
Indeed in [16] the authors proved the ill-posedness in the case γ < 1/5. The question about uniqueness
is still open for a general power γ . In this chapter we partially answer this question, proving the
non-uniqueness of such solutions in the range 0 < γ < 1/3. More precisely the main result is the
following

Theorem 5.1. Let γ < 1/3. Then there are initial data v ∈ L2(T3) with divv = 0 for which there exist
infinitely many Leray solutions v of (5.1) in [0,+∞)×T3. More precicely, if γ < β < 1/3, there are
initial data v ∈Cβ (T3) with divv = 0 and a positive time T such that

(i) there are infinitely many Leray-Hopf solutions v of (5.1) and moreover v ∈Cβ (T3× [0,T ]);

61
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(ii) such solutions strictly dissipate the total energy in [0,T ], i.e. the function (of time only)

Etot(t) =
1
2

ˆ
T3
|v|2(x, t)dx+

ˆ t

0

ˆ
T3

∣∣∣(−∆)
γ/2v
∣∣∣2 (x,τ)dxdτ (5.3)

is strictly decreasing in [0,T ].

The proof of Theorem 5.1 is achieved by using the "convex integration methods" introduced by
C. De Lellis and L. Székelyhidi for the incompressible Euler equations, in particular the costruction
used in [7], where the authors, thanks to the new ideas introduced by Daneri and Székelyhidi in [25]
and P. Isett in [41], proved the existence of C

1/3−
x,t solutions of Euler equations with prescribed kinetic

energy. This methods can be also used to prove the ill-posedness for the distributional solutions of
the Navier-Stokes equations (i.e. γ = 1). Indeed, recently, in [10] T. Buckmaster and V. Vicol proved
the existence of infinitely many weak solutions of the Navier-Stokes equations with bounded kinetic
energy. The solutions constructed in [8] do not even have finite energy dissipation in the sense of
Etot < ∞, thus they are not of Leray-Hopf type.

In order to use the argument proposed in [7], we have to construct exact solutions of (5.1) in small
time intervals. The corresponding stability estimates of such solutions, with respect to the initial data,
are also needed. To this aim we prove new stability estimates for classical solutions of non-local
advection-diffusion equations.

Following [16] we will see that if the exponent γ is not too large (in particular γ < 1/3), then the
methods used in [7] to produce Hölder continuous solutions to the Euler equations with prescribed
kinetic energy can be adapted to equations (5.1). Then we will be able to produce (different) solutions
with different kinetic energy profile, let all of them start from the same initial data and keep under
control the dissipative part in the definition of Etot (see (5.3)).

For the reader convenience we recall here the fractional Navier-Stokes equations with some vis-
cosity µ > 0 {

∂tv+div(v⊗ v)+∇p+µ(−∆)γv = 0
divv = 0 . (5.4)

Using the main iterative proposition (Proposition 5.9) we are able to show the existence of dissipative
solutions of Euler which can be obtained as a vanishing viscosity limit of solutions of (5.4). The main
idea is taken from [8] where the authors proved that Hölder continuous solutions of Euler arise as a
strong limit in C0([0,T ];L2(T3)) as µ→ 0, of weak solutions of the classical Navier-Stokes equations.
Again by the restriction γ < 1/3, we are able to produce a sequence Leray-Hopf weak solutions of (5.4)
converging to a dissipative solution of Euler, as µ → 0. More precicely we prove the following

Theorem 5.2. Let β ′ < 1/3. There exist dissipative solutions v ∈Cβ ′([0,T ]×T3) of Euler such that,
if 0 < γ < β ′, there exists a sequence µn→ 0 and a sequence v(µn) of Leray-Hopf weak solutions of
(5.4) such that v(µn)→ v strongly in C0([0,T ];Cβ ′′(T3)) for every β ′′ < β ′.
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Also in this case, if we only want to require that the sequence v(µn) is just a sequence of weak
solutions of (5.4), bounded in L∞((0,T );L2(T3)), we could also prove that for any γ < 1/2 there exists
a sequence of solutions of (5.4) converging to any Hölder solution of Euler, as µ → 0, but in order to
be consistent with the arguments of this work, we will not enter in these details.

5.2 Proof of the nonuniqueness
In order to show Theorem 5.1 we will prove a slightly more general result about (5.1). Indeed,

using the inductive scheme proposed in [7], we are able to prove the following

Theorem 5.3. Let e : [0,1]→ R+ with the following properties

(i) 1/2≤ e(t)≤ 1, ∀t ∈ [0,1];

(ii) supt |e′(t)| ≤ K, for some K > 1.

Then for all γ < β < 1/3 there exists a couple (v, p), solving{
∂tv+div(v⊗ v)+∇p+(−∆)γv = 0
divv = 0 (5.5)

in the sense of distributions, such that v ∈Cβ (T3× [0,1]) and

e(t) =
ˆ
T3
|v|2(x, t)dx , (5.6)

‖v‖β ≤Cβ K4/9 , (5.7)

where Cβ is a constant depending only on β . Moreover, given any two energy profiles e1 and e2 such
that e1(0) = e2(0), then the two corresponding solutions v(1) and v(2) start from the same initial data,
i.e. v(1)(·,0)≡ v(2)(·,0).

We end this section by proving Theorem 5.1, then the rest of the paper will be devoted to the proof
of Theorem 5.3.

Proof of Theorem 5.1. Elementary arguments produce for every K > 1 an infinite set EK of smooth
functions e : [0,1]→ R with the following properties:

(i) 1/2≤ e(t)≤ 1 , ∀t ∈ [0,1];

(ii) ‖e‖C1([0,1]) ≤ 2K +2;

(iii) e(0) = 1 ;

(iv) e′(t)≤−2K +2 , ∀t ∈ [0, 1
4K ];
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(v) for any pair of distinct elements of EK there is a sequence of times converging to 0 where they
take different values.

For each e ∈ EK , we now use Theorem 5.3 to produce infinitely many weak solutions satisfying

(a) e(t) = 1
2

´
T3 |v|2(x, t)dx ;

(b) v ∈Cβ (T3× [0,1]), ∀β < 1/3 ;

(c) v(·,0) = v, for some v ∈Cβ (T3) ;

(d) ‖v‖β ≤Cβ K4/9.

Let T = 1/4K. We have to show that all these solutions strictly dissipate the total energy, which is
equivalent to

1
2
(
e(s)− e(t)

)
>

ˆ t

s

ˆ
T3

∣∣∣(−∆)
γ/2v
∣∣∣2 (x,τ)dxdτ, ∀0≤ s < t ≤ T . (5.8)

By our assumptions on the functions e(t) and using Corollary C.2 we have

1
2
(
e(s)− e(t)

)
≥ (K−1)(t− s), ∀0≤ s < t ≤ T ;

ˆ t

s

ˆ
T3

∣∣∣(−∆)
γ/2v
∣∣∣2 (x,τ)dxdτ ≤ (t− s)Cε‖v‖2

γ+ε .

Chosing ε so that γ + ε = β , we see that (5.8) holds if the constant K satisfies

K−1 >Cβ ,γK8/9 , (5.9)

where Cβ ,γ depends only on γ and β , but not on K. It is clear that there exists a K (big enough) such
that (5.9) is satisfied. Thus we have proved the existence of infinitely many Leray-Hopf solutions in
the interval [0,T ] satisfying (a) and (b) of Theorem 5.1. Finally, each solutions can be prolonged to
Leray-Hopf solutions for every t ≥ 0, thus the proof is concluded.

5.3 Local smooth solutions
Maximum principle and stability estimates

We begin by stating a maximum principle result for a non-local operator. The proof is standard,
since, as for the local case (i.e. using the Laplacian), we have that (−∆)γu(x0) ≥ 0 whenever x0 is a
global maximum point of u (see for instance the integral representation formula (C.1)).

Theorem 5.4. Define QT = T3× (0,T ]. Let L be the pseudo-differential operator defined as Lu =
(v ·∇)u+µ(−∆)γu, where u : T3× [0,T ]→R , v : T3× [0,T ]→R3 is a given vector field and µ > 0,
0 < γ ≤ 1. The following holds:
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(i) if ut +Lu≤ 0 in QT , then maxQT
u = maxT3×{0} u;

(ii) if ut +Lu≥ 0 in QT , then minQT
u = minT3×{0} u.

In Using Theorem 5.4 we can prove a stability estimate for a general class of non-local parabolic
equations. Indeed we have

Proposition 5.5. Let u : T3× [t0,T ]→ R3 be a solution of the Cauchy problem{
ut +Lu = f
u(·, t0) = u0 .

(5.10)

Then for any t ∈ [t0,T ] we have

‖u(t)‖0 ≤ ‖u0‖0 +

ˆ t

t0
‖ f (s)‖0 ds , (5.11)

[u(t)]1 ≤ [u0]1e(t−t0)[v]1 +

ˆ t

t0
e(t−s)[v]1[ f (s)]1 ds , (5.12)

and, more generally, for any N ≥ 2 there exists a constant C =CN so that

[u(t)]N ≤ ([u0]N +C(t− t0)[v]N [u0]1)eC(t−t0)[v]1

+

ˆ t

t0
e(t−s)[v]1 ([ f (s)]N +C(t− s)[v]N [ f (s)]1) ds . (5.13)

Proof. We may assume that u and f are two scalar functions, indeed we can work on each component
of equation (5.10). Note also that Theorem 5.4 is invariant under the time shifting t 7→ t + t0 .

Defining

w = u−
ˆ t

t0
‖ f (s)‖0 ds ,

we have {
wt +Lw = f −‖ f (t)‖0 ≤ 0
w(·, t0) = u0 .

Thus, by Theorem 5.4, we have

u(x, t)≤ ‖u0‖0 +

ˆ t

t0
‖ f (s)‖0 ds. (5.14)

Applying the same argument to the function w̃ = u+
´ t

t0
‖ f (s)‖0 ds , we get the bound from below,

showing (5.11).
Next, differentiate (5.10) in the x variable to obtain

(Du)t +LDu = D f −DvDu .
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Applying (5.11) to Du yields

[u(t)]1 ≤ [u0]1 +

ˆ t

t0

(
[ f (s)]1 +[v]1[u(s)]1

)
ds ,

and by Grönwall’s inequality we get (5.12). Now, differentiating (5.10) N times yields

(DNu)t +LDNu = DN f +
N−1

∑
k=0

ck,N Dk+1uDN−kv . (5.15)

Using again (5.11) we can estiamte

[u(t)]N ≤ [u0]N +

ˆ t

t0

(
[ f (s)]N +C([v]N [u(s)]1 +[v]1[u(s)]N)

)
ds ,

and plugging the estimate (5.12), we get

[u(t)]N ≤ [u0]N +C(t− t0)[v]N [u0]1e(t−t0)[v]1 +

ˆ t

t0

(
[ f (s)]N

+C[v]N

ˆ s

t0
e(s−r)[v]1[ f (r)]1 dr+C[v]1[u(s)]N

)
ds ,

and Grönwall’s inequality finally leads to (5.13).

Using Proposition 5.5 we also get the following

Proposition 5.6. Assume 0≤ (t− t0)[v]1 ≤ 1. Then, any solution u of (5.10) satisfies

‖u(t)‖α ≤ eα

(
‖u0‖α +

ˆ t

t0
‖ f (·,τ)‖α dτ

)
, (5.16)

for all 0≤ α ≤ 1, and, more generally, for any N ≥ 1 and 0≤ α < 1

[u(t)]N+α . [u0]N+α +(t− t0)[v]N+α [u0]1 +

ˆ t

t0

(
[ f (τ)]N+α +(t− τ)[v]N+α [ f (τ)]1

)
dτ , (5.17)

where the implicit constant depends only on N and α .

Proof. For any α ∈ [0,1], let

w(x, t;h) =
δhu(x, t)
|h|α

=
u(x+h, t)−u(x, t)

|h|α
.

We have that this new function w satisfies (see equation (4.13) in [23])

(∂t +µ(−∆)γ + v ·∇x +δhv ·∇h)w = α
δhv
|h|
· h
|h|

w+
δh f
|h|α

,
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Thus by the maximum principle1 (5.11) and since suph,x |w(x, t;h)|= [u(t)]α , we get

[u(t)]α ≤ [u0]α +

ˆ t

t0

(
α[v(s)]1[u(s)]α +[ f (s)]α

)
ds ,

from which, by Grönwall’s inequality, (5.16) follows.
To get the higher order bounds (5.17) just differentiate the equation N times as in (5.15) and apply

the previous argument with

w(x, t;h) =
δhDNu(x, t)
|h|α

=
DNu(x+h, t)−DNu(x, t)

|h|α
,

then (5.17) is again a consequence of (5.11) and Grönwall’s inequality.

Local smooth solutions to fractional Navier-Stokes

We want to consider exact (smooth) solutions to the fractional Navier-Stokes equations
∂tv+ v ·∇v+∇p+µ(−∆)γv = 0
divv = 0
v(·,0) = u0,

(5.18)

in the periodic setting T3× [0,T ], where γ ∈ (0,1) and µ ≥ 0. We define the space

V m = {v ∈ Hm(T3) : div v = 0} .

We start with the following

Theorem 5.7. For any m≥ 3 there exists a constant cm = c(m) such that the following holds. Given
any initial condition u0 ∈ V m and Tm = cm‖u0‖−1

V there exists a unique solution v ∈C([0,Tm],V m)∩
C1([0,Tm],V m−2). Moreover we have the estimate

‖v(t)‖V m ≤ ‖u0‖V mecm
´ t

0 ‖∇v(s)‖0 ds ∀t ∈ [0,Tm] . (5.19)

For a proof of Theorem 5.7 we refer to [50] (Theorem 3.4 in Chapter 3). Notice that that theorem
is stated for the classical Navier-Stokes equations. The proof uses the so called "energy method" and
it can be easily adapted to any power γ of the Laplacian in the equations (5.18).

We now want to prove that there exists a maximal time of existence (independent on m) of such
solution. In particular, if the initial datum is smooth, we get the local existence of a smooth solution
of (5.18). We also prove some stability estimates of such solution in Hölder spaces, since they will
play a crucial role in the iterative construction.

1Here the maximum principle is applied in both the variables x,h.
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Proposition 5.8. For any µ ≥ 0 and any 0 < α < 1 there exists a constant c = c(α) > 0 with the
following property. Given any initial data u0 ∈C∞, and T ≤ c‖u0‖−1

1+α
, there exists a unique solution

v : R3× [0,T ]→ R3 of (5.18). Moreover, v obeys the bounds

‖v‖N+α .‖u0‖N+α . (5.20)

for all N ≥ 1, where the implicit constant depends on N and α > 0.

Proof of Proposition 5.8. We first show that all solutions given by Theorem 5.7 exist in the interval
[0,T ], for any T . ‖u0‖−1

1+α
. Fix any α ∈ (0,1) and let T ∗ be the maximal time such that

T ∗ sup
0≤t≤T ∗

[v(t)]1 ≤ 1 .

Suppose T ∗ < c‖u0‖−1
1+α

, for some constant c = c(α) to be fixed later (we will see that this contrad-
dicts the assumption on the maximality of T ∗, in particular T ∗≥ c‖u0‖−1

1+α
). Using Schauder estimate

on −∆p = ∇vT : ∇v we have
‖p(t)‖2+α . ‖v(t)‖2

1+α ,

thus, differentiating the equation in the x variable we get

‖(∂t + v ·∇+µ(−∆)γ)Dv‖α . ‖v(t)‖2
1+α .

By Proposition 5.6, for any 0≤ t ≤ T ∗, we have

‖v(t)‖1+α . ‖u0‖1+α +

ˆ t

0
‖v(s)‖2

1+α ds .

Finally, using Grönwall’s inequality we get the estimate

‖v(t)‖1+α . ‖u0‖1+α <
1

T ∗
∀t ∈ [0,T ∗] ,

where in the last inequality we have choosen the constant c = c(α) to get it "strict". Obviously, this
contraddicts the hypothesis on the maximality of T ∗, and also gives the a priori estimate (5.20) for
N = 1, which together with (5.19), gives the existence of a smooth solution in the interval [0,T ], for
any T ≤ c‖u0‖−1

1+α
.

We are left with the higher-order bounds (5.20) for N ≥ 2. For any multi-index θ with |θ |= N we
have

∂t∂
θ v+ v ·∇∂

θ v+µ(−∆)γ
∂

θ v+[∂ θ ,v ·∇]v+∇∂
θ p = 0.

Using again Schauder estimates for the pressure we obtain

‖∇∂
θ p‖α . ‖tr(∇v∇v)‖N−1+α . ‖v‖1+α‖v‖N+α .

Therefore
‖(∂t + v ·∇+µ(−∆)γ)∂ θ v‖α . ‖v‖1+α‖v‖N+α ,

and (5.20) follows by applying (5.16) and Grönwall’s inequality.



5.4 The main theorems as a consequence of an inductive proposition 69

5.4 The main theorems as a consequence of an inductive propo-
sition

As already outlined, the main construction is taken from [7], thus we are not going to prove all
technical details about the mechanism of the convex integration scheme. However all the proofs of the
propositions involving the structure of the Navier-Stokes equations (different from the Euler ones),
are completely self contained.

5.4.1 Inductive proposition
First of all, we impose for the moment that

sup
t∈[0,1]

|e′(t)| ≤ 1 (5.21)

(we will see later that this can be done provided that we impose some conditions on the parameters
appearing in the iteration).

Let then q≥ 0 be a natural number. At a given step q we assume to have a triple (vq, pq, R̊q) to the
fractional Navier-Stokes Reynolds system, namely such that{

∂tvq +div(vq⊗ vq)+∇pq +µ(−∆)γvq = div R̊q
divvq = 0 ,

(5.22)

to which we add the constraints

tr R̊q = 0 , (5.23)ˆ
T3

pq(x, t)dx = 0 . (5.24)

In (5.22) the viscosity µ is just some small constant (in particular µ < 1) depending on some param-
eters of the inductive construction. In what follows we will see that this coefficient comes from a
"technical rescaling" on the equations (5.1).

The size of the approximate solution vq and the error R̊q will be measured by a frequency λq and
an amplitude δq, which are given by

λq = 2πda(b
q)e (5.25)

δq = λ
−2β
q (5.26)

where dxe denotes the smallest integer n ≥ x, a > 1 is a large parameter, b > 1 is close to 1 and
0 < β < 1/3 is the exponent of Theorem 5.3. The parameters a and b are then related to β .
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We proceed by induction, assuming the estimates

‖R̊q‖0 ≤ δq+1λ
−3α
q (5.27)

‖vq‖1 ≤Mδ
1/2
q λq (5.28)

‖vq‖0 ≤ 1−δ
1/2
q (5.29)

δq+1λ
−α
q ≤ e(t)−

ˆ
T3
|vq|2 dx≤ δq+1 (5.30)

where 0 < α < 1 is a small parameter to be chosen suitably (which will depend upon β ), and M is a
universal constant.

Proposition 5.9. There exists a universal constant M with the following property. Let 0 < β < 1/3,
0 < γ < 1/3 and

1 < b < min
{

1−β

2β
,
1−β

2γ
,
4
3

}
. (5.31)

Then there exists an α0 depending only on β and b, such that for any 0 < α < α0 there exists an a0
depending on β , b, α and M, such that for any a ≥ a0 the following holds: given a strictly positive
function e : [0,T ]→R+ satisfying (5.21), and a triple (vq, pq, R̊q) solving (5.22)-(5.24) and satisfying
the estimates (5.27)–(5.30), then there exists a solution (vq+1, pq+1, R̊q+1) to (5.22)-(5.24) satisfying
(5.27)–(5.30) with q replaced by q+1. Moreover, we have

‖vq+1− vq‖0 +
1

λq+1
‖vq+1− vq‖1 ≤Mδ

1/2

q+1. (5.32)

Furthermore, vq+1(·,0) depends only on e(0) and vq(·,0).

The proof of Proposition 5.9 is summarized in the Sections 5.5.1, 5.5.2 and 5.5.3. We show next
that this proposition immediately implies Theorem 5.3.

5.4.2 Prescribing the energy
Here we prove Theorem 5.3. First of all, we fix any Hölder exponent β < 1/3 and also the parame-

ters b and α , the first satisfying (5.31) and the second smaller than the threshold given in Proposition
5.9. Next we show that, without loss of generality, we may further assume the energy profile satisfies

inf
t

e(t)≥ δ1λ
−α

0 , sup
t

e(t)≤ δ1, and sup
t

e′(t)≤ 1 , (5.33)

provided the parameter a is chosen sufficiently large. To see this, we first make the following trans-
formations

ṽ(x, t) = µ v(x,µt) p̃(x, t) = µ
2 p(x,µt) . (5.34)
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Thus if we choose
µ = δ

1/2

1 ,

the stated problem reduces to finding a solution (ṽ, p̃) of{
∂t ṽ+ ṽ ·∇ṽ+∇p̃+µ(−∆)γ ṽ = 0
div ṽ = 0 (5.35)

with the energy profile given by
ẽ(t) = µ

2e(µt) ,

for which we have (using our assumptions on the function e(t))

inf
t

ẽ(t)≥ δ1 inf
t

e(t)≥ δ1

2
, sup

t
ẽ(t)≤ δ1, and sup

t
ẽ′(t)≤ δ

3/2

1 K .

If a is chosen sufficiently large, in particualar a≥ a0K1/3β , then we can ensure

sup
t

ẽ′(t)≤ δ
3/2

1 K ≤ 1, and
1
2
≥ λ

−α

0 .

Now we apply Proposition 5.9 iteratively with (v0,R0, p0) = (0,0,0). Indeed the pair (v0,R0)
trivially satisfies (5.27)–(5.29), whereas the estimate (5.30) and (5.21) follows as a consequence of
(5.33). Notice that by (5.32) vq converges uniformly to some continuous ṽ. Moreover, we recall that
the pressure is determined by

∆pq = divdiv(−vq⊗ vq + R̊q) (5.36)

and (5.24) and thus pq is also converging to some pressure p̃ (for the moment only in Lr for every
r < ∞). Since R̊q→ 0 uniformly, the pair (ṽ, p̃) solves equations (5.35). Observe that using (5.32) we
also infer

∞

∑
q=0
‖vq+1− vq‖β ′ .

∞

∑
q=0
‖vq+1− vq‖1−β ′

0 ‖vq+1− vq‖β ′

1 .
∞

∑
q=0

δ

1−β ′
2

q+1

(
δ

1/2

q+1λq

)β ′

.
∞

∑
q=0

λ
β ′−β
q

and hence that vq is uniformly bounded in C0([0,1];Cβ ′(T3)) for all β ′ < β . Using the last inequality
and the definitions of the parameter λq we also have that if a is chosen sufficiently large, then

‖ṽ‖β ′ ≤ 1 , ∀β ′ < β .

Since δq+1→ 0 as q→ ∞, from (5.30) we haveˆ
T3
|ṽ|2 dx = ẽ(t) ,

If now we use the transformation

v(x, t) = µ
−1 ṽ(x,µ−1t) and p(x, t) = µ

−2 p̃(x,µ−1t) ,

then it is clear that the pair (v, p) solves (5.5) and it satisfies (5.6) and (5.7). The time regularity is a
consequence of (2.2) from Chapter 2.
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5.4.3 Dissipative Euler solutions as vanishing viscosity limit

Here we prove Theorem 5.2. Let v ∈Cβ ′(T3× [0,T ]) be a dissipative solution of Euler, with the
kinetic energy profile satisfying the assumptions (i)− (v) in the proof of Theorem 5.1 (note that the
proof of the existence of such solution is given in [7]). Using the rescaling (5.34), with µ =(2‖v‖0)

−1,
we can assume that ‖v‖0 ≤ 1/2.

We fix two positive kernels (Friedrichs mollifiers) ϕ and ψ , respectively in space and time. Let
δn = a−bn+2

and µn = δ
1+β ′
n . Since v solves Euler, the smooth function vn = (v∗ϕδn)∗ψδn solves the

following Navier-Stokes Reynolds equations

∂tvn +div(vn⊗ vn)+∇pn +µn(−∆)γvn = div R̊n ,

with

R̊n = vn⊗̊vn− (v⊗̊v)n +µnR(−∆)γvn ,

where f ⊗̊g is the traceless part of the matrix f ⊗ g and R is the operator defined in (D.1). We also
define the energy as

en(t) =
ˆ
T3
|vn|2 dx+δn+1λ

−α
n . (5.37)

Using standard mollification estimates and (B.2) we have

‖vn‖1 . δ
β ′−1
n ,

‖R̊n‖0 . δ
2β ′
n +µn[vn]1 . δ

2β ′
n .

Thus, if we chose γ < β < β ′ and the parameter a large enough, we can guarantee that (5.27)-(5.30)
hold for q = n, provided that b is sufficiently near 1 and α is small. We can now apply Proposition
5.9 (inductively for q ≥ n) in order to obtain a solution v(µn) of (5.4), and since γ < β (as already
done in the proof of Theorem 5.1) we can guarantee that v(µn) is indeed a Leray-Hopf weak solution.
Moreover by (5.32) we have

‖v(µn)− vn‖β ′′ ≤ ∑
q≥n
‖vq+1− vq‖β ′′ . ∑

q≥n
a(β

′′−β )bq+1
.

Thus, provided that the parameter a is chosen even larger, we can ensure that

‖v(µn)− v‖β ′′ ≤ ‖v(µn)− vn‖β ′′+‖vn− v‖β ′′ ≤
1
n
, ∀β ′′ < β ,

and this concludes the proof of the theorem. We also remark that en(t)→
´
T3 |v|2 dx as n→+∞.



5.5 The convex integration scheme and proof of the iterative proposition 73

5.5 The convex integration scheme and proof of the iterative propo-
sition

The rest of this chapter is devoted to the proof of Proposition 5.9. To simplify several estimates
we will assume that α is small enough so to have

λ
3α
q ≤

(
δq

δq+1

)3/2

≤
λq+1

λq
, (5.38)

in which we also need that a is big enough to nullify any constant from the ratio λq/a(b
q), which can

be easily bounded as

2π ≤
λq

abq ≤ 4π . (5.39)

Following the construction of [7] we subdivide the proof in three stages, in each of which we
modify vq: mollification, gluing and perturbation.

5.5.1 Mollification step

The first stage is mollification: we mollify vq (in space) at length scale

`=
δ

1/2

q+1

δ
1/2
q λ

1+3α/2
q

. (5.40)

Fix a standard mollification kernel ψ , we define

v` =vq ∗ψ`

R̊` =R̊q ∗ψ`− (vq⊗̊vq)∗ψ`+ v`⊗̊v` .

These functions obey the equation{
∂tv`+div(v`⊗ v`)+∇p`+µ(−∆)γv` = div R̊`

divv` = 0 ,
(5.41)

in view of (5.22). Observe, again choosing α sufficiently small and a sufficiently large we can assume

λ
−3/2
q ≤ `≤ λ

−1
q , (5.42)

which will be used in order to simplify several estimates. From standard mollification estimates we
obtain the following bounds (we refer to [7] for a detailed proof).
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Proposition 5.10.

‖v`− vq‖0 . δ
1/2

q+1λ
−α
q , (5.43)

‖v`‖N+1 . δ
1/2
q λq`

−N ∀N ≥ 0 , (5.44)

‖R̊`‖N+α . δq+1`
−N+α ∀N ≥ 0 . (5.45)∣∣∣∣ˆ

T3
|vq|2−|v`|2 dx

∣∣∣∣. δq+1`
α . (5.46)

5.5.2 Gluing step
In the second stage we glue together exact solutions to the fractional Navier-Stokes equations in

order to produce a new vq, close to vq, whose associated Reynolds stress error has support in pairwise
disjoint temporal regions of length τq in time, where

τq =
`2α

δ
1/2
q λq

. (5.47)

Note that we have the CFL-like condition

2τq‖v`‖1+α

(5.44)
. τqδ

1/2
q λq`

−α . `α � 1 (5.48)

as long as a is sufficiently large. More precisely, we aim to construct a new triple (vq, R̊q, pq) solving

the Navier-Stokes Reynolds equation (5.22) such that the temporal support of R̊q is contained in pair-
wise disjoint intervals Ii of length ∼ τq and such that the gaps between neighbouring intervals is also
of length ∼ τq.

For each i, let ti = iτq, and consider smooth solutions of the fractional Navier-Stokes equations
∂tvi +div(vi⊗ vi)+∇pi +µ(−∆)γvi = 0
divvi = 0
vi(·, ti) = v`(·, ti) .

(5.49)

defined over their own maximal interval of existence. An immediate consequence of (5.44), (5.47)
and Proposition 5.8 is the following

Corollary 5.11. If a is sufficiently large, for 0≤ (t− ti)≤ 2τq, we have

‖vi‖N+α . δ
1/2
q λq`

1−N−α . τ
−1
q `1−N+α for any N ≥ 1. (5.50)

We will now show that for 0≤ (t− ti)≤ 2τq, vi is close to v` and by the identity

vi− vi+1 = (vi− v`)− (vi+1− v`),

the vector field vi is also close to vi+1.
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Proposition 5.12. For 0≤ (t− ti)≤ 2τq, N ≥ 0 and 0 < µ < 1 we have

‖vi− v`‖N+α .τqδq+1`
−N−1+α , (5.51)

‖∇(p`− pi)‖N+α . δq+1`
−N−1+α , (5.52)

‖Lt,`,γ(vi− v`)‖N+α . δq+1`
−N−1+α , (5.53)

‖Dt,`(vi− v`)‖N+α . δq+1`
−N−1+α , (5.54)

where we write

Dt,` = ∂t + v` ·∇ Lt,`,γ = Dt,`+µ(−∆)γ . (5.55)

Proof. Let us first consider (5.51) with N = 0. From (5.41) and (5.49) we have

Lt,`,γ(v`− vi) = (vi− v`) ·∇vi−∇(p`− pi)+div R̊`. (5.56)

In particular, using

∆(p`− pi) = div
(
∇v`(vi− v`)

)
+div

(
∇vi(vi− v`)

)
+divdiv R̊`, (5.57)

estimates (5.45) and (5.50), and Proposition F.1 (recall that ∂i∂ j(−∆)−1 is given by 1/3δi j + a Calderón-
Zygmund operator), we conclude

‖∇(p`− pi)(·, t)‖α ≤ δ
1/2
q λq`

−α‖vi− v`‖α +δq+1`
−1+α .

Thus, using (5.45) and the definition of τq, we have

‖Lt,`,γ(v`− vi)‖α . δq+1`
−1+α + τ

−1
q ‖v`− vi‖α (5.58)

By applying (5.16) we obtain

‖(v`− vi)(·, t)‖α . |t− ti|δq+1`
−1+α +

ˆ t

ti
τ
−1
q ‖(v`− vi)(·,s)‖α ds.

Applying Grönwall’s inequality and using the assumption 0≤ (t− ti)≤ 2τq we obtain

‖vi− v`‖α . τqδq+1`
−1+α , (5.59)

i.e. (5.51) for the case N = 0. Then as a consequence of (5.58) we obtain (5.53) for N = 0.
Next, consider the case N ≥ 1 and let θ be a multiindex with |θ |= N. Commuting the derivative

∂ θ with the material derivative ∂t + v` ·∇ we have

‖Lt,`,γ∂
θ (v`− vi)‖α . ‖∂ θ Lt,`,γ(v`− vi)‖α +‖[v` ·∇,∂ θ ](v`− vi)‖α

. ‖∂ θ Lt,`,γ(v`− vi)‖α +‖v`‖N+α‖v`− vi‖1+α +‖v`‖1+α‖v`− vi‖N+α

. ‖∂ θ Lt,`,γ(v`− vi)‖α +‖v`‖N+1+α‖v`− vi‖α +‖v`‖1+α‖v`− vi‖N+α ,
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On the other hand differentiating (5.56) leads to

‖∂ θ Lt,`,γ(v`− vi)‖α . ‖v`− vi‖N+α‖vi‖1+α +‖v`− vi‖α‖vi‖N+1+α +‖p`− pi‖N+1+α +‖R̊`‖N+1+α

. τ
−1
q ‖v`− vi‖N+α +δq+1`

−N−1+α +‖∇(p`− pi)‖N+α , (5.60)

where we have used (5.59). Furthermore, from (5.57) we also obtain, using Corollary 5.11 and (5.59)

‖∇(p`− pi)‖N+α . (‖v`‖N+1+α +‖vi‖N+1+α)‖v`− vi‖α

+(‖v`‖1+α +‖vi‖1+α)‖v`− vi‖N+α +‖R̊`‖N+1+α

. δq+1`
−N−1+α + τ

−1
q ‖v`− vi‖N+α . (5.61)

Summarizing, for any multiindex θ with |θ |= N we obtain

‖Lt,`,γ∂
θ (v`− vi)‖α . δq+1`

−N−1+α + τ
−1
q ‖v`− vi‖N+α .

Therefore, invoking once more (5.16) we deduce

‖(v`− vi)(·, t)‖N+α . τqδq+1`
−N−1+α +

ˆ t

ti
τ
−1
q ‖(v`− vi)(·,s)‖N+α ds,

and hence, using Grönwall’s inequality and the assumption 0≤ (t− ti)≤ 2τq we obtain (5.51). From
(5.61) and (5.60) we then also conclude (5.52) and (5.53). We are only left with (5.54). By Theorem
C.1 and estimate (5.51) we have

µ‖(−∆)γ(v`− vi)‖N+α . ‖v`− vi‖N+2γ+2α . τqδq+1`
−N−1−2γ−α .

If a is chosen sufficiently large we can ensure `−1 ≤ λq+1 and, using (5.31), we get

τq`
−2γ−2α ≤

λ
2γ

q+1

δ
1/2
q λq

≤ 1

from which we deduce
µ‖(−∆)γ(v`− vi)‖N+α . δq+1`

−N−1+α . (5.62)

Finally, combining (5.53), (5.62) and triangular inequality, we get (5.54)

Define the vector potentials to the solutions vi as

zi = Bvi = (−∆)−1curlvi, (5.63)

where B is the Biot-Savart operator, so that

divzi = 0 and curlzi = vi−
ˆ
T3

vi . (5.64)

Our aim is to obtain estimates for the differences zi− zi+1.
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Proposition 5.13. For 0≤ (t− ti)≤ 2τq, we have that

‖zi− zi+1‖N+α . τqδq+1`
−N+α , (5.65)

‖Dt,`(zi− zi+1)‖N+α . δq+1`
−N+α . (5.66)

Proof. Set z̃i = B(vi− v`) and observe that zi− zi+1 = z̃i− z̃i+1. Hence, it suffices to estimate z̃i in
place of zi− zi+1.

The estimate on ‖∇z̃i‖N−1+α for N ≥ 1 follows directly from (5.51) and the fact that ∇B is a
bounded operator on Hölder spaces:

‖∇z̃i‖N−1+α ≤‖∇B(vi− v`)‖N−1+α‖vi− v`‖N+α . τqδq+1`
−N+α . (5.67)

Next, observe that

∂t(vi− v`)+ v` ·∇(vi− v`)+(vi− v`) ·∇vi +∇(pi− p`)+µ(−∆)γ(vi− v`)+div R̊` = 0. (5.68)

Since vi− v` = curl z̃i with div z̃i = 0, we have2

v` ·∇(vi− v`) = curl
(
(v` ·∇)z̃i

)
+div

(
(z̃i×∇)v`

)
((vi− v`) ·∇)vi = div

(
(z̃i×∇)vT

i
)
,

so that we can write (5.68) as

curl(∂t z̃i +(v` ·∇)z̃i +µ(−∆)γ z̃i) =−div
(
(z̃i×∇)v`+(z̃i×∇)vT

i
)
−∇(pi− p`)−div R̊`. (5.69)

Taking the curl of (5.69) the pressure term drops out. Using in addition that div z̃i = div(vi− v`) = 0
and the identity curlcurl =−∆+∇div , we then arrive at

−∆
(
∂t z̃i +(v` ·∇)z̃i +µ(−∆)γ z̃i

)
= F,

where
F =−∇div ((z̃i ·∇)v`)− curldiv

(
(z̃i×∇)v`+(z̃i×∇)vT

i
)
− curldiv R̊`.

