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ABSTRACT

In this thesis we deal with interior regularity issues for area minimizing surfaces. In particular,
we consider a special class of almost area minimizing, 2-dimensional integral currents, with
bounded mean curvature, and we prove that their interior singular set is discrete. More
specifically, we treat area minimzing currents in riemannian manifolds, semicalibrated
currents and spherical cross sections of 3-dimensional area minimizing cones. In all these
three situations our result is sharp. Moreover, a nice corollary of our theorem is the fact that
the singular set of 3-dimensional area minimizing cones consists of at most a finite number
of lines.

Our result is inspired by the approach of Almgren-Chang (cf. [9]) for area minimizing
currents, which we revisit and complete, adding also some new cases. In particular we
use a lot of techniques coming from De Lellis and Spadaro’s new proof of Almgren’s Big
Regularity paper (cf. [17, 18, 19, 20, 21]). Other important known results that we manage to
cover are Tian-Riviére regularity theorem for almost complex curves (cf. [53]) and Bellettini-
Riviére extension to a class of semicalibrated 3-dimensional cones (cf. [7]). Our result for
general semicalibrated currents and general 3-dimensional area minimizing cones is entirely
new.

It is worth mentioning that, among the various steps in the proof of our main result, we
give a unified and much shorter proof of already existing results concerning the uniqueness
of the tangent cone to 2-dimensional area minimizing and semicalibrated currents (cf.
[66, 46]), generalizing it to the larger class of almost area minimizing 2-dimensional currents.
This is done relying heavily on [66]. Moreover, we also generalize a Lipschitz approximation
result for area minimizing currents, proved first by Almgren (cf. [3]) and recently revisited by
De Lellis and Spadaro (cf. [19]). In particular this result is independent from the dimension
of the current.

The other two fundamental tools are the so called Center Manifold and the Frequency
function, for which we were inspired by [3, 9, 20, 21], and which we combine in an inductive
argument to conclude our main theorem.

All the results of this thesis where obtained in collaboration with Camillo De Lellis and
Emanuele Spadaro, to whom I deeply grateful for guiding me step by step in the beautiful
(and hard) world of geometric measure theory.






ABSTRAKT

In dieser Arbeit beschiftigen wir uns mit der inneren Regularitdt von Oberflaichen min-
imalen Flicheninhalts. Insbesondere betrachten wir eine spezielle Klasse von beinahe-
flaichenminimierenden, 2-dimensionalen Integral-Stromen mit beschrankter mittlerer Kriim-
mung und wir beweisen, dass die Menge ihrer inneren Singularitdten diskret ist. Etwas
genauer gesagt, behandeln wir Strome, welche den Fldcheninhalt in Riemannschen Man-
nigfaltigkeit minimieren, semikalibrierte Strome sowie sphérische Querschnitte von 3-
dimensionalen flichenminimierenden Kegeln. In jedem dieser drei Situationen ist unser
Resultat optimal. Ausserdem ergibt sich als schones Korollar, dass die Menge der Singular-
itaten von 3-dimensionalen, flichenminimierenden Kegeln hochstens aus einer endlichen
Menge von Geraden besteht.

Unser Resultat wurde durch den Ansatz von Almgren-Chen (cf. [9]) fiir flichenmin-
imierende Strome inspiriert. Wir greifen diesen Ansatz wieder auf, vervollstindigen ihn
und fligen ausserdem einige neue Fille hinzu. Insbesondere benutzen wir viele Tech-
niken von De Lellis and Spadaro’s neuem Beweis von Almgren’s Big Regularity paper
(cf. [17, 18, 19, 20, 21]). Weitere wichtige bekannte Resultate welche wir mit dieser Arbeit
abdecken sind Tian-Riviére’s Regularitdt’s-Thoerem fiir beinahe-komplexe Kurven (cf. [53])
und Bellettini-Riviére’s Erweiterung auf eine Klasse von semi-kalibrierten 3-dimensionalen
Kegeln (cf. [7]). Unser Resultat fiir semi-kalibrierte Strome und allgemeine 3-dminesionale
flaichenminimierenden Kegeln ist vollig neu.

Es lohnt sich zu erwdhnen, dass neben den diversen Schritten im Beweis unseres Haupt-
satzes ein vereinheitlichender und sehr viel kiirzerer Beweis von bereits bekannten Resultaten
betreffend der Eindeutigkeit von Tangentialkegeln an 2-dimensionale flichenminimierenden
and semi-kalibrierten Stromen (cf. [66, 46])) gegeben wird. Hierbei wird dieses Resultat zu-
gleich auf die grossere Klasse von beinahe-flichenminimierenden 2-dimensionalen Stromen
gegeben. In diesem Abschnitt stiitzen wir uns stark auf [66]. Ausserdem verallgemeinern wir
das Lipschitz-Approximations-Resultat fiir flichenminimierende Stréme, welches erstmals
von Almgren (cf. [3]) bewiesen wurde und kiirzlich von De Lellis and Spadaro (cf. [19])
erneut aufgegriffen wurde. Dabei ist dieses Resultat unabhidngig von der Dimension des
Stromes.

Die anderen beiden fundamentalen Werkzeuge sind die so genannte Center Manifold und
die Frequency function. Hierbei wurden wir von [3, 9, 20, 21] inspiriert. Wir kombinierten
diese beiden Hilfsmittel in einem induktiven Argument um unseren Hauptsatz daraus
folgern zu konnen.

Alle Resultate dieser Arbeit wurden in Zusammenarbeit mit Camillo De Lellis und
Emanuele Spadaro erzielt, welchen ich zu tiefstem Dank verpflichtet bin, daftir, dass sie
mich Schritt fiir Schritt durch die wunderbare (und beschwerliche) Welt der geometrischen
Masstheorie gefiihrt haben.






I don’t know half of you half as well as I should like; and I like
less than half of you half as well as you deserve

— J.R.R. Tolkien, The Fellowship of the Ring
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INTRODUCTION

The main focus of this thesis is the study of the interior regularity properties of the following
types of surfaces.

Definition 1.1. Let £ C R™*™ be a C? submanifold and U C R™*™ an open set.

(a) An m-dimensional integral current T with finite mass and spt(T) C Z N U is area-
minimizing in Z N U if M(T +0S) > M(T) for any (m + 1)-dimensional integral
current S with spt(S) cc Znu.

(b) A semicalibration (in £) is a C! m-form w on £ such that ||wy|lc < 1 at every x € £,
where || - ||c denotes the comass norm on A™T,X. An m-dimensional integral current
T with spt(T) C X is semicalibrated by w if wy(T) =1 for | T|-a.e. x.

(c) An m-dimensional integral current T supported in 0Bg(x) C R™"™ is a spherical
cross-section of an area-minimizing cone if xx T is area-minimizing.

Given an integer rectifiable current T, we denote by Reg(T) the subset of spt(T) \ spt(0T)
consisting of those points x for which there is a neighborhood U such that TL U is a (costant
multiple of) a regular submanifold. Correspondingly, Sing(T) is the set spt(T) \ (spt(9T) U
Reg(T)). Observe that Reg(T) is relatively open in spt(T) \ spt(0T) and thus Sing(T) is
relatively closed. The main achievement of this thesis is then the following regularity
Theorem.

Theorem 1.2. Let m = 2 and T be as in (a), (b) or (c) of Definition 1.1. Assume in addition that ¥
is of class C30 (in case (a) and (b)) and w of class C%%° (in case (b)) for some positive eo. Then the
set of points Sing(T) is discrete.

1.1 MOTIVATIONS AND COMMENTS

The currents described in (a) and (c) of Definition 1.1 are particular solutions of the so called
Plateau problem. Introduced first by the French mathematician Lagrange in 1762 (cf. [43]),
and named after the belgian physicist Plateau, who studied it in connection with the shape
of soap bubbles, the Plateau problem can be phrased as follows:

(PB) given an (m — 1)-dimensional boundary in R™*™ (that is an object without boundary
itself), find an m-dimensional surface with least area among all the surfaces spanning
the given boundary.

There are several possible ways to state this problem rigorously in a mathematical sense.

¢ The parametric formulation: the competitor surfaces are images of map, the volume
is computed with the area formula and the boundary is the trace of the chosen map.
This theory was satisfactorily developed in dimension 2 by Douglas and Rado in the
thirties (cf. [47, 29] and [26] for a modern introduction).
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¢ The set-theoretical formulation: the competitor surfaces are closed sets, the volume
is simply the Hausdorff measure and several notion of spanning the boundary are
possible. This theory was introduced by Reifenberg and further developed by Harrison,
David and others (cf. [48, 40, 36]).

* The functional-analytic formulations: the surfaces are given as action on a linear space
of smooth test functions, mainly integration. The two most famous formulations of
this kind are De Giorgi’s theory of sets of finite perimeter (cf. [10, 11, 14]) and Federer
and Fleming’s theory of integral currents (cf. [34]).

All these formulations give a positive answer to (PB), thanks to powerful compactness
theorems combined with the lower semicontinuity of the proper notion of volume. However,
since these are very general classes of surfaces, it is natural to ask about the regularity of the
solutions. In the rest of the introduction, and indeed of the thesis, surface will mean integral
current and (PB) will be formulated as in case (a) of Definition 1.1, that is

(PB’) Let £ € R™*™ be a (m + i)-dimensional C? submanifold and U ¢ R™*™" an open
set. An m-dimensional integral current T with finite mass and spt(T) C XN U is
area-minimizing in X NU if M(T 4 0S) > M(T) for any (m + 1)-dimensional integral
current S with spt(S) cc ZnU.

For an extensive treatment abount currents see [32]. In this framework we can distinguish
two cases.

The codimension one case, that is i = 1, is quiet well understood. Indeed we have the
following result.

Theorem 1.3 (Regularity in codimension i = 1). Assume U, X and T are as in (PB’) withn = 1.
Then

(i) for m < 6 Sing(T) N U is empty (Fleming and De Giorgi (m = 2), Almgren (m = 3), Simons
(4 <m < 6),seel13, 35,12, 2, 57, 491);

(ii) for m =7 Sing(T) N U consists of isolated points (Federer, see [33]);

(iii) for m > 8 Sing(T) N'U has Hausdorff dimension at most m — 7 (Federer, [33]) and is countably
m — 7 rectifiable (Simon, [56]);

(iv) the above results are optimal, indeed for every m > 7 there are area minimizing integral currents
T in R™*! for which Sing(T) has positive H™ 7 measure (Bombieri-De Giorgi-Giusti, [8]).

In general codimension the situation is much more complicate, mainly because of multi-
plicity issues. In particular, it is possible for the limit of singular surfaces to be regular (cf.
[16] for a reader-friendly introduction and [15] for a more technical treatment). The best
regularity theorem available in this case is the following result.

Theorem 1.4 (Regularity in codimension it > 2). Assume U, X and T are as in (PB’) with L > 2.
Then

(i) for m =1 Sing(T) N U is empty;
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(ii) for m = 2 Sing(T) N U consists of isolated points (Chang, [9]);
(iii) for m > 2 Sing(T) N'U has Hausdorff dimension at most m — 2 (Almgren, [3]);

(iv) the above results are optimal, indeed for every m > 2 there are area minimizing integral
currents T in R™%2 for which Sing(T) has positive H™ 2 measure (Federer, [31]).

Some comments are now in order. Case (a) of Theorem 1.2 is exactly the same as (ii) of
Theorem 1.4. The original argument of Chang is however not entirely complete since a key
starting point of his analysis, the existence of the so-called “branched center manifold”,
is only sketched in the appendix of [9] and requires the understanding (and a suitable
modification) of the most involved portion of the monograph [3]. Meanwhile Camillo De
Lellis and Emanuele Spadaro revisited Almgren’s theory giving a much shorter version of
his program for proving point (iii) of the Theorem, cf. [17, 18, 19, 20, 21]. It seemed therefore
worthy to complete and revisit Chang’s result in light of this new theory.

Case (c) of Theorem 1.2 is instead entirely new and a simple consequence of it is the
fact that the singular set of a 3-dimensional area minimizing cone consists of at most a
finite number of lines. Notice also that this could be seen as a first step in the study of
conical solutions to the Plateau problem when m > 3 and fi > 2 (cf. [57] for L = 1 and [35]
m=2n2>2).

For what concerns case (b), our motivation came from a paper by Riviere and Tian ([53]),
where they prove that 2-dimensional almost complex cycles in an almost complex, locally
symplectic manifold (M?P,], w), are J-holomorphic curves with multiplicity. This result is
not new, indeed the locally symplectic assumption makes the almost complex cycles locally
area minimizing for the metric w(-,]-), and so their regularity is a consequence of Chang’s
theorem. However their proof is independent from [9] and is the first step in a program
to generalize the statement to any almost complex manifold. Since almost complex curves
are locally semicalibrated, case (b) of Theorem 1.2 completes this program. We should also
remark that in dimension 2 all semicalibration admits locally an almost complex structure,
cf. [5]. For further motivation about the importance of almost complex structure in geometry
see [28, 44, 51, 64, 65], while for known regularity results we refer the reader to [52, 53, 63].

Later on, the approach of Riviere and Tian has been generalized by Bellettini and Riviere
in [7] to handle the new case of special Legendrian cycles in S°. These are spherical cross
sections of a class of 3-dimensional calibrated cones in IR®, and so a subclass of both (b) and
(c). However this result was not covered by Chang’s result.

Finally it is worth to spend a couple of words on the notion of calibration, since it is the
link between cases (a) and (b). A calibration w is a semicalibration which is closed. Notice
that if T is semicalibrated in R™*™ and S is an (m + 1)-dimensional current, then

M(T) =T(w) = T(w) +3S(w) — S(dw) < M(T+03S) + ||dw|lo M(S). (1.1)

In particular calibrated currents are solution of the Plateau problem (PB’), although the
viceversa is not true in general. An extremely important example of calibration is given by
the Kahler form

w:=dx; Adys + -+ dxn Adyn
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in R2™ = C", with the usual identification z; = x; + iy;. Wirtinger’s inequality ([67, 32])
states that w® = %w /\---/A\w is a calibration and complex planes are calibrated by it. It
follows that complex varieties are area minimizing and, in particular, a simple generalization
of the argument above allows one to prove that the following complex curves are area
minimizing.

Example 1.1. Consider the holomorphic curve

M:={(z,zw) €C? : z=0U{(z,w) € C*> : w=0L

Then T is area minimizing and the origin belongs to Sing(T"). Moreover T cannot be represented as
the graph of a single valued function in any neighborhood of the origin. In particular the cartesian
product T' x R C R® is a 3-dimensional area minimizing cone with a line singularity.

Example 1.2. Consider the holomorphic curve
O ={(z,w) € C*: (ZZ—w’ —w")? =w’ +w}.

Then the same conclusions of the previous example hold for © and furthermore notice that © is a very
small perturbartion of the complex curve {z* = w3} counted with multiplicity 2.

These examples prove that Theorem 1.2 is optimal, indeed notice that calibrated currents
are in particular semicalibrated. For an extensive treatment of calibrated geometries we refer
the reader to [41].

1.2 CONTENT OF THE THESIS

We start by explaining why it is possible to treat cases (a), (b) and (c) of Definition 1.1 together.
The key properties shared by our objects are the almost minimality and the boundedness of
the generalized mean curvature. In particular (1.1) holds also for (c), when we replace ||dw||
with (m+ 1) R™". It doesn’t hold in this form for case (a): competitors need to be supported
in the manifold X. As a consequence of the isoperimetric inequality, a weaker form of (1.1) is
true in all three cases: for any (m + 1)-dimensional current S in B, C R™*™ we have

M(T) < M(T +9S) + Crm+T, (1.2)

Moreover, if 5T denotes the first variation of the current T, with T as in (a), (b) or (c), then
for every compactly supported vector field X,

T(X)| < C / X d|IT]| < co. (13)

Next we wish to discuss the strategy of the proof of Theorem 1.2. In this we follow mainly
the Almgren-Chang’s program, which consists of the following steps.

(i) Construct a Q-valued Lipschitz function that under suitable conditions approximates
our current in a very sharp way.

(ii) Prove that the tangent cone to the current is unique at every point and consists of a
union of planes with multiplicity whose support can cross only at the origin.
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(iif) Construct a surface M, which we call Center Manifold, and is basically the average
of the sheets of the current. From this surface approximate very carefully the current
with a map 4.

(iv) Use this new approximation to define a quantity, called frequency function I, which
enjoys some good monotonicity property. Study the asymptotic of this quantity to
prove that either T coincides with M or there exists a rescaling of the approximation
-/ which is nontrivial in the limit.

In the last part of this introduction we explain better each one of these steps, specifing in
which part of the thesis they are treated and how the final result can be derived from them.

1.2.1  Part II: Approximation of currents with Q-valued functions

The first typical step of the regularity theory for objects linked to area minimization problems
is an approximation result with Lipschitz function. This is due to De Giorgi’s remark that
the first order term in the Taylor expansion of the area of a graph of a Lipschitz function is
the Dirichlet energy of the function itself, that is if f € Lip(B;) then

vol(graph(f) / \/1+DfI2 <|B|+ = / IDf|> +C IDf*, (1.4)

B,

and therefore area minimizing graphs are very close to being harmonic. While in codimension
1 we can alway approximate minimal currents with vector valued functions, for higher
codimensions there exist area minimizing surfaces which are not the graph of any such
function in any neighborhood of a fixed point (cf. Examples 1.1 and 1.2).

For all these reasons it is important to develop a theory of Lipschitz and Sobolev multiple
valued functions, that is functions taking values in the space of unordered Q-tuples of points
of R™. This is done in Chapter 2, where, after introducing the theory of multiple valued
Lipschitz functions, we use the Almgren-White’s embedding of the space of Q-points in
RMN(Q) to introduce Sobolev multiple valued functions, define the Dirichlet problem and
study the properties of its solutions. Furthermore we explain how to associate an integral
current to the image of a Q-valued map and prove that De Giorgi’s remark still holds, that
is the energy of a Q-valued graph is the first order term in the Taylor expansion of its mass.
This chapter is mainly taken from [17] and [18]. We made the effort of proving any result
that is not taken from one of these two papers. It should be observed that in [17], the authors
develop the theory of multiple valued functions independently from Almgren’s embedding,
but in a purely intrinsic, metric way. For other interesting properties of multiple valued
functions see [22] and [59].

The second chapter is devoted to the two main analytic estimates of the whole thesis. Fix
a plane 7 and consider the cylinder C.(x, ) = B, (x, ) x m-, where B (x,n) is the ball of
radius r centered in x and contained in 7. The cylindrical excess E := E(T, C,(x, 7)) of a
current with respect to 7t is a measure of how much the tangent space to the current in the
cylinder is tilting, more precisely

E(T,Cr0 ) = (2w v™) ! / T2 a7
C.(x,m)
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Assuming that E is small enough in Cy4.(x, ), we can prove that

Proposition 4.2: in the ball B, (x) C 7, there exists a Lipschitz multiple valued function f: B, (x) C m —
nt, whose graph and energy differ from the support and the mass of the current by
E'*+PBo, for some Bg > 0;

Theorem 4.8: there exists a Dir-minimizing multiple valued map u: B;(x) C 7w — - whose W12
norm differs from that of f by o(E).

We notice that case (a) is already covered by [19], and, indeed, our original contribution is
to prove the results for the cases (b) and (c). In fact, the only property that we use in this
chapter is (1.1). Furthermore, the results of this part of the thesis hold for any dimension m.

For a detailed explanation of how this approximation result is proved we refer the reader
to the introduction of [19, 15, 16], the only diffrence being that, whenever a comparison
argument is needed, we use (1.1) instead of the minimality property, and so the choice of
the filling surface S must be carefully done. This is the content of the Homotopy Lemma 4.6.

1.2.2  Part IlI: Uniqueness of tangent cones

Given a current T as in Definition 1.1 and a point x € spt(T), we want to study the
infinitesimal behaviour of T in x. To do this we consider the current Ty ; := (1 )3 T, where
the map L, is given by R™*™ 5 y — 3% € R™*™". Recall that an area minimizing cone
S is an integral area minimizing current such that (1o,)3S = S for every r > 0 (cf. [54,
Theorem 19.3]). Then, combining the almost monotonicity of the quantity M(Ty ) with
the compactness Theorem for integral currents, one can prove that, up to subsequences,
Txr — S, where S is an integral cone. The difficult question is wether or not S is unique. In
the 2 dimensional case we answer affirmatively to this question for all the surfaces satisfying
only (1.2).

The uniqueness of tangent cones for 2-dimensional area minimizing currents has been
proved first in the euclidean case by White ([66]) and then generalized to the Riemannian set-
ting (case (a)) by Chang in [9]. The same statement for semicalibrated integral 2-dimensional
cycles (case (b)) has been shown more recently by Pumberger and Riviere in [46]. As far
as we know the result for spherical cross sections of 3-dimensional area minimizing cones
is instead new. In codimension 1 the uniqueness of tangent cones is known at isolated
singularities thanks to the pioneering work of Simon, cf. [55]. The uniqueness of tangent
cones is widely open in dimension higher than 2 and general codimension. Some interesting
higher dimensional cases have been recently covered by Bellettini in [5, 6].

Our approach follows very closely that of White ([66]). The key ingredient is an Epiperi-
metric inequality for the mass. First introduced by Reifenberg ([50]), this inequality improves
the usual monotonicity inequality, and indeed the key idea is that, if in a cylinder we extend
the boundary cycle of the current as an harmonic graph, then its mass is strictly less than
the mass of the cone with the same boundary. This intuitevely follows again by De Giorgi’s
remark, that is minimizer of the Dirichlet energy in the graphical case are very close to
minimizers of the area. In turn, the Epiperimetric inequality implies an exponential rate of
decay of the excess, which, combined with a monotonicity identity, proves the uniqueness of
the tangent cone. For a nice explanation of the proof of this inequality we refer the reader
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to White’s paper. What is new here is a simplification in a step of its proof (although the
overall procedure is the same) and its application to a larger class of surfaces, namely to all
two dimensional objects satisfying only (1.2).

1.2.3 Part I: Proof of the main result

In order to conclude Theorem 1.2, we would like to prove that, for x € Sing(T) and r > 0
sufficiently small, the current Ty, is a perturbation of a surface of the same type as the
one in Example 1.2. We use therefore this example to illustrate the procedure for a general
current as in Definition 1.1.

Step 1. If we rescale geometrically ©, that is we consider the current Qg », then in the limit
for r — 0 we get the complex plane 7 := {z = 0}, which is regular. By the uniqueness
of the tangent cone of Part iii, combined with the structure of 2-dimensional tangent
cones (they are planes whose supports intesect only at the origin, cf. Example 1.1), we
can assume that this holds also for Ty .. We call the plane 7 the center manifold M.

Step 2. From the plane My we approximate the surface with a multiple valued function .4; us-
ing the Lipschitz approximation result of Part ii. We prove that, either T coincides with
(a constant multiple of) My, or a suitable rescaling of .45 converges to a unique profile
go, which is strictly multiple valued and non-trivial, C!"* regular in a neighborhood of
the origin and C>* outside the origin. Moreover a horned neighborhood of this profile
captures the current. In our example, the graph of the function gy is {z* = w3} and is
obtained by rescaling ® inhomogeneously by z’ := rizand w :=rw.

Step 3. We build a new center manifold surface M7, which is, roughly speaking, the average
of the sheets of the current T restricted to the horned neighborhood of g¢. This surface
enjoys the same regularity and multiplicity of the graph of go and takes care of small
smooth perturbations of it. In our example M; = (22 =w3 +wl

Step 4. We approximate the current with a map .47, which is a graph on M;. We perform
the same analisys as in Step 2, and so either T = Q [M;], or we find a new profile g;
which allows to repeat Step 3. In our example we have that the graph of gy is {z* = w”}
and is obtained by rescaling z with 4. When we glue g7 back on top of Mj.

Step 5. Finally we repeat inductively Steps 2-3. Since the density of T in 0 is bounded from
above, and since at each step the multiplicity of M; is increasing (because each g; is
strictly multiple valued), this procedure must stop after a finite number of steps. By the
regularity of each Mj, this concludes the proof. In our examples we construct M, = ©
and we conclude.

1.2.4 DPart IV: Center Manifold and Normal Approximation
Here we explain how to construct Mj;, .4}, given g;_7. Assume that the graph of g;_7 has

multiplicity Q in the singular point (for instance g; of the example has multiplicity 2 in 0),
and that T has multiplicity Q - Q (4 = 2- 2 in the example). We wish to construct a Q-sheeted
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cover of the plane 7 which is globally the graph of a C"* function, C>* away from the
singularity, and which is at every scale a good approximation of the average of the Q sheets
of T captured in the horned neighborhood of g;_1. First we introduce the notions of excess
and height of a current. Given an m-dimensional current T in R™*™ with finite mass, its
excess in the ball B, (x) with respect to the m-plane 7t is

E(T By (), ) = Qoom ™ [ TpaT. (1.5
B:(p)
In order to define the spherical excess we consider T as in Assumption 1 and we say that 7t

optimizes the excess of T in a ball B (x) if

¢ In case (b)

E(T,B:(x)) := mTinE(T,BT(x),T) =E(T,B.(x),m); (1.6)

¢ In case (a) and (c) T C Ty X and

E(T,B.(x)) ;== min E(T,B.(x),t) = E(T,B(x), 7). (1.7)
TCT X

The height of a current T in a set E with respect to a plane 7 is given by

h(S,E,m) = sup{lp#(p —q)l:p,q€spt(S)NE}. (1.8)

If E = Cy(p, ) we will then set h(S, Cy(p, 7)) := h(S, Cy(p, ), ). If E = B.(p), T is as in
Assumption 1 and p € X (in the cases (a) and (c) of Definition 1.1), then h(T, B;(p)) =
h(T, B.(p), ) where 7t gives the minimal height among all 7w for which E(T,B;(p), ) =
E(T, B:(p)) (and such that w C T, Z in case (a) and (c) of Definition 1.1).

The procedure for the construction of M; is then the following.

Step 1. We first make a Whitney decomposition of (a model space for) gi—1. Let L C graph(gi—1)
be a cube and let Ty be the part of the current T captured by the horned neighborhood
of gi_1 around L. Moreover let {(L) be the sidelength of L and d(L) its distance from
the singularity. Then, we ask that the refinement procedure stops if either

Ep := E(Ty, Br) > Cemod(L)2Yo—2+2819(1)2— 251, (1.9)
or
1
hy :=h(T,Br) > Cymdd(L) ? —P2g(L)'+P2; (1.10)

where vp, 32,01, Chn, Ce are some parameters and my is a geometrical quantity as
small as we want (we will also need another technical compatibility condition). One
could in fact conjecture that the condition on the height is not really needed.

Step 2. By Step 1, in every final cube L the excess is very small, and so we can apply the
Lipschitz approximation Theorem of Chapter 4 to get a Q-valued Lipschitz map f1,
which is a good approximation of the Q sheets of T; .
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Step 3.

Step 4.

Step 5.

Step 6.

We then consider the average of f, denoted by 1 o fi, which is a single valued function
and satisfies, in a ball around L, the inequality |£(n o fp)| < C El*”o, where £ is a
linear elliptic operator.

We consider the precise solution hp to the elliptic system £ with boundary datum
n o fL (which is a perturbation of the Laplace equation, and so admits a solution).

We prove quantitative regularity estimates for hy, using the Lipschitz regularity of fi,
the decay of its energy (since E| is decaying by Step 1), the fact that £ is a perturbation
of the laplacian and £L(hy —nofy) < C El*no.

We patch all the hy together and prove the regularity of the resulting function, whose
image is M;.

For what concerns the construction of . #;, the basic idea is to use on each cube the portion
of i that coincides with Ty, reparametrize it on M; and then extend to the whole domain.
We can do this because the C' norm of M; is small and the Lipschitz constant of fi is also
small. With this procedure, we manage to bound the height of .45, its average n o .4{ and its
difference from T, in every cube L, with suitable powers of E; and h;. However, we want
this estimates in terms of the W2 norm of .4, and, since by Step 1, E1 is bounded by a
power of £(L), we need to control the energy and the height of . #{ from below with a power
of £(L). This is achieved in the sections called vertical separation and splitting before tilting.

In conclusion, if we denote with D(r) := fBr DA%, H(r) := faBT |#]? and we define
Fi(x) = x+ A (x) for every x € M;, we achieve, roughly speaking, the following estimates

Lip(.4) < D(r)"°

[ P < D) + )
IT—Tz[(Cy) < D(r)"(D(r) + H(r)). (1.11)

Finally we wish to point out the main differences with the construction in [20].

The uniqueness of the tangent cone implies the decay of the excess, and this allows
us to construct a single center manifold that works at every scale (this is not known
in dimension higher than 2). A key consequence of this is that the sidelength of each
cube is less than its distance from the singularity.

Our surface M; enjoys less regularity than the one there, indeed it is branched in the
singularity to resemble the current itself.

The elliptic PDE satisfied by n o fi in case (b) is more complicate then the one satisfied
in the minimizing case (a), and indeed the building blocks in the construction of Mj;
are defined differently than in [20].

We need to make sure that M; is captured in the horned neighborhood of gi_1, so that
an horned neighborhood of M; contains the current T.

At the end of the construction, we will reparametrize M; in a conformal way, to make
the asymptotic analysis of Part v easier.
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1.2.5 Part V: Blow up Analysis

Finally, we explain how to construct g; from M; and .4;. As already remarked, the idea is to
rescale T inhomogeneously, that is to rescale .#; by a suitable power of r and consider the
limit for r — 0. To guess the right power, the fundamental tool introduced by Almgren is
the so called Frequency Function I(r) := THD ((:)) . This quantity would be non decreasing, if
4 was a Dir-minimizing function. Even though this is not true, a modification of (1.4) for

Z;, leads to

o Alz) 1 Lo
NEECE +ED(r)+D(r) °,

ITA]I(Cr) < QB + /

T

so that, by (1.11),
1
ITI(Cr) < QB+ + ED(T) + D(T)]Hw .

Using this together with the almost minimality of T, one can prove an almost minimality
property in terms of the energy for .4;, that is

D(r) < IDZL]2+CD(r)'™0  for every Lipschitz competitor .. (1.12)
B,

The almost Dir-minimality condition is then used, together with a competitor argument
similar to the one of Part 3, to prove a Poincaré inequality H(r) < CD(r) and a sort of
Epiperimetric inequality for the energy of .4{. The Poincaré inequality implies that I(r) is
bounded from below and also that all the errors of the form H(r) can be translated in terms
of D(r), so that the estimates (1.11) become

n o Ail(z) o

mlEr D(r)'™M and | T—Tgz|(C:) < D(r)' ™Mo,

Lip(.4) < D)™, /
T (1.13)

Next we observe that, thanks to 1.3, the interior and exterior variations of .4; are once
again perturbation of the Dir-minimizing ones, with errors of type D(r)'*M¢, and this allows
us to prove the almost monotonicity of I(r). Using this and the estimates (1.13), we prove
the dichotomy: either T coincides with Q [M;], or Iy := lim;_,o I(r) < co. On the other
hand, combining this with the Epiperimetric inequality allows us to prove that, if we set

Ne(z) = ’/Vir(lzz), than there exists a unique limit g; as v — 0.

Finally, by (1.11), we see immediately that g; is nontrivial and n o g; = 0, so that it must be
strictly multiple valued, and, by the almost minimality of . #; (cf. (1.12)), gi is a Dir-minimizer.
The last part of the argument involves a careful use of the decay property of D(r), H(r) and
of the Lipschitz regularity of .4}, to prove first that .4; converges to g; uniformly with a rate
depending on 1, and then, using again the estimates (1.13) and the monotonicity formula for
T, that T is captured in an horned neighborhood of g;.

Finally we wish to point out that, although the structure of this part is analogous to the

one in [9], there are two main differences.

XX



¢ Since the PDE associated to case (b) is more complex than the one in case (a), in order
to prove the dichotomy, we need to modify I(r) following the ideas of Garofalo-Lin in

[38] and [37].

* The almost Dir-minimality of .4{ is much more difficult to prove in cases (b) and
especially (c), than in case (a).
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PROOF OF THE MAIN RESULT

In this chapter, after setting some basic notations, we prove Theorem 1.2 making use of the
tools that will be proved in the subsequent chapters.

2.1 PRELIMINARIES
2.1.1 Basic notations

We use the notation (,) for: the euclidean scalar product, the naturally induced inner
products on p-vectors and p-covectors and the duality pairing of p-vectors and p-covectors;
we instead restrict the use of the symbol - to matrix products. Given a C! m-dimensional
submanifold £ ¢ R™*™, a function f : £ — R¥ and a vector field X tangent to £, we denote
by Dxf the derivative of f along X, that is Dxf(p) = (foy)’(0) whenever v is a smooth curve
on X with y(0) = p and y’(0) = X(p). When k = 1, we denote by Vf the vector field tangent
to Z such that (Vf, X) = Dxf for every tangent vector field X. For general k, Df|, : T,X — Rk
will be the linear operator such that Dfly - X(x) = Dxf(x) for any tangent vector field X. We
write Df for the map x — Df|x and sometimes we will also use the notation Df(x) in place
of Df|x. Having fixed an orthonormal base ey, ...emn on TyX and letting (fy,..., fx) be the
components of f, we can write Vf; = Z)"; aijej and |Df| for the usual Hilbert-Schmidt
norm:

m k

Df> =) IDef? =) [Vfil? =) af.
i

j=1 i=1i

All the notation above is extended to the differential of Lipschitz multiple valued functions
at points where they are differentiable in the sense of Definition 3.5: although the definition
in there is for euclidean domains, its extension to C' submanifolds £ ¢ R™*™ is done, as
usual, using coordinate charts.

We will keep the same notation also when f = Y is a vector field, i.e. takes values in
R™*™, the same Euclidean space where X is embedded. In that case we define additionally
divyY := } ;(De,Y,ei). Moreover, when Y is tangent to £, we introduce the covariant
derivative DxYly, i.e. a linear map from T, X into itself which gives the tangential component
of DxY. Thus, if we denote by py : RN — T, L the orthogonal projection onto T, L, we have
DsYl|x = px - DY(x). It follows that DsY - X = VY, where we use V for the connection (or
covariant differentiation) on X compatible with its structure as Riemannian submanifold of
RR™* ™. Such covariant differentiation is then extended in the usual way to general tensors
on .

When dealing with C 2 submanifolds X of R™+t™ we will denote by Ax the following tensor:
Aslx as a bilinear map on Ty X x T, X taking values on T It (the orthogonal complement of
TxX) and if X and Y are vector fields tangent to Z, then Ax (X, Y) is the normal component of
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DxY, which we will denote by DiY. Ay is called second fundamental form by some authors
(cf. [54, Section 7], where the tensor is denoted by B) and we will use the same terminology,
although in differential geometry it is more customary to call Ay “shape operator” and to
use “second fundamental form” for scalar products (Ax(X,Y),n) with a fixed normal vector
tield (cf. [27, Chapter 6, Section 2] and [60, Vol. 3, Chapter 1]). In addition, Hx will denote
the trace of Ay (i.e. Hx = ) ; As(ei, ei) where ey, ..., ex is an orthonormal frame tangent
to X) and will be called mean curvature. Moreover Ay and Hy will denote respectively the
L* norm of As and Hs.

With B, (p) and B, (x) we denote, respectively, the open ball with radius r and center
p in R™*™ and the open ball with radius r and center x in R™. C,(p) and C,(x) will
always denote the cylinder B,(x) x R™, where p = (x,y) € R™ x R™. We will often need to
consider cylinders whose bases are parallel to other m-dimensional planes, as well as balls
in m-dimensional affine planes. We then introduce the notation B (p, 7) for B, (p) N (p + 7)
and C.(p,n) for B.(p, ) + mt. e; will denote the unit vectors in the standard basis, 7
the (oriented) plane R™ x {0} and 7y the m-vector e /\---/\ e;, orienting it. Given a m-
dimensional plane 7, we denote by p, and p;: the orthogonal projections onto, respectively,
7t and its orthogonal complement 7. For what concerns integral currents we use the
definitions and the notation of [54]. Since 7 is used recurrently for m-dimensional planes,
the m-dimensional area of the unit circle in R™ will be denoted by w,.

2.1.2  First assumptions

By the following Lemma, in case (b) of Definition 1.1, we can assume, without loss of
generality, that the ambient manifold £ coincides with the euclidean space R?*™.

Lemma 2.1. Let k € N\ {0}, ¢g € [0,1], L € R™*™ pe g C*+ 120 m + fi-dimensional submanifold,
V C R™"™ an open subset and w a C*¢0 m-form on VN L. If T is a cycle in V N £ semicalibrated
by w, then T is semicalibrated in V by a C¥¢° form @.

Proof. The argument is straightforward: we just need to extend w to a form @ on the open
set V in such a way that ||@«||c < 1 for every x and the regularity of w is preserved. Without
loss of generality it suffices to do this on a tubular neighborhood U of Z NV on which
there is a C*¢¢ orthogonal projection p : U — £ N U (we then multiply this extension by a
function ¢ € CX(U) which is identically 1 on £ and satisfies 0 < ¢ < 1; the resulting form
can then be extended to V by setting it equal to 0 where it is not yet defined). For x € U
we set y := p(x) € L and let py : R™™™ — T, X be the orthogonal projection. We then set
Ox(V1,.. ., Vm) = wy(py(v1),...,Py(vm)). Observe that @ is not pfw (in general the latter
would not satisfy ||@x|[c < 1). O

In particular, for the rest of the work we will make the following assumptions.

Assumptions 1. T is an integral current of dimension 2 with bounded support and it satisfies one
of the three conditions (a), (b) or (c) in Definition 1.1. Moreover

* Incase (a), L C R**™ is a C3¢0 submanifold of dimension 2+ = 2 +mn — 1, which is the
graph of an entire function W : R2*™ — R' and satisfies the bounds

IDW]o <co and A :=|Axs]o < co, (2.1)
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where cg is a positive (small) dimensional constant and e €0, 1.
o In case (b) we assume that L = R?>*™ and that the semicalibrating form w is a C*€° m-form.

* In case (c) we assume that T is supported in X = 9Bgr(po) for some po with [po| = R, so that
0 € BRr(po). We assume also that TodBr(po) is RZT™1 (namely po = (0,...,0, %lpol)
and we let ¥ : RZT™=1 — R be a smooth extension to the whole space of the function which
describes X in B, (0). We assume then that (2.1) holds, which is equivalent to the requirement
that R~ be sufficiently small.

2.1.3 Properties of (b) & (c)

In some cases it will be convenient to regard cases (b) and (c) of Definition 1.1 as a particular
type of almost area minimizing currents with bounded mean curvature.

Proposition 2.2. Let T be as in Definition 1.1 (b) (in which case we assume L = R™*™) or (c).
Then there is a constant €2 such that

M(T) < M(T+0S) + Q M(S) VS € I o1 (R™™)  with compact support. (2.2)

In particular, Q < ||dwl|o in case (b) and Q < (m+ 1)R™ in case (c).
Moreover, if x € CX(R™T™\ spt(dT), R™"™), we have

(x) = T(dw Jx)in case (b), (2.3)

oT
0T (x) = /mR1 x - x(x) d||T|[(x)in case (c), (2.4)

where 8T (x) denotes the first variation of T along the vector field X (cf. Section 3.3.2)

Proof. We first prove (2.2). Assume we are in case (c). Without loss of generality we can
assume x = 0 and R = 1. Therefore fix S compactly supported and consider W = T + 0S.
Next, let p : R™™ — B;(0) be the orthogonal projection and set S’ = p;S and W’ :=
ptW = T+ 0pyS (where the latter identity holds because spt(T) C 9B(0)). The current
Z:=0x W’ —S§’is then a competitor for the minimality of 0> T and observe, moreover, that
since spt(W’) C B1(0), we have M(Z) < (m + 1 )~ "M (W’). Then we have

0<(m+1)(M(Z) —M(0xT)) < M(W')—M(T) + (m+1)M(S’)
<MW)—=M(T)+ (m+T1)M(S).
In case (b), if w is the semicalibrating form, we can then estimate
M(T) = T(w) = W(w) — 3S(w) < M(W) — S(dw) < M(W) + |dw[oM(S).

Next, (2.4) is simply the stationarity of T in 0B;(0). As for (2.3), the formula seems
new in the literature and we provide here a simple proof. Fix x and consider the maps
O (x) :=x+tx(x) and A(t,x) = O¢(x). We then denote by [0, €] the current in I (R) induced
by the oriented segment {t : 0 < t < ¢}. We define T, := (@, )3T and S, := A4([0,¢] x T). We
then have 0S5, = T, — T and hence

M(T:) —M(T) > Te(w) — T(w) = Se(dw) = [0, g] x T(A*dw) = h(e). (2.5)
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Since his C! and h(0) = 0, by a Taylor expansion we conclude 5T (x) > eh’/(0) +o(e). On
the other hand, since the latter inequality is valid for both positive and negative ¢, we infer
dT(x) = h'(0). We thus only need to show the identity h’(0) = T(dw Jx). Consider the
set of ordered multiindices I = {1 <i; <i2 < ... <imi1}and let dw = 5 frdx!, where
dxI = dx'' A... A dximt1. We then have

(Afdw) (xe) = > Fi(De(x)dDY A .. AdOIm

Next, we will denote by o(1) any continuous function of x and t which vanish at t = 0 and
we let m: R x R™*™ — R™*™ be the projection 7t(t, x) = x. Since ®(0,x) = x and f is
continuous we conclude

(A*dw) (1) = Y fi(x)dOY A...AdO™ ! +0(1) =
Y filx (dx + Y HEOXT AT AL AT A dEA dXE /\...Adxmt‘) +o(1)
I 1<<m+1
=mldw +dtA Y f1(x) ) (=1xY(x)dx AL A YT AdxEH AL A ™ 4 o(1).
I j
Thus,
(/\ﬁdw)(xlt) =mfdw + dt Artf (dw _Ix) +o(1).
In particular, since dw is orthogonal to dt, we have [0, €] x T(nfdw) = 0. Thus we can write
) =[0,e] x T(dt A7 (dw Ix)) +o(1)eM(T) = eT(dw Ix) +ofe),
from which we finally conclude h’/(0) = T(dw _Ix). O

As an easy consequence of this proposition and the regularity of Z we can prove that all
the objects of definition 1.1 are almost minimizers in a classical sense.

Proposition 2.3. Under the assumptions of Definition 1.1, any m-dimensional current T as in
(a), (b) or (c) is almost minimizing in the sense that for every x ¢ spt(0T) there are constants
Co, 7o, 0o > 0 such that

TN (By(x)) < |IT+3S|[(Br(x)) + Cor™* >0 (2.6)
forall 0 < r < o and for all integral (m + 1)-dimensional currents S supported in B, (x).

Proof. Case (a). Consider x € X and a ball B(x) € R™"™ If T is sufficiently small there
is a well-defined C' orthogonal projection p : Bz(x) — £ with the property that Lip(p) <
1+ CAr, where C is a geometric constant and A denotes the L*® norm of the second
fundamental form of Z. Consider T area-minimizing in X and assume ¥ < dist(x, spt(dT)).
Let r < T and S € Im+1(Rm+”) be such that spt(S) C By(x). We set W := T4 09S. If
W] (B+(x)) = ||T||(B there is nothmg to prove, otherwise by the standard monotonicity
formula we have ||WH < ||IT|I(B < Cr™. Then W' := p;W is an admissible
competitor for the minimality property of T and we have

IT)(Br(x)) < [W'[[(B+(x)) < (Lip(p))™[[W||(B+(x)) < [W|[(Br(x)) + Cr™*1.
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Case (b)&(c). First observe that, by Lemma 2.1, in case (b) we can assume, w.l.o.g., that
X =R™"™ Fixr < dist(x, spt(0T)) and let S € I;,+1 (R™™) be such that spt(S) C By (x). As
above, either ||W/||(B+(x)) > ||T||(B+(x)), in which case there is nothing to prove, otherwise by
the standard monotonicity formula we have |W/||(Bx(x)) < ||T||(B+(x)) < Cr™ (observe that,
by (2.3) and (2.4), T induces a varifold with bounded mean curvature, which in turn implies
Allard’s monotonicity formula, cf. [54, Section 17]). In the latter case, by the isoperimetric
inequality there exists S’ € I;4+1 (R™™) such that

S’ =9S and M(S’) < Crmt!,
Applying now (4.1) to this current S’ we get the desired conclusion, with C; = CQ. O

Remark 2.4. Observe that we have achieved (2.6) with any fixed ro < %dist(x, spt(0T)), xp =1
and Cp = CA, in case (a), Co = CQ, in the cases (b) and (c), where the constant C depends
only upon || T|[(B2y,)(x).

Finally they preserve their property under opportune decompositions.

Proposition 2.5. Let T be as in Definition 1.1(<$), with { = a, b or ¢, and suppose that there are
x € spt(T) \ spt(0T), ¥ > 0 and | currents TY,...,T) such that

—
~—

TL By Z AT LBr(x) =0 and |T||(B ZITJH

Then each T satisfies () in Definition 1.1.

Proof. We divide the proof in the three cases of Definition 1.1.

(a) Suppose by contradiction that there exist j € {1,...,J} and S € I,,41(Z) with spt(T) C
B:(x) such that M(TILBz(x)) > M(TILBz(x) +0S). Then it is straightforward to check that
M(TLBr(x) +0S) < M(TLB+(x)), which contradicts the minimality of T.

(b) By contradiction, suppose there exists j € {1,..., ]} such that TJ is not semicalibrated
by w. Assumej = 1. Then since |w|. < 1, we have T'(w) < ||T"|(B+(x)) and T/ (w) <
ITI(B+(x)), for every j € {2,...,]}. It follows that

J J
ITIB(x) = T(w) = > T(w) < Y [T](Bs(x)) = [T(Bs(x))
j=1

which gives a contradiction and concludes the proof.

(c) Without loss of generality we can assume x = 0 and R = 1. Again by contradiction
assume there existj € {1,...,J}and S € I, 1(R™*™) such that 9(SL. C) = 3(0x T'L C) and
M(SLC) < M(0x T/ C), where

C:= {Az :z€Bx(x)N0oB;(0), A 6]0,1[}.

We can assume j = 1. Notice also that

J J
M((0x T)LC) = —HTH %ZHTJ'H(Bf =Y M((0xT)LC). (2.7)
- =
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Then we have

J J
M((0xT)LC) <M((S+ ) 0xT)LC) <M(SLC)+M(Y_(0xT)LC)
j=2 j=2
] 2.7
<M(0x THLC)+M (Y (0x T)LC) & M((0xT)LC).
j=2
The latter is a contradiction and thus completes the proof. O

2.2 ALMGREN’S LIPSCHITZ APPROXIMATION

Just for this section we will assume that for some open cylinder C4.(x) (with r < 1) and
some positive integer Q,

PiT = Q[Bsr(x)] and OTL Csr(x) =0. (2.8)

Definition 2.6 (Excess measure). For a current T as in Assumption 1, which additionally
satisfies (2.8), we define the cylindrical excess E(T, C,(x)), the excess measure et and its density
dr:

T )
ET, €)== I —Q,
er(A):=||T|I(AxR™) —QIA] for every Borel A C B.(x),
dr(y) :=limsup M = limsup E(T, Cs(y)),

s—0 Wm S s—0

where wy, is the measure of the m-dimensional unit ball (the subscripts 1 will be omitted if
clear from the context).

Remark 2.7. Later on we will give a different definition of cylindrical excess E (cf. Definition
2.13). However, if (2.8) holds, then the two notions coincide.

Although its role will not be apparent in this first chapter, a fundamental tool for the proof
of Theorem 1.2 is the following strong Lipschitz approximation result. Notice that, since
here the dimension 2 doesn’t play any role, we state the Theorem for any dimension m.

Theorem 2.8. There exist costants M, Ca1, B0, €11 > 0 (depending on m,n, @i, Q) with the fol-
lowing property. Assume that T satisfies Assumption 1 and (2.8) in the cylinder Ca(x) and
E = E(T, C4r(x)) < €11. Then, there exist a map f: B(x) — Ag(R™), with spt(f(x)) C L for
every x, and a closed set K C By (x) such that

Lip(f) < C21EPO 4+ Coy Qv incase (a) and (c), (2.9)
Lip(f) < C21EPo  in case (b), (2.10)
GfL(KxR™) =TL(KxR™) and [By(x)\K|<Cy EBO(E +r2Q2)rm, (2.11)

1
ITIH(Cr () — Quomr™ = 5 /B ( )IDfIZ‘<C21EB°(E+r2Q2)rm, (2.12)
riXx
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where Q = A in case (a). If in addition h(T, C4r(x)) := sup{lpt(x) —pH(y)l : x,y € spt(T) N
C4r(x)} <7, then

C21h(T, Car(x)) + C21 (E'2 +1Q)r  in case (a) and (c), (2.13)
Co1h(T, Car(x)) + C217EY 2 in case (b). (2.14)

osc(f) <
osc(f) <

Notice that the case of area minimizing current in a Riemannian manifold (case (a) of
Definition 1.1) is already covered by [19, Theorem 1.4], and indeed in Chapter 4 we will only
prove it for the cases (b) and (c).

2.3 UNIQUENESS OF TANGENT CONE AND SIMPLIFICATION OF THE PROBLEM

The following Theorem is the starting point of our analysis and it concerns the uniqueness
of the tangent cones and the subsequent splitting of the current. To state it we introduce
the current (1, )3T, where the map t,, is given by R™*™ 5y — Y= € R™*™. Recall that
an area minimizing cone S is an integral area minimizing current such that (1o ,)3S = S for
every v > 0 (cf. [54, Theorem 19.3]). Furthermore, for any given R € I,,(R™*™") we define
FR) =inf[M(Z) + M(W):Z e 1,n,, WeE Liny1,Z+0W =R}

Theorem 2.9 (Uniqueness of tangent cones for almost minimizers). Let T be as in Definition
1.1({), with & = a,b or ¢, and x € spt(T) \ spt(0T). Then there is a yo > 0, ] 2-dim. distinct
planes T, each pair of which intersect only at 0, and | integers ny such that, if we set S :== ) _; n; [m],
then

F((Ter—S)LBy) < Cyyro, (2.15)
dist(spt(TL By (x)),spt(S)) < Ciy r1+vo, (2.16)
Moreover, there are ¥ > 0 and | > 1 currents T) € 15(B#(x)) such that
(i) T B+(x) = 0 and each T satisfies Definition 1.1(<{);
(ii) TLB:(x) = Z]- T and spt(T;) Nspt(Ty) = {x} for every i # j;
(iii) m;[m;] is the unique tangent cone to each T at x.

As an immediate consequence of this Theorem we can make the following ulterior
assumptions.

Assumptions 2. In addition to Assumption 1 we assume the following:
(i) 0TLC3(0, 1) =0;
(i) 0 € spt(T) and the tangent cone at 0 is given by O(T,0) [7o] where O(T,0) € IN \ {0};

(iii) T is irreducible in any neighborhood U of O in the following sense: it is not possible to find
S, Z non-zero integer rectifiable currents in U with S = 0Z =0 (in W, T = S+ Z and
spt(S) Nspt(Z) ={0}.
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In order to justify point (iii), observe that if in a certain neighborhood U there is a
decomposition T = S + Z as above, it follows from Proposition 2.5 that both S and Z fall in
one of the classes of Definition 1.1. In turn this implies that ©(S,0),©(Z,0) € IN \ {0} and
thus O(S,0) < O(T,0). We can then replace T with either S or Z. Assume without loss of
generality that Ty = S: if it is not irreducibile we can argue as above and find a T, which
satisfies all the requirements and has 0 < ©(T,,0) < ©(T;,0). This process must stop after at
most Q = O(T,0) steps: the final current is then necessarily irreducible.

2.4 THE MAIN INDUCTION STATEMENT AND THE PROOF OF THE MAIN THEOREM
2.4.1 Branching model

We next introduce an object which will play a key role in the rest of our work, because it is
the basic local model of the singular behavior of a 2-dimensional area-minimizing current:
for each positive natural number Q we will denote by B , the flat Riemann surface which
is a disk with a conical singularity, in the origin, of angle 2Q and radius p > 0. More
precisely we have

Definition 2.10. B , is topologically an open 2-dimensional disk, which we identify with
the topological space {(z,w) € C2 : wQ = z,|z| < p}. For each (zp,wo) # 0 in Bqg,p we
consider the connected component D(zo, wo) of Bg,, N{(z,w) : |z —2z0| < |z0|/2} which
contains (zop, wo). We then consider the smooth manifold given by the atlas

{(D(z,w)), (x1,%x2)) : (z,w) € B,p \{0}},

where (x1,x2) is the function which gives the real and imaginary part of the first complex
coordinate of a generic point of B ,. On such smooth manifold we consider the following
flat Riemannian metric: on each ®(z, w) with the chart (x1,x>) the metric tensor is the usual
euclidean one dx? + dx3. Such metric will be called the canonical flat metric. The coordinates
(x1,%x2) = z will be called standard flat coordinates.

When Q = 1 we can extend smoothly the metric tensor to the origin and we obtain
the usual euclidean 2-dimensional disk. For Q > 1 the metric tensor does not extend
smoothly to 0, but we can nonetheless complete the induced geodesic distance on Bq , in a
neighborhood of 0: for (z,w) # 0 the distance to the origin will then correspond to |z|. The
resulting metric space is a well-known object in the literature, namely a flat Riemann surface
with an isolated conical singularity at the origin (see for instance [68]). Note that for each zg
and 0 < r <min{p/2, p — |zo|} the set B, N{|z—zo| < 7} consists then of Q nonintersecting
2-dimensional disks, each of which is a geodesic ball of Bq , with radius r and center
(zo,wji) for some w; € C with w? = zo. We then denote each of them by B.(zp, w;) and
treat it as a standard disk in the euclidean 2-dimensional plane (which is correct from the
metric point of view). We use however the same notation for the distance disk B, (0), namely
for the set {(z, w) : |z| < 0}, although the latter is not isometric to the standard euclidean disk.

When Q (and/or p) are clear from the context, (one of or both) the subscripts will be
omitted. We will consider repeatedly functions u defined on 8. We will always treat each
point of B as an element of C?, mostly using z and w for the horizontal and vertical complex
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coordinates. Often C will be identified with R? and thus the coordinate z will be treated as
a two-dimensional real vector, avoiding the more cumbersome notation (x1,x2).

Definition 2.11 (Q-branchings). Let « €]0,1[, b > 1, Q € N\ {0} and n € N\ {0}. An
admissible a-smooth and b-separated Q-branching in R?*™™ (shortly a Q-branching) is the
graph

Gr(u) :=={(z,u(z,w)) : (z,w) € B,20} C R2HTM (2.17)

of amap u:Bg2, — R™ satisfying the following assumptions. For some constants C; > 0
we have

e u is continuous, u € C>* on Bq,e \ {0} and u(0) = 0;

e [Diu(z,w)| < Cilz]' TT* V(z,w) £ 0and j €{0,1,2,3};

o [D3u]o(,BT(ZIW) < Cilz| =2 for every (z,w) # 0 with [z| = 2r;

e If Q > 1, then there is a positive constant c¢s €]0, 1[ such that

min{[u(z, w) —u(z, w’)| : w £ w’'} > 4cglz|® for all (z,w) # 0. (2.18)

The map D (z, w) := (z,u(z, w)) will be called the graphical parametrization of the Q-branching.

Any Q-branching as in the Definition above is an immersed disk in R**™ and can be
given a natural structure as integer rectifiable current, which will be denoted by G.,. For
Q =1 a map u as in Definition 2.11 is a (single valued) C""* map u : B(0) — R™. Although
the term branching is not appropriate in this case, the advantage of our setup is that Q =1
will not be a special case in the induction statement of Theorem 2.14 below. Observe that
for Q > 1 the map u can be thought as a Q-valued map u : B,(0) — Ag(R™), setting
w(z) =3 Lwiem [ulz,wi)] for z # 0 and u(0) = Q [0]. The notation Gr(u) and Gy, is then
coherent with the corresponding objects defined in Section 3.2 for general Q-valued maps.

2.4.2 Inductive step

Before coming to the key inductive statement, we need to introduce some more terminology.

Definition 2.12 (Horned Neighborhood). Let Gr(u) be a b-separated Q-branching. For every
a > b we define the horned neighborhood V.o of Gr(u) to be

Via =1{(x,y) € R% x R™: 3(x,w) € Bq,20 With [y —u(x, w)| < cslx[?}, (2.19)
where c; is the constant in (2.18).

Definition 2.13 (Excess). Given an m-dimensional current T in R™*™ with finite mass, its
excess in the ball B, (x) and in the cylinder C.(p, ") with respect to the m-plane 7 are

E(T, B (p),m) = Qo™ [ o] (2.20)
B:(p)
E(T,C.(p,7'),7) := (Zwmrm)1/ T—m2d|T|. (2.21)
C:(p,m)

11
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For cylinders we omit the third entry when m = 7/, i.e. E(T, C+(p, 7)) := E(T, C+(p, ), 7). In
order to define the spherical excess we consider T as in Assumption 1 and we say that 7t
optimizes the excess of T in a ball B, (x) if

¢ In case (b)

E(T,B:(x)) := mTinE(T,BT(x),T) =E(T,B.(x),n); (2.22)

® In case (a) and (c) 7w C Ty X and

E(T,B+(x)) := min E(T,B;(x),t) = E(T,B:(x), 7). (2.23)
TCT X

Note in particular that, in case (a) and (c), E(T, B+(x)) differs from the quantity defined in
[21, Definition 1.1], where, although ¥ does not coincide with the ambient euclidean space,
7 is allowed to vary among all planes, as in case (b). Thus a notation more consistent with
that of [21] would be, in case (a) and (c), E*(T, B,(x)). However, the difference is a minor
one and we prefer to keep our notation simpler.

