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A B S T R A C T

In this thesis we deal with interior regularity issues for area minimizing surfaces. In particular,
we consider a special class of almost area minimizing, 2-dimensional integral currents, with
bounded mean curvature, and we prove that their interior singular set is discrete. More
specifically, we treat area minimzing currents in riemannian manifolds, semicalibrated
currents and spherical cross sections of 3-dimensional area minimizing cones. In all these
three situations our result is sharp. Moreover, a nice corollary of our theorem is the fact that
the singular set of 3-dimensional area minimizing cones consists of at most a finite number
of lines.

Our result is inspired by the approach of Almgren-Chang (cf. [9]) for area minimizing
currents, which we revisit and complete, adding also some new cases. In particular we
use a lot of techniques coming from De Lellis and Spadaro’s new proof of Almgren’s Big
Regularity paper (cf. [17, 18, 19, 20, 21]). Other important known results that we manage to
cover are Tian-Riviére regularity theorem for almost complex curves (cf. [53]) and Bellettini-
Riviére extension to a class of semicalibrated 3-dimensional cones (cf. [7]). Our result for
general semicalibrated currents and general 3-dimensional area minimizing cones is entirely
new.

It is worth mentioning that, among the various steps in the proof of our main result, we
give a unified and much shorter proof of already existing results concerning the uniqueness
of the tangent cone to 2-dimensional area minimizing and semicalibrated currents (cf.
[66, 46]), generalizing it to the larger class of almost area minimizing 2-dimensional currents.
This is done relying heavily on [66]. Moreover, we also generalize a Lipschitz approximation
result for area minimizing currents, proved first by Almgren (cf. [3]) and recently revisited by
De Lellis and Spadaro (cf. [19]). In particular this result is independent from the dimension
of the current.

The other two fundamental tools are the so called Center Manifold and the Frequency
function, for which we were inspired by [3, 9, 20, 21], and which we combine in an inductive
argument to conclude our main theorem.

All the results of this thesis where obtained in collaboration with Camillo De Lellis and
Emanuele Spadaro, to whom I deeply grateful for guiding me step by step in the beautiful
(and hard) world of geometric measure theory.





A B S T R A K T

In dieser Arbeit beschäftigen wir uns mit der inneren Regularität von Oberflächen min-
imalen Flächeninhalts. Insbesondere betrachten wir eine spezielle Klasse von beinahe-
flächenminimierenden, 2-dimensionalen Integral-Strömen mit beschränkter mittlerer Krüm-
mung und wir beweisen, dass die Menge ihrer inneren Singularitäten diskret ist. Etwas
genauer gesagt, behandeln wir Ströme, welche den Flächeninhalt in Riemannschen Man-
nigfaltigkeit minimieren, semikalibrierte Ströme sowie sphärische Querschnitte von 3-
dimensionalen flächenminimierenden Kegeln. In jedem dieser drei Situationen ist unser
Resultat optimal. Ausserdem ergibt sich als schönes Korollar, dass die Menge der Singular-
itäten von 3-dimensionalen, flächenminimierenden Kegeln höchstens aus einer endlichen
Menge von Geraden besteht.

Unser Resultat wurde durch den Ansatz von Almgren-Chen (cf. [9]) für flächenmin-
imierende Ströme inspiriert. Wir greifen diesen Ansatz wieder auf, vervollständigen ihn
und fügen ausserdem einige neue Fälle hinzu. Insbesondere benutzen wir viele Tech-
niken von De Lellis and Spadaro’s neuem Beweis von Almgren’s Big Regularity paper
(cf. [17, 18, 19, 20, 21]). Weitere wichtige bekannte Resultate welche wir mit dieser Arbeit
abdecken sind Tian-Riviére’s Regularität’s-Thoerem für beinahe-komplexe Kurven (cf. [53])
und Bellettini-Riviére’s Erweiterung auf eine Klasse von semi-kalibrierten 3-dimensionalen
Kegeln (cf. [7]). Unser Resultat für semi-kalibrierte Ströme und allgemeine 3-dminesionale
flächenminimierenden Kegeln ist völlig neu.

Es lohnt sich zu erwähnen, dass neben den diversen Schritten im Beweis unseres Haupt-
satzes ein vereinheitlichender und sehr viel kürzerer Beweis von bereits bekannten Resultaten
betreffend der Eindeutigkeit von Tangentialkegeln an 2-dimensionale flächenminimierenden
and semi-kalibrierten Strömen (cf. [66, 46])) gegeben wird. Hierbei wird dieses Resultat zu-
gleich auf die grössere Klasse von beinahe-flächenminimierenden 2-dimensionalen Strömen
gegeben. In diesem Abschnitt stützen wir uns stark auf [66]. Ausserdem verallgemeinern wir
das Lipschitz-Approximations-Resultat für flächenminimierende Ströme, welches erstmals
von Almgren (cf. [3]) bewiesen wurde und kürzlich von De Lellis and Spadaro (cf. [19])
erneut aufgegriffen wurde. Dabei ist dieses Resultat unabhängig von der Dimension des
Stromes.

Die anderen beiden fundamentalen Werkzeuge sind die so genannte Center Manifold und
die Frequency function. Hierbei wurden wir von [3, 9, 20, 21] inspiriert. Wir kombinierten
diese beiden Hilfsmittel in einem induktiven Argument um unseren Hauptsatz daraus
folgern zu können.

Alle Resultate dieser Arbeit wurden in Zusammenarbeit mit Camillo De Lellis und
Emanuele Spadaro erzielt, welchen ich zu tiefstem Dank verpflichtet bin, dafür, dass sie
mich Schritt für Schritt durch die wunderbare (und beschwerliche) Welt der geometrischen
Masstheorie geführt haben.





I don’t know half of you half as well as I should like; and I like
less than half of you half as well as you deserve

— J.R.R. Tolkien, The Fellowship of the Ring
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1
I N T R O D U C T I O N

The main focus of this thesis is the study of the interior regularity properties of the following
types of surfaces.

Definition 1.1. Let Σ ⊂ Rm+n be a C2 submanifold and U ⊂ Rm+n an open set.

(a) An m-dimensional integral current T with finite mass and spt(T) ⊂ Σ ∩U is area-
minimizing in Σ ∩ U if M(T + ∂S) > M(T) for any (m + 1)-dimensional integral
current S with spt(S) ⊂⊂ Σ∩U.

(b) A semicalibration (in Σ) is a C1 m-form ω on Σ such that ‖ωx‖c 6 1 at every x ∈ Σ,
where ‖ · ‖c denotes the comass norm on ΛmTxΣ. An m-dimensional integral current
T with spt(T) ⊂ Σ is semicalibrated by ω if ωx(~T) = 1 for ‖T‖-a.e. x.

(c) An m-dimensional integral current T supported in ∂BR(x) ⊂ Rm+n is a spherical
cross-section of an area-minimizing cone if x×× T is area-minimizing.

Given an integer rectifiable current T , we denote by Reg(T) the subset of spt(T) \ spt(∂T)
consisting of those points x for which there is a neighborhood U such that T U is a (costant
multiple of) a regular submanifold. Correspondingly, Sing(T) is the set spt(T) \ (spt(∂T)∪
Reg(T)). Observe that Reg(T) is relatively open in spt(T) \ spt(∂T) and thus Sing(T) is
relatively closed. The main achievement of this thesis is then the following regularity
Theorem.

Theorem 1.2. Let m = 2 and T be as in (a), (b) or (c) of Definition 1.1. Assume in addition that Σ
is of class C3,ε0 (in case (a) and (b)) and ω of class C2,ε0 (in case (b)) for some positive ε0. Then the
set of points Sing(T) is discrete.

1.1 motivations and comments

The currents described in (a) and (c) of Definition 1.1 are particular solutions of the so called
Plateau problem. Introduced first by the French mathematician Lagrange in 1762 (cf. [43]),
and named after the belgian physicist Plateau, who studied it in connection with the shape
of soap bubbles, the Plateau problem can be phrased as follows:

(PB) given an (m− 1)-dimensional boundary in Rm+n (that is an object without boundary
itself), find an m-dimensional surface with least area among all the surfaces spanning
the given boundary.

There are several possible ways to state this problem rigorously in a mathematical sense.

• The parametric formulation: the competitor surfaces are images of map, the volume
is computed with the area formula and the boundary is the trace of the chosen map.
This theory was satisfactorily developed in dimension 2 by Douglas and Rado in the
thirties (cf. [47, 29] and [26] for a modern introduction).
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• The set-theoretical formulation: the competitor surfaces are closed sets, the volume
is simply the Hausdorff measure and several notion of spanning the boundary are
possible. This theory was introduced by Reifenberg and further developed by Harrison,
David and others (cf. [48, 40, 36]).

• The functional-analytic formulations: the surfaces are given as action on a linear space
of smooth test functions, mainly integration. The two most famous formulations of
this kind are De Giorgi’s theory of sets of finite perimeter (cf. [10, 11, 14]) and Federer
and Fleming’s theory of integral currents (cf. [34]).

All these formulations give a positive answer to (PB), thanks to powerful compactness
theorems combined with the lower semicontinuity of the proper notion of volume. However,
since these are very general classes of surfaces, it is natural to ask about the regularity of the
solutions. In the rest of the introduction, and indeed of the thesis, surface will mean integral
current and (PB) will be formulated as in case (a) of Definition 1.1, that is

(PB’) Let Σ ⊂ Rm+n be a (m+ n̄)-dimensional C2 submanifold and U ⊂ Rm+n an open
set. An m-dimensional integral current T with finite mass and spt(T) ⊂ Σ ∩ U is
area-minimizing in Σ∩U if M(T + ∂S) >M(T) for any (m+ 1)-dimensional integral
current S with spt(S) ⊂⊂ Σ∩U.

For an extensive treatment abount currents see [32]. In this framework we can distinguish
two cases.

The codimension one case, that is n̄ = 1, is quiet well understood. Indeed we have the
following result.

Theorem 1.3 (Regularity in codimension n̄ = 1). Assume U,Σ and T are as in (PB’) with n = 1.
Then

(i) for m 6 6 Sing(T)∩U is empty (Fleming and De Giorgi (m = 2), Almgren (m = 3), Simons
(4 6 m 6 6), see [13, 35, 12, 2, 57, 49]);

(ii) for m = 7 Sing(T)∩U consists of isolated points (Federer, see [33]);

(iii) form > 8 Sing(T)∩U has Hausdorff dimension at mostm− 7 (Federer, [33]) and is countably
m− 7 rectifiable (Simon, [56]);

(iv) the above results are optimal, indeed for everym > 7 there are area minimizing integral currents
T in Rm+1 for which Sing(T) has positive Hm−7 measure (Bombieri-De Giorgi-Giusti, [8]).

In general codimension the situation is much more complicate, mainly because of multi-
plicity issues. In particular, it is possible for the limit of singular surfaces to be regular (cf.
[16] for a reader-friendly introduction and [15] for a more technical treatment). The best
regularity theorem available in this case is the following result.

Theorem 1.4 (Regularity in codimension n̄ > 2). Assume U,Σ and T are as in (PB’) with n̄ > 2.
Then

(i) for m = 1 Sing(T)∩U is empty;
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(ii) for m = 2 Sing(T)∩U consists of isolated points (Chang, [9]);

(iii) for m > 2 Sing(T)∩U has Hausdorff dimension at most m− 2 (Almgren, [3]);

(iv) the above results are optimal, indeed for every m > 2 there are area minimizing integral
currents T in Rm+2 for which Sing(T) has positive Hm−2 measure (Federer, [31]).

Some comments are now in order. Case (a) of Theorem 1.2 is exactly the same as (ii) of
Theorem 1.4. The original argument of Chang is however not entirely complete since a key
starting point of his analysis, the existence of the so-called “branched center manifold”,
is only sketched in the appendix of [9] and requires the understanding (and a suitable
modification) of the most involved portion of the monograph [3]. Meanwhile Camillo De
Lellis and Emanuele Spadaro revisited Almgren’s theory giving a much shorter version of
his program for proving point (iii) of the Theorem, cf. [17, 18, 19, 20, 21]. It seemed therefore
worthy to complete and revisit Chang’s result in light of this new theory.

Case (c) of Theorem 1.2 is instead entirely new and a simple consequence of it is the
fact that the singular set of a 3-dimensional area minimizing cone consists of at most a
finite number of lines. Notice also that this could be seen as a first step in the study of
conical solutions to the Plateau problem when m > 3 and n̄ > 2 (cf. [57] for n̄ = 1 and [35]
m = 2, n̄ > 2).

For what concerns case (b), our motivation came from a paper by Rivière and Tian ([53]),
where they prove that 2-dimensional almost complex cycles in an almost complex, locally
symplectic manifold (M2p, J,ω), are J-holomorphic curves with multiplicity. This result is
not new, indeed the locally symplectic assumption makes the almost complex cycles locally
area minimizing for the metric ω(·, J·), and so their regularity is a consequence of Chang’s
theorem. However their proof is independent from [9] and is the first step in a program
to generalize the statement to any almost complex manifold. Since almost complex curves
are locally semicalibrated, case (b) of Theorem 1.2 completes this program. We should also
remark that in dimension 2 all semicalibration admits locally an almost complex structure,
cf. [5]. For further motivation about the importance of almost complex structure in geometry
see [28, 44, 51, 64, 65], while for known regularity results we refer the reader to [52, 53, 63].

Later on, the approach of Rivière and Tian has been generalized by Bellettini and Rivière
in [7] to handle the new case of special Legendrian cycles in S5. These are spherical cross
sections of a class of 3-dimensional calibrated cones in R6, and so a subclass of both (b) and
(c). However this result was not covered by Chang’s result.

Finally it is worth to spend a couple of words on the notion of calibration, since it is the
link between cases (a) and (b). A calibration ω is a semicalibration which is closed. Notice
that if T is semicalibrated in Rm+n and S is an (m+ 1)-dimensional current, then

M(T) = T(ω) = T(ω) + ∂S(ω) − S(dω) 6M(T + ∂S) + ‖dω‖0M(S) . (1.1)

In particular calibrated currents are solution of the Plateau problem (PB’), although the
viceversa is not true in general. An extremely important example of calibration is given by
the Kähler form

ω := dx1 ∧ dy1 + · · ·+ dxn ∧ dyn
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in R2n ≡ Cn, with the usual identification zi = xi + iyi. Wirtinger’s inequality ([67, 32])
states that ωk = 1

k!ω∧ · · ·∧ω is a calibration and complex planes are calibrated by it. It
follows that complex varieties are area minimizing and, in particular, a simple generalization
of the argument above allows one to prove that the following complex curves are area
minimizing.

Example 1.1. Consider the holomorphic curve

Γ := {(z,w) ∈ C2 : z = 0}∪ {(z,w) ∈ C2 : w = 0}.

Then Γ is area minimizing and the origin belongs to Sing(Γ). Moreover Γ cannot be represented as
the graph of a single valued function in any neighborhood of the origin. In particular the cartesian
product Γ ×R ⊂ R5 is a 3-dimensional area minimizing cone with a line singularity.

Example 1.2. Consider the holomorphic curve

Θ = {(z,w) ∈ C2 : (z2 −w3 −w4)2 = w7 +w8}.

Then the same conclusions of the previous example hold for Θ and furthermore notice that Θ is a very
small perturbartion of the complex curve {z2 = w3} counted with multiplicity 2.

These examples prove that Theorem 1.2 is optimal, indeed notice that calibrated currents
are in particular semicalibrated. For an extensive treatment of calibrated geometries we refer
the reader to [41].

1.2 content of the thesis

We start by explaining why it is possible to treat cases (a), (b) and (c) of Definition 1.1 together.
The key properties shared by our objects are the almost minimality and the boundedness of
the generalized mean curvature. In particular (1.1) holds also for (c), when we replace ‖dω‖
with (m+ 1)R−1. It doesn’t hold in this form for case (a): competitors need to be supported
in the manifold Σ. As a consequence of the isoperimetric inequality, a weaker form of (1.1) is
true in all three cases: for any (m+ 1)-dimensional current S in Br ⊂ Rn+m we have

M(T) 6M(T + ∂S) +Crm+1 . (1.2)

Moreover, if δT denotes the first variation of the current T , with T as in (a), (b) or (c), then
for every compactly supported vector field X,

|δT(X)| 6 C
ˆ

|X|d‖T‖ <∞ . (1.3)

Next we wish to discuss the strategy of the proof of Theorem 1.2. In this we follow mainly
the Almgren-Chang’s program, which consists of the following steps.

(i) Construct a Q-valued Lipschitz function that under suitable conditions approximates
our current in a very sharp way.

(ii) Prove that the tangent cone to the current is unique at every point and consists of a
union of planes with multiplicity whose support can cross only at the origin.
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(iii) Construct a surface M, which we call Center Manifold, and is basically the average
of the sheets of the current. From this surface approximate very carefully the current
with a map N .

(iv) Use this new approximation to define a quantity, called frequency function I, which
enjoys some good monotonicity property. Study the asymptotic of this quantity to
prove that either T coincides with M or there exists a rescaling of the approximation
N which is nontrivial in the limit.

In the last part of this introduction we explain better each one of these steps, specifing in
which part of the thesis they are treated and how the final result can be derived from them.

1.2.1 Part II: Approximation of currents with Q-valued functions

The first typical step of the regularity theory for objects linked to area minimization problems
is an approximation result with Lipschitz function. This is due to De Giorgi’s remark that
the first order term in the Taylor expansion of the area of a graph of a Lipschitz function is
the Dirichlet energy of the function itself, that is if f ∈ Lip(Br) then

vol(graph(f)) =
ˆ
Br

√
1+ |Df|2 6 |Br|+

1

2

ˆ
Br

|Df|2 +C

ˆ
Br

|Df|4 , (1.4)

and therefore area minimizing graphs are very close to being harmonic. While in codimension
1 we can alway approximate minimal currents with vector valued functions, for higher
codimensions there exist area minimizing surfaces which are not the graph of any such
function in any neighborhood of a fixed point (cf. Examples 1.1 and 1.2).

For all these reasons it is important to develop a theory of Lipschitz and Sobolev multiple
valued functions, that is functions taking values in the space of unordered Q-tuples of points
of Rn. This is done in Chapter 2, where, after introducing the theory of multiple valued
Lipschitz functions, we use the Almgren-White’s embedding of the space of Q-points in
RN(Q) to introduce Sobolev multiple valued functions, define the Dirichlet problem and
study the properties of its solutions. Furthermore we explain how to associate an integral
current to the image of a Q-valued map and prove that De Giorgi’s remark still holds, that
is the energy of a Q-valued graph is the first order term in the Taylor expansion of its mass.
This chapter is mainly taken from [17] and [18]. We made the effort of proving any result
that is not taken from one of these two papers. It should be observed that in [17], the authors
develop the theory of multiple valued functions independently from Almgren’s embedding,
but in a purely intrinsic, metric way. For other interesting properties of multiple valued
functions see [22] and [59].

The second chapter is devoted to the two main analytic estimates of the whole thesis. Fix
a plane π and consider the cylinder Cr(x,π) = Br(x,π)× π⊥, where Br(x,π) is the ball of
radius r centered in x and contained in π. The cylindrical excess E := E(T ,Cr(x,π)) of a
current with respect to π is a measure of how much the tangent space to the current in the
cylinder is tilting, more precisely

E(T ,Cr(x,π)) := (2ωm r
m)−1

ˆ
Cr(x,π)

|~T − ~π|2 d‖T‖ .
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Assuming that E is small enough in C4r(x,π), we can prove that

Proposition 4.2: in the ball Br(x) ⊂ π, there exists a Lipschitz multiple valued function f : Br(x) ⊂ π→
π⊥, whose graph and energy differ from the support and the mass of the current by
E1+β0 , for some β0 > 0;

Theorem 4.8: there exists a Dir-minimizing multiple valued map u : Br(x) ⊂ π → π⊥ whose W1,2

norm differs from that of f by o(E).

We notice that case (a) is already covered by [19], and, indeed, our original contribution is
to prove the results for the cases (b) and (c). In fact, the only property that we use in this
chapter is (1.1). Furthermore, the results of this part of the thesis hold for any dimension m.

For a detailed explanation of how this approximation result is proved we refer the reader
to the introduction of [19, 15, 16], the only diffrence being that, whenever a comparison
argument is needed, we use (1.1) instead of the minimality property, and so the choice of
the filling surface S must be carefully done. This is the content of the Homotopy Lemma 4.6.

1.2.2 Part III: Uniqueness of tangent cones

Given a current T as in Definition 1.1 and a point x ∈ spt(T), we want to study the
infinitesimal behaviour of T in x. To do this we consider the current Tx,r := (ιx,r)]T , where
the map ιx,r is given by Rm+n 3 y 7→ y−x

r ∈ Rm+n. Recall that an area minimizing cone
S is an integral area minimizing current such that (ι0,r)]S = S for every r > 0 (cf. [54,
Theorem 19.3]). Then, combining the almost monotonicity of the quantity M(Tx,r) with
the compactness Theorem for integral currents, one can prove that, up to subsequences,
Tx,r → S, where S is an integral cone. The difficult question is wether or not S is unique. In
the 2 dimensional case we answer affirmatively to this question for all the surfaces satisfying
only (1.2).

The uniqueness of tangent cones for 2-dimensional area minimizing currents has been
proved first in the euclidean case by White ([66]) and then generalized to the Riemannian set-
ting (case (a)) by Chang in [9]. The same statement for semicalibrated integral 2-dimensional
cycles (case (b)) has been shown more recently by Pumberger and Rivière in [46]. As far
as we know the result for spherical cross sections of 3-dimensional area minimizing cones
is instead new. In codimension 1 the uniqueness of tangent cones is known at isolated
singularities thanks to the pioneering work of Simon, cf. [55]. The uniqueness of tangent
cones is widely open in dimension higher than 2 and general codimension. Some interesting
higher dimensional cases have been recently covered by Bellettini in [5, 6].