3

Consequently,

‖∂t z̃i +(v` ·∇)z̃i +µ(−∆)γ z̃i‖N+α . (‖vi‖N+1+α +‖v`‖N+1+α)‖z̃i‖α

+(‖vi‖1+α +‖v`‖1+α)‖z̃i‖N+α +‖R̊`‖N+α

. τ
−1
q ‖z̃i‖N+α + τ

−1
q `−N‖z̃i‖α +δq+1`

−N+α . (5.70)

2Here we use the notation [(z×∇)v]i j = εiklzk∂lv j for vector fields z,v.
3In deriving the latter equality we have used the identity ∇div((v` ·∇)z̃i) = ∇div((z̃i ·∇)v`), which follows easily from

the fact that both v` and z̃i are divergence free.
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Setting N = 0 and using (5.16) and Grönwall’s inequality we obtain

‖z̃i‖α . τqδq+1`
α ,

which together with (5.67) gives (5.65). Using (5.65) into (5.70) we get

‖∂t z̃i +(v` ·∇)z̃i +µ(−∆)γ z̃i‖N+α . δq+1`
−N+α .

Thus we conclude

‖∂t z̃i +(v` ·∇)z̃i‖N+α . δq+1`
−N+α +‖(−∆)γ z̃i‖N+α . δq+1`

−N+α +‖z̃i‖N+2γ+2α

. δq+1`
−N+α

(
1+ τq`

−2γ−2α
)
≤ δq+1`

−N+α .

Proceding as in [7], we now glue the solutions vi together in order to construct vq. Let

ti = iτq, Ii =
[
ti+1 +

1
3τq, ti+1 +

2
3τq
]
∩ [0,T ] ,

J0 =
[
0, t1 + 1

3τq
)
, Ji =

(
ti+1− 1

3τq, ti+1 +
1
3τq
)
∩ [0,T ] i≥ 1 .

Note that {Ii,Ji}i is a decomposition of [0,T ] into pairwise disjoint intervals. Note also that these
definitions of Ji, Ii are slightly different from the one used in [7]. The reason is that our stability
estimates for smooth solutions of the fractional Navier-Stokes equations hold for 0 ≤ t− ti ≤ τq as
opposed to |t− ti| ≤ τq in [7].

We define a partition of unity {χi}i in time with the following properties:

• The cut-offs form a partition of unity
∑

i
χi ≡ 1. (5.71)

• supp χi∩ supp χi+2 = /0 and moreover

supp χ0 ⊂
[
0, t1 + 2

3τq
)
,

supp χi ⊂ Ii−1∪ Ji∪ Ii, (5.72)
χi(t) = 1 for t ∈ Ji.

• For any i and N we have
‖∂ N

t χi‖0 . τ
−N
q . (5.73)

We define

vq = ∑
i

χivi,

p(1)q = ∑
i

χi pi.
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Observe that divvq = 0. Furthermore, if t ∈ Ii, then χi+χi+1 = 1 and χ j = 0 for j 6= i, i+1, therefore
on Ii:

vq = χivi +(1−χi)vi+1

p(1)q = χi pi +(1−χi)pi+1

and

∂tvq +div(vq⊗ vq)+∇p(1)q +µ(−∆)γvq = ∂t χi(vi− vi+1)−χi(1−χi)div ((vi− vi+1)⊗ (vi− vi+1)) .

On the other hand, if t ∈ Ji then χi = 1 and χ j(t̃) = 0 for all j 6= i for all t̃ sufficiently close to t (since
Ji is open). Then for all t ∈ Ji we have

vq = vi, p(1)q = pi,

and, from (5.49),
∂tvq +div(vq⊗ vq)+∇p(1)q +(−∆)γvq = 0.

In order to define the new Reynolds tensor, we recall the operator R from (D.1). Thus we define

R̊q = ∂t χiR(vi− vi+1)−χi(1−χi)(vi− vi+1)⊗̊(vi− vi+1)

p(2)q =−χi(1−χi)

(
|vi− vi+1|2−

ˆ
T3
|vi− vi+1|2 dx

)
,

for t ∈ Ii and R̊q = 0, p(2)q = 0 for t /∈
⋃

i Ii. Furthermore, we set

pq = p(1)q + p(2)q

It follows from the preceding discussion and Proposition D.1 that

• R̊q is a smooth symmetric and traceless 2-tensor;

• For all (x, t) ∈ T3× [0,T ]{
∂tvq +div(vq⊗ vq)+∇pq +µ(−∆)γvq = div R̊q,
divvq = 0;

• supp R̊q ⊂ T3×
⋃

i Ii.

Next, we estimate the various Hölder norms of vq and R̊q.
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Proposition 5.14. The velocity field vq and the new Reynolds stress tensor R̊q satisfy the following
estimates

‖v̄q− v`‖α . δ
1/2

q+1`
α (5.74)

‖vq− v`‖N+α . τqδq+1`
−1−N+α (5.75)

‖v̄q‖1+N . δ
1/2
q λq`

−N (5.76)

‖R̊q‖N+α . δq+1`
−N+α (5.77)

‖(∂t + vq ·∇)R̊q‖N+α . δq+1δ
1/2
q λq`

−N−α (5.78)

for all N ≥ 0. Moreover the difference of the energies of vq and v` satisfies∣∣∣∣ˆ
T3
|v̄q|2−|v`|2dx

∣∣∣∣. δq+1`
α . (5.79)

Proof. The estimates (5.74)–(5.78) are consequence of Propositions 5.12 and 5.63 (the proof can be
found in [7]). However we prove explicitly (5.79) since it involves the structure of the dissipative
term.

Observe that for t ∈ Ii

vq⊗ vq = (χivi +(1−χi)vi+1)⊗ (χivi +(1−χi)vi+1)

= χivi⊗ vi +(1−χi)vi+1⊗ vi+1−χi(1−χi)(vi− vi+1)⊗ (vi− vi+1),

so that, taking the trace:

|vq|2−|v`|2 = χi(|vi|2−|v`|2)+(1−χi)(|vi+1|2−|v`|2)−χi(1−χi)|vi− vi+1|2

Next, recall that vi and v` are smooth solutions of (5.49) and (5.41) respectively, therefore∣∣∣∣ d
dt

ˆ
T3
|vi|2−|v`|2 dx

∣∣∣∣= 2
∣∣∣∣ˆ

T3
∇v` : R̊` dx

∣∣∣∣+2µ

∣∣∣∣ˆ
T3

(∣∣∣(−∆)
γ/2vi

∣∣∣2− ∣∣∣(−∆)
γ/2v`

∣∣∣2) dx
∣∣∣∣ .

Using (5.45) and (5.50), we estimate∣∣∣∣ˆ
T3

∇v` : R̊` dx
∣∣∣∣. ‖∇v`‖0‖R̊`‖0 . δ

1/2
q λqδq+1 . τ

−1
q δq+1`

α .

Moreover, since ‖vq‖γ ≤ 1 for every γ < β (as already exploited in the proof of Proposition 5.9), by
(5.51), Theorem C.1 and Cauchy-Schwarz inequality we have, for all t ∈ Ii∣∣∣∣ˆ

T3

(∣∣∣(−∆)
γ/2vi

∣∣∣2− ∣∣∣(−∆)
γ/2v`

∣∣∣2) dx
∣∣∣∣. ‖vi− v`‖γ+α . τqδq+1`

−1−γ . τ
−1
q δq+1`

α ,
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where in the last inequality (remember the restriction γ < 1/3) we have used

`−1−γ ≤ `−
4/3 (5.40)

=

(
δ

1/2
q λq

)4/3

δ
2/3

q+1

λ
2α
q

(5.47)
= τ

−2
q `α`

5α/3
λ

2α
q
(
τqδ
−1
q+1
)2/3

(5.42)
≤ τ

−2
q `α .

Moreover, vi = v` for t = ti. Therefore, after integrating in time we deduce∣∣∣∣ˆ
T3
|vi|2−|v`|2 dx

∣∣∣∣. δq+1`
α ,

for all t ∈ Ii. Furthermore, using (5.51) and δ
1/2

q+1τq`
−1 = `2αλ

3α/2
q

(5.42)
≤ λ

−α/2
q ≤ 1ˆ

T3
|vi− vi+1|2 dx . ‖vi− vi+1‖2

α . τ
2
q δ

2
q+1`

−2+2α . δq+1`
2α ,

in Ii. Therefore ∣∣∣∣ˆ |v̄q|2−|v`|2dx
∣∣∣∣. δq+1`

α ,

which concludes the proof.

5.5.3 Perturbation
We will now outline the construction of the perturbation wq+1, where

vq+1 = wq+1 + vq .

The perturbation wq+1 is highly oscillatory and will be based on the Mikado flows introduced in [25].
Their main properties can be found in Appendix E.

First of all note that as a corollary of (5.30), (5.46) and (5.79), by choosing a sufficiently large we
can ensure that

δq+1

2λ α
q
≤ e(t)−

ˆ
T3
|vq|2 dx≤ 2δq+1 . (5.80)

Starting with the solution (vq, pq, R̊q), we then produce a new solution (vq+1, pq+1, R̊q+1) of the
Navier-Stokes Reynolds system (5.22) with estimates

‖vq+1− vq‖0 +λ
−1
q+1‖vq+1− vq‖1 ≤

M
2

δ
1/2

q+1 (5.81)

‖R̊q+1‖α .
δ

1/2

q+1δ
1/2
q λq

λ
1−4α

q+1
. (5.82)

∣∣∣∣e(t)−ˆ
T3
|vq+1|2 dx−

δq+2

2

∣∣∣∣. δ
1/2
q δ

1/2

q+1λ 1+2α
q

λq+1
, (5.83)
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cf. Propositions 5.18, 5.19 and 5.20. Then Proposition 5.9 is just a consequence of estimates (5.81)-
(5.83), Proposition 5.10 and Proposition 5.14 (again, a detailed proof can be found in [7]).

Recall that R̊q is supported in the set T3×
⋃

i Ii, whereas, from (5.72) it follows that [0,T ]\
⋃

i Ii =⋃
i Ji, where the open intervals Ji have length |Ji|= 2

3τq each, except for the first J0 and last one, which
might be shortened by the intersection with [0,T ], more precisely

Ji =
(
ti+1− 1

3τq, ti+1 +
1
3τq
)
∩ [0,T ] .

We start by defining smooth non-negative cut-off functions ηi = ηi(x, t) with the following properties

(i) ηi ∈C∞(T3× [0,T ]) with 0≤ ηi(x, t)≤ 1 for all (x, t);

(ii) suppηi∩ suppη j = /0 for i 6= j;

(iii) T3× Ii ⊂ {(x, t) : ηi(x, t) = 1};

(iv) suppηi ⊂ T3× Ii∪ Ji∪ Ji+1;

(v) There exists a positive geometric constant c0 > 0 such that for any t ∈ [0,T ]

∑
i

ˆ
T3

η
2
i (x, t)dx≥ c0.

The next lemma is taken from [7].

Lemma 5.15. There exists cut-off functions {ηi}i with the properties (i)-(v) above and such that for
any i and n,m≥ 0

‖∂ n
t ηi‖m ≤C(n,m)τ−n

q

where C(n,m) are geometric constants depending only upon m and n.

Define

ρq(t) =
1
3

(
e(t)−

δq+2

2
−
ˆ
T3
|vq|2 dx

)
and

ρq,i(x, t) =
η2

i (x, t)
∑ j

´
T3 η2

j (y, t)dy
ρq(t)

Define the backward flows Φi for the velocity field vq as the solution of the transport equation{
(∂t + vq ·∇)Φi = 0
Φi (x, ti) = x.
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Define
Rq,i = ρq,iId−η

2
i R̊q

and

R̃q,i =
∇ΦiRq,i(∇Φi)

T

ρq,i
. (5.84)

We note that, because of properties (ii)-(iv) of ηi,

• suppRq,i ⊂ suppηi;

• on supp ˚̄Rq we have ∑i η2
i = 1;

• supp R̃q,i ⊂ T3× Ii∪ Ji∪ Ji+1;

• supp R̃q,i∩ supp R̃q, j = /0 for all i 6= j.

Lemma 5.16. For a� 1 sufficiently large we have

‖∇Φi− Id‖0 ≤
1
2

for t ∈ supp(ηi). (5.85)

Furthermore, for any N ≥ 0

δq+1

8λ α
q
≤ |ρq(t)| ≤ δq+1 for all t , (5.86)

‖ρq,i‖0 ≤
δq+1

c0
, (5.87)

‖ρq,i‖N . δq+1 , (5.88)

‖∂tρq‖0 . δq+1δ
1/2
q λq , (5.89)

‖∂tρq,i‖N . δq+1τ
−1
q . (5.90)

Moreover, for all (x, t)
R̃q,i(x, t) ∈ B1/2(Id)⊂S 3×3

+ ,

where B1/2(Id) denotes the metric ball of radius 1/2 around the identity Id in the space S 3×3.

Proof of Lemma 5.16. For the estimates (5.86)-(5.88) we refer to [7]. Note that by the definition of
the cut-off functions ηi

c0 ≤∑
i

ˆ
T3

η
2
i (y, t)dy≤ 2 . (5.91)

To prove (5.89) and (5.90) we first note that∣∣∣∣ d
dt

ˆ
|vq(x, t)|2 dx

∣∣∣∣≤ 2
∣∣∣∣ˆ ∇vq · R̊q dx

∣∣∣∣+2µ

ˆ ∣∣∣(−∆)
γ/2vq

∣∣∣2 dx . δq+1δ
1/2
q λq`

α
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Thus4

‖∂tρq‖0 . δq+1δ
1/2
q λq

Then, since ‖∂tη j‖N . τ−1
q and δ

1/2
q λq ≤ τ−1

q , using (5.91), the estimate (5.90) follows.

The constant M

The principal term of the perturbation can be written as

wo = ∑
i

(
ρq,i(x, t)

)1/2
(∇Φi)

−1W (R̃q,i,λq+1Φi) = ∑
i

wo,i , (5.92)

where Lemma E.1 is applied with N = B1/2(Id), namely the closed ball (in the space of symmet-
ric 3× 3 matrices) of radius 1/2 centered at the identity matrix. From Lemma 5.16 it follows that
W (R̃q,i,λq+1Φi) is well defined. Using the Fourier series representation of the Mikado flows (E.3) we
can write

wo,i = ∑
k 6=0

(∇Φi)
−1bi,keiλq+1k·Φi ,

where
bi,k(x, t) =

(
ρq,i(x, t)

)1/2 ak(R̃q,i(x, t)).

The following is a crucial point of our construction, which ensures that the constant M of Proposition
5.9 is geometric and in particular independent of all the parameters of the construction.

Lemma 5.17. There is a geometric constant M̄ such that

‖bi,k‖0 ≤
M̄
|k|4

δ
1/2

q+1 . (5.93)

The previous lemma follows from the definition of the Mikado flows given in Appendix E and we
refer to [7] for a more precise discussion.

We are finally ready to define the constant M of Proposition 5.9: from Lemma 5.17 it follows
trivially that the constant is indeed geometric and hence independent of all the parameters entering in
the statement of Proposition 5.9.

We can now define the geometric constant M as

M = 64M̄ ∑
k∈Z3\{0}

1
|k|4

, (5.94)

4Note that ‖∂te‖0 ≤ 1≤ δq+1δ
1
2

q λq since δq+1δ
1/2
q λq = λ

−2β

q+1 λ
1−β
q ≥ abq(1−β−2βb) ≥ 1. Recall that b < 1−β

2β
.
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where M̄ is the constant of Lemma 5.17. We also define

wc =
−i

λq+1
∑

i,k 6=0

[
curl

((
ρq,i
)1/2 ∇ΦT

i (k×ak(R̃q,i))

|k|2

)]
eiλq+1k·Φi =: ∑

i,k 6=0
ci,keiλq+1k·Φi .

Then by direct computations one can check that

wq+1 = wo +wc =
−1

λq+1
curl

(
∑

i,k 6=0
(∇Φi)

T
(

ik×bk,i

|k|2

)
eiλq+1k·Φi

)
, (5.95)

thus the perturbation wq+1 is divergence free. Note that the dependence of wq+1(·,0) on the function
e(t) is only trough the value e(0).

5.5.4 The final Reynolds stress and conclusions
Upon letting

Rq = ∑
i

Rq,i ,

the new Reynolds stress will be split in two main component: the Euler error R̊E
q+1 and the dissipative

error R̊D
q+1, i.e.

R̊q+1 = R̊E
q+1 + R̊D

q+1 , (5.96)

where

R̊E
q+1 = R

(
wq+1 ·∇vq +∂twq+1 + vq ·∇wq+1 +div

(
−Rq +(wq+1⊗wq+1)

))
R̊D

q+1 = µR
(
(−∆)γwq+1

)
.

Notice that all three terms in (5.96) are of the form R f , where f has always zero mean. Notice
also that the definition of R̊E

q+1 is the same as in [7] and that due to the dissipative term (−∆)γ we
have to put also R̊D

q+1 in the definition of the new Reynolds stress in order to ensure that the system
(5.22) is satisfied at the step q+1. Indeed, with this definition one may verify that{

∂tvq+1 +div(vq+1⊗ vq+1)+∇pq+1 +µ(−∆)γvq+1 = div(R̊q+1) ,
divvq+1 = 0 ,

where the new pressure is defined by

pq+1(x, t) = p̄q(x, t)−∑
i

ρq,i(x, t)+ρq(t). (5.97)

We now state a proposition taken from [7].
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Proposition 5.18. For t ∈ Ĩi and any N ≥ 0

‖(∇Φi)
−1‖N +‖∇Φi‖N . `−N , (5.98)

‖R̃q,i‖N . `−N , (5.99)

‖bi,k‖N . δ
1/2

q+1|k|
−6`−N , (5.100)

‖ci,k‖N . δ
1/2

q+1λ
−1
q+1|k|

−6`−N−1 . (5.101)

Moreover assuming a is sufficiently large, the perturbations wo, wc and wq satisfy the following
estimates

‖wo‖0 +
1

λq+1
‖wo‖1 ≤

M
4

δ
1/2

q+1 (5.102)

‖wc‖0 +
1

λq+1
‖wc‖1 . δ

1/2

q+1`
−1

λ
−1
q+1 (5.103)

‖wq+1‖0 +
1

λq+1
‖wq+1‖1 ≤

M
2

δ
1/2

q+1 (5.104)

where the constant M depends solely on the constant c0 in (5.91). In particular, we obtain (5.81).

We are now ready to complete the proof of Proposition 5.9 by proving the remaining estimates
(5.82) and (5.83). The estimate (5.83) is a consequence of Proposition 5.18 and Lemma 5.16 and does
not involve the different structure of the Navier-Stokes equations with respect to the Euler ones, thus
for the proof of the next proposition we refer to [7].

Proposition 5.19. The energy of vq+1 satisfies the following estimate:∣∣∣∣e(t)−ˆ
T3
|vq+1|2 dx−

δq+2

2

∣∣∣∣. δ
1/2
q δ

1/2

q+1λ 1+2α
q

λq+1
.

For the inductive estimate on R̊q+1 we have the following

Proposition 5.20. The Reynolds stress error R̊q+1 defined in (5.96) satisfies the estimate

‖R̊q+1‖0 .
δ

1/2

q+1δ
1/2
q λq

λ
1−4α

q+1
. (5.105)

In particular, (5.82) holds.

Proof. For the first term in the definition of the new Reynolds stress tensor we have

‖R̊E
q+1‖0 .

δ
1/2

q+1δ
1/2
q λq

λ
1−4α

q+1
.
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We are not going to give the proof of the last estimate because, as already explained, it can be found
in [7, Proposition 6.1]. To estimate R̊D

q+1 we first note that µ < 1 and the two operators R and (−∆)γ

commute, therefore we can first estimate ‖Rwq+1‖0 and ‖Rwq+1‖1 from which, using Theorem C.1
and interpolation in Hölder spaces, we conclude

‖R̊D
q+1‖0 . ‖Rwq+1‖γ+α . ‖Rwq+1‖1−2γ−α

0 ‖Rwq+1‖2γ+α

1 .

By the definition of the new perturbations we have

wc = ∑
i,k 6=0

ci,keiλq+1k·Φi

wo = ∑
i,k 6=0

Li,keiλq+1k·Φi ,

where Li,k = (∇Φi)
−1bi,k. Using Proposition 5.18 we have

‖Li,k‖N ≤ ‖(∇Φi)
−1‖N‖bi,k‖0 +‖(∇Φi)

−1‖0‖bi,k‖N . δ
1/2

q+1|k|
−6`−N . (5.106)

Using Proposition D.2 and (5.106) we estimate

‖Rwo‖0 ≤ ‖Rwo‖α . ∑
i,k 6=0

‖Li,k‖0

λ
1−α

q+1 |k|1−α
+
‖Li,k‖N+α +‖Li,k‖0‖Φi‖N+α

λ
N−α

q+1 |k|N−α

. δ
1/2

q+1 ∑
k 6=0

1
λ

1−α

q+1 |k|7−α
+

`−N−α

λ
N−α

q+1 |k|N−α+7
.

δ
1/2

q+1

λ
1−α

q+1
,

where in the last inequality we have chosen N big enough. It is not difficult to see that we also have

‖Rwo‖1 . δ
1/2

q+1λ
α
q+1 ,

since each time we take a space derivative the largest contribution is given by differentiating the fast
exponential, thereby worsening the estimate by a factor λq+1. Thus by interpolation we conclude

‖(−∆)γRwo‖0 .
δ

1/2

q+1

λ
1−α

q+1
λ

2γ

q+1 . (5.107)

Now we observe that the estimate on the coefficients ci,k are better then those for the Li,k’s, so that we
also bound

‖(−∆)γRwc‖0 .
δ

1/2

q+1

λ
1−α

q+1
λ

2γ

q+1 . (5.108)

Finally, combining (5.107), (5.108) and the restriction γ < 1/3 we get

‖R̊D
q+1‖0 .

δ
1/2

q+1

λ
1−α

q+1
λ

2γ

q+1 .
δ

1/2

q+1δ
1/2
q λq

λ
1−4α

q+1
.
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Chapter 6

Sharp energy regularity and typicality results
for the Euler equations

6.1 Introduction
In this chapter we consider the incompressible Euler equations{

∂tv+div(v⊗ v)+∇p = 0
divv = 0 in T3× [0,T ]. (6.1)

We know that for smooth solutions one has energy conservation, namely

d
dt

ev(t) =
d
dt

ˆ
T3
|v|2(x, t)dx = 0, ∀t ∈ [0,T ].

For weak solutions v ∈ L∞((0,T );Cθ (T3)) it is known, and was previously conjectured by Lars On-
sager, that the threshold for the energy conservation is θ = 1/3.

As observed in [39], and also proved in Chapter 2, given any solution v ∈ L∞((0,T );Cθ (T3)), it
can be shown that the associated kinetic energy ev satisfies

|ev(t)− ev(s)| ≤C |t− s|
2θ

1−θ ∀t,s ∈ [0,T ], (6.2)

which in particular implies the conservation if θ > 1/3, but also shows a peculiar Hölder regularity
of the energy. Throughout this chapter, we will sometimes use the shorter notation

θ
∗ =

2θ

1−θ
.

P. Isett and S.-J. Oh conjectured in [43, Conjecture 1] that this exponent is optimal in the following
sense

89
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Conjecture. For any θ < 1
3 , there exists a solution to (6.1) in the class v ∈ Cθ (R×Tn) whose

energy profile e(t) fails to have any regularity above the exponent 2θ

1−θ
, in the sense that ev(t) /∈

W
2θ

1−θ
+ε,p(I), for every ε > 0, p ≥ 1 and every open time interval I ⊂ R. Furthermore, the set of all

such solutions v with the above property is residual (in the sense of category) within the space of all
Cθ (R×Tn) weak solutions, endowed with the topology from the Cθ norm.

In this chapter we solve this conjecture in a slightly smaller space than Cθ . This is due to some
technical reasons and we postpone the discussion about this choice at the end of the introduction. The
first of our main results is the following

Theorem 6.1. Fix γ > 0 and θ ∈ (0,1/3) such that 2θ

1−θ
+ γ < 1. For every strictly positive e ∈

C
2θ

1−θ
+γ([0,T ]), there exists a vector field v ∈ Cθ (T3× [0,T ]) that solves (6.1) in the distributional

sense and such that
e(t) =

ˆ
T3
|v|2(x, t)dx, ∀t ∈ [0,T ].

The proof of this result follows closely the one of [7]. In particular, our Theorem 6.1 states the
same conclusion of [7, Theorem 1.1], except for the fact that we are dropping the hypothesis on the
smoothness of the function e. We remark that such sharpness of the energy regularity was first proven
in [42, 43] for any θ ∈ (0,1/5). Here we extend the result to the whole range (0,1/3), even though
it must be noted that in [42, 43] the energy profile is allowed to vanish, while in the scheme of [7],
and thus in ours, this is not. A small refinement of Theorem 6.1, coupled with a suitable h-principle,
also yields that weak solutions v ∈ Cθ (T3× [0,T ]) belonging to a proper, yet quite large, subset of
the space of all weak solutions have typically a kinetic energy ev which is not more regular than
C

2θ

1−θ ([0,T ]). To state it in a more precise way we set

Xθ =

{
v ∈

⋃
θ ′>θ

Cθ ′(T3× [0,T ]) : v weakly solves (6.1)

}‖·‖
Cθ

x,t

, (6.3)

endowed with the distance
d(u,v) = ‖u− v‖Cθ

x,t
. (6.4)

It is clear that (Xθ ,d) is a complete metric space. We also define

W θ∗ =
⋃

I⊂[0,T ]

⋃
p≥1

⋃
ε>0

W θ∗+ε,p(I)

and
Yθ =

{
v ∈ Xθ : ev ∈Cθ∗([0,T ])\W θ∗

}
. (6.5)

We prove the following

Theorem 6.2. For any θ ∈ (0,1/3), the set Yθ is residual in Xθ .



6.2 The main inductive proposition 91

Given a metric space (X ,dist), a subset Y ⊂ X is said to be residual if its complement Y c is con-
tained in a countable union of closed sets with empty interior. The set Y c is then called meager. Baire’s
Theorem asserts that a complete metric space is not meager. Therefore, the previous Theorem yields
some immediate corollaries. First, it implies that the kinetic energy of the typical solution in Xθ is not
of bounded variation, thus not monotonic, in any open subset of [0,T ]. Thus, Theorem 6.2 shows a
very irregular behaviour of the energy of solutions, in sharp contrast with the conservation of the en-
ergy in the case θ > 1/3. We refer the reader to [42, 43] for further discussions. A second immediate
corollary of Theorem 6.2 is that, for every θ ∈ (0,1/3), there exists a weak solution v of Euler such
that ev ∈Cθ∗([0,T ]) but ev /∈Cθ∗+γ([0,T ]), for any γ > 0. Let us note in passing that this also yields
a weak Cθ (T3× [0,T ]) solution of (6.1) that is not in Cθ+γ(T3× [0,T ]), for any γ . Indeed, from (6.2)
it is clear that Yθ can not contain solutions v that are more Hölder regular than Cθ (T3× [0,T ]). While
the residuality property implies that the kinetic energy of many Cθ (T3× [0,T ]) solutions enjoys the
sharp regularity (6.2), it must be noted that Xθ might not contain all the Cθ (T3× [0,T ]) solutions of
Euler, since in general not all the Cθ (T3× [0,T ]) functions can be obtained as limit of more regular
ones. In particular it is not clear if the same statement is true if one considers as a complete met-
ric space in Theorem 6.2 all the Cθ (T3× [0,T ]) solutions of (6.1), endowed with the same distance
dist(u,v) = ‖u− v‖Cθ

x,t
. This would solve [43, Conjecture 1] completely. We refer the reader to Sec-

tion 6.5 for a more detailed discussion on this problem.

Another natural question is about the topological properties of the smooth solutions in this setting.
To this end we define S to be the set of all smooth solutions of (6.1), and similarly as before we also
set

Cθ =
{

v ∈Cθ (T3× [0,T ]) : v weakly solves (6.1)
}
,

together with the natural distance (6.4). Note at first that, as a corollary of Theorem 6.2, one already
gets that S⊂Y c

θ
which obviously implies that S is a meager set in Xθ . However, in this case, a stronger

result can be proved

Theorem 6.3. For any θ ∈ (0,1/3), the set S of all smooth solutions of (6.1) is nowhere dense in Cθ .

We recall that in a complete metric space, a nowhere dense set is a set whose closure has empty
interior. Thus Theorem 6.3 is stronger with respect to the corollary that Theorem 6.2 would give from
two points of view. Firstly, every nowhere dense set is also meager. Secondly, the corresponding
topological property it is proved in a larger, and also more natural, space Cθ .

6.2 The main inductive proposition
We will follow the construction given in [7] dropping the hypothesis of the smoothness of the en-

ergy. In this chapter we will use the same shorter notation ‖ f‖θ introduced in Appendix A to denote
Hölder norms.
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Let q ≥ 0 be a natural number. At a given step q we assume to have a smooth triple (vq, pq, R̊q)
solving the Euler-Reynolds system, namely such that{

∂tvq +div(vq⊗ vq)+∇pq = div R̊q
divvq = 0 ,

(6.6)

to which we add the constraints

tr R̊q = 0 , (6.7)ˆ
T3

pq(x, t)dx = 0 . (6.8)

To measure the size of the approximate solution vq and the error R̊q, we use a frequency λq and an
amplitude δq, defined through these relations:

λq = 2πda(b
q)e, (6.9)

δq = λ
−2β
q , (6.10)

where dxe denotes the smallest integer n ≥ x, a > 1 is a large parameter, b > 1 is close to 1 and
0 < β < 1/3. The parameters a and b will depend on β and on other quantities. We proceed by
induction, assuming the estimates

‖R̊q‖0 ≤ δq+1λ
−3α
q (6.11)

‖vq‖1 ≤Mδ
1/2
q λq (6.12)

‖vq‖0 ≤ 1−δ
1/2
q (6.13)

δq+1λ
−α
q ≤ e(t)−

ˆ
T3
|vq|2 dx≤ δq+1 (6.14)

where 0 < α < 1 is a small parameter to be chosen suitably, in dependence of β and other quantities,
and M is a universal constant.

We now state the main inductive proposition

Proposition 6.4. There exists a universal constant M with the following property. Let 0 < β < η <
1/3, E > 0, and

1 < b <

√
η∗

β ∗
. (6.15)

Then there exists an α0 depending on β , η and b, such that for any 0 < α < α0 there exists an a0
depending on β , b, α , η , E and M, such that for any a ≥ a0 the following holds: given a triple



6.3 Proof of the main theorems 93

(vq, pq, R̊q) solving (6.6)-(6.8) and satisfying the estimates (6.11)–(6.14) for some strictly positive
e ∈Cη∗([0,T ]) with

‖e‖η∗ ≤ E,

there exists a solution (vq+1, pq+1, R̊q+1) to (6.6)-(6.8) satisfying (6.11)–(6.14) for the same function
e with q replaced by q+1. Moreover, we have

‖vq+1− vq‖0 +
1

λq+1
‖vq+1− vq‖1 ≤Mδ

1/2
q+1. (6.16)

The reader may notice that there are four main differences with respect to [7, Proposition 2.1].
First of all the statement is fomulated in a slightly different way than in [7, Proposition 2.1], in order
to highlight the fact that the parameter a0 is uniform once one has chosen the Cη∗([0,T ]) norm of e.
Moreover, we drop the smoothness hypothesis on the function e, we allow the parameter a0 to depend
on E and finally we suppose in (6.15) a different relation between the parameters b and β . Notice that
our relation (6.15) is more restrictive than the one used in [7], indeed we have

1 < b <

√
η∗

β ∗
<

√
1

β ∗
=

√
1−β

2β
<

1−β

2β
. (6.17)

6.3 Proof of the main theorems
In this section we prove our two main theorems. As in [7], the proof of Theorem 6.1 is a direct

consequence of Proposition 6.4 and we are going to prove it for the reader’s convenience. Theorem
6.2 will still be an application of the iterative proposition. Indeed, through a h-principle comparable
to [7, Theorem 1.3], we will be able to write the set Y c

θ
as a countable union of closed set with empty

interior.

6.3.1 Solutions with a non-smooth energy
Here we prove Theorem 6.1. First of all, fix γ,θ and e as in the statement of the theorem. In

order to apply Proposition 6.4 we choose η ∈ (0,1/3) to be the only solution of η∗ = θ ∗+ γ and β

such that θ < β < η . Consequently we also fix the parameters b and α appearing in the statement
of Proposition 6.4, the first satisfying (6.15) and the second lower than the threshold α0. Recall the
invariance of the Euler equations under the rescaling

v(x, t) 7→ vΓ(x, t) = Γv(x,Γt) and p(x, t) 7→ pΓ(x, t) = Γ
2 p(x,Γt), (6.18)

for any Γ > 0. Thus, with an the appropriate rescaling, we can further assume that the energy profile
satisfies

δ1λ
−α

0 ≤ inf
t

e(t)≤ sup
t

e(t)≤ δ1.
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Then we can apply inductively Proposition 6.4 starting with the triple (v0, p0, R̊0) = (0,0,0). Indeed
v0 and R̊0 trivially satisfy estimates (6.11)-(6.13) and by the rescaling on the energy we also get (6.14)
for q = 0. By (6.16) we have

∞

∑
q=0
‖vq+1− vq‖θ .

∞

∑
q=0
‖vq+1− vq‖1−θ

0 ‖vq+1− vq‖θ
1 .

∞

∑
q=0

δ
1/2

q+1λ
θ
q+1 .

∞

∑
q=0

λ
θ−β

q+1 < ∞ (6.19)

and hence vq converges in C0([0,T ];Cθ (T3)) to a function v. Moreover, by [17, Theorem 1.1], we
have that v ∈Cθ (T3× [0,T ]). By taking the divergence of the first equation in (6.6), we get that pq is
the unique 0-average solution of

−∆pq = divdiv(vq⊗ vq− R̊q)

and since vq⊗vq− R̊q→ v⊗v uniformly, pq is also converging to some function p in Lr(T3× [0,T ]),
for any r < ∞. Hence it is clear that the limit couple (v, p) solves (6.1) in the distributional sense.
Finally, by (6.14), as q→ ∞, we also get

e(t) =
ˆ
T3
|v|2(x, t)dx ∀t ∈ [0,T ],

which concludes the proof of the theorem.

6.3.2 Residuality of wild solutions
Here we prove Theorem 6.2. We want to show that Y c

θ
is meager in Xθ . Let us enumerate the

intervals with rational endpoints inside [0,T ], (Ir)r∈N, and let (qs)s be a countable and dense subset
of [1,+∞). By (6.5) we can write

Y c
θ =

⋃
m,n,r,s∈N

Cm,n,r,s,

where

Cm,n,r,s =

{
v ∈ Xθ : ‖ev‖W θ∗+ 1

m ,qs(Ir)
≤ n
}
.

It is easily seen that Cm,n,r,s are closed subsets of Xθ . Suppose by contradiction that there exist m,n,r,s
such that C =Cm,n,r,s has a nonempty interior. Thus there exists ε > 0 and u0 ∈ C such that

Bε(u0) = {v ∈ Xθ : ‖v−u0‖Cθ
x,t
≤ ε} ⊂ C . (6.20)

By the definition of Xθ , we can find a solution of (6.1), u ∈ Cθ ′(T3 × [0,T ]), θ ′ > θ , such that
‖u−u0‖Cθ

x,t
≤ ε

3 . Moreover, (6.20) implies that

B ε

2
(u)⊂ C . (6.21)
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From now on, we assume that

θ
∗ < (θ ′)∗ < θ

∗+
1

2m
. (6.22)

This can be done simply by choosing a possibly smaller θ ′ and exploiting the embedding Cα(T3×
[0,T ])⊂Cβ (T3× [0,T ]), for any β ≤ α . Now fix parameters θ ′′,β ,η > 0 such that θ < θ ′ < θ ′′ <
β < η and for which η∗ < θ ∗+ 1

2m . This can be done in view of (6.22). Fix moreover a function (of
time only) f ∈Cη∗([0,T ])\W η∗ , such that 1/2≤ f ≤ 1 and set

e(t) =
ˆ
T3
|u|2 dx+

ρ

2
f (t), (6.23)

for some small parameter ρ > 0. These choices imply that the energy e = e(t) satisfies

e 6∈W θ∗+ 1
m̄ ,qs̄(Ir̄). (6.24)

Now we claim that, if ρ is chosen sufficiently small, depending on θ ,θ ′,θ ′′,β ,η and m̄, then there
exists a solution of (6.1) v ∈Cθ ′′(T3× [0,T ]) such that

‖u− v‖Cθ
x,t
≤ ε

3
, (6.25)

ev(t) = e(t), ∀t ∈ [0,T ]. (6.26)

It is clear that the claim implies a contradiction with (6.21). Indeed, since θ ′′ > θ , we have v ∈ Xθ .
Therefore, by (6.21) and (6.25), we get ev ∈W θ∗+ 1

m̄ ,qs̄(Ir̄), but this is in contradiction with (6.26) and
(6.24). This would conclude the proof of the present theorem, hence we are only left with the proof
of the claim.