Our main induction assumption is then the following

Assumptions 3 (Inductive Assumption). T is as in Assumption 1 and 2. For some constants
Q i 1121\{0} and 0 < & < % there is an &-admissible Q-branching Gr(u) with u : By, — R™
such that

(Sep) If Q > 1, wis b-separated for some b > 1; a choice of some b > 1 is fixed also in the case

Q =1, although in this case the separation condition is empty.
(Hor) spt(T) C Vy,q U{0} for some a > b;

(Dec) There exist y > 0 and a Ciy > 0 with the following property. Let p = (xo,Yo) € spt(T) N
C\/Z(O) and 4d := |xo| > 0, let V be the connected component of Vy,qa N{(x,y) : [x —xol <
d} containing p and let mt(p) be the plane tangent to Gr(u) at the only point of the form
(x0, u(xg, wy)) which is contained in V. Then

E(TLV,Bo(p),m(p)) < C2d>Y~20?  Voe [1al®+1/2 4| . (2.24)
The main inductive step is then the following theorem, where we denote by T, ; the
rescaled current (i, )3T, through the map 1, ;(q) == (q —p)/T.
Theorem 2.14 (Inductive statement). Let T be as in Assumption 3 for some Q = Qo. Then,
(a) either T is, in a neighborhood of 0, a Q multiple of a Q-branching Gr(v);
(b) or there are v > 0 and Q1 > Qo such that Ty satisfies Assumption 3 with Q = Q7.

Theorem 1.2 follows then easily combining Theorem 2.9 and Theorem 2.14.
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2.4.3 Proof of Theorem 1.2

As already mentioned, without loss of generality we can assume that Assumption 1 holds
(the bounds on A and V¥ can be achieved by a simple scaling argument). Fix now a point
p in spt(T) \ spt(0T). Our aim is to show that T is regular in a punctured neighborhood
of p. Without loss of generality we can assume that p is the origin. By Theorem 2.9 , we
can assume that Assumption 2 is satisfied, that is T is irreducible in some neighborhood of
0 and, upon suitably rescaling and rotating T, 7o is the unique tangent cone to T at 0. In
fact, T satisfies Assumption 3 with Q = 1: it suffices to choose u = 0 as admissible smooth
branching. If T were not regular in any punctured neighborhood of 0, we could then apply
Theorem 2.14 inductively to find a sequence of rescalings To o, with p; | 0 which satisfy
Assumption 3 with Q = Q; for some strictly increasing sequence of integers. It is however
elementary that the density ©(0, T) bounds Q; from above, which is a contradiction.

2.5 THE TWO FUNDAMENTAL TOOLS: THE BRANCHED CENTER MANIFOLD AND THE
BLOW-UP THEOREM

From now on we fix T satisfying Assumption 3. Observe that, without loss of generality,
we are always free to rescale homothetically our current T with a factor larger than 1 and
ignore whatever portion falls outside C,(0). We will do this several times, with factors which
will be assumed to be sufficiently large. Hence, if we can prove that something holds in a
sufficiently small neighborhood of 0, then we can assume, withouth loss of generality, that
it holds on C,. For this reason we can assume that the constants C; in Definition 2.11 and
Assumption 3 are as small as we want. In turns this implies that there is a well-defined
orthogonal projection P : V;, o N C7 — Gr(u) N C, which is a CZx map.

By the constancy theorem, (P3(TL C;))L Cy,, coincides with the current QG C;/,
(again, we are assuming C; in Definition 2.11 sufficiently small), where Q € Z. If Q were
0, condition (Dec) in Assumption 3 and a simple covering argument would imply that
ITII(Cq,2(0)) < Co Ciz, where Cy is a geometric constant. In particular this would violate,
by the monotonicity formula, the assumption 0 € spt(T). Thus Q # 0. On the other hand
condition (Dec) in Assumption 3 implies also that Q must be positive (again, provided C; is
smaller than a geometric constant).

Now, recall that from Theorem 2.9 the density ©(p, T) is a positive integer at any p €
spt(T) \ spt(dT). Moreover, the rescaled currents Ty, converge to ©(0, T) [mo]. It is easy to
see that the rescaled currents (G, )o converge to Q [7o] and that (P4T)o, converges to
©(0,T) [rr0]. We then conclude that ©(0, T) = QQ.

We summarize these conclusions in the following lemma, where we also claim an addi-
tional important bound on the density of T outside 0, which will be proved in the appendix
to this chapter.

Lemma 2.15. Let T and u be as in Assumption 3 for some Q. Then the nearest point projection
P:ViyaNCy — Gr(u) is a well-defined CO* map, C*>* outside the origin. In addition there is
Q € N\ {0} such that ©(0,T) = QQ and the unique tangent cone to T at 0 is QQ [mo]. Finally,
after possibly rescaling T, ©(p, T) < Q + % for every p € C, \ {0} and, for every x € B, (0), each
connected component of (x x R™) NV, q contains at least one point of spt(T).
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Since we will assume during the rest of the paper that the above discussion applies, we
summarize the relevant conclusions in the following

Assumptions 4. T satisfies Assumption 3 for some Q and with C; sufficiently small. Q > 1 is an
integer, @(0,T) = QQ and O(p, T) < Q forall p € C2 \ {0}.

The overall plan to prove Theorem 2.14 is then the following;:

(CM) We construct first a branched center manifold, i.e. a second admissible smooth branch-
ing @ on B, and a corresponding Q-valued map N defined on the normal bundle of
Gr(¢@), which approximates T with a very high degree of accuracy (in particular more
accurately than u) and whose average n o N is very small;

(BU) Assuming that alternative (a) in Theorem 2.14 does not hold, we study the asymptotic
behavior of N around 0 and use it to build a new admissible smooth branching v
on some B o where k > 2 is a factor of Q: this map will then be the one sought
in alternative (b) of Theorem 2.14 and a suitable rescaling of T will lie in a horned
neighborhood of its graph.

The first part of the program is the one achieved in Part iv, whereas the second part is
completed in Part v : after stating both of them we will finish this section with the proof
of Theorem 2.14. Note that, when Q = 1, from (BU) we will conclude that alternative (a)
necessarily holds: this will be a simple corollary of the general case, but we observe that it
could also be proved resorting to the classical Allard’s regularity theorem.

2.5.1 Smallness condition

In several occasions we will need that the ambient manifold X is suitably flat and that the
excess of the current T is suitably small. This can, however, be easily achieved after scaling.

Lemma 2.16. Let T be as in the Assumptions 3 and 4. After possibly rescaling, rotating and
modifying ¥~ outside C(0) we can assume that, in case (a) and (c) of Definition 1.1,

(i) L isa complete submanifold of R>+™;
(ii) ToZ =R>™™ x {0} and, Vp € L, L is the graph of a C3° map ¥, : T, £ — (T, )L

Under these assumptions, we denote by ¢ and my the following quantities

¢ :=sup{||D¥p||c2c 1 p € I} in the cases (a) and (c) of Definition 1.1 (2.25)
¢ = |[dwl|c1e in case (b) of Definition 1.1 (2.26)
Mo = maxX {CZ,E(T, CZ/ 7.[0)/ C12_/ Cg} 7 (2'27)

where Ci and cg are the constants appearing in Definition 2.11 and Assumption 3. Then, for any
€41 > O, after possibly rescaling the current by a large factor, we can assume

mo < €47 (2.28)
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In order to carry on the plan outlined in the previous subsection, it is convenient to use a
different parametrization of Q-branchings.

If we remove the origin, any admissible Q-branching is a Riemannian submanifold of
R?*+™: this gives a Riemannian tensor g := ®*e (where e denotes the euclidean metric on
R?*™) on the punctured disk Bq,2p \{0}. Note that in (z,w), the difference between the
metric tensor g and the canonical flat metric is estimated by (a constant times) |z|2%: thus,
as it happens for the flat metric, when Q > 1 it is not possible to extend the metric g to
the origin. However, using well-known arguments in differential geometry, we can find a
conformal map from B » onto a neighborhood of 0 which maps the conical singularity of
B, in the conical singularity of the Q-branching. In fact, we need the following accurate
estimates for such a map, whose proof will be given in the appendix to the chapter.

Proposition 2.17 (Conformal parametrization). Given an admissible b-separated x-smooth Q-
branching Gr(u) with « < 1/(2Q) there exist a constant Co(Q, ) > 0, a radius v > 0 and functions
Y:Bq, — Gr(uw) and A\: Bg » — Ry such that

(i) W is a homeomorphism of B q » with a neighborhood of 0 in Gr(u);

(ii) ¥ € C*Q""‘(%Q,r \ {0}), with the estimates

[W(z,w) —(z,0)] <CoCilzl"*™, (2.29)
DY (¥(z,w) — (2,0))| <CoCilzI*'  forl=1,...,3,z#£0, (2.30)
[D3W] o B, (zw) <CoCilzl™®  forz#0andr =lzl/2; (2.31)

(iii) ¥ is a conformal map with conformal factor N\, namely, if we denote by ez, the ambient
euclidean metric in R**™ and by eq the canonical euclidean metric of Bq »,

g:= ‘llﬁe“n =Aeq on Bg, \ {0} (2.32)
(iv) The conformal factor A satisfies

IDYA—1)(z,w)| <CoCilz** ' for1=0,1,...,2 (2.33)
[D*N B, (zw) <CoCilz|* 2 forz#0andr=1z|/2. (2.34)

2.5.2 The center manifold and the approximation

We are now ready to state the two “halves” of Theorem 2.14. The first one is the construction
of a surface which at every inductive step will play the role of a wedge between the sheets
of the current, together with a very careful approximation map on top of it.

Theorem 2.18 (Center Manifold Approximation). Let T be as in Assumptions 3 and 4. Then there
exist no, Yo, 7o, C > 0, b > 1, an admissible b-separated -y o-smooth Q-branching M, a corresponding
conformal parametrization ¥ : B o , — Mand a Q-valued map N : Bg , — Aq(R*+™) with the
following properties:
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(i) QQ =0O(T,0) and

ID(¥(z,w) — (2,0))] < Cm}/ 2z (2.35)
1
ID2Y(z,w)| + |z D3¥(z,w)| < CmZ 2o~ ; (2.36)

in particular, if we denote by Ay the second fundamental form of M\ {0},
1
Ant(¥(z, W) + 217 DA (W(z, W)l < CmglzoT.

(ii) A i(z, W) is orthogonal to the tangent plane, at W(z, w), to M.

(iii) If we define S := To v, then spt(S) N Cy \ {0} is contained in the closure of a suitable horned
neighborhood of the Q-branching, where the orthogonal projection P onto it is well-defined.
Moreover, for every r €]0, 1[ we have

1
A 18, llo + sup lp—P(p)l < Cmgr”yTo ) (2.37)
peEspt(S) NP1 (W(B,))

(iv) If we define

D(r):= [ DA and H(r):= / AN?,
B, 3B,

F(r) := /OT ;l(i/)o dt and A(r):=D(r)+F(r),

then the following estimates hold for every r €10, 1[:
Lip(4/1g,) <Cmin{A"°(r), mgJ°r"} (2.38)

mle /B 1z T o A (z,w) <CA™(r) D(r) + CF(r). (2:39)

(v) Finally, if we set

Fz,w) =) [¥(zw)+A izw)],

then
IS—Tz| (P~ (¥(B:))) <CA™(r) D(r) + CF(r). (2.40)
2.5.3 The asymptotic analysis
The second main step is the analysis of the asymptotic behaviour of .4 around the origin, in

particular the mode of convergence of a suitable rescaling of it to its unique limit and the
properties of this limit.
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Remark 2.19. In order to state it, we agree to define W'-? functions on B in the following
fashion: removing the origin 0 from B we have a C{’O . (flat) Riemannian manifold embedded
in R* and we can define W'? maps on it following Definition 3.9. Alternatively we can
use the conformal parametrization W : R? = C — B given by W(z) = (zQ,z) and agree
that u € W]'z(’BQ) if wo W is in W1-2(IR?). Since discrete sets have zero 2-capacity;, it is
immediate to verify that these two definitions are equivalent.

In a similar fashion, we will ignore the origin when integrating by parts Lipschitz vector
fields, treating Bg asa C ! Riemannian manifold. It is straightforward to show that our
assumption is correct, for instance removing a disk of radius e centered at the origin,

integrating by parts and then letting ¢ | 0.

Theorem 2.20 (Blowup Analysis). Under the assumptions of Theorem 2.18, the following dichotomy
holds:

(i) either there exists s > 0 such that A|g, = Q[0],

(ii) or there exist constants 1o > 1, ap, ¥, C > 0 and an Io-homogeneous nontrivial Dir-minimizing
function g : By — AQ(R2+“) such that no g = 0, spt(g(z,w)) C {0} x R™ x {0}, for
every (z,w) € B, and

S(AN (z,w),g(z,w)) < Clzlfot @V (z,w) € B, |zl < T, (2.41)

and moreover the following estimates hold

/B . IDA|? < Cr2lotao y cp2lo=Tp vap<r<l, (2.42)
T+2p r—2p

H(r) < CrD(r) Vr<l. (2.43)

Remark 2.21. Note that, when Q = O(T,0), we necessarily have Q = 1 and the second alter-
native is excluded. In particular we conclude that T coincides with [M] in a neighborhood
of 0 and thus that it is a regular submanifold in a punctured neighborhood of 0.

Remark 2.22. By a simple dyadic argument it follows from (2.42) and (2.43) that

i ID,/Vl2 < Cr%lo and F(r) < Crélotve w1, (2.44)

so that, in particular

A(r) <Cr?le and AM(r) < Cr2lomo,

2.6 PROOF OF THE INDUCTIVE STEP

We start observing that if case (a) of Theorem 2.14 does not hold, then we are necessarily
in case (ii) of Theorem 2.20. Therefore we only need to prove that Theorem 2.20(ii) implies
Theorem 2.14(b).

We divide the proof in different steps.

17
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Step 1. For a reason which will become clear later, it is convenient to slightly modify the map
g to a multivalued map n(z,w) = }_; [ni(z,w)] in such a way that n;(z, w) is orthogonal
to M at W(z, w). To achieve thls it suffices to project gi(z, w) = (0, gi(z, w), 0) on the normal
bundle. Observe that, by the estimates on |Ay¢| and ¥, we easily have (cf. the proof of Lemma
10.14)

lgi(z, w) —ni(z, w)| <CCjlz|"°lgi(z, W), (2.45)
IDnl(z, w) <|Dgl(z,w) + CCilz|Y* " T[gl(z, w) . (2.46)

We introduce the function H: B4 — Aq (R**™) given by

Q
w):E [Hi(z,w ]]—E [W(z,w) +ni(z,W)] .
i=1

Note that, since g is Io—homogeneous, by (2.45) there exists a constant C > 0 such that
Hi(z,w) —Hj(z,w)| > C z|"  whenever H;(z, w) # H;(z, w). (2-47)
Let 0 < a < ap be a constant to be fixed momentarily and ¢ := Iy + % > 1. Set
Vi = {Hilzw)+p e R*™ i p| < [z, i=1,...,Q}.

We claim that there exists s > 0 such that spt(T) " Bs C Vi ¢.

In order to prove this claim, we distinguish two cases. First we consider any point
p € spt(T) Nspt(T¢). In this case p = ¥(z,w) + .4 i(z,w) for some (z,w) € Bg and for
some i=1,...,Q. Without loss of generality, by (2.41) we can assume |.4;(z, W) — gi(z, W)| <
Clz|Tota je.

Ip — Hi(z, w)| = [Ai(z, w) —ni(z, w)| < [Ai(z, W) — gi(z, W)| + |gi(z, w) —ni(z, W)
< Clz|fot@ 4 Clgllotre, (2.48)

which in particular implies spt(T) Nspt(T#z) N Bs C Vi ¢ if s is sufficiently small and we
impose § < yo.

For the second case we consider a point p € spt(T) \ spt(T#) and assume by contradiction
that p € Vi ¢. In particular, in view of (2.48) we have that

B:=B,(p)Nspt(Ts#) =0

C
T
if |z| is sufficiently small. By the monotonicity formula we know that ||T||(B) > C |z|%¢;
nevertheless since B C P~'(B;, \ Biz/), we deduce from (2.40) and (2.44) that ||T||(B) <

2

C [z|?To+2 % with k = min{2ng o, Yo}, which gives a contradiction if a < 2k.

Step 2. From the previous step we can infer that g is a constant multiple of an irreducible
function, namely there exists Q" > 0 such that card(g(z, w)) = Q" for every (z, w) # (0,0)
and there exists a continuous map h : %QQ/ — R2*™ such that

g(z,ng, Y [heEw). (2.49)

~ ~ /
=z, WQ' =w
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If this is not the case, by a straightforward generalization of [17, Proposition 5.1] we can
decompose g in the superposition of irreducible functions, i.e. there exists a unique decom-
position g = Zj]:1 kjg; where gj : Bg — Ag;(R™) are Dir-minimizing Ip-homogeneous
functions, for some choice of positive integers J, k;, q; such that Z]] _1kjq; = Q.

Denoting by H the corresponding maps (recall that n is the projection of g on the normal
bundle to M)

q;
=3 [¥(zw)+ W)z, w)]
1=1

and by Vy,; . the corresponding horned neighborhoods
Vig o= {(Hh(zw)+p e R* ™ :p| <[z 1=1,...,q;},

it follows from (2.47) that V¢, i, N Ve, = {0}. Setting Ty :==TL V¢ 1, weinfer that T=) ; T;
with spt(T;) Nspt(T;) = {0}, against the irreducibility of T. Note that, since n o g = 0 it also
follows that Q" > 1.

Having established (2.49), let us define ® : B, — R™ as

O(z,W) :=¥(z,Ww?) + h™(z,W) ¥ (£W) € Bgqo,

where h™(Z,W) is the projection of h(Z, W) on the space normal to M at the point y(z,w).
It follows that Im(H) = Im(@®) is an admissible QQ’-branching (the Holder regularity for the
graphical parametrization follow from the fact that Iy > 1). Moreover, from the homogeneity
of g we easily infer that Im(®) is Iy-separated (for a suitable constant cs). Note that for
(' :==1o + ¢ and s sufficiently small Vi, "\Bs C Vg, N Bs.

Step 3. Finally we prove the condition (Dec) of Assumption 3. Let (z,w) € B, with
0 < |z < /2, let V be the connected component of Vg o N{(x,y) : [x —z| < d} with d := l%'
containing @ (z, w), and p € spt(T) NV with co-ordinates p = (z,y). Denote by 7t the oriented
two-vector for Im(@®) at ®(z, w), and consider p € [%dM, d.

Since B, (p) C p-! (W(B)2+20 \ Bjz|—2p)), we start estimating as follows

/ T2 4T < / Tr 7P T | T TP (Biayrszp))
B, (p) B, (p)
(2.40) =
2 / Ty — @2 d||Ts| + ClzPlo+2x, (2.50)
By (p

Next, note that for |z| small enough P(B,(p) N Ve /) C ¥(B2,s(z,w)).
We can consider the set of indices A C {1,...,Q} such that .%;(z,w) € V for i € A and
estimate as follows

/ AT <Y / T, —Tol? +CpLip(DOg, (zm))?

B, iEA B, (z,w)

<cy / Ts, — Tul

icA sz ZW

L / Ty — Tol? + Cp* 21202, (2.51)
sz (Z W)
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where 0 := min{yo, Iy — 1} and we used the fact that |D?®|(z, w) < C|z|?T.
We can finally use the computation of the excess in curvilinear coordinates in Proposition
3.50 to get

Y[ ma-Tebsc (DA + 2o 2 42)
1 By, (z,w) Bp(z,w)
(2.44)
< C / IDA|? + C |z|?Tot+2Y0 (2.52)
B\z|+2p\B\z\729
(2.42)
< Clzfflotac 4 Clgf2loTp, (2.53)

and similarly
/ To—Tul? <C (IDn2 + 22702 2)
B2, (z,wW) B2p(zw)

<c [ (gP+zve2lgR)
BZP(Z,W)
< Clzf*lo2p? 4 CfTo+2Ye (2.54)

(observe that, in order to apply Proposition Proposition 3.50 we need that n takes value into
the normal bundle).

Collecting all the estimates together, we have that there exists a suitable constant @ such
that

/ . IT— a2 d||T[| < ClzPo™2® 4 CplzlPlo~ ! + Cp* 22072 < |2V p*, (2.55)
By(p

(Ig+1)
where the last inequality is verified for a suitable y > 0, and for every p € [; (%) ° li]

and |z| small enough.

2.7 APPENDIX A: PROOF OF THE TECHNICAL LEMMAS

In this section we prove the two technical Lemmas 2.15 and 2.16.

Proof of Lemma 2.15. Consider xo € 7o with 2p = [xgl, a smooth C? function ¢ : Bo(xo) = R™
and the open set V,, := {(x,y) : x € B, /2(x0), [y — ¢ (x)| < p}. Recall that there is a geometric
constant C such that, if p < C/ HDzd)HBp(XO), then for each p € V,, there is a unique
nearest point P(p) € Gr(¢) (which defines a C! map P : V, — Gr(¢)). In particular, if
HDZcIDHBp (xo) < Cp™~ 1, the existence of such point is guaranteed under the assumption that
p < cp' % (where cis a, possibly small but positive, constant). Consider now an admissible
smooth branching u: B4 — R™. If Q = 1, the above discussion shows easily the existence
of a well defined C! map P : V,, q N Car — Gr(u), provided r is sufficiently small. If Q >!1,
the same conclusion holds under the assumption that u is b-separated and a > b > 1.
Indeed consider p = (z,y) € Vy,q and (z,wi) € Bq such that [y —u(z, wi)| < cslz|®. The
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assumptions of being well-separated implies easily that |p —u(¢, w)| > cslz|® whenever
z ¢ By, /2(z,wi) and thus we can argue locally on the sheet Gr(ulB‘z‘/z(Z,wi) ).
Next, up to rescaling we can assume that P is well-defined on V,, o N C,. The discussion
before Lemma 2.15 applies now verbatim and we conclude the first sentence of the Lemma.
To reach the other two conclusions of the Lemma we argue by contradiction: if they were
wrong, then we would find a sequence of points {xyx} C B,(0) converging to 0 for which one
of the following two conditions hold:

e either {xx} x R™ contains a point px € spt(T) with O(py, T) > Q + %;
* or one connected component Q of ({xx} x R™) NV, 4 does not intersect spt(T).

Set 2ry = x| and consider the connected component Vi of V,, 4 N Cy, (xi) which contains
Pk (in the first case) or Qy (in the second). Let Sy := Ti L Vi and let qx = (xx, w(xk, wi))
be such that qy € Vi. Finally set Zy := (Sx)q, .- Observe that spt(Zy) is contained in a
neighborhood of height Cr2~" of 7ty and we therefore conclude that Z converges to a current
Z which is an integer multiple of [B;(0)]. On the other hand, since Py(Sx)L C,, ,2(xx) =
QG L C;, /2(xx) for k large enough, we conclude that Z = Q [B1(0)]. Now, either spt(Z;) N
({0} x R™) contains a point qi of multiplicity Q + % or it is empty. Since however (p,)sZx =
Qx [B1(0)] — (pry)sZ (by the constancy theorem), for k large enough we would have
(Pro)tZx = Q[B1(0)], contradic! ting the emptyness of spt(Zy) N ({0} x R™) = () because
Q > 1. As for the other alternative, we must have, by the almost minimality of Zy (see
Proposition 5.8)

limsup || Zy[|(B1,/2—|4,(qx)) < lim [[Zx[[(B;,2(0)) = Quw,.
k— 00 k—o0

Since qx — 0, the almost monotonicity formula (see Proposition 5.8) would imply O(qy, Zx) <
Q+o(1). O

Proof of Lemma 2.16. Since QQ 0] is tangent to T at 0, we obviously must have ToZ D 71
and thus ToZ = R%?*™ x {0} can be achieved suitably rotating the coordinates. To achieve the
other two conclusions we scale X and intersect it with C4(0, ToX) to reach that Z N C4(0, ToX)
is the graph of some ¥ with very small C3¢° norm. We can then extend ¥ outside B4 (0, ToZ)
without increasing the C>¢° norm by more than a factor: this gives (i) and (ii) and also
shows that ¢ can be assumed smaller than €47 in case (a) and (c) of Definition 1.1. For the
details we refer the reader to the proof of [20, Lemma 1.5]. The rest of the Lemma is a simple
scaling argument. O

2.8 APPENDIX B: CONFORMAL COORDINATES FOR BRANCHED SURFACES

In order to prove the Proposition we recall the following classical fact about the existence of
conformal coordinates. As in the rest of the paper, e denotes the standard euclidean metric.

Lemma 2.23. For every k € N and «,3 €0, 1] there are positive constants Co and co with
the following properties. Let g be a C¥P Riemannian metric on the unit disk B, C R? with
Ilg—ellcox < co. Then there exists an orientation preserving diffeomorphism A : Q — By and a
positive function A : Q — R such that
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(i) Afg=2Ae;
(i) [|A=Id[|cre +[[]A =T][coa < Collg — €]l cons
(i) [[A=Id[|crrre +[[A=T[cre < Collg —ellcre.

Although the statement above is a well-known fact (and it follows, for instance, from the
treatment of the problem given in [61, Addendum 1 to Chapter 9]), we have not been able to
find a classical reference for it. However a complete proof can be found in the Appendix of

[23].

Proof of Proposition 2.17. After rescaling we can assume that p > 2Q. We fix Q and drop
subscripts in B 2. Observe also that, if we rescale by a large factor R, the constants C; in
Definition 2.11 can then replaced by the constants C;R™*. Hence, without loss of generality
we can assume that C; is sufficiently small.

Let @ : B — R™"2 be the graphical parametrization of the branching and recall that
g = dfe. Fix a point (zp, wo) € B\ {0}, let r := |zp|/2 and observe that on B, (zp, wo) we can
use z as a chart and compute the metric tensor explicitely as

gij(z, W) = dy5 + 03u(z, w)dju(z, w) =: 845 + 035 .
It then follows easily that
IDIo(z)] <CoC2|z** T forje{0,1,2) (2.56)
[DZG]“,Br(ZO,WO) gCoC%r“*Z. (2.57)
Step 1. Next consider the map W: R? C B, — B defined by W(z) := (2, z). We set
g=Wig=(D®oW)re.
We then infer that (following Einstein’s convention on repeated indices)
gij(z) = Q%zI*R 2845 + 0w (2R)9; Wi d; W,
and we set
(z) == (Q*2P¥72) " g(2).
We then easily see that
It(z) — el < Colzl~ 2™ DW(2)*0(2?)| < CoCFl2l*R*.
Differentiating the identity which defines T we also get

IDT(2)] <Colzl~ P VIDW(2)[?0(29)] + Colzl~ 22 D*W(2)IDW(2)||o(2Q)|
+ Colzl~ P IDW(2) Do (29)]|2| !
<CoCHz[2R>T,
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Analogous computations lead then to the estimates

|Dj('c— e)l(z) éCoCizlz\zQ“_j forj €{0,1,2} (2.58)
D%, 8, (z) <CoCPZPR%27%  fors = 2]/2. (2.59)

Interpolating between the C! and the C° bound, we easily conclude that

[T2Qu,B,\B, < Co c?.

Note in particular that T (unlike g) can be extended to a nondegenerate C%Q% metric to the
origin.

Since C; can be assumed sufficiently small, we can apply Lemma 2.23 to find an orientation
preserving diffeomorphism A: Q — B, and a function A : QO — R™ such that

APt =he (2.60)
IA—=TId| cr20a + A — 1] cozox <CoCj. (2.61)

Observe that, without loss of generality, we can assume that 0 € Q and A(0) = 0. In
particular (2.61) implies that, for C; suitably small, By C Q and hence we will regard A and
A as defined on Bj. Next divide A by A( 0) and keep, by abuse of notation, the same symbols
for the resulting map and the resulting conformal factor in (2.60). After this normalization
we achieve that A(0) = 1 and that the estimates (2.61) still hold with a larger Cy. Moreover,
A(0) = 1 implies that DA(0) € SO(2): composing A with an appropriate rotation we can
then assume that DA(0) is the identity. This implies that

A(z) — 1] <CoCilz|®* (2.62)
IDI(A(z) —2)] <CoCilz/'* QT forj e {0,1}. (2.63)

Step 2. We next wish to estimates the higher derivatives of both A and A. We adopt the
following procedure. We fix a point p # 0 and let v := [p[/2. We then apply a simple scaling
argument to rescale B, (p) to a ball of radius 2 so that we can apply Lemma 2.23. If we
rescale back to B, (p) it is then easy to see that we find maps Ay, : O, — B (p), Ap : Q — R™
with the properties properties:

ALt =Apg (2.64)
[Ap —Id| 1200 + [[Ap = T cozea <CoCy (2.65)
Ap —Id]3 0 + Ay — 12,0 <CoCir2QRO—27%, (2.66)

Note that Z:= Ao /\; 1 Moreover, its domain is a disk of radius . Since

sup [92(Z(z) —z)| < Cor? ™,
z

we easily conclude the higher derivative estimates

102(Z2 —2)|| < CoCyr2 Rk fork €{1,2,3,4},
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which, by holomorphicity, are actually estimates on the full derivatives. Since A = Zo A, we
then easily conclude that

DI*TA(2) + DI (A(z) = 1) SCoCilzlPR%T forj €{0,1,2) (2.67)
[D3Ala B, (2) + [D*Al o B, (z) SCoCit?R*27%  forr = [2//2 > 0. (2.68)
Finally notice that

(A'g) (z) = QYA(2)PR%A(2)e. (2.69)

Step 3. We are finally ready to define ¥ := ® o W o A o W, First of all observe that

AW (z,w))2Q2

Z2-2/Q AW (z,w))e = A(z,we.

(We)(z,w) = (W )FA%G) (2, w) =

Since W~ (z,w)| = |z|'/Q, we can also estimate

AW (z,w))[QR2 AW (z,w))| Q2 —[z]*2/Q

A(z,w)—1| < AW T (zw)—=1/+C

\Z|272/Q |Z|272/Q
<CoCZIW T (2, W)[2Q* + Colzl /R AW (z,w))| — W T (z,w)])
<CoC2|z* + CoC2zl QW T (2, W) F2Q% < Co CHz?*.

Similarly

AW (z,w))]2Q2

W= (z,w)2Q—2

AW |
W=1(

IDA(z, w)| <CoDAW ! (z,w))llz|~" + Co ‘

<CoC2lzP* 1+ Cy ‘D

and observe that

I/\(W_‘)|’ _ '( DA(W ) AW

W-T] AW-w-1| w13
<Co DWW (IDAWT!) —Id| + W (IAWTT) — (W)
<CoCZ2DW T jwT112Qa=2

’D Id) pw'w!

Recalling that [DW™! (z,w)| < [2|"/Q7T, W~ (z,w)| = [2]'/Q, we conclude
IDA(z, w)| < CoCPlzl** .

The estimates on the second derivative and its Holder norm follow from similar computa-
tions.

We now come to the estimates on W. Let A := Wo Ao W~ Fix (zg, wo) # 0, let 1 := |z0|/2
and use z as a local chart. It will then suffice to show that

IDI(A(z) —2)] <CoCilzl'"** v forje{0,1,2,3} (2.70)
(D3 Ala, B, (z0w) <CoCilzl 2. (2.71)
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On the other hand since A(0,0) = (0,0), it actually suffces to show the first estimate for j = 1
to obtain it in the case j = 0.
We start computing the first derivatives:

DA =DW(A W HDA(W- ) DW!.
Recalling that DWW 1DW-! =1d, we estimate

IDA(z) —Id| K IDW(A(W™(2))) = DWW~ (2))[DA(W~ () [IDW ' (2)]
+ DWW~ (2))[IDA(W ™ (2)) —Id|DW ' ()|
<CoW () RTNAW T (2)) =W (2)]|2)/ R
<+ CoCEW 1 (2)| W1 (2) 2/ Q!
<CoCIW 1 (2)| UF2Rx|z|V/ Q7T 4 € CElzl2* < CoCPlz*™.

Similar computations give the estimates on the higher derivatives. O
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MULTIPLE VALUED FUNCTIONS AND INTEGRAL CURRENTS

The content of this Chapter is taken mainly from the works of De Lellis and Spadaro in
their proof of Almgren’s regularity result for Area Minimizing currents. In particular the
main references are [17], [18], and [19]. The chapter is organized in three sections each
addressing useful tools from the theory of multiple valued maps and their link with integral
currents. The first section deals with the theory of multiple valued functions. In particular,
after giving the basic definitions, we address the questions of existence and regularity of
energy minimizing maps, together with some useful properties such as higher integrability
of their gradient and unique continuation. Moreover we give a reparametrization criterium
and a very general construction of competitors for the energy.

The second section deals with the identification of the image of a Q-valued function with
an integral current of multiplicity Q, the good behaviour of the usual boundary operation
and an explicit formula to compute the mass.

In the third and final section we recall the Taylor expansion for the mass of the image of a
multiple valued function in terms of the energy, in the graphical case and in a slightly more
general situation. As a consequence we derive the corresponding expansions for the excess
and the first variations.

3.1 TUTORIAL ON MULTIPLE VALUED FUNCTIONS AND DIR-MINIMIZERS

In this section we recall some basic results from the theory of multiple valued maps
developed in [17] and the main properties of Dir-minimizing functions that will be needed
in the sequel.

Definition 3.1. We denote by [P] the Dirac mass centered in P € R™ and we define the
space of Q-points as

Q
Ag(R™): = {Z[[Pi]] : Py € R™ for every i= 1,...,Q} .

i=1

Moreover for every Ty, T, € Ag(R™), with Ty =} ; [Pi] and T, = } ; [Si], we define

(N, T2) = mgl Z“’i*scﬁﬂz,

where g denotes the group of permutations of {1,..., Q}. We adopt the convention that

ITI=§(T, Q [0]).
IfT= Z&] [Pi] € Aq we define the diameter and the separation of T by

d(T) :==max|P; —P;| and s(T):=min{|P; —P;| : P; # P;}
i
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with the convention that s(T) = co if T = Q [P].

Finally we define the map n: AQ(IR“) — R™ which takes each measure T = Z?:] [Pi] to

its center of mass n(T) := Z‘

The couple (Ag(IR™),3) is a metric space so the usual functional spaces (Continuous,
Lipschitz, Holder, Measurable, LP) are well defined, in particular LP(Q, Aq) consits of those
map u: Q — Agq such that [|G(u, Q [0])||rr is finite. Furthermore we have the following easy
decomposition result.

Lemma 3.2 (Measurable selection [17, Proposition 0.4]). Let B C R™ be a measurable set and let
f: B — R™ be a measurable function. Then, there exist f1,...,fq measurable R™-valued functions
such that

f(x) =) [fi(x)] forae x€B.

3.1.1  Lipschitz Multiple valued maps

Multiple valued Lipschitz maps enjoy similar properties to their vector valued counterparts.
This is a consequence of the following decomposition Lemma, which allows us to perform
inductive reasoning on the multiplicity Q.

Lemma 3.3 (Lipschitz decomposmon [17, Proposition 1.2]). Let f: B € R™ — Aq be a
Lipschitz function, f = Zl 1 [fil. Suppose that there exist xo € B and i,j € {1,...,Q} such that

[fi(xo) —fj(x0)| > 3(Q — 1) Lip(f) diam(B) .

Then, there is a decomposition of f into two simpler Lipschitz functions fx and fi with Lip(fx), Lip(fr) <

Lip(f) and spt(fi (x)) Nspt(fL(x)) = 0 for every x.
Using this result one can prove the following extension result.

Proposition 3.4 (Lipschitz extension [17, Theorem 1.7]). Let f: B C R™ — Aq be Lipschitz.
Then, there exists an extension f: R™ — Aq of f, with Lip(f) < C(m, Q) Lip(f). Moreover, if f is
bounded, then

sup [f(x)| < C(m, Q) suplf(x)|.

x€eR™ x€EB

Next we study the differentiability properties of Lipschitz maps.

Definition 3.5. Let f: B C R™ — Ag and xo € B. We say that f is differentiable at x if
there exist Q matrices L; satisfying:

(i) G(f(x), Tx,f) = ollx —x0l), where

Ty, f(%) Z[{L (x —xo) + fi(x0)] ;

(11) Li = L)' if fi(Xo) = f)'(Xo).
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The point } ; [Li] € Aq(R™*™) will be called the differential of f at xo and denoted
by Df(xo). Moreover we define the directional derivative in direction v by 0. f(x) :=

> i [Dfi(x) - v].
Differentiable functions enjoy a chain rule formula.

Proposition 3.6 (Chain rules [17, Proposition 1.12]). Let f: Q — Aq(IR™) be differentiable at
X0-

(i) Consider ®: OO — Q such that ®(yo) = xo and assume that @ is differentiable at yo. Then,
f o @ is differentiable at yo and

D(fo®)(yo) = ) [Dfi(xo) - D®@(yo)] -

1

(ii) Consider ¥: Qy x RT* — R* such that W is differentiable at (xo, fi(xo)) for every i. Then,
W(x, f(x)) fulfills (i) of Definition 3.5 and, if (ii) holds, then

D¥(x,f)(xo) = ) _[Du¥(xo, fi(x0)) - Dfi(x0) + Dx¥(xo, fi(x0))] -

Moreover the analogous of Rademacher Theorem holds.

Proposition 3.7 (Rademacher [17, Theorem 1.13]). Let f: QO — Aq be a Lipschitz function.
Then, f is differentiable almost everywhere in Q).

3.1.2  Sobolev Multiple Valued Maps

In order to define Sobolev spaces we are going to use Almgren’s extrinsic theory and
immerse A in a big RN using a bilipschitz homeomorphism. It should be noted that it was
an original contribution of De Lellis and Spadaro to carry out a theory of Sobolev multiple
valued functions completely independent from this immersion and which relays on modern
techniques for general metric spaces. Since we will need the immersion later on however, we
prefer to adopt here Almgren’s point of view.

Lemma 3.8 (Bilipschitz embedding [17, Theorem 2.1 & Corollary 2.2]). There exists N =
N(Q,n) and an injective map &: Agq(R™) — RN such that:

(i) Lip(&) < 1;
(ii) if Q = E(AqQ), then Lip(&~'[o) < C(n, Q);
(iii) for every T € Aq(IR™) there exists & > 0 such that

E(T) —&(S)I=G(5,T) VS eBs(T) C Ag(R™).

Moreover there exists a Lipschitz map p: RN — Q which is the identity on Q.

Using this embedding we can give meaning to the notion of Sobolev spaces and trace
operator.
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Definition 3.9. Let & be the map of Lemma 3.8. Then a Q-valued function f belongs to
the Sobolev space W1'p(Q,AQ) if & o f belongs to WP (Q,RN). Furthermore for every
fe W1'p(Q,AQ), we define

/QIDpr: Z/Qm(aofnp.

Definition 3.10. Let f € WP (Q, Aqg). The trace of f is the unique function g € L?(0Q, Aq)
such that & o fl[yn = & o g. Moreover the space

WP (Q,Aq) ={fe W'P(Q,Aq) : flaa =g}
is sequentially weakly closed in W'P.
As in the classical theory, we can approximate Sobolev functions with Lipschitz functions.

Lemma 3.11 (Lipschitz approximation [19, Lemma 3.5]). Let f € wlp (B, AqQ). Then, for every
€ > 0, there exists f¢ € Lip(B, Aq) such that

/B9(f,fs)r’+/B(|Df|—|Df£|)P+/B(|D(nof)|—|D(nofsmp <. (3.1)
If flag € W]'z(aB,AQ), then f¢ can be chosen to satisfy also
9(f,fs)p+/ (IDF| — [DFI)P < c.
0B

oB

Remark 3.12. As a consequence of this, Sobolev functions are approximately differentiables
and the chain rule of Proposition 3.6 holds at a.e. point. In particular it is possible to prove
that

2 f. 2
/Q D] —Z] /Q 195f: (x)12 dx, (3.2)

where 0;f; are the approximate partial derivatives of f.

Another simple consequence of Lemma 3.8 is the validity of the usual Sobolev immersions
for multiple valued functions and a sort of Poincaré inequality.

Proposition 3.13 (Sobolev Embeddings [17, Proposition 2.11]). For p < m set # =1_

P
Then, the following embeddings hold:

1
o
(i) if p < m, then WP (Q, Aq) C LR(Q, Aq) for every q € [1,p*], and the inclusion is
compact when q < p*;
(ii) if p =m, then W1'P(Q,AQ) C LQ(Q,AQ)for every q € [1, 00), with compact inclusion;
cee . 1, O, _ . m . . . .
(iii) if p > m, then W'P(Q,Aq) C C¥*(Q, Aq), for « =1 b with compact inclusion if

_m
o<1 b
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Proposition 3.14 (Poincaré inequality [17, Proposition 2.12]). Let M be a connected bounded
Lipschitz open set of an m-dimensional Riemannian manifold and let p < m. There exists a constant
C = C(p, m,n, Q, M) with the following property: for every f € W'P(M, Aq), there exists a point
f € Aq such that

(somm)” << (fom)
|

where p* is the Sobolev exponent of p, that is # == —

1_1
=~ m

Finally we state two very useful technical Lemmas about W' multiple valued functions.

Lemma 3.15 (Interpolation lemma [19, Lemma 3.6]). There exists a constant C = C(m,n, Q) >
0 with the following property. Assume v €]1,3[, f € W"Z(Br,AQ) and g € WLZ(OBr,AQ) are
given maps such that flog, € W12(9By, Aq). Then, for every ¢ €10, [ there exists a function
he WLZ(BT,AQ) such that hlag, = g and

C
Dh2 < [ DfP+¢ / (ID<fP + Deg?) + =0 [ 5(f,9)2, (33)
B, B, 9B, € JoB,
Lip(h) < Co {Lip(f) +Lip(g) + ¢~ ' sup 9(f,g)} , (3.4)
0B,
|noh|<co/ |1109|+Co/ Inofl, (3.5)
B 0B, B

(here D denotes the tangential derivative).

Lemma 3.16 (Irreducible selection [17, Proposition 1.2]). f € wl2(s! ,Aq) is called irreducible
if there is no decomposition of f into two simpler W% functions. For every Q-function g €
wi2(g! ,AQ), there exists a decomposition g = Zj]:] [[gj]], where each gj is an irreducible w2
map. Moreover g is irreducible if and only if

(i) card(spt(g(z))) = Q for every z € s',
(ii) there exists a W% map h: S — R™ with the property that f(z) = _.o_, [R(C)].

3.1.3 Reparametrization Lemmas

The following two results will allow us to reparametrize Lipschitz functions both in the
classical and the Q-valued cases on different domains whose tangent planes are sufficiently
close.

Lemma 3.17 (Change of coordinates for classical functions [20, Lemma B.1]). For any m,n €
IN \ {0} and radii 0 < s < p, there are constants cy, Co > O depending on the ratio % with the
following properties. Assume that

(i) 3,39 C R™T™ are m-dim. planes with | — s| < co;
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(i) p=(q,u) € 2% x - and f,g: BP(q, ») — st are Lipschitz functions such that
Lip(f), Lip(g) <co and [f(q) —ul+[g(q) —ul < cop.
Then there are two maps ', g’ : Bs(p, »0) — zoL such that
(@) G = Gl Cs(p,»0) and Gy = Gyl Cs(p, 50);
@) If"—9'llL1 (B (peo)) < Collf —allL1 (B, (p,2))/
(c) iffe C3'K(Bp(p, %)) then £ € C3%(Bg(p, 20)) with the estimates

If" — || co < CJIf —ul|co + Clse — 207 (3.6)
IDf" || co < C|IDf|co 4 Clse — 5] (3.7)
ID%f]| c1x < D(|5¢— 320], [|D? ]| c1x) (3.8)

where (q',u) € s x 35 coincides with the point (q,u) € s x 3 and © is a smooth

functions with ®(-,0) = 0;

@) If" = 9'llwr2 (B (po)) < Col1+ D]l co)lIf = gllwrzs, (p,))-

We should remark that the proof of the next Theorem exploits the interpretation of the
graph of a Q-valued map as an integral current. This notion will be made clear in the next
section.

Theorem 3.18 (Q-valued parametrizations [18, Theorem 5.1]). Let Q,m,n € Nand s <r < 1.
Then, there are constants co, C > 0 (depending on Q, m,n and ) with the following property. Let
@, M and U be such that

(M) M C R™*™ is an open submanifold of dimension m with H™ (M) < oo, which is the graph
of a function @ : R™ D By — R™ with ||@||c3 < C;

(U) W is a regular tubular neighborhood of M, i.e. the set of points {x +y :x € M,y L M, [y| <
o}, where the thickness cg is sufficiently small so that the nearest point projection p : U — M
is well defined and C?; the thickness is supposed to be larger than a fixed geometric constant
(which depends on ¢).

Let f: By — Aq(IR™) be such that

l@llc2 +Lip(f) < and — |l@[[co+ [[flco < cor. (3.9)
Set ®(x) := (x, @(x)). Then, there is a map F : M — Agq (R™"™) of the form

Q Q
> R Z[[x+N

where N : M — Ag (R™*™) satisfies x + Ni(x) € U, Ni(x) L TuM for every x and Lip(N) < ¢,
such that Tg = G¢L U and

Lip(N) < C(D2¢ co[N]|co + [Dep]lco + Lip(f)) , (3.10)
Z}Qm(@(pm <S(f(p), QoM <2V/QN(@ ()| Vp B, (3.11)

Mo N(®@(p))l < Cmoflp) —@(p)l+ CLip(f)De(p)IN(®(p))|  Vp €Bs.  (3.12)
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Finally, assume p € Bs and (p,nof(p)) = &+ q for some & € M and q L Te M. Then,

S(N(£),Q[al) < 2vQS(f(p), Qo f(p)]). (3.13)

For further reference, we state the following immediate corollary of Theorem 3.18, corre-
sponding to the case of a linear @.

Proposition 3.19 (Q-valued graphical reparametrization [18, Proposition 5.2]). Let Q, m,n €
IN and s < v < 1. There exist positive constants c,C (depending only on Q, m,n and ) with
the following property. Let my and @ be m-planes with |t — 1ol < ¢ and f : B (1) — AQ(né)
with Lip(f) < c and |f| < cr. Then, there is a Lipschitz map g : Bs(m) — .AQ(TEJ‘) with Gy =
Gl Cs(m) and such that the following estimates hold on Bg(m):

gl co < Crlm— 7ol + Cl[f[| co, (3.14)
Lip(g) < Clm — mo| + CLip(f). (3.15)

3.1.4 Main Regularity results about Dir-minimizing Maps

We list in this subsection the main results about existence and regularity of Dir-minimizing
function. We will not really need these results, but they are the analogous of our result on
2-dimensional currents for multiple valued maps.

Definition 3.20 (Dir-minimizing map). f € W'2(Q, Aq) is said to be Dir-minimizing if
/ IDf|? < / IDh[* forall h e W'*(Q, Aq) with flaa =hlaa -
0 0

Theorem 3.21 (Existence for the Dirichlet Problem [17, Theorem 0.8]). Let g € W1'2(Q,.AQ).
Then, there exists a Dir-minimizing function f € WLZ(Q,AQ) such that flao = glsa-

Proposition 3.22 (Harmonicity and compactness [17, Lemma 3.23 & Proposition 3.20] ). The
following properties hold.
(i) if f € W]'Z(Q,AQ(]R“)) is Dir-minimizing, then n o f € W2(Q,R™) is harmonic.

(ii) Let fx € W2(Q, Aq) be Dir-minimizing Q-functions weakly converging to f. Then, for every
open Q' CC Q, f|q/ is Dir-minimizing and it holds

lim |ka|2:/ IDf|?.
k—o0 Q' ’

Theorem 3.23 (Holder regularity [17, Theorem o0.9] ). There exists a positive constant « =
a(m, Q) > 0 with the following property. If f € W'2(Q, Aq) is Dir-minimizing, then f €
CO*(Q) for every Q' CC Q C R™. For two dimensional domains, we have the explicit constant

x(2,Q) =1/Q.

For the second regularity theorem we need the definition of singular set of f.
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Definition 3.24 (Regular and Singular points). A Q-valued function f is regular at a point
x € Q if there exists a neighborhood B of x and Q analytic functions f;: B — R™ such that

fly) = Z [fi(y)] for almosteveryy € B

and either fi(x) # fj(x) for every x € B or f; = fj. The singular set X of f is the complement
of the set of regular points.

Theorem 3.25 (Estimate of the singular set [17, Theorem o.11] ). Let f be a Dir-minimizing
function. Then, the singular set X¢ of f is relatively closed in Q). Moreover, if m = 2, then L¢ is at
most countable, and if m > 3, then the Hausdorff dimension of Lt is at most m — 2.

The next result is the analogous of Theorem 1.2 in the case of multiple valued maps.
Theorem 3.26 (Improved estimate of the singular set [17, Theorem o.12]). Let f be Dir-

minimizing and m = 2. Then, the singular set L¢ of f consists of isolated points.

3.1.5 Competitor construction

In this section we show a concentration compactness principle for Q-valued functions, and
give an algorithm to construct suitable competitors for the Dirichlet energy. All the results of
this section come from [19].

Definition 3.27 (Translating sheets). Let O C R™ be a bounded open set. A sequence of
maps {hilien C W]'Z(Q_,AQ (R™)) is called a sequence of translating sheets if there are:

(a) integers ] > 1 and Qyq,...,Qj > 1 satisfying Zj]:1 Q;=Q,
(b) vectors y). € R™ (forj € {1,...,]} and k € N) with

limfyl —ykl =+oo  Vij, (3.16)

(c) and maps Je W1'2(Q,AQ].) forje{l,...,]},

such that hy = Zj]:] [[Tyj o (J], where for any generic y € R™ we denote by 1, : Aq(R") —
k
Aq(R™) the translation map (cp. [17, Section 3.3.3])

AQR™M) 2T =) [Pl 1y(T):= ) [Pi—y] € Aq(R™).

Remark 3.28. Assume that hy, Qj, y%'{ and (* satisfy all the requirements of Definition 3.27
except for (3.16). Up to subsequences and relabellings, assume that y|. —y% converges to a
vector 2{). We can replace

e the integers Q; and Q, with Q' = Q1 + Q2;

e the vectors y; and y¥ with y;. = (y} +y2)/2;
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e the maps ¢' and ¢? with ¢/ := [tgod'] + [t—goc?].

The new collections Q’, Q3,...,Qy, y,@,yi, et ,y]{ and ¢/, 3,...,0), and the function h, =
']+ Z)] _3 [@], satisfy again all the requirements of Definition 3.27 except, possibly, for
(3.16). Moreover, ||G(h;,hx)|[;2 — 0 and |[Dh;| = |Dhy|. Obviously, we can iterate this
procedure only a finite number of times, obtaining a subsequence of translating sheets hy
asymptotic to hy in the L2 distance with [Dhy| = |[Dhyl.

Concentration compactness

Translating sheets give a useful device to recover a suitable “compactness statement” for
sequences of maps with equi-bounded energy.

Proposition 3.29 (Concentration compactness [19, Proposition 3.3]). Let O C R™ be a Lipschitz
bounded open set and (g )xen C W]'Z(Q,AQ) a sequence of functions with sup, fQ IDgy|? < .
Then, there exist a subsequence (not relabeled) and a sequence of translating sheets hy such that
1G(gk, hi) |l 2 — O and the following inequalities hold for every open Q' C Q and any sequence of
measurable sets ]y with |Jx| — O:

liminf ( [ mgr- [ thR) >0 (3.17)
k—+o00 Ok o

limsup [ (|Dgy|—[Dhyl)* < limsup/ (IDgkl? — [Dhyl?) . (3.18)
k—+oo JQ k Q

Proof. We start proving, by induction on Q, the existence of translating sheets {hy} (and a
subsequence) with [|G(h, gi)[l2 — 0 and satisfying the following additional property. If
J,Qj, vy} and ¢ are as in Definition 3.27, then there are Q; valued functions w}, such that,

after setting f, = Zj [[WL}] , we have

15(Fic i)z + Hgwe # fidl = 0, [[S(r_; owl, [l =0 and [Dfi| < [Dgil. (3.19)

If Q = 1 the claim with fix = gk is an easy corollary of the Poincaré inequality and
the compact embedding W12 < 2. Assuming that the claim holds for any Q* < Q, we
prove it for Q. By the generalized Poincaré inequality Proposition 3.14:, there exist points
gk € AQ(IR™) and a real number M such that

/99k/9k C/ Ingl2 M < o0 VkelN.

Recall the separation s(T) and the diameter d(T) of a point T = } ; [Pi] introduced in
Definition 3.1: s(T) := min {\Pi —Pj|: Py # Pj} and d(T) := max{|P; — P;[}. We distinguish
between to cases.

Case 1: liminfy d(gx) < oo. After passing to a subsequence, we find yx € R™ such that
the functions Ty, o gk are equi-bounded in the W'-2-metric. By the Sobolev embedding,
Proposition 3.13, there exists a Q-valued map C € W12 such that Ty, © gk — Cin L2(Q).

Case 2: limy d(gx) = +o0. By [17, Lemma 3.8] there are points Sy € Aq such that

B d(gr) <s(Sk) <+oo and G(Sk, gx) < s(Sk)/32,
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where f is a dimensional constant. Write S, = Y !_; k; [PL], with PL # P) for i # j.
Both ] and «; may depend on k but they have a finite range: therefore, after extracting a

subsequence, we can assume that they do not depend on k. Set next ry = %6“) and let 9y be
the retraction of Agq (R™) into By, (Sx) provided by [17, Lemma 3.7]. Clearly, the functions
f =9 o gk satisfy IDfy| < |IDgx| and there are ki-valued functions zi such that

]
fo=> [z], with [S(z, ki [PE])lloo < T

Since ki < Q, we apply the inductive hypothesis to each sequence (z\)y and, using Re-
mark 3.28 reach a subsequence (not relabeled) of f, a sequence of translating sheets hy and
corresponding functions fi, which satisfy (3.19) with fy replacing gy.

We next claim that (3.19) holds even for gy, i.e. that limy (||G(fx, gi)|li2 + {fx # gx})) =0
To this aim, recall first that

{gx # fi} ={SG (g, Sx) > 1} C{S (g, Gx) > T/2}.
Thus,
C L, ™
on # i) <6000 >/l < 5 [ 6(0080° < gt 620

k

Since d(gx) — +o0 and (3.19) holds with fie replacing gy, we conclude [{fix # gix}| — 0. Next,
since 9k (gx) = gk and Lip(dx) = 1, we have S(fi, gi) < S(gx, Gk ). Therefore, by the Sobolev
embedding and the Poincaré inequality, for any p €]2,2*[, we infer

/ S(fx, gi)? =/ ~ S(fkgr)? < Z/A 9(15k,§k)2+2/A S(gx, gx)?
Q {g#fk} {fx#gx} {fx#gx}

1-2 (32 0) CMF*
< 4/A S(gk, 9x)? < CIIS (gi, Gl {fx # gi}| / IDgy|*.
{fx#gx}

Since d(gyx) diverges, this shows [|G(fx,gx)|;2 — O and by inductive hypothesis that
15(fi, gi)ll2 = 0.

We now show that (3.17) and (3.18) are consequences of (3.19). For each j we consider the
corresponding embedding &; : Aq, (R™) — RN{Q™) and, by a slight abuse of notation, we
drop the j subscript. Then, we conclude that & o T i © w{; —~ %00 in L% and ID(&o T i ©

k k

WL) ||l 2 is a bounded sequence, from which
D(&ot Jl ow])AD(E,oC]) in L2(Q). (3.21)
Yx

If Ji is a sequence of measurable sets with [Ji| | 0, then 1], — 10/ in L2(Q) and it follows
from (3.21) that

D(aoT_yLOWL)IQ/\]k 4l)((’»'_,OC]):I__Q/ in LZ(Q),
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and, hence,

Dir(J, Q") :/ ID(£0J)? < liminf ID(Eot__; ow))[* = liminf IDw) 2.
’ k ON\Jx Y k Q'\Jk

Summing over j, we obtain (3.17). As for (3.18), set Jx :={gk # fx}. Thus,

/ UDQM—JDhMVSZZ:/} (W~ D)2
O\Jx - JO\Jk

—Z/ (ID(Eo7_,; oWl )~ ID(& o 0)) <Z/ D(&got_) ow))~D(£o 07
O\Jk Q

\Jk
—Z/ Dgot_yy owk)? +ID(E0 )P ~2D(Eo_) owl)-Digod)).
O\Jx

(3.22)

Therefore, by (3.21) (and taking into account that [Jx| — 0) one gets

lim sup (IDgx| — IDhyl)?
k—+oco Y O\Jk

< lim Z/\] (|D(EoT_yi ow{(“z—{—\D(aOCjHZ_ZD(aOT » ow]) D(&o C])>
o) " k k

k—+o00 <

zlimsup/ D ID(&ot owl )2 / Z\D (o)
k—+oo v/ O\Jk j

=limsup |ng|2—/ IDhy|2. (3.23)
k—+oo JO\Jx Q

On the other hand, since |Jx| — 0 we conclude
lim sup (IDgk| — \thl)2 = lim sup |ng|2.
k—o0 Jx k—o0 Jx

Observe that, after passing to a subsequence, we can actually assume that all limsups are in
fact limits. Summing (3.23) and the last equation we then conclude (3.18). O

Dirichlet competitors

We consider next a standard procedure to construct competitors for the Dirichlet energy of a
sequence of functions with equi-bounded energy. A similar procedure will be repeated at
the end of the last chapter to prove that a certain map is a minimizer of the energy.