Our approach follows very closely that of White ([66]). The key ingredient is an Epiperi-
metric inequality for the mass. First introduced by Reifenberg ([50]), this inequality improves
the usual monotonicity inequality, and indeed the key idea is that, if in a cylinder we extend
the boundary cycle of the current as an harmonic graph, then its mass is strictly less than
the mass of the cone with the same boundary. This intuitevely follows again by De Giorgi’s
remark, that is minimizer of the Dirichlet energy in the graphical case are very close to
minimizers of the area. In turn, the Epiperimetric inequality implies an exponential rate of
decay of the excess, which, combined with a monotonicity identity, proves the uniqueness of
the tangent cone. For a nice explanation of the proof of this inequality we refer the reader
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to White’s paper. What is new here is a simplification in a step of its proof (although the
overall procedure is the same) and its application to a larger class of surfaces, namely to all
two dimensional objects satisfying only (1.2).

1.2.3 Part I: Proof of the main result

In order to conclude Theorem 1.2, we would like to prove that, for x ∈ Sing(T) and r > 0
sufficiently small, the current Tx,r is a perturbation of a surface of the same type as the
one in Example 1.2. We use therefore this example to illustrate the procedure for a general
current as in Definition 1.1.

Step 1. If we rescale geometrically Θ, that is we consider the current Θ0,r, then in the limit
for r→ 0 we get the complex plane π := {z = 0}, which is regular. By the uniqueness
of the tangent cone of Part iii, combined with the structure of 2-dimensional tangent
cones (they are planes whose supports intesect only at the origin, cf. Example 1.1), we
can assume that this holds also for T0,r. We call the plane π the center manifold M0.

Step 2. From the plane M0 we approximate the surface with a multiple valued function N0 us-
ing the Lipschitz approximation result of Part ii. We prove that, either T coincides with
(a constant multiple of) M0, or a suitable rescaling of N0 converges to a unique profile
g0, which is strictly multiple valued and non-trivial, C1,α regular in a neighborhood of
the origin and C3,α outside the origin. Moreover a horned neighborhood of this profile
captures the current. In our example, the graph of the function g0 is {z2 = w3} and is
obtained by rescaling Θ inhomogeneously by z ′ := r

3
2 z and w ′ := rw.

Step 3. We build a new center manifold surface M1, which is, roughly speaking, the average
of the sheets of the current T restricted to the horned neighborhood of g0. This surface
enjoys the same regularity and multiplicity of the graph of g0 and takes care of small
smooth perturbations of it. In our example M1 = {z2 = w3 +w4}.

Step 4. We approximate the current with a map N1, which is a graph on M1. We perform
the same analisys as in Step 2, and so either T = Q JM1K, or we find a new profile g1
which allows to repeat Step 3. In our example we have that the graph of g1 is {z4 = w7}
and is obtained by rescaling z with r

7
4 . When we glue g1 back on top of M1.

Step 5. Finally we repeat inductively Steps 2-3. Since the density of T in 0 is bounded from
above, and since at each step the multiplicity of Mi is increasing (because each gi is
strictly multiple valued), this procedure must stop after a finite number of steps. By the
regularity of each Mi, this concludes the proof. In our examples we construct M2 = Θ

and we conclude.

1.2.4 Part IV: Center Manifold and Normal Approximation

Here we explain how to construct Mi, Ni, given gi−1. Assume that the graph of gi−1 has
multiplicity Q̄ in the singular point (for instance g1 of the example has multiplicity 2 in 0),
and that T has multiplicity Q · Q̄ (4 = 2 · 2 in the example). We wish to construct a Q̄-sheeted
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cover of the plane π which is globally the graph of a C1,α function, C3,α away from the
singularity, and which is at every scale a good approximation of the average of the Q sheets
of T captured in the horned neighborhood of gi−1. First we introduce the notions of excess
and height of a current. Given an m-dimensional current T in Rm+n with finite mass, its
excess in the ball Br(x) with respect to the m-plane π is

E(T ,Br(p),π) := (2ωm r
m)−1

ˆ
Br(p)

|~T − ~π|2 d‖T‖| . (1.5)

In order to define the spherical excess we consider T as in Assumption 1 and we say that π
optimizes the excess of T in a ball Br(x) if

• In case (b)

E(T ,Br(x)) := min
τ
E(T ,Br(x), τ) = E(T ,Br(x),π); (1.6)

• In case (a) and (c) π ⊂ TxΣ and

E(T ,Br(x)) := min
τ⊂TxΣ

E(T ,Br(x), τ) = E(T ,Br(x),π) . (1.7)

The height of a current T in a set E with respect to a plane π is given by

h(S,E,π) := sup{|p⊥π (p− q)| : p,q ∈ spt(S)∩ E} . (1.8)

If E = Cr(p,π) we will then set h(S,Cr(p,π)) := h(S,Cr(p,π),π). If E = Br(p), T is as in
Assumption 1 and p ∈ Σ (in the cases (a) and (c) of Definition 1.1), then h(T ,Br(p)) :=

h(T ,Br(p),π) where π gives the minimal height among all π for which E(T ,Br(p),π) =

E(T ,Br(p)) (and such that π ⊂ TpΣ in case (a) and (c) of Definition 1.1).
The procedure for the construction of Mi is then the following.

Step 1. We first make a Whitney decomposition of (a model space for) gi−1. Let L ⊂ graph(gi−1)
be a cube and let TL be the part of the current T captured by the horned neighborhood
of gi−1 around L. Moreover let `(L) be the sidelength of L and d(L) its distance from
the singularity. Then, we ask that the refinement procedure stops if either

EL := E(TL,BL) > Cem0d(L)2γ0−2+2δ1`(L)2−2δ1 ; (1.9)

or

hL := h(TL,BL) > Chm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 ; (1.10)

where γ0,β2, δ1,Ch,Ce are some parameters and m0 is a geometrical quantity as
small as we want (we will also need another technical compatibility condition). One
could in fact conjecture that the condition on the height is not really needed.

Step 2. By Step 1, in every final cube L the excess is very small, and so we can apply the
Lipschitz approximation Theorem of Chapter 4 to get a Q-valued Lipschitz map fL,
which is a good approximation of the Q sheets of TL.
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Step 3. We then consider the average of fL, denoted by η ◦ fL, which is a single valued function
and satisfies, in a ball around L, the inequality |L(η ◦ fL)| 6 CE

1+η0
L , where L is a

linear elliptic operator.

Step 4. We consider the precise solution hL to the elliptic system L with boundary datum
η ◦ fL (which is a perturbation of the Laplace equation, and so admits a solution).

Step 5. We prove quantitative regularity estimates for hL, using the Lipschitz regularity of fL,
the decay of its energy (since EL is decaying by Step 1), the fact that L is a perturbation
of the laplacian and L(hL −η ◦ fL) 6 CE1+η0L .

Step 6. We patch all the hL together and prove the regularity of the resulting function, whose
image is Mi.

For what concerns the construction of Ni, the basic idea is to use on each cube the portion
of fL that coincides with TL, reparametrize it on Mi and then extend to the whole domain.
We can do this because the C1 norm of Mi is small and the Lipschitz constant of fL is also
small. With this procedure, we manage to bound the height of Ni, its average η ◦Ni and its
difference from T , in every cube L, with suitable powers of EL and hL. However, we want
this estimates in terms of the W1,2 norm of Ni, and, since by Step 1, EL is bounded by a
power of `(L), we need to control the energy and the height of Ni from below with a power
of `(L). This is achieved in the sections called vertical separation and splitting before tilting.

In conclusion, if we denote with D(r) :=
´
Br

|DNi|
2, H(r) :=

´
∂Br

|Ni|
2 and we define

Fi(x) := x+Ni(x) for every x ∈Mi, we achieve, roughly speaking, the following estimates

Lip(Ni) 6 D(r)η0ˆ
Br

|η ◦Ni|(z)

|z|1−α0
6 D(r)η0(D(r) +H(r))

‖T − TFi‖(Cr) 6 D(r)η0(D(r) +H(r)) . (1.11)

Finally we wish to point out the main differences with the construction in [20].

• The uniqueness of the tangent cone implies the decay of the excess, and this allows
us to construct a single center manifold that works at every scale (this is not known
in dimension higher than 2). A key consequence of this is that the sidelength of each
cube is less than its distance from the singularity.

• Our surface Mi enjoys less regularity than the one there, indeed it is branched in the
singularity to resemble the current itself.

• The elliptic PDE satisfied by η ◦ fL in case (b) is more complicate then the one satisfied
in the minimizing case (a), and indeed the building blocks in the construction of Mi

are defined differently than in [20].

• We need to make sure that Mi is captured in the horned neighborhood of gi−1, so that
an horned neighborhood of Mi contains the current T .

• At the end of the construction, we will reparametrize Mi in a conformal way, to make
the asymptotic analysis of Part v easier.
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1.2.5 Part V: Blow up Analysis

Finally, we explain how to construct gi from Mi and Ni. As already remarked, the idea is to
rescale T inhomogeneously, that is to rescale Ni by a suitable power of r and consider the
limit for r→ 0. To guess the right power, the fundamental tool introduced by Almgren is
the so called Frequency Function I(r) := rD(r)

H(r) . This quantity would be non decreasing, if
Ni was a Dir-minimizing function. Even though this is not true, a modification of (1.4) for
Fi, leads to

‖TFi‖(Cr) 6 Q |Br|+

ˆ
Br

|η ◦Ni|(z)

|z|1−α0
+
1

2
D(r) +D(r)1+η0 ,

so that, by (1.11),

‖T‖(Cr) 6 Q |Br|+
1

2
D(r) +D(r)1+η0 .

Using this together with the almost minimality of T , one can prove an almost minimality
property in terms of the energy for Ni, that is

D(r) 6
ˆ
Br

|DL |2 +CD(r)1+η0 for every Lipschitz competitor L . (1.12)

The almost Dir-minimality condition is then used, together with a competitor argument
similar to the one of Part 3, to prove a Poincaré inequality H(r) 6 CD(r) and a sort of
Epiperimetric inequality for the energy of Ni. The Poincaré inequality implies that I(r) is
bounded from below and also that all the errors of the form H(r) can be translated in terms
of D(r), so that the estimates (1.11) become

Lip(Ni) 6 D(r)η0 ,
ˆ
Br

|η ◦Ni|(z)

|z|1−α0
6 D(r)1+η0 and ‖T − TFi‖(Cr) 6 D(r)1+η0 .

(1.13)

Next we observe that, thanks to 1.3, the interior and exterior variations of Ni are once
again perturbation of the Dir-minimizing ones, with errors of type D(r)1+η0 , and this allows
us to prove the almost monotonicity of I(r). Using this and the estimates (1.13), we prove
the dichotomy: either T coincides with Q JMiK, or I0 := limr→0 I(r) < ∞. On the other
hand, combining this with the Epiperimetric inequality allows us to prove that, if we set
Nr(z) :=

Ni(rz)

rI0
, than there exists a unique limit gi as r→ 0.

Finally, by (1.11), we see immediately that gi is nontrivial and η ◦ gi = 0, so that it must be
strictly multiple valued, and, by the almost minimality of Ni (cf. (1.12)), gi is a Dir-minimizer.
The last part of the argument involves a careful use of the decay property of D(r),H(r) and
of the Lipschitz regularity of Ni, to prove first that Nr converges to gi uniformly with a rate
depending on r, and then, using again the estimates (1.13) and the monotonicity formula for
T , that T is captured in an horned neighborhood of gi.

Finally we wish to point out that, although the structure of this part is analogous to the
one in [9], there are two main differences.
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• Since the PDE associated to case (b) is more complex than the one in case (a), in order
to prove the dichotomy, we need to modify I(r) following the ideas of Garofalo-Lin in
[38] and [37].

• The almost Dir-minimality of Ni is much more difficult to prove in cases (b) and
especially (c), than in case (a).
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2
P R O O F O F T H E M A I N R E S U LT

In this chapter, after setting some basic notations, we prove Theorem 1.2 making use of the
tools that will be proved in the subsequent chapters.

2.1 preliminaries

2.1.1 Basic notations

We use the notation 〈, 〉 for: the euclidean scalar product, the naturally induced inner
products on p-vectors and p-covectors and the duality pairing of p-vectors and p-covectors;
we instead restrict the use of the symbol · to matrix products. Given a C1 m-dimensional
submanifold Σ ⊂ Rm+n, a function f : Σ→ Rk and a vector field X tangent to Σ, we denote
by DXf the derivative of f along X, that is DXf(p) = (f ◦γ) ′(0) whenever γ is a smooth curve
on Σ with γ(0) = p and γ ′(0) = X(p). When k = 1, we denote by ∇f the vector field tangent
to Σ such that 〈∇f,X〉 = DXf for every tangent vector field X. For general k, Df|x : TxΣ→ Rk

will be the linear operator such that Df|x ·X(x) = DXf(x) for any tangent vector field X. We
write Df for the map x 7→ Df|x and sometimes we will also use the notation Df(x) in place
of Df|x. Having fixed an orthonormal base e1, . . . em on TxΣ and letting (f1, . . . , fk) be the
components of f, we can write ∇fi =

∑m
j=1 aijej and |Df| for the usual Hilbert-Schmidt

norm:

|Df|2 =

m∑
j=1

|Dejf|
2 =

k∑
i=i

|∇fi|2 =
∑
i,j

a2ij .

All the notation above is extended to the differential of Lipschitz multiple valued functions
at points where they are differentiable in the sense of Definition 3.5: although the definition
in there is for euclidean domains, its extension to C1 submanifolds Σ ⊂ Rm+n is done, as
usual, using coordinate charts.

We will keep the same notation also when f = Y is a vector field, i.e. takes values in
Rm+n, the same Euclidean space where Σ is embedded. In that case we define additionally
divΣY :=

∑
i〈DeiY, ei〉. Moreover, when Y is tangent to Σ, we introduce the covariant

derivative DΣY|x, i.e. a linear map from TxΣ into itself which gives the tangential component
of DXY. Thus, if we denote by px : RN → TxΣ the orthogonal projection onto TxΣ, we have
DΣY|x = px ·DY(x). It follows that DΣY ·X = ∇XY, where we use ∇ for the connection (or
covariant differentiation) on Σ compatible with its structure as Riemannian submanifold of
Rm+n. Such covariant differentiation is then extended in the usual way to general tensors
on Σ.

When dealing with C2 submanifolds Σ of Rm+n we will denote byAΣ the following tensor:
AΣ|x as a bilinear map on TxΣ× TxΣ taking values on TxΣ⊥ (the orthogonal complement of
TxΣ) and if X and Y are vector fields tangent to Σ, then AΣ(X, Y) is the normal component of
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4 proof of the main result

DXY, which we will denote by D⊥XY. AΣ is called second fundamental form by some authors
(cf. [54, Section 7], where the tensor is denoted by B) and we will use the same terminology,
although in differential geometry it is more customary to call AΣ “shape operator” and to
use “second fundamental form” for scalar products 〈AΣ(X, Y),η〉 with a fixed normal vector
field (cf. [27, Chapter 6, Section 2] and [60, Vol. 3, Chapter 1]). In addition, HΣ will denote
the trace of AΣ (i.e. HΣ =

∑
iAΣ(ei, ei) where e1, . . . , em is an orthonormal frame tangent

to Σ) and will be called mean curvature. Moreover AΣ and HΣ will denote respectively the
L∞ norm of AΣ and HΣ.

With Br(p) and Br(x) we denote, respectively, the open ball with radius r and center
p in Rm+n and the open ball with radius r and center x in Rm. Cr(p) and Cr(x) will
always denote the cylinder Br(x)×Rn, where p = (x,y) ∈ Rm ×Rn. We will often need to
consider cylinders whose bases are parallel to other m-dimensional planes, as well as balls
in m-dimensional affine planes. We then introduce the notation Br(p,π) for Br(p)∩ (p+ π)
and Cr(p,π) for Br(p,π) + π⊥. ei will denote the unit vectors in the standard basis, π0
the (oriented) plane Rm × {0} and ~π0 the m-vector e1 ∧ · · ·∧ em orienting it. Given a m-
dimensional plane π, we denote by pπ and p⊥π the orthogonal projections onto, respectively,
π and its orthogonal complement π⊥. For what concerns integral currents we use the
definitions and the notation of [54]. Since π is used recurrently for m-dimensional planes,
the m-dimensional area of the unit circle in Rm will be denoted by ωm.

2.1.2 First assumptions

By the following Lemma, in case (b) of Definition 1.1, we can assume, without loss of
generality, that the ambient manifold Σ coincides with the euclidean space R2+n.

Lemma 2.1. Let k ∈N \ {0}, ε0 ∈ [0, 1], Σ ⊂ Rm+n be a Ck+1,ε0 m+ n̄-dimensional submanifold,
V ⊂ Rm+n an open subset and ω a Ck,ε0 m-form on V ∩ Σ. If T is a cycle in V ∩ Σ semicalibrated
by ω, then T is semicalibrated in V by a Ck,ε0 form ω̃.

Proof. The argument is straightforward: we just need to extend ω to a form ω̃ on the open
set V in such a way that ‖ω̃x‖c 6 1 for every x and the regularity of ω is preserved. Without
loss of generality it suffices to do this on a tubular neighborhood U of Σ ∩ V on which
there is a Ck,ε0 orthogonal projection p : U→ Σ∩U (we then multiply this extension by a
function ϕ ∈ C∞c (U) which is identically 1 on Σ and satisfies 0 6 ϕ 6 1; the resulting form
can then be extended to V by setting it equal to 0 where it is not yet defined). For x ∈ U
we set y := p(x) ∈ Σ and let py : Rm+n → TyΣ be the orthogonal projection. We then set
ω̃x(v1, . . . , vm) = ωy(py(v1), . . . ,py(vm)). Observe that ω̃ is not p]ω (in general the latter
would not satisfy ‖ω̃x‖c 6 1).

In particular, for the rest of the work we will make the following assumptions.

Assumptions 1. T is an integral current of dimension 2 with bounded support and it satisfies one
of the three conditions (a), (b) or (c) in Definition 1.1. Moreover

• In case (a), Σ ⊂ R2+n is a C3,ε0 submanifold of dimension 2+ n̄ = 2+ n− l, which is the
graph of an entire function Ψ : R2+n̄ → Rl and satisfies the bounds

‖DΨ‖0 6 c0 and A := ‖AΣ‖0 6 c0, (2.1)
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where c0 is a positive (small) dimensional constant and ε0 ∈]0, 1[.

• In case (b) we assume that Σ = R2+n and that the semicalibrating form ω is a C2,ε0 m-form.

• In case (c) we assume that T is supported in Σ = ∂BR(p0) for some p0 with |p0| = R, so that
0 ∈ ∂BR(p0). We assume also that T0∂BR(p0) is R2+n−1 (namely p0 = (0, . . . , 0,±|p0|)
and we let Ψ : R2+n−1 → R be a smooth extension to the whole space of the function which
describes Σ in B2(0). We assume then that (2.1) holds, which is equivalent to the requirement
that R−1 be sufficiently small.

2.1.3 Properties of (b) & (c)

In some cases it will be convenient to regard cases (b) and (c) of Definition 1.1 as a particular
type of almost area minimizing currents with bounded mean curvature.

Proposition 2.2. Let T be as in Definition 1.1 (b) (in which case we assume Σ = Rm+n) or (c).
Then there is a constant Ω such that

M(T) 6M(T + ∂S) +ΩM(S) ∀S ∈ Im+1(R
m+n) with compact support. (2.2)

In particular, Ω 6 ‖dω‖0 in case (b) and Ω 6 (m+ 1)R−1 in case (c).
Moreover, if χ ∈ C∞c (Rm+n \ spt(∂T), Rm+n), we have

δT(χ) = T(dω χ)in case (b), (2.3)

δT(χ) =

ˆ
mR−1 x · χ(x)d‖T‖(x)in case (c), (2.4)

where δT(χ) denotes the first variation of T along the vector field χ (cf. Section 3.3.2)

Proof. We first prove (2.2). Assume we are in case (c). Without loss of generality we can
assume x = 0 and R = 1. Therefore fix S compactly supported and consider W = T + ∂S.
Next, let p : Rm+n → B1(0) be the orthogonal projection and set S ′ = p]S and W ′ :=

p]W = T + ∂p]S (where the latter identity holds because spt(T) ⊂ ∂B1(0)). The current
Z := 0××W ′− S ′ is then a competitor for the minimality of 0×× T and observe, moreover, that
since spt(W ′) ⊂ B1(0), we have M(Z) 6 (m+ 1)−1M(W ′). Then we have

0 6(m+ 1)(M(Z) −M(0×× T)) 6M(W ′) −M(T) + (m+ 1)M(S ′)

6M(W) −M(T) + (m+ 1)M(S) .

In case (b), if ω is the semicalibrating form, we can then estimate

M(T) = T(ω) =W(ω) − ∂S(ω) 6M(W) − S(dω) 6M(W) + ‖dω‖0M(S) .