To prove the claim, we want to apply Proposition 6.4. First, as in the proof of Theorem 6.1, we use
the rescaling (6.18) on u with Γ = min{(2‖u‖0)

−1,1} to obtain a new solution ũ∈Cθ ′(T3× [0,T/Γ]).
If ‖u‖0 = 0, we work with the convention that Γ = 1. For every map w ∈Cθ ′(T3× [0,T ]), we denote
with w̃ the map obtained through the rescaling (6.18) with Γ defined above. Notice that there exist
constants c1(‖u‖0),c2(‖u‖0)> 0 such that

c1‖w̃1− w̃2‖Cθ ′
x,t
≤ ‖w1−w2‖Cθ ′

x,t
≤ c2‖w̃1− w̃2‖Cθ ′

x,t
, ∀w1,w2 ∈Cθ ′(T3× [0,T ]), (6.27)

and that
ew̃(t) = Γ

2ew(Γt), ∀t ∈ [0,T/Γ],∀w ∈Cθ ′(T3× [0,T ]). (6.28)

Therefore, we also define
ẽ(t) = Γ

2e(Γt), ∀t ∈ [0,T/Γ]. (6.29)

Moreover, Proposition 6.4 requires a smooth starting triple. For this reason we consider a space-
time mollification of ũ, uδ = (ũ∗ϕδ )∗ψδ , where ϕδ and ψδ are standard mollifiers in space and time
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respectively and δ > 0 is a parameter that will be fixed later on. Of course, uδ is smooth and solves
the following Euler-Reynolds system

∂tuδ +div(uδ ⊗uδ )+∇pδ = div R̊δ ,

where R̊δ = uδ ⊗̊uδ − (ũ⊗̊ũ)δ and the trace part of the commutator uδ ⊗ uδ − (ũ⊗ ũ)δ is inside the
pressure pδ .

We now want to take (uδ , pδ ,Rδ ) as a starting point for the iterative scheme given by Proposition
6.4. In order to do so, we need to guarantee estimates (6.11), (6.12), (6.13) and to find ρ > 0 for
which also (6.14) is satisfied with q = 0. Recall the definition of λq and δq of (6.10) and (6.9). We
make the following choice of the parameters

δ =
(
δ1λ

−4α

0
) 1

2θ ′ and ρ =
δ1

Γ2 .

Notice that with this choice, obviously both δ and ρ depend on the parameters appearing in Propo-
sition 6.4. In particular the energy profile depends on a, but this will not be a problem since we will
bound ‖e‖η∗ independently of a, see also remark 6.5 for a more thorough explanation. Finally, we
will use another parameter σ > 0 to measure the (small) distance between uδ and the solution given
by Proposition 6.4. We start with (6.13). Using (B.5) and the rescaling, we get

‖uδ‖0 ≤ ‖uδ − ũ‖0 +‖ũ‖0 ≤Cδ
θ ′+

1
2
≤Cλ

−2α

0 δ
1/2
1 +

1
2
,

where C =C(‖u‖Cθ ′
x,t
)> 0.It is clear that we can find a sufficiently large a such that

Cλ
−2α

0 δ
1/2
1 +

1
2
≤ 1−δ

1/2
1 .

Therefore, (6.13) is fulfilled. Let us now show (6.11) and (6.12). First, by (B.2), we have

‖R̊δ‖0 . δ
2θ ′ = δ1λ

−4α

0 ,

so that again if α > 0 is fixed, then (6.11) holds for q = 0 if a is large enough. Moreover, through
(B.4),

‖uδ‖1 . δ
θ ′−1 = (δ1λ

−4α

0 )
θ ′−1
2θ ′ ,

and using the definition of δq and λq, one verifies that (6.12) holds if a is large enough and b > 1 is
chosen in such a way that

b <
(θ ′)∗

β ∗
− 2α

β
. (6.30)
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But since β < θ ′, if α is sufficiently small (depending on b, β and θ ′) there exists b > 1 sufficiently
close to 1 such that (6.30) holds. We are left with the estimate on the energy (6.14). By using (B.2),
we estimate

ẽ(t)−
ˆ
T3
|uδ |2 dx =

ˆ
T3
|ũ|2 dx+

δ1

2
f (Γt)−

ˆ
T3
|uδ |2 dx =

ˆ
T3

((
|ũ|2
)

δ
−|uδ |2

)
dx+

δ1

2
f (Γt)

≤Cδ
2θ ′+

δ1

2
≤Cδ1λ

−4α

0 +
δ1

2
,

where the second equality is true in view of the fact that the mollification preserves the mean of every
periodic function. If a is large enough,

Cδ1λ
−4α

0 +
δ1

2
≤ δ1,

hence the upper bound of (6.14) holds. Similarly we have
ˆ
T3

((
|ũ|2
)

δ
−|uδ |2

)
dx+

δ1

2
f (Γt)≥−Cδ

2θ ′+
δ1

4
=−Cδ1λ

−4α

0 +
δ1

2
≥ δ1λ

−α

0 ,

where, to guarantee the last inequality, we took again the parameter a large enough. Now we observe
that, since δ1 ≤ 1 for any choice of the parameters,

‖ẽ‖η∗ . ‖eu‖η∗+‖ f‖η∗,

hence independently of a, there exists a constant E > 0 such that

‖ẽ‖η∗ ≤ E, ∀a ∈ (0,+∞).

Therefore we are in place to apply Proposition 6.4 to get a solution ṽ ∈Cθ ′′(T3× [0,T/Γ]) of (6.1),
for any θ < θ ′′ < β . Moreover

eṽ(t) =
ˆ
T3
|ṽ|2 dx = ẽ(t) (6.31)

and, as already done in (6.19), we have the estimate

‖ṽ−uδ‖θ . ∑
q≥1

λ
θ−β
q < σ , (6.32)

provided a is chosen sufficiently large. Of course the choice of a depends on σ , that will be fixed at
the end of the proof. By the triangular inequality we also get

‖ṽ− ũ‖θ ≤ ‖ṽ−uδ‖θ +‖uδ − ũ‖θ . σ , (6.33)

having once again estimated

‖uδ − ũ‖θ . δ
θ ′−θ = (δ1λ

−4α

0 )
θ ′−θ

2θ ′ ≤ σ ,
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the last estimate again being true if a is chosen large enough, depending on σ . Notice that this is
possible since θ ′ > θ . By Proposition G.2, we also get

‖ṽ− ũ‖Cθ
x,t
. σ . (6.34)

In order to finish the proof of the claim, we scale back the map ṽ and the energy ẽ through the rescaling
(6.18), with 1/Γ instead of Γ. We define v(x, t) = Γ−1ṽ(x,Γ−1t). Now (6.34) and (6.27) yield

‖v−u‖Cθ
x,t
. σ .

We fix σ > 0 in such a way that
‖v−u‖Cθ

x,t
≤ ε

3
,

and this gives us (6.25). Moreover, as ṽ ∈ Cθ ′′(T3× [0,T/Γ]) was a solution of (6.1), then also
v ∈Cθ ′′(T3× [0,T ]) is a weak solution of (6.1). The last thing to check for the proof of the claim is
(6.26). By (6.31), we have

eṽ(t) = ẽ(t).

Using (6.28) and (6.29), we can write

Γ
2ev(Γt) = eṽ(t) = ẽ(t) = Γ

2e(Γt), ∀t ∈ [0,T/Γ],

so that
ev(t) = e(t), ∀t ∈ [0,T ],

thus proving (6.26) and hence concluding the proof of the claim.

Remark 6.5. Since the choice in the previous proof of the energy profile depends on a, we wish to
clarify in this remark the dependences of the parameters appearing in the proof of the claim. First,
we fixed parameters 0 < β < θ ′ < 1/3, and we chose b > 1 in such a way that at the same time (6.30)
and

b <

√
θ ′∗

β ∗

hold. By choosing α ∈ (0,α1), where α1 is small enough, this can be guaranteed. Note that in this
way α1 only depends on β ,θ ′ and b, as stated in Proposition 6.4. Therefore, we can always consider
α1 ≤ α0, where α0 is the number appearing in Proposition 6.4. Next, we have proved that there exists
a1 large enough such that for a≥ a1, we can guarantee estimates (6.11), (6.12), (6.13) and (6.14) for
q = 0, for any function e of the form (6.23). This a1 only depends on β ,b,α,θ ′ and u. Moreover, in
the last steps it is required to take a large enough so that inequality (6.32) holds. This yields therefore
a number a2 ≥ a1 that depends on ε , E = ‖eu‖η∗+‖ f‖η∗ and the universal constant C of Proposition
G.2. Therefore a2 now depends only on β ,b,α,θ ′ and E, since u,ε and C are fixed from the start of
the proof of the claim. We can therefore take any a2 ≥ a0, where a0 is the parameter appearing in
Proposition 6.4. Hence we take α = α2

2 , a = 2a2. These choices define uniquely e as in (6.23) and let
us prove the claim.

We end this section with the proof of Theorem 6.3. Since it follows closely the one of Theorem
6.2, we avoid to give all the technical details already given in the previous proof
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6.3.3 Smooth solutions are nowhere dense
Here we prove Theorem 6.3. We want to prove that S has empty interior, which is equivalent to

say that for any u0 ∈ S and for any ε > 0, there exists a v ∈Cθ such that

v 6∈ S, (6.35)
d(u0,v)< ε. (6.36)

The closure and the distance appearing in the lines above are all referred to the Cθ topology. Since
u0 ∈ S, there exists a smooth solution u of (6.1) such that

d(u0,u)<
ε

2
. (6.37)

In particular u is a smooth subsolution whose associated Reynolds stress is zero, and by applying
the same rescaling (6.18) with Γ = min{(2‖u‖0)

−1,1} we can guarantee that the rescaled solution ũ,
satisfies (6.12) and (6.13) by choosing the parameter a large enough. Since ũ a smooth solution, its
kinetic energy is constant, denoted by Eũ. Moreover, by choosing a non constant and smooth function
1/2≤ f ≤ 1, with the choice

e(t) = Eũ +
δ1

2
f (t)

also condition (6.14) is satified. As in the proof of Theorem 6.2, we can now apply Proposition 6.4 in
order to get a solution ṽ ∈Cθ (T3× [0,T/Γ]), such that eṽ ≡ e. Moreover, by choosing the parameter
a large enough, we can also ensure that ṽ is Cθ close to ũ. By rescaling these maps back, we thus get
a solution v ∈Cθ with a non constant energy profile, such that

d(v,u)<
ε

2
. (6.38)

From (6.37) and (6.38) we obviously deduce (6.36). Moreover, the fact that the kinetic energy ev is
not constant implies that v cannot be obtained as a uniform limit of smooth solutions, showing also
(6.35).

6.4 Proof of the inductive proposition
The proof of the main iterative proposition given in [7] is subdivided in three steps

1. mollification: (vq, R̊q) 7→ (v`, R̊`);

2. gluing : (v`, R̊`) 7→ (vq, R̊q);

3. perturbation: (vq, R̊q) 7→ (vq+1, R̊q+1).
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In the proof of [7, Proposition 2.1], the energy function e only appears in the perturbation step and
both the mollification and the gluing steps are independent on its choice. Thus, also in our case, given
the triple (vq, pq, R̊q) there will exists a new triple (vq, pq, R̊q) solving the Euler Reynolds system such

that the temporal support of R̊q is contained in pairwise disjoint intervals Ii of length comparable to

τq =
`2α

δ
1/2
q λq

.

More precisely, for any n ∈ Z let

tn = τqn, In =

[
tn +

1
3

τq, tn +
2
3

τq

]
∩ [0,T ], Jn =

[
tn−

1
3

τq, tn +
1
3

τq

]
∩ [0,T ].

We have
supp R̊q ⊂

⋃
n∈Z

In×T3.

Moreover the following estimates hold

‖vq− vq‖0 . δ
1/2

q+1λ
−α
q (6.39)

‖vq‖1+N . δ
1/2
q λq`

−N (6.40)∥∥∥R̊q

∥∥∥
N+α

. δq+1`
−N+α (6.41)∥∥∥∂t R̊q +(vq ·∇)R̊q

∥∥∥
N+α

. δq+1δ
1/2
q λq`

−N−α (6.42)∣∣∣∣ˆ
T3
|vq|2−|v`|2 dx

∣∣∣∣. δq+1`
α , (6.43)

for any N ≥ 0, where the small parameter ` is defined as

`=
δ

1/2

q+1

δ
1/2
q λ

1+3α/2
q

and it comes from the mollification step. We observe that by choosing α sufficiently small and a
sufficiently large we can assume

λ
−3/2
q ≤ `≤ λ

−1
q . (6.44)

We also state another inequality we will need in the following, that is a consequence of (B.2),(6.14),
and (6.43)

δq+1

2λ α
q
≤ e(t)−

ˆ
T3
|vq|2 dx≤ 2δq+1. (6.45)
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Thus we can pass to the perturbation step. The aim is to find a triple (vq+1, pq+1, R̊q) which solves
(6.6) with the estimates

‖vq+1− vq‖0 +λ
−1
q+1‖vq+1− vq‖1 ≤

M
2

δ
1/2

q+1 (6.46)

∥∥R̊q+1
∥∥

α
.

δ
1/2

q+1δ
1/2
q λq

λ
1−4α

q+1
(6.47)∣∣∣∣∣e(t)−

ˆ
T3
|vq+1|2 dx−

δq+2

2

∣∣∣∣∣≤C
δ

1/2
q δ

1/2

q+1λ 1+2α
q

λq+1
+

δq+2

4
. (6.48)

Note that estimates (6.46) and (6.47) are the same stated in [7], while (6.48) is slightly different due
to the term δq+2/4. This does not affect the iteration and Proposition 6.4 is still a direct consequence
of estimates (6.46)-(6.48). However, since estimate (6.48) is different than the one used in [7], we
give a complete proof of Proposition 6.4.

Proof of Proposition 6.4

By using (6.39) and (6.46) we estimate

‖vq+1− vq‖0 ≤ ‖vq+1− vq‖0 +‖vq− vq‖0 ≤
M
2

δ
1/2

q+1 +Cδ
1/2

q+1λ
−α
q ,

where the constant C depends only on α,β and M. Thus if a is chosen sufficiently large we can
guarantee

‖vq+1− vq‖0 ≤Mδ
1/2

q+1. (6.49)

Similarly, by using (6.12), (6.40) and (6.46), we have

‖vq+1− vq‖1 ≤ ‖vq+1− vq‖1 +‖vq‖1 +‖vq‖1 ≤
M
2

δ
1/2

q+1λq+1 +(C+M)δ
1/2
q λq.

Again, if a is chosen sufficiently large, we can ensure

‖vq+1− vq‖1 ≤Mδ
1/2

q+1λq+1,

which, together with (6.49), gives (6.16). By (6.12), (6.13) and (6.16) we get

‖vq+1‖0 ≤ ‖vq+1− vq‖0 +‖vq‖0 ≤
M
2

δ
1/2

q+1 +1−δ
1/2
q ≤ 1−δ

1/2

q+1,

‖vq+1‖1 ≤ ‖vq+1− vq‖1 +‖vq‖1 ≤
M
2

δ
1/2

q+1λq+1 +Mδ
1/2
q λq ≤Mδ

1/2

q+1λq+1
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where we also chose the parameter a sufficiently large to guarantee the last inequalities of the previous
estimates. In particular this shows that vq+1 obeys (6.12) and (6.13) in which q is replaced by q+1.
Estimate (6.11) for R̊q+1 is a direct consequence of (6.47) and the parameters inequality

δ
1/2

q+1δ
1/2
q λq

λq+1
≤

δq+2

λ 8α
q+1

. (6.50)

Indeed, by taking the logarithms, the last inequality holds by choosing a sufficiently large if

−β −βb+1−b+2b2
β +8bα < 0,

but this is true since b < 1−β

2β
(see (6.17)) and α is chosen sufficiently small. We are only left with

estimate (6.14) for vq+1. By (6.48) and (6.50) we have

e(t)−
ˆ
T3
|vq+1|2 dx≤

δq+2

2
+C

δ
1/2
q δ

1/2

q+1λ 1+2α
q

λq+1
+

δq+2

4
≤ 3

4
δq+2 +C

δq+2

λ 6α
q+1

,

thus, for a sufficiently large a, we get

e(t)−
ˆ
T3
|vq+1|2 dx≤ δq+2. (6.51)

Finally, again by (6.48) we have

e(t)−
ˆ
T3
|vq+1|2 dx≥

δq+2

2
−C

δ
1/2
q δ

1/2

q+1λ 1+2α
q

λq+1
−

δq+2

4
≥

(
1
4
− C

λ 6α
q+1

)
δq+2,

and, since for a sufficiently large a we can ensure that

1
4
− C

λ 6α
q+1
≥ 1

λ α
q+1

,

we end up with

e(t)−
ˆ
T3
|vq+1|2 dx≥ δq+2λ

−α

q+1,

which together with (6.51) gives (6.14) and concludes the proof of the proposition.

6.4.1 Perturbation
We will now outline the construction of the perturbation wq+1, where

vq+1 = wq+1 + vq .

The perturbation wq+1 is highly oscillatory and will be based on the Mikado flows from Appendix E.

We define the smooth non-negative cut-off functions ηi = ηi(x, t) with the following properties
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(i) ηi ∈C∞(T3× [0,T ]) with 0≤ ηi(x, t)≤ 1 for all (x, t);

(ii) suppηi∩ suppη j = /0 for i 6= j;

(iii) T3× Ii ⊂ {(x, t) : ηi(x, t) = 1};

(iv) suppηi ⊂ T3× Ii∪ Ji∪ Ji+1;

(v) There exists a positive geometric constant c0 > 0 such that for any t ∈ [0,T ]

∑
i

ˆ
T3

η
2
i (x, t)dx≥ c0. (6.52)

The next lemma is taken from [7].

Lemma 6.6. There exists cut-off functions {ηi}i with the properties (i)-(v) above and such that for
any i and n,m≥ 0

‖∂ n
t ηi‖m ≤C(n,m)τ−n

q

where C(n,m) are geometric constants depending only upon m and n.

Analogously to [7], we will now define the perturbations that are necessary to show (6.46)-(6.48).
Since the energy profile is not smooth, we will need to mollify it. To do so we will henceforth consider
e to be extended on the whole R as e(t) = e(0) for all t < 0 and e(t) = e(T ) for all t > T , in such a
way that the extension is still in Cη∗(R). With this convention we define

eq(t) = (e∗ψεq)(t),

where ψεq is a standard mollifier and

εq =

(
δq+2

4E

) 1
η∗

. (6.53)

Define also

ρq(t) =
1
3

(
eq(t)−

δq+2

2
−
ˆ
T3
|vq|2 dx

)
and

ρq,i(x, t) =
η2

i (x, t)
∑ j

´
T3 η2

j (y, t)dy
ρq(t)

Define the backward flows Φi for the velocity field vq as the solution of the transport equation{
(∂t + vq ·∇)Φi = 0
Φi (x, ti) = x.
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Define
Rq,i = ρq,iId−η

2
i R̊q

and

R̃q,i =
∇ΦiRq,i(∇Φi)

T

ρq,i
. (6.54)

We note that, because of properties (ii)-(iv) of ηi,

• suppRq,i ⊂ suppηi;

• on supp ˚̄Rq we have ∑i η2
i = 1;

• supp R̃q,i ⊂ T3× Ii∪ Ji∪ Ji+1;

• supp R̃q,i∩ supp R̃q, j = /0 for all i 6= j.

Lemma 6.7. For a� 1 sufficiently large we have

‖∇Φi− Id‖0 ≤
1
2

for t ∈ supp(ηi). (6.55)

Furthermore, for any N ≥ 0

δq+1

8λ α
q
≤ |ρq(t)| ≤ δq+1 for all t , (6.56)

‖ρq,i‖0 ≤
δq+1

c0
, (6.57)

‖ρq,i‖N . δq+1 , (6.58)

‖∂tρq‖0 . δq+1δ
1/2
q λq , (6.59)

‖∂tρq,i‖N . δq+1τ
−1
q . (6.60)

Moreover, for all (x, t)
R̃q,i(x, t) ∈ B1/2(Id)⊂S 3×3

+ ,

where B1/2(Id) denotes the metric ball of radius 1/2 around the identity Id in the space S 3×3.

Proof. We write

ρq(t) =
1
3

(
eq(t)−

ˆ
T3
|vq|2 dx−

δq+2

2

)
=

1
3

(
eq(t)− e(t)+ e(t)−

ˆ
T3
|vq|2 dx−

δq+2

2

)
,

thus by (6.45) we get

1
3

(
δq+1

2λ α
q
−

δq+2

2
−|eq(t)− e(t)|

)
≤ |ρq(t)| ≤

1
3

(
|eq(t)− e(t)|+2δq+1 +

δq+2

2

)
. (6.61)



6.4 Proof of the inductive proposition 105

By using (B.5) and the fact that [e]η∗ ≤ E, we also get

|eq(t)− e(t)| ≤ [e]η∗εη∗
q ≤ δq+2

and, by plugging it into (6.61), we achieve

δq+1

6λ α
q
−

δq+2

2
≤ |ρq(t)| ≤

2
3

δq+1 +
δq+2

2
.

It is easy to show that by choosing a sufficiently large we can guarantee (6.56). Note that by definition
of the cut-off function ηi

c0 ≤∑
i

ˆ
T3

η
2
i (x, t)dx≤ 2 (6.62)

and hence we obtain (6.57). Since |∇Nη j| . 1, the bound (6.58) also follows. For the bound (6.55)
and the fact that R̃q,i(x, t) ∈ B1/2(Id)⊂S 3×3

+ we refer to [7, Lemma 5.4]. To prove (6.59), we first use
(6.40), (6.41) to estimate∣∣∣∣ d

dt

ˆ
T3
|vq|2 dx

∣∣∣∣= 2
∣∣∣∣ˆ

T3
∇vq · R̊q dx

∣∣∣∣. δq+1δ
1/2
q λq.

Moreover, by (B.4), we have

|∂teq| ≤ [e]η∗εη∗−1
q ≤Cδ

1−1/η∗

q+2 ,

where the constant C depends on η and E. Thus (6.59) is implied by the following parameters
inequality

Cδ
1−1/η∗

q+2 ≤ δq+1δ
1/2
q λq. (6.63)

Using the definition of the parameters δq and λq it can be checked that the last inequality holds if one
chose a big enough (depending on b,β ,η and E) provided that(

1
η∗
−1
)

b2 +b− 1
β ∗

< 0.

Since b satisfies (6.15) we have(
1

η∗
−1
)

b2 +b− 1
β ∗

<

(
1

η∗
−1
)

η∗

β ∗
+

η∗

β ∗
− 1

β ∗
= 0,

thus (6.63) holds. Finally, since ‖∂tη j‖N . τ−1
q and τ−1

q ≥ δ
1/2
q λq, using (6.62), also the estimate

(6.60) follows.
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The constant M

The principal term of the perturbation can be written as

wo = ∑
i

(
ρq,i(x, t)

)1/2
(∇Φi)

−1W (R̃q,i,λq+1Φi) = ∑
i

wo,i , (6.64)

where Lemma E.1 is applied with N = B1/2(Id), namely the closed ball (in the space of symmetric
3×3 matrices) of radius 1/2 centered at the identity matrix.

From Lemma 6.7 it follows that W (R̃q,i,λq+1Φi) is well defined. Using the Fourier series repre-
sentation of the Mikado flows (E.3) we can write

wo,i = ∑
k 6=0

(∇Φi)
−1bi,keiλq+1k·Φi ,

where
bi,k(x, t) =

(
ρq,i(x, t)

)1/2 ak(R̃q,i(x, t)).

By the definition of wo,i and (E.2) we compute

wo,i⊗wo,i = ρq,i∇Φ
−1
i (W ⊗W )(R̃q,i,λq+1Φi)∇Φ

−T
i

= ρq,i∇Φ
−1
i R̃q,i∇Φ

−T
i + ∑

k 6=0
ρq,i∇Φ

−1
i Ck(R̃q,i)∇Φ

−T
i eiλq+1k·Φi

= Rq,i + ∑
k 6=0

ρq,i∇Φ
−1
i Ck(R̃q,i)∇Φ

−T
i eiλq+1k·Φi. (6.65)

The following is a crucial point of the construction, which ensures that the constant M of Proposition
6.4 is geometric and in particular independent of all the parameters of the construction. It follows
from the definition of the Mikado flows given in Appendix E and we refer to [7] for a detailed proof.

Lemma 6.8. There is a geometric constant M̄ such that

‖bi,k‖0 ≤
M̄
|k|4

δ
1/2

q+1 . (6.66)

We are finally ready to define the constant M of Proposition 6.4: from Lemma 6.8 it follows
trivially that the constant is indeed geometric and hence independent of all the parameters of the
statement of Proposition 6.4. We can now define the geometric constant M as

M = 64M̄ ∑
k∈Z3\{0}

1
|k|4

, (6.67)

where M̄ is the constant of Lemma 6.8. We also define

wc =
−i

λq+1
∑

i,k 6=0

[
curl

((
ρq,i
)1/2 ∇ΦT

i (k×ak(R̃q,i))

|k|2

)]
eiλq+1k·Φi =: ∑

i,k 6=0
ci,keiλq+1k·Φi .
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Then by direct computations one can check that

wq+1 = wo +wc =
−1

λq+1
curl

(
∑

i,k 6=0
(∇Φi)

T
(

ik×bk,i

|k|2

)
eiλq+1k·Φi

)
, (6.68)

thus the perturbation wq+1 is divergence free.

6.4.2 The final Reynolds stress and conclusions
Upon letting

Rq = ∑
i

Rq,i ,

we define the new Reynolds stress as follows

R̊q+1 = R
(
wq+1 ·∇vq +∂twq+1 + vq ·∇wq+1 +div

(
−Rq +wq+1⊗wq+1

))
, (6.69)

where the operator R is the one defined in (D.1). With this definition one may verify that{
∂tvq+1 +div(vq+1⊗ vq+1)+∇pq+1 = div(R̊q+1)
divvq+1 = 0 ,

where the new pressure is defined by

pq+1(x, t) = p̄q(x, t)−∑
i

ρq,i(x, t)+ρq(t). (6.70)

The following proposition is taken from [7].

Proposition 6.9. For t ∈ Ii∪ Ji∪ Ji+1 and any N ≥ 0

‖(∇Φi)
−1‖N +‖∇Φi‖N . `−N , (6.71)

‖R̃q,i‖N . `−N , (6.72)

‖bi,k‖N . δ
1/2

q+1|k|
−6`−N , (6.73)

‖ci,k‖N . δ
1/2

q+1λ
−1
q+1|k|

−6`−N−1 . (6.74)

Moreover assuming a is sufficiently large, the perturbations wo, wc and wq satisfy the following
estimates

‖wo‖0 +
1

λq+1
‖wo‖1 ≤

M
4

δ
1/2

q+1 (6.75)

‖wc‖0 +
1

λq+1
‖wc‖1 . δ

1/2

q+1`
−1

λ
−1
q+1 (6.76)

‖wq+1‖0 +
1

λq+1
‖wq+1‖1 ≤

M
2

δ
1/2

q+1 (6.77)

where the constant M depends solely on the constant c0 in (6.52). In particular, we obtain (6.46).
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We are now ready to complete the proof of Proposition 6.4 by proving the remaining estimates
(6.48) and (6.47). We start with the energy increment

Proposition 6.10. The energy of vq+1 satisfies the following estimate∣∣∣∣∣e(t)−
ˆ
T3
|vq+1|2 dx−

δq+2

2

∣∣∣∣∣≤C
δ

1/2
q δ

1/2

q+1λ 1+2α
q

λq+1
+

δq+2

4
.

In particular, (6.48) holds.

Proof. By definition we have vq+1 = vq +wq+1 = vq +wo +wc, thus we have∣∣∣∣e(t)−ˆ
T3
|vq+1|2 dx−

δq+2

2

∣∣∣∣≤ ∣∣∣∣e(t)−ˆ
T3
|wo|2 dx−

δq+2

2
−
ˆ
T3
|vq|2 dx

∣∣∣∣
+

∣∣∣∣ˆ
T3
|wc|2 dx+2

ˆ
T3

wo ·wc dx+2
ˆ
T3

wq+1 · vq dx
∣∣∣∣ . (6.78)

The estimate on the second term in the right hand side of (6.78) is just a a consequence of (6.40) and
Proposition 7.8 and for a complete we refer to [7, Proposition 6.2], in which it is proved that∣∣∣∣ˆ

T3
|wc|2 dx+2

ˆ
T3

wo ·wc dx+2
ˆ
T3

wq+1 · vq dx
∣∣∣∣. δ

1/2
q δ

1/2

q+1λ 1+2α
q

λq+1
.

Now recall that from (6.65) and the definition of Rq,i we haveˆ
T3
|wo|2 dx = ∑

i

ˆ
T3

trRq,i dx+
ˆ
T3

∑
i,k 6=0

ρq,i∇Φ
−1
i trCk(R̃q,i)∇Φ

−T
i eiλq+1k·Φi dx

= 3∑
i

ˆ
T3

ρq,i dx+
ˆ
T3

∑
i,k 6=0

ρq,i∇Φ
−1
i trCk(R̃q,i)∇Φ

−T
i eiλq+1k·Φi dx

= 3ρq(t)+
ˆ
T3

∑
i,k 6=0

ρq,i∇Φ
−1
i trCk(R̃q,i)∇Φ

−T
i eiλq+1k·Φi dx

= eq(t)−
δq+2

2
−
ˆ
T3
|vq|2 dx+

ˆ
T3

∑
i,k 6=0

ρq,i∇Φ
−1
i trCk(R̃q,i)∇Φ

−T
i eiλq+1k·Φi dx.

As a consequence of (E.6), Lemma 6.7 and Proposition 7.8 we have∣∣∣∣∣
ˆ
T3

∑
i,k 6=0

ρq,i∇Φ
−1
i trCk(R̃q,i)∇Φ

−T
i eiλq+1k·Φi dx

∣∣∣∣∣. δ
1/2
q δ

1/2

q+1λ 1+2α
q

λq+1
.

For a detailed proof of the previous estimate we again refer to [7, Proposition 6.2]. Thus we are
only left with estimating |e(t)− eq(t)|, but from (B.5), the definition of εq in (6.53) and the fact that
[e]Cη∗ ≤ E, we get

|e(t)− eq(t)| ≤ [e]η∗εη∗
q ≤

δq+2

4
,

which concludes the proof of the proposition.
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For the inductive estimate on R̊q+1 we refer to [7, Proposition 6.1]

Proposition 6.11. The Reynolds stress error R̊q+1 defined in (6.69) satisfies the estimate

‖R̊q+1‖0 .
δ

1/2

q+1δ
1/2
q λq

λ
1−4α

q+1
. (6.79)

In particular, (6.47) holds.

6.5 The gap for the full conjecture
In this section, we wish to comment on why we need to introduce the space Xθ (see (6.3)), since

clearly the most natural choice for Xθ would have simply been the space of all Cθ (T3× [0,T ]) or
cθ (T3× [0,T ]) solutions of Euler equation. Here cθ denotes the space of little Hölder continuous
functions, namely the closure of smooth functions in the Cθ norm. We believe that such a discussion
highlights some interesting features of the convex integration scheme.

The introduction of Xθ is related to the proof of Theorem 6.2 and to intrinsic properties of the it-
erative scheme of [7]. The proof of Theorem 6.2 uses the following strategy, that is quite standard
in arguments involving Baire Theorem. As a first step, we rewrite Y c

θ
as union of closed sets Cm,n,r,s.

The parameters m,n,s quantify an improvement in the regularity of elements of Cm,n,r,s. Secondly,
one needs to prove that Cm,n,r,s has empty interior. Equivalently, every element u0 ∈Cm,n,r,s must be
approximated in the Cθ (T3× [0,T ]) norm with elements u ∈ Xθ \Cm,n,r,s. This is where the convex
integration scheme comes into play. The iterative procedure of [7] tells us, roughly speaking, that
given a smooth subsolution ū and a positive and smooth (or Cθ∗+γ([0,T ]), as proved in the present
work) energy profile e, one can find an arbitrarily close solution u such that e = eu, provided some
initial estimates are verified. In order to obtain the desired "less regular" approximating sequence, it
seems therefore rather natural to try to apply this result to the subsolution obtained by mollifying u0,
and choose an energy profile e ∈Cθ∗+1/2m([0,T ])\W θ∗+1/2m.

Since one wishes to approximate a Cθ (T3× [0,T ]) solution with a sequence of smooth functions
in the Cθ (T3× [0,T ]) topology, the first natural restriction is to take the complete metric space in
which to apply the Baire argument to be a closed subset of cθ (T3× [0,T ]). Once one can guarantee
the fact that the mollifications of u0 are close in the right topology to u0, the next step is to use the
convex integration scheme on a close enough space-time mollification of u0, let us call it uδ , δ > 0
being the parameter of mollification. Let us moreover denote with Rδ the Reynold stress tensor of uδ ,
i.e.

Rδ = uδ ⊗uδ − (u0⊗u0)δ .

In order to apply the scheme, one needs to guarantee step 0 of the inductive estimates, i.e. (6.11),(6.12),
(6.13), (6.14). We will now show that, by choosing any θ < β in order to have the Cθ (T3× [0,T ])
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closeness of the resulting solution to uδ (and therefore to u0), (6.11) and (6.12) become impossible to
guarantee using the estimates of Proposition B.1. Through these estimates, one wishes to find δ > 0
and α > 0 for which

‖R̊δ‖0 . δ
2θ ≤ δ1λ

−3α

0 and ‖uδ‖1 . δ
θ−1 ≤Mδ

1/2

0 λ0.

These relations are anyway incompatible for any δ ,α > 0 if

δq = λ
−2β
q = a−2βbq

(6.80)

for a,b > 1. To see this, notice that a solution δ would need to satisfy also

δ
2θ . δ1 = λ

−2β

1 (6.81)

Moreover, the estimate on the C1 norm can be rewritten as

δ
− 1

2(1−θ)

0 λ
− 1

1−θ

0 . δ . (6.82)

Combining (6.80), (6.81) and (6.82), one obtains

a−
1−β

1−θ . a−b β

θ ,

hence that the function a 7→ ab β

θ
− 1−β

1−θ is bounded. Since for every b > 1, one has bβ

θ
− 1−β

1−θ
> 0 be-

cause of the inequality θ < β , we find that a can not be taken freely in an open unbounded interval
(a0,+∞), hence Proposition 6.4 can not possibly be true in this setting. Nonetheless, as it is clearly
stated in [7], we could have found many Cβ (T3× [0,T ]) solutions of (6.1) Cβ (T3× [0,T ]) close to
uδ , for β < θ . This is obviously not sufficient for Theorem 6.2. On the other hand, if the starting
point u0 can be approximated in the Cθ (T3× [0,T ]) topology by more regular solutions, for instance
in Cθ ′(T3× [0,T ]), θ < θ ′, then by the previous discussion it becomes clear that we can now start
the scheme from these more regular points obtaining the desired estimates in Cθ (T3× [0,T ]). This is
exactly the reason for introducing the space Xθ .

We conclude this discussion by noting that, even though it could not contain all the Cθ (T3× [0,T ])
solutions of (6.1), Xθ contains many elements. Indeed, by [7], for every smooth and positive energy
profile e and for every θ < θ ′< 1/3, we find a weak solution u∈Cθ ′(T3× [0,T ]) of (6.1) with e = eu.
Since θ ′ > θ , u ∈ Xθ .