Proposition 3.30 (Construction of a competitor [19, Proposition 3.4]). Consider two radii
1 <19 <711 < 4and maps gy, hi € WLZ(BH,AQUR“)) such that {hy )y is a sequence of
translating sheets,

sup Dir(gx, Br,) < 400 and [|S(gi, hid)ll12(s,,\8B,,) = O
K

39



40

MULTIPLE VALUED FUNCTIONS AND INTEGRAL CURRENTS

For every > 0, there exist v €]ro, v11[, a subsequence of {gx }x (not relabeled) and functions Hy €
wh 2(BT,,AQ(]R“)) such that HkIBr \B, = QkIBr \B, and Dir(Hy, By,) < Dir(hy,B;,) +n. In
addition, there is a dimensional constant C and a constant C* (depending on m and the two sequences,
but not on k) such that

Lip(Hy) < C* (Lip(gx) + 1), (3-24)
||9 Hk/ hk ||L2 B:) < CDlr(gk/ ) + CDlr(Hk/B ) ’ (325)
Mo HullLrs,) < Cmogillr (By) T ClnohllLr(s,,) (3-26)

Proof. Set for simplicity Ay = ||S(gx, hk)HLZ(Br]\BrO) and By := |[nogk||p (B, )- If Ay =0,
then there is nothing to prove and so we can assume that, for a subsequence, not relabeled,
Ay > 0. Assuming that for yet another subsequence (not relabeled) By > 0, we consider the
function

Bi(r) = / (IDgl? + [Dhy?) + A2 / S(gw, )2 + By / mogd  (27)
0B, 0B, 0B,

By assumption lim infy f:o‘ Py (1) dr < oo. So, by Fatou’s Lemma, there is r € Jro, r1[ and a
subsequence, not relabeled, such that limy Py (r) < co. Thus, for some M > 0 we have

9(9k/ hk)z — O/ (328)

0B,
Dir(hk/ aBT) + Dir(gk/ aBT) < M/ (329)
| mogd < Minoglis,, (3:30)

In case By = 0 for all k large enough, we define 1y dropping the last summand in (3.27)
and reach the same conclusion.

Let ¢ be the blocks of the translating sheets hy as in Definition 3.27. We apply Lemma 3.11
to each ¢ and find Lipschitz functions ), satisfying the conclusion of the lemma with
g1 = £1(n, M) > 0 (which will be chosen later). We also choose a standard radial convolution
kernel ¢ in R™ and a small parameter p (also to be chosen later). Then, set

J Q

hk,ﬂ = Z[[T‘JL © C%]]] and Flk,n = Z[[(hk,n)i —mo hk,n + (mohy)* (PC)]]/
=1 iz

and choose p so small that

Q?[In otk — (Mohy) * p?s < &1, (3.31)
/ (ID(M o )2 — D[ o e+ 9p)2) < £1. (3.32)

Note that this is possible because, from the fact that hy is a sequence of translating sheets,
it follows that 11 o hy(x) = F(x) 4 p for some F € W'? and a sequence of vectors pi € R™.
Therefore (nohy) * @5 = F* @p +px and D(mohy) * 5 = DF* ¢;, and (3.31) and (3.32)
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follows if p is sufficiently small by the usual convolution estimates. In particular by very
rough estimates,

_ (3-31)
1G(gr, hien)llrz < 11909k, )|z +2/|G(hi, hien) |2 + &1 < o(1) + 38, (3-33)
Dir(hy, 0By) <2M+ 284 (3-34)
and
2
Dir(hy,n, By Z/ D(hin)i —D(Mohy) +D(nohy x @p)|

=/B (IDhgnl? — QID(M 0 hyen )2 + QID (1 © hye * 9p)I2)
— Dir(hiey, Br) + Q /B (ID( o )P — ID (M 0 hye) )

+Q/B (ID( © h % 9p) 2 — D(n o i) 2)

(31,332 _
< Dir(hgy, By) +2QE. (3-35)

We can then apply Lemma 3.15 to hy, and gx with &, = €2(n,M) > 0, and get (up to
subsequences) maps Hy satisfying Hylag, = gklos, and

Dir (Hy, By) < Dir (hx v, By) + €2 Dir (hiy, 0B+ ) + €2 Dir(gy, 0B,) + Co/ S (ﬁkm,gk)z
0B,

€2
< Dir(hy, By) + Q&1 +382 (M+&1) +3Co &5 ' &

where in the last line we have used (3.28), (3.29) and (3.33) - (3.35). An appropriate choice of
the parameters €7 and ¢, gives the desired bound Dir (Hy, B;) < Dir(hy, B;) +n.

Observe next that, by construction, lim sup, Lip(hy,) < C*, for some constant which
depends on 1 and the two sequences, but not on k. Moreover,

1G(hin, i)l oB,) < [G(hin, 9K)lli2(am,) + CLip(gk) + CLip(hi,y) -

Thus (3.24) follows from (3.4).

Finally, (3.25) follows from the Poincaré inequality applied to G(Hy, gi) (which vanishes
identically on 9B;), and (3.26) follows from (3.5), because of (3.30) and |[n o hyy|lr1(p,) =
[(mohi) * @pllis,) < Mol (B, if p is also chosen small enough such that v+ p <
T.

O

3.1.6  Higher Integrability of the Gradient of Dir-minimizers

Most of the energy of a Dir-minimizer lies where the gradient is relatively small. We prove

indeed the following a priori estimate (cf. [58] for a different proof and some improvements).

Theorem 3.31 (Higher integrability of Dir-minimizers [19, Theorem 5.1]). There exists p1o > 2
such that, for every Q' CC QO C R™ open domains, there is a constant C > 0 such that

IDu[[tpi0(qr) < C IDully2(q) for every Dir-minimizing u € W1'2(Q,AQ(R“)). (3-36)
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Proof. The statement is a corollary of Proposition 3.32 below and a Gehring type lemma,
cf. [39, Proposition 5.1]. O

Proposition 3.32 ([19, Propostion 5.2]). Let % < p11 < 2. Then, there exists C =
C(m,m, Q,p11) such that, for every w: Q — Aq Dir-minimizing, the following holds

1 1

2
(][ |Du|2> <C (][ IDulp”> " ¥x e, vr<min{1,dist(x,90Q)/2}.
BT(X) BZr(X)

Proof. Since the estimate is invariant under translations and rescalings, it is enough to prove
it for x = 0 and r = 1. We assume, therefore Q = B;. Let u: Q — Ag(R™) be Dir-minimizing
and let F = £ou: Q — Q c RN. Denote by F € RN the average of F on B;. By Fubini’s
theorem and the Poincaré inequality, there exists s € [1,2] such that

| (PP RPY) <C [ (=R IDFP) < CIDFIEY, o,
s 2

Consider Flpg,. Since % > ﬁ — m, we can use the embedding WIP11(9B,) —

H'/2(3Bs) (see, for example, [1]). Hence, we infer that
HF_FHH‘/Z(aBS) < C ”DFHLPH(BZ)' (3-37)

Let F be the harmonic extension of Flag, in Bs. It is well known (one could, for example, use
the result in [1] on the half-space together with a partition of unity) that

(3-37)

IDF|l12(5,) < C(m) min [F—=plly1/208,) < CIDFlien (s, - (3-38)

pERN

Consider the map p of Lemma 3.8. Since p o fz‘ags =ulpp, and po F takes values in Q, by the
minimizing property of u and the Lipschitz continuity of &, £~' and p, we conclude:

2 7 1 1
N P P

(/ |Du|2> <C</ IDFIZ) <C(/ |DF|P”) ”:c(/ |Du|Pn) T

B N B, B,

3.1.7 Unique continuation for Dir-minimizers

We want to prove a De Giorgi-type decay estimate for Dir-minimizing Q-valued maps which
are close to a classical harmonic function with multiplicity Q. The argument involves a
unique continuation-type result for Dir-minimizers.

Lemma 3.33 (Unique continuation for Dir-minimizers [20, Lemma 7.1]). For everyn € (0, 1)
and ¢ > O, there exists y > 0 with the following property. If w : R™ D Bz, — Ag(R™) is
Dir-minimizing, Dir(w, B;) > c and Dir(w, B2,) =1, then

Dir(w,Bs(q)) > v for every Bs(q) C Bar with s > mr.

Proof. We start showing the following claim:
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(UC) if Q is a connected open set and w € W'2(Q, Ag(R™)) is Dir-minimizing in any open
Q' cc Q, then either w is constant or f] IDw|? > 0 on any open | C Q.

We prove (UC) by induction on Q. If Q = 1, this is the classical unique continuation for
harmonic functions. Assume now it holds for all Q* < Q and we prove it for Q-valued maps.
Assume w € W' 'Z(Q,AQ(IR“)) and | C Q is an open set on which [Dw| = 0. Without loss of
generality, we can assume ] connected and w|; = T for some T € Aq. Let ]’ be the interior
of {w =T} and K:= ]’ N Q. We prove now that K is open, which in turn by connectedness of
Q concludes (UC). We distinguish two cases.

Case (a): the diameter of T is positive. Since w is continuous, for every x € K there is
B, (x) where w separates into [w1] + [w2] and each w; is a Q;-valued Dir-minimizer. Since
J'NBy(x) # 0, each wy is constant in a (nontrivial) open subset of B,(x). By inductive
hypothesis each wj is constant in B, (x) and therefore w = T in B, (x), thatis By (x) C J' C K.

Case (b): T = Q [[p] for some p. In this case let ]” be the interior of {w = Q [ ow]}. By
Definition 3.24, 3]”" N Q is contained in the singular set of w. By Theorem 3.25, K™ 2+¢(QN
0]") = 0 for every ¢ > 0. Consider now a point p € 9]” N Q) and a small ball B,(x) C Q. Since
H™1(3]" N B,(x)) = 0, by the isoperimetric inequality, either [B,(x)\ J”| = 0 or [J”| = 0.
The latter alternative is impossible because J” is open and has nonempty intersection with
B, (x). It then turns out that [B,(x) \ J”/| = 0 and thus the closure of ]” contains B, (x). But
then w = Q [ ow] on B, (x) and thus x cannot belong to 9]”. So 9]” N Q is empty and thus
w = Q [n ow] on Q. On the other hand n o w is an harmonic function (cf. Proposition 3.22).
Being n o w|j» = p, by the classical unique continuation now = p on Q.

We now come to the proof of the lemma. Without loss of generality, we can assume
r = 1. Arguing by contradiction, there exists sequences {wijxen C W'?(B,, Ag(R™))
and {Bs, (qk)}ken with sy > 1 and such that Dir(wy, Bs, (qk)) < % By the compact-
ness of Dir-minimizers (cp. Proposition 3.22), a subsequence (not relabeled) converges
to w € W!2(B,, Ag(R™)) Dir-minimizing in every open Q' CC B;. Up to subsequences,
we can also assume that qx — q and sy — s > 1 > 0. Thus, Bs(q) C B, and Dir(w, Bs(q)) =
0. By (UC) this implies that w is constant. On the other hand, by 3.22, Dir(w,B;) =
limy Dir(wy, B1) > ¢ > 0 gives the desired contradiction. O

As a consequence of the Unique Continuation, we show that if the energy of a Dir-
minimizer w does not decay appropriately, then w must split. In order to simplify the
exposition, in the sequel we fix A > 0 such that

(14 A)(Mm+2) 282 (3.39)

Proposition 3.34 (Decay estimate for Dir-minimizers [20, Proposition 7.2]). For everyn > 0,
there is 'y > 0 with the following property. Let w : R™ D By, — Aq(R™) be Dir-minimizing in
every Q' CC By such that

/ 5(Dw, Q [D(n ow)(0)])? > 25~ ™ 2Dir(w, B, (3.40)
B
Then, if we set w = }_; [wi —n ow], the following holds:

. . 1
Y Dir(w, B(140)r) < Dir(w, B(14)r) <

\YTZ/B ( )Iv‘vlz V Bs(q) C Bay with s >2nr. (3.41)
stq
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Before coming to the proof of the Proposition we point out an elementary fact which will
be used repeatedly in this section. Since its proof is completely straightforward, it is left to
the reader.

Lemma 3.35. Let Q be a bounded open set, w € W]'Z(Q,AQ(IR“)), W =) ;[wi—mow]and
A = {5 D(n ow). We then have

/ Dw]? = / (IDWI? + QID(now)?) = / (IDW + QID(now) — AP) + QIAPIQ)
Q Q Q
- /Q 5(Dw, Q [A])? + QIAPIQ. (342)

Proof of Proposition 3.34. By a simple scaling argument we can assume v = 1 and we ar-
gue by contradiction. Let wy be a sequence of local Dir-minimizers which satisfy (3.40),
Dir(wy,B>) =1 and

(a) either stk(qk) Wy |? — 0 for some sequence of balls B, (qx) C By, with sy > n;

(b) or Dir(wy,Bq14a) — 0.

Up to subsequences, wy converges locally in W12 to w locally Dir-minimizing. If (a) holds,
we can appeal to Lemma 3.33 and conclude that w = ) _; [w; —n ow] vanishes identically
on B;. This means in particular that Dir(Wwy, B1)) — Dir(w, Bi4a) =0, i.e. (b) holds.

Therefore, we can assume to be always in case (b). Let next uyx := 1n o wy. Since uy is
harmonic, fB]H Duy = Duy(0). Thus from (3.40) and Lemma 3.35 we get

QIDuy — Duy (02 = /B (S(Dwi, Q [Dux (0)])? — [Dwic2)

Biia

2202 [ pwi- [ pmp. (3-43)
B> Biia
As k T oo, by (b) and Dir(wy, B2) = 1, we then conclude

/ Du—Du(0)2 » 20 ™2 5 20 m-2 [ pyp2. (3.44)
Biia B2

Since (14 A)™*2 < 252, (3.44) violates the decay estimate for classical harmonic functions:

/ IDu—Du(0)]? <27™?(1 +A)m+2/ IDul?, (3.45)
Biia B

thus concluding the proof. In order to show (3.45) it suffices to decompose Du in se-
ries of homogeneous harmonic polynomials Du(x) = } {2, Pi(x), where i is the degree.
In particular the restriction of this decomposition on any sphere S := 0B, gives the de-
composition of Duls in spherical harmonics, see [62, Chapter 5, Section 2]. It turns out,
therefore, that the P; are L?(B,) orthogonal. Since the constant polynomial Py is Du(0) and
fB]M [P;|2 < 2-m—21 fBz IPil?, (3.45) follows at once. O
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3.2 PUSH-FORWARD THROUGH MULTIPLE VALUED FUNCTIONS OF ¢ SUBMANIFOLDS

In what follows we consider an m-dimensional C' submanifold £ of RN and use the word
measurable for those subsets of M which are H{™-measurable. Any time we write an integral
over (a measurable subset of) Z we understand that this integral is taken with respect to the
H™ measure. We start with a refinement of Lemma 3.3.

Lemma 3.36 (Decomposition [18, lemma 1.1]). Let M C X be measurable and F : M — Ag(R™)
Lipschitz. Then there are a countable partition of M in bounded measurable subsets My (1 € IN) and
Lipschitz functions f]i :Mi = R™ (G e{1,...,Q}) such that

@) Fin, = X2 [ 1] for every i € N and Lip(f}) < Lip(F) vi,j;
(b) Vie Nandj,j’ €{1,...,Q)}, either f{ = f? or f{(x) + f{l(x) Vx € My;
(c) Viwe have DF(x Z [[Df] ﬂ fora.e. x € M.

When F: M C £ — R™ is a proper Lipschitz function and £ C RN is oriented, the current
S =F; [M] in R™ is given by

S(w) = /M(w(F(x)),DF(x)ﬁé(x) )y dH™(x) YV we D™(RM),

where €(x) = ej(x) /... A emn(x) is the orienting m-vector of X and
DF(x)3€ = (DFlx-e1) A.../A\(DFlx - em),

(cf. [54, Remark 26.21(3)]; as usual D™ (Q) denotes the space of smooth m-forms compactly
supported in Q). Using the Decomposition Lemma 3.36 it is possible to extend this definition
to multiple valued functions. To this purpose, we give the definition of proper multiple
valued functions.

Definition 3.37 (Proper Q-valued maps). A measurable F: M — Aq(RR™) is called proper
if there is a measurable selection F',...,FQ as in Lemma 3.2 (i.e. F = }_; [F!]) such that
U; (FH)~1(K) is compact for every compact K C IR™. It is then obvious that if there exists
such a selection, then every measurable selection shares the same property.

We warn the reader that the terminology might be slightly misleading, as the condition
above is effectively stronger than the usual properness of maps taking values in the metric
space (Aq(RR™),3), even when F is continuous: the standard notion of properness would not
ensure the well-definition of the multiple-valued push-forward.

Definition 3.38 (Q-valued push-forward). Let £ ¢ RN be a C! oriented manifold, M C £
a measurable subset and F : M — Aq(RR™) a proper Lipschitz map. Then, we define the
push-forward of M through F as the current Tr = }_; ; f] )4 [Mi], where M; and f] are as in
Lemma 3.36: that is,

ZZ/ ),DE (X)) KT Ve DMRY.  (3.46)

ieN j=1

Ti5(w)
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We first want to show that T is well-defined. Since F is proper, we easily deduce that
Tsj (w)! < Lip(F)[|w]loo3™ ((F) ") (spt(w)) < oo,

On the other hand, upon setting P (x ) f) 1(x) for x € M;, we have Uy (f)) (spt(w)) =
(F)~"(spt(w)) and (f)) (spt(w)) N (f),) "' (spt(w)) = 0 for i # 1/, thus leading to

> ITij(w)l < Lip(F HwnotoHm (F) T (spt(w))) < +oo.

Therefore, we can pass the sum inside the integral in (3.46) and, by Lemma 3.36, get

/ ), DFU(x),€(x) ) dH™(x) V¥ w € D™(R™). (3.47)
M= 1

In particular, recalling the standard theory of rectifiable currents (cf. [54, Section 27]) and
the area formula (cf. [54, Section 8]), we have achieved the following proposition.

Proposition 3.39 (Representation of the push-forward [18, Proposition 1.4]). The definition
of the action of T in (3.46) does not depend on the chosen partition My nor on the chosen de-
composition {f{}, (3.47) holds and, hence, Tr is a (well-defined) integer rectifiable current given by
Tr = (Im(F), ©, T) where:

(R1) Im(F) = U, epm spt(F(x)) = Uien UJQ:1 f]%(Mi) is an m-dimensional rectifiable set;

(R2) Tisa Borel unztary m-vector orienting Im(F); moreover, for H™-a.e. p € Im(F), we have
Df] (x)g€(x) # 0 for every i,j, x with f)( ) =pand

T(p) ==+

Df) (x)4€
I(X)ﬁz(x) . (3.48)

D) (x)e(x)]

(R3) for H™-a.e. p € Im(F), the (Borel) multiplicity function © equals

— _ DA (dse(x).
Op)i= ) <T’|Dfi(x)é‘ >

i,j{x:f] (x)=p}
3.2.1  Push-forward of Lipschitz submanifolds

As for the classical push-forward, Definition 3.38 can be extended to domains £ which are
Lipschitz submanifolds using the fact that such £ can be “chopped” into C! pieces. Recall
indeed the following fact.

Theorem 3.40 ([54, Theorem 5.3]). If X is a Lipschitz m-dimensional oriented submanifold, then
there are countably many C' m-dimensional oriented submanifolds L; which cover H™-a.s. £ and
such that the orientations of £ and L coincide on their intersection.
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Definition 3.41 (Q-valued push-forward of Lipschitz submanifolds). Let £ ¢ RN be a
Lipschitz oriented submanifold, M C £ a measurable subset and F: M — Aq(R™) a proper
Lipschitz map. Consider the {X;} of Theorem 3.40 and set F; := Flpmnx,. Then, we define the
push-forward of M through F as the integer rectifiable current Tf := } ; Tf,.

The following conclusion is a simple consequence of Theorem 3.40 and classical arguments
in geometric measure theory (cf. [54, Section 27]).

Lemma 3.42 ([18, Lemma 1.7]). Let M, X and F be as in Definition 3.41 and consider a Borel
unitary m-vector € orienting X. Then T¥ is a well-defined integer rectifiable current for which all the
conclusions of Proposition 3.39 hold.

As for the classical push-forward, T is invariant under bilipschitz change of variables.

Lemma 3.43 (Bilipschitz invariance [18, Lemma 1.8]). Let F: £ — Aq(IR™) be a Lipschitz and
proper map, ® : L' — ¥ a bilipschitz homeomorphism and G :=F o ®. Then, Tr = Tg.

We will next use the area formula to compute explicitely the mass of Tr. Following
standard notation, we will denote by JF) (x) the Jacobian determinant of DF, i.e. the number

[DP (x);€| = 1/det((DP (x))T - DFI(x))

Lemma 3.44 (Q-valued area formula [18, Lemma 1.9]). Let L, M and F = }_; [F] be as in
Definition 3.41. Then, for any bounded Borel function h : R™ — [0, ocol, we have

[ e aiTele) < [ 3 RP) TP a3 o). (3.49)
j

Equality holds in (3.49) if there is a set M C M of full measure for which
(DP (x)3€(x), DF*(y)€(y)) = 0 Vx,y € M’ and i,j with F*(x) = P (y). (3.50)
If (3.50) holds the formula is valid also for bounded real-valued Borel h with compact support.
A particular class of push-forwards are given by graphs.

Definition 3.45 (Q-graphs). Let I, Mand f = ) ; [fi] be as in Definition 3.41. Define the
map F: M — Ag(RNT™) as F(x Z <, [(x, fi(x))]. T¢ is the current associated to the graph
Gr(f) and will be denoted by Gf

Observe that, if &, f and F are as in Definition 3.45, then the condition (3.50) is always
trivially satisfied. Moreover, when £ = R™ the well-known Cauchy-Binet formula gives

(JF) —1+Z > (detA)?,
k=1 AcM&(DF)

where M*(B) denotes the set of all k x k minors of the matrix B. Lemma 3.44 gives then the
following corollary in the case of Q-graphs
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Corollary 3.46 (Area formula for Q-graphs [18, Corollary 1.11]). Let £ = R™, M C R™ and f
be as in Definition 3.45. Then, for any bounded compactly supported Borel h : R™™™ — R, we have

[ niwriie) - /Mzh(x,fi (1+Y Y @eear) an (3.51)
i k=1 AeMk(DHF)

In the classical theory of currents, when X is a Lipschitz manifold with Lipschitz boundary
and F: £ — RN is Lipschitz and proper, then d(F; [Z]) = F; [0Z] (see [32, 4.1.14]). This result
can be extended to multiple-valued functions.

Theorem 3.47 (Boundary of the push-forward [18, Theorem 2.1]). Let L be a Lipschitz subman-
ifold of RN with Lipschitz boundary, F : £ — Aq(R™) a proper Lipschitz function and f = Flyy.
Then, 0T¢ = Ty.

3.3 AREA FORMULA AND TAYLOR EXPANSIONS OF THE RELEVANT QUANTITIES

In this section we compute the Taylor expansion of the area functional in several forms. To
this aim, we fix the following notation and hypotheses.

Assumptions 5. We consider:

(M) an open submanifold M C R™*™ of dimension m with H™ (M) < oo, which is the graph of a
function @ : R™ D Q — R™ with ||@||cs < & A and H will denote, respectively, the second
fundamental form and the mean curvature of M;

(U) a regular tubular neighborhood U of M, i.e. the set of points {x +y :x € M,y L .M, y| <
o), where the thickness cg is sufficiently small so that the nearest point projection p : U — M
is well defined and C?; the thickness is supposed to be larger than a fixed geometric constant
(which depends on ¢);

(N) a Q-valued map F: M — Aq(R™*™) of the form

Q Q
> Rl =D [x+Ni(x)]
i=1 i=1

where N : M — Ag(R™*™) satisfies x + Ni(x) € U, Ni(x) L TM for every x and
Lip(N) <c

We recall the notation n o F := % > i Fi, for every multiple valued function F =} _; [Fi].

Theorem 3.48 (Expansion of M (T¢) [18, Theorem 3.2]). If M, F and N are as in Assumption 5
and € is smaller than a geometric constant, then

MITF) = Q3™(M)~Q | (HnoN)+5 [ IDNP

+ /J\/[ Z PZ(XINi) + P3(X/ N, DNl) + R4(X, DNJ), (352)

where P2, P3 and Ry are C' functions with the following properties:
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(i) v — Pa(x,V) is a quadratic form on the normal bundle of M satisfying

P2 (x,v)| < CIA(x)]?v)? YxeM, Vv L TM (3.53)

(ii) P3(x,v,D) =) ; Li(x,v)Qi(x, D), where v — Li(x,V) are linear forms on the normal bundle
of M and D — Qi(x, D) are quadratic forms on the space of (m +n) x (m + n)-matrices,

satisfying
ILi(x, V)| < CIA(x)[Iv] vx € M, W L T,
Qi(x, D)l < CIDJ? Wx € M, VD € Rm+mx(men)

(iii) |R4(x,D)| = |D|?L(x, D), for some function L with Lip(L) < C, which satisfies L(x,0) = 0
for every x € M and is independent of x when A = 0.

Moreover, for any Borel function h: R™™™ — R,

|/hdHTF”_/ Y hoF
My

and, if h(p) = g(p(p)) for some g, we have

< [ (XA RN+ [ IDNE + APINF)), (350

i

‘/hd\TFH - /M(Q — Q(H,m o N) + 1[DNJ?) g‘ < C/M (IAFINP?+[DN[*)Igl.  (3.55)

In particular, as a simple corollary of the theorem above, we have the following fact.

Corollary 3.49 (Expansion of M(G¢) [18, Corollary 3.3]). Assume (O C R™ is an open set with
bounded measure and f : O — Aq(IR™) a Lipschitz map with Lip(f) < C. Then,

1 _
MIG) = Qiol+5 [ D+ [ 5 R, (3:56)

where Ry € C! satisfies |R4(D)| = |DI?L(D) for L with Lip(L) < C and L(0) = 0.

Proof. The corollary is reduced to Theorem 3.48 by simply setting M = Q x {0},
N=> [Ni()]=) [(0,fix))] and F(x)=) [F(x)]=) [(xfi(x)].
i i i i
Since in this case A vanishes, (3.52) gives precisely (3.56). O

3.3.1 Taylor expansion for the excess in a cylinder

The last results of this section concern estimates of the excess in different systems of
coordinates, in particular with respect to tilted planes and curvilinear coordinates.
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Proposition 3.50 (Expansion of a curvilinear excess [18, Proposition 3.4]). There exists a
dimensional constant C > 0 such that, if M, F and N are as in Assumption 5 with ¢ small enough,

then
’/WF x))I? 4[| Te | (x) /ﬁnng

where T and M are the unit m-vectors orienting Tg and TM, respectively.

c/(mHNP+mNﬁL (3.57)
M

Next we compute the excess of a Lipschitz graph with respect to a tilted plane. We use
here the notation C; for the open set B4 (0) x R™ ¢ R™*™.

Theorem 3.51 (Expansion of a cylindrical excess [18, Theorem 3.5]). There exist dimensional
constants C,c > 0 with the following property. Let f : R™ — Aq(IR™) be a Lipschitz map with
Lip (f) < c. Forany 0 <'s, set L := JCBS D(n o f) and denote by T the unitary m-dimensional simple
vector orienting the graph of the linear map y — A -y. Then, we have

’/C ‘éf_flz dHGfII—/BS 5(Df, Q [L])?

<c/‘mm. (3.58)
Bs

3.3.2 First variations

In this section we compute the first variations of the currents induced by multiple valued
maps. These formulae are ultimately the link between the stationarity of area minimizing
currents and the partial differential equations satisfied by suitable approximations. We
use here the following standard notation: given a current T in RN and a vector field
X e C'(RN,RN), we denote the first variation of T along X by 8T(X) = %‘tzo M(DT),
where @ ;] —1,n[xU — RN is any C! isotopy of a neighborhood U of spt(T) with ®(0,x) = x
for any x € U and %L:O @, = X (in what follows we will often use @, for the map
x — ®@(g,x)). It would be more appropriate to use the notation 6T(®) (see, for instance, [32,
Section 5.1.7]), but since the currents considered in this paper are rectifiable, it is well known
that the first variation depends only on X and is given by the formula

X) = /dinXdllTH/ (3-59)

where divy X = Y (D¢ X, eq) for any orthonormal frame eq,...,em withe; A... Ney = T
(see [32, 5.1.8] and cf. [54, Section 2.9]). We begin with the expansion for the first variation of
graphs.

Theorem 3.52 (Expansion of §G¢(X) [18, Theorem 4.1]). Let O C R™ be a bounded open set
and f: Q — Aq(R"™) a map with Lip(f) < ¢. Consider a function ( € C'(Q x R™,R") and the
corresponding vector field x & C'(Q x RM, R™t™) given by x(x,y) = (0, C(x,y)). Then,

5Gs(x / Z (DxC(x, fi) + Dyl(x, fi) - Dfy) : Dfy / IDYIDFP . (3.60)




3.3 AREA FORMULA AND TAYLOR EXPANSIONS OF THE RELEVANT QUANTITIES

The next two theorems deal with general Tr as in Assumption 5. However we restrict
our attention to “outer and inner variations”, where we borrow our terminology from
the elasticity theory and the literature on harmonic maps. Outer variations result from
deformations of the normal bundle of M which are the identity on M and map each fiber
into itself, whereas inner variations result from composing the map F with isotopies of M.

Theorem 3.53 (Expansion of outer variations [18, Theorem 4.2]). Let M, U, p and F be as in
Assumption 5 with ¢ sufficiently small. If @ € CL(M) and X(p) := @(p(p))(p — p(p)), then

3
_ 2 . DN — o -
STF(X)—/M (o DN +;(N1®D@).DN1) Q/M<p<H,n N)+Y B e

Erry

where
Erra] < C /M QlIARINP (3.62)

[Brrs| < C /M (I/(IDNPNIAI+[DNI") + Dol (DNPINI+ IDNINZIA) ) . (3.63)

Let Y be a C! vector field on TM with compact support and define X on U setting
X(p) =Y(p(p)). Let {¥¢}ec1—nn( be any isotopy with Wy = id and % c—o Ye =Y and define
the following isotopy of U: @, (p) =¥ (p(p)) + (p —p(p)). Clearly X = %}5:0 Q..

Theorem 3.54 (Expansion of inner variations [18, Theorem 4.3]). Let M, U and F be as in
Assumption 5 with ¢ sufficiently small. If X is as above, then

3

DN/
5TF(X) = / (%divm Y- Z DNi . (DNi : DMY)) + Z EI‘I‘i, (364)
M i i=1
where
Err; — —Q / ((H,m 0 N} divacY + (DyH,n o N)), (3.65)
M
[Erry| < C /M IAI? (IDY|INJ? +[Y|IN|IDN]), (3.66)

[Errs| < C /M (IYIAIDNIZ (INI+ IDNI) + [DYI(|A[NFIDN|+ [DN[*) ) (367)
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STRONG LIPSCHITZ APPROXIMATION FOR ALMOST MINIMIZING
CURRENTS

The aim of this chapter is to prove a Lipschitz approximation result for a wide class of
almost area minimizing currents, which we will call 2-minima.

Definition 4.1 (Q-minimality). A current T € I,,(R™*™) is called Q-minimum if there
exists a constant Q > 0 such that

M(T) < M(T+09S)+ QM(S) VS € I +1(R™*™™)  with compact support. (4.1)

The main result is the following Lipschitz-type approximation result for -minimal
currents.

Proposition 4.2. Assume that T € I, (R™™) is Q-minimal and for some open cylinder Car(x)
(with v < 1) and some positive integer Q,

P:T=Q[Bar(x)] and OTL Csr(x)=0. (4-2)

There exist constants M, C21, Bo, €21 > 0 (depending on m,m, Q), such that if E = E(T, Car(x)) <
€21 then the following holds. There exist a map f: By(x) — Aq(IR™) and a closed set K C B (x)
such that

Lip(f) < CaqEPo (4-3)
GfL(KxR™) =TL(KxR™) and [Br(x)\K| < Co1EPO(E+12Q2)r™ (4-4)
1
IT) (Co00) ~ Qumr™ — 3 /B PP < CaEP(E 202 (4.5)
riXx

If in addition h(T, C4.(x)) := sup{lpl(x) —pty)l:xyc€ spt(T) N Car(x)} < 1, then
osc(f) < C21h(T, Car(x)) + Co17E/2. (4.6)

Proof of Theorem 2.8. As already pointed out in Chapter 2, Theorem 2.8 case (a) follows from
[19, Theorem 1.4]. Note also that case (b) follows directly from Proposition 4.2. It remains to
handle case (c), because the graph of the map f given by Proposition 4.2 is not necessarily
contained in ~. We show here how to modify it in such a way to fulfill the requirements of
Theorem 2.8.

We assume that ¥ is a function whose graph coincides with X (the connected component
of 0Br(p) N C4r(x) containing spt(T)) and arguing as in [19, Remark 1.5] we can assume
that [Wo|| < CE2r+ CQr2, |[DV¥||o < CEZ 4+ CQr and ||D2¥||o < CQ. The domain of ¥ is a
subset of B4, (x) x R*'. Let now f = Y, [fi] be the function given by Proposition 4.2 and
let f =Y ; [fi], where fi(y) gives the first n — 1 coordinates of f;(y). Observe that on the
set K we necessarily have

fly) =) [(fiy), ¥y, fiy))] -

i
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We then can extend f to B;(x) \ K with Lip(f) < CLip(f) and osc (f) < Cosc (f) and hence
define f(y) = Y; [(fi(y), ¥(y, fi(y))] for every y € By(x) (it must be shown that (y, fi(y))

belongs to the domain of definition of ¥, but this follows easily from the smallness of osc (f)).
Obviously f = f on K. On the other hand it is straightforward to check that

Lip(f) <CLip(f) + C(Lip(f) + 1)||D¥o|| < CES + CQr (4.7)
osc (f) <Cosc (f) + |[¥]o < Ch(T, Car(x)) + C(EZ + Qr)r. (4.8)

In addition we conclude

/ IDf2 — / IDf|?
Br(x) Br(x)

Thus the estimates in Proposition 4.2 complete the proof. O

< (Lip(f)? + Lip(f)?)[B+(x) \ K| < CIK].

The rest of the chapter is devoted to the proof of Proposition 4.2. This will be achieved in
four sections. In the first we recall the standard Lipschitz approximation result for integral
currents satisfying (4.2), which can be applied in our case without any modification (cp. [19]).
In the second we improve upon the almost minimality condition under the assumption that
the cylindrical excess is small: this section contains, indeed, the most significant new ideas
compared to [19]. Finally, in the last two sections we modify accordingly the computations
of [19] to prove Proposition 4.2.

4.1 LIPSCHITZ APPROXIMATION

We start with the following definition. Recall that the notion of excess we are using here is
the one of Definition 2.6.

Definition 4.3 (Excess measure). For a current T as in Proposition 4.2 we define the excess
measure et and its density dy:

er(A):=|T|I(AxR™) —QIA] for every Borel A C B.(x),

dr(y) == limsup er(Bs(y))

s—0 Wm s™

= limsup E(T, Cs(y)),

s—0
where wy;, is the measure of the m-dimensional unit ball (the subscripts T will be omitted if
clear from the context). Moreover we introduce the “non-centered” maximal function of er:
et(Bs(w))

mer(y) = sup —_— = sup E(T,Cs(w)).
yeBs (W)CByr(x)  YmS y€B 5 (W)CBay (x)

Notice that we take the supremum over balls of radius 5 instead of s: this is to achieve the
following result in a ball of radius bigger than 3r.

Proposition 4.4 (Lipschitz approximation; cf. [19, Proposition 2.2]). There exists a constant
Cz2(m,m, Q) > O with the following property. Let T be as in Proposition 4.2 in the cylinder Cas(x).
Set E = E(T, C4r(x)), let 0 < & < 1 be such that

T0:=16 VE<1,
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and define K := {met <5} N B%(x). Then, there is u € Lip(B% (x), Aq(R™)) such that

1

Lip(u) < C22 62,
GuL(KxR™) =TL(KxR"),

mnom _ 7r
IBs(x) \ K| < 5 er ({meT >27"0IN Bs+ror(x)) Vr< 5 (4.9)

When 8 = E2P, we will call the map u given by the proposition EP-Lipschitz approximation
of Tin C b (x).

For the sake of completeness we give here the same proof as in [19, Proposition 2.2]. The
proof of the proposition is based on a BV estimate which differs from the ones of [4, 42].
Note that we do not assume that T is area minimizing.

The modified Jerrard—Soner estimate

Recall that each element $ € Io(R™*™) is simply a finite sum of Dirac delta, S = Y™ ; w; 5.,,
where h € IN, w; € {—1,1} and the z;’s are (not necessarily distinct) points in R™*™. Let
T be a current as in Assumption 1 in the cylinder C4. The slicing map x — (T, p, x) takes
values in Io(R™*™) and is characterized by (cf. [54, Section 28]):

/ (T,p,x)(@)dx =T(p dx) forevery ¢ € C(Cy). (4.10)
B4

Moreover spt((T, p,x)) C P~ ' ({x}) and therefore (T, p,x) = D> iwy 8(x,y;)- The assumption
(4.2) guarantees that ) ; w; = Q for almost every x. In order to state our BV estimate, we
consider the push-forwards of (T, p, x) into the vertical directions:

Toi=p; ((T,p,x) € o(R™). (4.11)

It follows from (4.10) that the currents T, are characterized through the identity:
/ Tc(P)o(x) dx =T(ppdx) forevery ¢ € CZ°(Bs), P € CT(R™). (4.12)
By

Proposition 4.5 (BV estimate). Assume T satisfies Assumption 1 in C4. For every p € CX(IR™),
set Oy, (x) == T (P). If |DW||, < 1, then Oy, € BV(B4) and satisfies

(IDCDq,I(A))Z <2m? et (A)||[T|[(A x R™)  for every Borel set A C By. (4.13)

Note that in the usual Jerrard-Soner estimate the RHS of (4.13) would be (||T||(A x R™))2.

Proof. It is enough to prove (4.13) for every open set A C By. To this aim, recall that:

DOy (A =sup{ [ Dy diver)ax: g e CHARY, ol <1}, ()
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For any smooth vector field ¢, it holds that (div ¢(x)) dx = d=, where

== Z ®;j dﬁ) and d)’z) = (_])j_1dx1 A -- _/\dxj—] /\dxj+] A Adx™
j

From (4.12) and the assumption 0TL C4 = 0 in (4.2), we conclude that

/ Dy, (x) div @(x) dx:/ T.(P)div @(x) dx = T(P div ¢ dx)
A By
=T dZ) =TAWZ)) —T(APANEZ) = -T(dp AZ). (4.15)

Observe that the m-form diy) /A= has no dx component, since

m n a
= Z Z y—1 d;b (y) @j(x) dy' A d%. (4.16)
ji=11i=1

[l]

Write T = <T, ) To + S. Then,

- 2 -
(Tl A2 = ([ 1S,avAZ aIT)" < flaw AZIZITIA <R [ 1S2alT,

X

(| - | denotes the norms on Ay, and A™ induced by the natural inner products (,)). Since
IS|2 =1—(T, )2 < 2—2(T, ), we have

/ S2a|T) < 2/ (1= (T 7)) alIT| = 2ex(A)
A XR™ A XRM

Moreover, by (4.16), ||[[dp AZl||ec < M| DY, [|@] s < M. Summarizing, we get

/A Dy (x) div (x) dx < (2m? er(A) [ T|(A x R™)? . (4.17)

Taking the supremum in (4.17) over ¢’s with ||@[cc < 1, we conclude (4.13) through
(4.14). O

Proof of Proposition 4.4

Since the statement is invariant under translations and dilations, without loss of generality
we assume x = 0 and s = 1. Consider the slices Ty := pj(T p.x) € Io(R™) and recall that
[TI(AxR™) > [, M(Ty) dx for every open set A (cf. [54, Lemma 28.5]). Therefore,

M(T.) < tim ITI(C-x)

1 — <mert(x)+Q for almost every x.
T— WmT

Since 817 < 1, we infer M(Ty) < Q+ 1 for a.e. x € K. There are, then, Q functions
gi : K = R™ such that T, = ZC{1 8g,(x) for a.e. x € K. Define g : K — Aq(R™) as
g:= ) ;[gi] and fixp € CX(R™). Proposmon 4.5 gives

(IDDy|(B+(y)))* < 2m (e (Br(y))[TI(Cr(y)) = 2m (e7(B+(y))(QIB+(y)+ et (B+(y))) .
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Hence, if we define the maximal function

mD®|(x) := sup B
x€B 1 (y)CBar |B5(y)

we conclude that
(mlDd)u,I(x))2 <2mmet(x)? +2mQmet(x) < Cdy1 for every x € K.

Therefore, the theory of BV functions gives a dimensional constant C such that

1
Dy (x) — Dy, (y)| < Co7¢ Ix—yl Vx,y € K Lebesgue points of @, (4.18)

(see for instance [30, Section 6.6.2]: although in that reference the authors use the cen-
tered maximal function, the proof works obviously also in our context). Consider next the
Wasserstein distance of exponent 1:

W1 (S1,S2) =sup {(S1 —S2,¥) : b € C(R™), |DYlo, <1}- (4.19)

Obviously, when S1 = } ; [S1i],S2 = > ; [S2i] € Ag(R™), the supremum in (4.19) can be
taken over a suitable countable subset of {p € C2°(IR™), chosen independently of the S;’s.
Moreover, it follows easily from the definition in (4.19) that

1
—_— 1 Py— . 1 Py— . 2 i —
W1(54,S2) = GIEQ;Q ; S1i = S201) 2 Gg}}Q (Z 1S1: — S20(1)l ) =9(51,S2).

i

1
So G(g(x), (y)) C(Sz1 Ix — y\ forae X, y € K.

Next, write g(x) =Y _; [(h )))]. Obviously x — h(x) := >_; [hi(x)] € Ag(R™)
is a Lipschitz rnap Recalling Prop051t10n 3.4, we can extend it to a map e Llp(B 7 Ag(R™))

satisfying Lip(t1) < C 61%1 and osc (1) < Cosc (h). Set finally u(x) = Y _; [(wi(x), ¥(x, @i(x)))].
The estimates claimed on u follow easily.

The identity G, L(K x R™) = TL(K x R™) is a consequence of u(x) = T for a.e. x € K.
Indeed, recall that both T and Gy, are rectifiable and observe that (T, ) # 0 ||T||-a.e. on
K x R™, because meT < oo on K. Similarly, (Gy,, %o) # 0 |Gy |-a.e. on K x R™, by Proposition
3.39. Thus, (G —T)LK x R™ =0 if and only if (Gy — T)L dx1x xrn = 0. The latter identity
follows from the slicing formula and the property (T, p,x) = (Gw, P,X) = }_; d(xu;(x)), Valid
for a.e. x € K.

Finally, for each x € B, \ K choose a ball x € B* = B, (y(y(x)) C B4 such that et(B*) >
27811 wmr(x)™. By the 5r-Covering theorem, we choose balls Bi=B 5v(x) (Y(xi)) which
cover B, \ K and such that the balls B*! are pairwise disjoint. We then conclude

By \K| < 10™587 er (U B) . (4.20)
i

Fix y € B*i. Since B* C B4, we have 27 ™8 11wy r(xi)™ < e7(B*) < eT(Bs) = 4™MwnE,
which implies 2r(xi) < 7o < 1. Thus, y € By, C B4. By definition of met we obviously
have met(y) > 27 ™0811. So UiB* C Bryr, N{mer > 27™0671} and (4.20) implies (4.9).
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4.2 HOMOTOPY LEMMA

Before proving the main Lipchitz approximation theorem we need a lemma which estimates
carefully the difference of mass between an Q-almost minimizer and a competitor in terms
of a power of the excess and the costant €. The key idea is to choose the surface S in (4.1) to
be an homotopy between the EP approximation of T and that of S.

Lemma 4.6 (Homotopy Lemma). Let T be an Q-almost minimizer which satisfies Assumption 1 in
Cur(x). There are positive dimensional constants €, and Cs such that, if E = E(T, Car(x)) < €22,
then the following holds. For every R € 1, (C3(x)) such that O0R = 9(TL C3.(x)), we have

ITI(C3r(x)) < M(R) + Cost™ T QE? . (4.21)

Moreover, let B < ﬁ, s €]r, 2r[, R = G4 Cs(x) for some Lipschitz map g: Bs — Aq (R™) with
Lip(g) < 1 and f be the EP-approximation of T in C3y. If f = g on 0B and P € I, (R™* ™) is
such that 0P = 0((T — G¢) L Cy), then

ITII(Cs(x)) < M(Gg)+M(P)+c25Q(E%rm+‘ +(M(P))‘+‘H +/B ( )9(1“,9)). (4.22)

Proof. We will show (4.21): the reader will notice that (4.22) follows easily from a portion of
the argument.

Without loss of generality we assume x = 0. If || T||(C3,) < M(R) then there is nothing to
prove. Hence we can suppose

M(R) < [IT[[(C3y). (4.23)

Define the current R’ € I;,(C4y) by R’ := R+ TL(C4y \ C3y). Observe that o(T —R’) = 0.
So 9(p4(T —R’)) = 0. On the other hand p;(T —R’) = k [B4,] for some constant k and thus
we conclude py(T —R’) = 0. Therefore R’ satisfies (4.2). Moreover we notice that, thanks to
(4.23), the cylindrical excess of R’ enjoys the following bound:

M(R) (423 M(T)
ER,Ca)= -~ 5 -Q < 5 ~Q=E(Cu)=E

Let f,h: Bz — Aq (R™) be the EP-Lipschitz approximations of T and R’ respectively, in the
cylinders C 7 (where the choice of the exponent 3 will be specified later). Then there exist
sets K1, Kr/ C B% (x) such that

M((T=G)LCz) < C2i™E'2P and M((R'— Gn)LCyz) < Co1t™E' 2P, (4.24)
Bz \Kr| < C217™E'"?F and By \Kg/| < Corr™E! P, (4.25)

Lip(f) < C21EP and Lip(h) < CEP. (4.26)
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Next we set K := K1 N Kg/ and we notice that by (4.25)
IB% \ K| < Cay™E' 2B, (4-27)

Let | - | be the cylindrical euclidean norm, that is |(x,y)| := [x| for every (x,y) € R™ x R™.
By slicing theory, (4.24), (4.27) and Fubini’s Theorem there exist 11,1, C (3r, %) such that
I3r, 5\l < /8 and

M((T—Gy,|-1,5)) < Coir™ "E'™?P and M((R'—Gp,||,s) < Coyr™ TE' 2P,
and

0B \ K| < Copr™TET 2R,
for every s € I, j = 1, 2. Therefore there exists s € (3r,7/2r) such that

M((T—Gy¢,|-1,8)) < Cor™ TE'"2P and M((R'—Gp,|-|,8)) < Corr™ TET 2P (4.28)

and

9Bs \ K| < Coyr™ TET 26 (4-29)
By the Isoperimetric Inequality, there exists P, Pr € I;n (R™*™) such that

OPt = (T—Gy,|-,s) OPg = (R'—Gn,|-|5)

and
M(P1) + M(Pg) < C(M((T = Gy, |1,5) ™ 7 + C(M((R' — G, ||, 5)) ™7
< Crmgm1=2p)/(m—1)
Choosing 3 = ﬁ, we can conclude that
O((T—Gf)LCs) =3Pt B((R"—Gn)LCs) = dPr (4.30)
with
M(Pt) +M(Pg) < Cr™E. (4.31)

Next consider the functions

f':=&of: By »QCRNQ™ and h':=goh:Bj —QcC RN,
and the homotopy between them, defined by

H(x,1): [0,1] x B%(x) 5 (t,x) = (x, tf'(x)+ (1 —t)h/(x)) e R™ x RN
Consider the Lipschitz map

b: R™ xRN 3 (x,y) = (x, £ (p(y))) € R"™ x Aq(R™)
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and define H := ¢ o Fl. H can be seen as a Q-valued map H : By, x [0,1] — AQ(]R2+"‘).
Without changing notation for H we restrict it to [0, 1] x B and following the notation of
Definition 3.38 we define S := Ty. If we set G := HJ[p 11xaB, We can use Theorem 3.47 to
conclude that

39S = (Gt —Gn)L Cs+Tg = (Gr— Gp)L Cs + P, (432)

where P := Tg. We now want to estimate M(S) and M(P) and we will do it using the
Q-valued area formula in Lemma 3.44. We start with M(S). We fix a point of differentiability
p where DH =} [DHj;]. On [0, 1] X B we use the coordinates (t,x) and on the target space
R™*™™ the coordinates (x,y). Let p = (to, x0). It is then obvious that the matrix DH; can be
decomposed as

DHl(P) — ( ITTLXTYL Om><1 >

Anxm Vnx1-

where the matrices A and v can be bound using the following observation. If we consider
the map t — ®(t) := H(xo,t) and x — A(x) := H(to, x), we then have |v| < CLip(®) and
|A| < CLip(A), where the constant C depends only on n and Q. On the other hand, it is easy
to see that Lip(®) < CG(f(xo), h(xo)) and Lip(A) < C(Lip(h) + Lip(f)) < EP = Ezw. Thus
we can estimate

JH; := | /det(DH; - DHy) < C(f(xo0), g(x0)).

Using Lemma 3.44 we then conclude
M(S) < C . S(f,h)
and, arguing in a s;milar fashion,
M(P) < C S(f,h).
9B,

Observe that f and h coincides, respectively, with the slices of the currents T and R’ on any
xo € K. On the other hand, s > 3r and TL C4, \ C3, = R'L C4; \ C3,. We thus conclude
that h = f on KN 0Bs. Let x € 9B \ K. By (4.29), there exists xo € KN 0B such that
Ix —xo| < CrE(1—2B)/(m=1) — CrE2B (recall that p = ﬁ). Thus

G(f(x), h(x)) < (Lip(f) + Lip(h)) [x — xo| < CrE3P,
and so we conclude

M(P) < C G(f, h) < CrE3PF|9B, \ K| < Cr™E' P < Cr™E. (4-33)
0B

On the other hand, we recall that, by a standard variant of the Poincaré inequality,

/B 5(f,1) < CrlIS(f, Wl (o5, + CrIDIS(E W)l s,

1
(433) m ?
< CrmHTE+Crl s (/(|Df|2 + |Dh|2) < CrmE? (4-34)
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Thus,

G;—GpL=0S+P (4-35)
with

M(P) < Cr™E and M(S) < Cr™+1EZ. (4.36)
Now observe that

0=203(T—R’") =03((Gf— Gn)L_Cs) + (Pt —Pg) = 00S + dP 4+ 3(Pt — Pgr).

Hence, by the isoperimetric inequality, there is an S’ with M(S/) < Cr™*TE'* & and
0S’ = 0(P + Pt — Pr). Additionally, again using the isoperimetric inequality, there are
currents St and Sg such that

St = (T—G¢)LCs—Pr

and

1)
M(ST) < C(||T - G¢||(C +M(PT)) U < CEApm

m+1)
M(Sg) < C(||T = Gn|(Cs) + M(PR)) m < CEAr™HT
In the latter inequalities we have used ||T — Gy ||/(Cs) + ||T — G¢[|(Cs) < CE'2Brm =
CE(m—T)/mym. jpy particular (1-2B)(m+1)/m=1— 1/m? > 3/4; observe that this estimate
is valid even if 3 < 1/(2m) and explains the exponent of E in the third summand of the
right hand side of (4.22).
Thus, setting S” = S+ St — Sg — S’ we finally achieve (T —R)L C3, = 9S” and M(S”) <
Crm+1Ez, Applying now the Q-minimality of T we conclude

ITI(C3r) < M(R) + Cost™ 1 QE? .

For the proof of (4.22) we conclude with the same computations, except that this time f = g
on 0B and the current R is already given by G4L C. The modifications to the argument are
then straightforward, given the remark of the previous paragraph. O

4.3 HARMONIC APPROXIMATION AND GRADIENT P ESTIMATES

In this and in the next section we follow largely [19] with minor modifications: on the one
hand we have the additional Q-error terms, but on the other hand the ambient Riemannian
manifold is the euclidean space. Thus the arguments are somewhat less technical.

4.3.1  Harmonic Approximation

In this subsection we prove that if T is an almost minimizer then its EP-Lipschitz approxi-
mation is close to a Dir-minimizing function w. This comes with an o(E)-improvement of
the estimates in Proposition 4.4.
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Remark 4.7. There exists a dimensional constant ¢ > 0 such that, if E < ¢, then the EB-
Lipschitz approximation satisfies the following estimates:

Lip(f) < CEP, (4-37)

/ IDf|> < CEs™. (4.38)
B3S (X)

Indeed (4.37) follows from Proposition 4.4, while (4.38) follows from the Taylor expansion of
the mass of Gy,:

2
MG =+ [ P54 [ Row),

where R : R™*™ — Ris a C' function satisfying [R(D)| = DI L(D) for some positive
function L such that L(0) = 0 and Lip(L) < C (cp. Corollary 3.49). Indeed, for E sufficiently
small we have

1
/ > R(Df;) < CEZB/ IDf|? < / |Df|?,
Bis(x) B (x) 4 /B3, (x)

1

and therefore, since TL (K x R™) = G¢L (K x R™),

/B DA <C MGyl C3.)) ~ Qo (35)"™)

(M(TLK X R™)) = Q wm (3s)™) + CM(G¢L(B3s(x) \ K) x R™)

<C
<C(M(TLC35(x) = Qm (35)™) + CE?P B35 (x) \ K| < CEs™.

Theorem 4.8 (First harmonic approximation). For everyny,d > 0 and every 3 € (0, ﬁ), there
exists a constant €3 > 0 with the following property. Let T be an €)-almost minimizer which satisfies
Assumption 1 in Cas(x) . If E = E(T, Cas(x)) < €23 and sQ < sng%, then the EP-Lipschitz

approximation f in C3¢(x) satisfies
[ D <miEwm (45" =y er(Bag(x), (439)
BZS (X)\K
Moreover, there exists a Dir-minimizing function w such that

N 2
S 2/B ( ]9(f,w)2+/B ( )(|Dﬂ_|DW|) <MEwm (4s)™ =n1 er(Bas(x)), (440)
25X 25 (x

/B D)= Dinow) < mE@ (45)™ = er(Baslx). (4.41)

Proof of Theorem 4.8. By rescaling and translating, it is not restrictive to assume that x = 0
and s = 1. We proceed by contradiction. Assume there exist a constant ¢y > 0, a sequence
of positive real numbers (e1)1, a sequence of currents £-minimal currents (T;)1en and
corresponding E{3 -Lipschitz approximations (fi)1en such that

Ey:=E(T,Cq) < er =0, Q <gE? and IDf2 > ¢1 Ey, (4-42)
B2\Ky
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where Ky :={x € B3 : meT/(x) < Efﬁ}. Set I :={x € B4 : meT,(x) < Z*mEfB} and observe
that I N B3 C K. From Proposition 4.4, it follows that

Lip(f) < C22EP, (4-43)

IBr \ Ky < szEfZBeT (BT+T0(1) \Fl) for every r < 3, (4-44)

where 1y (1) = ]6E{]72B)/m < % Then, (4.42), (4.43) and (4.44) give
< / DA < Cazen(Bs\T) ¥se[3,3].
B2\K;

Setting ¢, := ¢1/(2C52), we have 2c,Ey < et (Bs \ 1) = eT,(Bs) — et (Bs N T1), thus leading
to

e (M NBs) <er(Bs)—2cyEy, (4.45)

for 1 large enough Next observe that w,,4™E = e (B4) > et (Bs). Therefore, by the Taylor
expansion in Corollary 3.49, (4.45) and Ey | 0, it follows that, for every s € [5/2, 3],

Df |2
/ DAl <(1+CE*P)er (N NBy)
MNBg 2

< (14 CEP) (en(By) ~2c2F1) <en(By)—coEu. (4.46)

Our aim is to show that (4.46) contradicts the Q2-almost minimizing property (4.1) of T;. To
construct a competitor consider g; := El_%fl. Observe that from the estimates of Remark 4.7,
we easily infer Dir(f;,B3) < CEy. Hence, sup, Dir(g1,B3) < oo. Since [B3 \ 1| — 0, by
Proposition 3.29 we can find a subsequence (not relabelled) of translating sheets h; satisfying
(3-17) - (3.18) and [|G(g1, hu)|12(g,) — 0. In particular, we are in the position to apply
Proposition 3.30 to g; and hy, with 1y = %, 1 =3and n = Cz—z, and find r € (%,3) and
competitor functions Hy satisfying Hi|g,\5, = 91ls,\B,,

. . c

Dlr(Hll BT‘) < Dlr(gll BT‘ N rl) + 72/ (447)
1

Lip(Hy) < C*EP 2 (4.48)

I1S(Hy, gU)lli2(s,) < C23Dir(gy, By) 4+ C23 Dir(Hy, By) < M < 0. (4-49)

Note that (4.48) follows from (3.24) observing that EF = 1 oo: thus C* depends on ¢, and
the two chosen sequences, but not on 1. From now on, although this and similar constants
are not dimensional, we will keep denoting them by C, with the understanding that they do
not depend on 1. Note that, from (4.43) and (4.44), one gets

[Tt — G |[(C3) = |Tu][(B3 \ Ki) x R™) + [|Gy, [|((B3 \ Ky) x R™)
< QIB3\ Ky +Ey 4+ QB3 \ Ky + C[B3 \ Ky| Lip(fy)
<E+CE P <CE P (4.50)
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Consider the function ¢(z,y) = |z| and the slice (T; — G¢, @, 7). For every 1, there exists
11 € (1,3) such that M((Ty — G¢,, @, 11)) < CEI*ZB.

Let now uy := El% H1|Br1/ and consider the current Z; := Gy, L C,,. Since U.llagrl = f1|a]3rl,
one gets 0Z1 = (Gy, @, 1) and, hence, M(0(T{L C;, — Z;)) < CE:_ZB. By the Isoperimetric
Inequality there is an integral current Ry such that

R =d(TiLCr,—Z1) and M(Ry) < CE[M!72R)/(m=1),

Set St = T1L(C4 \ Cr) + Z1 + Ry. Notice that 0S; = 0T;. We assume from now on 3 < ﬁ
and we set 1 +y =m(1—2f3)/(m—1) > 1. We want to compare the mass of S; with that of
T, to achieve a contradiction in the limit for 1 — oo.