Next, (2.4) is simply the stationarity of T in ∂B1(0). As for (2.3), the formula seems
new in the literature and we provide here a simple proof. Fix χ and consider the maps
Φt(x) := x+ tχ(x) and Λ(t, x) = Φt(x). We then denote by J0, εK the current in I1(R) induced
by the oriented segment {t : 0 6 t 6 ε}. We define Tε := (Φε)]T and Sε := Λ](J0, εK× T). We
then have ∂Sε = Tε − T and hence

M(Tε) −M(T) > Tε(ω) − T(ω) = Sε(dω) = J0, εK× T(Λ]dω) =: h(ε) . (2.5)
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Since h is C1 and h(0) = 0, by a Taylor expansion we conclude εδT(χ) > εh ′(0) + o(ε). On
the other hand, since the latter inequality is valid for both positive and negative ε, we infer
δT(χ) = h ′(0). We thus only need to show the identity h ′(0) = T(dω χ). Consider the
set of ordered multiindices I = {1 6 i1 < i2 < . . . < im+1} and let dω =

∑
fIdx

I, where
dxI = dxi1 ∧ . . .∧ dxim+1 . We then have

(Λ]dω)(x,t) =
∑

fI(Φt(x))dΦ
i1
t ∧ . . .∧ dΦ

im+1
t .

Next, we will denote by o(1) any continuous function of x and t which vanish at t = 0 and
we let π : R×Rm+n → Rm+n be the projection π(t, x) = x. Since Φ(0, x) = x and fI is
continuous we conclude

(Λ]dω)(x,t) =
∑

fI(x)dΦ
i1
t ∧ . . .∧ dΦ

im+1
t + o(1) =∑

I

fI(x)
(
dxI +

∑
16j6m+1

fI(x)χ
ij(x)dxi1 ∧ . . .∧ dxij−1 ∧ dt∧ dxij+1 ∧ . . .∧ dxm+1

)
+ o(1)

= π]dω+ dt∧
∑
I

fI(x)
∑
j

(−1)jχij(x)dxi1 ∧ . . .∧ dxij−1 ∧ dxij+1 ∧ . . .∧ dxm+1 + o(1) .

Thus,

(Λ]dω)(x,t) = π
]dω+ dt∧ π](dω χ) + o(1) .

In particular, since dω is orthogonal to dt, we have J0, εK× T(π]dω) = 0. Thus we can write

h(ε) = J0, εK× T(dt∧ π](dω χ)) + o(1)εM(T) = εT(dω χ) + o(ε) ,

from which we finally conclude h ′(0) = T(dω χ).

As an easy consequence of this proposition and the regularity of Σ we can prove that all
the objects of definition 1.1 are almost minimizers in a classical sense.

Proposition 2.3. Under the assumptions of Definition 1.1, any m-dimensional current T as in
(a), (b) or (c) is almost minimizing in the sense that for every x 6∈ spt(∂T) there are constants
C0, r0,α0 > 0 such that

‖T‖(Br(x)) 6 ‖T + ∂S‖(Br(x)) +C0 rm+α0 (2.6)

for all 0 < r < r0 and for all integral (m+ 1)-dimensional currents S supported in Br(x).

Proof. Case (a). Consider x ∈ Σ and a ball Br(x) ⊂ Rm+n. If r̄ is sufficiently small there
is a well-defined C1 orthogonal projection p : Br̄(x) → Σ with the property that Lip(p) 6
1 + CAr, where C is a geometric constant and A denotes the L∞ norm of the second
fundamental form of Σ. Consider T area-minimizing in Σ and assume r̄ < dist(x, spt(∂T)).
Let r 6 r̄ and S ∈ Im+1(R

m+n) be such that spt(S) ⊂ Br(x). We set W := T + ∂S. If
‖W‖(Br(x)) > ‖T‖(Br(x)) there is nothing to prove, otherwise by the standard monotonicity
formula we have ‖W‖(Br(x)) 6 ‖T‖(Br(x)) 6 Crm. Then W ′ := p]W is an admissible
competitor for the minimality property of T and we have

‖T‖(Br(x)) 6 ‖W ′‖(Br(x)) 6 (Lip(p))m‖W‖(Br(x)) 6 ‖W‖(Br(x)) +Crm+1 .
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Case (b)&(c). First observe that, by Lemma 2.1, in case (b) we can assume, w.l.o.g., that
Σ = Rm+n. Fix r < dist(x, spt(∂T)) and let S ∈ Im+1(R

m+n) be such that spt(S) ⊂ Br(x). As
above, either ‖W‖(Br(x)) > ‖T‖(Br(x)), in which case there is nothing to prove, otherwise by
the standard monotonicity formula we have ‖W‖(Br(x)) 6 ‖T‖(Br(x)) 6 Crm (observe that,
by (2.3) and (2.4), T induces a varifold with bounded mean curvature, which in turn implies
Allard’s monotonicity formula, cf. [54, Section 17]). In the latter case, by the isoperimetric
inequality there exists S ′ ∈ Im+1(R

m+n) such that

∂S ′ = ∂S and M(S ′) 6 Crm+1 .

Applying now (4.1) to this current S ′ we get the desired conclusion, with C1 = CΩ.

Remark 2.4. Observe that we have achieved (2.6) with any fixed r0 < 1
2dist(x, spt(∂T)), α0 = 1

and C0 = CA, in case (a), C0 = CΩ, in the cases (b) and (c), where the constant C depends
only upon ‖T‖(B2r0)(x).

Finally they preserve their property under opportune decompositions.

Proposition 2.5. Let T be as in Definition 1.1(♦), with ♦ = a,b or c, and suppose that there are
x ∈ spt(T) \ spt(∂T), r̄ > 0 and J currents T1, . . . , TJ such that

T Br̄(x) =

J∑
j=1

T j, ∂T j Br̄(x) = 0 and ‖T‖(Br̄(x)) =
J∑
j=1

‖T j‖(Br̄(x)) .

Then each T j satisfies (♦) in Definition 1.1.

Proof. We divide the proof in the three cases of Definition 1.1.

(a) Suppose by contradiction that there exist j ∈ {1, . . . , J} and S ∈ Im+1(Σ) with spt(T) ⊂
Br̄(x) such that M(T j Br̄(x)) >M(T j Br̄(x) + ∂S). Then it is straightforward to check that
M(T Br̄(x) + ∂S) <M(T Br̄(x)), which contradicts the minimality of T .

(b) By contradiction, suppose there exists j ∈ {1, . . . , J} such that T j is not semicalibrated
by ω. Assume j = 1. Then since ‖ω‖c 6 1, we have T1(ω) < ‖T1‖(Br̄(x)) and T j(ω) 6
‖T j‖(Br̄(x)), for every j ∈ {2, . . . , J}. It follows that

‖T‖(Br̄(x)) = T(ω) =

J∑
j=1

T j(ω) <

J∑
j=1

‖T j‖(Br̄(x)) = ‖T‖(Br̄(x)))

which gives a contradiction and concludes the proof.

(c) Without loss of generality we can assume x = 0 and R = 1. Again by contradiction
assume there exist j ∈ {1, . . . , J} and S ∈ Im+1(R

m+n) such that ∂(S C) = ∂(0×× T j C) and
M(S C) <M(0×× T j C), where

C :=
{
λz : z ∈ Br̄(x)∩ ∂B1(0), λ ∈]0, 1[

}
.

We can assume j = 1. Notice also that

M((0×× T) C) =
1

m
‖T‖(Br̄(x)) =

1

m

J∑
j=1

‖T j‖(Br̄(x)) =
J∑
j=1

M((0×× T j) C). (2.7)
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Then we have

M((0×× T) C) 6M
((
S+

J∑
j=2

0×× T j
)
C
)
6M(S C) +M

( J∑
j=2

(0×× T j) C
)

<M((0×× T1) C) +M
( J∑
j=2

(0×× T j) C
)

(2.7)
= M((0×× T) C).

The latter is a contradiction and thus completes the proof.

2.2 almgren’s lipschitz approximation

Just for this section we will assume that for some open cylinder C4r(x) (with r 6 1) and
some positive integer Q,

p]T = Q JB4r(x)K and ∂T C4r(x) = 0 . (2.8)

Definition 2.6 (Excess measure). For a current T as in Assumption 1, which additionally
satisfies (2.8), we define the cylindrical excess E(T ,Cr(x)), the excess measure eT and its density
dT :

E(T ,Cr(x)) :=
‖T‖(Cr(x))
ωmrm

−Q,

eT (A) := ‖T‖(A×Rn) −Q |A| for every Borel A ⊂ Br(x),

dT (y) := lim sup
s→0

eT (Bs(y))

ωm sm
= lim sup

s→0
E(T ,Cs(y)),

where ωm is the measure of the m-dimensional unit ball (the subscripts T will be omitted if
clear from the context).

Remark 2.7. Later on we will give a different definition of cylindrical excess E (cf. Definition
2.13). However, if (2.8) holds, then the two notions coincide.

Although its role will not be apparent in this first chapter, a fundamental tool for the proof
of Theorem 1.2 is the following strong Lipschitz approximation result. Notice that, since
here the dimension 2 doesn’t play any role, we state the Theorem for any dimension m.

Theorem 2.8. There exist costants M,C21,β0, ε11 > 0 (depending on m,n, n̄,Q) with the fol-
lowing property. Assume that T satisfies Assumption 1 and (2.8) in the cylinder C4r(x) and
E = E(T ,C4r(x)) < ε11. Then, there exist a map f : Br(x) → AQ(R

n), with spt(f(x)) ⊂ Σ for
every x, and a closed set K ⊂ Br(x) such that

Lip(f) 6 C21Eβ0 +C21Ω r in case (a) and (c) , (2.9)

Lip(f) 6 C21Eβ0 in case (b) , (2.10)

Gf (K×Rn) = T (K×Rn) and |Br(x) \K| 6 C21E
β0
(
E+ r2Ω2

)
rm , (2.11)∣∣∣‖T‖ (Cr(x)) −Qωmrm −

1

2

ˆ
Br(x)

|Df|2
∣∣∣ 6 C21Eβ0(E+ r2Ω2)rm , (2.12)
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where Ω = A in case (a). If in addition h(T ,C4r(x)) := sup{|p⊥(x) − p⊥(y)| : x,y ∈ spt(T) ∩
C4r(x)} 6 r, then

osc(f) 6 C21h(T ,C4r(x)) +C21(E1/2 + rΩ)r in case (a) and (c) , (2.13)

osc(f) 6 C21h(T ,C4r(x)) +C21rE1/2 in case (b). (2.14)

Notice that the case of area minimizing current in a Riemannian manifold (case (a) of
Definition 1.1) is already covered by [19, Theorem 1.4], and indeed in Chapter 4 we will only
prove it for the cases (b) and (c).

2.3 uniqueness of tangent cone and simplification of the problem

The following Theorem is the starting point of our analysis and it concerns the uniqueness
of the tangent cones and the subsequent splitting of the current. To state it we introduce
the current (ιx,r)]T , where the map ιx,r is given by Rm+n 3 y 7→ y−x

r ∈ Rm+n. Recall that
an area minimizing cone S is an integral area minimizing current such that (ι0,r)]S = S for
every r > 0 (cf. [54, Theorem 19.3]). Furthermore, for any given R ∈ Im(Rm+n) we define
F(R) := inf{M(Z) +M(W) : Z ∈ Im,W ∈ Im+1,Z+ ∂W = R}.

Theorem 2.9 (Uniqueness of tangent cones for almost minimizers). Let T be as in Definition
1.1(♦), with ♦ = a,b or c, and x ∈ spt(T) \ spt(∂T). Then there is a γ0 > 0, J 2-dim. distinct
planes πi, each pair of which intersect only at 0, and J integers ni such that, if we set S :=

∑
i ni JπiK,

then

F
(
(Tx,r − S) B1

)
6 C11 r

γ0 , (2.15)

dist
(
spt(T Br(x)), spt(S)

)
6 C11 r

1+γ0 . (2.16)

Moreover, there are r̄ > 0 and J > 1 currents T j ∈ I2(Br̄(x)) such that

(i) ∂T j Br̄(x) = 0 and each T j satisfies Definition 1.1(♦);

(ii) T Br̄(x) =
∑
j T
j and spt(Tj)∩ spt(Ti) = {x} for every i 6= j;

(iii) njJπjK is the unique tangent cone to each T j at x.

As an immediate consequence of this Theorem we can make the following ulterior
assumptions.

Assumptions 2. In addition to Assumption 1 we assume the following:

(i) ∂T C2(0,π0) = 0;

(ii) 0 ∈ spt(T) and the tangent cone at 0 is given by Θ(T , 0) Jπ0K where Θ(T , 0) ∈N \ {0};

(iii) T is irreducible in any neighborhood U of 0 in the following sense: it is not possible to find
S, Z non-zero integer rectifiable currents in U with ∂S = ∂Z = 0 (in U), T = S+ Z and
spt(S)∩ spt(Z) = {0}.
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In order to justify point (iii), observe that if in a certain neighborhood U there is a
decomposition T = S+Z as above, it follows from Proposition 2.5 that both S and Z fall in
one of the classes of Definition 1.1. In turn this implies that Θ(S, 0),Θ(Z, 0) ∈ N \ {0} and
thus Θ(S, 0) < Θ(T , 0). We can then replace T with either S or Z. Assume without loss of
generality that T1 = S: if it is not irreducibile we can argue as above and find a T2 which
satisfies all the requirements and has 0 < Θ(T2, 0) < Θ(T1, 0). This process must stop after at
most Q = Θ(T , 0) steps: the final current is then necessarily irreducible.

2.4 the main induction statement and the proof of the main theorem

2.4.1 Branching model

We next introduce an object which will play a key role in the rest of our work, because it is
the basic local model of the singular behavior of a 2-dimensional area-minimizing current:
for each positive natural number Q we will denote by BQ,ρ the flat Riemann surface which
is a disk with a conical singularity, in the origin, of angle 2πQ and radius ρ > 0. More
precisely we have

Definition 2.10. BQ,ρ is topologically an open 2-dimensional disk, which we identify with
the topological space {(z,w) ∈ C2 : wQ = z, |z| < ρ}. For each (z0,w0) 6= 0 in BQ,ρ we
consider the connected component D(z0,w0) of BQ,ρ ∩ {(z,w) : |z− z0| < |z0|/2} which
contains (z0,w0). We then consider the smooth manifold given by the atlas

{(D(z,w)), (x1, x2)) : (z,w) ∈ BQ,ρ \ {0}} ,

where (x1, x2) is the function which gives the real and imaginary part of the first complex
coordinate of a generic point of BQ,ρ. On such smooth manifold we consider the following
flat Riemannian metric: on each D(z,w) with the chart (x1, x2) the metric tensor is the usual
euclidean one dx21 + dx

2
2. Such metric will be called the canonical flat metric. The coordinates

(x1, x2) = z will be called standard flat coordinates.

When Q = 1 we can extend smoothly the metric tensor to the origin and we obtain
the usual euclidean 2-dimensional disk. For Q > 1 the metric tensor does not extend
smoothly to 0, but we can nonetheless complete the induced geodesic distance on BQ,ρ in a
neighborhood of 0: for (z,w) 6= 0 the distance to the origin will then correspond to |z|. The
resulting metric space is a well-known object in the literature, namely a flat Riemann surface
with an isolated conical singularity at the origin (see for instance [68]). Note that for each z0
and 0 < r 6 min{ρ/2, ρ− |z0|} the set BQ,ρ ∩ {|z− z0| < r} consists then of Q nonintersecting
2-dimensional disks, each of which is a geodesic ball of BQ,ρ with radius r and center
(z0,wi) for some wi ∈ C with wQi = z0. We then denote each of them by Br(z0,wi) and
treat it as a standard disk in the euclidean 2-dimensional plane (which is correct from the
metric point of view). We use however the same notation for the distance disk Br(0), namely
for the set {(z,w) : |z| < 0}, although the latter is not isometric to the standard euclidean disk.

When Q (and/or ρ) are clear from the context, (one of or both) the subscripts will be
omitted. We will consider repeatedly functions u defined on B. We will always treat each
point of B as an element of C2, mostly using z and w for the horizontal and vertical complex
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coordinates. Often C will be identified with R2 and thus the coordinate z will be treated as
a two-dimensional real vector, avoiding the more cumbersome notation (x1, x2).

Definition 2.11 (Q-branchings). Let α ∈]0, 1[, b > 1, Q ∈ N \ {0} and n ∈ N \ {0}. An
admissible α-smooth and b-separated Q-branching in R2+n (shortly a Q-branching) is the
graph

Gr(u) := {(z,u(z,w)) : (z,w) ∈ BQ,2ρ} ⊂ R2+n (2.17)

of a map u : BQ,2ρ → Rn satisfying the following assumptions. For some constants Ci > 0
we have

• u is continuous, u ∈ C3,α on BQ,ρ \ {0} and u(0) = 0;

• |Dju(z,w)| 6 Ci|z|1−j+α ∀(z,w) 6= 0 and j ∈ {0, 1, 2, 3};

• [D3u]α,Br(z,w) 6 Ci|z|
−2 for every (z,w) 6= 0 with |z| = 2r;

• If Q > 1, then there is a positive constant cs ∈]0, 1[ such that

min{|u(z,w) − u(z,w ′)| : w 6= w ′} > 4cs|z|b for all (z,w) 6= 0. (2.18)

The mapΦ(z,w) := (z,u(z,w)) will be called the graphical parametrization of theQ-branching.

Any Q-branching as in the Definition above is an immersed disk in R2+n and can be
given a natural structure as integer rectifiable current, which will be denoted by Gu. For
Q = 1 a map u as in Definition 2.11 is a (single valued) C1,α map u : B2(0)→ Rn. Although
the term branching is not appropriate in this case, the advantage of our setup is that Q = 1

will not be a special case in the induction statement of Theorem 2.14 below. Observe that
for Q > 1 the map u can be thought as a Q-valued map u : Bρ(0) → AQ(R

n), setting
u(z) =

∑
(z,wi)∈B Ju(z,wi)K for z 6= 0 and u(0) = Q J0K. The notation Gr(u) and Gu is then

coherent with the corresponding objects defined in Section 3.2 for general Q-valued maps.

2.4.2 Inductive step

Before coming to the key inductive statement, we need to introduce some more terminology.

Definition 2.12 (Horned Neighborhood). Let Gr(u) be a b-separated Q-branching. For every
a > b we define the horned neighborhood Vu,a of Gr(u) to be

Vu,a := {(x,y) ∈ R2 ×Rn : ∃(x,w) ∈ BQ,2ρ with |y− u(x,w)| < cs|x|a} , (2.19)

where cs is the constant in (2.18).

Definition 2.13 (Excess). Given an m-dimensional current T in Rm+n with finite mass, its
excess in the ball Br(x) and in the cylinder Cr(p,π ′) with respect to the m-plane π are

E(T ,Br(p),π) := (2ωm r
m)−1

ˆ
Br(p)

|~T − ~π|2 d‖T‖ (2.20)

E(T ,Cr(p,π ′),π) := (2ωm r
m)−1

ˆ
Cr(p,π ′)

|~T − ~π|2 d‖T‖ . (2.21)
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For cylinders we omit the third entry when π = π ′, i.e. E(T ,Cr(p,π)) := E(T ,Cr(p,π),π). In
order to define the spherical excess we consider T as in Assumption 1 and we say that π
optimizes the excess of T in a ball Br(x) if

• In case (b)

E(T ,Br(x)) := min
τ
E(T ,Br(x), τ) = E(T ,Br(x),π); (2.22)

• In case (a) and (c) π ⊂ TxΣ and

E(T ,Br(x)) := min
τ⊂TxΣ

E(T ,Br(x), τ) = E(T ,Br(x),π) . (2.23)

Note in particular that, in case (a) and (c), E(T ,Br(x)) differs from the quantity defined in
[21, Definition 1.1], where, although Σ does not coincide with the ambient euclidean space,
τ is allowed to vary among all planes, as in case (b). Thus a notation more consistent with
that of [21] would be, in case (a) and (c), EΣ(T ,Br(x)). However, the difference is a minor
one and we prefer to keep our notation simpler.

Our main induction assumption is then the following

Assumptions 3 (Inductive Assumption). T is as in Assumption 1 and 2. For some constants
Q̄ ∈ N \ {0} and 0 < ᾱ < 1

2Q̄
there is an ᾱ-admissible Q̄-branching Gr(u) with u : BQ̄,2 → Rn

such that

(Sep) If Q̄ > 1, u is b-separated for some b > 1; a choice of some b > 1 is fixed also in the case
Q̄ = 1, although in this case the separation condition is empty.

(Hor) spt(T) ⊂ Vu,a ∪ {0} for some a > b;

(Dec) There exist γ > 0 and a Ci > 0 with the following property. Let p = (x0,y0) ∈ spt(T) ∩
C√2(0) and 4d := |x0| > 0, let V be the connected component of Vu,a ∩ {(x,y) : |x− x0| <
d} containing p and let π(p) be the plane tangent to Gr(u) at the only point of the form
(x0,u(x0,wi)) which is contained in V . Then

E(T V ,Bσ(p),π(p)) 6 C2id
2γ−2σ2 ∀σ ∈

[
1
2d

(b+1)/2,d
]

. (2.24)

The main inductive step is then the following theorem, where we denote by Tp,r the
rescaled current (ιp,r)]T , through the map ιp,r(q) := (q− p)/r.

Theorem 2.14 (Inductive statement). Let T be as in Assumption 3 for some Q̄ = Q0. Then,

(a) either T is, in a neighborhood of 0, a Q multiple of a Q̄-branching Gr(v);

(b) or there are r > 0 and Q1 > Q0 such that T0,r satisfies Assumption 3 with Q̄ = Q1.