Chapter 7

Dimension of the singular set of times of
dissipative Hölder solutions to Euler

7.1 Introduction
This chapter concerns again the incompressible Euler equations{

∂tv+div(v⊗ v)+∇p = 0
divv = 0, (7.1)

in the spatial periodic setting T3 = R3 \Z3.

A natural next question to ask is how irregular those wild solutions arising from the convex inte-
gration schemes described in the previous chapters are, or, more precisely, how small their non-empty
singular set can be. In the following, we will only consider the singular set in time, that is the small-
est closed set B ⊆ [0,T ] such that v ∈ C∞

(
T3×Bc). This question has recently been investigated

in [5] in the context of the Navier-Stokes equations, where the existence of wild C0 ([0,T ];L2 (T3))
weak solutions whose singular set in time has Hausdorff dimension strictly less than 1 has been
established. Moreover, in the recent work [14], it has been shown that it is possible to construct
non-conservative wild solutions of both Euler and Navier-Stokes equations whose singular set of
times has arbitrarily small Hausdorff dimension if one requires only some low Lp integrability in
time, where 1 ≤ p < 2 . Specifically, in the context of the Euler equations, these solutions belong to
L3/2−

(
[0,T ];C1/3

(
T3))∩L1 ([0,T ];C1− (T3)) and do not possess a uniform in time regularity.

The question on the size of the singular set in time of wild Cβ
(
T3× [0,T ]

)
weak solutions of

Euler as been raised in [14] and has not yet been investigated. In this chapter, we address this issue by
studying the structure of the non-conservative weak solutions of Euler constructed in [41] and [7]. We
first prove that the singular set in time of such solutions cannot be arbitrarily small. More precisely,
we have the following

111
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Theorem 7.1. Let 0 < β < 1
3 and v ∈Cβ

(
T3× [0,T ]

)
be a non-conservative weak solution of (7.1).

If B ⊆ [0,T ] is a closed set such that v ∈C∞
(
T3×Bc) , then H

2β

1−β (B)> 0 . In particular, we have

dimH (B)≥ 2β

1−β
.

The previous result is intrinsically related to the Hölder continuity of kinetic energy of the corre-
sponding class of solutions. Indeed, a remarkable property of β−Hölder continuous weak solutions
of Euler is that the corresponding kinetic energy ev enjoys the peculiar Hölder regularity (1.10) that
we recall here for the reader’s convenience

|e(t)− e(s)| ≤C|t− s|
2β

1−β . (7.2)

Since ev is constant on Bc, but not on [0,T ], Theorem 7.1 quantifies how big B has to be in order to
allow the energy ev to grow, in a C2β/(1−β ) fashion, between its different values. In this way, Theorem
7.1 is a consequence of a general property of non-constant Hölder continuous functions that increase
only on a set of given Hausdorff dimension (see Lemma 7.4 below).

Motivated by the sharpness of the energy regularity proved in Chapter 6 and its connection with
the size of the set of singular times of non-conservative solutions, we make the following

Conjecture 7.2. For every β < 1
3 , there exists a non-conservative weak solution v ∈Cβ

(
T3× [0,T ]

)
of (7.1) and a closed set B ⊂ [0,T ], such that v ∈C∞

(
T3×Bc) and dimH (B) = 2β

1−β
.

Observe that according to Theorem 7.1 such a solution necessarily satisifes H
2β

1−β (B) > 0 . In
this note, we make a first step towards the conjecture. More precisely, using the convex integration
scheme of [7] together with the time localization introduced in [5], we prove the following

Theorem 7.3. Let 0≤ β < β ′ < 1
3 and let v1,v2 ∈C∞

(
T3× [0,T ]

)
be two smooth solutions of (7.1)

such that
´
T3 v1(x, t)dx =

´
T3 v2(x, t)dx, for all t ∈ [0,T ]. There exists v ∈ Cβ

(
T3× [0,T ]

)
which

weakly solves (7.1) such that the following holds

(i) v
∣∣
[0,T/3]

≡ v1 and v
∣∣
[2T/3,T ] ≡ v2;

(ii) there exists a closed set B ⊂ [0,T ] such that v ∈C∞
(
T3×Bc) and dimH (B)≤ 1

2 +
1
2

2β ′

1−β ′ .

The previous result is in the spirit of the result [5, Theorem 1.1] for the Navier-Stokes equations:
as the former, it gives on one hand a strong non-uniqueness result for the Cauchy problem of the Euler
equations. Indeed, for any smooth initial datum v ∈ C∞

(
T3) one can choose v1 ∈ C∞

(
T3× [0,T ]

)
as the smooth solution such that v1(0, ·) = v, where T > 0 is its maximal time of existence, and as
v2 any stationary smooth solution which differs from v. This clearly shows that for every β < 1

3 ,

Cβ
(
T3× [0,T ]

)
weak solutions are non-unique for every smooth initial datum. We remark that, in
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view of the weak-strong uniqueness result from [3], our solutions can not be admissible, in the sense
that they do not verify ev(t)≤ ev(0) for every t ∈ [0,T ]. For a non-uniqueness result on such solutions
we refer to [24, 25], in which the L2−density of wild initial data has been recently established up to
the 1

3−Onsager’s critical threshold. On the other hand, Theorem 7.3 builds solutions that are smooth
outside a compact set of quantifiable Hausdorff dimension. The hypothesis on the spatial averages of
the two smooth solution is just a standard compatibility condition, since every continuous solution of
(7.1) preserves its mean on the torus.

The loss given by the gap β ′ > β is typical of such iterative schemes as already observed in
[32, Theorem 1.1], while the gap between the Hausdorff dimension achieved in (ii) and the one of
Conjecture 7.2 is an outcome of the implementation of the time localization of [5] in the scheme of
[7], that we believe could be improved. We postpone the technical discussion of this issue to Section
7.2.8.

7.2 Outline of the proof and main iterative scheme

In order to construct Hölder continuous solutions of Euler we will base our construction on the
convex integration scheme proposed in [7]. However, there will be two main differences: at first,
since the main goal of our Theorem 7.3 is to ensure that the constructed solution is smooth in a large
set of times, we need to introduce a time localization of the glued Reynolds stress as well as of the
perturbation. This will be done by adapting the idea that has been introduced in [5] in the context
of Lp-based convex integration for the incompressible Navier-Stokes equations. Second, since our
purpose in not to prescribe a given energy profile e = e(t), we will avoid all the technicalities coming
from the energy iterations. We remark that, even if an energy profile will not be prescribed, the failure
of energy conservation will still be a consequence of Theorem 7.3, since we can glue two solutions
v1 and v2 whose kinetic energy differs. We begin with the simple proof of Theorem 7.1 and then we
move on to the description of the main iteration.

7.2.1 Proof of Theorem 7.1

The following lemma asserts that a θ−Hölder continuous function, defined on a 1−dimensional
domain, cannot increase only on a null set of the θ−dimensional Hausdorff measure. Since we could
not find a reference for it, we give a detailed proof.

Lemma 7.4. Let e ∈ Cθ ([0,T ]) for some θ ∈ (0,1) and let B ⊂ [0,T ] be a closed set such that
H θ (B) = 0. If d

dt e = 0 on Bc, then e(t) = e(0) for all t ∈ [0,T ].

Proof. Since H θ (B) = 0, for every ε > 0, there exists a family of open balls {Bri(ti)}i, such that
B ⊂

⋃
i Bri(ti) and

∑
i

rθ
i < ε. (7.3)
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Moreover, since d
dt e
∣∣∣
Bc

= 0, then the function e can not increase (nor decrease) on (
⋃

i Bri(ti))
c. This

implies that ∀t ≥ 0, we have

|e(t)− e(0)| ≤∑
i
|e(ti− ri)− e(ti + ri)|,

which together with the θ -Hölder continuity of e and (7.3), allows us to conclude

|e(t)− e(0)| ≤C∑
i

rθ
i <Cε.

The claim then follows since ε > 0 was arbitrary.

To prove Theorem 7.1, just notice that the kinetic energy ev of any solution v ∈Cβ
(
T3× [0,T ]

)
∩

C∞
(
T3×Bc) always satisfies (7.2), and moreover, by the standard energy conservation for smooth

solutions, we also get
d
dt

e
∣∣∣∣
Bc

= 0.

Then Lemma 7.4, together with the assumption that v is non-conservative, implies H
2β

1−β (B) > 0
and hence in particular the desired lower bound dimH B ≥ 2β

1−β
.

7.2.2 Inductive proposition
For any index q ∈N we will construct a smooth solution (vq,Rq) of the Euler Reynolds system on

T3× [0,T ] {
∂tvq +div(vq⊗ vq)+∇pq = divRq
divvq = 0, (7.4)

where Rq is a symmetric matrix. The pressure pq will consequently be the unique zero average
solution of

−∆pq = divdiv(vq⊗ vq−Rq). (7.5)

For any integer q , we define a frequency parameter λq and an amplitude parameter δq by

λq = 2πdabq
e,

δq = λ
−2β
q ,

where 0 < β < 1
3 is the regularity exponent of Theorem 7.3, b > 1 is a number that is close to 1

and a� 1 is a large enough parameter that will be chosen at the end (depending on all the other
parameters). We also introduce the parameter

γ ∈ (0,(b−1)(1−β )), (7.6)
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which will be the key parameter to measure the smallness of the singular set of the solution v that
we construct, as well as the parameter α > 0, which will be chosen sufficiently small (depending on
β , b and γ), together with the universal geometric constant M > 0 that will be defined later in the
construction.

At step q, we will assume the following iterative estimates on the couple (vq,Rq)

‖Rq‖0 ≤ δq+1λ
−γ−3α
q , (7.7)

‖vq‖1 ≤Mδ
1/2
q λq , (7.8)

‖vq‖0 ≤ 1−δ
1/2
q . (7.9)

Here the Hölder norms will always only measure the spatial regularity; in other words, we take the
supremum in time of the corresponding spatial Hölder norm (see Appendix A).

We will also inductively assume that the vector field vq is an exact solution of (7.1) for a large set
of times, or analogously that the support of the Reynolds stress Rq is contained in a finite union of
thiny time intervals. To this aim, we follow the scheme of time localizations introduced in [5] and,
for q≥ 1, we introduce the following two parameters

θq =
1

δ
1/2

q−1λ
1+3α

q−1

,

τq = λ
−γ

q−1θq.

For the special case q = 0 , we set τ0 = T/15, while for θ0 we don’t need to assign any value. Observe
that for every q≥ 1, we have as a consequence on the bounds on γ in (7.6) that

θq+1� τq� θq� 1 . (7.10)

In order to ensure (ii) in Theorem 7.3, we split the time interval [0,T ] at step q≥ 0 into a closed
good set Gq and an open bad set Bq such that [0,T ] = Gq∪Bq and Gq∩Bq = /0 . The Reynolds stress
will be supported strictly inside the bad set and hence, on the good set vq will be a smooth solution of
(7.1). More precisely, we will inductively construct the sets Gq and Bq with the following properties:

(i) G0 := [0,T/3]∪ [2T/3,T ] ,

(ii) Gq−1 ⊂ Gq for all q≥ 1 ,

(iii) Bq is a finite union of disjoint open intervals of length 5τq ,

(iv) the size of Bq is shrinking in q according to the rate

|Bq| ≤ 10
τq

θq
|Bq−1| ∀q≥ 1, (7.11)

(v) if t ∈ Gq′ for some q′ < q, then vq(t) = vq′(t) ,
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(vi) defining the “real" bad set B̂q := {t ∈ [0,T ] : dist(t,Gq)> τq}, we have that the Reynolds stress
Rq is supported inside B̂q, or in other words

Rq(t)≡ 0 for all t ∈ B̂c
q , (7.12)

(vii) on the complement of the real bad set, vq (that from (vi) is a smooth solution of Euler) satisfies
the better estimate

‖vq(t)‖N+1 . δ
1/2

q−1λq−1`
−N
q−1 for all t ∈ B̂c

q , (7.13)

for all q ≥ 1, where `q−1 is the mollification parameter, as introduced in (7.27). Here, the
symbol . means that the constant in the inequality is allowed to depend on N , but not on any
of the parameters and, in particular, not on q.

The following iterative proposition is the cornerstone of the proof of Theorem 7.3.

Proposition 7.5 (Iterative Proposition). There exists a universal constant M > 0 such that the follow-
ing holds. Fix 0 < β < 1

3 , 1 < b < 1−β

2β
and

0 < γ <
(b−1)(1−β −2βb)

b+1
. (7.14)

Then, there exists α0 =α0(β ,b,γ)> 0 such that for every 0<α <α0 , there exists a0 = a0(β ,b,γ,α,M)
such that for every a≥ a0 the following holds.

Given a smooth couple (vq,Rq) solving (7.4) on T3× [0,T ] with the estimates (7.7)–(7.9) and a
set Bq ⊂ [0,T ] satisfying the properties (i)–(vii) above, there exists a smooth solution (vq+1,Rq+1) to
(7.4) on T3× [0,T ] and a set Bq+1⊂ [0,T ] satisfying both the estimates (7.7)–(7.9) and the properties
(i)–(vii) with q replaced by q+1 . Moreover, we have

‖vq+1− vq‖0 +λ
−1
q+1‖vq+1− vq‖1 ≤Mδ

1/2

q+1 . (7.15)

The proof of the main inductive proposition will occupy almost all of the remaining chapter; we
give a sketch of the different steps in the proof in the sections 7.2.5 and 7.2.6. Before doing so, we
show how the size of the singular set in time is linked to the choice of the parameters and how the
iterative proposition implies Theorem 7.3.

7.2.3 Size of the singular set in time
From (7.12), it follows that vq is a smooth solution to Euler on T3×Gq . Moreover, the estimate

(7.15), together with the fact that Rq→ 0 uniformly from (7.7), will ensure that vq converges strongly
in C0 (T3× [0,T ]

)
to a weak solution v of (7.1) (see proof of Theorem 7.3). Property (v) guarantees

that v = vq on Gq and hence the limit solution will be smooth in T3×Gq . Since this holds for every
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q ≥ 0, we deduce that there exists a closed set B ⊂ [0,T ], of zero Lebesgue measure, such that
v ∈C∞

(
T3×Bc) and moreover,

B ⊂
⋂
q≥0

Bq . (7.16)

The shrinking rate (7.11) allows us to estimate the Hausdorff (in fact the box-counting) dimension of
the right-hand side. Indeed, using also the definition of the parameters τq, θq and λq, we have

|Bq| ≤ |B0|
q

∏
q′=1

10
τq′

θq′
=

10qT
3

q

∏
q′=1

λ
−γ

q′−1 ≤ (40π)qTa−γ

(
bq−1
b−1

)
. (7.17)

Since by (iii) every Bq is made of disjoint intervals of length 5τq, this implies that for every q ≥ 0,
the set Bq (and hence B) is covered by at most

(40π)qTa−γ

(
bq−1
b−1

)
(5τq)

−1 (7.18)

of such intervals. Since τq→ 0 as q→ ∞, this shows that the box-counting dimension (and hence the
Hausdorff dimension) of B is bounded by

dimb(B)≤ lim
q→∞
−

log
(
(40π)qTa−γ

(
bq−1
b−1

)
(5τq)

−1
)

log(5τq)

≤ 1+ lim
q→∞

γ(bq−1) loga
(b−1) logτq

= 1− γb
(b−1)(1−β +3α + γ)

, (7.19)

where in the last equality we used that by definition τq = λ
−(1−β+γ+3α)
q−1 . Observe that for γ in the

range (7.6), this dimension estimate makes sense for α small enough, that is dimb(B) ∈ (0,1) .

7.2.4 Proof of Theorem 7.3
We fix 0 < β < β ′ < 1/3 and we define the auxiliary parameter

β
′′ :=

β +β ′

2
.

Let 1 < b < 1−β ′′

2β ′′ and let γ ∈
(

0, (b−1)(1−β ′′−2β ′′b)
b+1

)
yet to be chosen. We will apply Proposition 7.5

with the parameters (β ′′,b,γ) and we therefore fix admissible parameters α ∈ (0,α0) and a ≥ a0,
where α0 and a0 are given by the proposition.

Let v1,v2 ∈C∞
(
T3× [0,T ]

)
be two smooth solutions of (7.1) with the same spatial average. We

construct the desired gluing v with an inductive procedure. To this aim, let η : [0,T ]→ [0,1] be a



118 7. Dimension of the singular set of times of dissipative Hölder solutions to Euler

smooth cutoff function such that η ≡ 1 on [0, 2T/5] and η ≡ 0 on [3T/5,T ] . Consequently, we define
the starting velocity v0 as

v0(x, t) := η(t)v1(x, t)+(1−η(t))v2(x, t).

Recalling the inverse divergence operator (D.1) we define

R0 = ∂tηR(v1− v2)−η(1−η)(v1− v2)⊗ (v1− v2) .

Note that, the first term in the definition of R0 is well defined since
´
T3(v1−v2)dx = 0 by assumption.

The smooth couple (v0,R0) solves (7.4) however, it does not verify the bounds (7.7)–(7.9) at
q = 0 . To bypass this problem, we exploit the invariance of the Euler equations under the rescaling

(v0,R0)→
(
vε

0(x, t) = εv0(x,εt), Rε
0(x, t) = ε

2R0(x,εt)
)
. (7.20)

Observe that (vε
0,R

ε
0) is a smooth solution of (7.4) on T3×

[
0,ε−1T

]
, with the properties that

vε
0
∣∣
[0,ε−1T/3]

≡ vε
1 and vε

0
∣∣
[ε−12T/3,ε−1T ] ≡ vε

2 , (7.21)

‖Rε
0‖0 = ε

2‖R0‖0, ‖vε
0‖0 = ε‖v0‖0 and ‖vε

0‖1 = ε‖v0‖1 .

This allows to choose ε small enough, depending on all the previous parameters and additionally also
on T,v1 and v2, in order to satisfy (7.7)–(7.9) at q = 0 . To be precise, we choose

ε = min
{(

δ1λ
−(γ+3α)
0
‖R0‖0

)1/2

,
Mδ

1/2

0 λ0

‖v0‖0
,
1−δ

1/2

0
‖v0‖1

}
. (7.22)

With this choice of ε , (vε
0,R

ε
0) satisfies the estimates (7.7)–(7.9) as well as the properties (i)–(vii)

for q = 0 (where for (vii) the constant in the inequality (7.13) depends on ε,‖v1‖N ,‖v2‖N). We then
apply inductively Proposition 7.5. We start from q = 0 with the couple (vε

0,R
ε
0) solving (7.4) on

T3×
[
0,ε−1T

]
and the bad set B0 = (ε−1T/3, ε−12T/3). In this way, we construct a sequence of smooth

solutions
{
(vε

q,R
ε
q)
}

q≥0 to (7.4) on T3×
[
0,ε−1T

]
, with estimates (7.7)–(7.9) and (7.15), and with the

corresponding bad set Bq obeying (i)–(vii). The bound (7.15) implies, together with the interpolation
estimate (A.2), that

∞

∑
q=0
‖vq+1− vq‖β .

∞

∑
q=0
‖vq+1− vq‖β

1 ‖vq+1− vq‖1−β

0 .
∞

∑
q=0

λ
β−β ′′

q+1 . 1 .

Hence there a exists a strong limit

w = lim
q→∞

vε
q ∈C0

([
0,ε−1T

]
,Cβ

(
T3)) . (7.23)

By (7.7) we have that Rε
q→ 0 uniformly, which implies that the limit w solves (7.1). From (2.2), we

also recover the regularity in time and we deduce that in fact w ∈Cβ
(
T3×

[
0,ε−1T

])
.
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Combining the properties (i), (ii) and (v) of the bad set and recalling the structure of vε
0 from

(7.21), we deduce that
w
∣∣
[0,ε−1T/3]

≡ vε
1 and w

∣∣
[ε−12T/3,ε−1T ] ≡ vε

2. (7.24)

Moreover, as proven in Section 7.2.3, there exists a closed set C ⊂
⋂

q≥0 Bq ⊂
[
0,ε−1T

]
such that

w ∈C∞
(
T3×C c) and

dimb(C )≤ 1− γβ ′′

(b−1)(1−β ′′+3α + γ)
.

We now come to the choice of the parameters b,γ and α . It is easy to observe that the infimum of
the above dimension bound is reached in the limit as α ↓ 0, γ ↑ (b−1)(1−β ′′−2β ′′b)

b+1 and b ↓ 1 . More
precisely, we have

inf
b∈
(

1, 1−β ′′
2β ′′

)
 inf

γ∈
(

0, (b−1)(1−β ′′−2bβ ′′))
b+1

)
{

inf
α∈(0,α0)

{
1− γβ ′′

(b−1)(1−β ′′+3α + γ)

}}=
1
2
+

1
2

2β ′′

1−β ′′
.

(7.25)
Since by choice of β ′′ > β ′, the right-hand side of (7.25) is strictly smaller than the desired dimension
bound 1

2 +
1
2

2β ′

1−β ′ , we can first choose b sufficiently close to 1 (depending on β ′′), then γ sufficiently

close to (1−b)(1−β ′′−2β ′′b)
b+1 (depending on β ′′ and b) and finally α sufficiently close to 0, such that

dimb(C )≤ 1− γβ ′′

(b−1)(1−β ′′+3α + γ)
≤ 1

2
+

1
2

2β ′

1−β ′
.

Finally, we rescale back and set v(x, t)= ε−1w
(
x,ε−1t

)
to obtain a weak solution v∈Cβ

(
T3× [0,T ]

)
which is a gluing of v1 and v2 (in the sense of Theorem 7.3) and which is smooth in T3×Bc, where

B =
{

ε
−1t : t ∈ C

}
. (7.26)

By scale-invariance, B obeys the same desired Hausdorff dimension bound as C .

7.2.5 Gluing and localization step
As a first step in the proof of Proposition 7.5, we construct from the couple (vq,Rq) and the set Bq

a new couple
(
vq,Rq

)
solving (7.4) as well as a set Bq+1 satisfying (i)–(vii), with q replaced by q+1.

Whereas vq will enjoy roughly the same estimates as vq, the new Reynolds stress Rq will already be
localized (in time) in a subset of B̂q+1, that is in disjoint intervals of length τq+1. The price of this
localization in time will be worsened estimates on Rq with respect to Rq , proportional to shrinking
rate (7.11).

Following the construction of [41], vq will be a gluing of exact solutions of the Euler equations.
In order to produce those solutions, we first mollify vq in space at length scale `, as it is typical in
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convex integration schemes for the Euler equations to avoid the loss of derivative problem. To this
end, let ϕ be standard radial mollification kernel in space which we rescale with some parameter `q,

that is ϕ`q(x) = `−3
q ϕ

(
x
`q

)
. For any q≥ 1, we choose the mollification parameter to be

`q =
δ

1/2

q+1

δ
1/2
q λ

1+γ/2+3α/2
q

. (7.27)

Observe that in view of (7.6), `q enjoys, for α small enough1, the elementary bounds

λ
−3/2
q < `q < λ

−1
q . (7.28)

In what follows, we will usually drop the subscript q unless there is ambiguity about the step. We
define the mollified functions

v` = vq ∗ϕ`,

R` = Rq ∗ϕ`+ v`⊗ v`− (vq⊗ vq)∗ϕ`,

p` = pq ∗ϕ`.

In view of (7.4), we get that (v`,R`) is a smooth solution to the Euler-Reynolds system{
∂tv`+div(v`⊗ v`)+∇p` = divR`

divv` = 0 .

The choice of ` guarantees that both contributions in R`, the mollification of Rq and the com-
mutator, are of equal size. In particular, R` will be of the size of Rq. More precisely we have the
following

Proposition 7.6. For any N ≥ 0 we have

‖v`− vq‖0 . δ
1/2
q λq`, (7.29)

‖v`‖N+1 . δ
1/2
q λq`

−N , (7.30)

‖R`‖N+α . δq+1λ
−γ−3α
q `−N−α . (7.31)

Here (and in what follows) the symbol . means that the constant in the inequality may depend on
the number of derivatives N, but not on any of the parameters of Proposition 7.5, neither on the step
q.

1The upper bound `q ≤ λ−1
q holds for every α > 0, while for the lower bound `q ≥ λ

−3/2
q it suffices to require α < β .
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Proof. The estimates (7.29) and (7.30) follow from standard mollification estimates and (7.8). Indeed,
we have

‖v`− vq‖0 . `‖vq‖1 . δ
1/2
q λq` ,

‖v`‖N+1 . `−N‖vq‖1 . δ
1/2
q λq`

−N ∀N ≥ 0 .

Finally, by using (B.2), (7.7)–(7.8) and the choice of ` in (7.27) we get

‖R`‖N+α . `−N−α‖Rq‖0 + `2−N−α‖vq‖2
1 . `−N−α

(
δq+1λ

−γ−3α
q + `2

δqλ
2
q
)
. δq+1λ

−γ−3α
q `−N−α .

To localize the glued Reynolds stress in time, we use the strategy of [5]. By the inductive hy-
pothesis (vi), the real bad set B̂q, where the Reynolds stress Rq is supported, is a finite union
of disjoint intervals of length 3τq. We will split each of these intervals in subintervals [ti, ti+1] of
length ti+1− ti = θq+1 and we will build smooth solutions vi of the Euler system with initial datum
vi(ti) = v`(ti) . By the choice of θq+1, we have for large enough a that

2θq+1‖v`(ti)‖1+α � 1, (7.32)

which guarantees that vi will exist for times |t− ti| ≤ 2θq+1 (see Proposition 5.8). This will allow us
to define vq as the following gluing of smooth solutions

vq := ∑
i

η
i
gvi +(1−ηg)vq , (7.33)

where ηg = ∑i η i
g is a smooth temporal cutoff between B̂q and Bq. The cutoffs η i

g will be supported
in an interval of length < 2θq+1 around ti and will be steep: ∂tη

i
g will be supported in two tiny

(compared to their support) intervals Ii and Ii+1 of length τq+1 (see Section 7.3). By construction,
vq will solve an Euler Reynolds system with a Reynolds stress Rq which is localized where ∂tηg is
non-zero, that is in

⋃
i Ii . Up to enlarging every Ii in length by 2τq+1 on either side, those intervals

will form the new bad set Bq+1 .

Proposition 7.7. Given a couple (vq,Rq) solving (7.4) on T3× [0,T ] together with a set Bq ⊂ [0,T ]
satisfying the hypothesis of Proposition 7.5, there exists a smooth solution

(
vq,Rq

)
to (7.4) on T3×

[0,T ] and an open set Bq+1 ⊂ [0,T ] satisfying the properties (i)–(iv) listed in Section 7.2.2 with q
replaced by q+1, such that additionally

vq(t) = vq(t) for all t ∈ Gq, (7.34)

Rq(t) = 0 for all t ∈ [0,T ] such that dist
(
t,Gq+1

)
≤ 2τq+1. (7.35)
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Moreover, we have the estimates

‖vq− vq‖0 . δ
1/2

q+1λ
−γ/2−3α/2
q , (7.36)

‖vq− v`‖N+1 . δ
1/2
q λq`

−N ∀N ≥ 0 , (7.37)

‖vq‖N+1 . δ
1/2
q λq`

−N ∀N ≥ 0 , (7.38)
‖Rq‖N+α . δq+1`

−N+α ∀N ≥ 0 , (7.39)

‖(∂t + vq ·∇)Rq‖N+α . δq+1δ
1/2
q λ

1+γ
q `−N−2α ∀N ≥ 0 . (7.40)

Observe that we are not explicitly requiring the properties (v)–(vii) on the new bad set Bq+1; the
latter will be however an easy consequence of the stronger properties (7.34), (7.35) and (7.38). The
proof of the previous proposition will be given in Section 7.3.

7.2.6 Perturbation step
Although the gluing step allows to localize the Reynolds stress Rq already in much smaller inter-

vals of time, we did not improve the size of the Reynolds stress yet. In fact, the estimates have been
even worsened by the factor λ

γ
q , which can be view as the main reason why the Hausdorff dimension

achieved in Theorem 7.3 is strictly bigger than the optimal one given in Conjecture 7.2. The precise
discussion of this issue is postponed to Section 7.2.8 below.

In order reduce the size of the Reynolds stress, we will produce from (vq,Rq) and Bq+1, given
by Proposition 7.7, a new solution (vq+1,Rq+1) to (7.4) with the Reynolds stress Rq+1 still supported
in B̂q+1 and verifying all the desired estimates. This will be done by adding a highly oscillatory
perturbation wq+1 to vq. Indeed, this is the key ingredient of all convex integration schemes building
on [26] and, as in [7, 41], the building blocks for the perturbation wq+1 are again the Mikado flows
from Appendix E. In the presentation of the perturbation step, we will follow closely [7].

At difference from [7], we will need to localize the perturbation wq+1 in time to have support
within B̂q+1. This will be achieved by means of steep temporal cutoffs, similar to the ones from the
gluing step, and will be responsible for worsened estimates on Rq+1 with respect to [7].

Proposition 7.8. Let (vq,Rq) and the bad set Bq+1 ⊂ [0,T ] be as in Proposition 7.7. There exists
a new smooth couple (vq+1,Rq+1) which solves (7.4) in T3× [0,T ], and such that all the properties
(i)–(vii) listed in Section 7.2.2 hold with q replaced by q+1. Moreover, we have the estimates

‖vq+1− vq‖0 +λ
−1
q+1‖vq+1− vq‖1 ≤

M
2

δ
1/2

q+1, (7.41)

‖Rq+1‖0 .
δ

1/2

q+1δ
1/2
q λ

1+γ
q

λ
1−5α

q+1
, (7.42)

where M > 0 is a universal geometric constant.

The proof of the previous proposition is the core of the convex integration scheme and will occupy
most of this work. Being quite technical, we postpone it to Section 7.4.
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7.2.7 Proof of Proposition 7.5
We prove how the main iterative Proposition 7.5 is a consequence of the two previous steps and

we postpone their respective proofs in Sections 7.3 and 7.4 below.
We start by noticing that given a couple (vq,Rq) solving (7.4) on T3× [0,T ] together with a set

Bq ⊂ [0,T ] satisfying the hypothesis of Proposition 7.5, Proposition 7.8 directly gives the smooth
couple (vq+1,Rq+1) solving (7.4) on T3× [0,T ], together with the bad set Bq+1 (and consequently its
complement Gq+1), satisfying properties (i)–(vii). Thus we are left to check (7.15) and that estimates
(7.7)–(7.9) hold with q replaced by q+1.

Estimate (7.15) is a consequence of (7.36), (7.38), (7.41) and the inductive assumption (7.8) on
vq. Indeed, we have

‖vq+1− vq‖0 ≤ ‖vq+1− vq‖0 +‖vq− vq‖0 ≤ δ
1/2

q+1

(
M
2
+Cλ

−γ/2
q

)
≤Mδ

1/2

q+1, (7.43)

where the last inequality holds if a is large enough. Similarly, we get a large enough (independently
of q) that

‖vq+1−vq‖1 ≤ ‖vq+1−vq‖1+‖vq−vq‖1 ≤ δ
1/2

q+1λq+1

M
2
+C

δ
1/2
q λq

δ
1/2

q+1λq+1

≤ 2
3

Mδ
1/2

q+1λq+1, (7.44)

which together with (7.43), proves (7.15).
By using (7.8) and (7.44), we obtain

‖vq+1‖1 ≤ ‖vq+1− vq‖1 +‖vq‖1 ≤
2
3

Mδ
1/2

q+1λq+1 +Mδ
1/2
q λq ≤Mδ

1/2

q+1λq+1,

which ensures the validity of (7.8) at step q+1. Moreover,

‖vq+1‖0 ≤ ‖vq+1− vq‖0 +‖vq‖0 ≤Mδ
1/2

q+1 +1−δ
1/2
q ≤ 1−δ

1/2

q+1,

where again we assumed that a is large enough in order to guarantee the last inequality. Thus also
(7.9) holds at step q+1. Finally, the proof of the last estimate (7.7) is a consequence of the following
relation

δ
1/2

q+1δ
1/2
q λ

1+γ
q

λ
1−5α

q+1
≤ δq+2λ

−γ−3α

q+1 . (7.45)

By using the parameters definitions, it is clear that (7.45) holds if

−βb−β +1+ γ−b+5αb <−2βb2− γb−3αb. (7.46)

We notice that if the previous inequality holds for α = 0, then (being an inequality between polyno-
mials) there will be an α0 = α0(γ,β ,b)> 0 such that (7.46) still holds for all 0 < α < α0. But if we
set α = 0, we obtain

(b+1)γ <−2βb2 +(β +1)b+β −1 = (b−1)(−2βb+1−β ),

which holds by our choice of γ in (7.14). This concludes the proof of Proposition 7.5.
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7.2.8 Gap with the conjectured exponent

By our inductive assumption (iv) on the shrinking rate of the bad set Bq, it is clear that bigger
is γ , the smaller is the dimension of the final singular set. By looking at (7.19), one may verify that
the sharp Hausdorff dimension of Conjecture 7.2 would be achieved if γ could reach the threshold
γ(b,β )' (b−1)(1−β −2βb). More precisely, we would need that this upper bound γ satisfies

lim
b→1

γ(b,β )
b−1

= 1−3β . (7.47)

In our case however, the restriction (7.14) on γ implies that the maximal γmax(b,β ) we can choose is
only half of the sharp one from (7.47), or in other words, our upper bound on γ satisfies

lim
b→1

γmax(b,β )
b−1

=
1−3β

2
.

With that being said, we will now try to explain where the restriction (7.14) comes from. To do that,
we give an heuristic version of the inductive scheme.

Given the two parameters δq and λq as in Section 7.2.2, the aim is to find a perturbation wq+1

of size δ
1/2

q+1, oscillating at frequency λq+1 , that verifies (7.15), together with a new error Rq+1 that
is localized in intervals of length ∼ τq+1. By looking at the oscillation error in (7.99), we deduce
that ‖wq+1‖0 ' ‖Rq‖

1/2

0 , since without that, it would be impossible to ensure that Rq+1 is considerably
smaller than Rq. This implies that

‖Rq‖0 ' δq+1. (7.48)

The stress tensor Rq is obtained by using the gluing technique introduced by Philip Isett in [41] and
consequently, the corresponding glued velocity vq has to be an exact solution of Euler in time intervals
of length θq+1 ' (δ

1/2
q λq)

−1 . The only difference is that we need to shrink the temporal support of Rq

to intervals of length ∼ τq+1 = λ
−γ
q θq+1� θq+1 (see Section 7.3 for the detailed construction). This

asymmetry between the two sizes implies ‖Rq‖0 ' ‖Rq‖0λ
γ
q (see estimates (7.7) and (7.39)), which

together with (7.48), forces
‖Rq‖0 ' δq+1λ

−γ
q (7.49)

to be the right inductive assumption at step q. The perturbation wq+1 can now cancel the error Rq, but
we still need to force

∣∣supp tRq+1
∣∣ ' τq+1. By looking at the definition of the new Reynolds stress

in (7.99), the easiest way is to localize the perturbation wq+1 in such intervals by means of steep
temporal cut-offs; that is by setting

wq+1 := ηpw̃q+1,

where w̃q+1 is a combination of highly oscillatory (at frequency λq+1) Mikado flows and ηp is a time
cut-off such that

∣∣supp tηp
∣∣' τq+1. This of course implies that ‖∂tηp‖0 . τ

−1
q+1 (see Lemma 7.14). In

this way, we are inserting in Rq+1 (in particular in the transport error Rtransp) a term that looks like
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∂tηpRw̃q+1, which from Proposition D.2 satisfies

∥∥∂tηpRw̃q+1
∥∥

0 .
δ

1/2

q+1

λq+1
τ
−1
q+1 '

δ
1/2

q+1δ
1/2
q λ

1+γ
q

λq+1
. (7.50)

Finally, to close the inductive estimate, we need to check that the bound in (7.50) is below the one
inductively assumed in (7.49), at step q+1, which is

δ
1/2

q+1δ
1/2
q λ

1+γ
q

λq+1
≤ δq+2λ

−γ

q+1. (7.51)

As already done in (7.45), the previous relation gives the bound (7.14) on γ .
To end the discussion, we believe that a possible way to prove Conjecture 7.2, could be to find a

way to construct Rq such that there is no λ
γ
q loss in size with respect to Rq, or more explicitly

‖Rq‖0 ' ‖Rq‖0 and
∣∣supp tRq

∣∣' τq+1.