2 2 . . 447) ¢y
| Dwi= [ DAR =Dir(By,w) - Dire, N1 f) L PE
B, B,NMN 2
1

where the factor E; in the last inequality comes from the renormalizations u; = E{ H; and

1
fi = E{ g1. By possibly changing v so that 2 > vy, we can then write

M(S1) —M(T) < M(Zy) + CM(R) — M(T L C;)

Duy |2
<QBH+/)| u

B,

+CE MY — QB — e, (By)

Dfi? ¢
g/ | 2” +72E1+CEI+V—eTl(BT)
B.NM

(4-46) E
< -2 cE]PacEM. (4.51)

Hence,
M(S1) < M(Th) for 1 large enough. (4.52)

This would be already a contradiction if T were area-minimizing. In our case, by (4.21) of
Lemma 4.6 we have the upper bound

1
M(S1) —M(Ty) > —C5QE{ > —Cas¢Ey.
Combining this inequality with (4.51) we obtain

coky

< CE[ ™Y 4 CerEy

which for Ey, ¢; sufficiently small (and hence for 1 large enough) provides the desired
contradiction.

For what concerns (4.40), we argue similarly. Let (T;); be a sequence with vanishing
Ey := E(Ty, C4), contradicting the second part of the statement and perform the same
analysis as before. Up to subsequences, one of the following statement must be false:

(i) lim, fBz Dgi|? = fBz IDhy, |2, for any 1y (recall that fBz |Dh,|? is constant);
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(ii) hy is Dir-minimizing in B;.

If (i) is false, then there is a positive constant c, such that, for every r € [5/2, 3],

/ [Dhy|? </ IDgi/* e, < EnBr)
T B'r

2 2 ST 2’

for 1 large enough (where the last inequality is again an effect of the Taylor expansion of
Remark 4.7. Therefore we can argue exactly as in the proof of (4.39) (using h; instead of
Hy to construct the competitors) and reach a contradiction. If (ii) is false, then h; is not
Dir-minimizing in B /,. This implies that one of the ¢J in the translating sheets h; is not Dir-
minimizing in B;. Indeed, in the opposite case, by Theorem 3.23, [|S(¢J, Q [0])]| co(p,) < o0
and, since hy = Zi[['ry% o ('] and [yt —y{l — oo for i # j, by the maximum principle of [17,
Proposition 3.5], h; would be Dir-minimizing. Thus, we can find a competitor {J for some ¢J
with less energy in the ball B,. So the functions F; = Zj [[Ty{ o 23]] satisfy, for any r € [5/2, 3],

IDF|? / IDhy[2 ) / IDgyl? er(By) c2
< —C2 < —2c2 < - =,
/ 2 s, 2 2 lim 5, 2 ©2 E, 2

provided 1 is large enough (where ¢, > 0 is a constant indepedent of r and 1). On the other
hand F; = hy on B3 \ B5,, and therefore ||G(F, gl)HLz(Bg\B5/z) — 0. We then argue as above
with Fy in place of Hy and reach a contradiction in this case as well. O

4.3.2 Improved excess estimate.

The higher integrability of the Dir-minimizing functions and the harmonic approximation
lead to the following estimate, which we call “weak” since we will improve it in the next
section with Theorem 4.11.

Proposition 4.9 (Weak excess estimate). For every ny > 0, there exist €34, Cz6 > 0 with the
following property. Let T be an Q-almost minimizer and assume it satisfies Assumption 1 in Cas(x).
If £ = E(T, C4s(x)) < €24, then

eT(A) <nyer(Bas(x)) + Coe Q2 s™ 2, (4-53)
for every A C Bs(x) Borel with |A| < e24|Bs(x)| (observe that the constant C¢ depends on m2).

Proof. Without loss of generality, we can assume s = 1 and x = 0. We distinguish the
two regimes: 82E < Q2 and Q2 < &%E, where ¢ < ¢4 is a parameter whose choice
will be specified later. In the former, clearly e7(A) < CE < C Q2. In the latter, we let f
be the Eﬁ—Lipschitz approximation of T in C3. By a Fubini-type argument as the ones
already used in the previous secions, we find a radius r € (1,2) and a current P with
M(P) < CE'*Y and 9((T— G¢)L C;) = 9P for some y(m) > 0. We can thus apply Lemma 4.6
toR=G¢LC, +P+TL(C3\ C;). Recalling the Taylor expansion in Corollary 3.49, we have

IT(Cy) < M(RL C;) + CQE? < ||G¢||(Cy) + CEE + CE'*Y

D> | . T+
< QB+ 5~ +CeE+CE Y, (4-54)

T
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for some positive y (possibly smaller than the previous one). On the other hand, using again
the Taylor expansion for the part of the current which coincides with the graph of f, we
deduce as well that

ITI(Cy) = |IT[[((Br \ K) x R™) + || T||((B N K) x R™)

Df|?
> I T)((B, \K) x]R“)+Q|BmK|+/ D _ cprev, (4.55)
B.K 2
Subtracting (4.55) from (4.54), we deduce
2
B\K 2

If €54 is chosen small enough, we infer from (4.56) and (4.39) in Theorem 4.8 that
er(B, \K) <ner(Bs)+CE'Y, (4-57)

for a suitable n = £/2C to be specified later. Let now A C By be such that |A| < €24 Wpm.
Combining (4.57) with the Taylor expansion, we have

Df|? DfJ?
eT(A)<eT(A\K)+/"+CE‘+V< DAl
A

+ner(Bs)+CEY, (4.58)
2 A 2

If €54 is small enough, we can again use Theorem 4.8 and Theorem 3.31 in (4.58) to get, for a
Dir-minimizing w,

(4-40) [ |Dw]|? _2
er(A) < | ;N| +2net(Bg) + CEMTY < <C24|A|1 Pl +2n) er(B4) + CETHY.
A
(4-59)
Hence, if €24 and n are suitably chosen, (4.53) follows from (4.59). O

4.3.3 Gradient LP estimate.
The density d of the excess measure is naturally an L' function. We prove here that for
Q-almost minimizer this function is in fact LP, for some p > 1.

Theorem 4.10 (Gradient LP estimate). There exist constants p, > 1 and C, e25 > 0 (depending
on n, Q) with the following property. Let T be as in Assumption 1 in the cylinder C4. If T is an
Q-almost minimizer and € = E(T, C4) < €25, then

/ dPz < CEPT (E4+ Q7). (4.60)
{d<1}nB:

Proof. We assume without loss of generality that E > 0 and divide the proof into two steps.

Step 1. There exist constants y > 2™ and p > 0 such that, for every c € [1, (y E)~ '] and
sc 2,4 withs=s +Zcf1ﬁ < 4, we have

/ d<vy* / d+Cc m Q2. (4.61)
{y c EXAK1INB; {%gd@}mBg
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In order to prove it, let N be the constant in Besicovich’s covering theorem [30, Section
1.5.2] and choose N € IN so large that Ng < 2N=T Let ¢54 be as in Proposition 4.9 when we
choose ; =22™ N and set

v = max{2™, 524} and p—mm{—logy(NB/ZN_]),l}.

Let ¢ and s be any real numbers as above. For almost every x € {ycE < d < 1}N B, there
exists ry such that

E(T,C4r, (x)) <cE and E(T,Ci(x)) = cE Vt€]0,4ry]. (4.62)
Indeed, since d(x) = lim;_,o E(T, C+(x)) > ycE > 2%cE and
m
et (B(x)) < 4™mE <CE for t> i’
tm /e
we just choose 41, = min{t < 4/ ¥/c: E(T, C¢(x)) < cE}. Note also that v, < 1/ {/c. Consider
the current T in Cy4, (x). Setting A = {ycE < d} N B4, (x), we have that

E E|B
E(T,C4r (x)) <cES — <4 and |A| < CE[Bar, (x)]
) YE vYcE

Hence, we can apply Proposition 4.9 to TL C4, (x) to get

/ d< / d < er(A) <272 N er(By,(x) + Cr+202
B, (x)N{ycELdLT} A

(4.62)
<272 N (4 )™ Wi E(T, Car, (%) + CTI20Q% < 27N ep (B, (x)) + CTIMH2Q2

E(T,Ce(x)) =

Wy tm

< €24(Bar (x)].

(4.63)
Thus,
et (Br, (x)) _/ d+/ d+/ d
By, (x)N{d>1} B, (x)N{§E<d<T} B, (x)n{d<<E}
/d+/ d—i—gwmr}j‘
My <d<ny Y
(4.62), (4 63)
< (@ N4y er(Br(x ))+CTQ1+2Q2+/ d.  (4.64)
Brx(x)n{%gdgl}

Therefore, recalling that y > 2™ > 4, from (4.63) and (4.64) we infer:

z—N
/ dS_N_1/ d+CT;n+2QZ
By (x)N{ycE<d<1) 1= 27° =Y~ JB, (x)n{E<d<t)
2 N+]/ d+CTm+2Q2
Bry ()N{E<d<T) b

By Besicovich’s covering theorem, we choose Ny families of disjoint balls B (x) whose
union covers {ycE < d < 1}N B and, since as already noticed ry < 1/ ¥/c for every x, we
conclude:

2
/ d < N2 N+ d+Cec = Q2
{y c E<d<1INB, SFLASUNB o) mye
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which, for the above defined p, implies (4.61).

Step 2. We iterate (4.61) in order to conclude (4.60). Denote by L the largest integer smaller
than 2! log, (E71—1), sp. =2 and recursively sx = sy 1 12y R forke{l,L—1,...,1}
Notice that, since y > 2™, s, < 4 for every k. Thus, we can apply (4.61) with ¢ = y?¥, s = sy

and § = s to conclude

/ d<v“’/ d+Cy mQ? vkefl,... 1.
{ka+1 Egdg]}ﬁBsk {ka*1 E<d<1}ﬂBsk7]

In particular, iterating this estimate we get

40
/ dgvkp/ d+CQ? Zv tee), (4.65)
{y2*+1 ECA<KTINB;, {y E<d<1}NBs, 1=0

Set Ag ={d < YE}, Ax ={¥?* TE<d <y?* T E}fork=1,...,L,and A ;1 = {y?LFTE <
d < 1}. Since UAK ={d < 1}, for p2 < 1 —l—% <1+ %, we conclude:

L+1
/ drz — Z/ dr: < Zy(2k+1)(pz—1) EP2—T / d
Bon{d<1} k=0 AxNB3 k ArNB>
(4 5) vk (2(p2=1) P2 (P2—D—2)+1 (L2 —p)pp2—1 2
P)EP2 4 C & E Q
k 1=0
<CEP2+CZy (P2=1)=e) 2, O

k

4.4 STRONG EXCESS ESTIMATE AND CONCLUSION OF THE PROOF
4.4.1 Almgrem’s strong excess estimate.

Thanks to the higher integrability of Theorem 4.10, we can control the excess where d < 1.
To control it outside this region, we will need the following estimate.

Theorem 4.11 (Almgren’s strong excess estimate). There are constants €31,v2,Cz7 > 0 (de-
pending on n, Q) with the following property. Assume T satisfies Assumption 1 in C4 and is
almost minimizing. If E = E(T, C4) < €21, then

et(A) < Co7 (EYV2+|A]Y3) (E+ QZ) for every Borel A C Bj. (4.66)
Proof. Since the proof of this result is rather involved we split it into two parts.

Regularization by convolution

In this first part we construct a competitor via convolution. To do that we will need the
following Proposition, whose highly nontrivial proof can be found in [19].
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Proposition 4.12 (Cf. [19, Proposition 6.2]). For every n,Q € IN \ {0} there are geometric
constants 8y, C24 > O with the following property. For every & €10, 8¢ [ there is p : RN(QM) —
Q = E(Aq(R™)) such that |p5(P) —P| < Ca4 5870 forall P € Qand, for every u € w'2(Q,RN),
it holds

/|D(P§ ou)f < (1 +Co4 587“Q7]> / IDu? + Caq / IDuf?.
(dist(1,Q)<5mQ+1) (dist(1,Q)>5nQ+1]

(4.67)

The precise claim about the smoothed competitor is contained in the following proposition.

Proposition 4.13. Let ;1 € (0, ﬁ) and T be an €-almost minimizing current satisfying Assump-
tion 1 in Cy. Let f be its EP? -Lipschitz approximation. Then, there exist constants y3, C2g > 0 and
a subset of radii B C [1,2] with [B| > 1/2 with the following properties. For every o € B, there exists
a Q-valued function g € Lip(By, Aq) such that

glos, = flos,, Lip(g) < CagEP

and
/B |D9|2</B mK|Df|2-i-ngE1+y3. (4.68)

Proof. Since IDf|2 < Cdt < CE2PBT < 1TonK, by Theorem 4.10 there exists q2 = 2p2 > 2
such that

1

_ 1
D120, (krp,) < CE' 7T (E+Q2)71 < C(E+Q2). (4-69)

Given two (vector-valued) functions h; and h, and two radii 0 < s < 1, we denote by
lin(hy, hy) the linear interpolation in By \ Bs between hlap, and hzlss,. More precisely, if
(0,t) € S™ T x [0, 00) are spherical coordinates, then

T

lin(hy, h2) (6, 1) = _zhz(e,swi%zm(e,r).

Next, let 8 > 0 and ¢ > 0 be two parameters and let 1 < 17 < 12 < r3 < 2 be three radii, all to
be chosen later. To keep the notation simple, we will write p* in place of p}. Let ¢ € CZ°(B1)
be a standard (nonnegative!) mollifier. We set f' := & o f. Recall the map p of Lemma 3.8 and
define:

ﬁpolin(\%,p*(\%)) in By, \ By,
g’ = VEpolin (p* (\%),p* (fT/E*(pE>) in By, \ By, (4.70)
VEo* (Jr+0c) in By,.

Finally set g := £~ 1 0g’. We claim that, for o := 13 in a suitable set B  [1,2] with [B| > 1/2,
we can choose 1, =13 —s and 11 = 1, — s so that g satisfies the conclusion of the proposition.
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Some computations will be simplified taking into account that our choice of the parameter
will imply the following inequalities:
8 Q _
528 <s, e<s and E' 2B <2, (4.71)

We start noticing that clearly gIaBT3 =T |aBr3- Moreover we have Lip(g) < CEP1, indeed

Lip(g) < CLip(f'* ¢,) < CLip(f) < CEP in By,
Lip(g) < CLip(f) + cﬂiﬂﬂﬁ<cu +£)Lip(f') < CEP' in By, \By,,
Lip(g) < CLip(f/) + CE'/28° = < CEP1 + CEV/2< CEP'  in B, \B,,

In the second inequality of the last line we have used that, since Q is a cone, E-2f/(x) € Q
for every x: therefore |p*(f'/ E%) —f/ E2| < Co8 " We pass now to estimate the Dirichlet
energy of g.

Step 1. Energy in B, \ B;,. By Proposition 4.12, [p*(P) —P| < Cy4 53" forall P € Q. Thus,
elementary estimates on the linear interpolation give

CE : 2
Dgl* < [ e () +ef e
/Brs\BT2 (rs—12)* Je,\B,, |VE VE Bry\Bo,

+ c/ ID(p* o /)| < c/ IDf? + CEs— 162872,
B3 \Br, B3 \Br,
(4.72)

Step 2. Energy in By, \ By,. Here, using the same interpolation inequality and a standard
estimate on convolutions of W2 functions, we get

C
/ Dyl < C/ DA + 2/ 1 — e x 12
B, \Br, B.,\Br, (r2—=m71)% JB,,\B,,

2

gC/ IDF2 + C e2s 2/ DF2 = c/ DF2 4+ Ce2Es 2. (4.73)
BTz\BT‘-[ BS Brz\B'q
Step 3. Energy in B,,. Define Z := {chst (f * Qe, Q) > §nQtl } and use (4.67) to get

—nQ- 2 2
/ IDgl* < <]+C68 ? ])/ !D (f’*@s)’ +C/ |D (f’*(pg)‘ =1 +1. (4.74)
B, By, \Z z
We consider 17 and I, separately. For I; we first observe the elementary inequality

ID(f" * @¢) |72 <[IDF|* @ellf2 < [[(IDF] 1K) * @e|[F2 + | (IDFf [ 1ke) * @122
+2[[(IDf[1x) * Qe[ 2[|(IDf T 1xe) * @2, (4.75)

where K€ is the complement of K in B3. Recalling v1 + ¢ < 11 + s < 12 we estimate the first
summand in (4.75) as follows:

2
||(|Df’\1K)*(P£”%2(BT]) </ (IDf'|1x) </ IDf|?. (4.76)

Bryte B, NK
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To treat the other terms recall that Lip(f) < C ER1 and [K¢| < CE'—2B1;

2234
[DF [tke) # 0c 2, ) < CE2P e = @ellf2 < CEP el lellfe < ==—5— @77)

Putting (4.76) and (4.77) in (4.75) and recalling E'=2P1 > ¢™ and [ IDf’|> < CE, we get
I < / IDf2 +C88 " B4+ CeSESI B, (4.78)
B.,NK
For what concerns I, first we argue as for I, splitting in K and K¢, to deduce that

I < C/ ((IDf|1¢) * @e)* + Ce™ FEI P, (4.79)
Z

Then, regarding the first summand in (4.79), we note that

’

2nQ+2 . I i
Zeneris [ | fve -
™

Recalling that q2 = 2p; > 2, we use (4.69) to obtain

2
< Cée?. (4.80)

2(p7-1)

2 Pl €
/Z ((IDF'12k) @) <1207 [(IDF 1)+ ellfor < € (grgrr) | IDF e
e 2(p1—1)

Gathering all the estimates together, (4.74), (4.78), (4.79) and (4.81) give

/ IDg[? g/ |Df|2+c(E58’“Q" +
B, - NK

1 B 2

3_ 2(p1—1)
E2 B 2 € 3
F(E+Q )(6“Q+1) ‘ ) (4.82)

Final estimate. Summing (4.72), (4.73) and (4.82) (and recalling ¢ < s), we conclude

/ DgP? < / DF2+C / D
B Br]mK Br]+35\Br1

2 2.8 I-B 2(py—2)
€ o E27#1 21 € oh
+CE<SZ+ +———+ 1+ 027 ( ) .

T3

S onQ+1
Weset ¢ = E%, § = EP and s = E€, where

— -2 -2
a:1 2B b—17f)1 and c= 1 B

4 7 T T 8MmQ+1) gnR8MQ+1)

This choice respects (4.71). Assume E is small enough so that s < %. Now, if C > 0is a
sufficiently large constant, there is a set B’ C [1, %] with [B’| > 1/2 such that,

/ IDf|> < Cs IDf|? < CE'™¢  for every 71 € B'.
Br]+3s\Br] B2

For 0 =13 € B = s + B’ we then conclude, for some y(31,1,N,Q) >0,

/|Dg|2</ IDf|? + CE'*Y. O
o BsNK
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Proof of (4.66)

Using the isoperimetric inequality and a slicing argument, we find a radius o € (1,2)
for which Proposition 4.13 applies and such that there is P € I,,(R™"™) with 0P =
((T—G¢)LCs) and M(P) < CE'Y. We can therefore apply both Lemma 4.6 to conclude
that

ITI(Co) < [Gll(Co) +CQ / Glg, f)+ CE'+Y. (4.83)

In order to estimate fBo‘ G(g, f), we recall how g is constructed, and in particular, using the
notation of the previous section

f/ f/
f, <C ' —VE lin( —, p*(—
B69( g) /BU\BUS VEpo m(\/E p (\/E)>‘+
L
£/ f/
C —VEpoli (—=), p*(—=
L VEpo m(p (ﬁ) p (\/E*(pe)))—l—

I
/

Ve (Zevel)|

wcf s
sZn

We will estimate Iy, I, I3 separately. Recall that pof’ = f’, p is Lipschitz and moreover
Ap(P) = p(AP), for every A > 0,P € Q, since Q is a cone.

o / . I
R L

/ /
B Cﬁ/ = t/a \f@ —p*(\f@)) dt < CVES® ™ By \ Bo_s| < CEZ*e
o—s B¢

where we used |Bs \ Bg_s| < Cs < CE€. We next bound 1.

f’ t—|—2s—(r f/ o—s—t f/
cf/ / sy _omsot e
o—2s J OBy S s P (\/E) s P (\@*(ps)

<o [ (‘w"*%””_f_t

< CE2*e 4 C £ — % |
3075\36725

I3

i f’

\ﬁ) - P*(ﬁ *Qe)

) at

where we have used the fact that p* is Lipschitz. The estimate for I3 is then

okl (el )

<CE%+C+C [ —f" % @el.

BO‘*ZS

1:/ f/

P*(ﬁ) - P*(\ﬁ * Q)
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We therefore achieve the estimate

Iz+13§CE;+C+/ It —f" % Pl

o—S

and to conclude, we compute

/ \f’—f’we\é/ /‘Pe(X)If’(y—X)—f’(y)ldde

]
</ / / @e(x)IDf'(y —tx) - x| dt dy dx
o—s &€ 0
1 1
g / / (pE(X)E/ |Df(y—tX)|dy dth g sHDfHL](BU) g CEj+a,
0 € o—s
(where we have used the fact that ¢ < s). Putting everything together we conlude that
M(S) < CEZH+Y

for a suitable y > 0. Then, from (4.83), the Taylor expansion for M(Gg4) and Proposition 4.13
we achieve

2
ITIC) < Q|Ba|+/ DY | ceve+Q?). (4.84)

B,k 2

On the other hand, by the Taylor’s expansion in Corollary 3.49,
ITI(Cs) =[TN((Bs \K) x R™) +[|G¢[((Bs N K) x R™)

n |Df|?
> ||T||((Bs \K) x R™) + Q [KNBs| + e
KnB, 2

CE'. (4.85)
Hence, from (4.84) and (4.85), we get eT(Bs \ K) < CEY (E+ Q?2).

This is enough to conclude the proof. Indeed, let A C By be a Borel set. Using the higher
integrability of |[Df| in K (and therefore possibly selecting a smaller y > 0) we get

Df|?
er(A) <er(ANK)+er(A\K) < / %JFCE”YJFCEy (E+ Q2?)
ANK

2
P11

< CIANK| 71 (/ |Df|q2) ¥ LCE™Y £ CEY (E+Q?)
ANK

P11

<CIAI " (E4+Q%) +CEY(E+Q?%) +CE'Y.

4.4.2  Proof of Proposition 4.2

As usual we assume, w.l.o.g., r =1 and x = 0. Choose 3, < min{ﬁ, 2(%3%)}, where v3 is
the constant in Theorem 4.11. Let f be the EP2-Lipschitz approximation of T. Clearly (4.3)
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follows directly from Proposition 4.4 if y1 < B2. Set next A := {mer > 2" ™E?F2} N B,. By
Proposition 4.4, |A| < CE'=2B2. Apply estimate (4.66) to A to conclude:

IB1 \K| < CE2P2er (A) < CEY3—2B200+v3)(E 4 O2).

By our choice of y3 and f3,, this gives (4.4) for some positive (3¢. Finally, set S = G¢. Recalling
the strong Almgren’s estimate (4.66) and the Taylor expansion in Corollary 3.49, we conclude:

IDf|?
es(B )—/
s(B1 5, 2

2
ey -Qan— [ 2

B4

<er(Br\K)+es(By\K)+

< CEY3(E+ Q%)+ C[By \ K[+ CLip(f)? [ |DfI*> < CEV'(E+Q?).
B4

The L* bound follows from Proposition 4.4.
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UNIQUENESS OF TANGENT CONES FOR 2-DIMENSIONAL
ALMOST MINIMIZING CURRENTS

In this chapter we consider 2-dimensional integer rectifiable currents T in the euclidean
space R™*2 which are almost (area) minimizing, in the following sense.

Definition 5.1. An m-dimensional integer rectifiable current T in R™*™ is almost (area)
minimizing if for every x ¢ spt(0T) there are constants Cop, 1o, %o > 0 such that

ITI[(Br(x)) < [T+ 0S[[(By(x)) + Cor™ > (5.1)
for all 0 < r < 1o and for all integral (m + 1)-dimensional currents S supported in B, (x).

Our aim is to extend Brian White’s classical result (cf. [66]) on the uniqueness of tangent
cones for area minimizing 2-dimensional currents to almost minimizers,.

To state the main theorem we recall the definition of the current Ty ; := (1x )4 T, where the
map Ly, is given by R™*™ 5y — Y= € R™*™. Recall that an area minimizing cone S is
an integral area minimizing current such that (1 )3S = S for every r > 0 (cf. [54, Theorem
19.3]). Furthermore, for any given R € I.,,(R™*™) we define F(R) := inf{M(Z) + M(W) :
Zel,,Weln1,Z4+0W =R}

Theorem 5.2 (Uniqueness of tangent cones for almost minimizers). Let T € I(IR™""2) be an
almost minimizer. Then there is a yo > 0, ] 2-dim. distinct planes 7t;, each pair of which intersect
only at 0, and ] integers ny such that, if we set S := ) ; ny [m], then

F((Txr—S)LBy) < Cypr?e, (5.2)
dist(spt(TL B+ (x)), spt(S)) < Cqy ' 7. (5.3)

Moreover, there are ¥ > 0 and | > 1 currents T) € 15(B#(x)) such that
(i) 0TV LBz(x) = 0 and each T is an almost minimizer;
(ii) TLBr(x) = X_; T and spt(T;) Nspt(Ti) = {x} for every i # j;
(iii) m;[m;] is the unique tangent cone to each T at x.

From the latter theorem, Proposition 2.3 and Proposition 2.5 we easily deduce Theorem
2.9

The rest of the chapter is dedicated to the proof of Theorem 5.2. This will be achieved in
three sections organized as follows. In the first section we recall an important property of
2-dimensional area minimizing cones due to White and give a simplified proof of it. The
second section contains a generalization of White’s epiperimetric inequality to the case of
almost minimizers and an almost monotonicity formula for almost minimizers. Finally, in
the third section we give the proof of Theorem 5.2.
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5.1 WHITE'S EPIPERIMETRIC INEQUALITY (WEI)

As already mentioned, the key ingredient in the proof of Theorem 5.2 is a suitable general-
ization of White’s epiperimetric inequality [66]. We record the main ingredient of White’s
argument in the following lemma. Since however the paper [66] does not state this lemma
explicitely, we provide a brief argument, referring to propositions and lemmas which are
instead explicitely stated in [66] (the only difference is in a technical point, namely the
estimate (5.4), for which we point out a shorter argument).

Lemma 5.3. Let S € I, (R™*2) be an area minimizing cone. There exists a constant €31 > 0 with
the following property. If R :== 0(SLB1) and Z € 1;(0B1) is a cycle with

(i) F(Z—R) < e31,
(i) M(Z)—M(R) < €371,
(iii) dist(spt(Z), spt(R)) < €31,
then there exists H € Io(B1) such that OH = Z and
[H[[(B1) —[|S[|(B1) < (T —e31)[[|0x Z[|(B1) —||S]|(B1)].

Proof. We start by recalling a well known result about the decomposition of 1-dimensional
integral cycles.

Lemma 5.4 ([35, Lemma 2.1]). Let R be an integral 1-cycle. Then, there is a decomposition into
simple closed curves Ry such that M(R) + > ; M(Ry), spt(Ry) C spt(R). The sum is either finite or
convergent.,

A consequence of this lemma, the fact that an area minimazing two dimensional cone
which has a simple closed curve as a boundary must be a disk, and easy comparison
arguments, we conclude

Lemma 5.5 (Characterization of 2-dimensional area minimizng cones (cf. [35])). Any 2-
dimensional area-minimizing cone S is the sum of (integer multiples of) finitely many oriented planes,
each pair of which intersects only at the origin.

Therefore the support of the cycle R := 9(SL_B1) of the statement of Lemma 5.3 consists of
a finite number (say N) of disjoint equatorial circles of 0B;. By condition (iii), we can thus
assume that Z splits into N cycles, each close (in the sense of (i), (ii) and (iii)) to an integer
multiple of an equatorial circle of 0B¢. Thus, without loss of generality, from now on we
assume that S is given by Q [,], where 7, is the (oriented) plane R? x {0} ¢ R**2 and Q
is a positive integer. Correspondingly, we can assume that

(iv) R = Q [yo] for some integer Q > 0, where v, is the oriented equatorial circle 1o N 9B.

STEP 1. REDUCTION TO A LIPSCHITZ WINDING CURVE. We next recall the notation B (x, 7t) for
the 2-dimensional disk x + B, (0) N7 and C,(x, n) for the cylinder B, (x, 7) 4 t, omitting
x when it is the origin and 7 when it is the plane my. Given any 1-dimensional cycle W
we consider the infinite 2-dimensional cone T with vertex 0 and spherical cross section
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W, namely limg_,(1o,r)#(0x W) and denote it by (0 W). The cylindrical excess of any
infinite 2-dimensional cone T in C;(7) is then given by

1

BT o= [T - aTi

whereas the cylindrical excess of Z is denoted by
E(Z) =minE((0x% Z)x, T) .
T

It is simple to see that under the assumptions (i), (ii) and (iii), any minimum plane T for
(0x Z)o in the expression above must be close to 7.

Let now P be the orthogonal projection onto 9B (which obviously is defined in R™*2 \
{0}). For each 7, such projection is invertible when we restrict its domain of definition to
0Cq () and its target to 0B; \ 7t+. We then let P! be its inverse. Note also that, under the
assumptions (i), (ii) and (iii), when 7 is close enough to 7y, spt(Z) C By \ t+. Therefore, for
any such T we have

(0% Z)oo . C1(7) = 0 (PT")4Z.

In particular such identity is valid for the m which minimizes E((0x Z), T).

If Z is as in the statement of the lemma, by Lemma 5.4, Z can be written as the sum
of (at most countably many) 1-dimensional cycles Z;, where each Z; is a simple closed
Lipschitz curve and ) M(Z;) = M(Z). Observe also that, if €37 is sufficiently small, then
(pﬂo)ﬁ(P;J )4Zi (Where p, is the orthogonal projection onto 7p) equals k; [yo] for some
nonnegative integer ki. We thus have } k; = Q and it follows by standard arguments that
each Z; fulfills the assumptions (i), (i) and (iii) of the Lemma with k; in place of Q and with
€32 > 0 in place of €31, where the constant €3, | 0 as €37 | 0. Thus, it suffices to prove the
main estimate for each Z; and sum it over i. Observe next that assumption (ii) in the Lemma
excludes the possibility that k; < 0 for some i. Moreover, the case k; = 0 corresponds to the
trivial situation in which the minimizing cone § is 0. In this case M(Z;) < €37 and we can
use the the isoperimetric inequality to find an H such that 0H = Z; and

IH|[(B1) < C(M(Z))? < Ce31M(Z) < Cez11]/0x Z||(B1) .

It suffices therefore to consider the case k; > 0.
Summarizing, in addition to (i), (ii), (iii) and (iv) we can also assume, w.l.0.g., the following:

(v) Z=mn;[[0,M(Z)]], wheren : [0, M(Z)] — 0B is Lipschitz and n(0) =n(M(Z));

(vi) fE((0% Z)so,T) = E(Z), then E((0x% Z)o, T) < €33 and (pr)ﬁ(P;‘ )4Z = Q [vo] (Where
€33(¢,Q) J Oas e371 | 0).

For any fixed & > 0, we can find a second curve ' : [0,2Qw;] — 9C; (1) with the following
properties (recall that 2w is the length of the unit circle in R?):

(a1) ¢’'(®) = (cosd,sind, f'(9)) € T x T+ for some Lipschitz function f' : [0,2Qw,] — T+
with /(0) = f/(2Qw3) and ||f'||s + Lip(f’) < §;
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(a2) If we set Z' = Cé [[0,2Qw>]], then M((P-)yZ—Z') < E(Z)/C(5);
(a3) E((0% Z')e0, T) < E((0% Z)oo, T) = E(Z).

d will be chosen (sufficiently small) later. Indeed assume this is not true, than we can
find a sequence of Lipschitz curves Z; = n; [[0, M(Z;)]] such that (pT)ﬁ(P;1 1Z = Q [vol
and E(Z;) — 0. Therefore we are in position to apply the following Proposition and get a
contradiction for €37 sufficiently small.

Proposition 5.6 ([66, Proposition 2.8]). Given a sequence of Lipschitz curves (Zi)i as above,
there exist Lipschitz functions fi: [0,2w,Q] — R™ such that ||fi||s + Lip(fi) — 0, and, if we set
Z! = (cos,sin, fy )y [[0,2Qw;]], then, E(Z]) < E(Z;) and M((P)3Z; — Z]) < E(Z;)/C(5).

Since from (a2) we conclude easily
M(((0% Z)oo — (0% Z')oo) L C2(T")) < E(Z)/C(5),
we also infer
M(O((0x Z—0x Z")LCy 5(T'))) <E(Z)/C(3).

After applying a rotation we can assume that t/ = 71y. We thus achieve, in addition to (i)-(vi),
the condition

(vil) E((0% Z")oo, o) = E(Z') and M(3((0x Z—0x Z")_Cy ,3)) < E(Z)/C(8).
Next, observe that if T/ minimizes E((0x Z'),,T’), then

It — ] < 2E((0% Z')oo, T) < 2E(Z) < 2631
so that we can apply the reparametrization Lemma 3.17 and deduce easily that

(viil) the cycle Z” = 09((0x Z')_C;,3) is of the form (4 [[0,2Qw>]] for some ((}) =

%(COS 9,sind, f(¥)), where || + Lip(f) < Cb (C being a geometric constant);

(ix) E((0x Z")o, m0) = E(Z") < E(Z) < E31.

Step 2. Cylindrical epiperimetric inequality and conclusion. Consider the Fourier ex-
pansion of f as

f(9) = xo + Z (ock cos <%8> + By sin (%8))
and let
P(f) :== g cos +B g sin .

We first claim the existence of a constant K (depending only upon Q) such that, provided %
is smaller than some geometric constant, then

KIF =P w2 = [[fllwrz - (5-4)

Indeed consider the 2-dimensional plane T which contains the image of the map ¥ —
(cosd,sin®d, P(f)(9)). It is then straightforward to check that



.1 WHITE'S EPIPERIMETRIC INEQUALITY (WEI
5

e Ci(t)Nspt((0x Z") ) C C2
e Ifx=1(9) € spt(Z”) and r > 0, then

IT(x) =m0l > (IDf( )+ 1£(9)])

ID(f =P+ I(f =P,

@) \

T(x) -1l < C

—

where C is just a geometric constant.

Using that Lip(f) <9, by the area formula we easily conclude that

E((OX Z//)OO/T[O Hﬂ‘w]Z
E((O% Z”)OO/ X CHf_P ||\2/v1,2-
Since C is a fixed geometric constant, (5.4) follows easily from

E((0x Z"), 1) =E(Z") < E((0x Z") o0, T) -

Next, following [66, Proposition 2.4] we consider the map ¢ 3]0, %
by

g(r,9) *0C0+ZfQ ((XkCOS<Q >+Bk5m<58>)

and let H' = g; [10, 3] x [0,2Quw,]]. It is clear that
oH' =2Z".

Let us compute M(H’). By the area formula we have

2wyQ
M(H) = / / \/1 +1gel2 +rTgel? +lgr AT 1ggl? dO T dr

szQ
/ / \/1+|grlz\/1+lr Tgol2dOrdr

_;;‘(O -lk\—‘ -l>\

k
Wz + wz Z 6 (loael® +1Bkl?)

where in the last equality we have used

- 2 2
||9T”%2(O,2w2Q) =" "gollt2(0.2w,0) wzQZ ( ) % (lol® + [Bxcl) -

In particular, we have proved that

M(H) — Fwr < 2 @) 5l 8.

% [0,2Qw;] — R™ given

2(,02Q szQ
// (1+1Igc[*)d0rdr, // (14| Tgel?)dOrdr

(5.9)
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2
Next notice that, if k # Q, then there exists e = £(Q) > 0 such that % < (1T—¢q) (1 + (%) )

In particular, combining this with (5.9), we deduce

M(H') — %wz < %wz (IP(OIyrz + (1 = eIt =PRIy, ) - (5.10)

On the other hand, again by the area formula and the fact that ||f|| 4+ Lip(f) < C, we have,
choosing e31 = C 52,

2w2Q 2wzQ
M(0x Z2") = / \/1 IR 42+ [FAF2d0 > / 1+ 2+ [£7]2 do

202Q T2 o2 4 | erd 2
8/ < 5 (115 + If17) — (|f| +If1") — Zl(lﬂ i ))
1

2w;2Q
8/ <1+2|f|2(1cz32) —If')?(1 cst)

>7
4‘“2+8

(1—¢e31)Quw; HfH\z/vl,z ’

where from the first to the second line we have used the inequality v1+x > 1+ % — %. In

particular, we get

Q

M(0x dH") — 7 L2 > Lwa(1—e3 )HfH\z/\ﬂz . (5.11)

| O

Finally, combining (5.10) and (5.11), we achieve

(1 — 831) |:M(O>>(< aH/) — 3w2] — M(H/) — %UJZ

> %wz {0 —e31)2[fllgy12 — (1= €@ [If = P(H) 312 — IP(F)|31.2 }
> %wz {(1 — €3] )ZHfH\Z/\/l,Z - ||f—P(f)H%/v1,z — [|P(f Hw1 » teqllf —P(f ||W12}
(5-4)
2 %wz{m—sg]) 14 e e } 12,1, > 0
for €37 > 0 sufficiently small. Therefore we can conclude that
o Q 1 1
M(H") — 792 < 1(1 —8e31)E(Z") < 1(1 —8e31)E(Z),

for some €31(Q, K) > 0.
Step 3. Conclusion. Using the isoperimetric inequality we find a 2-dimensional current K

such that 0K = 9((0x Z)L Cy,2) —Z" =03((0%x Z—0x Z")_C; ;) and

M(K) < CIM(3((0% Z)L C12)—2")2 < COJE(Z)2.

Thus, if we set H:=H’+K+0x ZLB; \ C;,2, we have 0H = Z and

M(H) < %wz + ;1(1 —8e31)E(Z) + C(8)E(Z)* + M((0x Z)L_By4 \NCi,2).
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Since E((0x Z) < &, it suffices to choose ¢ sufficiently small to achieve
Q 1
Next recall that

1

1 o
JE2) <G E(0% 2o mo) = g [T =moPefox 2]
4 8 Jc,

I N

Quw;
7

(M((0x Z)L. C1) — Qw2) = M((0x Z)L. C1/2) — =

where the first equality in the last line is due to pnoﬁ(O»« Z) =Q[B1(0,7p)]. We therefore
infer

M (0x Z)+£31Qw2—4£31M((0>><< Z)LC1/2 — Qw2
M(0x Z) + e31Qwz —4e31M((0x Z)LB;,,) — Qw2
M(O0x Z)+e31Qwz —e31M(0x Z) — Qw3

(M

= (T—€31)(M(0x Z) — Quw3).

5.2 (WEI) AND ALMOST MONOTONICITY FOR ALMOST MINIMIZERS

As already mentioned, the key ingredient in the proof of Theorem 5.2 is a suitable general-
ization of White’s epiperimetric inequality [66]. This inequality is a simple consequence of
Lemma 5.3 and a compactness argument.

Proposition 5.7. Let S € I, (R™*2) be an area minimizing cone. For every Cy2 > O there exists a
constant €34 > 0, depending only on the constants Co1 and o of Definition 5.1 and upon S, with
the following property. Assume that T € 15(R™"2) is an almost minimizer with O € spt(T) and set
To := (10,p)4T. If v is a positive number with

* 0 <2t < min{2~'dist(0,spt(dT)), 2e34},
o F((Tor —S)LB1) < 2e34, ||T||(B2r) < Cqa1?
e and 3(TLB,) € I; (R™+2),

then

IT1(B1) — [S]/(B1) < (1= e35) ([0 (T, BY)||(Br) — [S[[(By)) +er%.  (5.12)

¢ depends only on Co1, oo and ©(0,S) and €35 > 0 is any number smaller than some € > 0, which
also depends on Cy, o and ©(0,S). Moreover ¢ depends linearly on Coy. In particular, if T is as in
Definition 1.1, then &y = 1 and: € depends linearly on A := ||Ax ||« in case (a), it depends linearly
on Q = ||dw||« in case (b) and it quals CoR™ for some geometric constant Co in case (c) (in the
sense of Remark 2.4).

83



84

UNIQUENESS OF TANGENT CONES FOR 2-DIMENSIONAL ALMOST MINIMIZING CURRENTS

Proof. We argue by contradiction and assume there exist sequences of almost minimizers
(T¥)ken C I2(R?™™) and radii 1 | 0 with 0 < 21y < dist(0,spt(dT*)) such that R¥ :=
(T),, satisfies F((R* —S)LB,) < 1 and

RS(B1)— 15/1(B1) > (1) (J0x OREL By )| (By) — S[(B1) +kri. (5.9

It is important to notice that, in contradicting the statement of Proposition 5.7, the currents
T¥ satisfy (5.1) for some constants Co and &y which are fixed, i.e. independent of k. First of
all, without loss of generality we can assume

105 A(RLB)|(B1) —[|S[|(B1) > 0; (5.14)

indeed if |0 9(R*LB1)|(B1) — ||S||(B1) < 0 we could use the almost minimality and the
appropriate rescaling to conclude

IR¥[|(B1) — [[S[|(B1) < [0 d(R¥LB1)||(B1) — |S|[(B1) + Cqre

1
< (1=) (10> d(RELB)II(B1) ~ [IS]|(B1) ) + Cy i,

contradicting (5.13) for k large enough.

Observe that we have a uniform bound for ||R¥||(B2). Thus, by the usual slicing theorem,
passing to a subsequence there is a radius p E]%,Z[ such M(9((R* —S)L. B,)) is uniformly
bounded. On the other hand R¥ —§ is converging to 0 in the sense of currents and hence, by
[54, Theorem 31.2], F((R* —S) L Bp) — 0. This means that there are integral currents Hk, Gk
with M(H*) 4+ M(G*) — 0 such that

(R*—S)L B, = oH* + G*.

Taking the boundary of the latter identity we conclude that 9G* = 9((R* —S)L_B,,). Now,
rescaling the almost minimality property of T*, we conclude that

IR¥[I(Bp) < [ISII(Bp) +M(Gi) + Cir®.
On the other hand, since (M(G*) + 1) | 0, we infer

limsup [|R[|(By) < [|S]|(By) -

k—o0

Since however R¥ — S in B,, we also have

SII(B,) < liminf||R¥[|(B,).
—00

We thus conclude that ||[R¥||->||S|| on B, in the sense of measures and, since ||S||(dB7) = 0
by the conical property of S, we infer that ||R¥||(B1) — ||S||(B1). Thus (5.13) and (5.14) imply

lim M(9(R*LB;)) = M(3(SLB3)). (5.15)

k—o00
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The almost monotonicity formula for T (in the rescaled version for R*) implies through

standard arguments that spt(R¥) converges to spt(S) in the Hausdorff sense: one can follow,

for instance, the proof of [54, Lemma 17.11]. Finally, again by [54, Theorem 31.2], we conclude
that F((R* —S)L.By) — 0 and hence, arguing as above, we infer the existence of integer
rectifiable currents G* such that 3G* = 3((R* — S)L_B1) and M(G¥) — 0. In turn this implies
F(d(R*L.B1) —3(SLBy)) — 0. So all the assumptions of Lemma 5.3 are satisfied, and there
exist integral currents H* such that 9H* = d3(R*[_B) and

[H¥[(B1) = [ISII(B1) < (1 —e31) ([0 3(R¥L B1) [ (B1) — [S[|(B1)). (516)
By the almost minimality of T* and the usual rescaling, we conclude

IR¥(B1) < [HEN(B1) + Cori
Thus,

IRII(B1) = [IS[|(B1) < [H¥[|(B1) — [IS][(B1) + Cory®

(5.16)
< (1—e31) (/0% d(R*LB1)[[(B1) — [IS[|(B1)) + Cory®.

However, when k is so large that % < €31 and k > Cy, the latter inequality contradicts (5.13)
(recall (5.14)). O

It is known that the almost minimizing condition of Definition 5.1 is alone sufficient to
derive a monotonicity formula. However, we have been unable to find a reference and we
therefore provide the proof below. Note also that in the geometric cases (a), (b) and (c), a
more precise form of the monotonicity formula could be derived directly appealing to the
fact that the corresponding induced varifolds have bounded mean curvature.

Proposition 5.8 (Almost Monotonicity). Let T € I,(R™*™) be an almost minimizer and
x € spt(T) \ spt(0T). There are constants Co2,T, g > 0 such that

L2
Lo T < coo (T2 B o) oy
By (x)\

B.(x) lz—Xx[M+2 Wy T Wy 8™

forall 0 <'s <1 <7 (in(5.17) (z—x)* denotes the projection of the vector z—x on the orthogonal

complement of the approximate tangent to T at x). In particular the function r — ITIB: (x)) o + Cr~
Wi

is nondecreasing.

Proof. Assume without loss of generality x = 0. For a.e. r the current 9(TL B,) is integral (cf.

[54, Section 28]) and we have, by (5.1) with W =0x 9(TL B;),
ITH(BY) < [WI(Br) 4 Cor™ * = —M(3(TLB,)) + Cor™ . (5.18)
Set f(r) := ||T||(B+) and observe that f is an nondecreasing function and so a function of

bounded Varlatlon. As such it has left and right limits at each point and in fact f(r) = f(r™).
In particular we can decompose its distributional derivative Df, which is a nonnegative
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measure, as Df = f'.Z 4 pg, where .Z denotes the Lebesgue one-dimensional measure and
iLs is the singular part of Df. We multiply (5.18) by mr—™~! and add % + &

B ey Dmgarris, < 2F - mild)

= _ =\ oo—1
rm rm rm rm Tm+1 + CO]T :

Integrating on the interval [s, r[ (Where 19 > r > s) we reach

[ oo+ [ () - MEITLB) dp < T - ) core
[s,r[ P s P T s

—_——————
Is Ia

To conclude we only need to prove that I := I* + I¢ bounds a multiple of the left hand side
of (5.17). Denote by x/l the projection of x on the approximate tangent space to T at x. Recall
first (cf. [54, eq. (28.6)]) that

To:=(T,|-1,p) =0(TLB,)—(0T)LB, =0(TLB,) for a.e. p.

Next introduce the Borel set E := {|x/l| > 0} and its complementary E€ and recall that, by the
coarea formula (cf. [54, Lemma 28.1 & Lemma 28.5]), for any Borel map g we have

Iy'l T
/BT\BS 9(y) yl o ATy /S /Q(X)dHTpH(X) dp. (5.19)

Let R be the countable rectifiable set such that ||T|| = ©(T,-)H™L R. It then follows from the
slicing theory that ||T,|| = ©(T,)H™ 'L (RN3B,) for a.e. p and thus inserting g = 1¢¢ in
(5.19) above we derive

H™ T (ECNOB,) < |TL|l(ES) =0  forae. p. (5.20)

Thus, since |x/l| > 0 for every x € (B; \ Bs) NE, we conclude

x| — x| x|2 — [xlI|?
/ / T ) dp / /E R ATl

X2 1] / X2
> d||T dp = ———d||T . .
\/sv zpm+2A |X”| H pH(X) p (Br\B 2|X|m+2 ” ||(X) (5 21)

J_|:

|x| and thus

/ e = | aliix 622)
(B.\BynEe 2X[MF2 (B,\B)NE® 2|X\m >

Next, denote by S the set of radii r such that H™ T (EC N 0B;) > 0. We then must have

Now observe that on E€ we have |x

(520)

ITI(ESN (Bp\Be)) < I T]] (USGSH[T,p[aBs) <Df(Snit,pl) < wps(lt, el

for every 0 < T < p (in fact the inequalities above are all identities, but this is not really
needed). Thus for every N € IN \ 0 we can estimate

1
Lo e I \Z TS N (BB )<Y g [ aw

i=1 —1
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where s; := s+ ﬁ(r —s). In particular letting N 1 co we conclude

1 1
AT < [ 5 oduale) = 1. (52
/(BT\BS)QEC 2fx|m all s, 20™ 523)
From (5.21), (5.22) and (5.23) we conclude that I¢ + I® bounds the right hand side of
(5.17). O

To conclude this section we prove a simple consequence of the Area Formula: that is how
to compute the mass of the pushforward through the radial map of the portion of the current
in a shell.

Lemma 5.9. Let R € I.,,(R™) and let x € spt(T) \ spt(0T). Moreover let F(z) := o Z, for every
z€ R"and 0 < r <s. Then

Xt

|X|m+1

M(Fy(TL(B¢ \ By))) < /B \ a7

Proof. Let T(x) := Ti(x) A+ - - ATm (x) and notice that by the Area Formula for a push-forward
(cf. [54, Remark 27.2]), we have

M (F4(TL(B \ Bs))) :/B . IDF(x) Ty (x) A+ - ADF(x) T (x) ][ T]| (%)

:/ B \/det((DF(x) T;(0) - (DF) T dTI(x),  (524)

that is we need to compute det((DF(x) Tj(x)) - (DF(x) Ty (x))). To this aim set F;(x) := % and
notice that, if x # 0, we have

oFi . by xix
ox, T R T B
so that

D) Tyx) = o1 (60— (5% 7 )

Ix|
It follows from this that

1

(DF(x) Ty (%)) - (DF(x) Ty (x)) = (T)-(x)'mx) o x)m-x)>

[x[2
1 1— 1 (T -x) (Ty - x)
- x? [x2 h ’
where in the last line we used the orthonormality of (T;);. Set t := x | =z and Ay = (T; -x) (Tq -

x), then, by the usual formula for det(I+ tA) (cf. [32, 1.4.5]), we deduce

m k
det(1+1tA) = Z <—|X]|2> Z det((x - Ta,(x)) (x - Tx; (x)))

k=0 T<A < <Ar<m)

:1_R1|ZZ(X.T1 Z< ||2> S det((x Ta (X)) (x- T, (%))
1=1

1<)\] <-~<?\k<m
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Since the column of the matrix with entries (x - Ty, (x)) (x - Ty;(x)) are linearly dependent, we
conclude that

1 1 m+1 5 |Xl|2
det((DF(x) Tj(x)) - (DF(x) Ti(x))) = X 1— PE Y x-Tx)*) = 2T (5.25)
1=1

Combining (5.24) and (5.25) we reach the conclusion. O

5.3 CONCLUSION OF THE PROOF

Without loss of generality from now on we assume that x = 0 and that dist(0, spt(dT)) > 2.
Moreover we set T, := (to,+)4T.

STEP 1. BLOW-UP. By the almost monotonicity, the family {T:}o<r<1 C I, (R™2) enjoys
a uniform bound for ||T;||(K) whenever K ¢ R™*? is a compact set. Moreover, for any
U cc R™2 open, 3T, U = 0, provided r is large enough. It follows that we can apply
the compactness theorem of integral currents, and for every sequence 1y | 0 we can extract
a subsequence T,, converging to an integral current S with 9S = 0. Observe also that we
can argue as in the proof of Proposition 5.7 to conclude that for every Ny € IN there is a
subsequence, not relabeled, and a ¥ €]Ng, Ny + 1[ with the following properties

o | Tol[(Br) — [ISII(Bs);
e There are currents Hy € I,(R™*2) with M(H*) | 0 and 0H¥ = o((Tp, —S)LBx).

We then easily conclude that S is area minimizing in Br and that ||T,, ||(V) — ||S]|(V) for
any open set V CC By with ||S]|(0V) = 0. A standard argument shows that these properties
remain then true for every ball and for the entire sequence {T,, }. As a consequence of the fact
that ©(0, T) exists, we then conclude that

IS[1(B+(0)) = ©(T, 0)r* := Qur?

for all radii but an (at most) countable family (recall that w, denotes the area of the unit
disk in IR?). It is then a standard fact, using the monotonicity formula for area-minimizing
currents, that S is a cone (see for instance [54]). Finally, it is well known that 2-dimensional
area minimizing cones are all sum of planes intersecting only at the origin (see for instance
[35]). So we conclude from the standard theory of currents (see for instance the proof of
Proposition 5.7) that F((T,, —S)LBy) — 0 for every r > 0.

Let €34 be the constant of Proposition 5.7. We then conclude the existence of a radius 1o > 0
such that, for every r < 1¢ there is an an area minimizing cone S such that F((T,r —S)LBj) <
2 e34. We can then apply (5.12) for every 0 < 1 < 19 such that o(TL B;) € I1(0B,) (which
holds for a.e. ). After scaling back and multiplying by 12, we get

M(TLB,)—Q w3 < (1—e35) (M(O»« O(TLB:))—Quw:> r2> 42t forae.r<Tg.
(5.26)

Set f(r) :== M(TLB,) — Q w;, r%. Since r — M(TL B,) is monotone, the function f is differ-
entiable a.e. and its distributional derivative is a measure. Its absolutely continuous part
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coincides a.e. with the classical differential and its singular part is nonnegative. Note also
that we can assume 2+ g > € + é =: ¢ + a for some ¢ > 0.
Therefore, by the well-known expansion for the mass of a cone, (5.26) reads

d

—acrt ' < a(r*af(r)) , (5.27)

Integrating (5.27) we get —¢ C (ri — sa) <17 4(r) —s7%f(s) forall 0 < s < 1 < 1p. Setting

e(r) :=
S a
e(s) < (;) e(r) +Crt  V0<s<rt<To (5.28)
StEP 2. Consider now the map F(x) := | and radii 0 < <s <t <r1p. By Lemma 5.9,
X
MUF(TLBABL) = [ bl gy
B.\B, X|

1 1

|XL|2 )2 </ 1 )
< d||T . d||T
o, 5 9m1) ([ T

::I] IZ

I; and I can be easily estimated using the almost monotonicity formula

(5-17) (5.28) c
I§ < e(t)—e(s)+Cy t"‘° <e(t)+2Ct% < Ct2, (5.29)
T|[(By) G172 ('t T|I(
I3 < H’th < (3 ”HTo +Cy <C, (5-30)

where we took into account that, by (5.17), e(s) > —Cys* for every s > 0 and that C >0 is a
constant depending on rp. In particular we conclude that

M(F;(TL(B(\ By))) < Ct v0<§ s<t<mo,

and, by iteration on diadic intervals,
M(Fy(TL(B,;\By))) <Cr?  V0<s<r<to. (5.31)

Since OF4(TL(B+ \ Bs)) = 0(T:LB7) —9(TsLB1) for a.e. 0 < s < 7, from the definition of F
we get:

(5-31) c
F(O(T:LBy)—0(TsLBy)) < Cra. (5.32)

This implies that the currents (T, L B;) converges to a unique current Z. On the other
hand, by the almost monotonicity formula it follows easily that T, L. B converge to the cone
0x Z. Since we already know that an appropriate sequence converges to S = ) ; ni[m;], we
conclude that T, converges to S.
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STEP 3. PROOF OF (5.2) AND (5.3). In order to prove (5.2), it is enough to find integral
currents V and W such that T, — Ts = 0H + W and M(H) + M(W) < Cr2. To this aim, fix
a small parameter a > 0. Let [p, q] denote the current in I;(R) induced by the oriented
segment {t : p < t < q}. Similarly [p] € Ip(IR) is the Dirac mass at the point p. Consider the
currents V, € I3(R x R™*2) defined by

Vg = ([[0,1]] x TL(BT\BG)) L{(t,x) ERxR™ : 7 x| <t< s*1|x|}.

Next, we consider the map h: R x (R™*2\{0}) > (t,x) — % € R™*2 and the currents
Hq = hyVqe. If dy,dz 1 R X R™*2 — R denote the functions d;(t,x) := t—s~'|x| and
ds(t,x) :=t—1""x|, then for a.e. a > 0 we have
0Vqa = [1] x TL(B+ [[—— x 0(TLBg)
+ ([0, 1] x TL r\Ba),dp 0) — ([0,1] x TL(B+\ Bg),d2,0).

Since 0 commutes with the push-forward, we also get

T’s

OHq = F4(TL(B \Bs) —hy ([2,2] x3(TLBa)) =T+ L(B1\Ba) + T, (B1\Bs), (5.33)

Za

where we have used the fact that h(t,x) = s 'x and h(t,x) = x respectively in the sets
{(t,x) € Rx (R™2\{0})) : t = s~ 'x|} and {(t,x) € R x (R™2\{0})) : t = v~ "]x|}. It is
simple to see that there exists H such that H, -+ —H as a | 0. Thus (5.33) gives

—0H = F4(TL(B+\Bs)) =T, LBy + T LBy,

because M(Zy) < als™ ' —r 1IM(3(T4LB1)) < Cals ' —r "M (3(TyLB;)) — 0. To con-
clude (5.2) we only need to estimate the mass of H. To this extent, note that hﬁ(% AT) =
dh(at)/\hﬁ( T) and, since dh( ) =

[x[”
1 —
Hiw) = [ (AT) wneoaRI at

- //\B B A FT), i) [T () dt

_ / / (EF)5T, @i g I 20T (%) it
0 B.+\Bst
1

= [ (T B\ B (w0

1 1
M(H) < /OM((tF)u(TL(Brt\Bst))dtZ/o t*M(F4(TL(Brt \ Bt))) dt

:
(521) C/ re/242+€/2 gy < Cre/2
0

(5.3) follows then from the lower bound on the density of T which is a consequence of the
almost monotonicity formula, see for instance [54, Lemma 17.11].
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STEP 4. DECOMPOSITION. We first introduce the following notation: we call T irreducible in
B (x) if it is not possible to find two (integral) currents with TL B, (x) = T'+T?and spt(T1 n
spt(T2) = {0} (cf. to the notion of indecomposabality as in [32, 4.2.25]: T is indecomposable if it
is impossible to write it as T! + T2 with 0Ty L B+(x) = 0T2L B+ (x) = 0 and M(T;) + M(T,) =
[ T||(B+(x))). If T is reducible, then clearly O(||T||,x) = ©(||T"||,x) + O(||T?||,x). Since each
Tt would be almost minimizing, ©(||T!||,x) € IN \ {0} and we can only decompose T finitely
many times. Next suppose by contradiction that T is irreducible in x but its tangent cone
Tx,0 is not a plane. Then, since Ty o is area minimizing, by [35], there exists ] > 2 such
that Ty o = Z{:1 Qi [Vi], where V; € R™*2 are 2-dimensional linear subspaces such that
ViNV;j = {0} for every i # j and Q; € IN satisfy 2{21 Qi = Q. Then consider the currents

TH=TL{y e R™™ : dist(y —x, V) < Cr'tY} fori=1,2,...,]7.

By (5.3) this is a decomposition of T in two non-zero currents whose supports intersect each
other only in {0}, which is a contradiction.
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CENTER MANIFOLD

In this chapter we construct the center manifold.