Theorem 1.2 follows then easily combining Theorem 2.9 and Theorem 2.14.
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2.4.3 Proof of Theorem 1.2

As already mentioned, without loss of generality we can assume that Assumption 1 holds
(the bounds on A and Ψ can be achieved by a simple scaling argument). Fix now a point
p in spt(T) \ spt(∂T). Our aim is to show that T is regular in a punctured neighborhood
of p. Without loss of generality we can assume that p is the origin. By Theorem 2.9 , we
can assume that Assumption 2 is satisfied, that is T is irreducible in some neighborhood of
0 and, upon suitably rescaling and rotating T , π0 is the unique tangent cone to T at 0. In
fact, T satisfies Assumption 3 with Q̄ = 1: it suffices to choose u ≡ 0 as admissible smooth
branching. If T were not regular in any punctured neighborhood of 0, we could then apply
Theorem 2.14 inductively to find a sequence of rescalings T0,ρj with ρj ↓ 0 which satisfy
Assumption 3 with Q̄ = Qj for some strictly increasing sequence of integers. It is however
elementary that the density Θ(0, T) bounds Qj from above, which is a contradiction.

2.5 the two fundamental tools : the branched center manifold and the

blow-up theorem

From now on we fix T satisfying Assumption 3. Observe that, without loss of generality,
we are always free to rescale homothetically our current T with a factor larger than 1 and
ignore whatever portion falls outside C2(0). We will do this several times, with factors which
will be assumed to be sufficiently large. Hence, if we can prove that something holds in a
sufficiently small neighborhood of 0, then we can assume, withouth loss of generality, that
it holds on C2. For this reason we can assume that the constants Ci in Definition 2.11 and
Assumption 3 are as small as we want. In turns this implies that there is a well-defined
orthogonal projection P : Vu,a ∩C1 → Gr(u)∩C2, which is a C2,α map.

By the constancy theorem, (P](T C1)) C1/2 coincides with the current QGu C1/2
(again, we are assuming Ci in Definition 2.11 sufficiently small), where Q ∈ Z. If Q were
0, condition (Dec) in Assumption 3 and a simple covering argument would imply that
‖T‖(C1/2(0)) 6 C0C

2
i , where C0 is a geometric constant. In particular this would violate,

by the monotonicity formula, the assumption 0 ∈ spt(T). Thus Q 6= 0. On the other hand
condition (Dec) in Assumption 3 implies also that Q must be positive (again, provided Ci is
smaller than a geometric constant).

Now, recall that from Theorem 2.9 the density Θ(p, T) is a positive integer at any p ∈
spt(T) \ spt(∂T). Moreover, the rescaled currents T0,r converge to Θ(0, T) Jπ0K. It is easy to
see that the rescaled currents (Gu)0,r converge to Q̄ Jπ0K and that (P]T)0,r converges to
Θ(0, T) Jπ0K. We then conclude that Θ(0, T) = Q̄Q.

We summarize these conclusions in the following lemma, where we also claim an addi-
tional important bound on the density of T outside 0, which will be proved in the appendix
to this chapter.

Lemma 2.15. Let T and u be as in Assumption 3 for some Q̄. Then the nearest point projection
P : Vu,a ∩C1 → Gr(u) is a well-defined C0,α map, C2,α outside the origin. In addition there is
Q ∈ N \ {0} such that Θ(0, T) = QQ̄ and the unique tangent cone to T at 0 is QQ̄ Jπ0K. Finally,
after possibly rescaling T , Θ(p, T) 6 Q+ 1

2 for every p ∈ C2 \ {0} and, for every x ∈ B2(0), each
connected component of (x×Rn)∩Vu,a contains at least one point of spt(T).
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Since we will assume during the rest of the paper that the above discussion applies, we
summarize the relevant conclusions in the following

Assumptions 4. T satisfies Assumption 3 for some Q̄ and with Ci sufficiently small. Q > 1 is an
integer, Θ(0, T) = QQ̄ and Θ(p, T) 6 Q for all p ∈ C2 \ {0}.

The overall plan to prove Theorem 2.14 is then the following:

(CM) We construct first a branched center manifold, i.e. a second admissible smooth branch-
ing ϕ on BQ̄, and a corresponding Q-valued map N defined on the normal bundle of
Gr(ϕ), which approximates T with a very high degree of accuracy (in particular more
accurately than u) and whose average η ◦N is very small;

(BU) Assuming that alternative (a) in Theorem 2.14 does not hold, we study the asymptotic
behavior of N around 0 and use it to build a new admissible smooth branching v
on some BkQ̄ where k > 2 is a factor of Q: this map will then be the one sought
in alternative (b) of Theorem 2.14 and a suitable rescaling of T will lie in a horned
neighborhood of its graph.

The first part of the program is the one achieved in Part iv, whereas the second part is
completed in Part v : after stating both of them we will finish this section with the proof
of Theorem 2.14. Note that, when Q = 1, from (BU) we will conclude that alternative (a)
necessarily holds: this will be a simple corollary of the general case, but we observe that it
could also be proved resorting to the classical Allard’s regularity theorem.

2.5.1 Smallness condition

In several occasions we will need that the ambient manifold Σ is suitably flat and that the
excess of the current T is suitably small. This can, however, be easily achieved after scaling.

Lemma 2.16. Let T be as in the Assumptions 3 and 4. After possibly rescaling, rotating and
modifying Σ outside C2(0) we can assume that, in case (a) and (c) of Definition 1.1,

(i) Σ is a complete submanifold of R2+n;

(ii) T0Σ = R2+n̄ × {0} and, ∀p ∈ Σ, Σ is the graph of a C3,ε0 map Ψp : TpΣ→ (TpΣ)
⊥.

Under these assumptions, we denote by c and m0 the following quantities

c := sup{‖DΨp‖C2,ε0 : p ∈ Σ} in the cases (a) and (c) of Definition 1.1 (2.25)

c := ‖dω‖C1,ε0 in case (b) of Definition 1.1 (2.26)

m0 := max
{
c2,E(T ,C2,π0),C2i , c2s

}
, (2.27)

where Ci and cs are the constants appearing in Definition 2.11 and Assumption 3. Then, for any
ε41 > 0, after possibly rescaling the current by a large factor, we can assume

m0 6 ε41 . (2.28)
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In order to carry on the plan outlined in the previous subsection, it is convenient to use a
different parametrization of Q-branchings.

If we remove the origin, any admissible Q-branching is a Riemannian submanifold of
R2+n: this gives a Riemannian tensor g := Φ]e (where e denotes the euclidean metric on
R2+n) on the punctured disk BQ,2ρ \ {0}. Note that in (z,w), the difference between the
metric tensor g and the canonical flat metric is estimated by (a constant times) |z|2α: thus,
as it happens for the flat metric, when Q > 1 it is not possible to extend the metric g to
the origin. However, using well-known arguments in differential geometry, we can find a
conformal map from BQ,r onto a neighborhood of 0 which maps the conical singularity of
BQ,r in the conical singularity of the Q-branching. In fact, we need the following accurate
estimates for such a map, whose proof will be given in the appendix to the chapter.

Proposition 2.17 (Conformal parametrization). Given an admissible b-separated α-smooth Q-
branching Gr(u) with α < 1/(2Q) there exist a constant C0(Q,α) > 0, a radius r > 0 and functions
Ψ : BQ,r → Gr(u) and λ : BQ,r → R+ such that

(i) Ψ is a homeomorphism of BQ,r with a neighborhood of 0 in Gr(u);

(ii) Ψ ∈ C3,α(BQ,r \ {0}), with the estimates

|Ψ(z,w) − (z, 0)| 6C0Ci|z|1+α , (2.29)

|Dl
(
Ψ(z,w) − (z, 0)

)
| 6C0Ci|z|

α−l for l = 1, . . . , 3, z 6= 0 , (2.30)

[D3Ψ]α,Br(z,w) 6C0Ci|z|
−2 for z 6= 0 and r = |z|/2 ; (2.31)

(iii) Ψ is a conformal map with conformal factor λ, namely, if we denote by e2+n the ambient
euclidean metric in R2+n and by eQ the canonical euclidean metric of BQ,r,

g := Ψ]e2+n = λ eQ on BQ,r \ {0}. (2.32)

(iv) The conformal factor λ satisfies

|Dl(λ− 1)(z,w)| 6C0Ci|z|2α−l for l = 0, 1, . . . , 2 (2.33)

[D2λ]α,Br(z,w) 6C0Ci|z|
α−2 for z 6= 0 and r = |z|/2 . (2.34)

2.5.2 The center manifold and the approximation

We are now ready to state the two “halves” of Theorem 2.14. The first one is the construction
of a surface which at every inductive step will play the role of a wedge between the sheets
of the current, together with a very careful approximation map on top of it.

Theorem 2.18 (Center Manifold Approximation). Let T be as in Assumptions 3 and 4. Then there
exist η0,γ0, r0,C > 0, b > 1, an admissible b-separated γ0-smooth Q̄-branching M, a corresponding
conformal parametrization Ψ : BQ̄,2 →M and a Q-valued map N : BQ̄,2 → AQ(R

2+n) with the
following properties:
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(i) Q̄Q = Θ(T , 0) and

|D(Ψ(z,w) − (z, 0))| 6Cm1/20 |z|γ0 (2.35)

|D2Ψ(z,w)|+ |z|−1|D3Ψ(z,w)| 6Cm
1
2

0 |z|
γ0−1 ; (2.36)

in particular, if we denote by AM the second fundamental form of M\ {0},

|AM(Ψ(z,w))|+ |z|−1|DMAM(Ψ(z,w))| 6 Cm
1
2

0 |z|
γ0−1 .

(ii) N i(z,w) is orthogonal to the tangent plane, at Ψ(z,w), to M.

(iii) If we define S := T0,r0 , then spt(S)∩C1 \ {0} is contained in the closure of a suitable horned
neighborhood of the Q̄-branching, where the orthogonal projection P onto it is well-defined.
Moreover, for every r ∈]0, 1[ we have

‖N |Br‖0 + sup
p∈spt(S)∩P−1(Ψ(Br))

|p−P(p)| 6 Cm
1
4

0 r
1+

γ0
2 . (2.37)

(iv) If we define

D(r) :=

ˆ
Br

|DN |2 and H(r) :=

ˆ
∂Br

|N |2 ,

F(r) :=

ˆ r
0

H(t)

t2−γ0
dt and Λ(r) := D(r) + F(r) ,

then the following estimates hold for every r ∈]0, 1[:

Lip(N |Br) 6Cmin{Λη0(r),mη00 r
η0} (2.38)

mη00

ˆ
Br

|z|γ0−1|η ◦N (z,w)| 6CΛη0(r)D(r) +C F(r) . (2.39)

(v) Finally, if we set

F (z,w) :=
∑
i

JΨ(z,w) +N i(z,w)K ,

then

‖S− TF‖
(
P−1(Ψ(Br))

)
6CΛη0(r)D(r) +C F(r) . (2.40)

2.5.3 The asymptotic analysis

The second main step is the analysis of the asymptotic behaviour of N around the origin, in
particular the mode of convergence of a suitable rescaling of it to its unique limit and the
properties of this limit.
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Remark 2.19. In order to state it, we agree to define W1,2 functions on B in the following
fashion: removing the origin 0 from B we have a C3loc (flat) Riemannian manifold embedded
in R4 and we can define W1,2 maps on it following Definition 3.9. Alternatively we can
use the conformal parametrization W : R2 = C→ BQ̄ given by W(z) = (zQ̄, z) and agree
that u ∈ W1,2(BQ̄) if u ◦W is in W1,2(R2). Since discrete sets have zero 2-capacity, it is
immediate to verify that these two definitions are equivalent.

In a similar fashion, we will ignore the origin when integrating by parts Lipschitz vector
fields, treating BQ̄ as a C1 Riemannian manifold. It is straightforward to show that our
assumption is correct, for instance removing a disk of radius ε centered at the origin,
integrating by parts and then letting ε ↓ 0.

Theorem 2.20 (Blowup Analysis). Under the assumptions of Theorem 2.18, the following dichotomy
holds:

(i) either there exists s > 0 such that N |Bs ≡ Q J0K,

(ii) or there exist constants I0 > 1, a0, r̄,C > 0 and an I0-homogeneous nontrivial Dir-minimizing
function g : BQ̄ → AQ(R

2+n) such that η ◦ g ≡ 0, spt(g(z,w)) ⊂ {0}×Rn̄ × {0}, for
every (z,w) ∈ BQ̄, and

G
(
N (z,w),g(z,w)

)
6 C|z|I0+a0 ∀ (z,w) ∈ BQ, |z| < r̄, (2.41)

and moreover the following estimates hold
ˆ
Br+2ρ\Br−2ρ

|DN |2 6 Cr2I0+a0 +Cr2I0−1 ρ ∀ 4 ρ 6 r < 1, (2.42)

H(r) 6 CrD(r) ∀ r < 1. (2.43)

Remark 2.21. Note that, when Q̄ = Θ(T , 0), we necessarily have Q = 1 and the second alter-
native is excluded. In particular we conclude that T coincides with JMK in a neighborhood
of 0 and thus that it is a regular submanifold in a punctured neighborhood of 0.

Remark 2.22. By a simple dyadic argument it follows from (2.42) and (2.43) that
ˆ
Br

|DN |2 6 Cr2I0 and F(r) 6 Cr2I0+γ0 ∀ r < 1. (2.44)

so that, in particular

Λ(r) 6 Cr2I0 and Λη0(r) 6 Cr2I0 η0 .

2.6 proof of the inductive step

We start observing that if case (a) of Theorem 2.14 does not hold, then we are necessarily
in case (ii) of Theorem 2.20. Therefore we only need to prove that Theorem 2.20(ii) implies
Theorem 2.14(b).

We divide the proof in different steps.
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Step 1. For a reason which will become clear later, it is convenient to slightly modify the map
g to a multivalued map n(z,w) =

∑
i Jni(z,w)K in such a way that ni(z,w) is orthogonal

to M at Ψ(z,w). To achieve this it suffices to project gi(z,w) = (0, ḡi(z,w), 0) on the normal
bundle. Observe that, by the estimates on |AM| and Ψ, we easily have (cf. the proof of Lemma
10.14)

|gi(z,w) −ni(z,w)| 6CCi|z|γ0 |gi(z,w)| , (2.45)

|Dn|(z,w) 6|Dg|(z,w) +CCi|z|γ0−1|g|(z,w) . (2.46)

We introduce the function H : BQ̄ → AQ(R
2+n) given by

H(z,w) =
Q∑
i=1

JHi(z,w)K :=
Q∑
i=1

JΨ(z,w) +ni(z,w)K .

Note that, since g is I0-homogeneous, by (2.45) there exists a constant C > 0 such that

|Hi(z,w) −Hj(z,w)| > C |z|I0 whenever Hi(z,w) 6= Hj(z,w). (2.47)

Let 0 < ā < a0 be a constant to be fixed momentarily and ζ := I0 + ā
2 > 1. Set

VH,ζ :=
{
Hi(z,w) + p ∈ R2+n : |p| < |z|ζ, i = 1, . . . ,Q

}
.

We claim that there exists s > 0 such that spt(T)∩Bs ⊂ VH,ζ.
In order to prove this claim, we distinguish two cases. First we consider any point

p ∈ spt(T) ∩ spt(TF). In this case p = Ψ(z,w) + N i(z,w) for some (z,w) ∈ BQ and for
some i = 1, . . . ,Q. Without loss of generality, by (2.41) we can assume |Ni(z,w) − gi(z,w)| 6
C|z|I0+ā, i.e.

|p−Hi(z,w)| = |Ni(z,w) −ni(z,w)| 6 |Ni(z,w) − gi(z,w)|+ |gi(z,w) −ni(z,w)|

6 C|z|I0+ā +C |z|I0+γ0 , (2.48)

which in particular implies spt(T) ∩ spt(TF ) ∩Bs ⊂ VH,ζ if s is sufficiently small and we
impose ā2 < γ0.

For the second case we consider a point p ∈ spt(T) \ spt(TF ) and assume by contradiction
that p 6∈ VH,ζ. In particular, in view of (2.48) we have that

B := B |z|ζ

2

(p)∩ spt(TF ) = ∅

if |z| is sufficiently small. By the monotonicity formula we know that ‖T‖(B) > C |z|2ζ;
nevertheless since B ⊂ P−1(B2|z| \ B |z|

2

), we deduce from (2.40) and (2.44) that ‖T‖(B) 6

C |z|2I0+2κ with κ = min{2 η0 I0,γ0}, which gives a contradiction if ā < 2κ.

Step 2. From the previous step we can infer that g is a constant multiple of an irreducible
function, namely there exists Q ′ > 0 such that card(g(z,w)) = Q ′ for every (z,w) 6= (0, 0)
and there exists a continuous map h : BQ̄Q ′ → R2+n such that

g(z,w) =
Q

Q ′

∑
z̃=z, w̃Q ′=w

Jh(z̃, w̃)K . (2.49)
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If this is not the case, by a straightforward generalization of [17, Proposition 5.1] we can
decompose g in the superposition of irreducible functions, i.e. there exists a unique decom-
position g =

∑J
j=1 kjgj where gj : BQ → Aqj(R

n) are Dir-minimizing I0-homogeneous
functions, for some choice of positive integers J,kj,qj such that

∑J
j=1 kjqj = Q.

Denoting by Hj the corresponding maps (recall that n is the projection of g on the normal
bundle to M)

Hj(z,w) :=
qj∑
l=1

q
Ψ(z,w) + (nj)l(z,w)

y

and by VHj,ζ the corresponding horned neighborhoods

VHj,ζ :=
{
(Hj)l(z,w) + p ∈ R2+n : |p| 6 |z|ζ, l = 1, . . . ,qj

}
,

it follows from (2.47) that Vζ,Hi ∩Vζ,Hj = {0}. Setting Ti := T Vζ,Hi , we infer that T =
∑
i Ti

with spt(Ti)∩ spt(Tj) = {0}, against the irreducibility of T . Note that, since η ◦ g = 0 it also
follows that Q ′ > 1.

Having established (2.49), let us define Θ : BQ̄Q ′ → Rn as

Θ(z̃, w̃) := Ψ(z̃, w̃Q
′
) + hn(z̃, w̃) ∀ (z̃, w̃) ∈ BQ̄Q ′ ,

where hn(z̃, w̃) is the projection of h(z̃, w̃) on the space normal to M at the point Ψ(z̃, w̃Q
′
).

It follows that Im(H) = Im(Θ) is an admissible Q̄Q ′-branching (the Hölder regularity for the
graphical parametrization follow from the fact that I0 > 1). Moreover, from the homogeneity
of g we easily infer that Im(Θ) is I0-separated (for a suitable constant cs). Note that for
ζ ′ := I0 +

a
4 and s sufficiently small VH,ζ ∩Bs ⊂ VΘ,ζ ′ ∩Bs.

Step 3. Finally we prove the condition (Dec) of Assumption 3. Let (z,w) ∈ BQ̄ with

0 < |z| <
√
2, let V be the connected component of VΘ,ζ ′ ∩ {(x,y) : |x− z| < d} with d :=

|z|
4

containingΘ(z,w), and p ∈ spt(T)∩V with co-ordinates p = (z,y). Denote by π the oriented

two-vector for Im(Θ) at Θ(z,w), and consider ρ ∈ [12d
(I0+1)
2 ,d].

Since Bρ(p) ⊂ P−1(Ψ(B|z|+2ρ \B|z|−2ρ)), we start estimating as follows
ˆ
Bρ(p)

|~T − ~π|2 d‖T‖ 6
ˆ
Bρ(p)

|~TF − ~π|2 d‖TF‖+ ‖T − TF‖(p−1(B|x0|+2ρ))

(2.40)
6
ˆ
Bρ(p)

|~TF − ~π|2 d‖TF‖+C |z|2I0+2κ. (2.50)

Next, note that for |z| small enough P(Bρ(p)∩VΘ,ζ ′) ⊂ Ψ(B2ρ(z,w)).
We can consider the set of indices A ⊂ {1, . . . ,Q} such that Fi(z,w) ∈ V for i ∈ A and

estimate as followsˆ
Bρ(p)

|~TF − ~π|2 d‖TF‖ 6 C
∑
i∈A

ˆ
B2ρ(z,w)

|~TFi −
~TΘ|2 +Cρ2 Lip(DΘ|B2ρ(z,w))

2

6 C
∑
i∈A

ˆ
B2ρ(z,w)

|~TFi −
~TΨ|

2

+C

ˆ
B2ρ(z,w)

|~TΨ − ~TΘ|2 +Cρ4 |z|2θ−2, (2.51)
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where θ := min{γ0, I0 − 1} and we used the fact that |D2Θ|(z,w) 6 C |z|θ−1.
We can finally use the computation of the excess in curvilinear coordinates in Proposition

3.50 to get∑
i

ˆ
B2ρ(z,w)

|~TFi −
~TΨ|

2 6 C
ˆ
B2ρ(z,w)

(
|DN |2 + |z|2γ0−2|N |2

)
(2.44)
6 C

ˆ
B|z|+2ρ\B|z|−2ρ

|DN |2 +C |z|2I0+2γ0 (2.52)

(2.42)
6 C |z|2I0+a0 +C |z|2I0−1 ρ , (2.53)

and similarly
ˆ
B2ρ(z,w)

|~TΘ − ~TΨ|
2 6 C

ˆ
B2ρ(z,w)

(
|Dn|2 + |z|2γ0−2|n|2

)
6 C
ˆ
B2ρ(z,w)

(
|Dg|2 + |z|2γ0−2|g|2

)
6 C |z|2I0−2ρ2 +C |z|2I0+2γ0 (2.54)

(observe that, in order to apply Proposition Proposition 3.50 we need that n takes value into
the normal bundle).

Collecting all the estimates together, we have that there exists a suitable constant $ such
that ˆ

Bρ(p)
|~T − ~π|2 d‖T‖ 6 C |z|2I0+2$ +Cρ |z|2I0−1 +Cρ4 |z|2$−2 6 |z|γ−2ρ4, (2.55)

where the last inequality is verified for a suitable γ > 0, and for every ρ ∈

[
1
2

(
|z|
4

) (I0+1)
2

, |z|
4

]
and |z| small enough.