In this way, the inductive hypothesis on the Reynolds stress becomes ‖Rq‖0 . δq+1, and conse-
quently, the λ

−γ

q+1 disappears from the right hand side of (7.51), allowing γ to reach the sharp threshold
γ(b,β )' (b−1)(1−β −2βb).

7.3 Gluing and localization step: Proof of Proposition 7.7
In this section, we prove Proposition 7.7. To make our construction compatible with the choice

of all parameters, we choose a large enough (depending on all the parameters β ,b,γ,α , but not on q)
such that2

5τq+1 < θq+1 and 2θq+1 < τq . (7.52)

We now fix a couple (vq,Rq) solving (7.4) on T3× [0,T ] together with a set Bq ⊂ [0,T ] satisfying
the hypothesis of Proposition 7.5. By assumption (vi) on Bq, we can write Bq as a disjoint union of
finitely many open intervals Jq of length 5τq and consequently, by setting Ĵq :=

{
t ∈ Jq : dist(t,Gq)> τq

}
,

we can write B̂q as disjoint union of intervals Ĵq of length 3τq . Observe that by (7.52), we have
dist(Ĵq,Gq) = τq > 2θq+1 .

For every such interval Jq, we will first construct a smooth solution
(
vq,Rq

)
to (7.4) on T3× Jq

and equidistributed intervals {Ii}n+1
i=0 ⊂ Jq with n :=

⌈
3τq

θq+1

⌉
such that

2Indeed, in order to guarantee the first inequality, it suffices to require 5λ
−γ
q < 1 which is enforced if a is such that

10πa−γ < 1 . To ensure the second inequality, we observe that by (7.6), we have for α small enough

2
θq+1

τq
. abq−1(γ−(b−1)(1+3α−β )) . a−((b−1)(1+3α−β )−γ)/b� 1 .
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(a) dist(Ii, Ii+1) = θq+1 , |Ii|= τq+1 , and all the Ii lie in a 2θq+1 neighbourhood of Ĵq, that is

n+1⋃
i=0

Ii ⊂
{

t ∈ Jq : dist
(

t, Ĵq

)
< 2θq+1

}
,

(b) suppRq ⊂ T3×
⋃n+1

i=0 Ii ,

(c) vq(t) = vq(t) ∀t ∈
{

t ∈ Jq : dist
(

t, Ĵq

)
≥ 2θq+1

}
,

(d)
(
vq,Rq

)
satisfies the estimates (7.36)–(7.40) when restricted to times t ∈ Jq .

Properties (b) and (c) allows to extend the different
(
vq,Rq

)
(coming from different intervals Jq)

to a smooth couple
(
vq,Rq

)
solving (7.4) on T3× [0,T ] by setting

vq(t) := vq(t) and Rq(t) := 0 ∀t ∈ Gq = [0,T ]\Bq .

By construction, vq satisfies (7.34). The new bad set Bq+1 is obtained by enlarging the intervals Ii by
2τq+1 on either side;

Bq+1 :=

{
t ∈ [0,T ] : t ∈ Jq for one of the disjoint intervals of Bq and dist

(
t,

n+1⋃
i=0

Ii

)
< 2τq+1

}
.

(7.53)
Using (7.52) and (a), it is easy to see that Bq+1 is made of disjoint intervals of length 5τq+1 and
Bq+1 ⊂

⋃
Jq = Bq. In particular, the new bad set satisfies the properties (i)–(iii), and it remains to

verify (iv). By construction

|Bq+1|= 5τq+1
|Bq|
5τq

(⌈
3τq

θq+1

⌉
+2
)
≤ 10|Bq|

τq+1

θq+1
,

where in the last inequality, we are assuming α small and a large enough. Thus also (iv) holds true.
Finally, with this definition of Bq+1, the property (7.35) is an immediate consequence of (b), and the
estimates (7.36)–(7.40) are a consequence of (d). Indeed, for times t ∈Bq the estimates hold by (d).
For t ∈ Gq = [0,T ]\Bq we have vq(t) = vq(t) and Rq(t)≡ 0 which makes estimates (7.36), (7.39) and
(7.40) trivial. Estimates (7.37) and (7.38) hold then by triangular inequality, (7.30) and assumption
(vii) (see also the remarks preceeding (7.76)).

For the rest of this section, we thus fix one of the intervals Jq and the corresponding Ĵq .

7.3.1 Construction of (vq,Rq)

We start by picking the equidistributed times t0 < t1 < · · ·< tn by setting t0 to be the left endpoint
of the interval Ĵq and by setting inductively ti+1 := ti +θq+1 until reaching

n :=

⌈
|Ĵq|

θq+1

⌉
=

⌈
3τq

θq+1

⌉
. (7.54)
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In other words, tn is the right endpoint of Ĵq in case θq+1 happens to be a multiple of τq, otherwise it is
the first time falling thereafter. This procedure is compatible with the choice of parameters by (7.52).
For each i = 0, . . . ,n , we now consider the smooth solutions (vi, pi) of the Euler equations with initial
datum v`(ti) defined on their maximal time of existence, that is

∂tvi +div(vi⊗ vi)+∇pi = 0
divvi = 0
vi(·, ti) = v`(ti) ,

(7.55)

where v` is the spatial mollification of vq at length scale ` = `q defined in (7.27). From Proposition
5.8, (7.32) and (7.30), it follows that each vi exists for times |t− ti| ≤ 2θq+1 and enjoys the estimate

‖vi(t)‖N+α . ‖v`(ti)‖N+α . δ
1/2
q λq`

1−N−α , for |t− ti| ≤ 2θq+1 and N ≥ 1 . (7.56)

We now glue the exact solutions vi by means of steep cutoffs η i
g centered in ti which are con-

structed in the following

Lemma 7.9. Let Ĵq be one of the disjoint intervals B̂q is made of and let t0 < t1 < · · · < tn be the
equidistributed points picked before. There exists a family of cutoff {η i

g}n
i=0 ∈C∞

c ((0,T )) such that

(a) ηg(t) := ∑
n
i=0 η i

g(t) = 1 ∀t ∈ Ĵq ,

(b) η i
g is supported in an interval of size < 2θq+1 centered at ti . More precisely,

suppη
i
g ⊂

(
ti−

θq+1 + τq+1

2
, ti +

θq+1 + τq+1

2

)
,

(c) 0≤ η i
g ≤ 1 and

η
i
g(t) = 1 ∀t ∈

[
ti−

θq+1− τq+1

2
, ti +

θq+1− τq+1

2

]
,

(d) ‖∂ N
t η i

g‖0 . τ
−N
q+1 ∀N ≥ 0 .

We omit the poof of the Lemma since it is standard. Observe that by construction, ∂tηg is sup-
ported strictly inside

⋃n+1
i=0 Ii, with

Ii :=
(

ti−
θq+1 + τq+1

2
, ti−

θq+1 + τq+1

2

)
,

and that from (a) and (b), we have

η
i−1
g (t) = 1−η

i
g(t) ∀t ∈ Ii and i = 1, . . . ,n .
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Since suppη i
g ⊂ {t : |t− ti| ≤ 2θq+1} , the following gluing of exact solutions is well-defined

vq(x, t) :=
n

∑
i=0

η
i
g(t)vi(x, t)+(1−ηg(t))vq(x, t) for t ∈ Jq (7.57)

pq(x, t) :=
n

∑
i=0

η
i
g(t)pi(x, t)+(1−ηg(t))pq(x, t) for t ∈ Jq . (7.58)

It follows that vq is smooth and is an exact solution to Euler outside
⋃n+1

i=0 Ii; more precisely

∂tvq +div(vq⊗ vq)+∇pq

=


0 in Jq \

⋃n+1
i=0 Ii ,

∂tη
i
g (vi− vi−1)−η i

g(1−η i
g)div((vi− vi−1)⊗ (vi− vi−1)) in Ii for i ∈ {1, . . . ,n},

∂tη
0
g (v0− vq)−η0

g (1−η0
g )div((v0− vq)⊗ (v0− vq)) in I0,

∂tη
n
g (vn− vq)−ηn

g (1−ηn
g )div((vn− vq)⊗ (vn− vq)) in In+1.

Recall from (D.1) the inverse divergence operator R acting on vector fields with zero average. Since
all the vi and vq have all the same average, we can define the new localized Reynolds stress by

Rq :=


0 in in Jq \

⋃n+1
i=0 Ii ,

∂tη
i
g R(vi− vi−1)−η i

g(1−η i
g)((vi− vi−1)⊗ (vi− vi−1)) in Ii for i ∈ {1, . . . ,n} ,

∂tη
0
g R(v0− vq)−η0

g (1−η0
g )((v0− vq)⊗ (v0− vq)) in I0,

∂tη
n
g R(vn− vq)−ηn

g (1−ηn
g )((vn− vq)⊗ (vn− vq)) in In+1.

(7.59)

With this definition, the smooth couple
(
vq,Rq

)
solves (7.4) on T3× Jq and has already the desired

localization property

suppRq ⊂ T3×
n+1⋃
i=0

Ii with |Ii|= τq+1 and n :=
⌈

3τq

θq+1

⌉
. (7.60)

7.3.2 Stability estimates on vi− v` and improved bounds on v`− vq on B̂c
q

We first establish stability estimates on two adjacent exact smooth solutions of Euler, vi and vi+1.
Since (vi− vi+1) = (vi− v`)+ (v`− vi+1) , it suffices to estimate vi− v` . The proof of the following
proposition follows closely [7] with some minor changes. Here (and in what follows), we denote the
material derivative by

Dt,` := ∂t +(v` ·∇) (7.61)
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Proposition 7.10. For |t− ti| ≤ 2θq+1 we have the estimates

‖(vi− v`)(t)‖N+α . τq+1δq+1`
−N−1+α ∀N ≥ 0 , (7.62)

‖∇(pi− p`)(t)‖N+α . λ
−γ
q δq+1`

−N−1+α ∀N ≥ 0 , (7.63)

‖Dt,`(vi− v`)(t)‖N+α . λ
−γ
q δq+1`

−N−1+α ∀N ≥ 0 . (7.64)

Proof of Proposition 7.10. Observe that (v`− vi) is divergence-free and it solves

∂t(v`− vi)+(v` ·∇)(v`− vi)+∇(p`− pi) = ((vi− v`) ·∇)vi +divR` , (7.65)

so that, by taking the divergence, we find the following equation for the pressure term

∆(p`− pi) =−div(∇v`(v`− vi))+div(∇vi(vi− v`))+divdivR` . (7.66)

By Schauder estimates we get

‖∇(p`− pi)‖α . (‖∇v`‖α +‖∇vi‖α)‖v`− vi‖α +‖divR`‖α

. δ
1/2
q λq`

−α‖v`− vi‖α +λ
−γ−3α
q δq+1`

−1−α ,
(7.67)

where we used (7.30) and (7.56) (together with A.2) as well as (7.31) in the last inequality. Hence

‖Dt,`(v`− vi)(t)‖α . δ
1/2
q λq`

−α‖(v`− vi)(t)‖α +λ
−γ−3α
q δq+1`

−1−α , if |t− ti| ≤ 2θq+1 . (7.68)

Since (v`− vi)(ti) = 0, we deduce from Proposition G.1 that

‖(v`− vi)(t)‖α .
ˆ t

ti

(
δ

1/2
q λq`

−α‖(v`− vi)(τ)‖α +λ
−γ−3α
q δq+1`

−1−α

)
dτ .

Using that θq+1δ
1/2
q λq`

−α = λ−3α
q `−α ≤ `α ≤ 1 by (7.28), we deduce from Grönwall’s inequality that

‖(v`− vi)(t)‖α . λ
−γ−3α
q δq+1`

−1−α
θq+1 . τq+1δq+1`

−1+α , if |t− ti| ≤ 2θq+1 . (7.69)

Inserting this estimate in (7.67) and (7.68), we have obtained the claimed estimates for N = 0 .
For N ≥ 1, we fix a spatial derivative ∂ θ of order |θ | = N . We differentiate (7.65) and estimate,

using the interpolation inequality for the Hölder norm of products (A.1) on the nonlinear term,

‖∂ θ Dt,`(v`− vi)‖α . ‖∇(p`− pi)‖N+α +‖v`− vi‖N+α‖∇vi‖α +‖v`− vi‖α‖∇vi‖N+α +‖divR`‖N+α

. ‖∇(p`− pi)‖N+α +δ
1/2
q λq`

−α‖vi− v`‖N+α +λ
−γ−3α
q δq+1`

−N−1−α , (7.70)

where the second inequality is a consequence of (7.56), (7.69) and (7.31). Reusing the equation (7.66)
for the pressure term and Proposition F.1, we have, arguing as before, that

‖∇(p`− pi)‖N+α

. (‖∇v`‖N+α +‖∇vi‖N+α)‖v`− vi‖α +(‖∇v`‖α +‖∇vi‖α)‖v`− vi‖N+α +‖divR`‖N+α

. δ
1/2
q λq`

−α‖vi− v`‖N+α +λ
−γ−3α
q δq+1`

−N−1−α . (7.71)
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We now write ∂ θ Dt,`(v`−vi) = Dt,`∂
θ (v`−vi)+[∂ θ ,(v` ·∇)](v`−vi) and observe, using the Leibniz

rule, that the commutator [∂ θ ,(v` ·∇)](v`− vi) involves only spatial derivatives of order at most N of
v`− vi . Using again (A.1) to estimate all the nonlinear terms appearing in the commutator, (A.2) and
Young, we have

‖[∂ θ ,(v` ·∇)](v`− vi)‖α

.
N

∑
k=1
‖v`‖k+α‖v`− vi‖N+1−k+α . ‖v`‖1+α‖v`− vi‖N+α +‖v`‖N+1+α‖v`− vi‖α

. δ
1/2
q λq`

−α‖v`− vi‖N+α +λ
−γ−3α
q δq+1`

−N−1−α ,

where the last inequality uses again (7.30) and (7.69). Collecting terms, we obtain

‖Dt,`∂
θ (v`− vi)(t)‖α . δ

1/2
q λq`

−α‖(v`− vi)(t)‖N+α +λ
−γ−3α
q δq+1`

−N−1−α , if |t− ti| ≤ 2θq+1 .
(7.72)

Reusing Proposition G.1 together with the fact that ∂ θ (v`− vi)(ti) = 0, we have

‖(v`−vi)(t)‖N+α .
ˆ t

ti

(
δ

1/2
q λq`

−α‖(v`− vi)(τ)‖N+α +λ
−γ
q δq+1`

−N−1+α

)
dτ, if |t− ti| ≤ 2θq+1 ,

where we also used again that λ−3α
q ≤ `2α by (7.28). Closing a Grönwall exactly as before, we deduce

(7.62). Inserting this estimate in (7.71) and (7.70), we conclude (7.63) and (7.64) as well.

At difference from [7], vq is not purely a gluing of exact solutions vi to Euler from an initial datum
v`(ti) . Instead, we glue the first exact solution v0 to vq in the interval I0 and the last exact solution vn
to vq in the interval In+1. This is necessary in order to guarantee that vq(t) = vq(t) outside the new
bad set and hence the crucial property (v). In addition to Proposition 7.10, we thus need improved
estimates (with respect to Proposition 7.6) on vq− v` in I0∪ In+1 . Since vq(t) 6= v`(t), such estimates
can no longer rely on stability estimates via closing a suitable Grönwall inequality, but solely on
mollification estimates and the better estimates (7.13) of vq on B̂c

q, which the inductive assumption
(vii) guarantees.

Proposition 7.11. For t ∈ B̂c
q , we have the estimates

‖(vq− v`)(t)‖N+α . τq+1δq+1`
−N−1+α ∀N ≥ 0 , (7.73)

‖∇(pq− p`)(t)‖N+α . λ
−γ
q δq+1`

−N−1+α ∀N ≥ 0 , (7.74)

‖Dt,`(vq− v`)(t)‖N+α . λ
−γ
q δq+1`

−N−1+α ∀N ≥ 0 . (7.75)

where Dt,` is the material derivative defined in (7.61).

Proof. We recall from assumption (vii), that vq satisfies the better estimates (7.13) on B̂c
q . Since

`−N
q−1 ≤ `−N

q by the definition, we have in particular (with `= `q as before)

‖vq(t)‖N+1 ≤ δ
1/2

q−1λq−1`
−N ∀t ∈ B̂c

q and ∀N ≥ 0 . (7.76)
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We deduce from standard mollification estimates, as in the proof of Proposition 7.6, that for t ∈ B̂c
q

‖(vq− v`)(t)‖N+α . `1−N−α
δ

1/2

q−1λq−1 = τq+1δq+1`
−N−1+α`−2α

δ
1/2

q−1λq−1

δ
1/2
q λq

. τq+1δq+1`
−N−1+α

(7.77)
where in the last inequality, we used (7.28) together with

δ
1/2

q−1λq−1
(
δ

1/2
q λq

)−1 ≤ λ
−6α
q ≤ λ

−3α
q , (7.78)

which holds true if we require that α is chosen sufficiently small in order to satisfy

6αb≤ (b−1)(1−β ) .

Observe that (v`− vq) is divergence-free and that, since Rq ≡ 0 on T3× B̂c
q by assumption (vi), vq

is an exact solution of Euler on T3× B̂c
q . Consequently, v`− vq satisfies (7.65) (with vi replaced by

vq) and p`− pq satisfies (7.66) (with pi replaced by pq) on T3× B̂c
q . By Proposition F.1, we deduce,

using (A.1), (7.77), (7.73) and (7.31), that for t ∈ B̂c
q

‖∇(pq− p`)(t)‖N+α

.
(
‖∇v`‖N+α +‖∇vq‖N+α

)
‖v`− vq‖α +

(
‖∇v`‖α +‖∇vq‖α

)
‖v`− vq‖N+α +‖divR`‖N+α

. δ
1/2
q λqτq+1δq+1`

−N−1 +λ
−γ−3α
q δq+1`

−N−1−α

. λ
−γ
q δq+1`

−N−1+α ,

where we used that δ
1/2

q−1λq−1 ≤ δ
1/2
q λq and (7.28) in the last two inequalities. As for the material

derivative, we have, using the equation for v`− vq as in the proof of Proposition 7.10, by (7.74),
(7.77), (7.73) and (7.31)

‖Dt,`(vq− v`)‖N+α . ‖∇(p`− pq)‖N+α +‖∇vq‖α‖v`− vq‖N+α +‖∇vq‖N+α‖v`− vq‖α +‖divR`‖N+α

. λ
−γ
q δq+1`

−N−1−α + τq+1δq+1`
−N−1

δ
1/2

q−1λq−1 +λ
−γ−3α
q δq+1`

−N−α

which gives (7.75) by observing δ
1/2

q−1λq−1 ≤ δ
1/2
q λq and using (7.28).

7.3.3 Proof of the estimates (7.36)–(7.38) on vq

We show how the estimates (7.36)–(7.38), when restricted to Jq, are an immediate consequence
of Proposition 7.10 and 7.11. By construction

vq− vq =
n

∑
i=0

η
i
g(vi− vq) =

n

∑
i=0

η
i
g(vi− v`)−

n

∑
i=0

η
i
g(vq− v`) .
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Since suppη i
g ⊂ {t ∈ Jq : |t− ti| ≤ 2θq+1}, we can use (7.62) and (7.29) to estimate

‖vq− vq‖0 ≤ sup
i=0,...,n

‖η i
g(vi− v`)‖α +‖v`− vq‖0 . τq+1δq+1`

−1+α +δ
1/2
q λq`. δ

1/2

q+1λ
−γ/2−3α/2
q ,

which proves (7.36). To prove (7.37), we write

vq− v` =
n

∑
i=0

η
i
g(vi− v`)+(1−ηg)(vq− v`) .

Since supp(1−ηg)⊂ B̂c
q by construction, we can use (7.73) together with (7.62) to estimate

‖vq− v`‖0 ≤ sup
i=0,...,n

‖η i
g(vi− v`)‖α +‖(1−ηg)(vq− v`)‖α . τq+1δq+1`

−1+α . δ
1/2
q λq` (7.79)

and

‖vq− v`‖N+1 ≤ sup
i=0,...,n

‖η i
g(vi− v`)‖N+1+α +‖(1−ηg)(vq− v`)‖N+1+α

. τq+1δq+1`
−N−2+α . δ

1/2
q λq`

−N ∀N ≥ 0 ,

proving (7.37). Finally, (7.38) follows immediately combining the former estimate with (7.30) .

7.3.4 Estimates on the vector potentials
To improve the estimates on the Reynolds stress Rq, it is useful to consider the vector potentials

associated to vi , v` and vq defined by

zi = Z vi := (−∆)−1curlvi i = 0, . . . ,n ,
z` := Z v` ,
zq := Z vq ,

where Z is the Bio-Savart operator. By construction, divzi = divz` = divvq = 0 and

curlzi = (−∆)−1curlcurlvi = vi curlz` = v` curlzq = vq ,

since vi , v` and vq are divergence free. Thus, we view zi− z` (and zq−v`) as potential of first order of
vi− v` (and vq− v`) and as such, we expect the stability estimates zi− z` (and zq− z`) to improve by
a factor of `. We make this heuristic rigorous in the following

Proposition 7.12. For |t− ti| ≤ 2θq+1

‖(zi− z`)(t)‖N+α . τq+1δq+1`
−N+α ∀N ≥ 0 (7.80)

‖Dt,`(zi− z`)(t)‖N+α . λ
−γ
q δq+1`

−N+α ∀N ≥ 0 , (7.81)

where Dt,` denotes the material derivative as defined in (7.61).
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The proof of Proposition 7.12 follows closely [7]. The next proposition on the other hand, should
be seen as the analogue of Proposition 7.11 and exploits crucially that vq is an exact solution of Euler
on T3× B̂c

q with better estimates.

Proposition 7.13. For t ∈ B̂c
q we have

‖(zq− z`)(t)‖N+α . τq+1δq+1`
−N+α ∀N ≥ 0, (7.82)

‖Dt,`(zq− z`)(t)‖N+α . λ
−γ
q δq+1`

−N+α ∀N ≥ 0 . (7.83)

where Dt,` denotes the material derivative as defined in (7.61).

Proof of Proposition 7.12. We set z̃i := z`− zi. Recall that (v`− vi) solves (7.65), so that

∂tcurl z̃i +(v` ·∇)curl z̃i =−∇(p`− pi)− (curl z̃i ·∇)vi +divR` . (7.84)

We rewrite, using div z̃i = divv` = 0,

[(v` ·∇)curl z̃i]
j = ∂k

(
vk
` [curl z̃i]

j
)
= [curl((v` ·∇)z̃i)]

j +∂k

(
[z̃i×∇vk

`]
j
)
,

[(curl z̃i ·∇)vi]
j = ∂k

(
[curl z̃i]

k v j
i

)
= divcurl

(
z̃iv

j
i

)
+∂k

(
[z̃i×∇v j

i ]
k
)
= ∂k

(
[z̃i×∇v j

i ]
k
)
,

where we used the convention to sum over repeated indices. Setting

[(z×∇)v] jk = [z×∇vk] j = ε jlmzl
∂mvk ,

where ε jlm denotes the Levi-Civita symbol, we obtain that

curl(∂t z̃i +(v` ·∇)z̃i) =−div
(
(z̃i×∇)v`+[(z̃i×∇)vi]

T)−∇(p`− pi)+divR` .

Taking the curl of the above equation and recalling that (−∆) = curlcurl +∇div , we find

(−∆)(∂t z̃i +(v` ·∇)z̃i) = F ,

where
F =−∇div((z̃i ·∇)v`)− curldiv

(
(z̃i×∇)v`+[(z̃i×∇)vi]

T)+ curldivR` . (7.85)

We deduce from Proposition F.1 and (A.1) that

‖Dt,`z̃i‖N+α . ‖(z̃i ·∇)v`‖N+α +‖(z̃i×∇)v`‖N+α +‖[(z̃i×∇)vi]
T‖N+α +‖R`‖N+α

≤ (‖vi‖N+1+α +‖v`‖N+1+α)‖z̃i‖α +(‖vi‖1+α +‖v`‖1+α)‖z̃i‖N+α +‖R`‖N+α

. δ
1/2
q λq`

−N−α‖z̃i‖α +δ
1/2
q λq`

−α‖z̃i‖N+α +λ
−γ−3α
q δq+1`

−N−α , (7.86)



134 7. Dimension of the singular set of times of dissipative Hölder solutions to Euler

where the last inequality is a consequence of (7.30), (7.56) and (7.31). In particular for N = 0, we
deduce from Proposition G.1 that, since z̃i(ti) = 0,

‖z̃i(t)‖α .
ˆ t

ti

(
δ

1/2
q λq`

−α‖z̃i(τ)‖α +λ
−γ−3α
q δq+1`

−α

)
dτ, if |t− ti| ≤ 2θq+1 .

Since δ
1/2
q λq`

αθq+1 ≤ `α ≤ 1 and that λ−3α
q `−α ≤ `α by (7.28), by Grönwall’s inequality we get

‖z̃i(t)‖α . θq+1λ
−γ
q δq+1`

α = τq+1δq+1`
α , if |t− ti| ≤ 2θq+1 .

Inserting this bound back in (7.86), we also obtain (7.81) for N = 0 . As for the higher derivatives, we
simply observe that the operator ∇Z is bounded on Hölder spaces by Proposition F.1 and hence for
N ≥ 1 , we deduce from (7.62)

‖z̃i‖N+α = ‖∇z̃i‖N−1+α = ‖∇Z (vi− v`)‖N−1−α . τq+1δq+1`
−N+α .

The estimate (7.81) for N ≥ 1 is obtained by writing ∂ θ Dt,`z̃i = Dt,`∂
θ z̃i+[∂ θ ,(v` ·∇)]z̃i for a deriva-

tive ∂ θ with |θ | = N, estimating separately the resulting commutator as in the proof of Proposition
7.10.

Proof of Proposition 7.13. Observe that the operator Z commutes with convolution, hence z` = zq ∗
ϕ`. Moreover, as a consequence of assumption (vii) and the fact that `q ≤ `q−1, we have on B̂c

q (for
α small enough) the better estimates (7.76)–(7.77). Since (−∆)zq = curlvq, standard estimates for
the Laplace equation give ‖zq‖2 ≤ ‖zq‖2+α . ‖vq‖1+α , which together with standard mollification
estimates implies

‖(zq−z`)(t)‖α . `2−α‖zq(t)‖2 . `2−α
δ

1/2

q−1λq−1`
−α = τq+1δq+1`

−2α
δ

1/2

q−1λq−1

δ
1/2
q λq

. τq+1δq+1`
α t ∈ B̂c

q ,

where in the last inequality we reused (7.78). As for derivatives of higher order, we recall that ∇Z is
bounded on Hölder spaces by Proposition F.1. We then estimate using (7.77) for t ∈ B̂c

q

‖(z`− zq)(t)‖N+1+α = ‖∇Z (v`− vq)(t)‖N+α . ‖(v`− vq)(t)‖N+α . τq+1δq+1`
−N−1+α ,

where the last inequality uses again α small enough as in (7.78). As for the material derivative, we
observe that by assumption (vi), vq is a smooth solution of Euler on T3×B̂c

q . Hence we can argue as
in the proof of Proposition 7.12 to obtain, for t ∈ B̂c

q

‖Dt,`(z`− zq)‖N+α

.
(
‖v`‖N+1+α +‖vq‖N+1+α

)
‖z`− zq‖α +

(
‖v`‖1+α +‖vq‖1+α

)
‖z`− zq‖N+α +‖R`‖N+α

. λ
−γ−3α
q δq+1`

−N−α ,

where the last inequality follows from combining the estimates (7.76), (7.30), (7.82) and (7.31). We
conclude (7.83) recalling that λ−3α

q ≤ `2α by (7.28).
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7.3.5 Proof of the estimates (7.39)–(7.40) on Rq

Since suppRq ⊂ T3×
⋃n+1

i=0 Ii by construction, it suffices to prove both estimates on every interval
Ii. As in [7], we will repeatedly use that Rcurl is a bounded operator on Hölder spaces by Proposition
F.1 and thereby we improve the estimates on terms of the form R(vi− vi−1) = Rcurl(zi− zi−1) by
passing to the vector potentials.

Consider now first the case i ∈ {1, . . . ,n} . Recall from (7.59)

Rq = ∂tη
i
gR(vi− vi−1)−η

i
g(1−η

i
g)((vi− vi−1)⊗ (vi− vi−1)) on Ii .

Recall from Lemma 7.9 that ‖∂ N
t η i

g‖0 . τ
−N
q+1 and that suppη i

g ⊂ {t : |t− ti| ≤ 2θq+1} . Therefore, we
bound, using also (A.1), (7.62) and (7.80),

‖Rq(t)‖N+α . τ
−1
q+1‖Rcurl(zi− zi−1)‖N+α +‖vi− vi−1‖N+α‖vi− vi−1‖α

. τ
−1
q+1‖zi− zi−1‖N+α + τ

2
q+1δ

2
q+1`

−N−2+2α

. δq+1`
−N+α , (7.87)

which gives (7.39) on Ii . As for estimate (7.40), we begin by writing

‖(∂t + vq ·∇)Rq‖N+α ≤ ‖(v`− vq) ·∇Rq‖N+α +‖Dt,`Rq‖N+α (7.88)

where Dt,` is defined in (7.61). Using (7.36), (7.79) and (7.87), we estimate the first term on Ii

‖(v`− vq) ·∇Rq‖N+α . ‖v`− vq‖N+α‖∇Rq‖0 +‖v`− vq‖0‖∇Rq‖N+α . δq+1δ
1/2
q λq`

−N , (7.89)

which is better than the desired bound in (7.40). We are left to bound ‖Dt,`Rq‖N+α on Ii . We compute
(always on Ii)

Dt,`Rq = ∂ttη
i
gR(vi− vi−1)+∂tη

i
g

(
∂tR(vi− vi−1)+(v` ·∇)R(vi− vi−1)

)
−∂t

(
η

i
g(1−η

i
g)
)(
(vi− vi−1)⊗ (vi− vi−1)

)
−η

i
g(1−η

i
g)
((

Dt,`(vi− vi−1)
)
⊗ (vi− vi−1)+(vi− vi−1)⊗

(
Dt,`(vi− vi−1)

))
.

We rewrite

∂tη
i
g

(
∂tR(vi−vi−1)+(v` ·∇)R(vi−vi−1)

)
= ∂tη

i
g

(
(Rcurl)Dt,`(zi−zi−1)+[(v` ·∇),Rcurl ](zi−zi−1)

)
,

where [(v` ·∇),Rcurl ] denotes the commutator involving the singular integral operator Rcurl . From
Proposition F.2, (7.30) and (7.80), we have

‖[(v` ·∇),Rcurl ](zi− zi−1)‖N+α . ‖v`‖1+α‖zi− zi−1‖N+α +‖v`‖N+1+α‖zi− zi−1‖α

. τq+1δq+1δ
1/2
q λq`

−N . (7.90)
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We can thus estimate (always on Ii) using (A.1) on products together with (7.80), (7.81), (7.90), (7.62)
and (7.64)

‖Dt,`Rq‖N+α . τ
−2
q+1‖zi− zi−1‖N+α + τ

−1
q+1
(
‖Dt,`(zi− zi−1)‖N+α +‖[(v` ·∇),Rcurl ](zi− zi−1)‖N+α

)
+ τ
−1
q+1‖vi− vi−1‖N+α‖vi− vi−1‖α

+‖Dt,`(vi− vi−1)‖N+α‖vi− vi−1‖α +‖Dt,`(vi− vi−1)‖α‖vi− vi−1‖N+α

. τ
−1
q+1δq+1`

−N+α +δq+1δ
1/2
q λq`

−N + τq+1δ
2
q+1`

−N−2+2α

. τ
−1
q+1δq+1`

−N+α ,

where we used in the last inequality that τq+1δ
1/2
q λq ≤ λ−3α

q ≤ `α by (7.28) and
(
τq+1`

−1)2 ≤ 1 . This
proves (7.40) on Ii recalling (7.28).

Finally, let us prove the estimates (7.39)–(7.40) on I0 and In+1 . Recall from (7.59)

Rq = ∂tη
0
gR(v0− vq)−η

0
g (1−η

0
g )((v0− vq)⊗ (v0− vq)) on I0 .

Arguing as before and writing z0− zq = (z0− z`)+(z`− zq) and v0− vq = v0− v`+ v`− vq, we have
for t ∈ I0 ⊂ B̂c

q using (7.80), (7.82), (7.62) and (7.73)

‖Rq(t)‖N+α . τ
−1
q+1‖(z0− zq)(t)‖N+α +‖(v0− vq)(t)‖N+α‖(v0− vq)(t)‖α

. δq+1`
−N+α + τ

2
q+1δ

2
q+1`

−N−2+2α

. δq+1`
−N+α .

As for estimate (7.40), we argue as in (7.88) and (7.89) to reduce ourselves to bound ‖Dt,`Rq‖N+α .

Proceeding as before, we obtain for t ∈ I0 ⊂ B̂c
q that

‖Dt,`Rq(t)‖N+α . τ
−2
q+1‖z0− zq‖N+α + τ

−1
q+1
(
‖Dt,`(z0− zq)‖N+α +‖[(v` ·∇),Rcurl ](z0− zq)‖N+α

)
+ τ
−1
q+1‖v0− vq‖N+α‖v0− vq‖α

+‖Dt,`(v0− vq)‖N+α‖v0− vq‖α +‖Dt,`(v0− vq)‖α‖v0− vq‖N+α

. τ
−1
q+1δq+1`

−N+α +δq+1δ
1/2
q λq`

−N + τq+1δ
2
q+1`

−N−2+2α ,

where we used Proposition F.2 to estimate the commutator as well as the estimates (7.82), (7.83),
(7.30), (7.73) and (7.75). We conclude (7.40) on I0 . The estimates on In+1 follow in the same way up
to exchanging the role (v0,η

0
g ) with (vn,η

n
g ) . This concludes the proof of Proposition 7.7.

7.4 Perturbation
In this section we will construct the perturbation wq+1 and consequently define

vq+1 := vq +wq+1 , (7.91)
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where (vq,Rq) is a smooth solution of (7.4) as given by Proposition 7.7. Following the construction
of [7], the perturbation will be highly oscillatory and it will be based on the Mikado flows. As for the
gluing step, also here there will be some changes with respect to [7]. For instance, the fact that we
are not interested in prescribing an energy profile, allows us to simplify the choice of the amplitude
of the perturbation. For this reason, we will give a complete proof of all the estimates.

Let now Bq+1⊂ [0,T ] be the bad set belonging to (vq,Rq) (see Proposition 7.7). Note in particular
that by Proposition 7.7, Bq+1 already satisfies the size properties (i)–(iv) at step q+ 1 and we will
leave the bad set Bq+1 unchanged. Thus, to prove Proposition 7.8, we are left only to check the
two estimates (7.41) and (7.42) as well as the properties (v)–(vii) (with q replaced by q+ 1). Since
by Proposition 7.7, the couple (v̄q,Rq) already satisfies the more restrictive properties (7.34), (7.35)
and (7.38), the properties (iv)–(vii) can be achieved by ensuring that the temporal support of wq+1
is contained in a τq+1 neighbourhood of the time support of Rq. In particular, this will ensure that
suppRq+1 ⊂ T3×

{
t ∈Bq+1 : dist(t,Gq+1)> τq+1

}
, or in other words, that the new Reynolds stress

Rq+1 is localized in the new real bad set B̂q+1 which is made of disjoint intervals of length 3τq+1.
A crucial relation that will allow us to close the estimates on Rq+1 will be

`−1� λq+1, (7.92)

that is a consequence of γ +3α < 2(b−1)(1−β ). By our bound on γ in (7.14) (actually (7.6) would
suffice here), the latter holds if α is sufficiently small.

7.4.1 The stress tensor R̃q,i

Recall that Rq is supported in the set T3× I, where I is the union of disjoint intervals of length
τq+1. Thus we can write

I =
⋃

i

Ii, where |Ii|= τq+1.