6.1 THE CONSTRUCTION ALGORITHM
6.1.1  Choice of some parameters and smallness of some other constants

As in [20] the construction of the center manifold involves several parameters. We start
by choosing three of them which will appear as exponents of (two) lenghtscales in several
estimates.

Assumptions 6. Let T be as in Assumptions 3 and 4 and in particular recall the exponents &, b, a
and 'y defined therein. We choose the positive exponents yo, 32 and 81 (in the given order) so that

Yo < min{y, & a—b,b— %,log2 g} (6.1)
B2 < minf{eo, X2, & —1,%, B0 Boyo) b > 14 (1 4 3,) (6.2)
Bo—281 =82 Bo(2—-281) 281 > 26, (6.3)

(where B is the constant of Theorem 2.8 and €¢ the exponent in the regularity of *)

Having fixed vo, 32 and 87 we introduce five further parameters: Mg, No, Ce, Cy, and e47.
We will impose several inequalities upon them, but following a very precise hierarchy, which
ensures that all the conditions required in the remaining statements can be met. We will
use the term “geometric” when such conditions depend only upon 1,1, Q, Q,vo, 2 and
81, whereas we keep track of their dependence on My, No, C.e and Cj, using the notation
C =C(My), C(Mp, Np) and so on. g47 is always the last parameter to be chosen: it will be
small depending upon all the other constants, but constants will never depend upon it.

Assumptions 7 (Hierarchy of the parameters). In all the statements of the paper

* My > 4 is larger than a geometric constant and N is a natural number larger than C(My);
one such condition is recurrent and we state it here:

V2M210No < 1; (6.4)

* Ce is larger than C(My, No);
® Cy, is larger than C(Mg, Ny, Ce);

® ¢41 > 0is smaller than ¢(Mg, Ng, Ce, Cr) > 0.
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6.1.2  Whitney decomposition of B¢ ,

From now on we will use B for B ,, since the positive natural number Q is fixed for the
rest of the paper. In this section we decompose B \ {0} in a suitable way. More precisely,
a closed subset L of B will be called a dyadic square if it is a connected component of
B N (H x C) for some euclidean dyadic square H = [ay, a; 4+ 2{] X [az, a; +2(] C R2 =C
with

e (=2J,jeN,j>2,and a € 2' 772
e Hc [-1,1]2 and 0 ¢ H.

Observe that L is truly a square, both from the topological and the metric point of view. 2{ is
the sidelength of both H and L. Note that 8 N (H x C) consists then of Q distinct squares
Li,...,Lg- zr == a+ (L ¢) is the center of the square H. Each L lying over H will then contain
a point (zy, wr ), which is the center of L. Depending upon the context we will then use zp
rather than zy.

The family of all dyadic squares of B defined above will be denoted by ¢". We next
consider, for j € IN, the dyadic closed annuli

Aj =80 (([-27,27912\] 271,277 1% x C).

Each dyadic square L of B is then contained in exactly one annulus A; and we define
d(L) := 2771, Moreover (L) = 277K for some k > 2. We then denote by €% the family of
those dyadic squares L such that L C A; and ¢(L) = 277k Observe that, for eachj > 1,k > 2,
%%/ is a covering of A; and that two elements of ¢’*J can only intersect at their boundaries.
Moreover, any element of €™/ can intersect at most 8 other elements of ¢’*J. Finally, we
set €% := Uj>2 @ k). Observe now that ¢’ covers a punctured neighborhood of 0 and that if
L € €%, then

¢ [ intesects at most 9 other elements | € ¥ k.

e IfLNJ # 0, then £(])/2 < ¢(L) < 2¢(L) and LN 7] is either a vertex or a side of the
smallest among the two.

More in general if the intersection of two distinct elements L and ] in 4 has nonempty
interior, then one is contained in the other: if L C ] we then say that L is a descendant of |
and ] an ancestor of L. If in addition £(L) = £(]J)/2, then we say that L is a son of ] and ] is
the father of L. When L and ] intersect only at their boundaries, we then say that L and ] are
adjacent.

Next, for each dyadic square L we set 1 = ﬁMoﬁ(L). Note that, by our choice of No, we
have that:

if L € €% and k > Ny, then Cear, (z1) C Cri5\ Cy2j. (6.5)

In particular Vy,q N Cear, (z1) consists of Q connected components and we can select the
one containing (zr,u(zr, wr)), which we will denote by Vi. We will then denote by Tp
the current TL V1. According to Lemma 2.15, V1 N{z1 } x R™ contains at least one point of
spt(T): we select any such point and denote it by pr = (z,yr). Correspondingly we will
denote by By the ball Bgsr, (p1)-
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Definition 6.1. The height of a current S in a set E with respect to a plane 7t is given by

h(S,E, ) = sup{lp#(p —q)l:p,q €spt(S)NE}. (6.6)

If E = Cy(p, ) we will then set h(S, C;(p,n)) := h(S, Cy(p,n), ). If E = By (p), T is as in
Assumption 1 and p € X (in the cases (a) and (c) of Definition 1.1), then h(T, B, (p)) :=
h(T,B.(p), ) where 7t gives the minimal height among all 7= for which E(T,B.(p), ) =
E(T, B:(p)) (and such that 7 C T, Z in case (a) and (c) of Definition 1.1). Moreover, for such
7t we say that it optimizes the excess and the height in B, (p).

We are now ready to define the dyadic decomposition of B \ 0.

Definition 6.2 (Refining procedure). We build inductively the families of squares .7, #" =
We U Wi U #s and their subfamilies .7% = . N ¥k, %) = . N €% and so on. First of all,
we set .% = #'* = (J if k < Ny. For k > Ny we use a double induction. Having defined
X, forall kK’ < kand 7%, # " for all j’ < j, we pick all squares L of € which
do not have any ancestor in %" and we proceed as follows.

(EX) We assign L to W if
E(TL, Br) > Cemod(L)?Yom 2200 ¢(L)2 720, (6:7)
(HT) We assign L to 7/}5 7 if we have not assigned it to %, and
R(TL, Br) > Crumyd(L) 2 Bag()+62; (6.8)
(NN) We assign L to #i if we have not assigned it to #. U #4 and it intersects a square |
already assigned to # with {(]) = 2¢(L).

(S) We assign L to .#*/J if none of the above occurs.

We finally set
M= (-1,1?xR)nB\ [JL={0u [ UL 6.9)

Lew k=2Np Lesk

Proposition 6.3 (Whitney decomposition). Let T, yo, B2 and & be as in the Assumptions 3, 4
and 6. If My > C, Ng > C(My), Ce, Cr, = C(Mo, No) (for suitably large constants) and €47 is
sufficiently small then:

(i) L) <27 NoHl |z |VL e L UW;
(i) W* =0 forall k < No+6;
(iii) T is a closed set and sep(T',L) :=inf{lx —x/| :x e T, x’ € L} > 2L(L) VL € #'.
Moreover, the following estimates hold with C = C(My, Ng, Ce, Ch):

E(Tj,By) < Cemod(])?Ve2+201¢())> 2 vje.7, (6.10)
h(Ty,By) < Comdd(NF P2e()' 82 vje ., (6.11)
E(Ti, Br) < Cmod(H)2Yo2+281g(H)2 2% vHe ¥, (6.12)

1
(T, Br) < Cmid(H)? ~P2g(H)! 62 YHe# . (6.13)
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6.1.3 Approximating functions and construction algorithm

We will see below that in (a suitable portion of) each By the current Ty can be approximated
efficiently with a graph of a Lipschitz multiple-valued map. The average of the sheets of this
approximating map will then be used as a local model for the center manifold.

Definition 6.4 (m-approximations). Let L € ./ U% and 7 be a 2-dimensional plane. If
Tr L C32+, (p1, ) fulfills the assumptions of Theorem 2.8 in the cylinder C3,., (pr,7), then
the resulting map f : Bgy, (pr, ) — Aq(nh) given by Theorem 2.8 is called a m-approximation

OfT[_ in C8T]_ (erTf)-

As in [20], we wish to find a suitable smoothing of the average of the m-approximation
n o f. However the smoothing procedure is more complicated in the case (b) of Definition
1.1: rather than smoothing by convolution, we need to solve a suitable elliptic system of
partial differential equations. This approach can in fact be used in cases (a) and (c) as well.
In several instances regarding case (a) and (c) we will have to manipulate maps defined
on some affine space q + 7 and taking value on ", where q € £ and  C TqZ. In such
cases it is convenient to introduce the following conventions: the maps will be regarded as
maps defined on 7 (requiring a simple translation by q), the space 7 will be decomposed
into 5 := - N T4 L and its orthogonal complement TqZ+ and we will regard ¥4 as a map
defined on 7t x 5 and taking values in TqX~. Similarly, elements of " will be decomposed
as (&,m) € » x TqZL.

Lemma 6.5. Let the assumptions of Proposition 6.3 hold and assume Co > C* and Cy, > C*Ce
for a suitably large C*(Mo, No). For each L € W U . we choose a plane i which optimizes the
excess and the height in By. For any choice of the other parameters, if €41 is sufficiently small, then
To L C32y (pr, 1) satisfies the assumptions of Theorem 2.8 forany L € W U ..

Definition 6.6 (Smoothing). Let L and 71 be as in Lemma 6.5 and denote by fi the corre-
sponding 7ty -approximation. In case of Definition 1.1 (a)&(c) we let f(x) :== }_; [{prL z(fi)}]
be the projection of fi on the tangent T, Z, whereas in the other case (Definition 1.1(b)) we
set f = f. We let hi be a solution (provided it exists) of

LAhL =L
(6.14)
hL‘aBsrL(PLﬂTL) =mnofL,

where .Z] is a suitable second order linear elliptic operator with constant coefficients and
Z1 a suitable affine map: the precise expressions for .#1 and .#; depend on a careful Taylor
expansion of the first variations formulae and are given in Proposition 6.16. We then set
hi (x) := (he(x), ¥p, (x, hi (x)) in case (a) and (c) and hy (x) = hy (x) in case (b). The map hp
is the tilted interpolating function relative to L.

In what follows we will deal with graphs of multivalued functions f in several system of
coordinates. These objects can be naturally seen as currents G (see Section 3.2 of Part ii)
and in this respect we will use extensively the notation and results of Section 3.2 (therefore
Gr(f) will denote the “set-theoretic” graph).
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Lemma 6.7. Let the assumptions of Proposition 6.3 hold and assume Co > C* and Cy, > C*Ce
(where C* is the constant of Lemma 6.5). For any choice of the other parameters, if €41 is sufficiently
small the following holds. For any L € # U.¥, there is a unique solution hy of (6.14) and there
is a smooth g : B4y, (z1,m0) — nOL such that G4, = Gy, L C4y, (pr, 70), where hy is the tilted
interpolating function of Definition 6.6. Using the charts introduced in Definition 2.10, the map gp
will be considered as defined on the ball B4y, (21, wr) C B.

The center manifold is defined by gluing together the maps g; .

Definition 6.8 (Interpolating functions). The map g; in Lemma 6.5 will be called the L-
interpolating function. Fix next a ® € C(’@o([—%, }—Z]m, [0,1]) which is nonnegative and is
identically 1 on [—1,1]™. For each j let ) := . U U{:NO #'' and for L € 22 define

I ((z,w)) = 8(%). Set

¢ = M on{(z,w) € B:ze[-1,112\ {0} (6.15)

ZLG%’ L
and extend the map to 0 defining ¢;(0) = 0. In case (b) of Definition 1.1 we set @; := ¢;. In
cases (a) and (c) we let @;(z,w) be the first i components of @;(z, w) and define ¢;(z, w) =
(@j(z,w), ¥(z, @j(z,w))). @; will be called the glued interpolation at step j.

We now come to the first main theorem, which yields the surface which we call “branched
center manifold” (again notice that for Q = 1 there is certainly no branching, since the
surface is a classical C'"* graph). In the statement we will need to “enlarge” slightly dyadic
squares: given L € ¢ let H be dyadic square of R? so that L is a connected component of
BN (HxC).Given £ < |z | = |zn|, we let H' be the closed euclidean square of R? which has
the same center as H and sides of length 2¢(L), parallel to the coordinate axes. The square L’
concentric to L and with sidelength 2¢(L) = 2{ is that connected component of B N (H’ x C)
which contains L.

Theorem 6.9. Under the same assumptions of Lemma 6.5, the following holds provided €41 is
sufficiently small.

(i) For k:=f2/4and C = C(My, No, Ce, Cr) we have (for all j)

1
i (z,w)| < Cmdlz|'+ 7 for all (z,w) (6.16)
1
IDlo;j(z,w)l < Cmlz' Yot forl=1,...,3and (z,w) £ 0 (6.17)
1 .
[D3@jla,« < Cm2%. (6.18)

(ii) The sequence @j stabilizes on every square L € % : more precisely, if L € #'* and H is the
square concentric to L with {(H) = %2(1_), then @y = @; on H for every j, k > i+ 2. Moreover
there is an admissible smooth branching ¢ : B N ([—-1,1]% x C) — R™ such that P; — @
uniformly on B N ([—1,1]12 x C) and in C3(A;) for every j > 0.

(iii) For some constant C = C(Mo, No, Ce, Cp) and for a’ := b +vyo > b we have

1 /
u(z, w) — @(z,w)| < Cmglz[* . (6.19)
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Definition 6.10 (Center manifold, Whitney regions). The manifold M := Gr(¢), where ¢
is as in Theorem 6.9, is called a branched center manifold for T relative to G,,. It is convenient
to introduce the map ® : BN ([-1,1]? x C) — R?*™ given by ®(z,w) = (z, p(z,w)). If we
neglect the origin, @ is then a classical (C3) parametrization of M. @ (T") will be called the
contact set. Moreover, to each L € % we associate a Whitney region £ on M as follows:

(WR) £ :=®(HnN([-1,1]? x C)), where H is the square concentric to L with ¢(H) = }—E(L).

6.2 TECHNICAL PRELIMINARIES

In this section we prove the two technical Lemmas 2.15 and 2.16.

Proof of Lemma 2.15. Consider xo € 7o with 2p = [xl, a smooth C? function ¢ : Bo(xo) = R™
and the open set V;, := {(x,y) : x € B, /2(x0), [y — ¢ (x)| < p}. Recall that there is a geometric
constant C such that, if p < C/ HD2(1)||Bp (xo), then for each p € V, there is a unique
nearest point P(p) € Gr(¢) (which defines a C! map P : V, = Gr(¢)). In particular, if
HDZd)HBp(XO) < Cp®~ 1, the existence of such point is guaranteed under the assumption that
p < cp'~* (where c is a, possibly small but positive, constant). Consider now an admissible
smooth branching u: B4 — R™. If Q =1, the above discussion shows easily the existence
of a well defined C' map P: VN Car — Gr(u), provided r is sufficiently small. If Q > 1,
the same conclusion holds under the assumption that u is b-separated and a > b > 1.
Indeed consider p = (z,y) € Vy,q and (z,w;) € B such that [y —u(z, wi)| < cslz[®. The
assumptions of being well-separated implies easily that |[p —u((, w)| > clz|® whenever
z & By, /2(z,wi) and thus we can argue locally on the sheet Gr(uIB‘Z‘/Z(lei) ).

Next, up to rescaling we can assume that P is well-defined on V,, o N C,. The discussion
before Lemma 2.15 applies now verbatim and we conclude the first sentence of the Lemma.

To reach the other two conclusions of the Lemma we argue by contradiction: if they were
wrong, then we would find a sequence of points {xi} C B2(0) converging to 0 for which one
of the following two conditions hold:

e either {xx} x R™ contains a point pyx € spt(T) with O(py, T) > Q + %;
* or one connected component Q of ({xx} x R™) NV, 4 does not intersect spt(T).

Set 2r = x| and consider the connected component Vi of V,, 4 N Cy, (xi) which contains
Pk (in the first case) or Qy (in the second). Let Sy := Tx L Vi and let qx = (xk, u(xx, wi))
be such that qy € Vi. Finally set Zy := (Sx)q,,r,- Observe that spt(Zy) is contained in a
neighborhood of height Cr2 ™" of 7ty and we therefore conclude that Z converges to a current
Z which is an integer multiple of [B;(0)]. On the other hand, since Py(Sx)L C,, ,2(xx) =
QG L C;, /2(xx) for k large enough, we conclude that Z = Q [B1(0)]. Now, either spt(Z;) N
({0} x R™) contains a point qj of multiplicity Q + % or it is empty. Since however (p,)sZx =
Qx [B1(0)] — (pry)sZ (by the constancy theorem), for k large enough we would have
(Pro)pZk = Q[B1(0)], contradic ting the emptyness of spt(Zy) N ({0} x R™) = @) because
Q > 1. As for the other alternative, we must have, by the almost minimality of Zy (see
Proposition 5.8)

limsup || Z[[(B1,2—5,1(qK)) < ]}gr;o 1Zx||(By /2(0)) = R, .

k—o0
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Since g — 0, the almost monotonicity formula (see Proposition 5.8) would imply ©(qy, Zx) <
Q+o(1). dJ

Proof of Lemma 2.16. Since QQ 0] is tangent to T at 0, we obviously must have ToZ D 7o
and thus ToZ = R?*™ x {0} can be achieved suitably rotating the coordinates. To achieve the
other two conclusions we scale X and intersect it with C4(0, ToX) to reach that XN C4(0, ToX)
is the graph of some ¥ with very small C3¢° norm. We can then extend ¥ outside B4 (0, ToZ)
without increasing the C3¢° norm by more than a factor: this gives (i) and (ii) and also
shows that ¢ can be assumed smaller than €47 in case (a) and (c) of Definition 1.1. For the
details we refer the reader to the proof of [20, Lemma 1.5]. The rest of the Lemma is a simple
scaling argument. O

6.2.1  Proof of Proposition 6.3

In this section we prove several estimates on the excess, height and tilting of planes 71 in
the cubes L € %' U .. Proposition 6.3 will then be a simple corollary of these more general
statements.

Proposition 6.11 (Tilting of optimal planes). Let T be as in Assumptions 3 and 4 and assume the
various parameters satisfy Assumption 6. If Co, C, = C(Mo, No) and €41 is sufficiently small then:

(i) The conclusions (i), (ii) and (iii) of Proposition 6.3 hold.

(ii) By C BL C Bd(L)/1O(pL) and T =T LVHfOT al H,Le # U withH C L;

Moreover, if H,L € # U.¥ and either H C Lor HNL # 0 and @ < U(H) < L), then the
following holds, for C = C(Mg, Ny, Ce) and C = C(Mo, Ny, Ce, Cp):

(ii)) d(L)/2 < d(H) < 2d(L) (and d(L) = d(H) when H C L);

(iv) |y —m| < Cmgd(L)ve—T+ég(L) =21,

mg
1
(0) |y — 1ol < Cmgd(H)Yo;
1
(vi) h(TH, C36ry, (PH, T0)) < Cméd(H)YTOE(H) and spt(Ty) N C36r, (PH, 7o) C Bh;

1
(vii) (T, C36r (pr,7TH)) < Cméd(L)YTLBZE(UHBZ and spt(Ty) N C3er, (pr, 1) C Br.
In particular, the estimates (6.12) and (6.13) hold.

The proof of the proposition will use repeatedly a few elementary observations concerning
the excess and the height, which we collect in the following lemma.

Lemma 6.12. If T is as in Proposition 6.11 there is a geometric constant Co with the following
properties. Assume the points p, q belong to spt(T)N C 5, B+(p) C Byo(q) C Coand v = p/4.
Then, if €41 < C51

(i) E(T,By(q)) < Comin E(T,By(q),7) + Comop?;
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(ii) E(T,Br(p)) < CoE(T,B,y(q)) + Comor?;
(iii) |t—|* < ColE(T, B+(p), ) + E(T,By(q), 7);
(iv) h(T,F, ) < h(T,F, 1)+ Colmt — tldiam(spt(T) NF) for any set F;

1
(v) h(T,C.(0,7)) < ComéT”VO + Colmt — 7o|r whenever |t — | < C51 and r < 7/4.

Proof. Recall that, by Lemma 6.21 and Allard’s monotonicity formula (which can be applied
by Proposition 2.2), we have

3(,02

a1 p® < [IT[[(B,(p)) < Cop?. (6.20)

(i) is trivial in (b) of Definition 1.1, since E(T, By(q)) = min. E(T, B,(q), 7). In the cases (a)
and (c) recall that

E(Ter(q)) = Trcn_li,?zE(Tpr(q)/T) .

Let now 7t be such that E(T, B,(q), ) = min. E(T,B,(q), ) = E. Then, by the Chebyshev
inequality there is a point q” € B,(q) Nspt(T) such that

- wHp2
T(q") -7 < ’TH(é‘:(q))E < CoE.
Observe that T(q’) is the orienting 2-vector of some space & C Tq/Z and that

TqrZ = TZl* < CollAx[&op? < Comop?.
Thus there is a 2-plane T C TqX such that |t — 11?2 < CE 4+ Comopp?. Hence

E(T, B (p)) < E(T,Bp(q),7) < C(E+ Comop?)||T|(Bp(q))/(w2p?) < CoE + Comop?.

Keeping the notation of the argument above, in the case (b) of Definition 1.1 statement (ii)
follows from the simple observation

E(T,B.(p)) < E(T,B:(p), ) < 4°E(T,B,(q),m) = 16E(T, B, (q)).

In the cases (a) and (c) of Definition 1.1 we combine the same idea with (i).
(iii) is a simple consequence of

2 =4 —
=t < / (T = + [T =TT
ITI(Bp(q)) B,(q) Tl
(6.20)
< Col(E(T,B,(q),m) +E(T,B,y(q), 1), 621

and E(T,B,(q), ) < 16E(T, B+ (p), 7). Next, for p, q € spt(T) N F we compute

p=(p—q)l < Ipt(p— )+ 1P+ —px)(p—q)l < h(T,F, 1)+ Clmr—1llp — ql.

Taking the supremum over p, q € FNspt(T) we reach (iv).



6.2 TECHNICAL PRELIMINARIES

We finally argue for (v). Fix r < 7/8, m with | — 7p| < Cg] and the cylinder C =

C.(0,7). Observe that, by Assumption 3, for every p = (x,y) € spt(T) N (R? x R™) we
1 1

have [y| < ¢, X1+t < ¢ i x| Yo, Tt follows easily that, for a sufficiently small e47 and

a sufficiently large Cy, this implies that spt(T) N C C Cg,,7(0, 7). Hence, h(T, C, 7o) <

;
h(T, Cg,/7(0,70)) < Comir'TYe. As a consequence diam(T N C) < Cor and (v) follows
from (iv). O

Proof of Proposition 6.11. In this proof we will use the following convention: geometric con-
stants will be denoted by Cy or ¢y, constants depending upon My, Ng, C. will be denoted
by C or ¢ and constants depending upon Mg, Ny, C. and Cr, will be denoted by C or c. Next
observe that the second inclusion in (ii) is in fact correct for any cube L € €7 with j > N,
provided Ny is chosen sufficiently large compared to M. Similarly (iii) holds for Ng larger
than a geometric constant.

Proof of (i), (ii) and (iii) in Proposition 6.3. The conclusion (i) is obvious since indeed
it also holds for every L € ¥™o. (iii) is a simple consequence of the fact that, because
of (NN) in the refining procedure, given any pair H,L € % with nonempty intersection,
%B(H) < {(L) < 2¢(H). Consider now any L € 47 with Ny <j < No + 6. Observe first that
C(No)~'dy < {(L) < di. We thus can use (2.24) to estimate

E(TL, By, 7t(p)) < C(Mo, No)mod(L)2Yo—2+281g(1)2—281
By Lemma 6.12(i) we conclude
E(Tr, Br) < C(Mg, No)mod(L)2Yo—2F281¢(1)22%1 4 C(Mg)mol(L)?%.

Hence, for C. sufficiently large, condition (EX) of Definition 6.2 cannot be a reason to stop
the refinining procedure of any cube L € 47 when Ny <j < ng +6.

Recall next the chosen plane i such that E(T, By, 7)) = E(Ty,Br) and h(Ty,By) =
h(Ty, By, 7). By Lemma 6.12(iii) we easily conclude that

1
[t —7t(p)l < C(Mo, No)Cemgd(L)Y0.

1
On the other hand |7t(p) — 7p| < Co[Du]o,(X,Bcod d(L)* < Comd(L)Y° and thus

(1)
. — 70l < C(Mo, No) CemZd(L)Ye VL e ™o, (6.22)
Since
B C Cay/r0(pr,mo) € Cayzy 141 (0,70)
and (2v2 + ﬂ—o)d(l_) <(2V2+ 11—0)% < %, we infer from Lemma 6.12(Vv):
h(Te, Br) < Cm2d(L)!7° < Cmad(L)®—P2g(L)'+82

Thus, choosing Cj, large depending upon My, Ng and C, we conclude that condition (HT)
in Definition 6.2 cannot be a reason to stop the refining procedure of a cube L € 47 when
No <j < No+6.
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This means that: for k = Ny and j = 0 all cubes of €™ are refined (the condition (NN)
is empty here). But then the same happens for k = N and j = 1, since # No® is empty.
Proceeding inductively we conclude this for every j and thus obtain that # ™N¢ is empty. We
now repeat the argument with 7 No+1J to conclude that # No+! is also empty. Proceeding
for other 5 steps we conclude then that (ii) holds.

Proof of (ii)-(iv)-(v)-(vi)-(vii) when H C L. The proof is by induction over i, where
H € €. We thus prove first the claims when i = Ny. Under this assumption H = L and
hence (iv) is trivial. The second inclusion in (ii) has already been proved above and the
remaining assertions of (ii) are obvious because H = L. (v) has been shown above, cf. (6.22).

The first conclusion in (vi) follows easily, since h(Ty, C36r,, (PH, T0)) < Comgd(H)”VO by
Lemma 6.12(v) and ¢(H) > d(H)/C(Np). The inclusion in (vi) follows then trivially from
this bound when my < €47 is small enough, because py € spt(Tn). As for (vii), recall that
L = H in our case. First observe that [my — 7| < CoCed(L)Y?, simply by (6.22) (assuming
Ce = C(My, Np)). Thus we can apply Lemma 6.12(v): since d(L) and £(L) are comparable

up to a constant C(Ng), we conclude that h(T;, Cz6r, (pr,7H)) < Cm(‘]‘;d(L)YTO_BZB(L)”BZ.
As we already argued for (vi), the inclusion is a consequence of the bound.

We now pass to the inductive step. Thus fix some Hi;1 € .1 U# ! and consider a
chain Hiy7 C Hy C ... C Hn, with Hy € .7 for 1 < i. We wish to prove all the conclusions
(ii)-(iv)-(v)-(vi)-(vii) when H = H;,; and L = H; for some j < i+ 1, recalling that, by
inductive assumption, all the statements hold when H = Hy and L = Hy for 1 < k < i. Note
also that d(Hy) = d(Hj1) for all k.

With regard to (ii), it is enough to prove that By,,, C By, and Vy,, C Vy,. Note
that |z, —zn,,,| < 2v/20(H;) (recall the notation py = (z1,yn)). In particular notice that
Crii, (PHy ) © Cryy (PH,, o). Recall the open sets Vi, and Vi, defined in Section
6.1.2. Since H; and H;, 1 are nearby cubes in B, it is clear that pyy,,, = (zH,,,, W(ZH,,  WH,, )
and pH, = (zn,, W(zH,, WH,)) must be in the same connected component of V;, o N CTHi (PH,,T0).
It then follows that Vi, C Vy,. In particular pyy,, € spt(Ty,) and (vi) applied to H = H;
implies then that [py,,, —pr,l < 2(vV2 + Cmé J(Hiy1). In particular, assuming that 47 < ¢
for some positive constant ¢ = ¢(My, Ny, Ce¢, Cr), we conclude [py,,, —pr;l < 3vV20(Hy)
and By, C By, follows from the fact that Mg is assumed larger than a suitable geometric
constant.

We now come to (iv). Notice next that Hi 1 is a son of H; and thus H; cannot belong to
W : it must therefore belong to .. Hence, from the inclusion By,,, C By, from the identity
Ty, = TH,LBH;

i+1

and from Lemma 6.12(ii) we easily infer that

i+1 +1

E(Th,,,, Bh,.,) < CoE(Th,, Br,) + Comol(Hiy1)? < Cmod(Hiy1)2Y0 22810 (Hy )220

it+17 i+1
We thus have, from Lemma 6.12(iii),

A3 —1+45 1-5
1Tt — T, | < CmGd(Higq)Ye (Hipq) 00

On the other hand, since d(H;) = d(H;) for every 1l > j, by the same argument with 1 in
place of i we also get

_ 1 _ _
7ty — 7oy, | < CmGd(Hiq ) Yo THo1e(Hy )00
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Summing the latter estimates for | between i and j, we easily reach (iv) for H = Hi 1 and
L = H;.

As for (v), note that it holds for Hy,, and moreover we just proved (iv) for H = Hi 7 and
L = Hn,, and thus, by triangular inequality, we get (v) (with a constant independent of the
index i!).

As for (vi), note first that nger (PH,,, o) C C%THi (PH,,T0) C B, (the latter because
(vi) holds for H = H; by inductive hypothesis). Thus we can apply Lemma 6.12(iv) to
conclude

Ty, Csery,, (PH,T0)) < CR(Th, Byy) + Colmtyy, — 7ol diam(spt(Tr, ) N By, ) .

On the other hand we already noticed that H; € .. Taking into account (v) we then conclude
the inequality of (vi) for H = H;i; and, as already noticed in other cases, the inclusion
follows from the estimate and py,,, € Bn,, Nspt(Th,,,)-

We finally come to (vii). Fix H = Hi, . First we prove it for L = Hy,,. Observe that by
the bound on |ty — 7], we can bound h(THNO, ngrHNo (pHNO,TCH)) with the same argu-
ment used for h(THNo, C_%THN0 (pHNO,ﬂHNO)). As already argued several times, we then
conclude the inclusion C36THNO (pHNO,TtH) - BHNO. We now argue inductively on j: as-
suming that we know (vii) for H and L = H;, we now wish to conclude it for L = H; 1.
Notice that C36rHj+] (ij s TH) C C36THj (ij,TEH). Then the inductive assumption gives
C36rH,+] (pHH,TtH) C By, and recalling that Ty = Ty LBH and that H; € ., we can
use Lemma 6.12(iv) to bound

j+1

N(Thy,1, Caery,, (PHy, 1, TH)) < M(Thy, By ) + Colmtr — 7oy Idiam(spt(Thy; ) N By -

However, having already shown (iv), this easily shows the bound in (vii). The inclusion then
follows with the usual argument used above.

Proof of (6.12) and (6.13). Fix H € % and let L be its father. Having shown (ii), we know
that By C Br. We then use d(L) = d(H), £(L) < 2¢(H) the estimate

E(Ti, Br) < Cemod(L)2vo- 2+ 20mg(L)2 201
and Lemma 6.12(i) to conclude (6.12) as follows
E(Tii, Bi) < E(Tiy, By, i) +Cmorf < E(Ti, Br) +Cmot(L)? < Cmod(L)2Yem2+201g(L)2 2%

Next, we use Lemma 6.12, (iii), (iv) and
1
R(TL, BL) < Crmgd(L) 2~ Bag(r)' P2

to conclude (6.13).

Proof of (iv) and (vii) when H and L are neighbors. Without loss of generality assume
¢(L) > L(H). If L & €No, then let | be the father of L. Observe that |z —zjl, |zt —zj] < 2V2¢(]).
On the other hand, observe that pyy, pr are both elements of C3¢r, (py, o) (provided My is
larger than a geometric constant). Thus, by (vi) (applied to J), for €41 sufficiently small we
easily conclude [pr —pjl, [pr —pjl < 3v/20(]). Since ¢(L), ¢(H) < €(])/2, again assuming that
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My is larger than a geometric constant we have the inclusion By U By C Bj. It is also easy
to see that Viy U VL C Vj. Now, we can use (6.10), (6.12), (iii) and Lemma 6.12(ii) to achieve

o1
It — 7, I — gl < CmEd())Ye o)) 0

Next we use again (iii), the triangle inequality and ¢(H) < {(L) < {(]) < 4£(H) to show (iv).
The case L € ¥™No can be handled similarly, just using a ball concentric to By and slightly
larger so to include By: the excess and the height in this ball is then estimated with the
same argument used for estimating them in By.

As for (vii) we fix a chain of ancestors L = L;,L;_1,...,Li,...... ,Ln, and, as in the proof
of (vii) for the case H C L, we argue inductively over i. The argument is precisely the same
and can be applied because, using (iv) for H and L and for L; and L;i4 1, we can sum the
corresponding estimate to show that

1
o — o, | < Cm2d(Ly) Yo THong(ry) =2, -
i 0

63 TT-APPROXIMATIONS AND ELLIPTIC REGULARIZATIONS

In this section we introduce the m-approximations and define the corresponding elliptic
regularizations of their averages, which in turn will be the building blocks of the center
manifold. We begin with the following;:

Proposition 6.13. Assume the hypotheses and the conclusions of Proposition 6.11 apply and let €4
be sufficiently small. If H,L € # U.% and either H C Lor HNL # 0 and @ < U(H) < L(L), then

(Pr )t (TL L C32r, (pr, 1)) = Q [B32+, (P (PL), 7H)] & (6.23)
oTLL C32v  (pL,tH) = 0. (6.24)

Moreover Theorem 2.8 applies to the current Ty L C32+, (pr, 7tH) in C32+, (PL, TH).

Proof. (6.24) is rather straightforward: by the height estimate in Proposition 6.11 we conclude
easily spt(Tr) N C32r, (P, 7tH) C C36r, (P, o). On the other hand by definition of Ty =
TL Vi and by Assumption 3, we have spt(0T;) C 9Cesr, (p1,70), implying spt(0Ty) N
Cser, (pr, 7o) = 0 and thus also spt(0Tr) N C32y, (pr, ) = 0.

In order to prove (6.23) we argue as follows. First consider the chain of ancestors of L:= L =
LjCcLlj1C...CLN, =] where ] € #No_We first show that (pﬂo)ﬁ(T]LngrJ (py, o)) =
Q [[8361”](2]/7'[0)]]- This is done in the following way: consider that Gr(u) N Cear, (py,70)

is the graph of a C'* function v with |[v||c1. < Comé. Define the function v¢(x) =
tv(x) and let p¢ be the orthogonal projection onto Gr(v¢), which is well-defined on Vj
provided my is sufficiently small (the smallness being independent of J). The currents
St = (po)s(Ty L Cear, (pj, o)) are easily seen to coincide with QG L Cser, (zj, o) in the
cylinder Cser,(py, 7o) by the constancy theorem. On the other hand such currents vary
continuously and thus the integer Q¢ must be constant. This implies that Qo = Q1 = Q. On
the other hand pp = pr, and we have thus proved our claim.

Observe that (pr,)s(TLL C36r, (PL,70)) = Q [B3sr, (21, 70)] because Tp L C36r, (PL, 70) =
Ty L C36r, (P, 70). Choose next a continuous path of planes 7ty which connects 7y and 7
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and satisfies the bound |y — o] < Colmty — 70| for some geometric constant Cy. We then look

at Zy = (pr)# (T L C36+, (P1, 70)) and conclude, similarly to the previous paragraph, that

(P )8 (TLL C36r (P, 0))) L C324, (P, tH) = [B32+, (Pry (PL), H)]. On the other hand
(

since (Tr L Cz6r, (pr,70))) L C32v, (pr, 1) = T L C32+, (p1, 7tH), this concludes the proof of
(6.24).

Now, by the estimates of Proposition 6.11 in order to apply Theorem 2.8 we just need to
choose €41 sufficiently small. O

We next generalize slightly the terminology of Section 6.1.2.

Definition 6.14. Let H and L be as in Proposition 6.13. After applying Theorem 2.8 to
Tr L C32r, (pr,mH) in the cylinder C3,r (pr,mH) we denote by fyp the corresponding
ni-approximation. However, rather then defining fy; on the disk Bgy (pr,7H), by ap-
plying a translation we assume that the domain of fy is the disk Bgr, (pHr, mH) where
PHL = PH + Pn, (PL — PH). Note in particular that C,(pHr,7tH) equals Cr(pr, 1), whereas
Bsr, (PHL, 7TH) C pH + 7t and pr € Bgy (PHL, TTH)-

Observe that f{ | = fi.

6.3.1 First variations

The next proposition is the core in the construction of the center manifold and it is the main
reason behind the C3* estimate for the glued interpolation. It is also the place where our
proof differs most from that of [20].

Definition 6.15. Let H and L be as in Proposition 6.13. In the cases (a) and (c) of Definition
1.1 we denote by s the orthogonal complement in T, Z of 71y and we denote by fiyr the

map P, © FHL.

In what follows we will consider elliptic systems of the following form. Given a vector

valued map v : py +7mH O QO — sy and after introducing an orthonormal system of

coordinates x', x? on 7ty and y1, ..., Y™ on sy, the system is given by the @i equations

AVE + (L1)505v" + (La)fvt = (La)¥(x —xn)t + (La)*, (6.25)
=:£%(v) =7k

where we follow Einstein’s summation convention and the tensors L; have constant coeffi-
cients. After introducing the operator .Z’(v) = Av + &(v) we summarize the corresponding
elliptic system (6.25) as

ZLv)=%. (6.26)

We then have a corresponding weak formulation for W2 solutions of (6.26), namely v is a
weak solution in a domain D if the integral

F(v,C) = /(Dv:DC+(9(v)—é”(v)) -C) (6.27)

vanishes for smooth test functions ¢ with compact support in D.
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Proposition 6.16. Let H and L be as in Proposition 6.13 (including the possibility that H = L)
and let Ty, fyr and sy be as in Definition 6.14 and Definition 6.15. Then, there exist tensors
with constant coefficients Ly,. .., L4 and a constant C = C(My, No, Ce, Cr), with the following
properties:

(i) The tensors depend upon H and X (in the cases (a) and (c) of Definition 1.1) or w (in case (b)
1
of Definition 1.1) and |Lq| + |L2| + [L3| + [L;| < Cmg.

(ii) If S, Ly and Fyy are defined through (6.25), (6.26) and (6.27), then
Fu(mofur, ¢) < Cmod(H)?THBelve2762134B2 | Do (6:28)

forall ¢ € CX(Bgr, (PHL, TH), 2H).

Proof. Set for simplicity m = 7y, > = sy v =71, p = puL, f = fur, B = Bs+(p, ) and
T=T..

Cases (a) and (b) of Definition 1.1. The proof is very similar to the one of [20, Proposition 5.2].
Nevertheless, for the sake of completeness, we give here all the details. We fix a system of
coordinates (x,y, W) € 7 X 3 X (TpHZ)l so that py = (0,0,0). We drop the subscript py for
the map ¥, ,. Recall that

1
Y(0,0)=0, D¥(0,0)=0 and [DV¥|c2: < Cm2.

Let ¢ € Cc(Bgy(p, ), 2) be a test function. We consider the vector field x : £ — R2*™ given
by x(q) = (0, ¢(x), Dy¥(x,y) - {(x)) for every q = (x,y,¥(x,y)) € Z. Note that x is tangent
to L. Therefore we infer that 6T(x) = 0 and

561001 < 18Ge(x) ~STOI < C [ Dxdl6-T]. (6.20)
Csr (p,m)

Observe also that [x| < C|¢| and |Dy| < Cl¢|+ C[D¢| < C/DC|. Set E := E(T, C32+(p,7)). By

Proposition 6.11, C32.(p, ) C Br . Thus, by Proposition 6.3 and Proposition 6.11(iv) we

have

E < Cmod(H)2Yo—2+201g(1)2—281 (6.30)
Similarly
1
(T, C32:(p, 7)) < CmId(L)FP2g(1)"+P2, (6.31)

Recall that, by Theorem 2.8 we have
IDf| < CEPo 4 Cmor < Cmgo d(L)(2Y0_2+251)BOTBO(2_251) (6.32)
1 1
[l < CR(T, C32¢(p, ) + (E2 +1md)r < Cm§ d(L) 7~ Parl+hz, (6.33)

/B D2 < Cr2E < Cmg d(L)2Yo— 2428 y4-261, (6.34)
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and

B\ K| < Cm(‘)+ﬁo d(L)(1+B0) (2v0—2+281) 2+ (1+p0) (2-281)

(6.35)
ITHCarlpr,m) — B~ 5 [ D] < Cmy e a(r)1+Po) 2vo-2e200 )2 (0o 2-201)
(6.36)
where K C B is the set
B\ K = pr ((spt(T)Aspt(G)) N Car (P, 7)) - (6.37)

Writing f = )_; [fi] and f = )_; [fi], since Gr(f) C £, we have f =} ; [(f;, ¥(x, fi))]. From
Theorem 3.52 we can infer that

0Gt(x) = /B Z (nyw(xz fT’L) “C+ (Dyyw(xl fTL) . D'Fi) ’ C‘l‘Dy\y(Xz Fl) : DXC)
t (A) (B) (€)

: (DX‘P(X, f.) + Dy¥(x, ;) - D ) + / Y DC:Dfi +Er, (6.38)
B <
(D) (E) '

where, the error term Err in (6.38) satisfies the inequality
Err| < C [ DD < [DC [ D7
< C||DC||Om(])+[50 d(L)(1+Bo)(2y0—2+251 )r4—251+60(2—261) ] (639)

The second integral in (6.38) is Q [3 D : D(n o ). We therefore expand the product in the
first integral and estimate all terms separately, using the Taylor expansion

DV¥(x,y) = DyD¥(0,0) - x + DyDW¥(0,0) -y + o(mng +y))
so that

DY(x, )l < Cmér

DVY(x, fi) = D,DVY(0,0) - x + O(m(%jL%d(L,O)yTO*BZTJJrﬁz)/

D2W(x, f)| < CmZ and D2W(x,f) = D2¥(0,0) + O (mr).

We compute as follows:

[ X2 0)= [ ¥ (0 #00,0)-0): D.¥(x, 7 +0(mor? [ 10)
— [ QDL ¥(0,0)-0): (D ¥(0,0) ) (6.40)

+0(mod(L,0)%8:41 P2 [ 1)
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The integral in (6.40) has the form [Lap x - C. Next, we estimate
/Z ((A): (E)+(B): (D) +(B): (E))

_ O<m(1)+f30d(]_)f50(21/02+251)T1+Bo(2251)/|c|) (6.41)

and
[ (1 (B) =0 (myF ooty ezsngzemiz2en [pg). (6.42)
Finally we compute
/Z(C) : (D) :/Z((DW‘P(O,O)-X)-DXC):DXW(x,ﬂ)
+O(mod(L)y20_ﬁ2r2+'32/|DC|>

= Q [ (D ¥(0,0):%): Ds0): (D (0,0)-x)
+0(mo d(1) F ~Par2+P / Dal).
Integrating by parts in the last integral we reach

/ 3 (©): (D) = / Lep x- 0+ O (mod(L,0)F P22 42 / Da). (6.43)

Set next L3 := Lap + Lcp. Clearly L3 is a quadratic function of D2Y¥(0,0), i.e. a quadratic
function of the tensor As at the point py. From (6.29), (6.39), (6.40) — (6.43), we infer (6.28)
and (i). Indeed we have to compare the following three types of errors

& = m(1)+f30d(]_)(1+Bo)(2Y0*2+251 )p4=281+B0(2-281) (6.44)
&) = m(13+[30d(]_)f30(21/0*2+251 )p4+PBo(2-281) (6_45)
€3 :=mod(L) T Portth2, (6.46)

It is easy to see that if

261+ Bo(2—281) — B2 > 0 (6.47)
then
€3 < &1 < m)TPod(L)(1+P0)(2Y0-21281)-281+Bo(2-281) B2y 4+ 2
< m(1)+Bod(L)2(1+BO)V0fZ*BzT4+(32 (6.48)
Therefore

€1,82,€3 <mod(L)21HRo)vo2=Bap o, (6.49)
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To conclude the proof we observe that, by the bound on E,

/ IDx| d[|G¢ —T|| < CID¢[oM(TLC — Gy) < Co||DE|or*EPO(E+mer?) < CE;.
Csr(p,m)

Case (c) of Definition 1.1. Fix coordinates (x,y) € R? x R™ such that py = (0,0). Consider the
vector field x(x,y) := (0, ¢(x)) for some ( as in the statement. Recalling Proposition 2.2 we
infer

0G¢(x) = 06T(x) + Errg = T(dw 1x) + Errg = G¢(dw _Ix) + Errg + Erry
with

|[Erro + Erry| = [5T(x) — 8G+(x)| + |T(dw Jx) — G¢(dw x|
< C(ID¢lo + [ldw x[[o) IT — G[[(Csr (p, 7))
< C(IIDZlo + 1llo) EPe (E 477 mo) 12
< C[[Dflo ml o d(H)(2Yo-2+281)(1+Be) 12+(2-251)(1+4 o). (6.50)

From Theorem 3.52
0G¢(x) = Q/D(n of): DC+ Erry
with

[Erry| < € /IDCI IDf* < C||D¢JoE' HPor?

< C|IDlo m(1)+r30 d(H)(2vo—2+281)(14+B0) 12+(2-281)(1+Bo)

Next we proceed to expand G¢(dw _Jx). To this aim we write

n
dw(x,y) = Z ai(x,y) dyl/\dx] Adx? + Z Zblk/j (x,y) dyl/\dyk/\dxj

1=1 j=1,21<k
+ Z C[k]‘(X,y) dyl/\dyk/\dyj (6.51)
l<k<j

and get

n
dodx =) adtd! Ad?+ ) Y by ddytAdd+ D cpg ctdyt Ady .
1=1 j=1,21<k l<k<j

w® w(2) w3

(6.52)

We consider separately Ge(wM), Ge(w?@)), Gf(w3)). We start with the latter

Gr(w®) < Clldwllo IICllo/ DI < Cmgd(H)2Yem 2200 127201 D . (6-53)
B
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Next
ofk dfk
Gelw /cl buia X)) ook — bua x, i(x)) oot ) dx
ox ox
l<k1 1
d(mof) d(m o f)k
_QZZ/C <blk200)axl —b1k,1(0, O)T dx + Errs,
1<k
:/L] D(T] of)-C+Err3 (654)
with
Errs] < ClI¢]o HD(dw)no/B (v[Df + If|Df) dx
< C|ID¢flo mo (r+ osc(f) + h(T, Cs,(0,7))) v3 EPo
< CHDCHO m(l)—!—ﬁo r4+(27251)ﬁo d(H)(Zy()fZJrZé])BO (6.55)

and Ly : R**2 — R™ given by

mn
LiA-er:=Q Z (buk,2(0,0) Akt —bri,1(0,0) Ayz) VA= (Ak]’)%j:]flz._.,n € R™ 2,
k=1

Finally

Ge( /Cl Jar(x, fi(x)) dx

111

- Qz/d(x) (a1(0,0) + Dxar(0,0) - x + Dyay(0,0) - (n o)) dx + Err,

:/(Lz (mof)+Lsx+Ls)-C+Erry (6.56)

where L, : R™ - R™, L3: R? - R™" L; € R" are given by

sz-el.—];ayk(om VveR™ V1i=1,...,n (6.57)
Jda :
L3w-elz—;a;(00) w YweR™, Vli=1,...,n (6.58)
]7
Ly ep:=aq(0,0) V1=1,...,n (6.59)

and arguing as above

[Ereal < Cl12lo [D(dw)]go/ (r1+e0 4 [f]1+50) dx < C[IDEflo mo T, (6.60)
B
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In order to deduce (6.28) we need to compare
|[Erro + Erry + Erra| < |[D)[0&1 < [|D¢|lomod(L)2T FRo)vo=2=Bayd+B2
&y = Cm(])+r3° d(H)(2Y0—2+251)Bo A+(2-281)Bo
825 — Cm(z) d(H)2Y0—2+26] T‘5_251
84 = Cmo T‘4+£°.

As before, if (6.47) holds, then €, < &1. Moreover, since &4 < 1*P2, to conclude (6.28) it is
enough to observe that if

12> B0(2—281) (6.61)
then 0 > 2yp —2+2861 > (2yo—24+251)(1+Po)and 5—281 > 2+ (2—281)(1+ Bo), so that

d(H)Zyo—2+251 r5—25] < d(H)(2y0—2+25])(1+[30) T2+(2—261 J(14+Bo) ,

that is €5 584 < &7. ]

6.3.2 Tilted interpolating functions, L' and 1> estimates

In this subsection we generalize the definition of the tilted interpolating functions hy . More
precisely we consider

Definition 6.17. Let H and L be as in Proposition 6.13, assume that the conclusions of
Proposition 6.16 applies and let %} and .#1 be the corresponding operator and map as given
by Proposition 6.16 in combination with (6.25), (6.26) and (6.27). Let fyi be as in Definition
6.14, 2y and fy be as in Definition 6.15 and fix coordinates (x,y,z) € Tty X sy X T]DHZL as
in the proof of Proposition 6.16. We then let hyy be the solution of
Lrhnr = P

(6.62)

y=mne frr .

h
HL‘aBSrL (PHL,/TTH

In case (b) of Definition 1.1 we then define hyj; = hy1, whereas in the other cases we define
hur (%) = (hue (x), Yp , (x, A (x))).

In order to show that the maps hy are well defined, we need to show that there is a
solution of the system (6.62).

Lemma 6.18. Under the assumptions of Definition 6.17, if €41 is sufficiently small, then the elliptic
system

.,?H\) =F
(6.63)
v|aB8rL(pHL/7TH) =9

has a unique solution for every F € W12 and every g € \"% 'Z(Bgm (pHL, 7t )). Observe moreover

1
that we have the estimate |Dv|| 2 < Corp (||[Fl| 2 +m§]lgllr2) + Col|Dg]2.
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Proof. As for the first assertion, it suffices to show the Lemma for g = 0, since we can define
w = v — g and solve %} (w) = F+ Z(g) . Setting B = Bgr, (pH1,7H), the existence and
uniqueness for the latter case reduces, by Lax-Milgram, to the coercivity of the suitable
quadatic form 2(v,v) on W(1),2 (B). The latter follows easily from

2(w,w) = /(|DW2—L1 Dw-w—Lyw-w)

2 “—1| 2 |I—1| 2
2 [[DwW({23) — = IDW[[{2p) ( + L2l ) [wllfzg)

Since 11 < 1, by the Poincaré inequality ||WH < Co |]Dw||%2 for every w € WA’Z(B). The

coercivity follows then from |L;|+ |L;| < CmO < Céeyg1, where the constant C depends only
upon My, Ng, Ce and Ch,. In particular we can assume the coercivity factor to be %

On the other hand, multiplying the equation by w and integrating by parts we easily see
(using the coercivity) that

1 1
3 [ 1w < [ (DwIDgl + [Fiw) + cm§ [ (1glhwl + wiDg)

1 2y
<3 [owz T[22 [ v [(Dg? + mertign),
Y s

where 7y is any fixed positive number and C does not depend upon it.
We choose vy smaller than a geometric constant, so that we can use the Poincaré in-
equality to absorb the terms [ |w|? on the right hand side. We then conclude the desired

1
estimate |[Dw||;2 < C(||Dg||y2 +m§rr|g|l 2 +ro||Fr||2). Since v =w + g, we then conclude
1
[Dv[lr2 < C(|IDgllr2 + mgrellgllr2 + Crof[Fele2) - O
Observe that hyy = hy. We next record three fundamental estimates, which regard,

respectively, the L*° norms of derivatives of solutions of Z}i(v) = F, the L* norm of
RAnr —m o fur and the L' norm of hyyp —m o fyr.

Proposition 6.19. Let H and L be as in Proposition 6.16 and assume the conclusions in there apply.
Then the following estimates hold for a constant C = C(mg, Ng, Ce, Cy) for B:= Bgr (PHL, TTH)

and B := Bey, (Prr, m1):
IR —nofucllg) < Cmod(L)?(THPevom2=Bag(r)+ho (6.64)
_ _ 1
[ —1 o Frefl e (g) < Cmod(L)? (1+Bo)vo=2=B2g(1)3+B2 1 CmZe(L)?. (6.65)

Moreover, if £y is the opemtor of Proposition 6.16, r a positive number no larger than 1 and v a
solution of 2y (v) = Fin Bg,(q,7H), then

CO 2
VLo (Ber(qm1)) < VL (Bgr (qm)) T CTNFlI Lo (B, (q,m)) (6.66)
and, for 1 € IN
1 Co 2 : i—Limi
IVl (e tqmun < VI (Bartqmin + €2 DT ID Fllispg, (g, (6:67)
j=0

where the latter constants depend also upon 1.
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Proof. Proof of (6.66). The estimate will be proved for a linear constant coefficient operator
of the form ¥ = A+ 1L;-D +L; when Ly and L, are sufficiently small. We can then
assume 71y = R? and q = 0. Besides, if we define u(x) := v(rx) we seee that u just satisfies
Au+7Ly - Du+12L; -1 = 0 and thus, without loss of generality, we can assume 1 = 1. We
thus set B = Bg(0) ¢ R2.

We recall the following interpolation estimate on the ball of radius 1, see [45, Theorem 1].

For 0 <j <mand # < a < 1 we have, for a constant Cy = Co(m,j, q,1),
IDulr ey < CID™ulf s, llis s,y +C lulliage,) (6.68)

where

We apply the estimate (6.68) forj=1,m=2,q=1landp=s=2,a= % and use Young's
inequality and a simple scaling argument to achieve the inequality

IDul[e2B,(x)) < COpHDZuHLZ(Bp(x)] + COP_ZHUHU(BP(X)) : (6.69)
Moreover, by Sobolev embedding;:
w2, <)) < CorlDufl2s, (x)) + Cop™ " [|uf| s (Bp(x)) - (6.70)

Next, recall the standard L2 esimates for second order derivatives of solutions of the Laplace
equations: if By, (x) C B, then

Dl 25, (x)) < CollAullr2(g,, (<)) + Cop 2 |lu|ps (Bap(x)) - (6.71)

1
Now, recall that Au = —L; - Du—L; - u+F. Using the fact that [L1| 4+ [L;| < Comg, we can
combine all the inequalities above to conclude

1
2,112 2111244112 2 2
p°D UHLZ(BP(X)) < COPGmé D uHLZ(sz(X)) + COHUHU(BS) + CollFl[Te - (6.72)
Define next
Si= SUP{F’3||D2uHL2(Bp(x)) :B2p(x) C Bs} (6.73)

and let p and & be such that By, (&) C Bg and

s
o’ D% ull2 (s, (x0) = 5 - (6.74)

We can cover B, (&) with N balls B, />(xi) with x; € B, (&), where Ny is only a geometric
constant. We then can apply (6.72) to conclude that

S 1
5 S CoNomg S + CoNol[uf1(gg) + CoNol[FllLe(Bg) -

1
Therefore, when mj is smaller than a geometric constant we conclude S < Colul/ 1 (g, +
Col|F|lL(Bg)- By definition of S, we have reached the estimate

p3HD2uHLz(Bp(X)) < Collulp s (Bg) T Col|FllLee (Bg) whenever B, (x) C Bs.
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Of course, with a simple covering argument, this implies
D128,y < Collulli(ay) + CollFllie (B - (6.75)
Next, again using the interpolation inequality (6.69) we get
IDul[r2(8,) < CollullL1(g) + CollFllreo(By) -
So, by Sobolev embedding
DUl Be(0)) < CollDul|wrzsey < Collullrsg(0)) + CollFllie By (0)) -
Again using interpolation and Sobolev we finally achieve

lullLe(Bg) < Collullwiase) < CollwllLrsg(0)) + CollFllLe(Bg(0)) -

Proof of (6.67). As in the previous step, we can, without loss of generality, assume v = 1.
Note that a byproduct of the argument given above is also the estimate

IDuf[L1 gy < CollullLi(pg) + CollFllLe(By) -
In fact, by a simple covering and scaling argument one can easily see that
IDuflLr g,y < ColT)[[ullir(g) + ColT)IFl[Leo(g)  for every T < 8.
We can then differentiate the equation and use the proof of the previous paragraph to show
[Duf[Le(B,) < Colo, T)[[Duf|Li(p,) + Colo, T)||DF|[ LB, -
Again, arguing as above, a byproduct of the proof is also the estimate
ID*w[ 11 (8, < Colo, T DUl g,) + Colo, T) [ DF||L(g,) -

This can be applied inductively to get estimates for all higher derivatives.