2.7 appendix a: proof of the technical lemmas

In this section we prove the two technical Lemmas 2.15 and 2.16.

Proof of Lemma 2.15. Consider x0 ∈ π0 with 2ρ = |x0|, a smooth C2 function φ : Bρ(x0)→ Rn

and the open set Vρ := {(x,y) : x ∈ Bρ/2(x0), |y−φ(x)| 6 ρ}. Recall that there is a geometric
constant C such that, if ρ 6 C/‖D2φ‖Bρ(x0), then for each p ∈ Vρ there is a unique
nearest point P(p) ∈ Gr(φ) (which defines a C1 map P : Vρ → Gr(φ)). In particular, if
‖D2φ‖Bρ(x0) 6 Cρ

α−1, the existence of such point is guaranteed under the assumption that
ρ 6 cρ1−α (where c is a, possibly small but positive, constant). Consider now an admissible
smooth branching u : BQ̄ → Rn. If Q̄ = 1, the above discussion shows easily the existence
of a well defined C1 map P : Vu,a ∩C2r → Gr(u), provided r is sufficiently small. If Q̄ >!1,
the same conclusion holds under the assumption that u is b-separated and a > b > 1.
Indeed consider p = (z,y) ∈ Vu,a and (z,wi) ∈ BQ such that |y− u(z,wi)| 6 cs|z|

a. The
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assumptions of being well-separated implies easily that |p− u(ζ,ω)| > cs|z|
b whenever

z 6∈ B|z|/2(z,wi) and thus we can argue locally on the sheet Gr(u|B|z|/2(z,wi)).
Next, up to rescaling we can assume that P is well-defined on Vu,a ∩C2. The discussion

before Lemma 2.15 applies now verbatim and we conclude the first sentence of the Lemma.
To reach the other two conclusions of the Lemma we argue by contradiction: if they were

wrong, then we would find a sequence of points {xk} ⊂ B2(0) converging to 0 for which one
of the following two conditions hold:

• either {xk}×Rn contains a point pk ∈ spt(T) with Θ(pk, T) > Q+ 1
2 ;

• or one connected component Ω of ({xk}×Rn)∩Vu,a does not intersect spt(T).

Set 2rk := |xk| and consider the connected component Vk of Vu,a ∩Crk(xk) which contains
pk (in the first case) or Ωk (in the second). Let Sk := Tk Vk and let qk = (xk,u(xk,wk))
be such that qk ∈ Vk. Finally set Zk := (Sk)qk,rk . Observe that spt(Zk) is contained in a
neighborhood of height Cra−1k of π0 and we therefore conclude that Zk converges to a current
Z which is an integer multiple of JB1(0)K. On the other hand, since P](Sk) Crk/2(xk) =

QGu Crk/2(xk) for k large enough, we conclude that Z = Q JB1(0)K. Now, either spt(Zk)∩
({0}×Rn) contains a point q̄k of multiplicity Q+ 1

2 or it is empty. Since however (pπ0)]Zk =

Qk JB1(0)K → (pπ0)]Z (by the constancy theorem), for k large enough we would have
(pπ0)]Zk = Q JB1(0)K, contradic! ting the emptyness of spt(Zk) ∩ ({0}×Rn) = ∅ because
Q > 1. As for the other alternative, we must have, by the almost minimality of Zk (see
Proposition 5.8)

lim sup
k→∞ ‖Zk‖(B1/2−|q̄k|(q̄k)) 6 lim

k→∞ ‖Zk‖(B1/2(0)) = Q
4ω2 .

Since q̄k → 0, the almost monotonicity formula (see Proposition 5.8) would implyΘ(q̄k,Zk) 6
Q+ o(1).

Proof of Lemma 2.16. Since QQ̄ Jπ0K is tangent to T at 0, we obviously must have T0Σ ⊃ π0
and thus T0Σ = R2+n̄ × {0} can be achieved suitably rotating the coordinates. To achieve the
other two conclusions we scale Σ and intersect it with C4(0, T0Σ) to reach that Σ∩C4(0, T0Σ)
is the graph of some Ψ with very small C3,ε0 norm. We can then extend Ψ outside B4(0, T0Σ)
without increasing the C3,ε0 norm by more than a factor: this gives (i) and (ii) and also
shows that c can be assumed smaller than ε41 in case (a) and (c) of Definition 1.1. For the
details we refer the reader to the proof of [20, Lemma 1.5]. The rest of the Lemma is a simple
scaling argument.

2.8 appendix b: conformal coordinates for branched surfaces

In order to prove the Proposition we recall the following classical fact about the existence of
conformal coordinates. As in the rest of the paper, e denotes the standard euclidean metric.

Lemma 2.23. For every k ∈ N and α,β ∈]0, 1[ there are positive constants C0 and c0 with
the following properties. Let g be a Ck,β Riemannian metric on the unit disk B2 ⊂ R2 with
‖g− e‖C0,α 6 c0. Then there exists an orientation preserving diffeomorphism Λ : Ω → B2 and a
positive function λ : Ω→ R such that
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(i) Λ]g = λe;

(ii) ‖Λ− Id‖C1,α + ‖λ− 1‖C0,α 6 C0‖g− e‖C0,α ;

(ii) ‖Λ− Id‖Ck+1,β + ‖λ− 1‖Ck,β 6 C0‖g− e‖Ck,β .

Although the statement above is a well-known fact (and it follows, for instance, from the
treatment of the problem given in [61, Addendum 1 to Chapter 9]), we have not been able to
find a classical reference for it. However a complete proof can be found in the Appendix of
[23].

Proof of Proposition 2.17. After rescaling we can assume that ρ > 2Q. We fix Q and drop
subscripts in BQ,2. Observe also that, if we rescale by a large factor R, the constants Ci in
Definition 2.11 can then replaced by the constants CiR−α. Hence, without loss of generality
we can assume that Ci is sufficiently small.

Let Φ : B → Rn+2 be the graphical parametrization of the branching and recall that
g =Φ]e. Fix a point (z0,w0) ∈ B \ {0}, let r := |z0|/2 and observe that on Br(z0,w0) we can
use z as a chart and compute the metric tensor explicitely as

gij(z,w) = δij + ∂iu(z,w)∂ju(z,w) =: δij + σij .

It then follows easily that

|Djσ(z)| 6C0C
2
i |z|

2α−j for j ∈ {0, 1, 2} (2.56)

[D2σ]α,Br(z0,w0) 6C0C
2
i r
α−2 . (2.57)

Step 1. Next consider the map W : R2 ⊂ B2 → B defined by W(z) := (zQ, z). We set

ḡ =W]g = (Φ ◦W)]e .

We then infer that (following Einstein’s convention on repeated indices)

ḡij(z) = Q
2|z|2Q−2δij + σkl(z

Q)∂iWl∂jWk ,

and we set

τ(z) := (Q2|z|2Q−2)−1ḡ(z) .

We then easily see that

|τ(z) − e| 6 C0|z|
−(2Q−2)|DW(z)|2|σ(zQ)| 6 C0C

2
i |z|

2Qα .

Differentiating the identity which defines τ we also get

|Dτ(z)| 6C0|z|
−(2Q−1)|DW(z)|2|σ(zQ)|+C0|z|

−(2Q−2)|D2W(z)||DW(z)||σ(zQ)|

+C0|z|
−(2Q−2)|DW(z)|2|Dσ(zQ)||z|Q−1

6C0C
2
i |z|

2Qα−1 .
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Analogous computations lead then to the estimates

|Dj(τ− e)|(z) 6C0C
2
i |z|

2Qα−j for j ∈ {0, 1, 2} (2.58)

[D2τ]α,Bs(z) 6C0C
2
i |z|

2Qα−2−α for s = |z|/2. (2.59)

Interpolating between the C1 and the C0 bound, we easily conclude that

[τ]2Qα,B2r\Br 6 C0C
2
i .

Note in particular that τ (unlike g) can be extended to a nondegenerate C0,Qα metric to the
origin.

Since Ci can be assumed sufficiently small, we can apply Lemma 2.23 to find an orientation
preserving diffeomorphism Λ : Ω→ B2 and a function λ : Ω→ R+ such that

Λ]τ =λ̄e (2.60)

‖Λ− Id‖C1,2Qα + ‖λ̄− 1‖C0,2Qα 6C0Ci . (2.61)

Observe that, without loss of generality, we can assume that 0 ∈ Ω and Λ(0) = 0. In
particular (2.61) implies that, for Ci suitably small, B1 ⊂ Ω and hence we will regard Λ and
λ as defined on B1. Next divide Λ by λ̄(0)

1
2 and keep, by abuse of notation, the same symbols

for the resulting map and the resulting conformal factor in (2.60). After this normalization
we achieve that λ̄(0) = 1 and that the estimates (2.61) still hold with a larger C0. Moreover,
λ̄(0) = 1 implies that DΛ(0) ∈ SO(2): composing Λ with an appropriate rotation we can
then assume that DΛ(0) is the identity. This implies that

|λ̄(z) − 1| 6C0Ci|z|
Qα (2.62)

|Dj(Λ(z) − z)| 6C0Ci|z|
1+Qα−j for j ∈ {0, 1} . (2.63)

Step 2. We next wish to estimates the higher derivatives of both Λ and λ. We adopt the
following procedure. We fix a point p 6= 0 and let r := |p|/2. We then apply a simple scaling
argument to rescale Br(p) to a ball of radius 2 so that we can apply Lemma 2.23. If we
rescale back to Br(p) it is then easy to see that we find maps Λp : Ωp → Br(p), λp : Ω→ R+

with the properties properties:

Λ]
pτ =λpg (2.64)

‖Λp − Id‖C1,2Qα + ‖λp − 1‖C0,2Qα 6C0Ci (2.65)

[Λp − Id]3,α + [λp − 1]2,α 6C0Cir
2Qα−2−α . (2.66)

Note that Ξ := Λ ◦Λ−1
p Moreover, its domain is a disk of radius r. Since

sup
z

|∂z(Ξ(z) − z)| 6 C0r
2Qα ,

we easily conclude the higher derivative estimates

‖∂zk(Ξ− z)‖ 6 C0Cir2Qα−k for k ∈ {1, 2, 3, 4} ,
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which, by holomorphicity, are actually estimates on the full derivatives. Since Λ = Ξ ◦Λp we
then easily conclude that

|Dj+1Λ(z)|+ |Dj(λ̄(z) − 1)| 6C0Ci|z|
2Qα−j for j ∈ {0, 1, 2} (2.67)

[D3Λ]α,Br(z) + [D2λ̄]α,Br(z) 6C0Cir
2Qα−2−α for r = |z|/2 > 0 . (2.68)

Finally notice that

(Λ]ḡ) (z) = Q2|Λ(z)|2Q−2λ̄(z)e . (2.69)

Step 3. We are finally ready to define Ψ :=Φ ◦W ◦Λ ◦W−1. First of all observe that

(Ψ]e)(z,w) = ((W−1)]Λ]ḡ)(z,w) =
|Λ(W−1(z,w))|2Q−2

|z|2−2/Q
λ̄(W−1(z,w))e =: λ(z,w)e .

Since |W−1(z,w)| = |z|1/Q, we can also estimate

|λ(z,w) − 1| 6
|Λ(W−1(z,w))|Q−2

|z|2−2/Q
|λ̄(W−1(z,w)) − 1|+C

|Λ(W−1(z,w))|Q−2 − |z|2−2/Q

|z|2−2/Q

6C0C
2
i |W

−1(z,w)|2Qα +C0|z|
−1/Q

(
|Λ(W−1(z,w))|− |W−1(z,w)|

)
6C0C

2
i |z|

2α +C0C
2
i |z|

−1/Q|W−1(z,w)|1+2Qα 6 C0C
2
i |z|

2α .

Similarly

|Dλ(z,w)| 6C0|Dλ̄(W−1(z,w))||z|−1 +C0

∣∣∣∣D |Λ(W−1(z,w))|2Q−2

|W−1(z,w)|2Q−2

∣∣∣∣
6C0C

2
i |z|

2α−1 +C0

∣∣∣∣D |Λ(W−1(z,w)|
|W−1(z,w)|

∣∣∣∣
and observe that∣∣∣∣D |Λ(W−1)|

|W−1|

∣∣∣∣ = ∣∣∣∣( DΛ(W−1)

|Λ(W−1)||W−1|
−

|Λ(W−1)|

|W−1|3
Id
)
DW−1W−1

∣∣∣∣
6C0|DW

−1||W−1|−1
(
|DΛ(W−1) − Id|+ |W−1|

(
|Λ(W−1) − (W−1)|

))
6C0C

2
i |DW

−1||W−1|2Qα−2 .

Recalling that |DW−1(z,w)| 6 |z|1/Q−1, |W−1(z,w)| = |z|1/Q, we conclude

|Dλ(z,w)| 6 C0C2i |z|
2α−1 .

The estimates on the second derivative and its Hölder norm follow from similar computa-
tions.

We now come to the estimates on Ψ. Let Λ̄ :=W ◦Λ ◦W−1. Fix (z0,w0) 6= 0, let r := |z0|/2

and use z as a local chart. It will then suffice to show that

|Dj(Λ̄(z) − z)| 6C0Ci|z|
1+α−l for j ∈ {0, 1, 2, 3} (2.70)

[D3Λ̄]α,Br(z0,w0) 6C0Ci|z|
−2 . (2.71)
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On the other hand since Λ̄(0, 0) = (0, 0), it actually suffces to show the first estimate for j = 1
to obtain it in the case j = 0.

We start computing the first derivatives:

DΛ̄ = DW(Λ ◦W−1)DΛ(W−1)DW−1 .

Recalling that DW(W−1)DW−1 = Id, we estimate

|DΛ̄(z) − Id| 6|DW(Λ(W−1(z))) −DW(W−1(z))||DΛ(W−1(z))||DW−1(z)|

+ |DW(W−1(z))||DΛ(W−1(z)) − Id||DW−1(z)|

6C0|W
−1(z)|Q−1|Λ(W−1(z)) −W−1(z)||z|1/Q−1

6+C0C
2
i |W

−1(z)|Q−1||W−1(z)|2Qα|z|1/Q−1

6C0C
2
i |W

−1(z)|Q+2Qα|z|1/Q−1 +C0C
2
i |z|

2α 6 C0C
2
i |z|

2α .

Similar computations give the estimates on the higher derivatives.
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3
M U LT I P L E VA L U E D F U N C T I O N S A N D I N T E G R A L C U R R E N T S

The content of this Chapter is taken mainly from the works of De Lellis and Spadaro in
their proof of Almgren’s regularity result for Area Minimizing currents. In particular the
main references are [17], [18], and [19]. The chapter is organized in three sections each
addressing useful tools from the theory of multiple valued maps and their link with integral
currents. The first section deals with the theory of multiple valued functions. In particular,
after giving the basic definitions, we address the questions of existence and regularity of
energy minimizing maps, together with some useful properties such as higher integrability
of their gradient and unique continuation. Moreover we give a reparametrization criterium
and a very general construction of competitors for the energy.

The second section deals with the identification of the image of a Q-valued function with
an integral current of multiplicity Q, the good behaviour of the usual boundary operation
and an explicit formula to compute the mass.

In the third and final section we recall the Taylor expansion for the mass of the image of a
multiple valued function in terms of the energy, in the graphical case and in a slightly more
general situation. As a consequence we derive the corresponding expansions for the excess
and the first variations.

3.1 tutorial on multiple valued functions and dir-minimizers

In this section we recall some basic results from the theory of multiple valued maps
developed in [17] and the main properties of Dir-minimizing functions that will be needed
in the sequel.

Definition 3.1. We denote by JPK the Dirac mass centered in P ∈ Rn and we define the
space of Q-points as

AQ(R
n) : =

{
Q∑
i=1

JPiK : Pi ∈ Rn for every i = 1, . . . ,Q

}
.

Moreover for every T1, T2 ∈ AQ(R
n), with T1 =

∑
i JPiK and T2 =

∑
i JSiK, we define

G(T1, T2) := min
σ∈PQ

√∑
i

|Pi − Sσ(i)|2 ,

where PQ denotes the group of permutations of {1, . . . ,Q}. We adopt the convention that
|T | = G(T ,Q J0K).
If T =

∑Q
i=1 JPiK ∈ AQ we define the diameter and the separation of T by

d(T) := max
i,j

|Pi − Pj| and s(T) := min{|Pi − Pj| : Pi 6= Pj}

29
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with the convention that s(T) =∞ if T = Q JPK.
Finally we define the map η : AQ(Rn)→ Rn which takes each measure T =

∑Q
i=1 JPiK to

its center of mass η(T) :=
∑
i Pi
Q .

The couple (AQ(R
n),G) is a metric space so the usual functional spaces (Continuous,

Lipschitz, Hölder, Measurable, Lp) are well defined, in particular Lp(Ω,AQ) consits of those
map u : Ω→ AQ such that ‖G(u,Q J0K)‖Lp is finite. Furthermore we have the following easy
decomposition result.

Lemma 3.2 (Measurable selection [17, Proposition 0.4]). Let B ⊂ Rm be a measurable set and let
f : B→ Rn be a measurable function. Then, there exist f1, . . . , fQ measurable Rn-valued functions
such that

f(x) =

Q∑
i=1

Jfi(x)K for a.e. x ∈ B .

3.1.1 Lipschitz Multiple valued maps

Multiple valued Lipschitz maps enjoy similar properties to their vector valued counterparts.
This is a consequence of the following decomposition Lemma, which allows us to perform
inductive reasoning on the multiplicity Q.

Lemma 3.3 (Lipschitz decomposition [17, Proposition 1.2]). Let f : B ⊂ Rm → AQ be a
Lipschitz function, f =

∑Q
i=1 JfiK. Suppose that there exist x0 ∈ B and i, j ∈ {1, . . . ,Q} such that

|fi(x0) − fj(x0)| > 3(Q− 1)Lip(f)diam(B) .

Then, there is a decomposition of f into two simpler Lipschitz functions fK and fL with Lip(fK), Lip(fL) 6
Lip(f) and spt(fK(x))∩ spt(fL(x)) = ∅ for every x.

Using this result one can prove the following extension result.

Proposition 3.4 (Lipschitz extension [17, Theorem 1.7]). Let f : B ⊂ Rm → AQ be Lipschitz.
Then, there exists an extension f̄ : Rm → AQ of f, with Lip(f̄) 6 C(m,Q)Lip(f). Moreover, if f is
bounded, then

sup
x∈Rm

|f̄(x)| 6 C(m,Q) sup
x∈B

|f(x)| .

Next we study the differentiability properties of Lipschitz maps.

Definition 3.5. Let f : B ⊂ Rm → AQ and x0 ∈ B. We say that f is differentiable at x0 if
there exist Q matrices Li satisfying:

(i) G(f(x), Tx0f) = o(|x− x0|), where

Tx0f(x) :=
∑
i

JLi · (x− x0) + fi(x0)K ;

(ii) Li = Lj if fi(x0) = fj(x0).
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The point
∑
i JLiK ∈ AQ(R

n×m) will be called the differential of f at x0 and denoted
by Df(x0). Moreover we define the directional derivative in direction ν by ∂νf(x) :=∑
i JDfi(x) · νK.

Differentiable functions enjoy a chain rule formula.

Proposition 3.6 (Chain rules [17, Proposition 1.12]). Let f : Ω→ AQ(R
n) be differentiable at

x0.

(i) Consider Φ : Ω̃→ Ω such that Φ(y0) = x0 and assume that Φ is differentiable at y0. Then,
f ◦Φ is differentiable at y0 and

D(f ◦Φ)(y0) =
∑
i

JDfi(x0) ·DΦ(y0)K .

(ii) Consider Ψ : Ωx ×Rnu → Rk such that Ψ is differentiable at (x0, fi(x0)) for every i. Then,
Ψ(x, f(x)) fulfills (i) of Definition 3.5 and, if (ii) holds, then

DΨ(x, f)(x0) =
∑
i

JDuΨ(x0, fi(x0)) ·Dfi(x0) +DxΨ(x0, fi(x0))K .

Moreover the analogous of Rademacher Theorem holds.

Proposition 3.7 (Rademacher [17, Theorem 1.13]). Let f : Ω → AQ be a Lipschitz function.
Then, f is differentiable almost everywhere in Ω.

3.1.2 Sobolev Multiple Valued Maps

In order to define Sobolev spaces we are going to use Almgren’s extrinsic theory and
immerse AQ in a big RN using a bilipschitz homeomorphism. It should be noted that it was
an original contribution of De Lellis and Spadaro to carry out a theory of Sobolev multiple
valued functions completely independent from this immersion and which relays on modern
techniques for general metric spaces. Since we will need the immersion later on however, we
prefer to adopt here Almgren’s point of view.

Lemma 3.8 (Bilipschitz embedding [17, Theorem 2.1 & Corollary 2.2]). There exists N =

N(Q,n) and an injective map ξ : AQ(Rn)→ RN such that:

(i) Lip(ξ) 6 1;

(ii) if Q = ξ(AQ), then Lip(ξ−1|Q) 6 C(n,Q);

(iii) for every T ∈ AQ(R
n) there exists δ > 0 such that

|ξ(T) − ξ(S)| = G(S, T) ∀S ∈ Bδ(T) ⊂ AQ(R
n) .

Moreover there exists a Lipschitz map ρ : RN → Q which is the identity on Q.

Using this embedding we can give meaning to the notion of Sobolev spaces and trace
operator.
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Definition 3.9. Let ξ be the map of Lemma 3.8. Then a Q-valued function f belongs to
the Sobolev space W1,p(Ω,AQ) if ξ ◦ f belongs to W1,p(Ω, RN). Furthermore for every
f ∈W1,p(Ω,AQ), we define

ˆ
Ω

|Df|p : =

ˆ
Ω

|D(ξ ◦ f)|p .