The following lemma gives the family of cutoffs that will allow us to localize the perturbation (and
thus the new Raynolds stress) in the new real bad set B̂q+1.

Lemma 7.14. There exist smooth cutoff functions {η i
p}i such that η i

p
∣∣
Ii
≡ 1, suppη i

p∩ suppη
j
p = /0 if

i 6= j, suppη i
p ⊂

{
t ∈ Ii : dist(t, Ii)< τq+1

}
. Moreover, for any i and N ≥ 0 we have

‖∂ N
t η

i
p‖0 . τ

−N
q+1. (7.93)

Let si be the middle point of Ii. Define the flows Φi associated to the velocity field vq as the
solution of {

(∂t + vq ·∇)Φi = 0
Φi(x,si) = x.

Define also

R̃q,i :=
∇Φi

(
δq+1Id−Rq

)
∇ΦT

i

δq+1
. (7.94)
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We have the following

Lemma 7.15. For a� 1 sufficiently large, we have

‖∇Φi(t)− Id‖0 ≤
1
2
, ∀t ∈ suppη

i
p. (7.95)

Moreover, for all (x, t) ∈ T3× suppη i
p

R̃q,i(x, t) ∈ B 1
2
(Id)⊂S 3×3

+ ,

where B 1
2
(Id) denotes the ball of radius 1

2 around the identity, in the space of positive definite matrices.

Proof. By applying (7.38) and (G.4) we obtain

‖∇Φi(t)− Id‖0 . |t− si|‖vq‖1 . τq+1δ
1/2
q λq ≤ λ

−γ
q . (7.96)

Furthermore, by definition we have

R̃q,i− Id =−∇Φi
Rq

δq+1
∇Φ

T
i +∇Φi∇Φ

T
i − Id

=−∇Φi
Rq

δq+1
∇Φ

T
i +(∇Φi− Id)∇Φ

T
i +(∇Φi− Id)T ,

from which, by using (7.39) and (7.96), we obtain for t ∈ suppη i
p

‖R̃q,i− Id‖0 .
‖Rq‖0

δq+1
+‖∇Φi− Id‖0 . `α +λ

−γ .

By choosing a� 1 large enough, we conclude R̃q,i(x, t) ∈ B 1
2
(Id) for every (x, t) ∈ T3× suppη i

p.

7.4.2 The perturbation, the constant M and the properties (v) and (vii)
We define the principal part the the perturbation as

wo := ∑
i

η
i
pδ

1/2

q+1∇Φ
−1
i W (R̃q,i,λq+1Φi) = ∑

i
wo,i,

where Lemma E.1 is applied with N = B 1
2
(Id). Notice that from Lemma 7.15 it follows that

W (R̃q,i,λq+1Φi) is well defined. Using the Fourier series representation (E.3) we obtain

wo,i = ∑
k 6=0

η
i
pδ

1/2

q+1ak(R̃q,i)∇Φ
−1
i Akeiλq+1k·Φi.
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The choice of wo is motivated by the fact that the vector fields Ui,k = ∇Φ
−1
i Akeiλq+1k·Φi solve

(∂t + vq ·∇)Ui,k = ∇vT
q Ui,k . (7.97)

In particular, since divUi,k(x,si) = 0 for all x ∈ T3, Ui,k remains divergence free.

For notational convenience we set

bi,k(x, t) := η
i
p(t)δ

1/2

q+1ak(R̃q,i)Ak,

so that we may write
wo,i = ∑

k 6=0
∇Φ
−1
i bi,keiλq+1k·Φi.

The following lemma ensures that the constant M from Proposition 7.5 is geometric and, in particular,
does not depend on all the parameters entering in the scheme.

Lemma 7.16. There exists a geometric constant C > 0 such that

‖bi,k‖0 ≤
C
|k|5

δ
1/2

q+1.

Proof. Apply (E.4) with N = 0, m = 5 and N = B 1
2
(Id).

We are now ready to define the geometric constant M of Proposition 7.5.

Definition 7.17. The constant M is defined as

M = 64C ∑
k∈Z3\{0}

1
|k|4

,

where C is the constant of Lemma 7.16.

To ensure that wq+1 is divergence free we will add a corrector term wc to wo. More precisely, in
view of (E.7), we define

wc :=
−i

λq+1
∑

i,k 6=0
η

i
pδ

1/2

q+1∇ak(R̃q,i)×
∇ΦT

i (k×Ak)

|k|2
eiλq+1k·Φi = ∑

i,k 6=0
ci,keiλq+1k·Φi,

where

ci,k :=
−i

λq+1
η

i
pδ

1/2

q+1∇ak(R̃q,i)×
∇ΦT

i (k×Ak)

|k|2
.

By using (E.7), one can check that

wq+1 := wo +wc =
−1

λq+1
curl

(
∑

i,k 6=0
∇Φ

T
i

ik×bi,k

|k|2
eiλq+1k·Φi

)
,
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from which we deduce divwq+1 = 0. Finally, note that thanks to the cutoffs η i
p from Lemma 7.14, we

also get
suppwq+1 ⊂ T3×

{
t ∈Bq+1 : dist(t,Gq+1)> τq+1

}
= B̂q+1 . (7.98)

Recalling (7.34) and the inductive assumption (v) on vq, this guarantees the property (v) at step q+1.
Moreover, by (7.38) and (7.98) we also get (vii) at step q+1, since for N ≥ 0

‖vq+1(t)‖N+1 ≤ ‖vq(t)+wq+1(t)‖N+1 = ‖vq(t)‖N+1 ≤ δ
1/2
q λq`

−N
q , ∀t ∈ B̂c

q+1.

7.4.3 The final Reynolds stress and property (vi)
We define the new Reynolds stress as

Rq+1 := R(wq+1 ·∇vq)+R(∂twq+1 + vq ·∇wq+1)+Rdiv(Rq +wq+1⊗wq+1)

= Rnash +Rtransp +Rosc.
(7.99)

Notice that in all the three terms of the previous formula, the operator R is always applied to a
divergence of a curl (thus to zero average vector fields). Moreover, by (7.98) and (7.35), we directly
get

suppRq+1 ⊂ T3× B̂q+1,

which proves property (vi) at step q+1. With this definition, one may check that{
∂tvq+1 +div(vq+1⊗ vq+1)+∇pq+1 = divRq+1
divvq+1 = 0,

where the new pressure is defined as pq+1 := pq.

7.4.4 Estimates on the perturbation
We start by estimating all the terms entering in the definition of wq+1.

Proposition 7.18. For all t ∈ suppη i
p and every N ≥ 0 , we have

‖(∇Φi)
−1‖N +‖∇Φi‖N . `−N , (7.100)

‖R̃q,i‖N . `−N , (7.101)

‖bi,k‖N . δ
1/2

q+1|k|
−6`−N , (7.102)

‖ci,k‖N . δ
1/2

q+1λ
−1
q+1|k|

−6`−N−1 . (7.103)

Proof. Let t ∈ suppη i
p. From (G.4), (G.5), (7.38) and (7.95), we obtain

‖∇Φi‖N . ‖∇Φi‖0 +[∇Φi]N . 1+‖∇Φi− Id‖0 +[∇Φi]N . 1+ τq+1‖∇vq‖N . `−N .
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Moreover, by also using (7.39) we get

‖R̃q,i‖N . ‖∇Φi‖N‖∇Φi‖0 +‖∇Φi‖2
0

∥∥∥∥ Rq

δq+1

∥∥∥∥
N
. `−N + `−N+α . `−N ,

which proves (7.101). Finally, by the two previous estimates we also deduce

‖bi,k‖N . δ
1/2

q+1‖R̃q,i‖N |k|−6 . δ
1/2

q+1`
−N |k|−6 ,

where the constant in the inequality only depends on N (see (E.4)). Similarly,

‖ci,k‖N . δ
1/2

q+1λ
−1
q+1|k|

−6 (‖R̃q,i‖N+1 +‖∇Φi‖N
)
. δ

1/2

q+1λ
−1
q+1|k|

−6`−N−1.

Corollary 7.19. If a� 1 is sufficiently large, the perturbation satisfies the estimates

‖wo‖0 +
1

λq+1
‖wo‖1 ≤

M
4

δ
1/2

q+1, (7.104)

‖wc‖0 +
1

λq+1
‖wc‖1 . δ

1/2

q+1`
−1

λ
−1
q+1, (7.105)

‖wq+1‖0 +
1

λq+1
‖wq+1‖1 ≤

M
2

δ
1/2

q+1. (7.106)

In particular, (7.41) holds.

Proof. From (7.95), we deduce that ‖∇Φi‖0 ≤ 2 on suppη i
p. Thus, since η i

p have disjoint supports,
from Lemma 7.16 we get

‖wo‖0 ≤ 2δ
1/2

q+1C ∑
k 6=0

1
|k|5
≤ M

32
δ

1/2

q+1. (7.107)

To estimate ‖wo‖1 , we first observe that∥∥∥∇

(
eiλq+1k·Φi

)∥∥∥
0
≤ λq+1|k|‖∇Φi‖0 ≤ 2λq+1|k|.

Compute now

∇wo,i = ∑
k 6=0

∇Φ
−1
i bi,k∇

(
eiλq+1k·Φi

)
+ ∑

k 6=0
∇
(
∇Φ
−1
i bi,k

)
eiλq+1k·Φi.

In particular, from Lemma 7.16 and Proposition 7.18 we infer

‖∇wo‖0 ≤ 4δ
1/2

q+1λq+1C ∑
k 6=0

1
|k|4

+Cδ
1/2

q+1`
−1

∑
k 6=0

1
|k|5
≤ M

16
δ

1/2

q+1λq+1 +Cδ
1/2

q+1`
−1,
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for some constant C which also depends on M. Thanks to the parameter inequality `−1� λq+1 from
(7.92), by choosing a� 1 sufficiently large, we get

‖∇wo‖0 ≤
M
8

δ
1/2

q+1λq+1,

which, together with (7.107), gives (7.104). As a consequence of (7.103), we also obtain (7.105).
Finally, estimate (7.106) follows by putting together (7.104) and (7.105) and using again `−1 �
λq+1 .

We denote by Dt,q := ∂t + vq ·∇ the advective derivative with respect to vq. We have

Proposition 7.20. For t ∈ suppη i
p and every N ≥ 0 we have

‖Dt,q∇Φi‖N . δ
1/2
q λq`

−N , (7.108)

‖Dt,qR̃q,i‖N . δ
1/2
q λ

1+γ
q `−N−2α , (7.109)

‖Dt,qci,k‖N . δ
1/2

q+1δ
1/2
q λ

1+γ
q λ

−1
q+1`

−N−1−3α |k|−6 , (7.110)

‖Dt,qbi,k‖N . δ
1/2

q+1δ
1/2
q λ

1+γ
q `−N−3α |k|−6 . (7.111)

Proof. Observe that Dt,q∇Φi =−∇ΦiDvq. Thus, from (7.38) and (7.100) we get

‖Dt,q∇Φi‖N . ‖∇Φi‖0‖vq‖N+1 +‖∇Φi‖N‖vq‖1 . δ
1/2
q λq`

−N .

Differentiating (7.94) yields

Dt,qR̃q,i = Dt,q∇Φi

(
Id−

Rq

δq+1

)
∇Φ

T
i −∇Φi

Dt,qRq

δq+1
∇Φ

T
i +∇Φi

(
Id−

Rq

δq+1

)
Dt,q∇Φ

T
i .

Then, by (7.39), (7.40), (7.100) and (7.108) we get

∥∥Dt,qR̃q,i
∥∥

N . ‖Dt,q∇Φi‖N +
∥∥Dt,q∇Φi

∥∥
0

(∥∥Rq
∥∥

N
δq+1

+
∥∥∇Φ

T
i
∥∥

N

)

+‖∇Φi‖N

∥∥Dt,qRq
∥∥

0
δq+1

+

∥∥Dt,qRq
∥∥

N
δq+1

. δ
1/2
q λq`

−N +δ
1/2
q λ

1+γ
q `−N−2α . δ

1/2
q λ

1+γ
q `−N−2α ,

which gives (7.109). Compute now

Dt,qci,k =−i
δ

1/2

q+1

λq+1

(
∂tη

i
p∇
(
ak
(
R̃q,i
))

+η
i
pDt,q∇

(
ak
(
R̃q,i
)))
× ∇ΦT

i (k×Ak)

|k|2

− i
δ

1/2

q+1

λq+1
η

i
p∇
(
ak
(
R̃q,i
))
×

Dt,q∇ΦT
i (k×Ak)

|k|2
.
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Writing Dt,q∇R̃q,i = ∇(Dt,qR̃q,i)−∇vq∇R̃q,i, we have by Proposition 7.18, (7.93), the previous two
estimates (7.108) –(7.109) and (7.38) that

|k|6λq+1

δ
1/2

q+1

‖Dt,qci,k‖N . ‖∂tη
i
p‖0‖R̃q,i‖N+1 +‖Dt,q∇R̃q,i‖N

+
(
‖∂tη

i
p‖0‖R̃q,i‖1 +‖Dt,q∇R̃q,i‖0

)
‖∇Φ

T
i ‖N

+‖R̃q,i‖N+1‖Dt,q∇Φ
T
i ‖0 +‖R̃q,i‖1‖Dt,q∇Φ

T
i ‖N

. τ
−1
q+1`

−N−1 +δ
1/2
q λ

1+γ
q `−N−1−2α

+
(

τ
−1
q+1`

−1 +δ
1/2
q λ

1+γ
q `−1−2α

)
`−N + `−N−1

δ
1/2
q λq

. τ
−1
q+1`

−N−1 +δ
1/2
q λ

1+γ
q `−N−1−2α

= δ
1/2
q λ

1+γ
q

(
λ

3α
q + `−2α

)
`−N−1 . δ

1/2
q λ

1+γ
q `−N−1−3α ,

where in the last inequality we also used that λ 3α
q ≤ `−3α from (7.28).

With similar computations we also get (7.111). Indeed

‖Dt,qbi,k‖N .
δ

1/2

q+1

|k|6
(
‖∂tη

i
p‖0‖R̃q,i‖N +‖Dt,qR̃q,i‖N

)
.

δ
1/2

q+1

|k|6
(

τ
−1
q+1`

−N +δ
1/2
q λ

1+γ
q `−N−2α

)
. δ

1/2

q+1δ
1/2
q λ

1+γ
q `−N−3α |k|−6.

7.4.5 Estimate on the new Reynolds stress
In this final section, we prove our last estimate (7.42) in order to conclude the proof of Proposition

7.8.

Proposition 7.21. The Reynolds stresses Rnash, Rosc and Rtransp defined in (7.99) satisfy

‖Rnash‖α .
δ

1/2

q+1δ
1/2
q λq

λ
1−2α

q+1
, (7.112)

‖Rosc‖α .
δ

1/2

q+1δ
1/2
q λ

1+γ/2
q

λ
1−4α

q+1
, (7.113)

‖Rtransp‖α .
δ

1/2

q+1δ
1/2
q λ

1+γ
q

λ
1−5α

q+1
, (7.114)

for α > 0 sufficiently small and a� 1 large enough. In particular, (7.42) holds.
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Proof of (7.112). We rewrite the term Rnash as

R(wq+1 ·∇vq) = ∑
i,k 6=0

R
((

∇Φ
−1
i bi,keiλq+1k·Φi + ci,keiλq+1k·Φi

)
·∇vq

)
.

Using Proposition D.2 and Proposition 7.18, we estimate∥∥∥R(∇Φ
−1
i bi,keiλq+1k·Φi ·∇vq

)∥∥∥
α

.
‖∇Φ

−1
i bi,k ·∇vq‖0

λ
1−α

q+1
+
‖∇Φ

−1
i bi,k ·∇vq‖N+α +‖∇Φ

−1
i bi,k ·∇vq‖0‖Φi‖N+α

λ
N−α

q+1

.
δ

1/2

q+1δ
1/2
q λq

λ
1−α

q+1 |k|6
+

δ
1/2

q+1δ
1/2
q λq

λ
N−α

q+1 `N+α |k|6
.

δ
1/2

q+1δ
1/2
q λq

λ
1−2α

q+1 |k|6

(
1+

λq+1(
λq+1`

)N

)
,

where in the last inequality we also used that `−α ≤ λ α
q+1 by (7.92). We claim that, by choosing

N� 1 sufficiently large (depending on β ,γ,α,b), then the following holds

λq+1(
λq+1`

)N ≤ 1, (7.115)

for a� 1 sufficiently large. Indeed we have

λq+1(
λq+1`

)N . ab−N(b+β−1−γ−3α−βb).

Thus, there exists N large enough such that (7.115) holds, if b+β − 1− γ − 3α −βb > 0, which is
equivalent to

γ +3α < b−1−β (b−1) = (b−1)(1−β ). (7.116)

Since the right hand side in (7.116) is strictly larger than the upper bound on γ in (7.14), we conclude
that (7.116) (and so (7.115)) holds if α > 0 is sufficiently small. Hence we achieved

∥∥∥R(∇Φ
−1
i bi,keiλq+1k·Φi ·∇vq

)∥∥∥
α
.

δ
1/2

q+1δ
1/2
q λq

λ
1−2α

q+1 |k|6
.

Due to the fact that the estimates on the coefficients ci,k from Proposition 7.18 are better than the ones
on the bi,k by (7.92), we also get that

∥∥∥R(ci,keiλq+1k·Φi ·∇vq

)∥∥∥
α
.

δ
1/2

q+1δ
1/2
q λq

λ
1−2α

q+1 |k|6
.

Finally, summing over all the frequencies k 6= 0, we conclude the desired estimate (7.112).
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Proof of (7.113). We write the oscillation error as follows

Rosc = Rdiv(Rq +wq+1⊗wq+1)

= Rdiv(Rq−δq+1Id+wo⊗wo)+Rdiv(wo⊗wc +wc⊗wo +wc⊗wc)

=: O1 +O2.

Since, by Schauder estimates, the operator Rdiv : Cα(T3)→Cα(T3) is bounded, we deduce by using
(7.104), (7.105) and (7.92)

‖O2‖α . ‖wo‖α‖wc‖α +‖wc‖2
α .

δq+1λ 2α
q+1

λq+1`
+

δq+1λ 2α
q+1

(λq+1`)2

.
δq+1λ 2α

q+1

λq+1`
=

δ
1/2

q+1δ
1/2
q λ

1+γ/2+3α/2
q

λ
1−2α

q+1
≤

δ
1/2

q+1δ
1/2
q λ

1+γ/2
q

λ
1−4α

q+1
.

Thus, to conclude the desired estimate on Rosc we are only left with O1. Since by Lemma 7.14 the
supports of η i

p are disjoint and ∑i
(
η i

p
)2 ≡ 1 on the suppRq, we have

O1 = Rdiv ∑
i

((
η

i
p
)2 (

Rq−δq+1Id
)
+wo,i⊗wo,i

)
.

Using (E.5), we can write

wo,i⊗wo,i = δq+1
(
η

i
p
)2

∇Φ
−1
i (W ⊗W )(R̃q,i,λq+1Φi)∇Φ

−T
i

= δq+1
(
η

i
p
)2

∇Φ
−1
i R̃q,i∇Φ

−T
i + ∑

k 6=0
δq+1

(
η

i
p
)2

∇Φ
−1
i Ck(R̃q,i)∇Φ

−T
i eiλq+1k·Φi

=
(
η

i
p
)2
(δq+1Id−Rq)+ ∑

k 6=0
δq+1

(
η

i
p
)2

∇Φ
−1
i Ck(R̃q,i)∇Φ

−T
i eiλq+1k·Φi,

from which we deduce

O1 = Rdiv

(
∑

i,k 6=0
δq+1

(
η

i
p
)2

∇Φ
−1
i Ck(R̃q,i)∇Φ

−T
i eiλq+1k·Φi

)
.

Also, recalling (E.6)
∇Φ
−1
i Ck∇Φ

−T
i ∇Φ

T
i k = 0,

and consequently

O1 = R

(
∑

i,k 6=0
δq+1

(
η

i
p
)2

div
(
∇Φ
−1
i Ck(R̃q,i)∇Φ

−T
i
)

eiλq+1k·Φi

)
.
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Thus, again by Proposition D.2 and Proposition 7.18, we estimate on suppη i
p

∥∥∥R(div
(
∇Φ
−1
i Ck(R̃q,i)∇Φ

−T
i
)

eiλq+1k·Φi
)∥∥∥

α
.

∥∥div
(
∇Φ
−1
i Ck(R̃q,i)∇Φ

−T
i
)∥∥

0

λ
1−α

q+1

+

∥∥div
(
∇Φ
−1
i Ck(R̃q,i)∇Φ

−T
i
)∥∥

N+α
+
∥∥div

(
∇Φ
−1
i Ck(R̃q,i)∇Φ

−T
i
)∥∥

0 ‖Φi‖N+α

λ
N−α

q+1

.
1

`1+αλ
1−α

q+1 |k|6
+

1
λ

N−α

q+1 `N+1+α |k|6
.

1
`λ 1−2α

q+1 |k|6
,

where we have again chosen N� 1 large enough to get the desired estimate, together with `−α ≤ λ α
q+1

(see (7.92)), for the last inequality. By summing over k 6= 0 we conclude, reusing (7.92), that

‖O1‖α .
δq+1

`λ 1−2α

q+1
.

δ
1/2

q+1δ
1/2
q λ

1+γ/2
q

λ
1−4α

q+1
.

Proof of (7.114). We start by splitting the transport error into two parts

R
((

∂t + vq ·∇
)

wq+1
)
= R

((
∂t + vq ·∇

)
wo
)
+R

((
∂t + vq ·∇

)
wc
)
=: T1 +T2.

We start with T1. Applying (7.97) yields(
∂t + vq ·∇

)
wo = ∑

i,k 6=0

(
∇vq
)T

∇Φ
−1
i bi,keiλq+1k·Φi + ∑

i,k 6=0
∇Φ
−1
i Dt,qbi,keiλq+1k·Φi. (7.117)

We now apply Proposition D.2, together with Proposition 7.18, to obtain

‖R
((

∇vq
)T

∇Φ
−1
i bi,keiλq+1k·Φi

)
‖α

.

∥∥∥(∇vq
)T

∇Φ
−1
i bi,k

∥∥∥
0

λ
1−α

q+1
+

∥∥∥(∇vq
)T

∇Φ
−1
i bi,k

∥∥∥
N+α

+
∥∥∥(∇vq

)T
∇Φ
−1
i bi,k

∥∥∥
0
‖Φi‖N+α

λ
N−α

q+1

.
δ

1/2

q+1δ
1/2
q λq

λ
1−α

q+1 |k|6
+

δ
1/2

q+1δ
1/2
q λq

λ
N−α

q+1 `N+α |k|6
.

δ
1/2

q+1δ
1/2
q λq

λ
1−2α

q+1 |k|6
,

(7.118)

where in the last inequality we have again chosen α > 0 sufficiently small and N� 1 large enough.
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The estimate on the second term in (7.117) follows by Proposition D.2 and Proposition 7.20.
Indeed we have∥∥∥R(∇Φ

−1
i Dt,qbi,keiλq+1k·Φi

)∥∥∥
α

.

∥∥∇Φ
−1
i Dt,qbi,k

∥∥
0

λ
1−α

q+1
+

∥∥∇Φ
−1
i Dt,qbi,k

∥∥
N+α

+
∥∥∇Φ

−1
i Dt,qbi,k

∥∥
0 ‖Φi‖N+α

λ
N−α

q+1

.
δ

1/2

q+1δ
1/2
q λ

1+γ
q `−3α

λ
1−α

q+1 |k|6
+

δ
1/2

q+1δ
1/2
q λ

1+γ
q `−3α +δ

1/2

q+1δ
1/2
q λ

1+γ
q `1−3α

λ
N−α

q+1 `N+α |k|6

.
δ

1/2

q+1δ
1/2
q λ

1+γ
q `−4α

λ
1−α

q+1 |k|6
.

δ
1/2

q+1δ
1/2
q λ

1+γ
q

λ
1−5α

q+1 |k|6
,

(7.119)

where we also used `−4α ≤ λ 4α
q+1. Putting together (7.118) and (7.119), summing over all the frequen-

cies k 6= 0, we conclude

‖T1‖α .
δ

1/2

q+1δ
1/2
q λ

1+γ
q

λ
1−5α

q+1
. (7.120)

To estimate T2 we observe that since (∂t + vq ·∇)Φi = 0 by choice of Φi, we have(
∂t + vq ·∇

)
wc = ∑

i,k 6=0

(
Dt,qci,k

)
eiλq+1k·Φi.

Then, applying once again Proposition D.2, we get∥∥∥R((Dt,qci,k
)

eiλq+1k·Φi
)∥∥∥

α
.

∥∥Dt,qci,k
∥∥

0

λ
1−α

q+1
+

∥∥Dt,qci,k
∥∥

N+α
+
∥∥Dt,qci,k

∥∥
0 ‖Φi‖N+α

λ
N−α

q+1
.

Since from Proposition 7.20 the estimates on Dt,qci,k are better than the ones for Dt,qbi,k (recall that
`−1 ≤ λq+1) we obtain, as for the estimate (7.119), that

∥∥∥R((Dt,qci,k
)

eiλq+1k·Φi
)∥∥∥

α
.

δ
1/2

q+1δ
1/2
q λ

1+γ
q

λ
1−5α

q+1 |k|6
,

from which, by summing over k 6= 0, we deduce

‖T2‖α .
δ

1/2

q+1δ
1/2
q λ

1+γ
q

λ
1−5α

q+1
. (7.121)

Estimates (7.120) and (7.121) imply the validity of (7.114) and this concludes the proof of Proposition
7.21.
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Chapter 8

Typical wild solutions to the Navier-Stokes
equations

8.1 Introduction
In this chapter we investigate some typicality questions for the Navier-Stokes equations in terms

of Baire category. We recall the equations{
∂tv+div(v⊗ v)+∇p−∆v = 0
divv = 0 in T3× [0,T ] (8.1)

We define the following complete metric space

D :=
{

v ∈ L∞((0,T );L2(T3)) : v is a distributional solution of (8.1)
}
,

endowed with the metric dD(u,v) := ‖u− v‖L∞
t (L2

x)
, and its subsets

L := {v ∈D : v is a Leray–Hopf solution of (8.1)}
S :=

{
v ∈D : v ∈C∞(T3× I) for some open interval I ⊂ (0,T )

}
.

We refer to Chapter 1 for the definitions of Leray-Hopf solutions. Our main result is the following

Theorem 8.1. The set L is nowhere dense in D while the set S is meagre in D .

We recall that L is nowhere dense in D if and only if the closure of L has empty interior. In
particular, L is meagre in D .

Theorem 8.1 is in the same spirit of the typicality results proved in Chapter 6. Unlike the latter,
its proof makes use of the Lp−based convex integration scheme proposed in [5, 10] that we recall in
the next sections.

149
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8.2 The iterative proposition and proof of the main theorem
The proof of Theorem 8.1 is based on an iterative proposition, typical of convex integration

schemes and analogous to [10, Section 7] and [5, Section 2]; in analogy with the latter, also here
we use intermittent jets (see Section 3 below) as the fundamental building blocks. At difference to the
previously cited works, we need to keep track of the kinetic energy in some intervals of time along
the iteration in such a way to be able to prescribe it in the limit, and we also need to make sure with
a simple use of time cutoffs that the support of the perturbation is localized in a converging sequence
of enlarging sets. On the contrary, we don’t use the cutoffs to obtain a small set of singular times for
our limit, as was done in [5].

In turn the proof of Theorem 8.1 follows from the iterative proposition by proving the usual empty
interior condition. To show that the subset L is nowhere dense in the metric space D , we prove that
for every v ∈L there are arbitrarily close elements which belong to D \L . Note that our set L is
closed, so it is enough to consider L itself instead of its closure. In Step 1 of the proof we reduce
to such statement, where we choose elements in D \L by imposing locally increasing kinetic energy.

We recall that a distributional solution of the system (8.1) is a vector field v ∈ L2(T3× (0,T );R3)
such that ˆ T

0

ˆ
T3
(v ·∂tϕ + v⊗ v : ∇ϕ + v ·∆ϕ) dxdt = 0,

for all ϕ ∈C∞
c (T3× (0,T );R3) such that divϕ = 0. The pressure does not appear in the distributional

formulation because it can be recovered as the unique 0-average solution of

−∆p = divdiv(v⊗ v). (8.2)

A Leray-Hopf weak solution of the system (8.1) is a vector field v∈L2((0,T );H1(T3))∩L∞((0,T );L2(T3))
and for a.e. s≥ 0 and for all t ∈ [s,T ] the following inequality holdsˆ

T3

|v(x, t)|2

2
dx+

ˆ t

s

ˆ
T3
|∇v(x,τ)|2dxdτ ≤

ˆ
T3

|v(x,s)|2

2
dx. (8.3)

We also recall the following two lemmas that are respectively Lemma 3.7 and Lemma B.1 in [8].

Lemma 8.2. Fix integers N,σ ≥ 1 and let ζ > 1 such that

2π
√

3ζ

σ
≤ 1

3
and ζ

4 (2π
√

3ζ )N

σN ≤ 1. (8.4)

Let p ∈ {1,2} and let f ,g ∈C∞(T3;R3). Suppose that there exists a constant C f > 0 such that

‖∇ j f‖Lp ≤C f ζ
j,

holds for all 0≤ j ≤ N +4. Then we have that

‖ f gσ‖Lp ≤C0C f ‖gσ‖Lp,

where C0 is a universal constant.
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Lemma 8.3. Fix κ ≥ 1, p ∈ (1,2], and a sufficiently large L ∈ N. Let a ∈CL(T3) be such that there
exists 1≤ λ ≤ κ , Ca > 0 with

‖D ja‖L∞ ≤Caλ
j,

for all 0≤ j ≤ L. Assume furthermore that
´
T3 a(x)P≥κ f (x)dx = 0. Then we have

‖|∇|−1(aP≥κ( f ))‖Lp .Ca

(
1+

λ L

κL−2

)
‖ f‖Lp

κ

for any f ∈ Lp(T3), where the implicit constant depends on p and L.

Lemma 8.4. Let g : T3→ R such that
 
T3

g(x)dx = 0,

and let gσ : T3→ R: gσ (x) := g(σx). Let f : T3→ R such that

‖∇ f‖C0 ≤C f ζ ,

then we have ∣∣∣∣ˆ
T3

gσ (x) f (x)dx
∣∣∣∣. C f ζ

σ
‖gσ‖L1(T3),

where . means up to a universal constant.

The Navier–Stokes–Reynolds system

In this section, for every integer q≥ 0 we will highlight the construction of a solution (vq, pq, R̊q)
to the Navier-Stokes-Reynolds system{

∂tvq +div(vq⊗ vq)+∇pq−∆vq = div R̊q
divvq = 0

(8.5)

where the Reynolds stress R̊q is assumed to be a trace-free symmetric matrix valued function. Indeed
for any matrix A we will use the notation Å to denote the traceless property.

Parameters

Define the frequency parameter λq→+∞ and the amplitudes parameter δq→ 0+ by

λq = 2πa(b
q),

δq = λ
−2β
q .



152 8. Typical wild solutions to the Navier-Stokes equations

The sufficiently large (universal) parameter b is free, and so is the sufficiently small parameter
β = β (b). The parameter a is chosen to be a sufficiently large multiple of the geometric constant n∗.
Moreover, we fix another parameter useful to prescribe a precise kinetic energy

ε1 :=

(
ε

supξ∈Λ ‖γξ‖C0|Λ|C04(2π)3

)2

, (8.6)

where supξ∈Λ ‖γξ‖C0, |Λ|,C0 are all universal constants independent on q, more precisely: γξ are
functions defined in Lemma 8.6, Λ is the finite set defined in Lemma 8.6, C0 is the constant given by
Lemma 8.2, ε is a free constant that will be used in the proof of Theorem 8.1.

Moreover, we will use the intermittent jets (defined in Section 8.3) to define the new velocity
increment at step q+1.

8.2.1 Inductive estimates and iterative proposition
We define new “slow” parameters, for all q≥ 0

sq :=
( s

2

)q+1
, (8.7)

Sq :=
q

∑
i=0

si, (8.8)

for some fixed parameter s > 0. By choosing a0(s) sufficiently large, we will guarantee that

s−1
q+1� λq,

indeed s−1
q is a slow parameter compared to λq. Moreover we define the local time interval, for some

small number s > 0, for all q≥ 0

Iq := (t0−Sq, t0 +Sq), (8.9)

for some t0 ∈ (0,1) and s = s(t0)> 0 sufficiently small such that

B2s(t0) := (t0−2s, t0 +2s)⊂ [0,1].

Observe that Iq ⊂ B2s(t0) for all q≥ 0.
In the following, if not specified differently, every space norm is taken with respect to the sup in

time localized in the interval B2s(t0), i.e. for example: if v ∈ L∞
t Lp

x , we denote ‖v‖Lp the quantity
supt∈B2s(t0) ‖v(t, ·)‖Lp

x
. We use . as an inequality that holds up to a constant independent on q.
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For q≥ 0, we want to guarantee

‖vq‖L2 ≤ 2‖v0‖L2−
ε

4π
δ

1/2
q , (8.10a)

‖R̊q‖L1 ≤ λ
−3ζ
q δq+1, (8.10b)

‖vq‖C1
x,t(T3×B2s(t0)) ≤ λ

4
q , (8.10c)

and moreover1

δq+1

δ1λ
ζ/2
q

≤ e(t)−
ˆ
T3
|vq(x, t)|2dx≤

δq+1ε1

δ1
, for all t ∈ I0, (8.11a)

SuppT (R̊q)⊂ Iq, (8.11b)
SuppT (vq− vq−1)⊂ Iq, for all q≥ 1, (8.11c)

which are new with respect to the convex integration scheme proposed by Buckmaster and Vicol in
[10, Section 7].

Proposition 8.5 (Iterative Proposition). Let e : [0,T ]→ (0,∞) be a strictly positive smooth function.
For every ε,s > 0 and t0 ∈ (0,T ) there exist b > 1, β (b)> 0, ζ > 0, a0 = a0(β ,b,ζ ,e,ε,s) such that
for any a ≥ a0 which is a multiple of the geometric constant n∗ of Lemma 8.6, the following holds.
Let (vq, pq, R̊q) be a smooth triple solving the Navier-Stokes-Reynolds system (8.5) in T3×B2s(t0)
satisfying the inductive estimates (8.10)-(8.11).

Then there exists a second smooth triple (vq+1, pq+1, R̊q+1) which solves the Navier-Stokes-Reynolds
system in T3×B2s(t0) (8.5), satisfies the estimates (8.10) and (8.11) at level q+ 1. In addition, we
have that

‖vq+1− vq‖L∞(B2s(t0);L2(T3)) ≤
ε

δ
1/2
1 4π

δ
1/2
q+1. (8.12)

8.2.2 Proof of Theorem 8.1
Step 1. Let v ∈ L∞((0,T );L2(T3)) be a distributional solution of (8.1), such that v ∈C∞(T3× I),

for some open interval I ⊂ (0,T ). Then, we prove the following claim: for every ε > 0, there exists a
distributional solution vε ∈ L∞((0,T );L2(T3)) of (8.1) such that

‖vε − v‖L∞((0,T );(L2(T3)) < ε (8.13)

and the kinetic energy of vε is strictly increasing in a sub-interval of (0,T ).

Let t0 ∈ I and choose s > 0 such that B2s(t0)⊂ I. Let g ∈C∞([0,T ]; [ ε1
2 ,ε1]) be such that

1Here SuppT (u) denotes the closure of {t ∈ (0,1) : ∃x ∈ T3 u(x, t) 6= 0}.
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g′(t0)> sup
t∈(0,1)

∣∣∣∣ d
dt

ˆ
T3
|v(x, t)|2dx

∣∣∣∣ ,
and consider the kinetic energy (increasing in a neighbourhood of t0)

e(t) :=
ˆ
T3
|v(x, t)|2dx+g(t). (8.14)

Since the function v is smooth in T3× I we consider the smooth solution p, with zero average, in
T3× I of (8.2), and define the starting triple (v0, p0,R0) := (v, p,0).