Proof of (6.64). Let B := Bgr, (pr1, 1 ). We use the coordinates introduced in the proof of
Proposition 6.16. We set w := hyy — 1 o fy and observe that

Lw=Fy—Lamofur)

Wlog =0

Next, for 1T < p < oo, we define the continuous (by Calderon-Zygmund theory) linear
operator T: LP(B) — W(])’p(B) NW?2P by T(g) = b if

—Ap=g inB

=0 on B.
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Applying the Sobolev embedding Wg)’s(B) < C9(B) to the derivative of { € W23 N Wg’s
and using (6.28) we get

_2
/B(Dw D=Ly Dw-{—Lyw- ) < Cmod(L)2(HBo)vo=2=B2 B2 1175 | p2g
Then, we can estimate the L2-norm of w as follows:

[wll 5 = sup wh=—sup /WAT(h)
L2(8) IMilsp)=1"8 M3 )=178

< sup / Dw-DT(h)
Hh”]_3(3):] B

_2
< Cmod(L)2(+Bo)vo=2-B2 2HP275 gy ID2T ()]s
HhHLS[B):1

+ sup / (L1 Dw-T(h)—Low-T(h)).
”hHL.%(B):] B

Recalling the Calderon-Zygmund estimates we have

ID*T(M)[|s < Collnlles
IDT(W)[[rs < Corelhflys
IT(W) s < Cortllhlles -

Integrating by parts we then achieve

_2
HWHL%(B)gCmod(L)z(]+B°)V0_2_ﬁ2ri+Bz T+ sup [ owe (LiDT() —LoT(h)
”hHLS(BJ:]

o 54+B,—2 1
< Cmyg d(L)Z(]+B°)y° 2=B2 T Bam3 + CméHW”Lyz(B).
1
Therefore, if m§ is sufficiently small, that is ¢ is sufficiently small, we deduce that

2
3 : 2(1 —2-B, .5+
(Wi < Créfwl 5 ) < Cmo dist(H) (1+Bo)vo=2=F2 121 B2

Proof of (6.65). The estimate follows easily from (6.64) and (6.66), recalling that ||.%1[|o <
1
Cmg. O

64 MAIN ESTIMATES ON THE INTERPOLATING FUNCTIONS

In this section we adopt the terminology of the previous subsection and we show that

Proposition 6.20. Assume the conclusions of Proposition 6.13 applies, let k = % and assume
€41 is sufficiently small, depending upon the other parameters. Then there exists a constant C =
C(My, No, Ce, Cn) such that for any cube H € # U .7, the following conclusions hold.
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(i) Lemma 6.7 applies and thus gy is well-defined.
(ii) The following estimates hold:

[t = Py (1)l 0By, (promny) < CGA(H) F ~B2e(H) P2 (6.76)
lgnllco < Cmid(H)+% 6.77)
IDgrlco +d(H)[D?gnllco + d(H)?[D3grillcx < Cméd(H)yo (6.78)
g —ulzi, win)lco < Cmg d(H)F ¢(H) + csd(H)® (6.79)
T — T () Gl < CmGd(H)Yo T Ho1g(H) =2 Vx € Ban,, (21, Wi) -

(6.80)

(iii) If Le # U, LOH # 0 and L(H) < £(L) < 20(H), then, for every 1 =0,...,3,
ID'gr —D'grillcogs,, (zem)) < CmEd(H)20+BolvoBa2 ()3 el (6.81)
(iv) fLe w U.% and d(H) < d(L) < 2d(H), then

ID3 g1 (zn, wh) — D3gp (zi, wi )| < szd( 2B yo=B2=215 51 %, (6.82)

where d(-,-) denotes the distance in *B.

6.4.1  Proof of (i) and (i1) in Proposition 6.20

We start by fixing H,L,] so that H € .U %/, L is an ancestor of H (possibly H itself) and
J is the father of L. We denote by B’ the ball Bgr](pH],T[H), by B the ball Bgy, (pHL, 7TH),
by C’ the cylinder Cgrl(‘p],T[H) and by C the cylinder Cg,, (pr, 7tH). Observe that B C B’
(this just requires M, sufficiently large, given the estimate [pj —pr| < 2v/2{(])) and thus
C C C’. We let A C B be the projection onto 7y of spt(Ty) N Gr(fyr) N Gr(fiy). Next, set
E:=E(Ty, C32r (P, 1)) and E' := E(Tj, Csory (pj, 7)) and recalling the argument in the
proof of Proposition 6.16, we get

E <Cmod(L)2Ye27201(L)2 7201 < Cmod(H)2vem2+201g()) 2% (6.83)
E/ <Cmod(J)2Y0 25 281¢()27281 < Cmod(H)2Yo 2#281¢(])2- 2% (6.54)
h(T,C) <Cmid(L)®—P2e(L)+P2 < CmId(H)E—P2g()+P2 (6.85)
h(T,C') <Cmyd()) ¥ F2()! P2 < Cmid(H)F ~Pae(y)' +F2. (6.86)

Next let K be the projection of Gr(fi) N Gr(fy j) onto py + 7 and, recalling the estimates
of Theorem 2.8 we achieve

[B\R| < Corf(EF(E+ Comorf) +E'#¢(E' + Comorf)) < Cmy™Pod(H)? T HPeve=2g()?,

In particular K is certainly nonempty, provided e4; is small enough, and thus we can use
the estimates of Theorem 2.8 on the oscillation of fi; and fiyj to conclude that

1 Y
[nofur —nofuylie(s) < Cm{)‘d(H)TO_BZEU)HﬁZ .
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Set therefore ¢ := 1o fiy; —n o fiyj and conclude that

_ 1
HCHLl(B) < HT] ofHL_nofH]HLOO(B) |B\K| < Cm(1)+f30+4d(H)YTO_GZ-FZ(]+[30)Y0—2£(I)5+52 .

If we define & = hyp — FLH] we can use (6.64) of Proposition 6.19 and the triangular
inequality to infer

In turn, again by Proposition 6.19, this time using the fact that #& = 0 and (6.67), we infer

IDY (e — Rurip)ll coy < Cd(H)2U HPo)=2=Bag()3+ B2t
< Cd(H)20+Rolvo=2=B2p(p)3+26=L  f5r1=0,1,2,3,4,
(6.87)
where B = Ber (pHL, H). Interpolating we get easily also
D3 (Rne — Rnp)lg o g < Cd(H)20HBo)Yom2=Bag(q)3 4, (6.88)

In case (b) of Definition 1.1 we have hy; = hy and hyy = hy j- In case (a) and (c), using
the system of coordinates introduced in the proof of Proposition 6.16 we have

hu (x) = (hye (x), Yo, (x, Ane (x))
hiy (%) = (huy(x), Yp, (x, hug(x)))

and we use the chain rule and the regularity of ¥, to achieve the corresponding estimates

ID (e — i)l o) < CA(H)2THRoYe=2g(1)3=L for1=0,1,2,3. (6.89)

D3 (e —hup)lg o g < Cd( )2(1+Bo)yo=2=Bap(y)3+K (6.90)
Fix now a chain of cubes H = H; C H;_7 C ... C Hy, =: L, where each H;, 1 is the father of
H;. Summing the estimates above and using the fact that {(H;) = 277 and ¢(H) < d(H) =
d(Hn,), we infer

ID(hie — hi)llcog) < Cd(H)2TFRo)YOT =L for1=0,1,2,3 (6.91)

D (e — )l o 8 Cd(H) (1+Bo)yo=Batw=2 (6.92)
where B = Béry, (PH, 7tH). Observe that, assuming that we have fixed coordinates so that

pH = (0,0,0) we also know, arguing as in the proof of Proposition 6.16, that, if we set
B := Bgr, (pHL, mH), then

Yo

_ 1
0 fll gy < CMEd(H)'F 7.

In particular, applying (6.66) of Proposition 6.19, we conclude

Yo

_ 1
”hHLHCO(B) g Cde(H)”T .
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Since the graph of fiy and the support of T coincide on K x it forasetK C Bgr,, (PH, 7TH)
whose complement has very small measure, on such set we have

1
Mo ful < Cmd(H) T —Pag(H) P2

(recall that py = 0 € spt(T)). On the other hand, given the bound on |K| and the oscillation
of fy, we conclude that

1 Yo
Mo fulli g, (pumn)) < Cmgd(H)2 Bag(H)3+h2

Using (6.64) we conclude

_ 1 Yo _
Il Bs,,, (prm) S CMgd(H)2 Bag(H)3+B2

Using next (6.66) we achieve

_ 1 Yo _
Ml (B, (prmn)) < CMgd(H) 2 Bag(H)T*P2, (6.93)

Using the estimates upon ¥, and the fact that ¥, , (0) = 0, D¥,, (0) = 0 we easily conclude

1 Yo _
hllie By, (prmn)) < CMgd(H) 2 Bag(H)! P2, (6.94)

Next, let py = (§,1n) € 1y X ﬁﬁ. Observe that py € spt(T) and thus, for every q €

1
spt(T) N Csry, (PH, TH), we must have [pr,, (q) — 1| < Cmgd(H)?*BZE(H)”BZ. Since the
graph of f and the support of T coincide on K x mi+ for a set K C Bgr,, (P, tH) whose
complement has very small measure, on such set we have

1
Mo fr —nl < Cmyd(H) 2 Pg(H)!+62

Given the Lipschitz bound on n o fyy, actually this bound is true over all Bgy,, (pH, 7tH)-
Next, by the smallness of ||hiy —n o fy||p1 there is at least one point x € Bgy,, (pH, 7tH) such

1
that [hy(x) — 1| < Cmgd(H)YTO_BZE(H)HBZ and we can the extend the same estimate to all
points in B7;,, (pH, 7tH) using the C° bound on hyy. We namely achieve

1
[hr —nllco < Cm3d(H) T Bag(H) 62, (6.95)

that is (6.76)
We next estimate the derivatives of hyy. Let E := E(Ty, Cy (pr,7H)) and recall the
discussion above and the estimates of Theorem 2.8 to conclude that

/B IDfyr[? < Cor?E < Cmod(H)2Ye—2H281g(1)4-281 (6.96)

_ 1

We thus conclude that [Dn o fyr |25 < CmZd(H)Ye~1+31 ¢(H)2~®1. We can now use the
_ 1 _

Lemma 6.18 to estimate ||[Dhyr |2 < CmZd(H)Ye~ "+ ¢(H)?~® and thus |[Dhy|/pr <

1 _
Cmj d(H)Yo—1+21 ¢(H)3~%1 If we differentiate the equation defining hy; we then find

Zndihiy = (La)y
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and we can thus apply (6.66) of Proposition 6.19, with v = Dhyy, to conclude that

ID'R < Cm2d(H)Yo 1#8g)2 8-t < cm2d(H)* 11 forl=1,2,3,4
HL”L‘X’(BGTL)\ mg (H) (L) s Lmg (H) orl=1,254,
(6.97)

where we used the fact, for the starting cubes L = Hn,, d(H) =d(L) < C{(L).

Arguing as above we achieve a similar estimate for hy;. We observe however that the
condition DV¥,,,(0,0) = 0 plays an important role (assuming to have moved the origin so
that it coincides with py). For instance we have

Dhyt = (Dhur, DxWpy, (%, e (x)) + DyWp,, (x, i (x))Dhie (x)) -

Thus we can easily estimate
1 _
IDhyr (x)] < Cm3d(H)Y° 4+ DV, (x, hr (x))]. (6.98)

1
Now, the second summand in (6.98) is estimated with ||D2\l’pH [6(H) < CmJd(H), precisely
because DY}, (0,0) = 0.

It follows by (6.89), (6.90), (6.97) and the triangular inequality that we have the uniform
estimates

1
IDh | co(py + d(H)[[D il cogp) +d(H)? D hl|cxp) < CmEd(H)Y® (6.99)

1
Recall now that, by Proposition 6.11 we have |t — 7o/ < Cmgd(H)Y°. We can therefore
apply Lemma 3.17 to the rescaling ki (x) := d(H)""hy(d(H)x) and conclude the existence
of the interpolating functions gy and that the estimates (6.78) hold.
Using now Lemma 3.17, together with (6.76), we finally get
1
llgn —pfto (pH)|lco < Cmd(H) 2 {(H). (6.100)

On the other hand p,(pH) = zn and since py € spt(TH) U Vy,,q, we conclude immediately
Ip#0 (pH) —ulzr, wh)| < csd(H)®. Combining this last estimate with (6.100) we conclude

(6.79).
Finally, recall that, if E := E(T, C32+,, (pH,7tH)), then
/ D < Cmod(H)2Yo—2+ 2824261
Bgr, (Pr,7tH)
from which clearly we get
/ Do ful? < Cmod(H)2Ye~2+281g(H)4-281
Bsry (PH,7TH)

By the estimate in Lemma 6.18, we deduce

/ |D]'_1H|2 < Cmod(H)2V0_2+25lQ(H)4—25] .
Bgry, (Pr,7tH)
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Thus we conclude the existence of a point p such that

DR (p)] < CmZd(H)YeT+81g(H)1=01 (6.101)

Assume now to be in the case (a) or (c) of Definition 1.1 and shift the origin so that it
coincides with pyy. Given the bound on D?hy; we then conclude

IDR(0)] < CmZd(H)Ye~1+810(H) =51

1
and, since DV, (0) = 0, we also have [Dhy(0)[ < Cméd(H)VO*”‘S‘B(H)]*f". Hence using

_ 1
the bound on ||D?hy|o, we finally conclude [Dhy(q)| < Cméd(H)VO*”f’1 ¢(H)"=%1 for all
q’s in the domain of hy. This implies the estimate

1
Tq Gy — 7l < CmZd(H)Yo T H21¢(H) = ¥p € Gr(hp) N Cery, (PrH, TH) -
Since however Gr(gy) C Gr(hy) N Cery (PH,TH), We then conclude (6.80). The same

conclusion for case (b) in Definition 1.1 follows directly from (6.101).

6.4.2  Proof of (iii) and (iv)

We observe first that (iv) is a rather simple consequence of (iii). Indeed fix H and L as in the
statements and consider H = H; C Hi_y C ... CHny,and L=1; C Lj_; C... C Ly, so
that Hy is the father of Hy41 and L; is the father of L. We distinguish two cases:

(A) If Hn, NIy, # 0, we let i and jo be the smallest indices so that Hy, N Lj, # 0;
(B) HNO N I—No =.

In case (A) observe that max{¢(Hi, ), {(L;,)} < d((zn, Wn), (zL,wr)) := d. On the other hand,
recalling that d(H;) = d(H), d(Ly) = d( ) and d(L) < 2d(H), by (iii) with 1 = 3 we have

i1

ID3gn(zr, wii) —D3gHiO (ZH, WH; I < Z ID3 g1, (21, Wit,) — D gy, (21,0 Wi, )|

=1,
i—1
<szd( )21 +Bo)vo—Ba—2p(H KZzlo Uk <Cm2d( )2(1+Bo)vo—Ba—2gx
1= 10
j—1
ID*gr(z1, wi) = Dgr; (21, wi, )l < D ID?gr, (2, wi,) —Dgr,, (21,0, Wiy, )]
1=jo
1 i1
nggd(L) (T+Bo)Yo—PB2— 2L Zz]o )k <szd( )2 (T+Bo)vo—B2—2 4«
1=jo

1
ID 3QL,O(ZL owi ) =D gu (zh,, Wiy )l < CmGd(Hy, )20 RoIYomBam2g(H; )%

<m(§d(H) (1+Bo)vo—B2—2 4K
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The triangle inequality implies then the desired estimate.
In case (B) we first notice that by the very same argument we have the estimates
1
ID?gri(zn, wh) — D iy, (ZHy, WHy, )| < CMEd(H)? (T Polve=Bam2qx
1
ID*gr (21, wi) = D?gry, (21, Wiy, )| < CMEd(H)?HRo)YoPam2 g

Next we find a chain of cubes Hn, =Jo,J1,...,Jn = Ln,, all distinct and belonging to FNo,
so that

e d(H) <d(Jv) <d(L) < 2d(H);

e JinJir1 # 0 and thus ¢(Hn,) < (J1) < €(Ln,);

¢ N is smaller than a constant C(Ng, Q).

Using again (iii) and arguing as above we conclude

|D39HNO (ZHy g WHN, ) — D3gLNO (ZLn, Wiy, )l

N
1
S Z |D39]1(Z’IL’WIL) - D39117] (21171 rWI, )< CNméd(H)ZUJrBO)Y()iBz*ZdK :

1=1

Again, using the triangular inequality we conclude (iv).

We now come to (iii). Fix therefore two cubes H and L as in the statement and set
T := TH. Observe that, by (i) and Lemma 6.24, it suffices to show that |[gy — gi /1) <

1
Cméd(H)yTO*zf(H)*r’*K. where B = B, (zr, o). Consider now the two corresponding tilted
interpolating functions, namely h; and hy. Given the estimate upon hy proved in the
previous paragraph, we can find a function hr : By (pL, 1) — ﬁﬁ such that GHL =

G, L Cer(pr,mH) (in this paragraph * will always denote the riparametrization on 7).

Obviously Gy, L Cr(zr, o) = Gg,. We can therefore apply Lemma 3.17 to conclude that

lgn — gl sy < Cllhu —ALllLt (Ba, (py i) -

Consider next the tilted interpolating function hyy; and observe that, by (6.87) and the usual
estimates on ¥, we know

1
HhH _hHLHL](BST(PH,ﬂH)) < Cméd(H)ZU+BO)Y0*E’2*Z€(H)5+62 )
Hence, since (32 > k, we are reduced to show
A 1
HhHL - hLHU (Bsy (Pr,7ti)) < Cméd(H)ZU’HsO)YO—Bz—ZE(H)S—l—K ) (6.102)

In turn, consider the m-approximating function fi and the 7y -approximating function
frL = fL. In the 7y X sy x Ty, £+ coordinates we set

fHL(x) = (Psq, (0 THL (X)), Wp i, (%, Pocy (M0 THL(X))))
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and recall that, by Proposition 6.19, we have
1
||hHL o fHLHL‘ (Bar, (prin)) < Cméd(L)ZU+BO)Y0*BZ*2€(L)5+BZ . (6103)

Similarly, in the 71 x s X TT,L):L coordinates we set

fL(x) = (s (Mo FL(X)), Wp (X, Psg (M 0 FL(X))))

and get

Ilhe — || szd([_) (T+Bo)yo—B2— ZE(L)5+BZ,

(Bgr (Pr,7T))

Next we denote by i the map e Bér, (PHL, TTH) — ﬂﬁ such that G%L =G¢ L Cor (pr,mH)
and we use again Lemma 3.17 to infer

||h’L7fL||L1 B6rL PHL, T[H CH‘h‘LifLHL1 BgrL ‘pL,T[L szd( ) 1+BO)’YO BZ ze( )5+[32 .
(6.104)

In view of (6.103) and (6.104), (6.102) is then reduced to
[Frr —fr | (Bsr, (Primn)) szd( )21 +Bo)Yo=B2=2(1)5Fx (6.105)

Consider now the map L Ber, (PHL, TH) — AQ(nﬁ) such that GfAL =Gy, L Cor (P, H).
Let A and A be the projections on py + 7 of the Borel sets Gr(fyr)) \ spt(T) and Gr(f) \
spt(T) C Gr(fr) \ spt(T). We know that

<Cm1+ﬁ0d( ) 1+[30h/o Zg( )

On the other hand, it is not difficult to see, thanks to the height bound, that |n o fyr —no
A 1
frlloo < Cmgd(H)yTO*Bzﬂ(H)HBZ. We thus conclude that

”nOfHL_nO?L"L](BsrL(pHL,nH szd( ) (T+Bo)yo—B2— Ze( )5—0—[32.

Define in the 7ty X s X TpH)ZL co-ordinates the function
g(x) = (Psay (M o FL(X)), Wpy, (X, Pieyy (M 0 FL (X))
We can thus conclude that
1L — 9lle (Bey, (prrm ) szd( )2(1Bo)vo=Ba=2p()>+h2 (6.106)

Thus, (6.105) is now reduced to

||9_%LHL‘(B5rL(pHL,7TH szd( ) (1+Bo)vo—B2— 22( )5+|<. (6.107)
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Denoting by An the distance |ty — 7|, by B the ball Bér, (PHL,H) and by B the ball
Bgr, (pr, 1), we then have, by Lemma 6.23

lg —Fullir(g) < Colose(fr) +rLAn) ( / DL + 72 (DY, 205, +An2)> -

Recall that DV, (pr) = 0 and thus HDWpLHéO(g) < Comor?. Recalling the estimate on
|t — 7| and upon the Dirichlet energy of fi, we then conclude

/ IDfy | + r{(qumuéo(B) + An?) < Cmod(L)2Yo—2+281g(H)4—2%1

On the other hand

1
osc (L) +rLAn < Cmid(H)F ~P2(H) P2

Thus (6.107) follows by our choice of the various parameters, in particular 3, —267 > % =K.

6.5 CONCLUSION OF THE PROOF: EXISTENCE OF THE CENTER MANIFOLD
6.5.1  Proof of (i)

As in all the proofs so far, we will use Cp for geometric constants and C for constants

which depend upon My, N, Ce and Cy,. Define x14 := 91 /(D_| ¢ 91) for each H € P (cf.

Definition 6.8) and observe that
> xnu=1lonAVkeN and |xullci < Col(H)™" Vvie{0,1,2,3,4}.
He %)

(6.108)

Fix any H € &) and let k be such that H C Ay. Set 2)(H) :={L € 22 : LN H # 0} \ {H} for
each H € 2. By construction 3¢(L) < ¢(H) < 2¢(L) and 27! < d(L) < 27%*! for every
L € &) (H). Moreover the cardinality of &) (H) is at most 13. Fix a point p = (z,w) € H and
observe that Ca12*k < |z| € Co27%. From (6.77) of Proposition 6.20 we then conclude

7 1
5z w)l < Cmgd(H)' " < Cmglel'*
1
Recall now that ¥(0) = 0, D¥(0) = 0 and ||D?¥||co < Cm}. Considering that

(P] (Z/W) = ((p] (Z/W)/W(Z/ @] (Z/W))) (6109)

(where @;(z,w) is the vector consisting of the first i components of ¢;(z, w)), we easily
conclude

R 1 Yo 1
1§5(z, W)l < CmlzI' T2 + C|D2Y| colzl? < Cmlz|' ™.

This gives (6.16) and the continuity of ¢j, since by definition ¢;(0,0) = 0.
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For (z,w) € H we next write

®j(z,w) = <9HXH + ) QLXL) (zw)=gux)+ Y  (gL—gnlx(zw),
LeZi(H) LeZi(H)
(6.110)

because H does not meet the support of 9| for any L € 9 which does not meet H. Using
the Leibniz rule, (6.108) and the estimates of Proposition 6.20, for 1 € {1, 2,3} we get

ID'®;llcoy < IDYgrllco+Co Y ) HgL_gHHCi(H)e(L)i_l
0<ilLezi(H
1 ) .
ngéd(H)Y0+‘—1+Cm2d(H) (1+Bo)vo—B2—2 Z O(H 3+[32—1€(H)1—1
0<igl

<CmZd(H)Yo+1-t.

1
Again using the formula (6.109) and the estimate ||V|| -3, < MmJ (together with D¥(0) =0
and ¥(0) = 0) we easily reach (6.17). With an argument entirely similar we obtain

1
[D3@jl,n < CmZd(H)Yo 2. (6.111)

Thus, pick any two points (z,w), (z'w’) € Ay. If they belong to the same cube H € & with
H C Ay, then

D3 (2, w) — D3 s (2, w)| <CmZd(H)~2d((z/, W), (z, )"
<Cm222%d((z/,w), (zw))* . (6.112)

If they do not belong to the same cube, then let H,L € P be two cubes contained in Ay such
that (z,w) € H and (z/,w’) € L. Next observe that, by our choice of the cut-off functions 9,
@; = g in a neighborhood of (z1, wy) and @; = gr in a neighborhood of (zr, wr ). We can
then estimate, using Proposition 6.20(iv) and (6.111)
D ;5(z,w) — D3 ;(z', W) < D> (z,w) — D3 gyt (211, wiy)|
+ D3 gz, wi) — D3gi (zr, wi )| + D3 @ (z, wi ) — D3 @j(z', W)
1
<CmZd(H) 2 (L(H)* + d((zm, W), (zr, wi))* + ¢(L)*))
1 1
<CmZd(H)2d((z,w), (z/,w')* < CmZ22*d((z/,w'), (z,w))*. (6.113)

From (6.112) and (6.113) we conclude (6.18) and thus the proof of Theorem 6.9(i).
6.5.2  Proof of (ii)

The first statement is an obvious consequence of the construction algorithm: indeed note
that, if i,j, k, L and H are as in the statement then &} (L) = #%(L) and moreover xj =0 on
H for any ] € 29\ £ (L) and for any | € &%\ &%(L). Then it turns out that ®; = Py on
H, which in turn obviously implies that ¢; and ¢y coincide on H.
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As for the second statement, if we can show that there is a uniform limit ¢ for ¢;, the C3
convergence and the regularity of ¢ will follow from the estimates of point (i). Fix a point
(z,w) # 0 and let H € 22 which contains it. If H € #" and i < j — 2, then ¢j41 and ¢;
coincide on it. Otherwise we can assume that H € 7~ 1 U %J. In this case we can estimate

1 .
l9;(z, W) — @j(zn, wi)l < Cmgd(H)*E¢(H) < C27).

A similar estimate holds for ¢j1: notice that we can choose L € 21+1 such that (z,w) € L
and L is either H or a son of H. Moreover, we can estimate

@j1(z,W) — @511 (z, wi )| < C277.

Next, recall that @;(zy, wn) = gn(zn, wn) and that @;1q(z;, wi) = gr(zr, wr). Since
moreover L = H or L is a son of H, by Proposition 6.20 we achieve

|@j11(z0, wi) — @j(zi, wi)| < Col|Dgnt| col(H) + Cllgn — g |[co < C277.
Summarizing, we conclude that
@541 — @jllco < C27.

The latter estimate gives that ¢; is a Cauchy sequence in C° and thus that it converges
uniformly to some @.

6.5.3 Proof of (iii)
Observe first that, if (z, w) does not belong to some H € #/, then ¢@(z, w) is necessarily a
point in the support of T and we can estimate

lp(z, W) —u(z,w)| < cslz®. (6.114)

In fact, in this case for every j > Ny there is H; € ./ J such that (z,w) € Hj. Observe that
©j(zn;, Wi;) = gn; (z1;, wi;) and that

Jim (dl(zn;, wiy), (W) + |gn; (zH;, wi) — @(z,W)]) =0.
But we also have

)1320 [(zr;, g1, (215, Wiy)) — Pyl = 0.

On the other hand, since

we then conclude (6.114) taking the limit in j — oo.
From now on we therefore assume that (z, w) € H for some H € 7.

Step 1. In this step we show that
0(H) < Cod(H)®P+1)/2 (6.115)

In fact we claim that this is the case for any H € . First of all we observe that it suffices
to show it for H € #. U #4: given indeed any H € #; we find a chain of cubes H =
Hy, Hi—1,..., H;i with the properties that
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* HyNHip1 #0;
* ((Hyx) = 26(Hx11);
e Hie #yforany l > i+ 1and Hy € # U #4,.

It is easy to see that, provided M is larger than a geometric constant, 3d(H) < d(H;) <
2d(H). Since {(H) < %B(Hi), it suffices to show ¢(H;) < Cod(Hy)(P+1/2,
Next, assume H € #.. Then we know that

1
E(Ti, By) > Cemod(H)2Yom2+2010(H)27281 > ComZd(H)2Yo2¢(H)2. (6.116)

Now recall that d = |zy| < 2v/2d(H). Moreover, if Ty were larger than %d(b“ )/2  then by
(2.24) there would be a 7t such that (recall that C2 my)

E(Ti, By, 1) < mod(H)?Y 21,
By Lemma 6.12(i), we then would have
E(Ti, B (m)) < mod(H)?Y 21§, + Comory < C(Mo)mod(H)?Ye~2¢(H)? (6.117)

(recall that yo < ). Thus we conclude that (6.117) contradicts (6.116).
It remains to show (6.115) when H € #4,. Assume therefore that vy > %d(b“)/ 2. As
above observe that we know

E(Th, Bu, 7mH) =E(Th, By) < Cmod(H)2Y ~2¢(H)? (6.118)

whete the constant C does not depend on H. We thus conclude from Lemma 6.12 that

it — 7l < CmZd(H)YTe(H). (6.119)

We next wish to estimate h(Ty, By, ).  is tangent to Gy, at qu = (z1, w(zn, wh)). For
simplicity shift the coordinates so that qq = 0 and recall that [pny| = [pn — qul < csld|®.
Fix a point p € By Nspt(Ty) and recall that there is a point p’ in Gr(u) N Vi such that
Ip—p’l <2949, since |pr,(p') = %. Obviously [px(p’)l < 2ry and since 7 is tangent to
Gr(u) at 0, we have the estimate

PP/ < Comgd™ ' Ipa(p/)2 < Cmdd(H)* T ¢(H)?.
We can therefore estimate
[P (p)l < CmZd(H)* " ¢(H)? + Cmd(H)®
This implies the estimate
R(Tr, B, ) < CmZd(H)* " ¢(H) + CmZd(H)® | (6.120)

Using now Lemma 6.12 and (6.119) we then estimate

R(Th, Br) < CmZd(H)*~T(H)? + CmZd(H)® + CmZd(H)Y~Te(H)?, (6.121)
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where C depends upon My, Ng and Ce, but not upon Cy,.
On the other hand, since H € #4,, we then have

h(Tyt, Bry) > Comg d(H)YoB2g(H)'+62 (6.122)

By our choice of the exponents it is obvious that the first and third summand in (6.121) are

1

smaller than a fraction (say %) of Chméd(H)YO_Bzﬂ(H)Hﬁz, provided that Cy, is chosen
large enough. Recalling that we are assuming ¢(H) > Cd(H)'+?)/2, to achieve the same
conclusion with the second summand we need

1+b

7 (1+B2)—B2+vo<a.

However, since a > b, the latter inequality is implied by (6.2), and we reach a contradiction.

Step 2. Recall that we have fixed (z,w) € H with H € # and that our aim is to establish

(6.19). From the previous step we know that {(H) < Colz|("*t?)/2 and that d(H) < Colzl.
Assume H € #7 and pick any k > j + 2. By (ii)Theorem 6.9, we know that ¢ = ¢y on H.

Recalling the arguments above (in particular (6.81)), we also have
1 1 (3+x)(
los—gnllce < Y llgn—gullco < Cmgd(H)"Yo 2 Prg(H)3 ¥ < Cmgave 2+
LeZ¥(H)

Since yo —2+ (3+«k)(b+1)/2 > v+ 3% — % > vo + b, it suffices then to show that

1 /
u(z, w) — gnl(z,w)l < Cmglz|* . (6.123)

We next consider both u and gy as two functions defined on 7y and having defined the ball
B := B+, (zn, 7o), our goal is indeed to show that

1 /
[uw—gnllcorpy < Cmgd(H)* .

Recall next that the graph of gy is indeed a subset of the graph of the tilted interpolating
function hy. If v : Bgr,, (pH, 1) — Tcﬁ is the function which gives the graph of u in the
system of coordinates 7t x nﬁ and we set B’ := Bgy,, (pr, 71 ), we then claim that it suffices
to show

!’

1
[v—"hullcogy < Cmgd(H)® . (6.124)

1

In fact let p = (¢, g1 (Q)) € mp % 7roL and let w € mybe such that p = (w, hy(w)) € my x 7.
Consider also q = (¢, u(z)) and q’ = (w,v(w)) and let ¢’ € 7y such that q’ = (¢, u(l’)).

Let T be the triangle with vertices ¢, p and q’. The angle 6, at p can be assumed to be
1

small, because | — o] < CmJ. On the other hand the angle 84 in q is close to 5, since
the Lipschitz constant of u is small. Thus the angle 8/ is also close to 5. From the sinus
theorem applied to the triangle T we then conclude

sin Gq

hw(Q) —gn(Q) =Ip—ql = ‘Ip—q'l. (6.125)

sinfq
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By choosing €47 small we then reach

lw—gnllcors) < 2|lv—"hullcory -

As usual, we assume now to have shifted the origin so that py = 0. Recall that ¥,,,(0) =0
and DY}, (0) = 0, so that we can estimate

_ _ 1

Ihi—n o fullcosry < Collr —m o fiillco + CMZL(H)2.

Using now Proposition 6.19 we then conclude
1

lhi —n o frllcopry < Cmod(H)?Yo~2e(H)? + Cme(H)2. (6.126)

Since ¢(H) < d(H)(1+P)/2 we again see that (6.124) can be reduced to the estimate
1 /
||T] ofH _VHCO(B’) < Cméd(H)a . (6127)

We will in fact show such estimate in the ball B := Bgr,, (pH,7tH). Consider a point p €
spt(Tr) N Cgry, (P, 7tH) and let p = (M) € 7o % ﬁé. We also let q be the point (¢, u(C)) and
q' = (w,v(w)) € Ty X ﬂﬁ, where w = pH(p). The argument above can be applied literally
to the triangle T with vertices p, q and q’ to conclude that

1
p—a'l < 2lp—q < Cmgd(H)°.

Recall that, except for a set of points w € A of measure no larger than Cmod(H)2Yo—2¢(H)4,
the slice (T, pr,,, w) coincides with the slice (G¢,,, P, w). Thus on the set A we obviously
have

o fiw) —v(w)| < CmZd(H)°.

Now, for any point w ¢ A there is a point w’ € A at distance at most d(H)Yo—T¢(H)2. Since

both Lip(v) and Lip(n o fy) are controlled by mé , this gives the estimate

Mo fi—vllcor < CmId(H)® + Cd(H) Y~ ¢(H)2.
On the other hand, since ¢{(H) < CA(H)(**t1)/2 and a > b+ 1, we easily see that
Yo+b

1
mofu—vlcopy < Cmgd(H)

This completes the proof of (6.127) and hence of (6.19)

6.6 APPENDIX A: DENSITY AND HEIGHT BOUND

In this appendix we record two estimates which are standard for area-minimizing currents
and can be extended with routine arguments to the three cases of Definition 1.1. Both
statements are valid for general m without additional efforts and we therefore do not restrict
to m = 2 here. Consistently with [24, 18] we introduce the parameter Q, which equals
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* A =||Ax|co in case (a) of Definition 1.1;
« max{||dw||co, | Az |co] in case (b);
e CoR " in case (c).

Lemma 6.21. There is a positive geometric constant c(m,n) with the following property. If T is a
current as in Definition 1.1, where Q < c(m,n), then

IT(Bp(x)) = wm(O(T,p) — 2)p™ = wmip™  V¥p € spt(T),vr € dist(p,dU). (6.128)

Proof. By [24, Proposition 1.2] ||T|| is an integral varifold with bounded mean curvature in
the sense of Allard, where CQ) bounds the mean curvature for some geometric constant
C. It follows from Allard’s monotonicity formula that e“<*7||T||(B(x)) is monotone non-
decreasing in v, from which the first inequality in (6.128) follows. The second inequality
is implied by ©(T,p) > 1 for every p € spt(T): this holds because the density is an upper
semicontinuous function which takes integer values || T||-almost everywhere. O

For the proof of the next statement we refer to [20, Theorem A.1]: in that Theorem T
satisfies the stronger assumption of being area-minimizing (thus covering only case (a) of
Definition 1.1), but a close inspection of the proof given in [20] shows that the only property
of area-minimizing currents relevant to the arguments is the validity of the density lower
bound (6.128).

Theorem 6.22. Let Q, m and n be positive integers. Then there are ¢ > 0,c¢ > 0 and C geometric
constants with the following property. Assume that 7y = R™ x {0} € R™*™ and that:

(h1) T is an integer rectifiable m-dimensional current as in Definition 1.1 with U = Cy(x¢) and
Q<

(h2) 0TL Cy(xp) =0, (pno)ﬁTLCr(XO) = Q [[Br(pﬂo (XO))]] and E :=E(R, C+(x0)) < e.
aThen there are k € IN, points {y1,...,yx} C R™™ and positive integers Q1, ..., Qx such that:

(1) having set 0 := CEzm, the open sets S; := R™ x (yi+] —ro, ro[™) are pairwise disjoint and
spt(T) N Cr(1—oj10g E[) (X0) C Ui Sy

(i) (Pro)t[TL(Cr(1—ol10gE) (X0) N Si)] = Q4 [{Brﬂfo'llogEl)(tho(XO)fWO)]] viefl,... k.

(iii) for every p € spt(T) N Cy (110 E|) (X0) we have O(T, p) < max{Qq}+ %

67 APPENDIX B: TWO TECHNICAL LEMMAS

Lemma 6.23 ([20, Lemma 5.6]). Fix m,n,land Q. There are geometric constants co, Co with the
following property. Consider two triples of planes (, s, @) and (7, 3, D), where

® 7t and 7 are m-dimensional;

* s and > are i-dimensional and orthogonal, respectively, to T and 7;
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* ® and ® l-dimensional and orthogonal, respectively, to 7t X s and 7t X .

Assume An = [n— 7|+ | — 3 < coand let ¥ : mx 3 — @, ¥V : T x x — @ be two maps
whose graphs coincide and such that [¥(0)| < cor and HD‘PHCO < cp. Letu: Bgr(O ) — AQ(‘)
be a map with Lip(u) < co and |[ul|co < cor and set f(x) = Y ;[(ui(x), ¥(x,ui(x)))] and
f(x) = (mou(x),¥(x,now(x))). Then there are

® amap 0 : By (0,71) = Aq(s) such that the map f(x =3 ;[ W(x,0i(x)))] satisfies
G; = GrLCy4r(0,m)

* and a map f:Bur(0,7) — 5 x @ such that G; = Gl C4 (0, 7).
Finally, if g(x) :== (mo(x), ¥Y(x,n o(x))), then
IF—gllLr < Co ([Ifllco + rAn) (Dir(f) + ™ (|ID¥||Zo + An?)) . (6.129)
The proof of this Lemma can be found in [20, Appendix D].

Lemma 6.24 ([20, Lemma C.2]). For every m, v < s and « there is a positive constant C (depending
on m, k and £) with the following property. Let f be a C3* function in the ball B C R™. Then

IDflcos,) < Cr I fllue, +CP I Mp,  Wel0 123 (6130)

Proof. A simple covering argument reduces the lemma to the case s = 2r. Moreover, define
fr(x) := f(rx) to see that we can assume r = 1. So our goal is to show

3
Z IDIf(y)| < C||f — g1 + CID3fl, Wy € By, ¥f e C3<(B,). (6.131)
By translating it suffices then to prove the estimate
> IDI(0) < Cfll1(s,) + CID e, Ve C¥ (By). (6.132)

Consider now the space of polynomials R in m variables of degree at most 3, which we write
as R = stzo A;xJ). This is a finite dimensional vector space, on which we can define the

norms [R| := Zj3:o |Aj] and ||R]| := fB1 IR(x)| dx. These two norms must then be equivalent, so
there is a constant C (depending only on m), such that |R| < C||R|| for any such polynomial.
In particular, if P is the Taylor polynomial of third order for f at the point 0, we conclude

3
Dm ) =Pl < CHPH—C/ POl dx < Cllflr s, + CIF— Pl s,

< C||f|ly1 + CID3f]. 0O
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In what follows we assume that the conclusions of Theorem 6.9 apply and denote by M
the corresponding center manifold. For any Borel set V C M we will denote by [V] its
H?-measure and will write [}, f for the integral of f with respect to 32. B,(q) denotes the
geodesic balls in M. Moreover, we refer to Chapter 3 for all the relevant notation pertaining
to the differentiation of (multiple valued) maps defined on M, induced currents, differential
geometric tensors and so on.

7.1 ESTIMATES, SEPARATION AND SPLITTING

We next define the open set
(V) V={(x,y) :x € [—1,1]% and lo(x,w) —y| < cslx|®/2}).

V is clearly an horned neighborhood of the graph of ¢@. By (2.18), Assumption 3 and Theorem
6.9 it is clear that the following corollary holds

Corollary 7.1. Under the hypotheses of Theorem 6.9, there is v > O such that

(i) For every x € R? with 0 < |x| = 2p < 2, the set C,(x) NV consists of Q distinct connected
components and spt(T) C V.

(ii) There is a well-defined nearest point projection p : VN C4y — Gr(@), which is a C** map.
(iii) For every L € # with d(L) < 2r and every q € L we have spt((T,p, ®(q))) C {y :
1 y
(@ (q) —yl < Cmgd (L) FP2e(n)T ez},
(iv) (T,p,p) = Q[p] for every p € ®(I') N Ca \ {0}.

The main goal of this paper is to couple the branched center manifold of Theorem 6.9
with a good map defined on M and taking values in its normal bundle, which approximates
accurately T in a neighborhood of the origin.

Definition 7.2 (M-normal approximation). Let r be as in Corollary 7.1 and define
U) U:=p (CrNBQ).
An M-normal approximation of T is given by a pair (X, F) such that

(A1) F: C2r NBg — Aq(U) is Lipschitz and takes the form F(x) = 3 _; [x + Ni(x)], with
Ni(x) L TeM and x + Nj(x) € X for every x and i.

(A2) X C M is closed, contains d)(r N Cy:) and T Lp_1 (XK) = TL]:)_1 (X).
The map N =3 ; [Ni] : M — Aq (R**™) is the normal part of F.
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In the definition above it is not required that the map F approximates efficiently the current
outside the set @ (TI"). However, all the maps constructed here will approximate T with a
high degree of accuracy in each Whitney region: such estimates are detailed in the next
theorem. In order to simplify the notation, we will use ||N|y||co (or |[N]y|o) to denote the
number sup, ., G(N(x), Q [0]) = sup,, .y IN(x]I.

Theorem 7.3 (Local estimates for the M-normal approximation). Let r be as in Corollary 7.1
and U as in Definition 7.2. Then there is an M-normal approximation (X, F) such that the following
estimates hold on every Whitney region £ associated to L € % with d(L) < r:

1
Lip(N|z) < Cmg’od(L)BOVO QL)PoYe and  |IN|g|co < Cmgd(L)%"*Bze(L)”ﬁa

1
LN+ [T =T (p~(£0)) < Cmg*Bod(L) T+ Po)(2vom2e201] e(L)2+“+B°“2—251§,7 |
(7.2)
[ DN < emo (e gyt 73)
Moreover, for every Borel V C L, it holds
[ moNI< Cmod (121 Balvo2-Ba 3 pa/1
v
" Cm§+|30 d(L)2BoYotyo—1=B2 o )1+B2 /\7 G(N,Q[moN]). (7.4)

The constant C = C(My, Ny, Ce, Cy) does not depend on €.

7.1.1  Separation and splitting

We conclude this section with two theorems which allow us to estimate the sidelengths of
the squares of type #4, and #.. The squares in #;, do not enjoy similar bounds, but they can
be partitioned in families, each of which consists of squares sufficiently close to an element
of #e.

Proposition 7.4 (Separation). There is a dimensional constant C* > 0 with the following property.
Assume the hypotheses of Theorem 7.3, and in addition C;. > C*Ce. If €41 is sufficiently small, then
the following conclusions hold for every L € # with d(L) < r:

(S1) ©(TL,p) < Q — 7 for every p € Bigr, (pr).
(S2) LNH = 0 for every H € #;, with ¢(H) < 1e(L).
1
(S3) S(N(x),QMoN((x)]) = Crnm} d(L)F —B2g(1)"+B2 vx € D@ (Byg(r)(zL, wr))-
A simple corollary of the previous proposition is the following.

Corollary 7.5 (Domains of influence). For any H € #;, there is a chain L = Lop,..., L, = H
such that
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(a) Lo € We and Ly € Wy, forall k > 0;

(b) Lic N L1 # 0 and 0(Ly,) = =) for all 1> 0.
In particular H C B3ﬁe(L)(zL,wL).

We use this last corollary to partition #;,.

Definition 7.6 (Domains of influence). We first fix an ordering of the squares in %, as {Ji}ien
so that their sidelengths do not increase. Then H € #;, belongs to #;.(Jo) (the domain of
influence of Jo) if there is a chain as in Corollary 7.5 with Ly = Jo. Inductively, #,(],) is
the set of squares H € %4, \ Ui+ #n(]1) for which there is a chain as in Corollary 7.5 with
Lo =Jr.

Proposition 7.7 (Splitting). There are constants C1,C2(My), T(Mo, No, Ce) such that, if My >
Cy, Ce = Co(My), if the hypotheses of Theorem 7.3 hold and €41 is chosen sufficiently small,
then the following holds. If L € W, with d(L) < ¥, q € B with dist(L,q) < 4v2¢(L) and
Q= Q)(Bg(]_]/g(q)), then:

Comio d(L)2Y0 24281 (1)4252 < ¢(1)2E(T,, By) < C /Q DN, (7.5)

/ IDN|? < CE¢(L)%E(T,B) < / IN|Z, (7.6)

where C = C(My, Ng, Ce, Cph).

7.2 THE CONSTRUCTION OF THE APPROXIMATING MAP N

In this section we prove Corollary 7.1 and Theorem 7.3.

7.2.1  Proof of Corollary 7.1

Statement (i) is an obvious consequence of (2.18) and (6.19). As for statement (ii), the
argument is the same given in the proof of Lemma 2.15 for the existence of the nearest point
projection P : V,, o N C1 — Gr(u).

For what concerns (iii), let L € #/, denote by (z1,wy ) its center and set p := ®@(q) We start
by observing that spt((T, p,p)) C spt(Ty) for some ancestor | of L, given the thickness of the
horned neighborhood V and the estimates in Theorem 6.9. We next claim that

spt((T,p,p)) C B+ (p). (7.7)
Assuming this for the moment, recall that we have already shown the estimate
Lo \1+B
@ —grllcory < Cmy’ £(L) 772,

cf. the previous section. Recall also that the graph of g; coincides with that of h; and that
we have shown

1
Ihe —nllco < CmId(L)FP2g(r)'+P2,
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where (&,1) € m. x ni{- are the coordinates for pi, cf. (6.95). Since spt(Ty) N Cgr (pr,m) C

spt(Tr ), we must then have spt((T, p,p)) C spt((T,p,p)) N B+ (p) C spt(Tr) N Csr, (pr, 7).
Recalling that p; € spt(Ty) and that we have the bound

1
R(Te, Car, (pr,m)) < Cmdd(L) T —Pae()1 462,
we conclude that no point of spt((T, p, p)) can be at distance larger than
1
mid(L) T Bag(r)' 62

from the graph of hy. Putting all these estimates together, no point of spt((T,p, p)) can be at

a distance larger than méd(L)yTO*Bzﬁ(L)”BZ from Gr(¢). Since for every p’ € spt((T,p,p))
the point p is the closest in the graph of ¢, this completes the proof of (iii), provided we
show (7.7).

If (7.7) is false, there is a p” € spt((T, p, p) and an ancestor ] with largest sidelength among
those for which [p’ —p| > r] Let 7t be the tangent to M at p and observe that we have the

estimates |7 — 77| < CmO and |t — 7| < Cmé If ] were an element of .#No, the height
1
bound would imply [p’ —p| < Cmj r}ﬂ/o. If ] ¢ .#No and we let H be the father of ], we then

1
conclude that q € By and thus we have [p’ —p| < Ch(T,By) < Cmé(’,(H)”BZ. In both cases
this would be incompatible with [p” —p| > rj = 3¢, provided €41 < ¢(B2,52, Mo, No, Ce, Cn)

We next prove (iv). Fix a point (z, w) € 8 which belongs to " and set p := (z, @(z,w)) =
@ (z,w). To prove our statement we claim in fact that:

Q [T, M] is the unique tangent cone to T at p (7.8)
spt(T) np ™' ({p)) = {p}- (7.9)

By construction there is an infinite chain Ly, D Lny—1 D ... D Ly D ... where (z,w) € L €
S for every i. Set 7r; := 71, By our construction and the estirnates of the previous sections,

it is obvious that rrp, — 7w = T, M. In fact since |y, — 7y Cm |z|[Yotor1=Tg(L )T+ we

i+1 |
easily infer

i | < Cm Yoo =lg(ry) 1+, (7.10)

On the other hand by the height and excess bounds, it also obvious that Ty, converges,
in By, to Q [n]. Since r, /r1,,, = 2 and pr, — p (in fact |@(z,w) —pLi| < C27Y), (7.8) is
then obvious.

Assume now that (7.9) is false and let p’ € spt((T, p,p)). Again by the height of V it
turns out that p’ € spt(TLNO ). Let j be the integer such that 2797zl < p —p') € 2772, By
the height bound in C,,(0, 7o) it follows that, if e47 is sufficiently small, then certainly
j = No + 2. This means that there is an L; such that p’ € By, and obviously {(L;) < Clz|2—7.
Recall that spt(TLNO) N By, C spt(Tr,) On the other hand, by (7.10), we have

i+1

1
p—p’I < (14 Clrr, —7DR(Tr, Br,) < Cmd(Ly) S Bag(Ly) +P2 < Cmylzl'* F 277

Since the constant C depends upon the parameters Cy,, Ce, Mo and Ny, but not upon €41,
the latter bound contradicts [p —p’| > 277! provided e47 is chosen sufficiently small.
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7.2.2  Proof of Theorem 7.3: Part |

We set F(p) = Q [[p] for p € @(T). For every L € #7 consider the 7t; -approximating function
fr : Cgr (pr, ) — AQ(nf) of Definition 6.4 and Ki C BgTL (pr, L) the projection on 711 of
spt(T) N Gr(fy). In particular we have GmKL =Ty L(Ky x 7t +). We then denote by Z(L) the
portions of the supports of Ty and Gr(f1 ) which differ:

2(L) = (spt(TL) UGr(f1)) N [(Bsy, (pr,m) \ Kp) x 7] .

Observe that, by Theorem 2.8 and our choice of the parameters, for E := E(T, C32+, (p1, 7)),

we have

H™(2(L)) < CEPO(E +¢(L)*mo)e(L)?
C

<
< m1+f30d( )1+f30)(2Yo—2+251)g(]_)2+(1+f30)(2—251)

(7.11)

Let £ be the Whitney region in Definition 6.10 and set £’ := ®(]) where ] is the cube
concentric to L with £(]) = %E(L). Observe that the graphical structure of @, our choice of
the constants and condition (NN) ensure that

LNH=0 <« L'NnH'=0 VHLew, (7.12)
OTr)NL' =0 View. (7.13)

We then apply Theorem 3.18 to the map fi, the plane 7t the center manifold ¢ as a graph
over 7 to obtain maps Fr : L' — Aq(U), Np : L' — Ag(R™'™) with the following
poperties:

* Fip) =2 [p+(NuL)ilp)],
* (Np)i(p) L T,M for every p € £’
e and Gy, L(p~ (L) =T, L(p~ (L"),

For each L consider the set #'(L) of elements in " which have a nonempty intersection with
L. We then define the set X in the following way:

x=mnc)\ (U (en U Pl n))- (7.14)

Lew Mew (L

In other words X is obtained from M by removing in each £’ those points x for which there
is a neighboring cube M such that the slice of T¢,, at x (relative to the projection p) does

not coincide with the slice of T. Observe that, by (7.13), K contains necessarily I'. Moreover,

recall that Lip(p) < C, that the cardinality # (L) is bounded by a geometric constant and
that each element of #/(L) has side-length at most twice that of L. Thus (7.11) implies

LAKI<IENKI< Y > [Tull(2(H)

Me# (L) He# (M)

gcméﬂ-ﬁod( ) 1+ﬁo)(2Y0—2+251}Q(L)2+(1+f50)(2—251) . (7.15)
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By (7.12), if ] and L are such that ' NL" # 0, then ] € #(L) and therefore Fi = Fj on
KN (3" NL’). We can therefore define a unique map on X by simply setting F(p) = Fr (p) if
p € XN L' Notice that T = TL p~ ' (X), which implies two facts. First, by Corollary 7.1(iii)
we also have that N(p) := ) _; [Fi(p) — p] enjoys the bound

1
INgracllco < Cmd d(L) B2 (L)' P2,

Secondly,

ITIp'e\x)< > Y Tull(2H

MGW L) He® (M)
<CmO+B°d(L) 1+Bo)(27072+261)e(L)ZJrUJrBo)(Z*ZEI) ) (7.16)

Finally, since M is given on 71 as the graph of hi, the Lipschitz constant of N can be
estimated, using Theorem 3.18 and (6.97) with L = H, by

Lip(Np) < (HD hi|lco [[N]lco 4 [[Dhi|[co + Lip(f)) < C (mod(L)Y° LrLyvo)fe , (7.17)

so that our map has the Lipschitz bound of (7.1). Hence, F and N satisfy the bounds (7.1) on
K. We next extend them to the whole center manifold and conclude (7.2) from (7.16) and
(7.15). The extension is achieved in three steps:

* we first extend the map F to a map F taking values in Aq (V);

* we then modify F to achieve the form F(x) = i[x+ N;i(x)] with Ni(x) L T,M for
every x;

¢ in the cases (a) and (c) of Definition 1.1 we finally modify F to reach the desired
extension F(x) = ) ; [x + Nji(x)], with Ni(x) L T,M and x4+ Nj(x) € L for every x.

First extension. We use on M the coordinates induced by its graphical structure, i.e. we
work with variables in flat domains. Note that the domain parameterizing the Whitney region
for L € # is then the cube concentric to L and with side-length 12¢(L). The multivalued map
N is extended to a multivalued N inductively to appropriate nelghborhoods of the skeleta of
the Whitney decomposition. The extension of F will obviously be F(x) = > ; [x + Ni(x)]. The
neighborhoods of the skeleta are defined in this way:

1. if p belongs to the 0-skeleton, we let L € % be (one of) the smallest cubes containing it
and define UP := By(1),/16(p);

2. if 0 = [p,q] C L is the edge of a cube and L € # is (one of) the smallest cube
intersecting o, we then define U° to be the neighborhood of size } e1 ¢ of o minus the

closure of the unions of the U"™’s, where r runs in the 0-skeleton.

Denote by U the closure of the union of all these neighborhoods and let {V;} be the connected
components of the complement. For each V; there is a L; € # such that V; C L;. Moreover,
V; has distance cof(L) from 0L;, where c¢ is a geometric constant. It is also clear that if T
and o are two distinct facets of the same cube L with the same dimension, then the distance
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Figure 1: The sets UP, U° and V;.

between any pair of points x,y with x € U™ and y € U° is at least cof(L). In Figure 1 the
various domains are shown in a piece of a 2-dimensional decomposition.

At a first step we extend N to a new map N separately on each UP, where p are the points
in the 0-skeleton. Fix p € L and let St(p) be the union of all cubes which contain p. Observe
that the Lipschitz constant of N|gngt(p) is smaller than

C (mod(L)Yog(L)Yo)Pe
and that
1
IN| < CmJd(L)F P2g()'+P2,

We can therefore extend the map Nlyngip) to UP U (K N St(p)) at the price of slightly
enlarging this Lipschitz constant and this height bound, using Proposition 3.4. Being the UP
disjoint, the resulting map, for which we use the symbol N, is well-defined.

It is obvious that this map has the desired height bound in each Whitney region. We
therefore want to estimate its Lipschitz constant. Consider L € % and H concentric to L with
side-length {(H) = %E(L). Letx,y € H. If x,y € UP U (KX NSt(p)) for some p, then there is
nothing to check. If x € UP and y € U9 with p # q, observe however that this would imply
that p, q are both vertices of L. Given that L \ X has much smaller measure than L there is at
least one point z € LN X. It is then obvious that

S(N(x),N(y)) < §(N(x),N(z)) + §(N(z), N(y)) < C (mod(L) ¢(L)Y*)Pe (L),

and, since [x —y| > cof(L), the desired bound readily follows. Observe moreover that, if x is
in the closure of some U9, then we can extend the map continuously to it. By the properties
of the Whitney decomposition it follows that the union of the closures of the U9 and of X is
closed and thus, w.l.o.g., we can assume that the domain of this new N is in fact closed.
We can repeat this procedure with the edges of the skeleta, that is in the argument above
we simply replace points p with T-dimensional faces o, defining St(o) as the union of the
cubes which contain o. In the final step we then extend over the domains V;’s: this time
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St(V;) will be defined as the union of the cubes which intersect the cube L; D V;. The correct
height and Lipschitz bounds follow from the same arguments. Since the algorithm is applied
3 times, the original constants have been enlarged by a geometric factor.

Second extension. For each x 6 M let p ( ) : R™*™ — R™*™ be the orthogonal
projection on (TLM)+ and set N(x =Y .[pt(x,Ni(x))]. Obviously IN(x)] < IN(x)], so the
L* bound is trivial. We now want to show the estimate on the Lipschitz constant. To
this aim, fix two points p, q in the same Whitney region associated to L and parameterize
the corresponding geodesic segment o C M by arc-length v : [0,d(p, q)] — o, where
d(p, q) denotes the geodesic distance on M. Use Lemma 3.3 to select Q Lipschitz functions
N/: o — U such that N|;, = Y [N/] and Lip(N{) < Lip(N). Fix a frame vy, ..., vy on the

1
normal bundle of £ C M with the property that [|vi[co(z) < C[|[D@|[co < Cmgd(L)Y° and
1
[Dvillcorg) < C||ID?@||co < mZd(L)Yo~! (which is possible by [18, Appendix A], indeed
we do this in M\ {O}, where our manifold is C3Y° and then we extend N to be 0 in the
origin). We have N(y(t)) = 3_;[N;(t)], where
Ni(t) = Y v (v(t) - N{(v ()] v; (v (1))
Hence we can estimate
aN;
dt

CZ IDv; [|IN{]| co + Lip(N)] < C (mo d(L)Yo g(L)Y0)Po .

Integrating this inequality we find

S(N(p),N(q Z —N;(0) < C(mpd(L)" ¢(L)")Po d(p, q).

Since d(p, q) is comparable to [p — ql, we achieve the desired Lipschitz bound.

Third extension and conclusion. We still need to modify the map N in the cases (a)
and (c) of Definition 1.1. For each x € M C I consider the orthogonal complement s, of
TxMin T L. Let T be the fiber bundle U,y (o) 7« and observe that, by the regularity of
both M\ {0} and £, there is a C>Y° trivialization (argue as in [18, Appendix A]). It is then
obvious that there is a C%Y° map = : T — R™*" with the following property: for each
(x,v), q := x+ Z(x,V) is the only point in £ which is orthogonal to T,M and such that
Ps (g —%) = v. Let us denote by Q(x, q) the map =(x, P, (q)). This map extends to a C°Yo
map to the origin with the estimates

1
IDxQ(x, q)l < CmZx[Y™!  ¥x e B\{0} Vqwith|q| <1 (7.18)
1
ID2Q(x,q)l < Cm3x["°~%  wx € B\{0} Vqwith|q <1 (7.19)
We then set N(x) = ) ;[Z(x, Ps, (Ni(x)))]. Obviously, N(x) = N(x) forx € KX, simply because

in this case x + N i(x) belongs to Z
In order to show the Lipschitz bound, notice that, by the regularity of X,

1Q(x,q) = Q(x,p)l < Clg —pl. (7.20)
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Moreover, since Q(x,0) = 0 for every x € M C X, we have DxQ(x,0) = 0. We therefore
1
conclude that [DxQ(x, q)| < CmZ[x[Y*~1|q| and hence that

1
1Q(x, q) — Q(y, q)l < Cmg|x|Y°~|glly — x| . (7.21)

Thus, fix two points x,y € £; and let us assume that S(N(x),N(y))? = > NG (x) — N (y))?
(which can be achieved by a simple relabeling). We then conclude

SIN(X),N(y)? <2) 1Q(x,Ni(x) = Ox, Ni(y))? +2 ) 10(x,Ni(y)) — Oy, Ni(y))I?