Definition 3.10. Let f ∈W1,p(Ω,AQ). The trace of f is the unique function g ∈ Lp(∂Ω,AQ)
such that ξ ◦ f|∂Ω = ξ ◦ g. Moreover the space

W1,p
g (Ω,AQ) := {f ∈W1,p(Ω,AQ) : f|∂Ω = g}

is sequentially weakly closed in W1,p.

As in the classical theory, we can approximate Sobolev functions with Lipschitz functions.

Lemma 3.11 (Lipschitz approximation [19, Lemma 3.5]). Let f ∈W1,p(B,AQ). Then, for every
ε > 0, there exists fε ∈ Lip(B,AQ) such that

ˆ
B

G(f, fε)p +
ˆ
B

(|Df|− |Dfε|)
p +

ˆ
B

(|D(η ◦ f)|− |D(η ◦ fε)|)p 6 ε . (3.1)

If f|∂B ∈W1,2(∂B,AQ), then fε can be chosen to satisfy also
ˆ
∂B

G(f, fε)p +
ˆ
∂B

(|Df|− |Dfε|)
p 6 ε .

Remark 3.12. As a consequence of this, Sobolev functions are approximately differentiables
and the chain rule of Proposition 3.6 holds at a.e. point. In particular it is possible to prove
that ˆ

Ω

|Df|2 =
∑
i,j

ˆ
Ω

|∂jfi(x)|
2 dx , (3.2)

where ∂jfi are the approximate partial derivatives of f.

Another simple consequence of Lemma 3.8 is the validity of the usual Sobolev immersions
for multiple valued functions and a sort of Poincaré inequality.

Proposition 3.13 (Sobolev Embeddings [17, Proposition 2.11]). For p < m set 1
p∗ =

1
p − 1

m .
Then, the following embeddings hold:

(i) if p < m, then W1,p(Ω,AQ) ⊂ LQ(Ω,AQ) for every q ∈ [1,p∗], and the inclusion is
compact when q < p∗;

(ii) if p = m, then W1,p(Ω,AQ) ⊂ LQ(Ω,AQ) for every q ∈ [1,∞), with compact inclusion;

(iii) if p > m, then W1,p(Ω,AQ) ⊂ C0,α(Ω,AQ), for α = 1− m
p , with compact inclusion if

α < 1− m
p .
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Proposition 3.14 (Poincaré inequality [17, Proposition 2.12]). Let M be a connected bounded
Lipschitz open set of an m-dimensional Riemannian manifold and let p < m. There exists a constant
C = C(p,m,n,Q,M) with the following property: for every f ∈W1,p(M,AQ), there exists a point
f̄ ∈ AQ such that(ˆ

M

G(f, f̄)p
∗
) 1
p∗

6 C

(ˆ
M

|Df|p
) 1
p

,

where p∗ is the Sobolev exponent of p, that is 1
p∗ =

1
p − 1

m .

Finally we state two very useful technical Lemmas about W1,2 multiple valued functions.

Lemma 3.15 (Interpolation lemma [19, Lemma 3.6]). There exists a constant C = C(m,n,Q) >

0 with the following property. Assume r ∈]1, 3[, f ∈ W1,2(Br,AQ) and g ∈ W1,2(∂Br,AQ) are
given maps such that f|∂Br ∈ W1,2(∂Br,AQ). Then, for every ε ∈]0, r[ there exists a function
h ∈W1,2(Br,AQ) such that h|∂Br = g and

ˆ
Br

|Dh|2 6
ˆ
Br

|Df|2 + ε

ˆ
∂Br

(
|Dτf|

2 + |Dτg|
2
)
+
C0
ε

ˆ
∂Br

G(f,g)2 , (3.3)

Lip(h) 6 C0

{
Lip(f) + Lip(g) + ε−1 sup

∂Br

G(f,g)

}
, (3.4)

ˆ
Br

|η ◦ h| 6 C0
ˆ
∂Br

|η ◦ g|+C0
ˆ
Br

|η ◦ f| , (3.5)

(here Dτ denotes the tangential derivative).

Lemma 3.16 (Irreducible selection [17, Proposition 1.2]). f ∈W1,2(S1,AQ) is called irreducible
if there is no decomposition of f into two simpler W1,2 functions. For every Q-function g ∈
W1,2(S1,AQ), there exists a decomposition g =

∑J
j=1

q
gj

y
, where each gj is an irreducible W1,2

map. Moreover g is irreducible if and only if

(i) card(spt(g(z))) = Q for every z ∈ S1;

(ii) there exists a W1,2 map h : S1 → Rn with the property that f(z) =
∑
ζQ=z Jh(ζ)K.

3.1.3 Reparametrization Lemmas

The following two results will allow us to reparametrize Lipschitz functions both in the
classical and the Q-valued cases on different domains whose tangent planes are sufficiently
close.

Lemma 3.17 (Change of coordinates for classical functions [20, Lemma B.1]). For any m,n ∈
N \ {0} and radii 0 < s < ρ, there are constants c0,C0 > 0 depending on the ratio ρ

s with the
following properties. Assume that

(i) κ,κ0 ⊂ Rm+n are m-dim. planes with |κ −κ0| 6 c0;
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(ii) p = (q,u) ∈ κ ×κ⊥ and f,g : Bmρ (q,κ)→ κ⊥ are Lipschitz functions such that

Lip(f), Lip(g) 6 c0 and |f(q) − u|+ |g(q) − u| 6 c0 ρ.

Then there are two maps f ′,g ′ : Bs(p,κ0)→ κ⊥0 such that

(a) Gf ′ = Gf Cs(p,κ0) and Gg ′ = Gg Cs(p,κ0);

(b) ‖f ′ − g ′‖L1(Bs(p,κ0)) 6 C0 ‖f− g‖L1(Bρ(p,κ));

(c) if f ∈ C3,κ(Bρ(p,κ)) then f ′ ∈ C3,κ(Bs(p,κ0)) with the estimates

‖f ′ − u ′‖C0 6 C‖f− u‖C0 +C|κ −κ0|r (3.6)

‖Df ′‖C0 6 C‖Df‖C0 +C|κ −κ0| (3.7)

‖D2f ′‖C1,κ 6 Φ(|κ −κ0|, ‖D2f‖C1,κ) (3.8)

where (q ′,u ′) ∈ κ0 × κ⊥0 coincides with the point (q,u) ∈ κ × κ⊥ and Φ is a smooth
functions with Φ(·, 0) ≡ 0;

(d) ‖f ′ − g ′‖W1,2(Bs(p,κ0)) 6 C0(1+ ‖D
2f‖C0)‖f− g‖W1,2(Bρ(p,κ)).

We should remark that the proof of the next Theorem exploits the interpretation of the
graph of a Q-valued map as an integral current. This notion will be made clear in the next
section.

Theorem 3.18 (Q-valued parametrizations [18, Theorem 5.1]). Let Q,m,n ∈N and s < r < 1.
Then, there are constants c0,C > 0 (depending on Q,m,n and r

s ) with the following property. Let
ϕ, M and U be such that

(M) M ⊂ Rm+n is an open submanifold of dimension m with Hm(M) <∞, which is the graph
of a function ϕ : Rm ⊃ Bs → Rn with ‖ϕ‖C3 6 c̄;

(U) U is a regular tubular neighborhood of M, i.e. the set of points {x+ y : x ∈M,y ⊥ TxM, |y| <
c0}, where the thickness c0 is sufficiently small so that the nearest point projection p : U→M

is well defined and C2; the thickness is supposed to be larger than a fixed geometric constant
(which depends on c̄).

Let f : Br → AQ(R
n) be such that

‖ϕ‖C2 + Lip(f) 6 c0 and ‖ϕ‖C0 + ‖f‖C0 6 c0 r. (3.9)

Set Φ(x) := (x,ϕ(x)). Then, there is a map F : M→ AQ(R
m+n) of the form

Q∑
i=1

JFi(x)K =
Q∑
i=1

Jx+Ni(x)K ,

where N : M→ AQ(R
m+n) satisfies x+Ni(x) ∈ U, Ni(x) ⊥ TxM for every x and Lip(N) 6 c̄,

such that TF = Gf U and

Lip(N) 6 C
(
‖D2ϕ‖C0‖N‖C0 + ‖Dϕ‖C0 + Lip(f)

)
, (3.10)

1

2
√
Q
|N(Φ(p))| 6 G(f(p),Q Jϕ(p)K) 6 2

√
Q |N(Φ(p))| ∀p ∈ Bs , (3.11)

|η ◦N(Φ(p))| 6 C|η ◦ f(p) −ϕ(p)|+CLip(f)|Dϕ(p)||N(Φ(p))| ∀p ∈ Bs. (3.12)
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Finally, assume p ∈ Bs and (p,η ◦ f(p)) = ξ+ q for some ξ ∈M and q ⊥ TξM. Then,

G(N(ξ),Q JqK) 6 2
√
QG(f(p),Q Jη ◦ f(p)K) . (3.13)

For further reference, we state the following immediate corollary of Theorem 3.18, corre-
sponding to the case of a linear ϕ.

Proposition 3.19 (Q-valued graphical reparametrization [18, Proposition 5.2]). Let Q,m,n ∈
N and s < r < 1. There exist positive constants c,C (depending only on Q,m,n and r

s ) with
the following property. Let π0 and π be m-planes with |π− π0| 6 c and f : Br(π0) → AQ(π

⊥
0 )

with Lip(f) 6 c and |f| 6 cr. Then, there is a Lipschitz map g : Bs(π) → AQ(π
⊥) with Gg =

Gf Cs(π) and such that the following estimates hold on Bs(π):

‖g‖C0 6 Cr|π− π0|+C‖f‖C0 , (3.14)

Lip(g) 6 C|π− π0|+CLip(f) . (3.15)

3.1.4 Main Regularity results about Dir-minimizing Maps

We list in this subsection the main results about existence and regularity of Dir-minimizing
function. We will not really need these results, but they are the analogous of our result on
2-dimensional currents for multiple valued maps.

Definition 3.20 (Dir-minimizing map). f ∈W1,2(Ω,AQ) is said to be Dir-minimizing if
ˆ
Ω

|Df|2 6
ˆ
Ω

|Dh|2 for all h ∈W1,2(Ω,AQ) with f|∂Ω = h|∂Ω .

Theorem 3.21 (Existence for the Dirichlet Problem [17, Theorem 0.8]). Let g ∈W1,2(Ω,AQ).
Then, there exists a Dir-minimizing function f ∈W1,2(Ω,AQ) such that f|∂Ω = g|∂Ω.

Proposition 3.22 (Harmonicity and compactness [17, Lemma 3.23 & Proposition 3.20] ). The
following properties hold.

(i) if f ∈W1,2(Ω,AQ(Rn)) is Dir-minimizing, then η ◦ f ∈W1,2(Ω, Rn) is harmonic.

(ii) Let fk ∈W1,2(Ω,AQ) be Dir-minimizing Q-functions weakly converging to f. Then, for every
open Ω ′ ⊂⊂ Ω, f|Ω ′ is Dir-minimizing and it holds

lim
k→∞

ˆ
Ω ′

|Dfk|
2 =

ˆ
Ω ′

|Df|2 .

Theorem 3.23 (Hölder regularity [17, Theorem 0.9] ). There exists a positive constant α =

α(m,Q) > 0 with the following property. If f ∈ W1,2(Ω,AQ) is Dir-minimizing, then f ∈
C0,α(Ω ′) for every Ω ′ ⊂⊂ Ω ⊂ Rn. For two dimensional domains, we have the explicit constant
α(2,Q) = 1/Q.

For the second regularity theorem we need the definition of singular set of f.



36 multiple valued functions and integral currents

Definition 3.24 (Regular and Singular points). A Q-valued function f is regular at a point
x ∈ Ω if there exists a neighborhood B of x and Q analytic functions fi : B→ Rn such that

f(y) =
∑
i

Jfi(y)K for almost every y ∈ B

and either fi(x) 6= fj(x) for every x ∈ B or fi ≡ fj. The singular set Σf of f is the complement
of the set of regular points.

Theorem 3.25 (Estimate of the singular set [17, Theorem 0.11] ). Let f be a Dir-minimizing
function. Then, the singular set Σf of f is relatively closed in Ω. Moreover, if m = 2, then Σf is at
most countable, and if m > 3, then the Hausdorff dimension of Σf is at most m− 2.

The next result is the analogous of Theorem 1.2 in the case of multiple valued maps.

Theorem 3.26 (Improved estimate of the singular set [17, Theorem 0.12]). Let f be Dir-
minimizing and m = 2. Then, the singular set Σf of f consists of isolated points.

3.1.5 Competitor construction

In this section we show a concentration compactness principle for Q-valued functions, and
give an algorithm to construct suitable competitors for the Dirichlet energy. All the results of
this section come from [19].

Definition 3.27 (Translating sheets). Let Ω ⊂ Rm be a bounded open set. A sequence of
maps {hk}i∈N ⊂W1,2(Ω,AQ(Rn)) is called a sequence of translating sheets if there are:

(a) integers J > 1 and Q1, . . . ,QJ > 1 satisfying
∑J
j=1Qj = Q,

(b) vectors yjk ∈ Rn (for j ∈ {1, . . . , J} and k ∈N) with

lim
k

|y
j
k − y

i
k| = +∞ ∀i 6= j, (3.16)

(c) and maps ζj ∈W1,2(Ω,AQj) for j ∈ {1, . . . , J},

such that hk =
∑J
j=1Jτyjk

◦ ζjK, where for any generic y ∈ Rn we denote by τy : AQ(R
n)→

AQ(R
n) the translation map (cp. [17, Section 3.3.3])

AQ(R
n) 3 T =

∑
i

JPiK 7→ τy(T) :=
∑
i

JPi − yK ∈ AQ(R
n).

Remark 3.28. Assume that hk,Qj, y
j
k and ζk satisfy all the requirements of Definition 3.27

except for (3.16). Up to subsequences and relabellings, assume that y1k − y
2
k converges to a

vector 2ȳ. We can replace

• the integers Q1 and Q2 with Q ′ = Q1 +Q2;

• the vectors y1k and yk2 with y ′k = (y1k + y
2
k)/2;
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• the maps ζ1 and ζ2 with ζ ′ :=
q
τȳ ◦ ζ1

y
+

q
τ−ȳ ◦ ζ2

y
.

The new collections Q ′,Q3, . . . ,QJ, y ′k,y3k, . . . ,yJk and ζ ′, ζ3, . . . , ζJ, and the function h ′k :=

Jζ ′K+
∑J
j=3

q
ζj

y
, satisfy again all the requirements of Definition 3.27 except, possibly, for

(3.16). Moreover, ‖G(h ′k,hk)‖L2 → 0 and |Dh ′k| = |Dhk|. Obviously, we can iterate this
procedure only a finite number of times, obtaining a subsequence of translating sheets ĥk
asymptotic to hk in the L2 distance with |Dĥk| = |Dhk|.

Concentration compactness

Translating sheets give a useful device to recover a suitable “compactness statement” for
sequences of maps with equi-bounded energy.

Proposition 3.29 (Concentration compactness [19, Proposition 3.3]). LetΩ ⊂ Rm be a Lipschitz
bounded open set and (gk)k∈N ⊂W1,2(Ω,AQ) a sequence of functions with supk

´
Ω |Dgk|

2 <∞.
Then, there exist a subsequence (not relabeled) and a sequence of translating sheets hk such that
‖G(gk,hk)‖L2 → 0 and the following inequalities hold for every open Ω ′ ⊂ Ω and any sequence of
measurable sets Jk with |Jk|→ 0:

lim inf
k→+∞

(ˆ
Ω ′\Jk

|Dgk|
2 −

ˆ
Ω ′

|Dhk|
2

)
> 0 (3.17)

lim sup
k→+∞

ˆ
Ω

(|Dgk|− |Dhk|)
2 6 lim sup

k

ˆ
Ω

(
|Dgk|

2 − |Dhk|
2
)

. (3.18)

Proof. We start proving, by induction on Q, the existence of translating sheets {hk} (and a
subsequence) with ‖G(hk,gk)‖L2 → 0 and satisfying the following additional property. If
J,Qj, y

j
k and ζj are as in Definition 3.27, then there are Qj valued functions wjk such that,

after setting fk =
∑
j

r
w
j
k

z
, we have

‖G(fk,gk)‖L2 + |{gk 6= fk}|→ 0, ‖G(τ
−yjk
◦wjk, ζj)‖L2 → 0 and |Dfk| 6 |Dgk| . (3.19)

If Q = 1 the claim with fk = gk is an easy corollary of the Poincaré inequality and
the compact embedding W1,2 ↪→ L2. Assuming that the claim holds for any Q∗ < Q, we
prove it for Q. By the generalized Poincaré inequality Proposition 3.14:, there exist points
ḡk ∈ AQ(R

n) and a real number M such that
ˆ
Ω

G(gk, ḡk)2 6 C
ˆ
Ω

|Dgk|
2 6M <∞ ∀ k ∈N .

Recall the separation s(T) and the diameter d(T) of a point T =
∑
i JPiK introduced in

Definition 3.1: s(T) := min
{
|Pi − Pj| : Pi 6= Pj

}
and d(T) := max{|Pi − Pj|}. We distinguish

between to cases.

Case 1: lim infk d(ḡk) < ∞. After passing to a subsequence, we find yk ∈ Rn such that
the functions τyk ◦ gk are equi-bounded in the W1,2-metric. By the Sobolev embedding,
Proposition 3.13, there exists a Q-valued map ζ ∈W1,2 such that τyk ◦ gk → ζ in L2(Ω).

Case 2: limk d(ḡk) = +∞. By [17, Lemma 3.8] there are points Sk ∈ AQ such that

βd(ḡk) 6 s(Sk) < +∞ and G(Sk, ḡk) 6 s(Sk)/32,
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where β is a dimensional constant. Write Sk =
∑J
i=1 κi

q
Pik

y
, with Pik 6= P

j
k for i 6= j.

Both J and κi may depend on k but they have a finite range: therefore, after extracting a
subsequence, we can assume that they do not depend on k. Set next rk =

s(Sk)
16 and let ϑk be

the retraction of AQ(Rn) into Brk(Sk) provided by [17, Lemma 3.7]. Clearly, the functions
f̂k = ϑk ◦ gk satisfy |Df̂k| 6 |Dgk| and there are κi-valued functions zik such that

f̂k =

J∑
i=1

q
zik

y
, with ‖G(zik, κi

q
Pik

y
)‖∞ 6 rk.

Since κi < Q, we apply the inductive hypothesis to each sequence (zik)k and, using Re-
mark 3.28 reach a subsequence (not relabeled) of f̂k, a sequence of translating sheets hk and
corresponding functions fk which satisfy (3.19) with f̂k replacing gk.

We next claim that (3.19) holds even for gk, i.e. that limk (‖G(fk,gk)‖L2 + |{fk 6= gk}|) = 0.
To this aim, recall first that{

gk 6= f̂k
}
= {G (gk,Sk) > rk} ⊆ {G (gk, ḡk) > rk/2} .

Thus,∣∣{gk 6= f̂k}∣∣ 6 | {G (gk, ḡk) > rk/2} | 6
C

r2k

ˆ
{G(gk,ḡk)>

rk
2 }

G (gk, ḡk)
2 6

CM

(d(ḡk))2
. (3.20)

Since d(ḡk)→ +∞ and (3.19) holds with f̂k replacing gk, we conclude |{fk 6= gk}|→ 0. Next,
since ϑk(ḡk) = ḡk and Lip(ϑk) = 1, we have G(f̂k, ḡk) 6 G(gk, ḡk). Therefore, by the Sobolev
embedding and the Poincaré inequality, for any p ∈]2, 2∗[, we infer

ˆ
Ω

G(f̂k,gk)2 =
ˆ
{gk 6=f̂k}

G(f̂k,gk)2 6 2
ˆ
{f̂k 6=gk}

G(f̂k, ḡk)2 + 2
ˆ
{f̂k 6=gk}

G(ḡk,gk)2

6 4
ˆ
{f̂k 6=gk}

G(ḡk,gk)2 6 C ‖G (gk, ḡk)‖2Lp
∣∣{f̂k 6= gk}∣∣1− 2

p
(3.20)
6

CM1− 2
p

d(ḡk)
2− 4

p

ˆ
Ω

|Dgk|
2.

Since d(ḡk) diverges, this shows ‖G(f̂k,gk)‖L2 → 0 and by inductive hypothesis that
‖G(fk,gk)‖L2 → 0.

We now show that (3.17) and (3.18) are consequences of (3.19). For each j we consider the
corresponding embedding ξj : AQj(R

n)→ RN(Qj,n) and, by a slight abuse of notation, we
drop the j subscript. Then, we conclude that ξ ◦ τ

−yjk
◦wjk → ξ ◦ ζj in L2 and ‖D(ξ ◦ τ

−yjk
◦

w
j
k)‖L2 is a bounded sequence, from which

D(ξ ◦ τ
−yjk
◦wjk) ⇀ D(ξ ◦ ζj) in L2(Ω) . (3.21)

If Jk is a sequence of measurable sets with |Jk| ↓ 0, then 1Ω ′\Jk → 1Ω ′ in L2(Ω) and it follows
from (3.21) that

D(ξ ◦ τ
−yjk
◦wjk)1Ω ′\Jk ⇀ D(ξ ◦ ζj)1Ω ′ in L2(Ω) ,
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and, hence,

Dir(ζj,Ω ′) =
ˆ
Ω ′

|D(ξ ◦ ζj)|2 6 lim inf
k

ˆ
Ω ′\Jk

|D(ξ ◦ τ
−yjk
◦wjk)|

2 = lim inf
k

ˆ
Ω ′\Jk

|Dw
j
k|
2.