Clearly (v, p,0) satisfies the estimates (8.10) and (8.11) at step q = 0, up to enlarge a0
2, thus we

can apply Proposition 8.5 starting from the triple (v0, p0,R0). Hence, we get a sequence {vq}q∈N that
satisfies (8.10), (8.11) and moreover, from (8.12) we get

∑
q≥0
‖vq+1− vq‖L2 ≤

ε

δ
1/2
1 4π

∑
q≥0

δ
1/2
q+1 ≤

ε

δ
1/2
1 4π

∑
q≥0

(a−βb)q+1 ≤ ε

2(1−a−βb)
< ε (8.15)

where the last holds if a0 is sufficiently large in order to have a−βb < 1/2. Hence, there exists
the limit ṽε := limq→∞ vq, in L∞(B2s(t0);L2(T3)) such that ‖ṽε − v‖L∞(B2s(t0);L2(T3)) < ε and it is a
distributional solution of the Navier-Stokes equations in B2s(t0)×T3, because by (8.10b) we have
that limq→∞ R̊q = 0 in L∞(B2s(t0);L1(T3)). One can verify that the vector field

vε =

{
ṽε in B2s(t0)
v in [0,T ]\B2s(t0),

still solves (8.1) in [0,T ]×T3 and satisfies (8.13). Moreover the kinetic energy of vε is increasing in
a neighbourhood of t0 thanks to (8.11a) and (8.14).

Step 2. We conclude the proof of Theorem 8.1.

Let v0 be a distributional solution which is smooth in a subinterval of times and ε > 0; for instance,
any Leray solution can be taken as v0 since they are smooth outside a closed set of H 1/2 measure 0.
We apply the Step 1 and get a distributional solution of Navier-Stokes vε ∈ L∞((0,T );L2(T3)) such
that ‖vε−v1‖L∞((0,T );L2(T3)) < ε with increasing kinetic energy in a sub-interval of [0,T ] and therefore
such that vε ∈D \L .

Since L is closed with respect to L∞L2 convergence, we deduce that the interior of L which
coincides with the interior of L , is empty.

To show that S is a meagre set in D , we rewrite it as

S ⊂
⋃

s∈Q+

⋃
t∈(0,1)∩Q

{v ∈D : v ∈C∞((t− s, t + s)×T3)},

and we notice that from Step 1 the right-hand side is a countable union of nowhere dense sets, hence
it is meagre.

2To be precise we considered v−1 = v0.
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8.3 Intermittent jets

In this section we recall from [10] the definition and the main properties of intermittent jets we
will use in the convex integration scheme.

A geometric lemma.

We start with a geometric lemma. A proof of the following version, which is essentially due to
De Lellis and Székelyhidi Jr., can be found in [5, Lemma 4.1]. This lemma allows us to reconstruct
any symmetric 3× 3 stress tensor R in a neighbourhood of the identity as a linear combination of a
particular basis.

Lemma 8.6. Denote by Bsym
1/2(Id) the closed ball of radius 1/2 around the identity matrix in the space

of symmetric 3×3 matrices. There exists a finite set Λ ⊂ S2∩Q3 such that there exist C∞ functions
γξ : Bsym

1/2(Id)→ R which obey

R = ∑
ξ∈Λ

γ
2
ξ
(R)ξ ⊗ξ ,

for every symmetric matrix R satisfying |R− Id| ≤ 1/2. Moreover for each ξ ∈ Λ, let use define Aξ ∈
S2∩Q3 to be an orthogonal vector to ξ . Then for each ξ ∈Λ we have that {ξ ,Aξ ,ξ×Aξ}⊂ S2∩Q3

form an orthonormal basis for R3. Furthermore, since we will periodize functions, let n∗ be the l.c.m.
of the denominators of the rational numbers ξ ,Aξ and ξ ×Aξ , such that

{n∗ξ ,n∗Aξ ,n∗ξ ×Aξ} ⊂ Z3.

Vector fields

Let Φ : R2→ R be a smooth function with support contained in a ball of radius 1. We normalize
Φ such that φ =−∆Φ obeys

1
4π2

ˆ
R2

φ
2(x1,x2)dx1dx2 = 1. (8.16)

We remark that by definition φ has zero average. Define ψ : R→ R to be a smooth, zero average
function with support in the ball of radius 1 satisfying

 
T

ψ
2(x3)dx3 =

1
2π

ˆ
R

ψ
2(x3)dx3 = 1.
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We define the parameters r⊥, r|| and µ as follows

r⊥ := r⊥,q+1 := λ
−6/7
q+1 (2π)−1/7, (8.17a)

r|| := r||,q+1 := λ
−4/7
q+1 , (8.17b)

µ := µq+1 := λ
9/7
q+1(2π)1/7. (8.17c)

We define φr⊥,Φr⊥,and ψr|| to be the rescaled cut-off functions

φr⊥(x1,x2) :=
1

r⊥
φ

(
x1

r⊥
,

x2

r⊥

)
,

Φr⊥(x1,x2) :=
1

r⊥
Φ

(
x1

r⊥
,

x2

r⊥

)
,

ψr||(x3) :=

(
1
r||

)1/2

ψ

(
x3

r||

)
.

With this rescaling we have φr⊥ =−r2
⊥∆Φr⊥ . Moreover the functions φr⊥ and Φr⊥ are supported in

the ball of radius r⊥ in R2, ψr|| is supported in the ball of radius r|| in R and we keep the normalizations
‖φr⊥‖2

L2 = 4π2 and ‖ψr||‖
2
L2 = 2π.

We then periodize the previous functions

φr⊥(x1 +2πn,x2 +2πm) = φr⊥(x1,x2),

Φr⊥(x1 +2πn,x2 +2πm) = Φr⊥(x1,x2),

ψr||(x3 +2πn) = ψr||(x3).

For every ξ ∈Λ (recalling the notations in Lemma 8.6), we introduce the functions defined on T3×R

ψξ (x, t) := ψr||(n∗r⊥λq+1(x ·ξ +µt)), (8.18a)

Φξ (x) := Φr⊥(n∗r⊥λq+1(x−αξ ) ·Aξ ,n∗r⊥λq+1(x−αξ ) · (ξ ×Aξ )), (8.18b)

φξ (x) := φr⊥(n∗r⊥λq+1(x−αξ ) ·Aξ ,n∗r⊥λq+1(x−αξ ) · (ξ ×Aξ )), (8.18c)

where αξ are shifts which ensure that the functions {Φξ} have mutually disjoint support.
In order for such shifts αξ to exist, it is sufficient to assume that r⊥ is smaller than a universal

constant, which depends only on the geometry of the finite set Λ.
It is important to note that the function ψξ oscillates at frequency proportional to r⊥r−1

|| λq+1,
whereas φξ and Φξ oscillate at frequency proportional to λq+1.

Definition 8.7. The intermittent jets are vector fields Wξ : T3×R→ R3 defined as

Wξ (x, t) := ξ ψξ (x, t)φξ (x).
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If σ := r⊥n∗ ∈ N, thanks to the choice of n∗ in Lemma 8.6 we have that Wξ has zero average in

T3 and is
(T

σ

)3
periodic. Moreover, by our choice of αξ , we have that

Wξ ⊗Wξ ′ ≡ 0,

whenever ξ 6= ξ ′ ∈ Λ, i.e. {Wξ}ξ∈Λ have mutually disjoint support. The essential identities obeyed
by the intermittent jets are

‖Wξ‖
p
Lp(T3)

=
1

8π3‖ψξ‖
p
Lp(T3)

‖φξ‖
p
Lp(T3)

div(Wξ ⊗Wξ ) = 2(Wξ ·∇ψξ )φξ ξ =
1
µ

∂t(φ
2
ξ

ψ
2
ξ

ξ ) (8.19)
 
T3

Wξ ⊗Wξ = ξ ⊗ξ ,

where the last identity will be useful to apply Lemma 8.6.

We denote by P 6=0 the operator which projects a function onto its non-zero frequencies P 6=0 f =
f −

ffl
T3 f , and by PH we will denote the usual Helmholtz projector onto divergence-free vector fields,

PH f = f −∇(∆−1div f ). Motivated by (8.19), we define

W (t)
ξ

(x, t) :=− 1
µ
PHP 6=0φ

2
ξ
(x)ψ2

ξ
(x, t)ξ . (8.20)

Lastly, we note that the intermittent jets Wξ are not divergence free, then we introduce the follow-

ing two functions W (c)
ξ

,Vξ : T3×R→ R3

Vξ (x, t) :=
1

n∗λ 2
q+1

ξ ψξ (x, t)Φξ (x),

W (c)
ξ

(x, t) :=
1

n∗λ 2
q+1

∇ψξ (x, t)× (∇×Φξ (x)ξ ).

Using ∆Φξ =−λ 2
q+1n2

∗φξ we compute the intermittent jets in terms of Vξ

λ
2
q+1n2

∗Wξ = λ
2
q+1n2

∗ξ φξ ψξ =−∆Φξ ψξ ξ

= ∇× (ψξ ∇× (Φξ ξ ))−∇ψξ × (∇×Φξ ξ )

= ∇×∇× (ψξ Φξ ξ )−∇× (∇ψξ ×Φξ ξ )−∇ψξ × (∇×Φξ ξ )

= ∇×∇× (ψξ Φξ ξ )−∇ψξ × (∇×Φξ ξ )

= λ
2
q+1n2

∗

(
∇×∇×Vξ −W (c)

ξ

)
, (8.22)
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from which we deduce

div(Wξ +W (c)
ξ

)≡ 0.

Moreover, since r⊥� r||, the correction W c
ξ

is comparatively small in L2 with respect to Wξ , more
precisely we state the following lemma (see [10, Section 7.4]).

Lemma 8.8. For any N,M ≥ 0 and p ∈ [1,∞] the following inequalities hold

‖∇N
∂

M
t ψξ‖Lp . r1/p−1/2

||

(
r⊥λq+1

r||

)N(
r⊥λq+1µ

r||

)M

(8.23a)

‖∇N
φξ‖Lp +‖∇N

Φξ‖Lp . r2/p−1
⊥ λ

N
q+1 (8.23b)

‖∇N
∂

M
t Wξ‖Lp . r2/p−1

⊥ r1/p−1/2
|| λ

N
q+1

(
r⊥λq+1µ

r||

)M

(8.23c)

r||
r⊥
‖∇N

∂
M
t W (c)

ξ
‖Lp . r2/p−1

⊥ r1/p−1/2
|| λ

N
q+1

(
r⊥λq+1µ

r||

)M

(8.23d)

λ
2
q+1‖∇N

∂
M
t Vξ‖Lp . r2/p−1

⊥ r1/p−1/2
|| λ

N
q+1

(
r⊥λq+1µ

r||

)M

. (8.23e)

The implicit constants are independent of λq+1,r⊥,r||,µ .

8.4 Proof of the iterative proposition
Given (vq, pq, R̊q) a triple solving the Navier-Stokes-Reynolds system (8.5) in T3×B2s(t0) sat-

isfying the inductive estimates (8.10) and (8.11) at step q, we have to construct (vq+1, pq+1, R̊q+1)
which still solves the Navier-Stokes-Reynolds system (8.5) in T3×B2s(t0) and satisfies the estimates
(8.10) and (8.11) at step q+1 and the estimate (8.12) holds.

Mollification

In order to avoid a loss of derivatives in the iterative scheme, we replace vq by a mollified velocity
field ṽ`. For this purpose we choose a small parameter ` ∈ (0,1) which lies between λ−1

q and λ
−1
q+1

and that satisfies

`λ 4
q ≤ λ

−α

q+1

`−1 ≤ λ
2α
q+1,
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where 0 < α � 1. This can be done since αb > 4.
For instance, we may define ` as the geometric mean of the two bounds imposed before, namely

`= λ
−3α/2
q+1 λ

−2
q .

With this choice we also have that `� sq+1. Let {θ`}`>0 and {ϕ`}`>0 be two standard families of
Friedrichs mollifiers on R3 (space) and R (time) respectively. We define the mollification of vq and
R̊q in space and time, at length scale ` by

v` := (vq ∗x θ`)∗t ϕ`,

R̊` := (R̊q ∗x θ`)∗t ϕ`,

where we possibly extend to 0 the definition of vq outside B2s(t0). We have that v` solves{
∂tv`+div(v`⊗ v`)+∇p`−µ∆v` = div(R̊`+ R̊com)
divv` = 0,

(8.25)

where R̊com is defined by

R̊com = (v`⊗̊v`)− ((vq⊗̊vq)∗x θ`)∗t ϕ`.

We introduce the following notations y+ Iq := (t0− Sq− y, t0 + Sq + y) and Ĩq := sq+1
2 + Iq. Let

η ∈C∞
c (Ĩq;R+) such that

η(t)≡ 1 for all t ∈ Iq,

‖η‖CN ≤C
(

2
s

)Nq

,

Moreover, we define

ṽ` = ηv`+(1−η)vq.

Note that ṽ` satisfies

SuppT (ṽ`− vq)⊂ Ĩq ⊂ Iq+1,

that will be crucial in order to guarantee (8.11c) at step q+1.
Moreover, using (8.25) and that (vq, pq, R̊q) is a Navier–Stokes–Reynolds solution, we have that

ṽ` satisfies

∂t ṽ`+div(ṽ`⊗ ṽ`)−∆ṽ` = (v`− vq)∂tη +η(1−η)div(v`⊗̊(vq− v`))
+η(1−η)div(vq⊗̊(v`− vq))

+ηdiv(R`+Rcom)+(1−η)div(R̊q)−∇π`,
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for some pressure π`.

Using (8.11b) and that η(t)≡ 1 on Iq, we have

(1−η)div(R̊q)≡ 0.

Thus ṽ` solves

∂t ṽ`+div(ṽ`⊗ ṽ`)−∆ṽ`+∇π` = div(R`+Rcom +Rloc),

where R` = ηR̊`, Rcom = ηR̊com and

Rloc := η(1−η)v`⊗̊(vq− v`)+η(1−η)vq⊗̊(v`− vq)+R
(
(v`− vq)∂tη

)
.

A simple bound on v`− vq on L∞
t L2 is given by

‖v`− vq‖L2 . `‖vq‖C1 ≤ `λ 4
q �

1
10

λ
−4ζ

q+1 δq+2,

where the last holds if 4ζ +2βb < α. Then using the previous bound, (8.10a) and that ‖R‖L2→L2 . 1
by Proposition D.1, we have

‖Rcom‖L1 +‖Rloc‖L1 �
1
3

λ
−3ζ

q+1 δq+2,

where we used that λ
ζ

q+1 � C
(2

s

)q
, unless to possibly enlarge a0(s,ζ ). Note that we also have the

property on the compact supports of the errors

Supp(R`)∪Supp(Rcom)∪Supp(Rloc)⊂ Ĩq ⊂ Iq+1.

The mollified functions satisfy

‖ṽ`‖CN
x,t(T3×B2s(t0)) . λ

4
q `
−N+1 . λ

−α
q `−N , N ≥ 1, (8.26a)

‖ṽ`‖L2 ≤ ‖vq‖L2 +‖vq− v`‖L2 ≤ 2‖v0‖L2−δ
1/2
q +λ

−α
q , (8.26b)

‖ṽ`− vq‖L2 . `λ 4
q ≤ λ

−α

q+1, (8.26c)

‖R`‖L1 ≤ λ
−3ζ
q δq+1, (8.26d)

‖R`‖CN
x,t
. λ

−3ζ
q δq+1`

−4−N , N ≥ 0. (8.26e)

We are now ready to go to the perturbation step, in which we will add a small perturbation to ṽ`
in order to cancel the bigger error R` proving (8.10b), (8.11b) and satisfying all the other estimates
(8.10), (8.11) and (8.12).
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Amplitudes

Here we define the amplitudes of the perturbation, namely the functions needed to apply Lemma
8.6 and cancel the Reynolds error R`. We define χ : R+→ R+, a smooth function such that

χ(z) :=

{
1 i f 0≤ z≤ 1
z i f z≥ 2

and z≤ 2χ(z)≤ 4z for z∈ (1,2) and χ(z)≥ 1 for all z∈ [0,∞). We define for all t ∈ I0 = [t0− s
2 , t0+

s
2 ]

ρ(t) :=
1

3
´
T3 χ

(
|R`(x,t)|4λ

ζ
q δ1

δq+1

)
dx

(
e(t)−

ˆ
T3
|ṽ`(x, t)|2dx−

δq+2

2

)
(8.27)

and with a little abuse of notation we define

ρ(t) := ρ

(
t0 +

s
2

)
for all t > t0 +

s
2
,

ρ(t) := ρ

(
t0−

s
2

)
for all t < t0−

s
2
.

Now, we consider another local cut-off in time η̃ ∈C∞
c (Iq+1;R+) such that

η̃(t)≡ 1 for all t ∈ Ĩq,

‖η̃‖CN ≤C
(

2
s

)Nq

,

and we define

ρ(x, t) := η̃
2(t)ρ(t)χ

(
|R`(x, t)|4λ

ζ
q δ1

δq+1

)
. (8.28)

Lemma 8.9. The following estimates hold

δq+1

δ1λ
ζ
q
≤ ρ(t)≤

ε1δq+1

δ1
, (8.29)∣∣∣∣R`(x, t)

ρ(x, t)

∣∣∣∣≤ 1
2
, (8.30)

‖ρ‖L1 ≤ 16π
3
ε1

δq+1

δ1
. (8.31)
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Proof. Note that∣∣‖vq‖2
L2−‖ṽ`‖2

L2

∣∣≤ ‖vq− ṽ`‖L2‖vq + ṽ`‖L2 . `‖vq‖C1‖vq‖L2 . `λ 4
q ≤ λ

−ζ
q δq+1, (8.32)

where in the last inequality we used that 2β + ζ

b < α . Moreover, thanks to the construction of χ and
(8.10b) we have

(2π)3 ≤
ˆ
T3

χ

(
|R`(x, t)|4λ

ζ
q δ1

δq+1

)
dx≤ 2(2π)3. (8.33)

Thus, thanks to (8.11a), (8.32) and (8.33) we get

ρ(t)≤ 1
3 · (2π)3

(
e(t)−

ˆ
T3
|vq(x, t)|2dx

)
+

1
3 · (2π)3

(ˆ
T3
|vq(x, t)|2dx−

ˆ
T3
|ṽ`(x, t)|2dx−

δq+2

2

)
≤ 1

3 · (2π)3

(
2

δq+1ε1

δ1

)
≤

ε1δq+1

δ1
.

and similarly

ρ(t)≥ 1
6 · (2π)3

(
e(t)−

ˆ
T3
|vq(x, t)|2dx

)
+

1
6 · (2π)3

(ˆ
T3
|vq(x, t)|2dx−

ˆ
T3
|ṽ`(x, t)|2dx−

δq+2

2

)
≥ 1

6 · (2π)3

(
δq+1

δ1λ
ζ/2
q

−
δq+1

λ
ζ
q
−

δq+2

2

)
≥

δq+1

δ1λ
ζ
q
,

where the last holds if we choose a0(ζ ) sufficiently large. Thus (8.29) holds.
The proof of (8.30) follows from the following computation, observing that SuppT (R`) ⊂ Ĩq,

η̃(t)≡ 1 for all t ∈ Ĩq and that χ(z)≥ z/2 for all z≥ 0

∣∣∣∣R`(x, t)
ρ(x, t)

∣∣∣∣≤ |R`(x, t)|
ρ(t) |R`(x,t)|

2δq+1
4λ

ζ
q δ1

=
δq+1

2ρ(t)λ ζ
q δ1

≤ 1/2.

We conclude the proof by estimatingˆ
T3
|ρ(x, t)|dx≤

ˆ
|R`(x,t)|4λ

ζ
q δ1

δq+1
<1
|ρ(x, t)|dx+

ˆ
|R`(x,t)|4λ

ζ
q δ1

δq+1
≥1
|ρ(x, t)|dx

≤ 8π
3
(

δq+1
ε1

δ1

)
+

ˆ
T3
|8λ

ζ
q ε1R`|dx

≤ 8π
3
(

δq+1
ε1

δ1

)
+8ε1λ

2ζ
q ‖R`‖L1

≤ 8π
3
ε1

(
1
δ1

+λ
−ζ
q

)
δq+1 ≤ 16π

3
ε1

δq+1

δ1
.
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We can now define the amplitudes functions aξ : T3× (0,T )→ R as

aξ (x, t) := aξ ,q+1(x, t) := ρ
1/2(x, t)γξ

(
Id− R`(x, t)

ρ(x, t)

)
, (8.34)

where γξ are defined in Lemma 8.6, hence we also get the identity

ρ(x, t)Id−R`(x, t) = ∑
ξ∈Λ

a2
ξ
(x, t)ξ ⊗ξ . (8.35)

Lemma 8.10. The following estimates hold

‖aξ‖L2 ≤
δ

1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

, (8.36)

‖aξ‖CN
x,t
. `−8−5N , (8.37)

where C0 is the universal constant for which Lemma 8.2 holds.

Proof. We define

ρ1(x, t) := ρ(t)χ

(
|R`(x, t)|4λ

ζ
q δ1

δq+1

)
,

aξ (x, t) := ρ
1/2
1 (x, t)γξ

(
Id− R`(x, t)

ρ(x, t)

)
,

aξ (x, t) = η̃(t)aξ (x, t).

The first estimate follows from (8.31) and the definition of ε1

‖aξ‖L2 ≤ ‖ρ‖1/2
L1 ‖γξ‖C0‖η̃‖C0 ≤

(
16π

3
δq+1

ε1

δ1

)1/2

‖γξ‖C0 ≤
δ

1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

.

We prove the second estimate. We introduce the notation γ̃ξ (x, t) := γξ

(
Id− R`(x,t)

ρ(x,t)

)
and thanks to

(A.1) we have

‖aξ‖CN
x,t
. ‖ρ1/2

1 ‖CN‖γ̃‖C0 +‖ρ1/2
1 ‖C0‖γ̃‖CN .

We now estimate every piece. Using Proposition A.2 and (8.11a)

‖ρ‖CN
t
. `−5N .
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Thanks to the previous inequality, Proposition A.2 and (A.1) we get

‖ρ1‖CN
x,t
. `−4−5N . (8.38)

Using Proposition A.2, estimate (8.26e), the previous estimate and that ρ is bounded from below by
δq+1

δ1λ
ζ
q

, we have

‖γ̃‖CN .

∥∥∥∥R`

ρ

∥∥∥∥
CN

. `−8−5N

and using also that δq+1

δ1λ
ζ
q
≥ ` (choosing ζ = ζ (α) sufficiently small), we have

‖ρ1/2
1 ‖CN

x,t
. `−5−5N .

Hence

‖aξ‖CN
x,t
. `−8−5N .

Moreover, by applying again (A.1) we get

‖aξ‖CN
x,t
. ‖aξ‖CN

x,t
‖η̃‖C0 +‖η̃‖CN‖aξ‖C0

x,t
. ‖aξ‖CN

x,t
,

since s−1
q+1� λq� `−1, up to enlarge a0(s,α).

8.4.1 Perturbation
The principal part of wq+1 is defined as

w(p)
q+1 := ∑

ξ∈Λ

aξWξ . (8.39)

The incompressibility corrector w(c)
q+1, that we define in order to have the incompressibility of wq+1,

is defined as

w(c)
q+1 := ∑

ξ∈Λ

curl(∇aξ ×Vξ )+∇aξ × curlVξ +aξW (c)
ξ

.

Note that

w(p)
q+1 +w(c)

q+1 = ∑
ξ∈Λ

∇×∇× (aξVξ ),

div(w(p)
q+1 +w(c)

q+1) = 0,
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where the first equation follows from a direct computation similar to (8.22) with amplitudes functions

aξWξ = aξ ∇×∇×Vξ −aξW (c)
ξ

= ∇× (aξ ∇×Vξ )−∇aξ × (∇×Vξ )−aξW (c)
ξ

= ∇×∇× (aξVξ )−∇× (∇aξ ×Vξ )−∇aξ × (∇×Vξ )−aξW (c)
ξ

.

Moreover, we introduce a temporal corrector similar to (8.20) with amplitude functions

w(t)
q+1 :=− 1

µ
∑

ξ∈Λ

PHP 6=0

(
a2

ξ
φ

2
ξ

ψ
2
ξ

ξ

)
. (8.40)

Note that w(t)
q+1 satisfies

∂tw
(t)
q+1 + ∑

ξ∈Λ

P 6=0

(
a2

ξ
div(Wξ ⊗Wξ )

)
=− 1

µ
∑

ξ∈Λ

PHP 6=0∂t

(
a2

ξ
φ

2
ξ

ψ
2
ξ

ξ

)
+

1
µ

∑
ξ∈Λ

P 6=0

(
a2

ξ
∂t

(
φ

2
ξ

ψ
2
ξ

ξ

))
= (Id−PH)

1
µ

∑
ξ∈Λ

P 6=0∂t

(
a2

ξ
φ

2
ξ

ψ
2
ξ

ξ

)
︸ ︷︷ ︸

=:∇Pq+1

− 1
µ

∑
ξ∈Λ

P 6=0

(
∂ta2

ξ

(
φ

2
ξ

ψ
2
ξ

ξ

))
.

From this computation and the identity (8.35), it follows that

div(w(p)
q+1⊗w(p)

q+1 +R`)+∂tw
(t)
q+1 = ∑

ξ∈Λ

div
(

a2
ξ
P 6=0

(
Wξ ⊗Wξ

))
+∇ρ +∂tw

(t)
q+1

= ∑
ξ∈Λ

P 6=0

(
∇a2

ξ
P 6=0

(
Wξ ⊗Wξ

))
+∇ρ + ∑

ξ∈Λ

P 6=0

(
a2

ξ
div
(
Wξ ⊗Wξ

))
+∂tw

(t)
q+1

= ∑
ξ∈Λ

P 6=0

(
∇a2

ξ
P 6=0

(
Wξ ⊗Wξ

))
+∇ρ +∇Pq+1−

1
µ

∑
ξ∈Λ

P 6=0

(
∂ta2

ξ

(
φ

2
ξ

ψ
2
ξ

ξ

))
. (8.41)

We now define the total increment

wq+1 := w(p)
q+1 +w(c)

q+1 +w(t)
q+1 (8.42)

and the new vector field is then given by

vq+1 := ṽ`+wq+1. (8.43)

In this section we verify that the inductive estimates (8.10) hold with q replaced by q+ 1, and that
(8.12) is satisfied.
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Proof of (8.12)

We want to apply Lemma 8.2 in L2 with f = aξ and gσ =Wξ , which is by construction
(T

σ

)3−periodic
with σ ∼ λq+1r⊥, where∼means up to a constant depending only on n∗ and ξ ∈Λ. For this purpose,
note that by (8.10) we get

‖D jaξ‖L2 ≤
δ

1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

`−13 j,

and thus we can take C f =
δ

1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

. By conditions on ` we have `−13 ≤ λ 26α
q+1 , whereas by (8.17)

we have that λq+1r⊥ =
(

λq+1
2π

)1/7
. Thus, since α < 1

7·70 and a is huge, Lemma 8.2 is applicable.
Combining the resulting estimate with the normalization ‖Wξ‖L2 = 1 we obtain

‖w(p)
q+1‖L2 ≤ ∑

ξ∈Λ

C0δ
1/2
q+1

2C0|Λ|
ε

4πδ
1/2
1

‖Wξ‖L2 ≤
ε

4πδ
1/2
1

1
2

δ
1/2
q+1. (8.44)

For the correctors w(c)
q+1 and w(t)

q+1 we can use rougher estimates since they are considerably smaller

than w(p)
q+1. The following estimates are consequence of Proposition D.1, estimates (8.17), (8.23) and

Lemma 8.10

‖w(p)
q+1‖Lp . ∑

ξ∈Λ

‖aξ‖C0‖Wξ‖Lp . `−8r2/p−1
⊥ r1/p−1/2

|| (8.45a)

‖w(c)
q+1‖Lp . ∑

ξ∈Λ

‖aξ‖C2‖Vξ‖W 1,p +‖aξ‖C0‖W (c)
ξ
‖Lp

. `−18r2/p−1
⊥ r1/p−1/2

|| λ
−1
q+1 + `−8r2/p−1

⊥ r1/p−1/2
||

r⊥
r||

. `−18r2/p−1
⊥ r1/p−1/2

|| λ
−2/7
q+1 (8.45b)

‖w(t)
q+1‖Lp . µ

−1
∑

ξ∈Λ

‖aξ‖2
C0‖φξ‖2

L2 p‖ψξ‖2
L2 p . `−16r2/p−2

⊥ r1/p−1
|| µ

−1

. `−16r2/p−1
⊥ r1/p−1/2

|| λ
−1/7
q+1 , (8.45c)

where in the last inequality we used also the continuity of PH in Lp (for any 1 < p < ∞) and the fact
that ‖φ 2

ξ
ψ2

ξ
‖Lp = ‖φ 2

ξ
‖Lp‖ψ2

ξ
‖Lp , thanks to Fubini. Combining (8.44), with the last two estimates of
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(8.45) for p = 2, and using (8.17), we obtain for a constant C > 0 (which is independent of q) that3

‖wq+1‖L2 ≤

(
ε

4πδ
1/2
1

1
2

δ
1/2
q+1 +C`−18 r⊥

r||
+C`−16

λ
−1/7
q+1

)

≤ ε

4πδ
1/2
1

δ
1/2
q+1

2
+Cλ

36α−2/7
q+1 +Cλ

32α−1/7
q+1

≤ 3
4

ε

4πδ
1/2
1

δ
1/2
q+1.

Moreover from (8.26), by choosing a0 sufficiently large we get

‖vq+1− vq‖L2 ≤ ‖wq+1‖L2 +‖ṽ`− vq‖L2 ≤
ε

4πδ
1/2
1

δ
1/2
q+1,

thus (8.12) is satisfied.

Proof of (8.10a)

The bound (8.10a) follows easily from and the previous estimates (if q 6= 0)

‖vq+1‖L2 = ‖vq+1− vq + vq‖L2 ≤ ‖vq‖L2 +‖vq+1− vq‖L2

≤ 2‖v0‖L2−
ε

4π
δ

1/2
q +

ε

δ
1/2
1 4π

δ
1/2
q+1 ≤ 2‖v0‖L2−

ε

4π
δ

1/2
q+1,

where in the last inequality we have used that a is taken sufficiently large and b� 1. If q = 0, then
(8.10a) is trivial.

Proof of (8.11c)

The property (8.11c) is verified since

vq+1− vq = ṽ`− vq +wq+1

and SuppT (ṽ`− vq)⊂ SuppT η ⊂ Iq+1 , SuppT wq+1 ⊂ SuppT aξ ⊂ SuppT η̃ ⊂ Iq+1.

3In the last inequality, we have implicitly used that α < 1/(7 ·74) and a0 be sufficiently large.
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Proof of (8.10c)

Taking either a spatial or a temporal derivative, using Lemma 8.8, Lemma 8.10, (8.17) and (8.24),
we have

‖w(p)
q+1‖C1

x,t
. ‖aξ‖C1

x,t
‖Wξ‖C0

x,t
+‖aξ‖C0

x,t
‖Wξ‖C1

x,t

. `−13r−1
⊥ r−1/2
|| + `−8r−1

⊥ r−1/2
|| λ

2
q+1 . λ

2+8/7+26α

q+1 ,

‖w(p)
q+1‖C1

x,t
. ‖aξ‖C2

x,t
‖Vξ‖C1

x,t
+‖aξ‖C1

x,t
‖W (c)

ξ
‖C1

x,t
,

. `18r−1
⊥ r−1/2
|| λ

−2
q+1λ

2
q+1 + `−13 r⊥

r||
r−1
⊥ r−1/2
|| λ

2
q+1 . λ

2+6/7+36α

q+1 ,

‖w(t)
q+1‖C1

x,t
. ‖w(t)

q+1‖C1,α
x,t

.
1
µ
‖a2

ξ
φ

2
ξ

ψ
2
ξ
‖C1,α

x,t

.
1
µ
‖a2

ξ
‖C0

x,t
‖φ 2

ξ
‖C0

x,t
‖ψ2

ξ
‖C1,α

t
.

1
µ
`−16r−2

⊥ r−1/2
|| λ

2
q+1λ

2α
q+1 . λ

3−2/7+34α

q+1 .

In the latter inequality we have used that PH is continuous on Hölder spaces. Therefore, using that
α < 1/40, that a0 is sufficiently large and thanks to estimate (8.26a), we have

‖vq+1‖C1
x,t(B2s(t0)×T3) ≤ ‖ṽ`‖C1

x,t(B2s(t0)×T3)+‖wq+1‖C1
x,t
≤ λ

4
q+1.

8.4.2 The new Reynolds stress

Here we will define the new Reynolds stress R̊q+1. By definitions, ṽq+1 solves

div R̊q+1−∇pq+1

= ∂t(ṽ`+wq+1)+div((ṽ`+wq+1)⊗ (ṽ`+wq+1))−∆(ṽ`+wq+1)

=−∆wq+1 +∂t(w
(p)
q+1 +w(c)

q+1)+div(ṽ`⊗wq+1 +wq+1⊗ ṽ`)︸ ︷︷ ︸
div(Rlin)+∇plin

+div
(
(w(c)

q+1 +w(t)
q+1)⊗wq+1 +w(p)

q+1⊗ (w(c)
q+1 +w(t)

q+1)
)

︸ ︷︷ ︸
div(Rcor)+∇pcor

+div(w(p)
q+1⊗w(p)

q+1 +R`)+∂tw
(t)
q+1︸ ︷︷ ︸

div(Rosc)+∇posc

+div(Rcom)−∇p`.
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More precisely

Rlin :=−R∆wq+1 +R∂t(w
(p)
q+1 +w(c)

q+1)+ ṽ`⊗̊wq+1 +wq+1⊗̊ṽ`,

Rcor :=
(

w(c)
q+1 +w(t)

q+1

)
⊗̊wq+1 +w(p)

q+1⊗̊
(

w(c)
q+1 +w(t)

q+1

)
,

Rosc := ∑
ξ∈Λ

R
(

∇a2
ξ
P 6=0(Wξ ⊗Wξ )

)
− 1

µ
∑

ξ∈Λ

R
(

∂ta2
ξ
(φ 2

ξ
ψ

2
ξ

ξ )
)
,

plin := 2ṽ` ·wq+1,

pcor := |wq+1|2−|w
(p)
q+1|

2,

posc := ρ +Pq+1,

where the definitions of posc and Rosc are justified by the previous computation (8.41). Hence we
define

pq+1 := p`− pcor− plin− posc

and
R̊q+1 := Rlin +Rcor +Rosc +Rcom +Rloc,

where the last two were defined during the mollification step. We observe that the new Reynolds-
stress R̊q+1 is traceless, this property will be crucial in the energy estimates.

We need to estimate the new stress R̊q+1 in L1. However, since the Calderón-Zygmund operator
∇R fails to be bounded on L1, we introduce an integrability parameter,

p ∈ (1,2] such that p−1� 1.

Recalling the parameters choice (8.17), we fix p to obey

r2/p−2
⊥ r1/p−1

|| ≤ (2π)1/7
λ

16(p−1)/(7p)
q+1 ≤ λ

α
q+1, (8.46)

where we recall that 0 < α < 1
7·74 . For instance, we take p = 32

32−7α
.

Linear error Reynolds stress

By using Proposition D.1 we get that

‖Rlin‖Lp . ‖R∆wq+1‖Lp +‖ṽ`⊗̊wq+1 +wq+1⊗̊ṽ`‖Lp +‖R∂t(w
(p)
q+1 +w(c)

q+1)‖Lp

. ‖∇wq+1‖Lp +‖ṽ`‖L∞‖wq+1‖Lp + ∑
ξ∈Λ

‖∂tcurl(aξVξ )‖Lp

. ∑
ξ∈Λ

‖aξ‖C1‖Wξ‖W 1,p +‖ṽ`‖C1 ∑
ξ∈Λ

‖aξ‖C1‖Wξ‖W 1,p

+ ∑
ξ∈Λ

(‖aξ‖C1‖∂tVξ‖W 1,p +‖∂taξ‖C1‖Vξ‖W 1,p).
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Thus, by appealing to Lemma 8.8, Lemma 8.10, estimates (8.26) and to the choice of p = 32
32−7α

, we
conclude

‖Rlin‖Lp . `−13r
2
p−1
⊥ r

1
p−1/2
|| λq+1 + `−18r

2
p−1
⊥ r

1
p−

1
2

|| λq+1 + `−18
λ
−1
q+1r

2
p−1
⊥ r

1
p−

1
2

||

. `−18
λ

α
q+1λq+1r⊥r1/2

|| . λ
37α− 1

7
q+1 � 1

6
λ
−3ζ

q+1 δq+2,

where for the last inequality we used that α < 1
7·74 and 2βb+3ζ < 1

14 .