1

1 A A ~
< CmZ §(RE), N(y)2 +ChP2 3 IR (y)Px — yl?

< C(mod(L)Yog(L)Ye)2Po [x —yf? (7.22)
+ Cmod (L)2Yo—2tvo—2B2p()2+2B2 )y _y2
< C (mod(L)Ye g(L)ve)?Pox —y|2, (7.23)

which proves the desired Lipschitz bound. Finally, using the fact that Q(x,0) = 0, we have
|Q(x,v)| < Clv| and the L* bound readily follows.

7.2.3  Proof of Theorem 7.3, Part I

In this section we show the estimates (7.3) and (7.4). We start with the first one. Fix a Whitney
region £ and a corresponding square L € . First consider the cylinder C := Cg, (pr,71),
the tilted interpolating function g; and the interpolating function hy . Denote by M the unit
m-vector orienting TM and by T the one orienting TG, = TGy, . Recalling that g and ¢
coincide in a neighborhood of (z;,wr) of L, by Theorem 6.9 we have

- 1
sup [T(z, g1 (zi, wi)) — M(p)| < C[[D?@il|co (L) < Cmgd(L)Yo~"e(L).
peMNC

On the other hand recalling (6.80) in Proposition 6.20, we have

1
i — T(ze, 9oz, wi))l < Cmgd(L)Yo~T+org(r)! =2,

This in turn implies that

- 1
sup |M — 7| < CmZd(L)Yo—!Forgr)! =21, (7.24)
CnM

Therefore, we can estimate
/ ITe () =M (p (x))I” || Te | (x)
P 1(L)
< C/ e IT(x) —M(p(x)1? d||T||(x) + Cmg)+B°d(L)2“+Bo)vO—2€(L)4
P (&

< / T(x) — 012 d|[T]|(x) + Cmod(L, )20~ 24281 (14281 (- 52)
P

“1(Ly)
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Since p~' (L) Nspt(Ty) C C, the integral in (7.25) is bounded by C¢(L)?E(T., C, 7). By
Proposition 3.50 we then conclude
2 T Y 2 2 2
JooNE<c [ T NP AT+l g o) f, N

< Cmod(L)?Yo 2281 g()*2%1 4 Cmo d(L)Yo2(L)* 262,

1
where we have used [|Ax|[co(cy\cy)a) < CMG dist(L,0)Y°~". This shows (7.3).

We finally come to (7.4). First observe that, by (7.1) and (7.2),
1
[ meN < emfdy b P x
L\K

< Cmg%o%dmm+Bo)(2w—z+zz‘>1 )+ (P —=B2)g(1)3+B2+(1+Bo) (2-281)
(7.26)

Fix now p € X. Recalling that Fr (p) = _; [p+ N;(p)] is given by Theorem 3.18 applied to
the map fi, we can conclude that

moNL(p)l < CmofL{pr (p) —Pr, (P)I+ CLip(Nele) [TpM — 7| [NL(p)

(7-24)
< CMmofL(pr () —Pix, ()l

+ Cmé“‘ﬁo d(L)BO 2v0—24261)+vo— 1+6]€(L)175]+Bo(27251) (727)
(S(NL(p), QMo NL(p)]) + QMo Nrl(p)) .
For ¢, sufficiently small (depending only on 32,v2, Mo, N, Ce, Cy), we then conclude that
MoNL(P) < CinofL(pr (p)) — Pt ()

+ Cm2+f30 d(L)BO 2v0—24281)+vo—1+98; e(L)1—5]+Bo(2—251)9(NL(p),Q [[n ONL(p)]])
(7-28)

Let next ¢’ : 1. — 7 such that G, = M. Applying Lemma 3.17 we conclude that
/ InofL(pm(p))—pn%(p))K/ mofL(x)— o' (x)] < Cllgr — @l o) UL)?,
KNV Py (KNV)

where H is a cube concentric to L with side-length {(H) = %E(L). Next assume L € #7 and
let k > j + 2. Consider the subset &2%(L) of all cubes in &% which intersect L and recall that
@ coincides with @* on H. Thus we can estimate

loi —grillLigy <C Z lgr = gtllLr (s, (prmo))
L'eZ%(L)
< Cmod(L,0)2(TFRolyom2=Bag(p)otr, (7.29)

where in the last inequality we used (6.81). We then conclude
@i — guillL1 (1) < Cmodist(L, 0)2(1TPo)yo=2=Bap(p )3+«

and (7.4) follows integrating (7.28) over VN X and using (7.26).
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7.3 SEPARATION AND SPLITTING BEFORE TILTING
7.3.1  Vertical separation

In this section we prove Proposition 7.4 and Corollary 7.5.

Proof of Proposition 7.4. Let ] be the father of L. By Lemma 6.5 and Proposition 6.3, Theorem
6.22 can be applied to the cylinder C := C3er,(py, 717). Moreover, [pj —pr| < C{(]), where C
is a geometric constant, and rj = 2rp. Thus, if M is larger than a geometric constant, we
have BL C Csaqr,(py, 717). Denote by qi, qj the projections p 4 L and p_, s respectively. Since
L € #4, there are two points p1,p2 € spt(Tr) N By such that

1
qL(p1 —p2)l = Comd d(L) T P2g(L)'+P2

On the other hand, recalling Proposition 6.11, |rr; — 7| < Cd(L)Yo—1+81¢(L)1—% where C
depends upon all the parameters except Cy, and e47. Thus,

lq5(p1 —P2)l = lqL(p1 —p2)l— ColmL — myllp1 — P2
1 _ 1
> Cpmdd(L) T P2 g(1)+B2 — CmZd(L)Ye T+ ()2 %

1 _ 1
> Comdd(L)? P2g(1) P2 — Cm2d(L) T P2 q(r) P2,

where Cy is a geometric constant and C a constant which does not depend on Cy, and e47.
Hence, if €47 is sufficiently small, we actually conclude

15 3 Yo_
dy(p1 —p2)l > 52Chmgd(L) 2 P2 e(L)T+e2. (7.30)

Set £ := E(Tj, C36+,(py, 7)) and apply Theorem 6.22 to Ty and C: the union of the corre-

sponding “stripes” S; contain the set spt(Ty) N C36T1“_CE21Z|IOgE|)(p],ﬂ])), where C is a

geometric constant. We can therefore assume that they contain spt(T.) N Czax, (py, 717). The
width of these stripes is bounded as follows:

1 1
sup {Iqj(x —y)l : x,y € S} < Co E%r] < Co Camd(L)2yo—2F280)/4g )1 +(2-281)/4

1 1
< CoCimid(L) P2 (L)' +P2

where Cy is a geometric constant. So, if C* is chosen large enough, we actually conclude
that p1 and p> must belong to two different stripes, say S; and S,. By Theorem 6.22(iii) we
conclude that all points in C34y,(py, 7ty) have density © strictly smaller than Q — %, thereby
implying (S1). Moreover, by choosing ct appropriately, we achieve that

1

7
sl =)l > Chmg d(L) T F2e1) P2 xe Siy €Sy, (731)

Assume next there is H € #;, with {(H) < %Q(L) and HNL # (). From our construc-
tion it follows that {(H) = % (L), d(H) < 2d(L), Bu C Czar(py,my) and |ty — myf <
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1 _
Cmg d(L)Yo—T+31¢(H)' %1 with C which does not depend upon Cy and &47. Hence choos-
ing €41 sufficiently small we conclude We then conclude

1
P (x—y)l > SCum{ d(L)% P2 (1)1 62

4
2 1
> %<E) * Chmd d(H)F ~Bag(H) 12
5 1
> JCamid(H) 2 Pa(H) P Wxe S yesy, (7:32)

where the latter inequality holds because vy < log, %. Now, recalling Proposition 6.11, if €41
is sufficiently small, C32r,, (p1, 71) Nspt(Ty) C By and spt(Ty) N By C spt(Tyy). Moreover,
by Theorem 6.22(ii) ,

(Pry )y (TyL(S5 N C32ryy (P, 7)) = Qj [B32ry, (P, )] for j=1,2, Q5 > 1.

A simple argument already used several other times allows to conclude that indeed

(P g (THL(S; N Ca2ry (PH, D)) = Qj [B32r, (PH, )] for j=1,2, Q; > 1.
Thus, By must necessarily contain two points x,y with

>

1
2 Cnmg d(H) 2~ Pre(H)! e,

But then the refining in H should have stopped because of condition (HT) and so H cannot
belong to #/,.

Coming to (53), set Q := (D(Bz\/az(l_) ((zr,wr)) and observe that ps(TL(QNS;)) =
Qi [Q]. Thus, for each p € K N Q, the support of p + N(p) must contain at least one point
P+ Ni(p) € S1 and at least one point p + Nz (p) € Sz2. Now,

7 1 _
N1 (p) = Na(p)| > gChmgd(L) % P2(L) P2 — Cot(L) [T, M — . (7:33)

Recalling, Proposition 6.20 and that M and Gr(gy) coincide on a nonempty open set, we easily
1

conclude that (see for instance the proof of (7.3)) [T, M — 7| < Cméd(L,O)yTo_BZQ(L)_[32

and, via (7.33),

S(N(P), QI oN(pI]) > 3N1(p) ~Na(p)] > S Crmid(1)® P2g(1)! P

Next observe that, by the property of the Whitney decomposition, any cube touching
Bzﬁe(L)((zL,wL)) has sidelength at most 4{(L). Thus

10\ K| < Cm(‘)+f50d(]_)(1+(50)(2Y0*2+251)Q(L)2+(1+ﬁo)(2*251)'
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So, for every point p € Q there exists ¢ € X N Q which has geodesic distance to p at

1, Bo
most CmSJr 2 d(1)1+Bo) (o= 1+381)g(1)(1+Bo) (1=81)_ Given the Lipschitz bound for N and
the choice 3, < %, we then easily conclude (S3):

5(N(q), Q1o N(Q)]) >3Crm d(1)® Pe(1) "+

3Bo 3Bo

— CméJr 2 QL) D voBag()1+B2

1 1
> Chmg d(L)F P2g(L) P2,

where again we need €41 < c(2,02, Mo, Ny, Ce, Cy) for a sufficiently small c. O

Proof of Corollary 7.5. The proof is straightforward. Consider any H € . By definition it
has a nonempty intersection with some cube ] € #7~: this cube cannot belong to #4, by
Proposition 7.4. It is then either an element of ¢ or an element H;_; € WT{-*]. Proceeding
inductively, we then find a chain H = H;,H;_1,..., H; = L, where H; N H;{_; # 0 for every
1, H; € #! for every T > i and L = H; € #!. Observe also that

=1 )
Ixp —xr| < Z XH; = XHg, | < VML) Zz_l < 2v/mi(L).
=i

1=0

It then follows easily that H C B3 /(1) (L) O

7.3.2  Splitting before tilting: Proof of Proposition 7.7

As customary we use the convention that constants denoted by C depend upon all the
parameters but €41, whereas constants denoted by Cy depend only upon m,n,# and Q.

Given L € “//ej, let us consider its ancestors H € .71 and Jes J=6 which exists thanks to
Proposition 6.3. Set { = {(L),t = mpy and C := Cs;(pj,7), and let f : Bgy, (py, 1) — .AQ(T[L)
be the m-approximation of Definition 6.4, which is the result of Theorem 2.8applied to
C32+(py, m) (recall that Proposition 6.11 ensures the applicability of Theorem 2.8 in the latter
cylinder).

The following are simple consequences of Proposition 6.11:

E = E(T}, Cazr, (py, 7)) < Cmod(L)2Yo2H201 2201, (7.34)
1

(T}, C,mn) < Cmd d(L,0) % P2g'+B2, (7.35)

¢ Comgd(L)2Vo=2+20102-281 |, (7.36)

where (7.36) follows from By C C, L € #, and % =2"°1In particular the positive constants
c and C do not depend on e47. We divide the proof of Proposition 7.7 in three steps.

1
Step 1: decay estimate for f. Let 2p := 64ry — Cméd(L)vTO*BZBHBZ: since py € spt(Tj),
it follows from (7.35) that, upon having chosen C appropriately, spt(Tj) N C2o(pH, TH) C
spt(Ti) N By C C. Observe in particular that C does not depend on ¢4, although it depends
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upon the other parameters. In particular, setting B = B, (x, ) with x = pr,, (pn), using
the Taylor expansion in Corollary 3.49 and the estimates in Theorem 2.8, we get

Dir(B, f) < 2|BIE(Tj, C2p (xH, 1)) + Cmé*ﬁo d(L,0)(1+Bo) (2v0=2+281) 2+(1+Bo) (2-281)
w2pZE(Th, By) + Cm) TPod(L) (1+Bo)(2yo=2+281)p2+(14B0) (2-251)

(7.37)

2
2

NN

Consider next the cylinder Cgay, (pr, 1), and set X' := px, (pr). Recall that [x —x'| <
IpH —pLl < Col(H), where Cy is a geometric constant (cf. Proposition 6.11), and set o :=
o4ry + Cl(H) = 32ry + CL(H). If A is the constant in (3.39) and M, is chosen sufficiently
large (thus fixing a lower bound for My which depends only on 61) we reach

A A 1
o< (;4-4) 64y < (1 —|—2) p—i—Cmg d(L)VTOiﬁz g1+f52 .

In particular, choosing €41 sufficiently small we conclude o < (14 A)p and thus also By C
Ci14a)p(pr, 1) = C’. Define B’ = B (1 1a)p(x,H). Set A := f5, D(mof), Ay — ﬂﬁ the
linear map x — A - x and 7 for the plane corresponding to G 5. Using Theorem 3.51, we can
estimate

;/ 9(Df/Q[[AH)2 >|B/|E(—I—]/C/,7_[)_Cm(])+f30d(]_)(1+[30)(2y0—2+26])£2+(1+[30)(2—26])
B/

>|B/|E(T],B]_, 7_[) o Cm(])+f30d(l_)(1+f50)(2y0—2+26] )€2+(1+[30)(2—26]]

>w,((1+A)p)2E(Ti, By)
_ Cm(1)+f50d“_)(1+Bo)(2vofz+261 )2+ (1+B0)(2-281)

(7.38)
Next, considering that By D By and that, by L € 7%2,
E(T, Br) > Cemod(L)?Yom 272012720,
we conclude from (7.37) and (7.38) that
Dir(B, ) < 2w2(20)* (1 +mg°)E(Ti, Br). (7:39)
| S(DEQIAD? > 2wa((1+N)p)(1 — CmfJE(Te, B ). (7.40)

Step 2: harmonic approximation. From now on, to simplify our notation, we use Bs(y)
in place of Bs(y, ). Set p := px, (py). Consistently with [24, 25, 19] we introduce the
parameter €2, which equals

e A =||Ax| co in case (a) of Definition 1.1;
o max{|da]lco, Az o} in case (b);

e CoR"in case (c).
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Then, from (7.36) we infer that, for any €3, > 0, if T is chosen sufficiently small, we then
have

1 11
81y Q < CUL)ME < e32 CamZ d(L)Yo THorg(L)! =21 e32E2, (7-41)

because £(L) < d(L) < 7. Therefore, for every positive 7j, we can apply [19, Theorem 1.6] (in
case (a) of Definition 1.1) and [25, Theorem 4.2] (in the cases (b) and (c) of Definition 1.1) to
the cylinder C and achieve a map w : By (p, tn) — AQ(nﬁ) of the form w = (u, ¥(y,u))
(in fact w = u in case (b) of definition 1.1) for a Dir-minimizer u and such that

(81) 2 / S(f,w)? + / (IDf|— Dw|)* <AE (877)%, (7.42)
BSrI (p) BST] (P)
| IDmen-Dmow)? <nE(sm)>. (7.43)
BSr] ('P)

In the cases (a) and (c) of Definition 1.1, by the chain rule we have D(¥(y,u(y))) =
> [Dx¥(y, uj(y)) + Dy¥(y,uj(y)) - Duj(y)], so that

/ ID(¥(y, w)P < Como / DUl + Comop?,
Biiaye(x)

B (1420 (x)

where Cy is a geometric constant. Consider now A := £ D(n ow), and observe that, since
Dmn ou = n o Du is harmonic, we have Dnou(x) = fB, 1n o Du. We can use (7.42) and (7.43),
together with (7.40) to infer, for €47 small enough,

/ 5(Dw, Q [D(n o w)(x)] )2

B (1520 (x)

> / $(Dw, Q[A])” — Comaop
B(142)p(x)

> [ 9(DRQIAI) - Comop’ — ConEp?
B(14ayp(x

>2w;((1+A)p)*(1— Cmf°)E(Tr, BL) — Comop® — CoREp?, (7-44)
Analogously, using (7.42) and (7.42), we easily deduce

/ IDU? < 202(20)2(1 + Ty By + Comap' + Conp? (7.45)

2pX

Now recall that, since d(L) =d(H) =d(]), and L € 7,

E(Ti, Br) > Cemod(L)2Vo2F201¢(L)272%1 > 22017 2E(Tyy, Bp),

and combining this with (7.45) and (7.44) we achieve

2 _ _
/ S(Du, Q [D(now)(x)])? = (2254 — cmfo) / IDul? — Comop® — CoEp?.
B (140 (%)

BZp (X)
(7-46)
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To estimate the last two errors in terms of the energy of u we use again L € %, to conclude

5 (7.40) 2 4 2
Ep” < CoE(T,Br) < Co IDu|= + Comyg p” + Cofikp
B

so that, for 7j < 2%20 we have

Ep? < Co / IDul? + Comg p*. (7.47)
B

P
Next, using once again, L € #, and this last inequality,
CO pz 2.2 _25 (7'40) CO
d(L)7 7Y "2E(T, Br) < <
Ce Ce Je,

_ o
Ce

IDf|?

T+a)p (%)

Compp* <

Co Co
Duf?2+ =2 440
Dl —i—Cemop —i—Ce

/

C C
fiEp? < 0/ IDu? + 2mep?.
Ce JB(1 a0 (%) Ce

Bia)p(x)
which for C, bigger than a geometrical constant implies

Co

IDul?. 48
Ce s, (7.48)

14a)p (%)

Comopp* <

We can therefore combine (7.46) with (7.47) and (7.48) to achieve

2 _ C _
/ 5(Du,QIDIew(M])’ > (29— 2 —cmfe—con) [ Dup.
B(14a)p(x) B2p (%)

e

(7.49)

It is crucial that the constant C, although depending upon (32,62, Mo, Ny, Ce and Cy, does
not depend on n and &41, whereas Cy depends only upon Q, m,7 and n. So, if C. is
chosen sufficiently large, depending only upon A (and hence upon 6,), we can require
that 2251—4 — % > 23%1/4-4 We then require 1] and €47 to be sufficiently small so that

€

2351/4—4 o Cmgo _ Cf] > 262—4.
We can now apply Lemma 3.33 and Proposition 3.34 to u and conclude

ol / IDul? < / G(Du, Q [D(nou])? < Cez/ S(u, Q [nou])?,
B (1420 (x) By/s(q) By/s(q)

for any ball B,s(q) = Byss(q,7m) C Bgr(p,7), where ¢ depends upon &, and My. In
particular, being these constants independent of €47 and C., we can use the previous
estimates and reabsorb error terms (possibly choosing €47 even smaller and C, larger) to
conclude

mo 02282 < GPME(T, By ) < C $(Df, Q [D(n o f)])?
Bess(q)

2 / S(f,Qnof])?, (7.50)
Bess(q)

(@

<



7.3 SEPARATION AND SPLITTING BEFORE TILTING

where C, C and C are constants which depend upon §,, My and Ce, but not on e47.

Step 3: Estimate for the M-normal approximation. We next complete the proof showing
(7.5) and (7.6). Now, consider any ball By,4(q, 7o) with dist(L, q) < 420 and let Q =
D (By/4(q,70)). Observe that p, () must contain a ball By ,3(q’, 7t), because of the estimates
on @ and |ty — |, and in turn it must be contained in Bgr, (p, ).

Let @’ : Bgy,(p, ) — 7l be such that G,/ = [M] and ®'(z) = (z, ¢’(z)). Since D(n o
f)(z) =n o Df(z) for a.e. z, we obviously have

/ 5(D1,Q Do 1)) < [ 5(D1,Q [De'])?. (7.51)
Byys(q’,mth) Bess(q’mn)

Let now Gy be the orienting tangent m-vector to Gy and T the one to M. For a.e. z we have
the inequality

Co Y 1G¢(f;(2) — (e’ (2))2 > §(Df(2),Q [De’(2)])?,
)

=

for some geometric costant Cy, because G £(fj(z)) —T(@'(2))] < mg °, Therefore

f (D1, Q2 [De'])? < cf 1Gr(2) — 7@/ (Pry (2) P G (2)
Bess(q’,mh) Cess(q’,mh)

< c]l T (2) — 2@ (Pry (2)) P Tl (2)
Ceys(q’,mmH)

n Cméﬂsod(u“+B°)(2v0_2+262)22+(2_252)(1“30)‘ (7.52)

Now, thanks to the height bound and to the fact that |T— 7| < Cmgd(L)YTO_W in the
cylinder C = Cy,3(q’, 7t11), we have the inequality

A,

P(2) — @' (Pry, (2))] < CmIT2A(L) Yo P202B2 vz e spt(T)N €.

1 A
Using the estimate D2’ (px,, (2)] < Cméd(L)vTO*] (which is valid for any z € spt(T) N C)
we then easily conclude from (7.52) that

][ S(Df,Q [De'])?
Bess(p,7th)
1
<C][ ITL(z) — 2(p(2)2d|| T||(z) + Cmg T 2d(L)2Yo—2-2B22+2B2
<C][ |TF —1(p(2))?d||Te||(z) + Cmy T Pod(1)2vo=2+28142=281

where we used (7.2).
Since, on the region where we are interested, namely (), we have the bounds [DN| <

1
Cmgod(L)BOYO, IN| < Cmgd(L)yTo_f52€1+f52 and [|An¢|[? < Cmod(L)Yo—2, applying now
Proposition 3.50 we conclude

][ T (x) — t(p(x)2d| Tel|(x) <(1 + Cm2Pod(L)2vePo) / DNP
P~1(Q)

+CmtEd(L)2vo-2-2B2g2 4262
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Thus, putting all these estimates together we achieve

mo d(L)2Yo—2+2012=282 < (1 +Cm§f3°d(L)2Vof50)][ IDNJ2 4+ CmyFPod(L)2vo 220102282
Q

(7.53)

Since the constant C might depend on the various other parameters but not on ¢47, we
conclude that for a sufficiently small 47 we have

mod(L)2vo-2+2612-28 ¢ c]f2 IDNP. (7.54)

But E(Ty,Br) < Cmgod(L)?Y0o—2%2810272%2 and thus (7.5) follows.

We finally show (7.6). Observe that p Q)N spt(T) O Cy¢/s(q’,m) Nspt(T) and, for an
appropriate geometric constant Cp, Q cannot intersect a Whitney region £’ corresponding
to an L’ with ¢(L’) > Cof(L) or d(L’) > 2d(L). In particular, Theorem 7.3 implies that
T =TI~ 1 (Q)) + [T = Gell(p~ ' (Q)) < Cmy"Poq(r) 1P 2vom2r2di) g2 (1 Bo)(2=200),

(7.55)

Let now F’ be the map such that Te/L(p~'(Q)) = G¢L(p~'(Q)) and let N’ be the corre-
sponding normal part, i.e. F/(x) = Y_; [x + N{(x)]. The region over which F and F’ differ
is contained in the projection onto Q of (Im(F) \ spt(T)) U (Im(F’) \ spt(T)) and therefore
its H™ measure is bounded as in (7.55). Recalling the height bound on N and f, we easily

1
conclude IN|+ [N/| € Cmgd(L)yTo_ﬁz(’,”BZ, which in turn implies
/ NP > / N2 Cm(1)+%+f50d(]_)(1+[30)(2y072+251)+y072[32€4+2(32+(27251)(1+[30) ‘
Q Q
(7.56)

On the other hand, applying Theorem 3.18, we conclude

/ / 1
IN(D(z))] = 7@9(

which in turn implies

f(z),Q [e'(2)]) f(z), Qo f(2)]),

1
> —— G
4y/Q
(7.50)
mo d(L)2Yo—2+281 ¢2=282 "7 g2 / S(f,Qnof])? < Ct? / IN'[%. (7.57)
Byss(q’,m) Q

For e47 sufficiently small, (7.56) and (7.57) lead to the second inequality of (7.6), while the
first one comes from Theorem 7.3 and E(T,By) > Cemg d(L)2Y0o—2+201¢2—282



PROOF OF THE CENTER MANIFOLD THEOREM

This chapter is devoted to the proof of Theorem 2.18, that is

Theorem 8.1 (Center Manifold Approximation). Let T be as in Assumption 3. Then there exist
Mo, Yo,To, C > 0, an admissible b-separated yo-smooth Q-branching M, a corresponding conformal
parametrization W : B, — R**™ and a Q-valued map N : Bg, — Aq(R*T™) with the
following properties

_ 1
(i) QQ = O(T,0) and |An(¥(z, W)+ 2| "DyAn(W(z, W)l < CmElzlYo™!, where Ay
denotes the second fundamental form of M\ {0}; moreover [DW¥(z, w) —1Id| < Cm(])/ 2|z|V0 and
1
ID2¥W(z,w)| < Cm[z[ve~ 1.

(i) Nz, W) is orthogonal to the tangent plane, at ¥(z, w), to M;
(iii) Setting
Fzw) =) [¥(zw) + A (zw)] and S:=Tou,

then spt(S) N Cy is contained in a suitable horned neighborhood of the Q-branching, where the
orthogonal projection p onto it is well-defined. Moreover, for every v €]0, 1[ we have
1

- Yo
A 18, [0 + sup Ip—plp)l < Cmir'*7; (8.1)
pespt(S)Np~T (¥(B,))

(iv) If we define

D(r):= | |IDA)? and H(r):= / IAN?,
B, )=

F(r) .= /OT J;l(i/)o dt and A(r)=D(r)+F(r),

then the following estimates hold for every r €]0, 1[:

Lip(#|g,) <Cmin{A"(r), my°r°} (8.2)
mye /B 27 o A (2, w)| SCA™ (1) D(r) + CF(r) (8.3)
IS—Tz|(p~' (¥(B+))) <CA™(r)D(r) + CF(r). (8.4)

Proof. The center manifold M is given by Theorem 6.9: the fact that M is a b-separated
admissible Q-branching is a simple consequence of the estimates in Theorem 6.9. We then
apply Proposition 2.17 to find the map ¥ which is a conformal parametrization of M in

151



152

PROOF OF THE CENTER MANIFOLD THEOREM

a neighborhood of 0 and, after a suitable scaling, we assume that it is defined on %Q,z-
Secondly we consider the normal approximation N of the current T on M constructed in
Theorem 7.3. The relation QQ = ©(T,0) is obvious from the construction. Again, after
scaling, we assume that:

e The radius r of Theorem 8.1 is 4;
* Y(B) C C3(0);

Rather than call the rescaled current S, as it is done in the statement of Theorem 8.1, we
keep denoting it by T.
The maps .#" and .% are then defined as

N (z,w) =N(¥(z,w) =) [Ni(¥(z,w))] (85)

Fzw) =) [¥(zw) +A4 i(zw)] =) [¥(zw) +Ni(¥(izw)]. (8.6)

By the estimate (6.17) it follows immediately that

Ant(G &) +12 " DacANe(, €)] < CmZ (Yo

at any point p = ({,&) € M with ¢ € R?\ 0. On the other hand by (2.29), if we set
(¢, &) :==¥(z,w), then we have

1 1
2l — Cmg |z]"H Yo < [g] < Jzl+ Cmg 2] Yo (8.7)

and thus the estimates in (i) follow. By construction .4 ;(z, w) = N;(¥(z, w)) is orthogonal
to Ty (zw)M, which shows (ii).

The fact that T is contained in a horned neighborhood of M where the prejection p is well
defined is a consequence of Corollary 7.1. Moreover, by (8.7) we can assume ¥(B,(0)) C Cp
(this is true for a sufficiently small r and hence, after scaling, we can assume it holds for any
T < 1). On the other hand, consider a cube L of % which intersects B3 /,,.(0). By construction
its sidelength is necessarily smaller than r. Thus (8.1) is a simple consequence of (7.1).

We are left to show the three estimates claimed in point (iv) of Theorem 8.1: the rest of the
section is devoted to this task.

8.0.3 The special covering

. First of all consider the set W(B,(0)) and let B, C B be defined by
By i={(z,w) € B : D(z,w) € ¥(B,(0))}. (8-8)
Observe that, by the estimates on ¥, the following two facts are obvious for r small:

(g1) B, is star-shaped with respect to the origin, more precisely if q = (z, w) € 0B, then
the geodesic segment o in B joining (0,0) and q is contained in B,;

(g2) If q denotes the point on o at distance j, the disk B, /4(q) is contained in B,.
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We next select an (at most countable) family of triples {(L;, Bj, U;)}jen of subsets of B with
the following properties:

(c1) The L;’s are distinct cubes of the Whitney decomposition with [; € #. U #3 and
Lj C Barree(t;)s

(c2) Bj = Buy) (25, wj) C By are disjoint balls such that [z, —z;| < 7¢(L;);
a

(c3) Uj is the union of an at most countable family of cubes #/(L;) C # where H C
Bgog(Lj)(ZLj,W]_j) for every H € #/(L;) and U;#'(L;) consists of all cubes in %" which
intersect B,; in particular

B, cTUlJU;. (8.9)
j

To this aim we start by selecting all the cubes L € #. U #4 such that either LN B, # ()
or there exists H € #;, in the domain of influence of L with HN B, # (), and we denote
the collection of such cubes by # (r). Observe that, £(L) < Co2~Nor and thus, provided
Ny is chosen sufficiently large, we can assume that the ratio @ is smaller than any fixed
geometric constant. Moreover, by Corollary 7.5, it is obvious that L C B 2r+60(L;)-

The triples above are then chosen according to the following procedure:

* We start selecting recursively {Lj} C #'(r). Lo is a cube with the largest sidelength in
# (r). Having chosen {Lo, ..., L;} we select Lj, 1 as a cube with the largest sidelength
among those L € #/(r) such that Byse(r)(zr, wi) N Byser (2, wi,) =0 for all 1 < j.

* For every L; we use the geometric properties (g1) and (g2) to choose a ball B; as in
(c2): for instance we consider z; := % (|ZI_].| — 77‘& ZL].) and let (z;, w;) be the unique
j
point of B that belongs to the connected component of % N (B, x C) that contains
(zL;, wi;). The Bj’s are disjoint because they are contained in B, 50(L5) (z;, wi,);

* For what concerns U;, we need to define #/(L;); consider then H € # such that
HN B, #0:
(@) If H e #. N ", then H € #/(r) and we select the L; with largest sidelength such
that Byse(r;)(zi;, wi;) 0 Bisecn) (zrn, wi) # 0;
(b) If H € #4, then H belongs to the domain of influence #4; (L) of some L €
# (r); we then select the L; with largest sidelength such that B;5 o(L;) (zLj,wL].) N
Bise(r)(ze, wr) # 0.
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8.0.4 Estimates on U; and A\

Let U; = ®(U;) and B; = ®(B;) and set, for notational convenience, d; = d(L;) and
¢ := €(L;). As a simple consequence of Theorem 7.3 we deduce the following estimates for
every j € IN:

B2 1
/ noN| < Cmgd?Ye2F2hovemfa o £ 4 em2the dretetE [N (8.10)
U s
/ DN < Cmg dYe 2201 g(1) 20, (8.11)
Uy
1 Yo_
INlco,)+  sup p—pp)l < Cmg d? P2l tF2, (8.12)
pespt(T)Np~T(Y;)
B
Lip(Nly,) < C (mod;/OejVO) ° (8.13)
”T_TFH(p—1 U\ X)) < Cm(1)+f30 dj(]+60)(2yo_2+26])€j2+(]+[30)(2—25])' (8.14)

Indeed, observe that d(H) < d; < 2d(H) for every H € #/(L;) and ZHeW(h) L(H)? < C(’,jz,
because all H € #/(];) are disjoint and contained in a ball of radius comparable to {;. This
in turn implies that ZHU/(H LH)%*e < C€j2+5, because {(H) < ¢ for any H € #/(L), and
(8.10) - (8.14) follows in view of (i’).

Next we claim the following inequality for every t > 0, where 1(t) and C(t) are suitable

positive functions,

sup (mod; ;)" < C() ATV (1), (8.15)
j

Indeed, using Propositions 7.4 and 7.7 and the disjointness of B; we have

Ce g d(L;)2Yo2T281 g(1;)4 201 < c/ IDN]* if L € #e, (8.16)
B;
1
Chm} d(Lj)Vozﬁze(Lj)““Bz/B INIZ if Lj € #4,. (8.17)
j
On the other hand
> [ oNE< [ one = [ oo
5 /B B, B,
by conformality of ¥ and
S [ NE< [ e[ e
5 /B B, B,

by the Lipschitz regulari of ¥. Thus (8.15) follows easily by suitably choosing C(t) and n(t).
Observe therefore that (8.2) is an obvious consequence of (8.15), (8.13) and the uniform
bound on |DVY]|.
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8.0.5 Proof of (8.3)

First of all observe that, by the bounds on ¥,

/|z|vo‘nomz,w)|<c/ Yo o N(, £)].

T T

[N

On the other hand, since Uj C B3y, (Z]_].,W]_). ), 71 < |zl € 2d; and thus

[ meNzwi< e a [ meNw.
B . U;
T ) )
5+52

Now considering that djsyo—3+2[30yo—[32 ( < dfyo*z (8;”2[32, for 28> < BoYvo, we have

/ 21" I o N(z,w)

B,

(8.10)
< C Z mo deO*Z e;l+2[32 + Cmé/“ﬁ" d]}/ofl €;+[32/
JEN U

INJ
. |Z|1*'YO
)

=:A

We treat the second term in the summand above via Young’s inequality inequality;

2
vo_ 2 N
A<2 (mé/z-HSo d? 1€j2+f52) 42 ("«11/ | ||] |y0>
W 2|7

_ N2
< 2ml+2Bo g3vo—2 ¢4+2B2 | ‘
= 0 j j " |z|2—Yo
Moreover, observe that, if L; € #4, then by (8.17) and % <zl € 243,
e 33702 44282 < . 262 IN|?
0 j j SN L 22 e
)

while, if [; € #¢, using (8.16) and (8.15), we deduce, for a suitable choice of 1o,

mytne g3ve 2 2P < el qYe g],zﬁz/ IDNJZ < CA(r)"e / IDNJ?.

Collecting all these estimates together and using the properties of ¥ we conclude

A2 (z, W)

/ 270 o A (zw)] < CA)OD(r) + C &
B, ‘Z|2 Yo

B,

However the later integral is precisely

Y H(t)
0 t2—vo ’

This shows (8.3).
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8.0.6 Proof of (8.4)

Observe that Tr = Tz. Thus using (8.14) we have

(8.14)

IT—Tol(p " (¥(B,)) < C 3 myPoq(2ver2+280(1fo) g2 (22200 (14 fo),

)
jEN

Now, if Lj € #, then using (8.15) with a suitable n, we have

_ _ Bo _ _
m(1)+f30 dj(ZYo 2+251)(1+(50)£j2+(2 281)(1+Bo) < (mo dj}/o el}/o) (mo deYo 2428, ﬂ? 261)

<C/\“(r)/ IDNJ?.
U;

On the other hand, if L; € #4, then by our choice of the constants,

m(1)+(50 dj(ZYO*2+251 )(1+Bo) €j2+(2*251)(1+f50J
_ m(1)+(50 d§2Y0*2+251)(1+Bo)€;251+ﬁo(2*251 )*262€?+2[52

1 1 _ _
< méJFBO deYoBo mé d]}/o 2B2+v0 2£Jf‘+2[32

2
< m%+f50 d_ZYoﬁo INJ
0 ) Us |Z|2*YO
j

where we used that —261 + 30(2—261) — 22 > 0. Summing both contributions and arguing
as in the previous paragraph we conclude the proof of (8.4).
O
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ALMOST MINIMALITY OF 4 AND THE HARMONIC COMPETITOR

The normal approximation .4 inherits from T an almost minimizing property for the
Dirichlet energy, where the errors involved are in fact expressed in terms of some specific
norms of ./ itself and of its competitors. Combining this almost minimality with a suitably
constructed harmonic competitor we will prove two very usefull inequalities that will be
fundamentals in the proof of the Poincaré and epiperimetric inequalities of the next chapter.

9.1 DIRICHLET ALMOST MINIMIZING PROPERTY

For technical reasons we introduce the map F:= }_ ?:] [p + Ni(p)], where N := A4 oW~ 1. In
order to state the almost minimizing property of .4~ we introduce an appropriate notion of
competitor.

Definition 9.1. A Lipschitz map .¢: By — Aq(R™"2) is called a competitor for .4 in the
ball B, if

(@) Zlog, = A loB,;
(b) spt(¥4(z,w)) C £ for all (z,w) € By, where ¥(z,w) := Z)-Q:1 [¥(z,w) + %z, wW)];

We are now ready to state the almost minimizing property for .#". We use the notation
pT,x for the orthogonal projection on the tangent space to X at p. We recall that, given our
choice of coordinates, pr,s is the projection on R2+™ x {0}. Since this projection will be
used several times, we will denote it by po. By the C3¢ regularity of £, there exists a map
Yy € C3eo(R%t™ RY) such that

Yo(0) =0, D¥(0) =0 and (p,¥o(p)) € L for every p € R*+™.

Next, for each function . satisfying condition (b) in Definition 9.1, we consider the map
Z = poo.Z, which is a multivalued .Z : B — A (R*™™). We observe that it is possible
to determine . from .Z. In particular, fix coordinates (£,m) € R2*™ x R" ™ and let
L =Y [%4], Z =) [Z], where & = po o % Then the formula relating .%; and % is

Llzw) = (A2 w), Yo (Po(¥(z, W) + Zilz, ) ) — o (po(¥(z W) 9:1)

Proposition 9.2. There exists a constant Cg » > O such that the following holds. If r € (0,1) and
Z: B, — AQ(IRZHL) is a Lipschitz competitor for A with ||.£||ec < 1T and Lip(.¥) < C;;, then

IDA? < (14 CoaT) / IDZ|? + Co Erry (A, By) + Co2 Erra (%, By) + Conv2 D(1)
B, B,

(9.2)
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where & = po o £ and the the errors terms Erry (4, B;) Erra (%, B;) are given by the following
expressions:

1
Erri(A4,By) = A" () D(v) +F(r) + H(r) +mg r1Hvo / oA (9-3)
9B,
and
1
Erra(2,B,) = m} / v o2 . (9-4)
By

For the proof of Proposition 9.2 we consider separately the three cases:
(@) T is mass minimizing;

(b) T is the cross-section of a mass minimizing three-dimensional cone;
(c) T is semicalibrated.

For notational convenience we set L := Z oW~ !, G:=% o V.
Observe also that, by Lemma 10.13 and 10.14, it is enough to prove that

DA< (14 Coar) / IDZP + CErry (A, By) + CErra (2, By) / 22 (95)
B
Indeed Lemma 10.14 implies that
ID.ZI* <(1+Cr) / |D.$|2+Cr/ 121> < (1+Cr) / |D$|2+CT/ 1z
B, 9B+ 0B,

—(1+Cr) ID.ZIZ—i-CT/ NP < +Cr/ DZP + CErry (A, B,),
0B,

B,
whereas Lemma 10.13 implies
1

2> <Cr | IDZ)*+C 21> < Cr | |DZ|*+ CErry (A4, B,).
B, B, 0B, B,

9.1.1  Proof of Proposition 9.2 case (a): T mass minimizing.

We fix ¥, %, L, G and G as above. Let us set
L:=T-Tgz, +Tg. (9:6)

Since ZloB, = ¥YloB,, from Theorem 3.47 it follows that 9(Ty —T¢|Br) = 0. Moreover
spt(Z) C X and therefore we must have M(T) < M(Z). Taking into account (8.4), we
conclude that

M(Tz, ) <SMTLp (¥(B)) +IT—Tx, [(p~' (¥(B,)))
<M(Ty) + 2T =Tz, I(p~" (¥(B)
< M(Ty) + CErr (4, B,). 9.7)



9.1 DIRICHLET ALMOST MINIMIZING PROPERTY

Observe now that Tz, = Tg, B2 and we can use the Taylor expansion in Theorem 3.48 to
bound the mass of Tr with:

1
M(Tmr»QHZ(W(BT)HZ/ IDNIZ—Q/ (o N, Hap)
Y(B;) Y(B;)
[ (IAwPNE DN, ©9)
Y(B;)

where Hj denotes the mean curvature vector of M. Note that in order to apply the Taylor
expansion in Theorem 3.48, we need the manifold M to be C2, with an apriori bound on the
C? norm. However, if we take TrL B, \ B, /2 and rescale by a factor 1/r, the corresponding
rescaled current, map and manifold fall under the assumptions of the Taylor expansion in
Theorem 3.48. We can then scale back to find the corresponding inequalities for Tr LB, \ B />
and sum over dyadic annuli to conclude (9.8).

Using the conformality of ¥ we conclude

/ DNJ? = / DA,
w(B,) B,

As for the other terms, we recall

1 (8.3)
/ I(mo N, Hy)l < Cmg / mo 4| < CErrq(A4,B,), (9.9)
¥(B;) B
4 2 2 82
[ NI < CLip(a,)? [ D4R L CBm (4B, (9.10)
¥(B-) B
21N 12 2v0—2| 4|2 " H(s)
ANPINE < Cmg [ 2270 202 = Cmo | o ds < CErri (A, By).
¥(B,) B, o 87O
(9.11)
Combining the latter estimates with (9.6) and (9.7) we achieve
1
5 | DA < CErry (A, Br) + M(Tg) — QA (¥(Br(x)). (9.12)

2[5,

Next, fix an orthonormal frame &7, &, on B, and, using the area formula from Lemma 3.44,
compute

M(TG)=[P(B 3 I(E DL A + DL £2)

1
<= > (1&1+DLi - &) + &2 + DL; - &2
ZA'(B,)i(“ DIF+1&2 21%)

2

ZQ?CZ(‘I’(BT)H]/ IDL|2+Q/ ((Dnol-&;, &)+ (Dnol-&;, &) .
w(B,) w(B,)

By conformality the second summand in the last inequality equals % Js, IDZ 2. We integrate
by parts the third summand. Recall thatonnoL =noN on ¥(9B,) = 0(¥(B;)): sincenoN
is orthogonal to &; the boundary term vanishes. Moreover, since the origin is a singularity,
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we must in fact integrate by parts in B, \ B, and then let ¢ — 0. A specific choice of &; is
& = A IDY. ei, where ey, e; is the parallel frame on B¢ naturally induced by the standard
flat coordinates. It then turns out that

1
D¢, &1+ Dg, &2l (¥(z, W) < CmilzYo .

In particular [Dg, &1 + Dg, &> is integrable on B, and we can therefore conclude
1
MiTe)— Q(¥(B,)) <5 [ DLE+Q [ oL De,&r+Deta)
W(B,) Y(B,)

<3 ID.ZJ? + CErr2 (%, By). (9-13)
B,

Combining (9.12) and (9.13) we conclude (9.5).

9.1.2  Proof of Proposition 9.2 case (c): T semicalibrated

We proceed as in the previous step and define the current Z as in (9.6). If S is any current
such that

0S=T-Z=Tgz;, —Tg =Ty, —Tc,
then the semicalibrated condition gives
M(T) < M(Z) +S(dw),

where w is the calibrating form. In particular, in order to conclude the proof it suffices to
find an S such that

S(dw)] < CBrm (4, B,) + CErma(2,B,) + / 22 (9.14)
B,

combining the latter inequality with the estimates of the previous subsection we reach the
desired conclusion.
To do this we first define H; : [0, 1] x ¥(B;) — Aq(R*"™) fori=1,2 by

(0,1 < W(By) 3 (t,p) > Hy(t,p) : Z[ho+tN (p)] € Ag(R*™™)

0,1 x ¥(B;) > (t,p) — Ha(t,p): Z[[‘p+1—t p)] € Ag(R* ™).

We choose S := S71 + S, where S; := Ty, for i = 1,2. Thanks to Theorem 3.47, we get

051 = Tryy, —Q [M] —
0S; = Q[M] —Tg —

TH1 l0,11xw (2B )’

TH2|[O,1J><‘1’[BB1-)'

On the other hand since N = L on W(0B), we conclude 0S =9(S71 +S,) =T — Z.
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We next estimate |S1(dw)| and |S;(dw)|. Since the estimates are analogous, we give the
details only for the first. We start from the formula

1 Q - 5
1 (dw) =A(Br)/o ;<ci(t,p),dw((H1)i(t,p))>dr}c (p) dt

with

Gi(t,p) = (&1 +tVg, N

(P)) A (&2 +t Ve, Ni(p)) ANi(p)
= & AE AN (p)+€

i(tp),

and

[Ex(t,p)l < C(IDN|(p) + DN (p)) INI(p). (9-15)
Next we note that

dw((H1)i(t, p)) = dw(p) + I(t, p), (9.16)
with I(t, p) naturally estimated by

1(t,p)l = ldw((H1)i(t, p)) — dw(p)l < C[[D*w] L= [NI(p). (9.17)
Therefore, we have

Q Q
\Z Gi(t,p), dw((H1)i(t,p)) ) D (81 A& ANi(p), dw(p)) + [ldw] i~ Y [Eq(t,p)|
i=1 i=1 i=1

+ CZ (NGl + [EDm) ¢, p)

i=1

163

1
< CmZ [n o N|+ CINJ(p) + CIDN|(p) IN|(p) + CTDN*(p),

where we have only used the bound |N|(p) < Cr on ¥ (B, ). Arguing similarly for S, (observe
that we have the bound |L|(p) < Cr) and estimating [N|[DNJ| + |[L||DL| < (N2 +|LJ%) +
Cr(|DNJ? + |DL|?), we conclude
3 1 2. 12
$1(da)l ISz dw) < Cm [ (moNi+mot)+Cr ! [ (NP4ILP)
W(B,) W(B,)
+CT/ (IDN|? +|DL[?),
¥ (B,)

and by a change of variable and Theorem 6.9 the claim follows.

9.1.3  Proof of Proposition 9.2 in case (b): T is the cross-section of a three dimensional area minimizing
cone

Recall that in this case spt(T) C 0Bgr(po), where po = (0,...,0,R) = Ren 42 and R™ ! mO
For the computations of this subsection it is indeed convenient to change coordinates so that
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Po is in fact the origin, whereas ¥(0, 0) is the point (0, ...,0,—R). In these new coordinates
we then have M, spt(T),Im(.%#) C 0Bg(0). These coordinates will however be used only in
here, whereas in the next sections we will return to the usual ones.

We introduce the following notation: C(r) is the cone over ¥W(B,) with vertex 0, i.e.

C(r):={pp e R : pe[0,1], p € ¥(B,)},

with the orientation compatible with that of 05 [M]. We extend F to F: C(r) — Aq(R™*2)
by setting F(pp) := p F(p) for every p € ¥(B,).

In order to estimate the Dirichlet energy of N in terms of that of L, we construct a suitable
function K : C(r) — AQ(]R“+2) (depending on L and N) such that K|e () = ﬁae(r): we can
then test the minimizing property of 0x T comparing its mass with that of the current

L:=0xT—=Tp+Tx =0x (T—Tgy,, )+ Tk

which is easily recognized to satisfy 0Z = 9(0x T). In particular, using the minimality of
0x T, we conclude

R™TM(0% Tpp,, ) < R7TM(Tk) + CErry (A, B,). (9.18)

We consider the space of parameters [0,1] x B, and recall that the points in B¢ are
identified by four co-ordinates (z, w) € R? x IR?. For the definition of K we need to introduce
the following sets

2r—1
Ajq ::{(p,z,w) cl0,1]xBr:1T—r<p<], |z < p+2r}, (9.19)
1-—
Az ::{(p,z,w) el0,1]xBr:1-2r<p<1—rm, |z| < Zp}' (9.20)
B:=[1-27,1 xB:\ (Aj UA,), (9.21)
We then define the function 7 : [0,1] x B, — AQ(R“+2) given by
p-ZL(z,w) ifp<1—2r,
1
oulp)r (257 —C0 ) it (2w € A,
%( W) . (p+12r71)6 ( 22)
Oz W)=13 2rz (21)Q - >
pl](p)g T—p’ TW if (p/Z/W) € AZ/
](1—p)Q
pLy(lz)) A <| lfiw> if (p,2,w) € B,
z
where 11,1, : R — R are the affine functions
t4+r—1 2t—r
Li(t):=— and 1,(t) = ra (9.23)

The following are simple properties of 7# which can be easily verified:

(1) 22(1,z,w) = A (z,w) for every (z,w) € By, as (1,z,w) € A;and 11(1) =1;



9.1 DIRICHLET ALMOST MINIMIZING PROPERTY

(2) H(p,z,w) = pAN(z,w) for every p € [0,1] and for every z with |z| = 1, as Z|sB, =
Ao, and Lr(r) = 1;

(3) 2 is well-defined and continuous, as 7 = 0in A1 NA; from 1;(1 —71) =0,

1
(%”(D,Z,W)prﬁ]ﬂ/<” rd z) in A1 N0B,

Tz[7 L
|z 12| Q

and

ml 1

1
ff(mzwhp"*l‘ﬂ(” r3 w) in A, N 0B.
|z|Q

The competitor map K : €(r) — A (R™"2) is now given by

Q
K(pp):=) [pp+Hilpp)] with H(pp) = #(p,¥ " (p)).

i=1

Note that by (1) and (2) above it follows that K|ze(r) = T:Ia@m.

We start now estimating the masses of the various currents introduced above. Since
spt(Tr) C 0B (0), it follows that M(0x Tr) = RM(Tf)/3 and, by the expansion of the mass
of T¢, we have that

1
M(Triy(s,,) > QIC(¥(Br) + 3 | DAV —CEm (A,By). (9:24)

Combining the latter estimate with (9.18) we conclude

/ DA < 6R"M(T) — 2QH2(¥(B,)) + Erry (A, By). 9.25)

r

For what concerns the mass of T, recalling that p + spt(L(p)) € 0Bg(0) for every p €
Y(B,), we deduce that

(1—2r)*M(Tg)

M(TxLBgr(1-2r)) = M(0x T L Bgr(1_2,) =R 3

and

MiTe) < QIC(¥(B) +5 | IDLP +Ema(2,B,).

In particular we conclude

6RTM(TcLBr(1-2r)) < 2Q(1—2r)>H*(¥(B,)) + . DL +Erry(Z,Br) . (9.26)

Next we pass to estimating M (Tx L Br \ Bg(1_2y)). In order to carry on our estimates we
use the area formula for multifunctions, cf. Lemma 3.44. In particular we fix an orthonormal
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frame &1, &, for M as in the proof of case (a) and we let &3 = R~19¢ be normal to them in
TC(r), i.e. pointing in the radial direction of the cone. We then have

M(Tx L(Br \ Bg(1—1)) :/e( )Z|(51 +DH; - &) A (&2 +DHi - &) A (€3 +DH; - &3] .
t (A)

1
Using the Taylor expansion for (A), cf. [18], we can bound (recall that Q =3R~!" < mg)
“TM(Tk L(BRr \ Br(1_2) )) QR 33 (€(r)N By \ B1_2:)

L Qm? /] Zr/ Sl oH(p)at

1 1
+Qmé/ / Z(Vai(n OH),Ei>t2dt+C/ / IDH|? t2dt.
1-2r JW(B,) i=1 1—2r J¥(B,)
(9-27)

The linear terms can be integrated by parts: since V(1 o H)(tp) = % (noH)(tp), we have

/] 2 / LitmoH Pt dt_/l’(B (e HIp) (1 =2 H) (1 —20)p) )
1
2 o o) ) tat 928)

:
/ / Z (Ve (MoH), &) t2dt = / / ((m o H), Hy) t2dt. (9.29)
1-2r 1-2r JY¥(B,)

Therefore, by a simple change of coordinates we can estimate

Q (1—(1—2r)3)
3

“IM(TcL(Bg \ Br(1_n)) < I (¥(B,)) + Cmir / (o N+ mo.2))

B,

I 1
+Cmj / lzZ[Yo~ i o #(t, 2, w)dz dt + C / DA (t,z,w) dz dt.
1—2r JB, 1-2rJB

(9-30)

In order to bound the various integrands of (9.30), we start with the following general
remark. Assume that x : [1 —2r,1] x B, — [0, +00) has the structure

1
2r)Q .
X1 <p_52Trz_]/ (27) T W) if (p/Z/W) € A]/

ik
x(P,%,Y) = S x2 (%Tg, (2r)2 w> if (p,z,w) € Ay, (9.31)

1
X3 <‘“T, T2 W> if (p,z,w) € B,
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for some x1,X2,X3 : B? — [0,4+00). Then one can compute the integral of x in the following
way:

:
/ / x(t,z,w) dz dt :/ x(t,z,w) dz dt+/ x(t,z,w) dz dt+/ x(t,z,w) dz dt,
1—r JB, Al Az B

and one can easily compute that

]
/ x(t,z,w) dzdt = / / x1(t,z,w) dzdt
Aq T—r Bt+22r71

1 a1
2 21)Q
:/ / X1 Tz , (27) —w | dzdt
T—r Bt+22r—l t4+2r—1 (t+2r—1)Q

1 2
t+2r—1
:/ <+ ! > / X1(z,w)dzdt < r/ x1(z,w)dzdt. (932)
T—r 2r . B,
Similarly
/ x(t,z,w)dz dt < r/ X2(z,w)duo dt, (9-33)
Az T

and

1 T
/x(t,z,w)dzdt:/ dt/ sds/ x3(z,w) dz
B T—r L=l T 9B,

2

T1—r
+/ / rd ds/ x3(z,w) dzgrz/ x3(z,w)dz. (9.34)
1—2rJ1t T 0B, 0B

By direct computations one verifies that the integrands in (9.30) are all bounded from above
by functions x with the structure (9.31): in particular,

() z[Yo~m o #|(t,z,w) < x(t,z,w) if we choose
x1(zw) =x3(z,w) =2V "o A(z,w) and Xa2(z,w) =[z["*"'no.Zl(x,y);
(i) DA% (t,z,w) < X(t,z,w) if we choose

C
x1(z,w) =x3(z,w) = ;I«/VIZ(z,W) + CIDA*(z,w)

C
x2(z,w) = ;If\z(z,W) + CID.Z2(z,w).

for some dimensional constant C > 0.
It then turns out from (9.32), (9.33), (9.34) and (i), (ii), (iii) that

6R™ "M (T L(Br \ Bg(1_r))) < Q (1—(1—27)%) H*(¥(B,))
+ EI‘I‘] (JV/ BT) + Errz(gl Br) . (935)

Summing (9.35) and (9.26) we conclude
6R™TM(Tx) < 2QH?(¥(B,)) +/ ID.Z|? + Errq (A, B,) + Err2(Z, B,).
B,

Combining the latter estimate with (9.25) we conclude the proof.
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9.2 HARMONIC COMPETITOR AND TWO USEFUL INEQUALITIES

The most natural choice for the competitor .# is a suitable “harmonic” extension of the
boundary value .4 |55,. Following the ideas of [9] we estimate carefully the energy of such
competitor. To this purpose it is useful to introduce “polar” coordinates with center 0 in ‘B
and split accordingly the Dirichlet integrand in radial and angular parts. More precisely,
consider (zo,wo) = ((&o,Co), Wwo) € 0B, and take, locally, the standard flat coordinates
z = (x1,x2) of Definition 2.10. We then denote by v the exterior unit vector normal to 0B, at
(zo,Wo) and by T the corresponding tangent unit vector obtained by rotating v of an angle
7t/2 in the counterclockwise direction, namely

0 0 0 0

—1 1

= —_— —_— d = —_ —_— —_— .
v = |z9] (Eo o + Co axz> an T = |z0] ( Co o +&o axz>

The directional derivatives of any (multi)function f on B gives then two (multi)functions

Dyf=) [Dfi-v] and D.f=) [Dfi-1].
i i
The Dirichlet integrand |Df|? enjoys then the splitting
[Df? = D f” + [Dfl2.

For the rigorous justification of these identities see [17].

Proposition 9.3. There are constants C > 0, o > 0 such that, for every r € (0, 1) there exists a
competitor £: By — Aq(R*™™) for A with the following additional properties:

(i) Lip(.Z) < Co, [|[Z]|0 < Cr;

(ii) The following estimate hold:
/ ID.Z* < Cr/aB D> <CrD/(v), (9.36)
[ tmegzi<er [ o+ Hm); ©37)
B, G): 8
(iii) For every a > O there exists by > 0 such that, for all b € (0, bg), the following estimate holds:

(2a+b)/ D.Z|? <r/ IDTJV|2+C1(C1T—M/ A+ Cr' oD/ (v).
B, OB, d

B,
(9:38)
Using this competitor in Proposition 9.2, we then infer the following corollary.
Corollary 9.4. For every v € (0,1) the following inequality holds
1
D(r) < CrD/(r)+ Cr' Yo H(r)+ CF(r)+Cm} rw/ no.]. (9-39)
0B,



9.2 HARMONIC COMPETITOR AND TWO USEFUL INEQUALITIES 169

For every a > 0 there exists bo > 0 such that, for all b € (0,bg) and all v €]0, 1]

a(a+b)

T 2
D(r) <(1+Cr) [(2(1_1_1)) /aBr|DT«/V| er

H(r)] +Céom(r)+Cr' T D'(1),
(9-40)

with

1
Eom(T) K A(M)D(r) +F(r) + H(r) +m] ry"/ no.A].
Proof of Corollary 9.4. Recalling that H(r) < Cr||#/[|35 < Cr?*Y we easily infer that A(r) <
Cr? and thus the inequalities follow readily from Proposition 9.2 and Proposition 9.3. [

9.2.1  Proof of Proposition 9.3: Step 1

First of all we observe that it suffices to exhibit .Z, as .Z can be recovered from it via the
formula (9.1). Moreover, it suffices to show the estimates with .4 replacing ./, because we
obviously have || < |4 and [D#| < [D.#| so that the corresponding error terms can all
be absorbed in €gm (observe that the definition of .4 also ensures [n o 4| < [n o NJ). Next
we wish to relate n o L and 1 o L for two maps satisfying the relation (9.1). Note that by a
simple Taylor expansion (cp. (10.84)) we have

MmoZ| < CnoZ|+CS(Z,noZ)?,

where the constant C depends on the C? norm of Y. In particular we record the following
conclusion:

2 mogl<C [ e e zlve [ iz, (941)
BT BT BT
In this step we exhibit an “harmonic”* competitor .7# which satisfies all the requirements
of the proposition except for the Lipschitz estimate. In fact we will show that there is a W2
map ¢ : B, — Aq(R?>™™) such that

Hlog, = Aos, and |||, < | A ]| (08,) (9-42)
/ ID#)? < Cr / D2 (9-43)
T aBT
/ 20T 0 ] < CrYo / o ¥ (9.44)
B, 9B,
/ 2P| < Crve / P (9.45)
B: 0B,

(2a+Db) |Djf|2<r/

- ala+b -
[ e SR e, (9.46)

1 We remark that the competitor used here does not coincide, in general, with the Dirichlet minimizer with
boundary value .4 |55, .
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In these estimates we do not use any of the particular properties of .4 and indeed for any
Lipschitz multivalued map ./ : B; — AQ(R2+ﬁ) there is such an “harmonic” competitor.
Therefore, given the scaling invariance of the estimates, we will assume without loss of
generality that r = 1.