Summing over j, we obtain (3.17). As for (3.18), set Jk := {gk 6= fk}. Thus,
ˆ
Ω\Jk

(|Dgk|− |Dhk|)
2 6
∑
j

ˆ
Ω\Jk

(|Dwjk|− |Dζj|)2

=
∑
j

ˆ
Ω\Jk

(
|D(ξ ◦ τ

−yjk
◦wjk)|− |D(ξ ◦ ζj)|

)2
6
∑
j

ˆ
Ω\Jk

|D(ξ ◦ τ
−yjk
◦wjk) −D(ξ ◦ ζj)|2

=
∑
j

ˆ
Ω\Jk

(
|D(ξ ◦ τ

−yjk
◦wjk)|

2 + |D(ξ ◦ ζj)|2 − 2D(ξ ◦ τ
−yjk
◦wjk) ·D(ξ ◦ ζj)

)
.

(3.22)

Therefore, by (3.21) (and taking into account that |Jk|→ 0) one gets

lim sup
k→+∞

ˆ
Ω\Jk

(|Dgk|− |Dhk|)
2

6 lim
k→+∞

∑
j

ˆ
Ω\Jk

(
|D(ξ ◦ τ

−yjk
◦wjk)|

2 + |D(ξ ◦ ζj)|2 − 2D(ξ ◦ τ
−yjk
◦wjk) ·D(ξ ◦ ζj)

)
= lim sup
k→+∞

ˆ
Ω\Jk

∑
j

|D(ξ ◦ τ
−yjk
◦wjk)|

2 −

ˆ
Ω

∑
j

|D(ξ ◦ ζj)|2

= lim sup
k→+∞

ˆ
Ω\Jk

|Dgk|
2 −

ˆ
Ω

|Dhk|
2. (3.23)

On the other hand, since |Jk|→ 0 we conclude

lim sup
k→∞

ˆ
Jk

(|Dgk|− |Dhk|)
2 = lim sup

k→∞
ˆ
Jk

|Dgk|
2 .

Observe that, after passing to a subsequence, we can actually assume that all limsups are in
fact limits. Summing (3.23) and the last equation we then conclude (3.18).

Dirichlet competitors

We consider next a standard procedure to construct competitors for the Dirichlet energy of a
sequence of functions with equi-bounded energy. A similar procedure will be repeated at
the end of the last chapter to prove that a certain map is a minimizer of the energy.

Proposition 3.30 (Construction of a competitor [19, Proposition 3.4]). Consider two radii
1 6 r0 < r1 < 4 and maps gk,hk ∈ W1,2(Br1 ,AQ(R

n)) such that {hk}k is a sequence of
translating sheets,

sup
k

Dir(gk,Br1) < +∞ and ‖G(gk,hk)‖L2(Br1\Br0) → 0.
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For every η > 0, there exist r ∈]r0, r1[, a subsequence of {gk}k (not relabeled) and functions Hk ∈
W1,2(Br1 ,AQ(R

n)) such that Hk|Br1\Br = gk|Br1\Br
and Dir(Hk,Br1) 6 Dir(hk,Br1) + η. In

addition, there is a dimensional constant C and a constant C∗ (depending on η and the two sequences,
but not on k) such that

Lip(Hk) 6 C∗ (Lip(gk) + 1), (3.24)

‖G(Hk,hk)‖L2(Br) 6 CDir(gk,Br) +CDir(Hk,Br) , (3.25)

‖η ◦Hk‖L1(Br1) 6 C
∗ ‖η ◦ gk‖L1(Br1) +C‖η ◦ hk‖L1(Br1) . (3.26)

Proof. Set for simplicity Ak := ‖G(gk,hk)‖L2(Br1\Br0) and Bk := ‖η ◦ gk‖L1(Br1). If Ak ≡ 0,
then there is nothing to prove and so we can assume that, for a subsequence, not relabeled,
Ak > 0. Assuming that for yet another subsequence (not relabeled) Bk > 0, we consider the
function

ψk(r) :=

ˆ
∂Br

(
|Dgk|

2 + |Dhk|
2
)
+A−2

k

ˆ
∂Br

G(gk,hk)2 +B−1
k

ˆ
∂Br

|η ◦ gk|. (3.27)

By assumption lim infk
´ r1
r0
ψk(r)dr <∞. So, by Fatou’s Lemma, there is r ∈ ]r0, r1[ and a

subsequence, not relabeled, such that limkψk(r) <∞. Thus, for some M > 0 we have
ˆ
∂Br

G(gk,hk)2 → 0, (3.28)

Dir(hk,∂Br) + Dir(gk,∂Br) 6M, (3.29)ˆ
∂Br

|η ◦ gk| 6M ‖η ◦ gk‖L1(Br1). (3.30)

In case Bk = 0 for all k large enough, we define ψk dropping the last summand in (3.27)
and reach the same conclusion.

Let ζj be the blocks of the translating sheets hk as in Definition 3.27. We apply Lemma 3.11

to each ζj and find Lipschitz functions ζjη satisfying the conclusion of the lemma with
ε̄1 = ε̄1(η,M) > 0 (which will be chosen later). We also choose a standard radial convolution
kernel ϕ in Rm and a small parameter ρ̄ (also to be chosen later). Then, set

hk,η :=

J∑
j=1

Jτ
y
j
k
◦ ζjηK and h̄k,η :=

Q∑
i=1

J(hk,η)i −η ◦ hk,η + (η ◦ hk) ∗ϕρ̄K,

and choose ρ̄ so small that

Q2‖η ◦ hk − (η ◦ hk) ∗ϕρ̄‖2L2 6 ε̄1, (3.31)ˆ
Br

(
|D(η ◦ hk)|2 − |D(η ◦ hk ∗ϕρ̄)|2

)
6 ε̄1. (3.32)

Note that this is possible because, from the fact that hk is a sequence of translating sheets,
it follows that η ◦ hk(x) = F(x) + pk for some F ∈W1,2 and a sequence of vectors pk ∈ Rn.
Therefore (η ◦ hk) ∗ϕρ̄ = F ∗ϕρ̄ + pk and D(η ◦ hk) ∗ϕρ̄ = DF ∗ϕρ̄, and (3.31) and (3.32)
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follows if ρ̄ is sufficiently small by the usual convolution estimates. In particular by very
rough estimates,

‖G(gk, h̄k,η)‖L2
(3.31)
6 ‖G(gk,hk)‖L2 + 2‖G(hk,hk,η)‖L2 + ε̄1 6 o(1) + 3 ε̄1, (3.33)

Dir(h̄k,η,∂Br) 6 2M+ 2 ε̄1 (3.34)

and

Dir(h̄k,η,Br) =
∑
i

ˆ
Br

∣∣D(hk,η)i −D(η ◦ hk,η) +D(η ◦ hk ∗ϕρ̄)
∣∣2

=

ˆ
Br

(
|Dhk,η|

2 −Q|D(η ◦ hk,η)|
2 +Q|D(η ◦ hk ∗ϕρ̄)|2

)
= Dir(hk,η,Br) +Q

ˆ
Br

(
|D(η ◦ hk)|2 − |D(η ◦ hk,η)|

2
)

+Q

ˆ
Br

(
|D(η ◦ hk ∗ϕρ̄)|2 − |D(η ◦ hk)|2

)
(3.1),(3.32)

6 Dir(hk,η,Br) + 2Q ε̄1. (3.35)

We can then apply Lemma 3.15 to h̄k,η and gk with ε̄2 = ε̄2(η,M) > 0, and get (up to
subsequences) maps Hk satisfying Hk|∂Br = gk|∂Br and

Dir (Hk,Br) 6 Dir
(
h̄k,η,Br

)
+ ε̄2Dir

(
h̄k,η,∂Br

)
+ ε̄2Dir(gk,∂Br) +

C0
ε̄2

ˆ
∂Br

G
(
h̄k,η,gk

)2
6 Dir(hk,Br) +Qε̄1 + 3 ε̄2 (M+ ε̄1) + 3C0 ε̄

−1
2 ε̄1

where in the last line we have used (3.28), (3.29) and (3.33) - (3.35). An appropriate choice of
the parameters ε1 and ε2 gives the desired bound Dir (Hk,Br) 6 Dir(hk,Br) + η.

Observe next that, by construction, lim supk Lip(h̄k,η) 6 C∗, for some constant which
depends on η and the two sequences, but not on k. Moreover,

‖G(h̄k,η,gk)‖L∞(∂Br) 6 ‖G(h̄k,η,gk)‖L2(∂Br) +CLip(gk) +CLip(h̄k,η) .

Thus (3.24) follows from (3.4).
Finally, (3.25) follows from the Poincaré inequality applied to G(Hk,gk) (which vanishes

identically on ∂Br), and (3.26) follows from (3.5), because of (3.30) and ‖η ◦ h̄k,η‖L1(Br) =
‖(η ◦ hk) ∗ϕρ̄‖L1(Br) 6 ‖η ◦ hk‖L1(Br1) if ρ̄ is also chosen small enough such that r+ ρ̄ <
r1.

3.1.6 Higher Integrability of the Gradient of Dir-minimizers

Most of the energy of a Dir-minimizer lies where the gradient is relatively small. We prove
indeed the following a priori estimate (cf. [58] for a different proof and some improvements).

Theorem 3.31 (Higher integrability of Dir-minimizers [19, Theorem 5.1]). There exists p10 > 2
such that, for every Ω ′ ⊂⊂ Ω ⊂ Rm open domains, there is a constant C > 0 such that

‖Du‖Lp10(Ω ′) 6 C ‖Du‖L2(Ω) for every Dir-minimizing u ∈W1,2(Ω,AQ(Rn)). (3.36)
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Proof. The statement is a corollary of Proposition 3.32 below and a Gehring type lemma,
cf. [39, Proposition 5.1].

Proposition 3.32 ([19, Propostion 5.2]). Let 2 (m−1)
m < p11 < 2. Then, there exists C =

C(m,n,Q,p11) such that, for every u : Ω→ AQ Dir-minimizing, the following holds(
−

ˆ
Br(x)

|Du|2
) 1
2

6 C

(
−

ˆ
B2r(x)

|Du|p11
) 1
p11

∀ x ∈ Ω, ∀ r < min
{
1, dist(x,∂Ω)/2

}
.

Proof. Since the estimate is invariant under translations and rescalings, it is enough to prove
it for x = 0 and r = 1. We assume, thereforeΩ = B2. Let u : Ω→ AQ(R

n) be Dir-minimizing
and let F = ξ ◦ u : Ω → Q ⊂ RN. Denote by F̄ ∈ RN the average of F on B2. By Fubini’s
theorem and the Poincaré inequality, there exists s ∈ [1, 2] such that

ˆ
∂Bs

(
|F− F̄|p11 + |DF|p11

)
6 C
ˆ
B2

(
|F− F̄|p11 + |DF|p11

)
6 C‖DF‖p11

Lp11(B2)
.

Consider F|∂Bs . Since 1
2 > 1

p11
− 1
2 (m−1) , we can use the embedding W1,p11(∂Bs) ↪→

H1/2(∂Bs) (see, for example, [1]). Hence, we infer that∥∥F− F̄∥∥
H1/2(∂Bs)

6 C ‖DF‖Lp11(B2) . (3.37)

Let F̂ be the harmonic extension of F|∂Bs in Bs. It is well known (one could, for example, use
the result in [1] on the half-space together with a partition of unity) that

‖DF̂‖L2(Bs) 6 C(m) min
p∈RN

‖F̂− p‖H1/2(∂Bs)
(3.37)
6 C ‖DF‖Lp11(B2) . (3.38)

Consider the map ρ of Lemma 3.8. Since ρ ◦ F̂|∂Bs = u|∂Bs and ρ ◦ F̂ takes values in Q, by the
minimizing property of u and the Lipschitz continuity of ξ, ξ−1 and ρ, we conclude:(ˆ

B1

|Du|2
) 1
2

6 C

(ˆ
Bs

|DF̂|2
) 1
2

6 C

(ˆ
B2

|DF|p11
) 1
p11

= C

(ˆ
B2

|Du|p11
) 1
p11

.

3.1.7 Unique continuation for Dir-minimizers

We want to prove a De Giorgi-type decay estimate for Dir-minimizing Q-valued maps which
are close to a classical harmonic function with multiplicity Q. The argument involves a
unique continuation-type result for Dir-minimizers.

Lemma 3.33 (Unique continuation for Dir-minimizers [20, Lemma 7.1]). For every η ∈ (0, 1)
and c > 0, there exists γ > 0 with the following property. If w : Rm ⊃ B2r → AQ(R

n) is
Dir-minimizing, Dir(w,Br) > c and Dir(w,B2r) = 1, then

Dir(w,Bs(q)) > γ for every Bs(q) ⊂ B2r with s > η r.

Proof. We start showing the following claim:
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(UC) if Ω is a connected open set and w ∈W1,2(Ω,AQ(Rn)) is Dir-minimizing in any open
Ω ′ ⊂⊂ Ω, then either w is constant or

´
J |Dw|

2 > 0 on any open J ⊂ Ω.

We prove (UC) by induction on Q. If Q = 1, this is the classical unique continuation for
harmonic functions. Assume now it holds for all Q∗ < Q and we prove it for Q-valued maps.
Assume w ∈W1,2(Ω,AQ(Rn)) and J ⊂ Ω is an open set on which |Dw| ≡ 0. Without loss of
generality, we can assume J connected and w|J ≡ T for some T ∈ AQ. Let J ′ be the interior
of {w = T } and K := J ′ ∩Ω. We prove now that K is open, which in turn by connectedness of
Ω concludes (UC). We distinguish two cases.

Case (a): the diameter of T is positive. Since w is continuous, for every x ∈ K there is
Bρ(x) where w separates into Jw1K+ Jw2K and each wi is a Qi-valued Dir-minimizer. Since
J ′ ∩ Bρ(x) 6= ∅, each wi is constant in a (nontrivial) open subset of Bρ(x). By inductive
hypothesis each wi is constant in Bρ(x) and therefore w = T in Bρ(x), that is Bρ(x) ⊂ J ′ ⊂ K.

Case (b): T = Q JpK for some p. In this case let J ′′ be the interior of {w = Q Jη ◦wK}. By
Definition 3.24, ∂J ′′ ∩Ω is contained in the singular set of w. By Theorem 3.25, Hm−2+ε(Ω∩
∂J ′′) = 0 for every ε > 0. Consider now a point p ∈ ∂J ′′∩Ω and a small ball Bρ(x) ⊂ Ω. Since
Hm−1(∂J ′′ ∩ Bρ(x)) = 0, by the isoperimetric inequality, either |Bρ(x) \ J

′′| = 0 or |J ′′| = 0.
The latter alternative is impossible because J ′′ is open and has nonempty intersection with
Bρ(x). It then turns out that |Bρ(x) \ J ′′| = 0 and thus the closure of J ′′ contains Bρ(x). But
then w = Q Jη ◦wK on Bρ(x) and thus x cannot belong to ∂J ′′. So ∂J ′′ ∩Ω is empty and thus
w = Q Jη ◦wK on Ω. On the other hand η ◦w is an harmonic function (cf. Proposition 3.22).
Being η ◦w|J ′ ≡ p, by the classical unique continuation η ◦w ≡ p on Ω.

We now come to the proof of the lemma. Without loss of generality, we can assume
r = 1. Arguing by contradiction, there exists sequences {wk}k∈N ⊂ W1,2(B2,AQ(Rn))
and {Bsk(qk)}k∈N with sk > η and such that Dir(wk,Bsk(qk)) 6 1

k . By the compact-
ness of Dir-minimizers (cp. Proposition 3.22), a subsequence (not relabeled) converges
to w ∈ W1,2(B2,AQ(Rn)) Dir-minimizing in every open Ω ′ ⊂⊂ B2. Up to subsequences,
we can also assume that qk → q and sk → s > η > 0. Thus, Bs(q) ⊂ B2 and Dir(w,Bs(q)) =
0. By (UC) this implies that w is constant. On the other hand, by 3.22, Dir(w,B1) =

limkDir(wk,B1) > c > 0 gives the desired contradiction.

As a consequence of the Unique Continuation, we show that if the energy of a Dir-
minimizer w does not decay appropriately, then w must split. In order to simplify the
exposition, in the sequel we fix λ > 0 such that

(1+ λ)(m+2) < 2δ2 . (3.39)

Proposition 3.34 (Decay estimate for Dir-minimizers [20, Proposition 7.2]). For every η > 0,
there is γ > 0 with the following property. Let w : Rm ⊃ B2r → AQ(R

n) be Dir-minimizing in
every Ω ′ ⊂⊂ B2r such thatˆ

B(1+λ)r

G
(
Dw,Q JD(η ◦w)(0)K

)2
> 2δ2−m−2Dir(w,B2r) . (3.40)

Then, if we set w̄ =
∑
i Jwi −η ◦wK, the following holds:

γDir(w,B(1+λ)r) 6 Dir(w̄,B(1+λ)r) 6
1

γ r2

ˆ
Bs(q)

|w̄|2 ∀ Bs(q) ⊂ B2r with s > η r . (3.41)
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Before coming to the proof of the Proposition we point out an elementary fact which will
be used repeatedly in this section. Since its proof is completely straightforward, it is left to
the reader.

Lemma 3.35. Let Ω be a bounded open set, w ∈ W1,2(Ω,AQ(Rn)), w̄ =
∑
i Jwi −η ◦wK and

A = −́
ΩD(η ◦w). We then have
ˆ
Ω

|Dw|2 =

ˆ
Ω

(|Dw̄|2 +Q|D(η ◦w)|2) =
ˆ
Ω

(|Dw̄|2 +Q|D(η ◦w) −A|2) +Q|A|2|Ω|

=

ˆ
Ω

G(Dw,Q JAK)2 +Q|A|2|Ω| . (3.42)

Proof of Proposition 3.34. By a simple scaling argument we can assume r = 1 and we ar-
gue by contradiction. Let wk be a sequence of local Dir-minimizers which satisfy (3.40),
Dir(wk,B2) = 1 and

(a) either
´
Bsk(qk)

|w̄k|
2 → 0 for some sequence of balls Bsk(qk) ⊂ B2r with sk > η;

(b) or Dir(w̄k,B1+λ)→ 0.

Up to subsequences, wk converges locally in W1,2 to w locally Dir-minimizing. If (a) holds,
we can appeal to Lemma 3.33 and conclude that w̄ =

∑
i Jwi −η ◦wK vanishes identically

on B2. This means in particular that Dir(w̄k,B1+λ)→ Dir(w̄,B1+λ) = 0, i.e. (b) holds.
Therefore, we can assume to be always in case (b). Let next uk := η ◦wk. Since uk is

harmonic, −́
B1+λ

Duk = Duk(0). Thus from (3.40) and Lemma 3.35 we get

ˆ
B1+λ

Q|Duk −Duk(0)|
2 =

ˆ
B1+λ

(
G(Dwk,Q JDuk(0)K)2 − |Dw̄k|

2
)

> 2δ2−m−2

ˆ
B2

|Dwk|
2 −

ˆ
B1+λ

|Dw̄k|
2 . (3.43)

As k ↑∞, by (b) and Dir(wk,B2) = 1, we then conclude
ˆ
B1+λ

|Du−Du(0)|2 > 2δ2−m−2 > 2δ2−m−2

ˆ
B2

|Du|2 . (3.44)

Since (1+ λ)m+2 < 2δ2 , (3.44) violates the decay estimate for classical harmonic functions:
ˆ
B1+λ

|Du−Du(0)|2 6 2−m−2(1+ λ)m+2

ˆ
B2

|Du|2 , (3.45)

thus concluding the proof. In order to show (3.45) it suffices to decompose Du in se-
ries of homogeneous harmonic polynomials Du(x) =

∑∞
i=0 Pi(x), where i is the degree.

In particular the restriction of this decomposition on any sphere S := ∂Bρ gives the de-
composition of Du|S in spherical harmonics, see [62, Chapter 5, Section 2]. It turns out,
therefore, that the Pi are L2(Bρ) orthogonal. Since the constant polynomial P0 is Du(0) and´
B1+λ

|Pi|
2 6 2−m−2i

´
B2

|Pi|
2, (3.45) follows at once.
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3.2 push-forward through multiple valued functions of c1 submanifolds

In what follows we consider an m-dimensional C1 submanifold Σ of RN and use the word
measurable for those subsets of M which are Hm-measurable. Any time we write an integral
over (a measurable subset of) Σ we understand that this integral is taken with respect to the
Hm measure. We start with a refinement of Lemma 3.3.

Lemma 3.36 (Decomposition [18, lemma 1.1]). Let M ⊂ Σ be measurable and F :M→ AQ(R
n)

Lipschitz. Then there are a countable partition of M in bounded measurable subsets Mi (i ∈N) and
Lipschitz functions fji :Mi → Rn (j ∈ {1, . . . ,Q}) such that

(a) F|Mi
=
∑Q
j=1

r
f
j
i

z
for every i ∈N and Lip(fji) 6 Lip(F) ∀i, j;

(b) ∀i ∈N and j, j ′ ∈ {1, . . . ,Q}, either fji ≡ f
j ′

i or fji(x) 6= f
j ′

i (x) ∀x ∈Mi;

(c) ∀i we have DF(x) =
∑Q
j=1

r
Df
j
i(x)

z
for a.e. x ∈Mi.