Corrector error

The estimate on the corrector error is a consequence of (8.45) and our choice of p

‖Rcor‖Lp ≤ ‖w(c)
q+1 +w(t)

q+1‖L2p‖wq+1‖L2p +‖w(p)
q+1‖L2p‖w(c)

q+1 +w(t)
q+1‖L2p

≤ 2‖w(c)
q+1 +w(t)

q+1‖L2p‖wq+1‖L2p

. `−18r1/p−1
⊥ r

1
2p−

1
2

|| λ
−1/7
q+1 . λ

36α+α

2−1/7
q+1 � 1

6
λ
−3ζ

q+1 δq+2,

where the last inequality is justified as before.

Oscillation error

By using the boundedness on Lp of the Reynolds operator R, Lemma 8.8, Lemma 8.10, (8.17),
Fubini (to separate φξ and ψξ ) and the choice of p we can estimate the second summand in the
definition of Rosc as∥∥∥∥∥ 1

µ
∑

ξ∈Λ

R
(

∂ta2
ξ
(φ 2

ξ
ψ

2
ξ

ξ )
)∥∥∥∥∥

Lp

≤ µ
−1

∑
ξ∈Λ

‖aξ‖2
C1‖φξ‖2

L2 p‖ψξ‖2
L2 p . µ

−1`−26
λ

α
q+1�

1
6

λ
−3ζ

q+1 δq+2.

To estimate the remaining summand we will use Lemma 8.3. We apply it with a = ∇a2
ξ

, κ = σ =

λq+1r⊥ and P≥σ ( f ) = P 6=0(Wξ ⊗Wξ ), that is a T3

σ
−periodic function. Then we have∥∥∥∥∥∑

ξ∈Λ

R
(

∇a2
ξ
P 6=0(Wξ ⊗Wξ )

)∥∥∥∥∥
Lp

. (λq+1r⊥)−1‖P 6=0(Wξ ⊗Wξ )‖Lp‖∇a2
ξ
‖C1

. `−21
λ
−1/7
q+1 ‖Wξ‖2

L2p . `−21
λ
−1/7
q+1 r

2
p−1
⊥ r

1
p−

1
2

||

. λ
42α+α−1/7
q+1 � 1

6
λ
−3ζ

q+1 δq+2.
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Then (8.10b) at step q+1 follows easily using also the previous estimates for Rcom and Rloc

‖R̊q+1‖L1 ≤ ‖Rlin‖L1 +‖Rcor‖L1 +‖Rosc‖L1 +‖Rcom‖L1 +‖Rloc‖L1

≤ 2
3

λ
−3ζ

q+1 δq+2 +
1
3

λ
−3ζ

q+1 δq+2 ≤ λ
−3ζ

q+1 δq+2,

where in the last inequality we have used that 2βb+3ζ < α . Finally, since SuppT wq+1 ⊂ Iq+1, then
also (8.11b) holds at step q+1.

8.4.3 Energy iteration
In order to complete the proof of Proposition 8.5 we only need to prove the energy estimate (8.11a)

at step q+1.

Lemma 8.11. The following estimate holds for all t ∈ I0

δq+2

λ
ζ/2
q+1

≤ e(t)−
ˆ
T3
|vq+1(x, t)|2dx≤

δq+2ε1

δ1
. (8.47)

Proof. Recalling (8.39) and the mutually disjoint supports of {Wξ}ξ∈Λ we notice that

|w(p)
q+1|

2 =

∣∣∣∣∣∑
ξ∈Λ

aξWξ

∣∣∣∣∣
2

= ∑
ξ∈Λ

Tr(aξWξ ⊗aξWξ )

= ∑
ξ∈Λ

a2
ξ

Tr
( 

T3
Wξ ⊗Wξ

)
+ ∑

ξ∈Λ

a2
ξ

Tr
(

Wξ ⊗Wξ −
 
T3

Wξ ⊗Wξ

)
= 3ρ + ∑

ξ∈Λ

a2
ξ

Tr
(

Wξ ⊗Wξ −
 
T3

Wξ ⊗Wξ

)
, (8.48)

where in the last equation we used the traceless property of R` and (8.35).
Applying Lemma 8.4 with f replaced by a2

ξ
(which oscillates at frequency ∼ `−5), the constant

C f ∼ `−16 (thanks to the estimate of Lemma 8.10) and gσ replaced with Wξ ⊗Wξ −
ffl
T3 Wξ ⊗Wξ

(where σ = λq+1r⊥), we get∣∣∣∣∣
ˆ
T3

∑
ξ∈Λ

a2
ξ

Tr
(

Wξ ⊗Wξ −
 
T3

Wξ ⊗Wξ

)∣∣∣∣∣. `−21 1
λq+1r⊥

�
δq+2

6
, (8.49)

where in the last inequality we used that α < 1
7·74 and 2βb < 1

14 . We write the identity

e(t)−
ˆ
T3
|vq+1|2 = e(t)−

(ˆ
T3
|ṽ`|2 +

ˆ
T3
|w(p)

q+1|
2
)
−
(ˆ

T3
|w(c)

q+1 +w(t)
q+1|

2 +2
ˆ
T3

ṽ` ·wq+1

)
−
(

2
ˆ
T3

w(p)
q+1 · (w

(c)
q+1 +w(t)

q+1)

)
(8.50)
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and thanks to (8.48), (8.49) and to the definition of ρ (8.28), using also that η̃ ≡ 1 in I0, we have

δq+2

λ
ζ/4
q+1

≤ e(t)−
(ˆ

T3
|ṽ`|2 +

ˆ
T3
|w(p)

q+1|
2
)
≤

2δq+2

3
, for all t ∈ I0,

up to possibly enlarge a0(ζ ). Moreover, by using (8.26) and (8.45) we can estimate∣∣∣∣ˆ
T3
|w(c)

q+1 +w(t)
q+1|

2 +2
ˆ
T3

ṽ` ·wq+1

∣∣∣∣≤ δq+2

λ
ζ/3
q+1

,∣∣∣∣2ˆ
T3

w(p)
q+1 · (w

(c)
q+1 +w(t)

q+1)

∣∣∣∣≤ δq+2

λ
ζ/3
q+1

,

from which (8.47) follows.
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Appendix A

Main functional spaces and norms

Here we define the main functional spaces used in this work, namely Hölder, Besov and Sobolev
spaces. We define them for a general d−dimensional Lipschitz domain Ω ⊂ Rd . In what follows
θ ∈ (0,∞), n ∈ N, r,s ∈ [1,∞] and β is a multi-index, f is a (scalar or vector valued) function defined
on Ω. Moreover, for any θ ∈ (0,∞), let θ− to be the biggest integer which is strictly less than θ .

Hölder spaces

For any n≥ 0 we define the usual Cn(Ω) norms

‖ f‖C0(Ω) = sup
x∈Ω

| f (x)| ,

[ f ]Cn(Ω) = sup
|β |=n
‖Dβ f‖C0(Ω) ,

‖ f‖Cn(Ω) = ‖ f‖C0(Ω)+
n

∑
j=1

[ f ]C j(Ω) .

Moreover, for any θ ∈ (0,1] we define the Hölder norms as

[ f ]Cθ (Ω) = sup
x 6=y,x,y∈Ω

| f (x)− f (y)|
|x− y|θ

,

‖ f‖Cn,θ (Ω) = ‖ f‖Cn(Ω)+ sup
|β |=n

[Dβ f ]Cθ (Ω).

To lighten the notation we will often denote the Hölder norms just introduced as ‖ f‖θ . Moreover, for
time dependent functions f = f (x, t) we will write ‖ f (t)‖θ when the Hölder norm is computed for a
fixed time slice t. Finally, when the time t is not explicit in the norm of a time dependent function we
mean that the supremum is taken. More precisely

‖ f‖θ = sup
t
‖ f (t)‖θ .

We also recall the following elementary inequalities
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Proposition A.1. Let f ,g be two smooth functions. For any r ≥ s≥ 0 we have

[ f g]Cr(Ω) ≤C
(
[ f ]Cr(Ω)‖g‖C0(Ω)+‖ f‖C0(Ω)[g]Cr(Ω)

)
(A.1)

[ f ]Cs(Ω) ≤C‖ f‖1−s/r

C0(Ω)
[ f ]

s/r

Cr(Ω)
. (A.2)

Proposition A.2. Let Ψ : Ω→ R and u : Rn→ Ω be two smooth functions, with Ω ⊂ RN . Then, for
every m ∈ N+, there exists a constant C > 0 (depending only on m,N,n) such that

[Ψ◦u]Cm(Rn) ≤C
(
[Ψ]C1(Ω)[u]Cm(Rn)+‖DΨ‖Cm−1(Ω)‖u‖m−1

C0(Rn)
[u]Cm(Rn)

)
,

[Ψ◦u]Cm(Rn) ≤C
(
[Ψ]C1(Ω)[u]Cm(Rn)+‖DΨ‖Cm−1(Ω)‖u‖m

C1(Rn)

)
.

Sobolev spaces

Denoting by Lr(Ω) the usual Lebesgue space of r−summable functions, we define the integer
Sobolev norms as

[ f ]W n,r(Ω) = sup
|β |=n
‖Dβ f‖Lr(Ω) ,

‖ f‖W n,r(Ω) = ‖ f‖Lr(Ω)+
n

∑
j=1

[ f ]W j,r(Ω).

Moreover, if θ is not an integer and r < ∞, the fractional Sobolev spaces will be characterize by the
following

[ f ]W θ ,r(Ω) =

(ˆ
Ω

ˆ
Ω

| f (x)− f (y)|r

|x− y|d+(θ−θ−)r
dxdy

) 1
r

,

‖ f‖W θ ,r(Ω) = ‖ f‖W θ−,r(Ω)
+[ f ]W θ ,r(Ω) .

We will use the usual identifications W 0,r(Ω) = Lr(Ω) and W θ ,∞(Ω) =Cθ (Ω).

Besov spaces

We first define the Besov spaces on the whole Rd , then their version on general open sets Ω will
be defined by extension.

For any non integer θ ∈ (0,∞), the Besov space Bθ
r,s(Rd) is the space of functions f ∈W θ−,r(Rd)

such that

[ f ]Bθ
r,s(Rd) = ∑

|α|=θ−

(ˆ
Rd

1
|h|d+(θ−θ−)s

(ˆ
Rd
|Dα f (x+h)−Dα f (x)|r dx

) s
r

dh

) 1
s

< ∞,
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with the usual generalization when r,s = ∞. The full Besov norm will be then given by

‖ f‖Bθ
r,s(Rd) = ‖ f‖W θ−,r(Rd)

+[ f ]Bθ
r,s(Rd).

If instead θ > 0 is an integer, the Besov space Bθ
r,s(Rd) consists of all the functions f ∈W θ ,r(Rd),

such that

[ f ]Bθ
r,s(Rd) = ∑

|α|=θ

(ˆ
Rd

1
|h|d+s

(ˆ
Rd
|Dα f (x+2h)−2Dα f (x+h)+Dα f (x)|r dx

) s
r

dh

) 1
s

< ∞,

again with the usual generalization when r,s = ∞. Thus the full norm will be given by

‖ f‖Bθ
r,s(Rd) = ‖ f‖W θ ,r(Rd)+[ f ]Bθ

r,s(Rd).

For any open and Lipschitz set Ω we then define

Bθ
r,s(Ω) =

{
f : Ω→ Rd s.t. ∃ f̃ ∈ Bθ

r,s(Rd), f̃ |Ω = f
}
,

where the semi-norm is given by

[ f ]Bθ
r,s(Ω) = inf

{
[ f̃ ]Bθ

r,s(Rd), f̃ |Ω = f
}
.

By the definitions above we have that for any non integer θ ∈ (0,∞), Bθ
r,r(Ω) = W θ ,r(Ω) for any

r ∈ [1,∞], which in the case r = ∞ gives Bθ
∞,∞(Ω) = Cθ (Ω). Moreover, since the domain Ω is Lips-

chitz, we always have the existence of a linear extension operator to the whole space. It is well know
that this operator turns out to be also continuous between every Sobolev or Besov spaces. When
considering the flat d-dimensional torus Td , we define the Besov norm as above with Ω = [0,4]d that
is, we compute the norm in 4 copies of Td . This is enough to encode all the informations for a well
defined periodic Besov function.

We give the following interpolation result in Besov spaces.

Proposition A.3. Let Ω ⊂ Rd be an open and Lipschitz set. For any r ∈ [1,∞], θ ,γ ∈ (0,1) with
θ ≥ γ , there exists a constant C > 0 such that

[ f ]Bγ
r,∞(Ω) ≤C‖ f‖1− γ

θ

Lr(Ω)
‖ f‖

γ

θ

Bθ
r,∞(Ω)

, (A.3)

[ f ]Bθ
r,∞(Ω) ≤C‖ f‖

1−θ

1−γ

Bγ
r,∞(Ω)
‖ f‖

θ−γ

1−γ

W 1,r(Ω)
. (A.4)

The constant C in the previous proposition depends only on the domain Ω, more precisely it
depends on the linear operator which extends a function defined on Ω to the whole space Rd . Note
that the same inequalities hold if one replaces all the semi-norms with the full norms.
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Proof. We start by proving (A.3) and (A.4) in the whole space Rd . Note that for every f ∈ Bθ
r,∞(Rd)

and θ ≥ γ , we have
[ f ]Bγ

r,∞(Rd) ≤ 2
(
‖ f‖Lr(Rd)+[ f ]Bθ

r,∞(Rd)

)
. (A.5)

By plugging in (A.5) the rescaled function f (εx), we also get

ε
γ [ f ]Bγ

r,∞(Rd) ≤ 2
(
‖ f‖Lr(Rd)+ ε

θ [ f ]Bθ
r,∞(Rd)

)
,

for every ε > 0. Thus by choosing ε = ‖ f‖
1
θ

Lr(Rd)
[ f ]
− 1

θ

Bθ
r,∞(Rd)

, we get (A.3) for Ω = Rd . Take now

λ ∈ [0,1) such that (1−λ )γ +λ = θ . We estimate

‖ f (·+ y)− f (·)‖Lr(Rd)

|y|θ
=

(
‖ f (·+ y)− f (·)‖Lr(Rd)

|y|γ

)1−λ (‖ f (·+ y)− f (·)‖Lr(Rd)

|y|

)λ

≤ [ f ]1−λ

Bγ
r,∞(Rd)

‖∇ f‖λ

Lr(Rd)
,

from which, since λ = θ−γ

1−γ
, we conclude (A.4) for Ω = Rd . If f ∈ Bθ

r,∞(Ω) for Ω as in the statement,
(A.3) and (A.4) easily follow from their versions in Rd and the existence of a (continuous) extension
operator.



Appendix B

Mollification estimates

In this section we state some useful mollification estimates that are often used in this work. We
start by recalling the definition of the standard Friedrichs’ mollifiers.

Let B1(0) ⊂ Rd be the d−dimensional ball of radius 1 and let ϕ ∈C∞
c (B1(0)) be a standard non

negative kernel such that
´

B1(0)
ϕ(x)dx = 1. For any δ > 0 we define ϕδ = δ−3ϕ( x

δ
) and we denote

the mollification of a function f as

fδ = f ∗ϕδ =

ˆ
B1(0)

f (x− y)ϕδ (y)dy .

Note that a direct consequence of the definition is that the mollification preserves the average
ˆ
Td

f (x)dx =
ˆ
Td

fδ (x)dx , ∀δ > 0 . (B.1)

The next propositions collect some elementary estimates on these regularized functions for different
spaces, in particular (B.2) is the well known Constantin-E-Titi commutator estimate from [22]. The
symbol ? is used to denote both the tensor and the scalar product.

Proposition B.1. For any f ,g : T3→ R3, θ ∈ (0,1] and N ≥ 0 we have:

‖ fδ ?gδ − ( f ?g)δ‖CN ≤CNδ
2θ−N [g]Cθ [ f ]Cθ , (B.2)

‖ fδ‖CN+θ ≤CNδ
−N [ f ]Cθ , (B.3)

‖ fδ‖CN+1 ≤CNδ
θ−N−1[ f ]Cθ , (B.4)

‖ fδ − f‖C0 ≤Cδ
θ [ f ]Cθ . (B.5)

for a constant CN > 0 depending only on N.

A proof of the following elementary estimates in Lp and Sobolev spaces can be found in [28].
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Proposition B.2. For any f : Td → Rd, θ ∈ (0,1), r ∈ [1,∞] and any integer n ≥ 0, we have the
following

‖ f − fδ‖Lr(Td) ≤Cδ
θ‖ f‖Bθ

r,∞(Td), (B.6)

‖ fδ‖W n+1,r(Td) ≤Cδ
θ−n−1‖ f‖Bθ

r,∞(Td), (B.7)

‖ fδ ? fδ − ( f ? f )δ‖W n,r(Td) ≤Cδ
2θ−n‖ f‖2

Bθ
2r,∞(Td)

, (B.8)

for some constant C > 0 depending on θ ,r,n but otherwise independent of δ .

For any 1≤ r < ∞ we set

[ f ]W θ ,r(TdxBδ )
=

(ˆ
Td

ˆ
Bδ (x)

| f (x)− f (y)|r

|x− y|θr+3 dxdy
) 1

r

.

Proposition B.3. There exists a constant C > 0 such that for any f ,g : T3→ R3 and for any θ ,α ∈
(0,1),r ∈ [1,∞) and for every 1≤ p,q≤ ∞ with 1

p +
1
q = 1, we have

‖∇ fδ‖Lr ≤Cδ
α−1[ f ]W α,r(T3xBδ )

, (B.9)

‖∇curl fδ‖Lr ≤Cδ
α−2[ f ]W α,r(T3xBδ )

, (B.10)

‖ fδ ?gδ − ( f ?g)δ‖Lr ≤Cδ
θ+α [ f ]W θ ,rp(T3xBδ )

[g]W α,rq(T3xBδ )
. (B.11)



Appendix C

Fractional Laplacian

Here we recall the definition and the main properties of the fractional Laplacian, that will be de-
noted by (−∆)α , where α ∈ (0,1). We give both the definitions of this non-local operator in the whole
space R3 and in the periodic setting T3 = [0,1]3.

If f : R3→ R we define, for every x ∈ R3,

(−∆)α f (x) =Cα

ˆ
R3

f (x)− f (y)
|x− y|3+2α

dy,

where the normalization constant Cα is given by

Cα =
4αΓ(3/2+α)

π3/2|Γ(−s)|
.

For a periodic function f : T3→R, for every x ∈T3, the fractional Laplacian is defined as the symbol
|k|2α in the Fourier space. More precisely

(−∆)α f (x) = ∑
k∈Z3

|k|2α fke2πik·x,

where fk =
´
T3 f (x)e−2πik·x dx is the k-th Fourier coefficient of f .

The two definitions above coincide. Indeed in [55, Theorem 1.5] it has been proved that, if the
function f : T3→ R is regular enough, then for all x ∈ T3,

(−∆)α f (x) =
ˆ
T3
( f (x)− f (y))Kα(x− y)dy, (C.1)

where the kernel Kα : T3→ R is given by

Kα(x) =Cα ∑
k∈Z3

1
|x− k|3+2α

.
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182 C. Fractional Laplacian

Note that since the function f is periodic, one has f (x+k) = f (x), for all x ∈R3, k ∈ Z3, from which
we can rewrite (C.1) as

(−∆)α f (x) =
ˆ
T3
( f (x)− f (y+ k))Kα(x− y)dy =Cα ∑

k∈Z3

ˆ
[0,1]3

f (x)− f (y+ k)
|x− y− k|3+2α

dy

=Cα ∑
k∈Z3

ˆ
[0,1]3−k

f (x)− f (y)
|x− y|3+2α

dy =Cα

ˆ
R3

f (x)− f (y)
|x− y|3+2α

dy, (C.2)

which shows that the two definitions give the same result for every, regular enough, periodic function
on R3. In particular, the latter integral is well defined whenever f ∈Cθ (T3), with θ > 2α .

The following theorem is taken from [55, Theorem 1.4].

Theorem C.1. Let γ,ε > 0 and β ≥ 0 such that 2γ +β +ε ≤ 1, and let f : Td→R. If f ∈C0,2γ+β+ε ,
then (−∆)γ f ∈Cβ , moreover there exists a constant C =Cε > 0 such that

‖(−∆)γ f‖Cβ (T3) ≤Cε [ f ]C2γ+β+ε (T3). (C.3)

Corollary C.2. Let γ ∈ (0,1), ε > 0 be such that 0 < γ + ε ≤ 1, and let f : Td → R. There exist a
constant C =Cε > 0 such that ˆ

T3
|(−∆)

γ/2 f |2(x)dx≤Cε [ f ]2Cγ+ε (T3) .

We also have the following commutator estimate

Proposition C.3. Let k1, k2, α ∈
(
0, 1

2

)
, β ∈ (0,1), f ,g :T3→R3 and consider the non-local operator

T α( f ,g) = (−∆)α( f ⊗g)− (−∆)α f ⊗g− f ⊗ (−∆)αg. Assume also that k1 + k2 = 2α . We have the
following

(i) if max(k1,k2)+
β

2 < 2α there exists a constant C =Ck1,k2,α,β > 0 such that

‖T α( f ,g)‖Cβ (T3) ≤C‖ f‖Ck1+β/2(T3)‖g‖Ck2+β/2(T3) ;

(ii) if min(k1,k2) +
β

2 ≥ 2α and max(k1,k2) +
β

2 < 1 then for every small ε > 0 there exists a
constant C =Ck1,k2,α,β ,ε > 0 such that

‖T α( f ,g)‖Cmin(k1,k2)+β/2−ε (T3) ≤C‖ f‖Ck1+β/2(T3)‖g‖Ck2+β/2(T3) .

An easy consequence of the previous proposition is that, taking f = g = u and k1 = k2 = α , one
gets

‖T α(u)‖Cβ (T3) ≤Cα,β‖u‖2
Cα+β/2(T3)

if
β

2
< α ; (C.4)

‖T α(u)‖Cα+β/2−ε (T3) ≤Cα,β ,ε‖u‖2
Cα+β/2(T3)

if α ≤ β

2
, α +

β

2
< 1; (C.5)

where we used the notation T α(u) = T α(u,u).
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Proof. A direct consequence of (C.2) is the following pointwise formula

T α( f ,g)(x) =Cα

ˆ
R3

(
f (x)− f (y)

)
⊗
(
g(y)−g(x)

)
|x− y|3+2α

dy .

The estimate ‖T α f‖C0 ≤C‖ f‖Ck1+β/2‖g‖Ck2+β/2 is easy and is left to the reader.

We fix x1,x2 ∈ R3 and we define x = x1+x2
2 and λ = |x1− x2|. For simplicity we also define the

tensor ϕ(x,y) =
(

f (x)− f (y)
)
⊗
(
g(y)−g(x)

)
. We now split

T α( f ,g)(x1)−T α( f ,g)(x2)

Cα

=

ˆ
Bλ (x)

ϕ(x1,y)
|x1− y|3+2α

dy+
ˆ

Bλ (x)

ϕ(x2,y)
|x2− y|3+2α

dy

+

ˆ
Bc

λ
(x)

ϕ(x1,y)−ϕ(x2,y)
|x1− y|3+2α

dy+
ˆ

Bc
λ
(x)

(
1

|x1− y|3+2α
− 1
|x2− y|3+2α

)
ϕ(x2,y)dy

= I + II + III + IV .

The first two integrals can be estimated as

|I|, |II| ≤ [ f ]Ck1+β/2[g]Ck2+β/2

ˆ
Bλ (x)

(
1

|x1− y|3−β
+

1
|x2− y|3−β

)
dy

≤Cλ
β [ f ]Ck1+β/2[g]Ck2+β/2 .

(C.6)

Now we note that the difference ϕ(x1,y)−ϕ(x2,y) can be rewritten as

ϕ(x1,y)−ϕ(x2,y) =
(

f (x1)− f (x2)
)
⊗
(
g(y)−g(x2)

)
+
(

f (y)− f (x1)
)
⊗
(
g(x1)−g(x2)

)
.

Thus, assuming max(k1,k2)+
β

2 < 2α , we estimate

|III| ≤C[ f ]Ck1+β/2[g]Ck2+β/2

(ˆ
Bc

λ
(x)

λ k1+
β

2 dy

|x− y|3+2α−k2− β

2

+

ˆ
Bc

λ
(x)

λ k2+
β

2 dy

|x− y|3+2α−k1− β

2

)
≤Cλ

β [ f ]Ck1+β/2 [g]Ck2+β/2 (C.7)

while in the case min(k1,k2)+
β

2 ≥ 2α , for every small ε > 0 we estimate

|III| ≤C

(
[ f ]Ck1+β/2[g]C2α−ε

ˆ
Bc

λ
(x)

λ k1+
β

2 dy
|x− y|3+ε

+[ f ]C2α−ε [g]
Ck2+

β

2

ˆ
Bc

λ
(x)

λ k2+
β

2 dy
|x− y|3+ε

)
≤C

(
λ

k1+
β

2−ε +λ
k2+

β

2−ε

)
‖ f‖Ck1+β/2‖g‖Ck2+β/2 , (C.8)
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where we have also used that |x1− y|, |x2− y|& |x− y| for every y ∈ Bc
λ
(x).

We are now left with IV . We notice that for every y ∈ Bc
λ
(x) we have∣∣∣∣ 1

|x1− y|3+2α
− 1
|x2− y|3+2α

∣∣∣∣= ∣∣∣∣ˆ 1

0

d
dt

1
|tx1 +(1− t)x2− y|3+2α

dt
∣∣∣∣. λ

1
|x− y|4+2α

from which, in the case max(k1,k2)+
β

2 < 2α , we get (notice that in this case β < 4α−2max(k1,k2)<
2α < 1)

|IV | ≤Cλ [ f ]Ck1+β/2 [g]Ck2+β/2

ˆ
Bc

λ
(x)

1
|x− y|4−β

dy≤Cλ
β [ f ]Ck1+β/2[g]Ck2+β/2 , (C.9)

while, if min(k1,k2)+
β

2 ≥ 2α and max(k1,k2)+
β

2 < 1 we have

|IV | ≤Cλ [ f ]Ck1+β/2[g]C2α

ˆ
Bc

λ
(x)

1

|x− y|4−k1− β

2

dy≤Cλ
k1+

β

2 ‖ f‖Ck1+β/2‖g‖Ck2+β/2 . (C.10)

We conclude the proof combining (C.6)-(C.10).



Appendix D

Inverse divergence operator and stationary
phase Lemma

Here we recall the inverse divergence operator from [7] acting on zero average vector fields.

(R f )i j = Ri jk f k

Ri jk =−1
2

∆
−2

∂i∂ j∂k−
1
2

∆
−1

∂kδi j +∆
−1

∂iδ jk +∆
−1

∂ jδik.
(D.1)

By standard regularity estimates on linear elliptic equations the following holds

Proposition D.1. For every smooth zero average vector field f , the tensor R f is a symmetric, trace-
free matrix such that

divR f = f .

Moreover we have

• for every α ∈ (0,1), R and R∇ are bounded linear operators from Cα to Cα ;

• for every p ∈ (1,∞), R and R∇ are bounded linear operators from Lp to Lp.

The following is a simple consequence of classical stationary phase techniques. For a detailed
proof the reader might consult [25, Lemma 2.2].

Proposition D.2. Let α ∈ (0,1) and N ≥ 1. Let a ∈ C∞(T3), Φ ∈ C∞(T3;R3) be smooth functions
and assume that

Ĉ−1 ≤ |∇Φ| ,
∣∣∇Φ

−1∣∣≤ Ĉ

holds on T3. Then ∣∣∣∣ˆ
T3

a(x)eik·Φ dx
∣∣∣∣. ‖a‖N +‖a‖0‖Φ‖N

|k|N
, (D.2)
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186 D. Inverse divergence operator and stationary phase Lemma

and for the operator R defined in (D.1), we have∥∥∥R(a(x)eik·Φ
)∥∥∥

α
.
‖a‖0

|k|1−α
+
‖a‖N+α +‖a‖0‖Φ‖N+α

|k|N−α
,

where the implicit constant depends on Ĉ, α and N, but not on k.



Appendix E

Mikado flows

Here we recall the construction of Mikado flows given in [25].

Lemma E.1. For any compact subset N ⊂⊂S 3×3
+ there exists a smooth vector field

W : N ×T3→ R3,

such that, for every R ∈N {
div ξ (W (R,ξ )⊗W (R,ξ )) = 0

div ξW (R,ξ ) = 0,
(E.1)

and  
T3

W (R,ξ )dξ = 0,
 
T3

W (R,ξ )⊗W (R,ξ )dξ = R. (E.2)

Using the fact that W (R,ξ ) is T3-periodic and has zero mean in ξ , we write

W (R,ξ ) = ∑
k∈Z3\{0}

ak(R)eik·ξ (E.3)

for some smooth functions R→ ak(R) ∈ C3, satisfying ak(R) · k = 0. From the smoothness of W , we
further infer

sup
R∈N
|DN

R ak(R)| ≤
C(N ,N,m)

|k|m
(E.4)

for some constant C, which depends, as highlighted in the statement, on N , N and m. If needed, the
smooth, vector valued, function ak(R) can be further decomposed as Akãk(R), where Ak is a unitary
vector and ãk(R) is a scalar function.
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188 E. Mikado flows

Using the Fourier representation we see that from (E.2)

W (R,ξ )⊗W (R,ξ ) = R+ ∑
k 6=0

Ck(R)eik·ξ (E.5)

where

Ckk = 0 and sup
R∈N
|DN

RCk(R)| ≤
C(N ,N,m)

|k|m
(E.6)

for any m,N ∈ N.

It will also be useful to write the Mikado flows in terms of a potential. We note

curl ξ

((
ik×ak

|k|2

)
eik·ξ

)
=−i

(
ik×ak

|k|2

)
× keik·ξ =−k× (k×ak)

|k|2
eik·ξ = akeik·ξ (E.7)



Appendix F

Potential Theory estimates

We recall the definition of the standard class of periodic Calderón-Zygmund operators. Let K be
an R3 kernel which obeys the properties

• K(z) = Ω

(
z
|z|

)
|z|−3, for all z ∈ R3 \{0}

• Ω ∈C∞(S2)

•
´
|ẑ|=1 Ω(ẑ)dẑ = 0.

From the R3 kernel K, use Poisson summation to define the periodic kernel

KT3(z) = K(z)+ ∑
`∈Z3\{0}

(K(z+ `)−K(`)) .

Then the operator

TK f (x) = p.v.
ˆ
T3

KT3(x− y) f (y)dy

is a T3-periodic Calderón-Zygmund operator, acting on T3-periodic functions f with zero mean on
T3. The following proposition, proving the boundedness of periodic Calderón-Zygmund operators on
periodic Hölder spaces is classical.

Proposition F.1. Fix α ∈ (0,1). Periodic Calderón-Zygmund operators are bounded on the space of
zero mean T3-periodic Cα functions.

The following proposition is taken from [7].

Proposition F.2. Let α ∈ (0,1) and N ≥ 0. Let TK be a Calderón-Zygmund operator with kernel K.
Let b ∈CN+1,α (T3) be a divergence free vector field. Then we have

‖[TK,b ·∇] f‖N+α . ‖b‖1+α‖ f‖N+α +‖b‖N+1+α‖ f‖α ,

for any f ∈CN+α
(
T3), where the implicit constant depends on α,N and K.
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Appendix G

Some stability estimates

We recall some well known results regarding smooth solutions of the transport equation{
∂t f + v ·∇ f = g
f |t0 = f0,

(G.1)

where v = v(t,x) is a given smooth vector field. We will consider solutions on the entire space R3 and
treat solutions on the torus simply as periodic solution in R3.

For a detailed proof of the next proposition we refer to [6, Appendix D].

Proposition G.1. Assume |t− t0|‖v‖1 ≤ 1. Any solution f of (G.1) satisfies

‖ f (t)‖α . ‖ f0‖α +

ˆ t

t0
‖g(τ)‖α dτ , (G.2)

for all 0≤ α ≤ 1, and, more generally, for any N ≥ 1 and 0≤ α ≤ 1

[ f (t)]N+α ≤ [ f0]N+α +(t− t0)[v]N+α [ f0]1 +

ˆ t

t0
([g(τ)]N +(t− τ)[v]N [g(τ)]1) dτ. (G.3)

Define Φ(t, ·) to be the inverse of the flux X of v starting at time t0 as the identity (i.e. d
dt X = v(X , t)

and X(x, t0) = x). Under the same assumptions as above, the following holds

‖∇Φ(t)− Id‖0 . |t− t0|[v]1 , (G.4)
[Φ(t)]N . |t− t0|[v]N ∀N ≥ 2. (G.5)

Using the same technique introduced in Chapter 2 to prove the time regularity for Hölder solutions
of Euler, we prove the following
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Proposition G.2. Let u,v :T3×[0,T ]→R3 be two weak solutions of (6.1) such that u,v∈C0(([0,T ];Cθ (T3))
for some θ ∈ (0,1). Then there exists a constant C > 0, depending only on θ , ‖u‖θ and ‖v‖θ , such
that

‖u− v‖Cθ
x,t
≤C‖u− v‖θ .

Proof. We define w = u− v. We start by noticing that the Hölder norm, in the space-time variables,
decouples as follows

|w(x,s)−w(y, t)|
|(x,s)− (y, t)|θ

≤ |w(x,s)−w(y,s)|
|x− y|θ

+
|w(y,s)−w(y, t)|
|t− s|θ

≤ ‖w‖θ +
|w(y,s)−w(y, t)|
|t− s|θ

.

Thus it is enough to show that there exists a constant C > 0, independent of y, t,s, such that

|w(y,s)−w(y, t)|
|t− s|θ

≤C‖w‖θ . (G.6)

If p and q are the corresponding pressures associated to u and v respectively, one has that w solves

∂tw+div(w⊗u+ v⊗w)+∇(p−q) = 0. (G.7)

By taking the divergence of (G.7), we get

−∆(p−q) = divdiv(w⊗u+ v⊗w),

from which, by Schauder estimates, we get

‖p−q‖θ ≤ ‖w‖θ (‖u‖θ +‖v‖θ )≤C‖w‖θ . (G.8)

Let now wδ = w∗ϕδ the space mollification of w, for some δ > 0 that will be fixed at the end of the
proof. Since w ∈C0([0,T ];Cθ (T3)) we have

|w(y, t)−wδ (y, t)| ≤C‖w‖θ δ
θ ∀t ∈ [0,T ],

from which, by adding and subtracting wδ (y,s) and wδ (y, t), we can estimate

|w(y,s)−w(y, t)| ≤C‖w‖θ δ
θ + |wδ (y,s)−wδ (y, t)|. (G.9)

Moreover, since w solves (G.7), we get

|wδ (y,s)−wδ (y, t)| ≤ |t− s|‖∂twδ‖C0
x,t
≤ |t− s|

(
‖(w⊗u+ v⊗w)δ‖1 +‖(p−q)δ‖1

)
. (G.10)

By estimate (G.8) and (B.4), we have

‖(p−q)δ‖1 ≤C‖w‖θ δ
θ−1, ∀δ > 0,
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and also

‖(w⊗u+ v⊗w)δ‖1 ≤Cδ
θ−1‖w⊗u+ v⊗w‖θ ≤C‖w‖θ δ

θ−1, ∀δ > 0.

Thus, by plugging these two last inequalities in (G.10), we get

|wδ (y,s)−wδ (y, t)| ≤C|t− s|δ θ−1‖w‖θ , ∀δ > 0,

from which, by (G.9), we conclude

|w(y,s)−w(y, t)| ≤C(δ θ + |t− s|δ θ−1)‖w‖θ , ∀δ > 0.

By choosing δ = |t− s| we finally achieve (G.6), and this concludes the proof.
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