Let D, := {|z] < r} denote the disk of radius r in R?, which we identiy with the complex
plane. We start by defining the “winding map” W : R? > D; - B given (in complex
notation) by

We then consider the multivalued map % := .4 o W. Let 0 — u(8) be its trace on dD1(0),
which we parametrize with the angle 6 € [0, 27]. According to Lemma 3.16 we can decompose
u in a superposition of simple functions u(6) = Z]-]:] u;(0) such that, forevery j =1,...,],

Qj .

0 + 27

wo =3 [ (5]
i=1 )

where the ;j : [0,211] — R?"™ are periodic Lipschitz functions. Next consider the Fourier’s

expansion of each y;

+
1

(a1 cos(10) + bj 1 sin(16)) ,
-

o0
_ %0
2 —
and its harmonic extension, which in polar coordinates (p,0) reads as

a; > )
Gi(p,0) == %O + Z pl(aj,L cos(10) + bj 1 sm(le)) . (9-47)
1=1

We then can define the “harmonic” competitor for %, which is the Q-valued map
Qj

rom = £ o (4452

j=11i=1 )

and the “harmonic” competitor for .#", which is 7 = ¥ o W. Observe that the first claim in
(9.42) is obvious, whereas the second claim follows from the maximum principle for classical
harmonic functions.

Simple computations and the conformality of W, see for instance [17, Proof of Proposition
5.2], yield

] o
[P = [ DR =x Y Y ViR o+ o), (9.48)
1 1

ji=11=1

J oo 42
1
/a DA P =YY ), (9.49)
1
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[ = QZQ](‘“"" +3 (layl +1o5.%)). (9:50)
1 1=1

Clearly, (9.43) follows from the first and second inequality, with the constant C = QQ; < QQ.

(9.46) follows from the fact that, for any chosen a > 0, if by is sufficiently small and
0 < b < by, then

2

(2a+b)l < QeQ) + QQjla(a+b) vl e IN.

The latter claim is elementary and the reader can consult, for instance, Step 2 in the proof of
[17, Proposition 5.2].

Observe next that 1 o 7" is the classical harmonic extension of the single-valued function
N o %lop,. We then have the classical estimates

Ino?llteo )+ Moty <ClMoZ|L1 (oD, -

o\~

2Q

In particular we conclude easily
0 H#lmo,0+ 10 5,8, < C [ o,
1

because the change of variables W~ is smooth on B \ B1 2. The integrability of |z|Yo—1 on
B gives then

/B 2] 0 #(z,w)| dz <C||n o H|[L=(By,,) +ClIne A1 BB, )/
1

which in turn completes the proof of (9.44).

A similar argument proves (9.45). Using the classical theory of single valued harmonic
functions we see indeed that [|G; || 2(g,) + [|GjllLx(B, ,) < CllVjllL2(o8,) and thus, using the
fact that W is smooth on By \ By /,, we conclude that

2 112
193,20+ 19 e oy ) < € N

From this we easily conclude (9.45).

9.2.2  Proof of Proposition 9.3: Step 2

We keep the notation of the previous paragraphs and assume that ./ is defined in By, after
scaling. The specific scaling that we are using is the one which preserves the Lipschitz
constant and is given by

N (z,w) — T_],/V(rz,réw) )
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_ 1 _
Under this scaling we then have the estimates ||.4||p~ < Cm rYo/2 and Lip(A4) < A(r)"
and we want to show that we can modify J# to a competitor Z with Lip(Z) < Coz,
satisfying

Zlog, = Ao, and [ Z1xB,) < A |[L=oB,) (9.51)
| o< [ patice [ P (9.52)
B, B, 0B,
/ ez <c [ AP (9.53)
B; 0B,
ZYo " Tno 2| < C mo. ¥, (9-54)
B, 0B,

Observe that the harmonic functions (; defined in (9.47) are Lipschitz in every ball Dy _¢ for
0 < t < 1 with an estimate of the form

- CA(r)no

C.. C._.
HDC]'HLOO(D]_t)é;hp(vj)é;hp(wm " (9-55)

They are not Lipschitz up to the boundary 0D because the Dirichlet to Neumann map
Y — %(1, -) does not map L* into L*°. However we have the Schauder estimate

HDCJ’HU’(DH < CPHY]'HWLv(aD]) < Cp/\(T)no
for every p < oo. In particular, we can bound
1
16001 =1t) =vjllwii(apy) < C2t2A(T)°,
which in turn implies

max|;(1—t,0) —v;(6)] < C2t2A(r)"°. (9-56)
Choose t := A(r) ¥ and define a new map &; as

G (p,0) forp<T1—t
12g(1—1,0) + &=-yj(0) forT—t<p<1.

Now, (9.55) and (9.56) imply that ||D ;|| < C/\(r)HTO. Moreover we obviously have

[ opel< [ pgErcam®( [ gRs [ pyE)
D; D, oD _¢ 0D,
<[ DgRrcam® [ by, 957
D, 0B,

We can now define two “intermediate” maps

] Q

Pol0,0=Y Y Ha" <p$j, 0 +sz>ﬂ

1i=1 )

)
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and £° := 7° o W~_ It is then immediate to see that .#° enjoys the bound Lip(.£°) <
CA(r)? on the domain B; \ B1,4 and that all the estimates (9.51), (9.52) and (9.54). On the
other hand the differential D.#° is singular in the origin and in fact it is rather easy to see
that we have the bound
_2_
D20z w)P < Clzf” @@ | D2°P. (9:58)
B4

In order to produce .Z we need to smooth the singularity of .#° at the origin. There are

several ways to do this and we present here one possibility. First of all we fix 2 < p <
2QQ/(2QQ —2) and observe that (9.58) yields the estimate

P
| meewr<c( [ Do)’ 959
B34 B4

Next we define
1
MDZ°(z,w)| == sup — / IDZ°(z,w)|
p<1/4 P7 JBy(zw)

and let
A ={(z,w) : MDL°(z,w)| > co}

where ¢, is a constant to be chosen later. Observe that, given the Lipschitz bound for .#°
outside the origin, for r sufficiently small the set A is contained in By /,. Arguing as in
the proof of [17, Proposition 4.4] we have the Lipschitz estimate Lip(.¥ 0) < Ccpon By \A,
where C is a dimensional constant. We can then use the Lipschitz extension of Proposition
3.4 to extend .Z° to .Z on A so that Lip(.Z) < Cco. Choosing c accordingly we achieve the
desired Lipschitz bound on B1. As for (9.51) and (9.53) observe that the extension satisfies

0|12
1L B, ) < ClI T B5,)

and coincides with %, on B; \ By 2. As for (9.54), it would suffice to show that [n o 2| <
Cln o /|. This can be easily achieved in the following way: we make a Lipschitz extension
of #°, subtract from each sheet the average and then sum back to each sheet a Lipschitz
extension of 1 o .Z°.

As for (9.52) we compute

/|D.£ﬂ|2 </|D$°|2+ccg|A| < /|D.z°|2+ccgp/ ID.Z°P
B34

1
/ |D$° 14Cc™ / |DZ° . (9.60)

Observe that p/2 —1 > 0 and that by (9.57) and (9.43)

/|D.,zﬂ°|2 < /|D,;f|2+cx\(r)‘z’/ D V]? < c/ ID¥V|? < Cr°,
0B, 0B,

so that

_ - 5 (943) _
ID.Z)* < (14 Cr9) |D%IZ+CTG/ DA]? < |D%|2+Cr"/ IDA|?.
B, B; 0B, B, 0B,
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This chapter is dedicated to the proof of Theorem 2.20, which we recall for the reader
convenience.

Theorem 10.1 (Blowup Analysis). Under the assumptions of Theorem 2.18, the following dichotomy
holds:

(i) either there exists s > O such that A|g, = Q [0],

(ii) or there exist constants 1o > 1, ap, ¥, C > 0 and an Iy-homogeneous nontrivial Dir-minimizing
function g : Bq — Aq(R*™™) such thatnog=0,g=7> ; [(0,gi,0)], where gi(x) € R™,
and

S(AN (z,w),g(z,w)) < ClzlfoT @V (z,w) € B, |zl < T, (10.1)

and moreover the following estimates hold

/ DA > < Crelotao 4 cr?lo=Tp viap<r<l, (10.2)
BT+Zp\Br—2p

H(r) <CrD(r) Vr<l. (10.3)

10.1 OUTER VARIATIONS AND THE POINCARE INEQUALITY

In this section we begin to exploit the variations of the area functional on T in conjunction
with the estimates of the previous section. The main conclusion will be the following Poincaré
inequality:

Theorem 10.2 (Poincaré inequality). There exists a constant C1o.2 > 0 such that if v is sufficiently
small, then

H(r) < Cio27D(7). (10.4)

We record however the two main tools used to prove Theorem 10.2, since they will be
useful in the future. The first one is an elementary computation. In order to state it we
introduce the quantity

Q

E(r) ::/ Z(JVj,DVJ/j). (10.5)
0B+ i
Lemma 10.3. H is a Lipschitz function and the following identity holds for a.e. v € (0, 1)
H'(r) = Hﬁ” L 2E(r). (10.6)
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The second identity is a consequence of the first variation of T under certain specific vector
fields, which we call “outer variations”: such variations “stretch” the normal bundle of M
suitably and they are defined using the map .#". In the case of semicalibrated currents it
is convenient to modify the Dirichlet energy suitably to gain a new quantity which enjoys
better estimates. Thus, from now on Q will denote D in the cases (a) and (c) of Definition
1.1, whereas in the case (b) it will be given by

Q
Q(1) =D(r) +L(r) =D(r) + ) A}(B )<<i1 ADg, Ny AN; +Dg Ny A&y ANy, dw) .
i=1 T

Proposition 10.4 (Outer variations). There exist constants Cy04 > 0 and « > O such that, if
T > 0 is small enough, then the inequality

1Q(r) —E(r)[ < Cr04 Eov(T) (10.7)
holds with
£ov(r) = AW (D) + T D! () 4 Fir) 4110 ST T (s,
(10.8)
Moreover
L(r) <CmZ 12~ 7D(r) + Cm F(r). (10.9)

10.1.1  Proof of Lemma 10.3

The Lipschitz regularity of H follows from the Lipschitz regularity of .4". Consider next the
1
map i, : B — B given by i,(z,w) = <rz, raw). By a simple change of variables we compute

H(r) = /a APl W)

The formula (10.6) is then an elementary computation using the chain rule for multifunctions,
cf. Proposition 3.6.

10.1.2  Proof of Proposition 10.4
The inequality (10.9) is a simple consequence of

1 1 1
Lol < emd [ DA< Cm [ 20D R emd [ e R,
B B, B

In order to show (10.7) we fix a test function ¢ € CX(IR), nonnegative, symmetric, with
support in | — 1, 1] and monotone decreasing on [0, 1]. We then follow [21, Section 3.3] and,
having fixed r, we define the vector field X, on V,, 4 via

Xo(p)i= @(p(p)(p—P(p)  where  @(¥W(zw) =¢ ().
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For r small enough, by (8.2) we can use Theorem 3.53 and deduce via the change of
coordinates given by ¥, that

§Te(X) :/ o(EN) D2 4+ I o/ (1) ZJQ:1 (N5, Dy N 5) 4+ 5 3 Brr?, (10.10)
B
with

1 (83)
Err{ = ‘/M(p<HM,n oN>‘ <Cm§ /B ZYo" "o < CAMr)D(v) + CF(r),

(10.11)
Err§ < C / ol IAnc? NP < CF(r), (10.12)
M

Ersg <C | (pl(DNF INIIAyI+ [DNI*) + Dol (IDNF NI+ DNIINE [Ax)

M
N2 B .
<C . {<|Z:22|V0+IDJV|4>_1~ 1¢'(@)T1+Y°|DJV|3—T_1¢’(@)ID,/V| |iﬁtlvO}
(8.2)&(8.1)
< CAﬂ(r)D(r)+CF(r)_C/\(T)n/ g2y L2
_CT]""YO/\T]/ r_1d)/(%)|D,/V|2. (10.13)

T

(We recall that ¢’ < 0 on [0, 1])).

We next distinguish two situations:

* in the cases (a) and (c) of Definition 1.1, we denote by X' and X" the projections of
X on the normal and the tangential bundle of X, respectively. Then d3T(XT) =0 and
therefore

BT (X)] < [8Tr(X) — ST(X)| +I8T(XH);
~——

5
Errg

4
Erry

e in case (b), since dT(X) = T(dw _X), we estimate

‘5TF(X) —TF(deX)‘ L OTE(X) = 8T(X)| +|T(dw IX) — Te(dw IX)]| .

4
Err}

In both cases we have

Err <Q |diveX]| d|T| + Q/ \cuvf x] d||Te |
spt(T)\Im(F) Im(F)\spt(T) F

+ Qlldaw] o / XId|T— T,
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where we use the convention that w = 0 in the cases (a) and (c). We then can estimate

Bred \c/ )lp—pp)l+@(p(p)) d|T—T|

(81&(8)
< 4C/\”()D()+CF()+CT1”°/IW Plp—pp) AT — T -

S(o)
(10.14)

In case (b) we have that

Q
To(dw X) = 3 [ @& +Dg N ALk +DeNs-£2) ANy, deolp +Nifp))
and therefore
’D()+L ZErr

Letting ¢ converge to the characteristic function of the interval [—1, 1], we reach the conclu-
sion. The only term which needs some care is the term S(¢) in (10.14). Note that we can
approximate the characteristic function of [—1, 1] with an increasing sequence of functions
¢; with the property that Id)j’l <CG,0< ;< Tand ¢; =1on [-141/j,1—1/]. Then we
would have

lim sup S(5) < Clim.sup%HT—TpH( A\Bri_1/4)) < —||T e[| (¥(B,)),
j j
by the monotonicity of the function r — || T — T¢||(W(B+)).
In the cases (a) and (c) we follow the same argument, but we need to bound the additional
term Errg. In order to deal with the latter term we argue as in [21, Section 4.1]. In particular
we bound

Bre® < ‘/divfxl d||TH‘

g/ |divsX| dHT\+/ ‘divf X‘ d||Te||
spt(T)\Im(F) Im(F)\spt(T) r

I

+ ‘ / (X5 h(Tr(p)) alTel],

(10.15)

I

where h(vy Avy) = 21221 As (vi,vi). Since the projection on the normal to £ is a C'¢° map,
X' enjoys the same C' bounds as X and I; can be controlled as Err3. The term I, can be
estimated using

1
Xt (p)l = @ Ipr, s (p—P(P)I < Ce(D) @lp—p(p)l < CME @ lp—p(p)* Vpel.

In particular we achieve I, < CH(r), which concludes the proof.
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10.1.3 Proof of Theorem 10.2

In order to prove the theorem we start estimating the error term F.
Lemma 10.5. There exist a constant C1o.5 > O (depending on yo) such that
F(r) < Cros ™ "H(r) + Ciosm° D(r) Vre(0,1). (10.16)

Proof. Using (10.6) and an integration by parts we infer that

"H H T "d (H H "2E
(p) dp = (p) 0_/0 dp <ép)> pYodp = T.1_(:,)0 _/0 p1_($3 dp

Yo 0 pz_YO P= p]_YO
(10.17)
The Cauchy-Schwarz inequality yields then the following bound for every e:
D/
el s [ el [ - B IB0 (1018)
T JoB, 4e JoB, T 4e
Therefore, by choosing ¢ = %, we deduce (10.16) from (10.17) and (10.18). O

Proof of Theorem 10.2. In view of Lemma 10.5, for r sufficiently small, the almost minimizing
condition (9.39) reads as

H(r)
r1—vo

1
D(r) < CrD/(r)+C +Cmér”’°/ o A].
0B,

Dividing by the radius and integrating we get

/ D(s) dsgc/ D/(p) + 1) +pV°1/ mo.#1) do
o S 0 peYo 2B,

1 [ moS|
<CD()+CFr)+Cm? [ D2]
(¥) + CF(r) + Cm} /B =

(8.3) (10.16)

< CD()4+CAM)DE) +Fr) < CD(r)+CrYoTH(r) (10.19)

Therefore, using Lemma 10.3 we deduce that

H(r) :/rZF_(p) &t (127) c /T D(p) dp
0 h 0 Y

T ¢
THE) L o d )
#C [ (G o D0l T T 1B ) dp
(10<19) CD(r)+C r];l—(?o +CrY°D(r)+ CF(r) + CT“YOHT—TFH(p_] (¥(B,)))

(8.4)&(10.16)
< CD()+C :lm

7

—Yo

For r sufficiently small this concludes the proof. O
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10.2 INNER VARIATIONS AND KEY ESTIMATES

Using the Poincaré inequality in Theorem 10.2, we can give a very simple estimates of the
error terms in the “inner variations” of the current T. The latter corresponds to deformations
of T along appropriate vector fields which are tangent to M. In order to state out main
conclusion we need to introduce yet another quantity

G(r):= /aB Dy A% . (10.20)

Proposition 10.6 (Inner Variations). There exist constants Cy0.6 > 0 andn > 0 such that, if r > 0
is small enough, than the following holds
]D/(r)—ZG(r)\ < Cé&py(r), (10.21)

where

1
2
() =" D)+ DD )+ S [ ot (zw)
T!—Y0 9B,

b T T (b (W(B)) (1022)

For further use we summarize in the next lemma a set of inequalities which will be used
in the next sections and which are direct consequences of all the conclusions derived so far

Lemma 10.7. There exist constant C107 > 0 and n > 0 such that for every v sufficiently small the
following holds:

F(r) +7F'(r) <Cio7r7°D(r) (10.23)
IL(r)| <Cqo77D(7) (10.24)
L'(1)] <Cio7 (H(r) D’(r))? (10.25)
€ov <C107 D" (1) + C107 F(r) + C107rD"(r)D’(v) + CTEpp(r),  (10.26)
Erv(r) <Cro7 17 'D(1) + C1o7 D(1)" D/ (r) + C Epp(r), (10.27)
where

1

2

Eur(r)i= s [ et T T ((B,)

Moreover, for every a > 0 there exist constants bo(a), C(a) > 0 such that
rD’(1) ala+b)H(r)

2(2a+b) r(2a+b)

An important corollary of the previous lemma is the following

D(r) <

+Cla)ré&rv(r) Vb <bgla). (10.28)

Corollary 10.8. There exists a constant C1.g > O such that, if 0 is the constant of Lemma 10.7,
then for every 'y < m and v sufficiently small, the function

~ Epv(r) Eov(r)
 YD(r) r'+YD(r)

s(1) :==Zov(r) +Zpv(r):

is integrable and, setting X(r) := for s(t) dt,

Z(r) < Cyogr? Y. (10.29)
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10.2.1  Proof of Proposition 10.6

We evaluate the first variation of T along a suitably defined vector field X. To this aim we fix a
function ¢ € CX(] —1,1[), symmetric, nonnegative and identically one on | —141/j,1—1/j[
and with the property that |¢’| < Cj. Then we introduce the vector field Y: M — R™2
defined, for every (z, w) € B, by

Y(¥(z,w)) = Z o(EY D, W(z,w) € Ty (M,

Next we define the vector field X;: Vg, — R™+? by Xi(p) := Y(p(p)). Note that X; is the
infinitesimal generator of a one parameter family of diffeomorphisms @, defined as @, (p) :=
I'e(p(p)) +p —plp), where I is the one-parameter family of biLipschitz homeomorphisms
of M generated by Y. In fact, since TI'. fixes the origin, we can consider it as a C>Y° map of
M\ {0} onto itself. Note moreover that X; is Lipschitz on the entire 8.

Observe that, by Lemma 10.5 and the Poincaré inequality, F(r) < CrY° D(r), so that
A(r) < CD(r). Moreover,

IDYI(W(z, W) + Idivag YI(¥(z,w)) < —Cr 2zl ¢/ (Z) + cr T (2], (10.30)

where we recall that ¢’ <0 on [0, 1].
If r is small enough, by (8.2) we can apply Theorem 3.54 and, proceeding as in the proof
of Proposition 10.4, deduce that

1

7 Err]i< ,

p

<

5
k=

Q
/ (IDNIZdivMY—ZZ@Ni: (DNj - DMY)>>
M

i=1

where the error terms can be bounded in the following manner.
First of all,

Erri =Q ‘/M ((Ha, moN) divygY + (DyHa, m o N))

<Crlmg /% (@) 1z mon (W)l = ¢/ (2) ze o (z,w)])

®3) -1+ 3 -1 —1 4 7(lzl
< Cr'D'M(r) —Cmg e /r ¢ () Mo AN (z,wW)l,

B,

where in the first inequality we used (10.30) and the fact that
(DyHag,m o N) < |YI[DHael n o NI < C Eo(E) o2 oA

As for Errs and Err{ we have similarly

Erry = C /M A (IDYIINP + Y] INJ[DN])

1/ Iz Iz 12| APz e DA
< Cmyp /% [1‘ <_T¢/((T)) +¢(T)) z2—2vo S (b(rz)w
2
<CmorY 'D(r)—Cr! / qu)/(lril) |1FV|YO ,

T
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and

Erry < C /M (I¥I1Adl IDNI2(INI 4+ IDNJ) + [DY (JAncl [DNIINJ2 + [DN[*) )

2
<G 'D(r) — CD(r)" /%T‘Vb/('f) DA+ Cr ' D) /93 o(5) |1?V|VO-

The errors Errj and Errl are the same as Err§ and Errg respectively, in Section 10.1.2,
evaluated along a different vector field. Proceeding in the same way as in the estimate of
Erry, we deduce

Err :/ Jaivex| dyTH+/ div, X
spt(T)\Im(F Im (F)\spt(T) F

< Cryo! D(r)+C/ocd||TTF| .

| S S
S(¢)

where «(p) = @(p(p)) and @(¥(z,w)) = r*2|z|d>(r*] lz]) == 1¢’(r71|z]). In particular using
(8.4) and the fact that —¢’ < Cj on [0, 1], we infer

S(4) < Cro D) + CLIT T (p (W(B, \ Bri_a5))).

As for Erry, we observe that it only appears in the cases (a) and (c) and arguing as in Section
10.1.2 we can bound it as

Erd <1y + ‘ / XE (T )) AT,

I

where h(vy Avy) = 21 1 Az (vi,vi) and I; enjoys the same bounds as Err Denote by
vi,...,v1 an orthonormal frame for T, Y+ of class C%¢0 (cf. [18, Appendlx A]) and set
hJ (X — > 1 (D vi(p), vi) Whenever ViA...A\vy = A is an m-vector of T, (with
V1,...,Vm orthonormal). For the sake of simplicity, we write

1
W, :=h),(Te(p)) and hp =) hlv;(p)
j=1

1
R p) = M) NP and pp) = Ty vi (P (P)).

. . . o -1 .
Consider the exponential map exp(p) : Tp(p)X — L and its inverse X, (- Recall that:

* the geodesic distance dx (p, q) is comparable to [p — q| up to a constant factor;
1
e vjis C%% and ||Dvj||c1eo < CME;

and ex_/

¢ & p(p)

:
—1 2.
p(p) are both C%¢° and ||d exp(p)llcre + Id exp(p)HC],eo <mg;
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. 1
* hpl < CllAz]lco < Cmg;

where all the constants involved are just geometric. We then conclude that

p =2 V(PN — +Z vi(p) =¥ (P(P)) )
j
=D vilp)(h, —h,) +ZDVJ' p(p) -exp(p)(p) b(p) TOUP—PPI?).  (1031)
j j
On the other hand, Xi(p) = Y(p(p)) is tangent to M in p(p) and hence orthogonal to h, ;)
Thus

(Xi(p), hp) = (Xi(p), (hp —hp(p))) = Z<xi(p(p)) Dv;(p(p)) -ex, | (PR, )

+Z (v;(p ))(,—h ) +0 (lp—pp)P)

= 3 (Xu(p(p), DV (p(p) - exggp)(p»h;(p)
)

O (ITe(p) = M(p(P)lp — p(P)l +Ip — P(PI?), (10:32)

where we used elementary calculus to infer that [(X*(p), v;(p))l < Clp —p(p)l and

R, =1, ) < € (ITelp) = NP +Ip —p(P)])

We only need that the constants C appearing in the above inequalities are bounded by

1
a geometric factor: in fact they enjoy explicit bounds in terms of mj which are at least
linear, but such degree of precision is not needed. Finally recalling that p € spt(Tg), we can
bound [p — p(p)| < IN(p)| and |Tr(p) —M(p(p))| < CIDN(p(p))|. We therefore conclude the
estimate

Xilp) Mp) = 3_(Xi(p(p)), DY} (P(P)) - ex ) (P} ) + O(INI*(p(p)) + DN (p(p)) -
j
We combine it with the expansion of the area functional in [18, Theorem 3.2] to conclude the
estimate on Iiz. Recalling that p(Fi(x)) = x we get

I = \ [ oxump)aime| = (Y, )T

Q

/ ZZ x), Dv;(x) - ex ! (Fi(x)))h) dH™ (x)

j=11i=1

(10 32

+C / +(INI2 +[DNP2)
M

Using the Taylor expansion for ex; ' at x (and recalling that F;(x) —x = N (x)) we conclude

Q
’Zex,j]( ’ ]dex (o N(x ‘—FOINI) < ClnoN(x)|+ CINJ?.
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1
Next consider that I(Y Dv; -v)| < Col|Ag||colvl < Co m{|v| for every tangent vector v and

Ih| < C||As]|co < mé We thus conclude with the estimate

Iz<Cmo/ (plnoN|+C/ (N2 +DNP) = ], +]2.
M M

Clearly J; can be estimated as Err} and J, as Err}.

To conclude the proof notice that, with analogous computation as in [17, Proposition 3.1],

0/ ID(NoT.)| _/ (zz (DNj: DNi-DMY)>—|DN|2diVMY>. (10.33)
=

However, by the conformal invariance of the Dirichlet energy, we have

/IDNoF /IDJVoF

where [ is the one parameter family of diffefomorphisms generated by the vector field
Y: 98 — 9B defined by

Vizw) = IZI(b(IZI)

Hence

d D(NoT)P* = zQ DA i: (DA ¢ -DY)) — DA P divY
e—o/M| (NoTe)l _/% Z< i i-DY)) —| |“divY |, (10.34)

de =

where the differentiation is taken with respect to the (local) flat structure of 5.
In particular we conclude

d [ ld (1 5 )
T leco /M ID(NoT¢)? _/B - ¢’ ( >(2|DVJV| —[DA?). (10.35)

Collecting together (10.33), (10.35) and the error estimates, and letting ¢ converge to the to
the indicator function of [—1,1] (namely letting j T co) we conclude the proof.

10.2.2  Proof of Lemma 10.7

The lemma is a very simple corollary of the estimates proven so far. (10.23) is a simple
consequence of the Poincaré inequality (10.4) and of (10.16). Similarly, by Lemma 10.5,
we have that A(r) < CD(r), and therefore (10.26) follows in view of (10.23). The same
arguments hold for (10.27). Next for (10.24) we can estimate as follows:

1
T 2
|L(r)|<Cmé/ A DA < Cmi (/ H(t)dt) D} (1)
B, 0
1

(10.2) 1 T 2 1 1
< Cmg <C10‘2/ tD(t) dt) Dz(r) <CmgrD(r). (10.36)
0



10.2 INNER VARIATIONS AND KEY ESTIMATES

Similarly

L'(1) < Cm? /aB AIDA| < CmE (D/(r)HI))? . (10.37)

Finally, we notice that by Proposition 10.6 implies

/
’D (T) / |DT</V|2
0B,

7 < CEry(r).

Therefore, using the almost minimizing property in (9.40) and the Poincaré inequality we
infer that

rD’(r) N ala+b) H(r)
2(2a+Db) r(2a+b)

D(r)<(1+Cr) [

Absorbing the error term v' 9 D’(r) and dividing by (1+ Cr) we get

rD’/(1) ala+b)H(r)
2(2a+Db) r(2a+b)

D(r) < [ } +Cla)rEpv(r) +Eqm(T) +CrD(r).

from which (10.28) follows straightforwardly by noticing that Eqm (r) +7D(r) < Cr&pv(r).

10.2.3 Proof of Corollary 10.8

Recall first thet < yo. We start with Egp(r). Notice that, using H(t) < CtD(t) together
with the definition of F(r), we have

T 1 ! F(r) "1 H(t) o
I <tvmt)> ROt C g+ [y e G O

Next, by a simple integration by parts and the fact that D(r) < Cr?, we deduce

T 1 d -1 _ ] -1
| i st Tl (B @t = o T Tl (b ((8,))
T 1 / »
+/o (ﬂD(t)) IT—Tel[(p~ " (¥(By))) dt
84) D' F r 1 !
<¢ w(g;) (T)+/o (tVD(t)> (DO +F(1)) de < Cr1Y. (10.38)

In a similar fashion we have

1 1
/T mg / no A (z,w) dt < mg / no A (z,w)]
o tYD(t) Jop,  t!TY0 S rYD(r) Jp,  lzlTYo

Y1 N 1 oA (z,w)
+/o <tVD(t)> Mo /B 2170

®3)  D'M(r) 4+ F(r) r 1 ' _
< C D0 +/O (m)(t)) (D)™ +F(t)) dt < Cr1 Y.

(10.39)

] +Cla)TEv(T) + Eqm(r) +Cr oD/ (1).
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so that

.
Epp(t) _
dt < CrY
/o ' D(t) ’

To conclude, we compute separately the integral of each addendum of s.

T (10.27) T
/ Erv(t) dt °<7 2C1o,7/ <twv1 YD) D) + EBP(t)> gt
0 0

tYy D(t) Y D(t)
<CrY (1 +D(t)%) <CrTY, (10.40)

where in the second inequality we used D(t) < C t2, and

" Eov(t) (10.26) /T D" (t) F(t) a1 )
= 7 < Y n
A tH'YD(t) dt < Cio7 5 v -+ t]’H’D(‘t) +t YD (t)D (t)
Epp(t)

tY D(t)

+ > dt <Cr"Y, (10.41)

10.3 ALMOST MONOTONICITY AND DECAY OF THE FREQUENCY FUNCTION

In this section we study the asymptotic behaviour of the normal approximation .#". The first
step consists in proving approximate monotonicity and decay estimates for the frequency
function.

For every r € (0,1) such that H(r) > 0, we set I(r) := r]f((r? where we recall that

Q) = { D(r) in the cases (a) and (b) of Definition 1.1;

D(r)+ L(r) in case (c).

Furthermore we define K(r) := I(r)~! whenever Q(r) # 0. By (10.24) there exists t9 > 0
such that

%D(T) <(O-Cr)D(") QM) < (1T+Cr)D(r) £2D(r) Vr<rp. (10.42)

Having fixed 1o, K(r) is well defined whenever D(r) > 0 and hence, by the Poincaré
inequality, whenever I(r) is defined. Moreover, if for some p < 1o, K(p) is not well defined,
that is Q(p) = 0, then obviously Q(r) = D(r) = 0 for every r < p.

We are now ready to state the first important monotonicity estimate.

Theorem 10.9. There exists a constant C19.9 > 0 with the following property: if D(r) > 0 for some
T < 10, then the function

K(r) exp(—4Z1v (1)) —4 Zov () (10.43)

is monotone non-increasing on any interval [a, b] where D is nowhere 0. In particular, either there is
T > 0 such that D(F) = 0 or K is well-defined on 10, vo[ and the limit Ko := lim,_,o K(r) exists.

A fundamental consequence of Theorem 10.9 is the following dichotomy.
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Corollary 10.10. There exists T > 0 such that
(A) either K(r) is well-defined for every v €0, rol, the limit

Ko == 13?3 K(r) (10.44)

is positive and thus there is a constant C and a radius T such that

C'rD(r) <H() <CrD(r) Vrelo,7; (10.45)

(B) or TLp~ ' (¥(B+)) = Q [W(B+)] for some positive T.
In turn, using the above dichotomy we will show

Theorem 10.11. Assume that condition (i) in Theorem 10.1 fails. Then the frequency I(r) is well-
defined for every sufficiently small v and its limit Iy = lim,_,0 I(v) = Ky exists and it is finite
and positive. Moreover there exist constants A, C10.11, Ho, Do > 0 such that, for every r sufficiently
small the following holds:

H(r)

T210+]

D(r)
210

’I(T‘) — Io| + < Cio ™. (10.46)

—Ho| +

_DO

10.3.1  Proof of Theorem 10.9

In the first step we claim the monotonicity of the function K(r) exp(—Z1v(r)) —2Zov(r) on
any interval contained in [a, b] on which D is everywhere positive. Recalling that €2 and
H are absolutely continuous functions, we can compute the following derivative: for every
T € [a,b]

2 (HO\" 1 Hr) Q'(r)
Km_( r ) amn v 9
(10.6) 1
< g2y (REM QM - D/ HE) + L' (H). (10.47)

Then, either K’ < 0, or the RHS of the inequality above is positive, that is

, , (1037) , H2(7)
D' (r)H(r) < 2E(r) Q(v) + L (v)|H(r) < 2E(r)Q(r)+rD’(r) H(r) + .

T

In turn, using H(r) < CrD(r) < CrQ(r), the latter inequality implies
D/(r)H(r) < CE(r) Q(r) + CTr Q% (r).

From this we deduce

Q%(r)  EX(r)
2 2

which implies that E(r) < C€Q(r) and so, by (10.24),

E2(r) <H(r)G(r) <H(M)D'(r) < C

1

IL/(r) < Cmg (D'(r) H(r))¥ < CmZ Q(r). (10.48)
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Next using again the Cauchy-Schwarz inequality and (10.26), we have

Q) E(r) < Qr)H(M)IG(r)Z < Q(ZT)Z n H(r) G(r)

QrE(r)  Q(r)€ov(r)  H(r)G(r)
S—5— + 3 e

which implies
Q(r)E(r) < H(r) G(r) + Q(r) Eov(T). (10.49)
Collecting all these estimates together and using (10.21), we conclude that, if K’(r) > 0, then

_ (1049)
K i (M) 61— D/ (1) H(r) + IL (1) H(r) + 2(1) Eov 1)

(10.21)&(10.48) 1

< 00 (2H(r) G(r) = 2H(r) G(r) + Q(r) H(r) + H(r) E1v (1) + 2Q(1) Eov (1))
Eovl(r) o, () Eov(r) o Crv(T)
<2 o) + K(r) o <4 D0 +4K(r) DO (10.50)

On the other hand the final inequality

Eov(T) o Ery(r)
Dm RO

K'(r) <4

is certainly correct when K’(r) < 0, because the right hand side is positive. The monotonicity
of the function in (10.43) is then obvious.

Next, as already observed, either D is always positive, or it vanishes on some interval
10, 7[. If D is always positive, then K is well defined on ]0, o[ and the existence of the limit
Ko = lim; o K(r) is a direct consequence of (10.43) and Corollary 10.8.

10.3.2  Proof of Corollary 10.10

First of all observe that, if D(¥) vanishes, then .4 = Q [0] on Bs. In particular by (8.4) we
conclude that we are in the alternative (B). We can thus assume, without loss of generality,
that D is positive on ]0, 7o[. Assuming that Ko vanishes we will then reach a contradiction.

Under the assumption Ko = 0, consider the monotonicity of K(r) exp(—4Zy(r)) —
4Zov(r) between two radii 0 < s < r and let s — 0 to get

K(r) <4e**vI £5y(r) < CZov(r),

where the last inequality holds for r sufficiently small, since Z1y/(r) < Cr"~Y. Next observe
that, since the function Zpv (1) is non-decreasing (it is the primitive of a positive function),

F(r) 1 /T H(s) D(s)
0

D) SDM J, = D) &

N

" K(s) v
C/O T ve ds < CrYo Xy (1), (10.51)
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and that

T d .
/o s as T~ el (P (¥ (o)) ds

@4 DM (r) +F(r) TN
<C D) —|—C/O <D(s)> (D" (s) +F(s)) ds
F(r) " F'(s)
pm ¢ J, Dis)

K
Ei/)o ds < CD"'(r)+ CrYoXpoy(r). (10.52)

<CDM' 1)+ CrY¥oxXoy(r)+C ds

<CDM(r)+CrY¥oxXoy(r)+C

o s
Using these two estimates and 27 'D(r) < Q(r) < 2D(r) in the formula for &gy, we have
Zov(T)
C/T (D)1 4 sDN(s)D/(s) + Fls) + s | T~ Te|(p " (¥(Bs))) ) ds
o sD(s) ds s
< CrD(r)2 +CrY° Zov(r).

Hence, for r sufficiently small,

K(r) < CZov(r) < CD(r)?. (10.53)
In particular this implies that
H(r) < CrD(r)'*2. (10.54)

Combining this with (10.7) and the Cauchy-Schwarz inequality, we deduce

1D(T‘) <Qr) < @Jr(gov(‘r) < (rgg;?) (TD’(T‘)D(T)%>7 + EovI(T)

(1059
2D £ CrDMED/ (1) + Eou(r).

Dividing the expression above by rD(r), integrating between two radii 0 < s < r and using
the bound D(r) < Cr? we obtain

log () <c | (Df)“ +D(p)1 D/ (p) + i‘g{;}) do<Clr

NS
N3

).

—s
Sending s — 0 we get a contradiction.

10.3.3 Proof of Theorem 10.11

Clearly, if (i) in Theorem 10.1 does not hold, then D is always positive and we are in
alternative (A) of Corollary 10.10. Thus K is positive and the first statement is obvious.
Let K(r) := I(r)~! and observe that by (10.42) we have

(1—CnIr) <In) <(O+CnI(r), VO<Tr<Ty,
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which implies
(1-CrK(r) <K(r) < (1+Cr)K(r) ¥O<T <o,

so that in particular K(r) < CK(r) < oo for every 0 < v < 1o and K(r) — Ko as r — 0. Using
the monotonicity formula of Theorem 10.9 together with Corollary 10.8 we have

K(r) =Ko < Cs(r) < Cr.
and therefore
Kr) =Ko < CrMM+CK(r)r < Cr". (10.55)

To control K(r) — Ko from below we apply (10.28) with a = Ip = - and b = A <
min{3, bo(Io)} to infer, after dividing by rD(r), that

D/(r) 2

D0 < < 5 Ho(To +AJK(r) — (210 +A)) -

Multiplying this expression by K(r) > 0 and adding %, we get

2 D’ 2 cé
o D((:)) K(r) < <7 [1+1o(Io + A K2 (r) — (21 +AK(T)] + DI(\;gT)
2 1 cé
< 21 (K= ) (o ARG = 1)+ ST (1056)

Since (Ip +A)K(r) converges to 1+ AKp, we easily deduce that for r small enough (Ip +
MK(T)—1> %Ko. Using this together with (10.55), we deduce from (10.56) that

1 CEIv(T) ™
_Io> +W+CT' (10.57)

=N
w)
VAN
| >
N
=

A simple application of the usual variational formulas leads to

sy (HEN 1 H(r) D/(r) 26 2E(r) D’(r)
Kir) = < r ) D) D) D) S rDr) D N
(10<7) 2 D’( )K(T) C 80\/(5.1)‘)
(1057 Cé&rv(r) Eov(T) i
< > D) +C D) +CT' (10.58)
Recalling that K(r) < C, we deduce
d [K(r)—K Eov(r) Erv(r) 1
dr [ A O] S T1+O>\\;)(T) +C TAII\;(r) + CT1+>\fn (10.59)

Integrating (10.59) on the interval |s, r[ and using (10.29), we get

A
K(r) —Ko < Z—A (K(s) —Ko) + C 112
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that is K(s) — Ko > Cs?. The inequality [K(r) — Ko| < cr easily implies [I(r) —Ip| < Cr.
For what concerns the other inequalities we compute

[log( H(r) ﬂ/_ H'(r) 2lo+1 _2E(r) 2l _2D(r) 2l &ov(r)

r2lo+1 ~ H(7) T TH(®) r T H( T H(r)
2 Eov(r)
< - — .
< (I(r)=Ip)+C H() (10.60)
and similarly
H(r) \1' .2 Eov(r)
[log (T210_|_]>:| > (1) -lo)-C HO) (10.61)
Integrating (10.60) and (10.61) and using (10.29), we deduce that there exists the limit
. H(s) .. |H® \
Ho :151113_8217, with W_HO QCT .

Moreover, from (10.60) we also infer that for r sufficiently small

H(T‘) 7C1‘7\
F20o+1 €

Vv

Ho/ > 0.

Finally the last assertion follows simply setting D¢ := Ip - Hp and from

D(r) H(r)
H(r) H(r) A
<|I(r)_10| T210+] 0 T210+1 HO <CT

10.4 PROOF OF THE BLOW-UP THEOREM

As a consequence of the decay estimate in Theorem 10.11 we can show that suitable rescaling
of the normal approximation N converge to a unique limiting profile. To this aim we consider
for every r € (0, 1) the functions f, : 90B1 — Ag, (R*™™) given by

A (ir(z,w))

fr(z,w) = mp

Recall that ToM = R? x {0}, and ToZ = R? x R™ x {0}. In the following, with a slight abuse
of notation, we write R™ for the subspace {0} x R™ x {0}.
The final step in the proof of Theorem 10.1 is then the following proposition.

Proposition 10.12. Assume alternative (i) in Theorem 10.1 fails and let 1y and A be the positive
numbers of Theorem 10.11. Then 1o > 1 and there exists a function fo : 90B; — Ag(R™) such that

(i) nofo =0and fo # Q1 [0];

(ii) for every v sufficiently small

A

S(fr(z,w),fo(z,w)) < Crie  V(z,w) € 0Bq; (10.62)
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(iii) the 1o-homogeneous extension g(z, w) = [z|lofy (\ZI |W|) is nontrivial and Dir-minimizing.

In particular, by (iii) Im(go) \ {0} € R?>*™ is a real analytic submanifold.

Theorem 10.1 follows immediately from Proposition 10.12 and Theorem 10.11.

Proof of Theorem 10.1. Since we have identitied R™ with {0} x R™ x {0}, it is obvious that the
map g has all the properties claimed in (ii), namely it is Dir-minimizing, no g = 0 and it is
nontrivial. (10.1) is a corollary of (10.62) provided ap < %. Next note that (10.3) has been
shown in Theorem 10.2. As for (10.2) observe that, if 4p < r < 1, then, by Theorem 10.11,

Do(r—2p)% —C(r—2p)?™ < D(r—2p) < D(r+2p) < Do(r+2p)?10 + C(r42p)2lo A,

Since 21y > 2, (10.2) follows easily from
/ D2 =D(r+2p) —D(r—2p),
Br+29\Br 2p

provided ap < A. O

The rest of this final section of the note is devoted to the proof Proposition 10.12, which
is split in several steps. Before starting with it, let us however observe that the conclusion

Io > 1 is an obvious consequence of the decay estimates of Theorem 10.11 and the fact that
D(r) < Cr2*+2vo,

10.4.1 Step 1: uniqueness of the limit fg

For r sufficienly small and s € [5, 1], we start est1mat1ng the following quantity:

S(fr, fs)* < (r—s / /
9B, By Js

Using the differentiability properties of Lipschitz multiple valued functions and the 1-
dimensional theory in Chapter 3 (note that t — .#"(i¢(z, w)) is a Lipschitz map), we easily
infer that

7ft zZ,w dt. (10.63)

2 Q . . 2
DA 5(it(z,w)) - z N 51z, w))
’ft Zw - Z] tlo —lo tlo+1
):
12120542 (it (2, W) 2| |12 (i (2, W)
- - 210 —2lo 2h+1 Z (05475, 4 5) (ie(z, W) + 210+2

Therefore, by the change of variable (z’,w’) = i¢(z, w) in (10.63) we infer that

S(fr, )2 < % T<G(t)—ZIo B g HO ) dt

9B, 2 t210+1 t210+2 tZI +3
T [T ( D'(t) D(t) ., H(t) Erv(t) Eov(t)
< 2[ (2’(210“ 721°t210+2 +15 0 {210+3 +C +2T0+1 +C 121042 dt
2
r T[] (D))’ H(t) Erv(t) Eov(t)
- z/r [Zt <t210 > +Iot210+3 (Io —I(t) +C t2I0+1 12I0+2 dt
2
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Using Theorem 10.11, we can then conclude that

M —I0] L Env(t) | Eov(t)
Cﬁ [ n +C D) +C tD{) dt

D(r) D(3)

1210 (%)ZIO

S(fr, fs)* < C
0B,

< Crh (10.64)

By an elementary dyadic argument analogous to that of [17, Theorem 5.3], we then infer the
existence of fo : 0B1 — Aqg (R%2*t™) such that, for r sufficiently small,

IS (fr, fo)lI2 o8, ) < crh. (10.65)

10.4.2  Step 2: uniform convergence

N (L12(zwW))

Set next h(z,w) := G ( (zw) ) It follows from (10.64) that for r sufficiently

|z|"o [5]%0
small
T (10.64)
/ h? < / S(f,fi)*tdt < Cr*™, (10.66)
. 9B, :
and from (8.1) and (8.2)
Lip(hlg,\p,) < Cs™ . (10.67)

Moreover, for every p < 2l e claim the estimate

/ IDhI2 < Cp+Clz . (10.68)
By (z,w)

Indeed |Dh| < C ’D

Lo P ()] <2
By (z,w) |Z| 0

”{0 ) } and by Theorem 10.11

izl+p ID/|? A2
/ < 21 I 21 +2> dt
lzl-p JoB, \ 7€ ® 12l
e (D))’ D(t) . H(t)
< /zl—p << 210 ) 210t21 1o t210+2> dt

C (lzl+p)* + Clog <|z|+p> < C|z\7‘+Cﬂ.
z| —p 2|
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In particular, applying (10.66), (10.67) and (10.68) with p = |z|'+%, we infer that for every
point p = (z,w) € Bg with |z sufficiently small

K—1
h(p) < nip) h 3 |f nf nef o
B‘Z” % (P) i=0 B‘Z‘Pr% (P) B|Z\]+% (p) B‘Z‘1+)\ (p)
2K 2t ST F]
k—1 A
|zt |21+ 3
< Lip(hfg, (p NB Ly (p = +C > 5 ][ IDh +][ h
i=0 Bm”A (p) B\zﬂ*A (p)

k—1
(10.67) C
< Cl'th 4 C § / IDh)? | + .
1+3
B . .a |z|' T4

i=0 121t %

where we have used the standard Poincaré inequality

[ f e
' 5

Now choose k € N such that lz' <|z|1t4 a+lo < Izl (m particular k < |log |z|[) and use
(10.66) together with (10.68) to bound

r][ Df] fe W'
B,

h(z,w) < Clz"*3 + C|loglzll |25 + Clz|* < Clz| T, (10.70)

This gives that, for a sufficiently small r,
A

max §(fy, ;) < Crie.
0B,

Thus

[e¢]

Igax9 fr, fo) < Z frox, k1) < Crie.

>

10.4.3 Step 3: nontriviality of the limit and other properties

To show that fp # Q [0] it is enough to observe that, by Theorem 10.11,

| L HE)
fol*> =1 frl? = =Ho > 0.
[, o= tim [ a2 = tim S =

In order to show that n o fy = 0, we notice that by a simple slicing argument combined with
(8.3) there exists a sequence of radii 1y, € [27%"1,27¥] such that

/ noﬂl<2k+]/ nOJV|<Cr{°/ 2o o ]
aBTk Bz—k\Bz—k—] B

2—k
< Crz”ZnD(Zrk) < Crz°+2n+210, (10.71)
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from which

/ nofol = lim mofy|= lim rkIO‘/ Mo A
9B, v«—0 J3B, =0 9B,

k

. 2n4Tp—T
< C lim TIOJF il —
rk—>0

Next we show that fy takes values in R™. We start by showing that f, must take val-

ues in ToX = R?t™ x {0}. Indeed, if we set f.(z,w) = A (i (z,w)), using (10.84) and
| (i (z,w)) < CT1+F we conclude

S(fr, F)? < <7 [ ar<en
0B, TS AT [ = ’
which implies that fo(z, w) € Ag(ToZ).

Next observe that f.(z, w) = ) _; [-4 i(ir(z,w))] has the property that each .4 i (ir(z, w)) is
orthogonal to Ty i, (zw))M. In particular, if |z = 1 and r | 0, the tangent planes Ty i, (zw))M
converge to R? x {0}: it follows, by the uniform convergence of f, to fy, that fo(z,w) =
> i [(fo)i(z,w)] for some (fp)i(z, w) which are orthogonal to R? x {0}. We thus conclude

that each (f()i(z, w) belongs to {0} x R™ x {0}.

10.4.4 Step 4: Minimality of g

In order to complete the proof of Proposition 10.12 we need to show that g is Dir-minimizing.
Given the homogeneity of g in the radial direction, it suffices to show that there is no W2
multifunction h : By — Aqg(R™) which has the same trace of g on 9B and less energy on
B1. Assume thus by contradiction that there is an h € W12(B; ,AQ(]I{ﬁ)) such that hlag,

and
/ Dh? < / DgP — 5 (10.72)

for some positive & > 0. Recall the definition of W'? according to Remark 2.19: using the
map W in there and the functions ho W and g o W we can use the theory of Chapter 3 and
assume that h o W is a Dir-minimizer on the euclidean disk D; c IR2. Observe also that,
since n o g = 0, we must have noh = 0 as well. Indeed since ho W = goW on 0D, we
have nohoW =mnogoW =0 on the boundary and considering that

[ Y ptew-nehow)< [ DmeW)E-Q [ DmereWP,
D, D, D,

i
the minimality of h o W forces the Dirichlet energy of n o h o W to vanish identically.
Using (8.3), the decay D(r) < Cr?!° and a Fubini-type argument we can find a sequence
of radii s; — 0 such that
D’(s;)

/ IDfol? < lim sup IDfS].I2 < limsup -7 = < C. (10.73)
9B, j 9B, j S5 °
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We now wish to “smooth” h, i.e. to approximate it with a sequence of Lipschitz maps h.
such that noh, =0,

/B IDh.|?> — [DhJ? < €2 (10.74)
1

G(fo, he)? + <e?. (10.75)

/ Dfo2 — [Dh, 2
0B, 0B,

We would like to appeal to Lemma 3.11, but there is the slight technical complication that B
is not regular. We postpone this technical step and continue with the argument assuming
the existence of the approximations he.

Next we would like to apply Lemma 3.15 to h, and pr,=(fs;) = fs;, to get a family of
competitor functions (ﬂj) C W2(By,Aq(R?™™)), such that 1?5]. loB, = fs;lo,) and

~ _ C _
/ Df, ? < / Dhel? +e / (DeheP £ D)+ S [ Sthe )2, (1076)
B B; 0B € JoB,
oA . .= 1 =
Lip(fs;) < C (Llp(hs) + Lip(fs;) + < Sup 9(fsj,hs)> (10.77)
9B,
11 o 1}551' = Tl o 'st . (1078)

Again, this is not straightforward because Lemma 3.15 is stated for euclidean domains. We
postpone this second technical problem and continue with our argument assuming the

existence of f 55
We are now ready to define our comptetior function. We set .,?Sj (z,w) == s].I of N (i1 (z,w))
- Sj
and, observing that Zsi takes value in Aq (ToZ), we use (9.1) to define a corresponding .Z y
which clearly is a competitor .4 in Bg; according to Definition 9.1. Moreover

. To+17 : A (10.67) n
Llp(.,i’sj)ngj Lip(fsls,) < Csjm.

Therefore we can apply Proposition 9.2 with .2 = .%;,. In particular, taking into account
Theorem 10.11 and (10.73), we conclude that

- _ 1
/ D2 < (1+ Cs;) / ID.,%SJ.I2 + Cmg / FRCEN o Ll + CSJ.ZI‘”Ln .
Bs. Bs;, B,
) ) )
Next, recall the inequality (9.41):

[ e ez e [ Ee e ve [ e R,
Bs. Bs.
) )

B,
)]
By (10.78) the first term in the right hand side equals indeed
C/ ZYo o ¥ < Cs? D(sj) < CstIoJrn _

)

For the second term we use the Poincaré inequality

[ oEeizmpeese [ papicse [ 1z, (1079)
5j 55 5j
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whose proof is given in Lemma 10.13.
Using that

[P [ R —Hes) < s,
6st ast

we easily conclude that

/ DAV? < (14 Csj)/ ID.,?,”SJ.I2 + Csj210+n ) (10.80)
.. B,
)

Changing variables and dividing by sj2 1o we infer that
ID?SjI2 < / ID?SJAI2 + Cs}1 ) (10.81)
B, B,
Using (10.74), (10.75) and (10.76), we conclude

C _
/lDfs 2 < /thI2+Cs +Ce+— [ Slfo,fs))?
0B,

C _
Dgl? — &+ CsT’ +Cet — S(fo, fs;)?,
B, 9B,
where the constant C is independent of ¢. In partlcular, if we fix ¢ sufficiently small and we
then let s; | O, by the uniform Convergence of fs; to fop on 0B; we conclude

lim sup |Dfs]|2 / |Dg|2 — =

)—)OO

Since however 1‘5j — ¢ in By, the latter inequality contradicts the semicontinuity of the
Dirichlet energy.

10.4.5 Step 5: Technical leftovers

First of all we show the existence of the map h, as in (10.74) and (10.75). We consider ho W,
which is defined on the closed unit disk D; C R?. We then can apply Lemma 3.11 to the
latter map and generate approximations h. which satisfy the bounds (10.74) and (10.75)
with D7 in place of By and h o W in place of h. The maps h, := he o W would then satisfy
the desired estimates because of the conformality of W~ (which keeps the Dirichlet energy
invariant) and its regularity in By \ {0} (which results into the loss of a constant factor in
(10.75)). However the resulting map would not be Lipschitz because of the singularity of
W~ in the origin. To overcome this difficulty it suffices to perturb slightly k. so that it
is constant in a small neighborhood of the origin. As for the condition noh, = 0, this
can easily be achieved subtracting the average to whichever extension satisfies (10.74) and
(10.75). )

Secondly we show the existence of f;. First of all we observe that the condition (10.78)
can be easily achieved after we prove the existence of a map which satisfies the other two
conditions: as above it suffices to subtract the average of this map and add back n o fs;.
At this point we observe that it suffices, as above, to compose with the map W, apply [17,
Lemma 2.14] and Lemma 3.15 and compose the resulting map with W~: indeed the latter
would coincide with h, o W on D1_, and on the complement w-1is regular.
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10.5 APPENDIX A: SOME USEFUL LEMMAS.

The first lemma is a simple version of the Poincaré inequality for W12 functions.

Lemma 10.13. There exists a universal constant C > 0 such that for every f € W'2(B,, Aq),
where B, C Bq, the following two inequalities hold

If]2 < Cr? / IDf|? + Cr / lis (10.82)
B~ B. 0B,

/ lzYo~ £ < Cr”"o/ DfIZ+CrV0/ ]2 (10.83)
T T 0B,

Proof. By approximation we can assume, without loss of generality, that f is Lipschitz and,
by scaling, it suffices to show the inequalities (10.82) and (10.83) on the ball By. Fixing |z| = 1
and integrating along rays

1
If(rz, v/ Qw) |2 < 2/f(z, w)|? +2/ IDf(tz,t"/Qw)|? dt.
T

Using radial coordinates we then conclude

1 1
P < C [ IR+ / / i / Df(tz, taw) dtdr dz.
B; 0B, 0B, JO T

Using Fubini the latter integral can be rewritten as

1 t 1
/ / IDf(tz,téw)lz/ Yo dtdzdr < / t/ IDf(tz,t%w)l2 dzdr.
0 0B, 0 0 0B,

This completes the proof of (10.83). The proof of (10.82) is a simple variation of this one and
is left to the reader. O

Lemma 10.14. Let Z: By — AQ(R**™) be Lipschitz and consider the map £: By —
Aq(R**™M) defined by (9.1). Then there exists a constant C := C(||Wo||c3) > O such that

S(Z, Z)(z,w) < CrlZl(z,w) +ClZ1*(z,w), V(z,w) € B, (10.84)
IDZI> < (1+Cr) / IDZP>+Cr / 2. (10.85)
B,

B,

B,
Proof. For what concerns (10.84), observe that D¥(0) = 0 implies |[DWy|/r~(B+)) < Cr.
Therefore, by the C3 regularity of ¥, we get

Q
5(Z, 2)(z,w) = Z W(po(W) + %) —Yolpo(¥))l(z,w)
j=1

< [DY[[(¥(z, W) 1Z1(z,w) + |A5 || 1217 (2, w)
< CrlZl(z,w)+ClZ)?.
An analogous computation gives
D2 <(1+Cr) | IDZP+C | 2]
Br Br R
and we conclude (10.85) using Lemma 10.13. O
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