When F :M ⊂ Σ→ Rn is a proper Lipschitz function and Σ ⊂ RN is oriented, the current
S = F] JMK in Rn is given by

S(ω) =

ˆ
M

〈ω(F(x)),DF(x)]~e(x) 〉dHm(x) ∀ ω ∈ Dm(Rn),

where ~e(x) = e1(x)∧ . . .∧ em(x) is the orienting m-vector of Σ and

DF(x)]~e = (DF|x · e1)∧ . . .∧ (DF|x · em),

(cf. [54, Remark 26.21(3)]; as usual Dm(Ω) denotes the space of smooth m-forms compactly
supported in Ω). Using the Decomposition Lemma 3.36 it is possible to extend this definition
to multiple valued functions. To this purpose, we give the definition of proper multiple
valued functions.

Definition 3.37 (Proper Q-valued maps). A measurable F : M → AQ(R
n) is called proper

if there is a measurable selection F1, . . . , FQ as in Lemma 3.2 (i.e. F =
∑
i

q
Fi

y
) such that⋃

i (F
i)−1(K) is compact for every compact K ⊂ Rn. It is then obvious that if there exists

such a selection, then every measurable selection shares the same property.

We warn the reader that the terminology might be slightly misleading, as the condition
above is effectively stronger than the usual properness of maps taking values in the metric
space (AQ(R

n),G), even when F is continuous: the standard notion of properness would not
ensure the well-definition of the multiple-valued push-forward.

Definition 3.38 (Q-valued push-forward). Let Σ ⊂ RN be a C1 oriented manifold, M ⊂ Σ
a measurable subset and F : M → AQ(R

n) a proper Lipschitz map. Then, we define the
push-forward of M through F as the current TF =

∑
i,j(f

j
i)] JMiK, where Mi and fji are as in

Lemma 3.36: that is,

TF(ω) :=
∑
i∈N

Q∑
j=1

ˆ
Mi

〈ω(fji(x)),Df
j
i(x)]~e(x) 〉dH

m(x)︸ ︷︷ ︸
Tij(ω)

∀ ω ∈ Dm(Rn) . (3.46)
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We first want to show that T is well-defined. Since F is proper, we easily deduce that

|Tij(ω)| 6 Lip(F)‖ω‖∞Hm((fji)
−1)(spt(ω)) <∞.

On the other hand, upon setting Fj(x) := f
j
i(x) for x ∈ Mi, we have ∪i(fji)

−1(spt(ω)) =

(Fj)−1(spt(ω)) and (fji)
−1(spt(ω))∩ (fji ′)

−1(spt(ω)) = ∅ for i 6= i ′, thus leading to

∑
i,j

|Tij(ω)| 6 Lip(F) ‖ω‖∞
Q∑
j=1

Hm((Fj)−1(spt(ω))) < +∞.

Therefore, we can pass the sum inside the integral in (3.46) and, by Lemma 3.36, get

TF(ω) =

ˆ
M

Q∑
l=1

〈ω(Fl(x)),DFl(x)]~e(x) 〉dHm(x) ∀ ω ∈ Dm(Rn). (3.47)

In particular, recalling the standard theory of rectifiable currents (cf. [54, Section 27]) and
the area formula (cf. [54, Section 8]), we have achieved the following proposition.

Proposition 3.39 (Representation of the push-forward [18, Proposition 1.4]). The definition
of the action of TF in (3.46) does not depend on the chosen partition Mi nor on the chosen de-
composition {f

j
i}, (3.47) holds and, hence, TF is a (well-defined) integer rectifiable current given by

TF = (Im(F),Θ, ~τ) where:

(R1) Im(F) =
⋃
x∈M spt(F(x)) =

⋃
i∈N

⋃Q
j=1 f

j
i(Mi) is an m-dimensional rectifiable set;

(R2) ~τ is a Borel unitary m-vector orienting Im(F); moreover, for Hm-a.e. p ∈ Im(F), we have
Df
j
i(x)]~e(x) 6= 0 for every i, j, x with fji(x) = p and

~τ(p) = ±
Df
j
i(x)]~e(x)

|Df
j
i(x)]~e(x)|

; (3.48)

(R3) for Hm-a.e. p ∈ Im(F), the (Borel) multiplicity function Θ equals

Θ(p) :=
∑

i,j,{x:fji(x)=p}

〈
~τ,
Df
j
i(x)]~e(x)

|Df
j
i(x)]~e(x)|

〉
.

3.2.1 Push-forward of Lipschitz submanifolds

As for the classical push-forward, Definition 3.38 can be extended to domains Σ which are
Lipschitz submanifolds using the fact that such Σ can be “chopped” into C1 pieces. Recall
indeed the following fact.

Theorem 3.40 ([54, Theorem 5.3]). If Σ is a Lipschitz m-dimensional oriented submanifold, then
there are countably many C1 m-dimensional oriented submanifolds Σi which cover Hm-a.s. Σ and
such that the orientations of Σ and Σi coincide on their intersection.
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Definition 3.41 (Q-valued push-forward of Lipschitz submanifolds). Let Σ ⊂ RN be a
Lipschitz oriented submanifold, M ⊂ Σ a measurable subset and F :M→ AQ(R

n) a proper
Lipschitz map. Consider the {Σi} of Theorem 3.40 and set Fi := F|M∩Σi . Then, we define the
push-forward of M through F as the integer rectifiable current TF :=

∑
i TFi .

The following conclusion is a simple consequence of Theorem 3.40 and classical arguments
in geometric measure theory (cf. [54, Section 27]).

Lemma 3.42 ([18, Lemma 1.7]). Let M,Σ and F be as in Definition 3.41 and consider a Borel
unitary m-vector ~e orienting Σ. Then TF is a well-defined integer rectifiable current for which all the
conclusions of Proposition 3.39 hold.

As for the classical push-forward, TF is invariant under bilipschitz change of variables.

Lemma 3.43 (Bilipschitz invariance [18, Lemma 1.8]). Let F : Σ→ AQ(R
n) be a Lipschitz and

proper map, Φ : Σ ′ → Σ a bilipschitz homeomorphism and G := F ◦Φ. Then, TF = TG.

We will next use the area formula to compute explicitely the mass of TF. Following
standard notation, we will denote by JFj(x) the Jacobian determinant of DFj, i.e. the number∣∣DFj(x)]~e ∣∣ =√det((DFj(x))T ·DFj(x))

Lemma 3.44 (Q-valued area formula [18, Lemma 1.9]). Let Σ,M and F =
∑
j

q
Fj

y
be as in

Definition 3.41. Then, for any bounded Borel function h : Rn → [0,∞[, we have
ˆ
h(p)d‖TF‖(p) 6

ˆ
M

∑
j

h(Fj(x)) JFj(x)dHm(x) . (3.49)

Equality holds in (3.49) if there is a set M ′ ⊂M of full measure for which

〈DFj(x)]~e(x),DFi(y)]~e(y)〉 > 0 ∀x,y ∈M ′ and i, j with Fi(x) = Fj(y) . (3.50)

If (3.50) holds the formula is valid also for bounded real-valued Borel h with compact support.

A particular class of push-forwards are given by graphs.

Definition 3.45 (Q-graphs). Let Σ,M and f =
∑
i JfiK be as in Definition 3.41. Define the

map F :M→ AQ(R
N+n) as F(x) :=

∑Q
i=1 J(x, fi(x))K. TF is the current associated to the graph

Gr(f) and will be denoted by Gf.

Observe that, if Σ, f and F are as in Definition 3.45, then the condition (3.50) is always
trivially satisfied. Moreover, when Σ = Rm the well-known Cauchy-Binet formula gives

(JFj)2 = 1+

m∑
k=1

∑
A∈Mk(DFj)

(detA)2 ,

where Mk(B) denotes the set of all k× k minors of the matrix B. Lemma 3.44 gives then the
following corollary in the case of Q-graphs
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Corollary 3.46 (Area formula for Q-graphs [18, Corollary 1.11]). Let Σ = Rm, M ⊂ Rm and f
be as in Definition 3.45. Then, for any bounded compactly supported Borel h : Rm+n → R, we have

ˆ
h(p)d‖Gf‖(p) =

ˆ
M

∑
i

h(x, fi(x))
(
1+

m∑
k=1

∑
A∈Mk(DFj)

(detA)2
) 1
2
dx. (3.51)

In the classical theory of currents, when Σ is a Lipschitz manifold with Lipschitz boundary
and F : Σ→ RN is Lipschitz and proper, then ∂(F] JΣK) = F] J∂ΣK (see [32, 4.1.14]). This result
can be extended to multiple-valued functions.

Theorem 3.47 (Boundary of the push-forward [18, Theorem 2.1]). Let Σ be a Lipschitz subman-
ifold of RN with Lipschitz boundary, F : Σ → AQ(R

n) a proper Lipschitz function and f = F|∂Σ.
Then, ∂TF = Tf.

3.3 area formula and taylor expansions of the relevant quantities

In this section we compute the Taylor expansion of the area functional in several forms. To
this aim, we fix the following notation and hypotheses.

Assumptions 5. We consider:

(M) an open submanifold M ⊂ Rm+n of dimension m with Hm(M) <∞, which is the graph of a
function ϕ : Rm ⊃ Ω→ Rn with ‖ϕ‖C3 6 c̄; A and H will denote, respectively, the second
fundamental form and the mean curvature of M;

(U) a regular tubular neighborhood U of M, i.e. the set of points {x+ y : x ∈M,y ⊥ TxM, |y| <
c0}, where the thickness c0 is sufficiently small so that the nearest point projection p : U→M

is well defined and C2; the thickness is supposed to be larger than a fixed geometric constant
(which depends on c̄);

(N) a Q-valued map F : M→ AQ(R
m+n) of the form

Q∑
i=1

JFi(x)K =
Q∑
i=1

Jx+Ni(x)K ,

where N : M → AQ(R
m+n) satisfies x +Ni(x) ∈ U, Ni(x) ⊥ TxM for every x and

Lip(N) 6 c̄.

We recall the notation η ◦ F := 1
Q

∑
i Fi, for every multiple valued function F =

∑
i JFiK.

Theorem 3.48 (Expansion of M(TF) [18, Theorem 3.2]). If M, F and N are as in Assumption 5
and c̄ is smaller than a geometric constant, then

M(TF) = QHm(M) −Q

ˆ
M

〈H,η ◦N〉+ 1
2

ˆ
M

|DN|2

+

ˆ
M

∑
i

(
P2(x,Ni) + P3(x,Ni,DNi) + R4(x,DNi)

)
, (3.52)

where P2, P3 and R4 are C1 functions with the following properties:
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(i) v 7→ P2(x, v) is a quadratic form on the normal bundle of M satisfying

|P2(x, v)| 6 C|A(x)|2|v|2 ∀ x ∈M, ∀ v ⊥ TxM; (3.53)

(ii) P3(x, v,D) =
∑
i Li(x, v)Qi(x,D), where v 7→ Li(x, v) are linear forms on the normal bundle

of M and D 7→ Qi(x,D) are quadratic forms on the space of (m+n)× (m+n)-matrices,
satisfying

|Li(x, v)| 6 C|A(x)||v| ∀x ∈M, ∀v ⊥ TxM,

|Qi(x,D)| 6 C|D|2 ∀x ∈M , ∀D ∈ R(m+n)×(m+n) ;

(iii) |R4(x,D)| = |D|3L(x,D), for some function L with Lip(L) 6 C, which satisfies L(x, 0) = 0

for every x ∈M and is independent of x when A ≡ 0.

Moreover, for any Borel function h : Rm+n → R,∣∣∣∣∣
ˆ
hd‖TF‖−

ˆ
M

∑
i

h ◦ Fi

∣∣∣∣∣ 6 C
ˆ
M

(∑
i

|A||h ◦ Fi||Ni|+ ‖h‖∞(|DN|2+ |A|2|N|2)
)

, (3.54)

and, if h(p) = g(p(p)) for some g, we have∣∣∣∣ˆ hd‖TF‖− ˆ
M

(Q−Q〈H,η ◦N〉+ 1
2 |DN|2)g

∣∣∣∣ 6 C ˆ
M

(
|A|2|N|2 + |DN|4

)
|g| . (3.55)

In particular, as a simple corollary of the theorem above, we have the following fact.

Corollary 3.49 (Expansion of M(Gf) [18, Corollary 3.3]). Assume Ω ⊂ Rm is an open set with
bounded measure and f : Ω→ AQ(R

n) a Lipschitz map with Lip(f) 6 c̄. Then,

M(Gf) = Q|Ω|+
1

2

ˆ
Ω

|Df|2 +

ˆ
Ω

∑
i

R̄4(Dfi) , (3.56)

where R̄4 ∈ C1 satisfies |R̄4(D)| = |D|3L̄(D) for L̄ with Lip(L̄) 6 C and L̄(0) = 0.

Proof. The corollary is reduced to Theorem 3.48 by simply setting M = Ω× {0},

N =
∑
i

JNi(x)K :=
∑
i

J(0, fi(x))K and F(x) =
∑
i

JFi(x)K =
∑
i

J(x, fi(x))K .

Since in this case A vanishes, (3.52) gives precisely (3.56).

3.3.1 Taylor expansion for the excess in a cylinder

The last results of this section concern estimates of the excess in different systems of
coordinates, in particular with respect to tilted planes and curvilinear coordinates.
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Proposition 3.50 (Expansion of a curvilinear excess [18, Proposition 3.4]). There exists a
dimensional constant C > 0 such that, if M, F and N are as in Assumption 5 with c̄ small enough,
then ∣∣∣∣ˆ |~TF(x) − ~M(p(x))|2 d‖TF‖(x) −

ˆ
M

|DN|2
∣∣∣∣ 6 C ˆ

M

(|A|2|N|2 + |DN|4) , (3.57)

where ~TF and ~M are the unit m-vectors orienting TF and TM, respectively.

Next we compute the excess of a Lipschitz graph with respect to a tilted plane. We use
here the notation Cs for the open set Bs(0)×Rn ⊂ Rm+n.

Theorem 3.51 (Expansion of a cylindrical excess [18, Theorem 3.5]). There exist dimensional
constants C, c > 0 with the following property. Let f : Rm → AQ(R

n) be a Lipschitz map with
Lip (f) 6 c. For any 0 < s, set L := −́

Bs
D(η ◦ f) and denote by ~τ the unitary m-dimensional simple

vector orienting the graph of the linear map y 7→ A · y. Then, we have∣∣∣∣ˆ
Cs

∣∣∣~Gf − ~τ
∣∣∣2 d‖Gf‖− ˆ

Bs

G(Df,Q JLK)2
∣∣∣∣ 6 C ˆ

Bs

|Df|4 . (3.58)

3.3.2 First variations

In this section we compute the first variations of the currents induced by multiple valued
maps. These formulae are ultimately the link between the stationarity of area minimizing
currents and the partial differential equations satisfied by suitable approximations. We
use here the following standard notation: given a current T in RN and a vector field
X ∈ C1(RN, RN), we denote the first variation of T along X by δT(X) := d

dt

∣∣
t=0

M(Φt]T),
whereΦ :] −η,η[×U→ RN is any C1 isotopy of a neighborhood U of spt(T) withΦ(0, x) = x
for any x ∈ U and d

dε

∣∣
ε=0

Φε = X (in what follows we will often use Φε for the map
x 7→ Φ(ε, x)). It would be more appropriate to use the notation δT(Φ) (see, for instance, [32,
Section 5.1.7]), but since the currents considered in this paper are rectifiable, it is well known
that the first variation depends only on X and is given by the formula

δT(X) =

ˆ
div~T Xd‖T‖, (3.59)

where div~T X =
∑
i〈DeiX, ei〉 for any orthonormal frame e1, . . . , em with e1 ∧ . . .∧ em = ~T

(see [32, 5.1.8] and cf. [54, Section 2.9]). We begin with the expansion for the first variation of
graphs.

Theorem 3.52 (Expansion of δGf(X) [18, Theorem 4.1]). Let Ω ⊂ Rm be a bounded open set
and f : Ω→ AQ(R

n) a map with Lip(f) 6 c̄. Consider a function ζ ∈ C1(Ω×Rn, Rn) and the
corresponding vector field χ ∈ C1(Ω×Rn, Rm+n) given by χ(x,y) = (0, ζ(x,y)). Then,∣∣∣∣∣δGf(χ) −

ˆ
Ω

∑
i

(
Dxζ(x, fi) +Dyζ(x, fi) ·Dfi

)
: Dfi

∣∣∣∣∣ 6 C
ˆ
Ω

|Dζ||Df|3 . (3.60)
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The next two theorems deal with general TF as in Assumption 5. However we restrict
our attention to “outer and inner variations”, where we borrow our terminology from
the elasticity theory and the literature on harmonic maps. Outer variations result from
deformations of the normal bundle of M which are the identity on M and map each fiber
into itself, whereas inner variations result from composing the map F with isotopies of M.

Theorem 3.53 (Expansion of outer variations [18, Theorem 4.2]). Let M, U, p and F be as in
Assumption 5 with c̄ sufficiently small. If ϕ ∈ C1c(M) and X(p) := ϕ(p(p))(p− p(p)), then

δTF(X) =
ˆ
M

(
ϕ |DN|2 +

∑
i

(Ni ⊗Dϕ) : DNi
)
−Q

ˆ
M

ϕ〈H,η ◦N〉︸ ︷︷ ︸
Err1

+

3∑
i=2

Erri (3.61)

where

|Err2| 6 C
ˆ
M

|ϕ||A|2|N|2 (3.62)

|Err3| 6 C
ˆ
M

(
|ϕ|
(
|DN|2|N||A|+ |DN|4

)
+ |Dϕ|

(
|DN|3|N|+ |DN||N|2|A|

))
. (3.63)

Let Y be a C1 vector field on TM with compact support and define X on U setting
X(p) = Y(p(p)). Let {Ψε}ε∈]−η,η[ be any isotopy with Ψ0 = id and d

dε

∣∣
ε=0

Ψε = Y and define
the following isotopy of U: Φε(p) = Ψε(p(p)) + (p− p(p)). Clearly X = d

dε

∣∣
ε=0

Φε.

Theorem 3.54 (Expansion of inner variations [18, Theorem 4.3]). Let M, U and F be as in
Assumption 5 with c̄ sufficiently small. If X is as above, then

δTF(X) =
ˆ
M

( |DN|2

2
divM Y −

∑
i

DNi : (DNi ·DMY)
)
+

3∑
i=1

Erri, (3.64)

where

Err1 = −Q

ˆ
M

(
〈H,η ◦N〉divMY + 〈DYH,η ◦N〉

)
, (3.65)

|Err2| 6 C
ˆ
M

|A|2
(
|DY||N|2 + |Y||N| |DN|

)
, (3.66)

|Err3| 6 C
ˆ
M

(
|Y||A||DN|2

(
|N|+ |DN|

)
+ |DY|

(
|A| |N|2|DN|+ |DN|4

))
. (3.67)





4
S T R O N G L I P S C H I T Z A P P R O X I M AT I O N F O R A L M O S T M I N I M I Z I N G
C U R R E N T S

The aim of this chapter is to prove a Lipschitz approximation result for a wide class of
almost area minimizing currents, which we will call Ω-minima.

Definition 4.1 (Ω-minimality). A current T ∈ Im(Rn+m) is called Ω-minimum if there
exists a constant Ω > 0 such that

M(T) 6M(T + ∂S) +ΩM(S) ∀S ∈ Im+1(R
m+n) with compact support. (4.1)

The main result is the following Lipschitz-type approximation result for Ω-minimal
currents.

Proposition 4.2. Assume that T ∈ Im(Rm+n) is Ω-minimal and for some open cylinder C4r(x)
(with r 6 1) and some positive integer Q,

p]T = Q JB4r(x)K and ∂T C4r(x) = 0 . (4.2)

There exist constants M,C21,β0, ε21 > 0 (depending on m,n,Q), such that if E = E(T ,C4r(x)) <
ε21 then the following holds. There exist a map f : Br(x) → AQ(R

n) and a closed set K ⊂ Br(x)
such that

Lip(f) 6 C21Eβ0 (4.3)

Gf (K×Rn) = T (K×Rn) and |Br(x) \K| 6 C21E
β0
(
E+ r2Ω2

)
rm (4.4)∣∣∣‖T‖ (Cr(x)) −Qωmrm −

1

2

ˆ
Br(x)

|Df|2
∣∣∣ 6 C21Eβ0(E+ r2Ω2)rm . (4.5)

If in addition h(T ,C4r(x)) := sup{|p⊥(x) −p⊥(y)| : x,y ∈ spt(T)∩C4r(x)} 6 r, then

osc(f) 6 C21h(T ,C4r(x)) +C21rE1/2 . (4.6)

Proof of Theorem 2.8. As already pointed out in Chapter 2, Theorem 2.8 case (a) follows from
[19, Theorem 1.4]. Note also that case (b) follows directly from Proposition 4.2. It remains to
handle case (c), because the graph of the map f given by Proposition 4.2 is not necessarily
contained in Σ. We show here how to modify it in such a way to fulfill the requirements of
Theorem 2.8.

We assume that Ψ is a function whose graph coincides with Σ (the connected component
of ∂BR(p) ∩C4r(x) containing spt(T)) and arguing as in [19, Remark 1.5] we can assume
that ‖Ψ0‖ 6 CE

1
2 r+CΩr2, ‖DΨ‖0 6 CE

1
2 +CΩr and ‖D2Ψ‖0 6 CΩ. The domain of Ψ is a

subset of B4r(x)×Rn−1. Let now f =
∑
i JfiK be the function given by Proposition 4.2 and

let f̄ =
∑
i

q
f̄i

y
, where f̄i(y) gives the first n− 1 coordinates of fi(y). Observe that on the

set K we necessarily have

f(y) =
∑
i

q
(f̄i(y),Ψ(y, f̄i(y))

y
.

53



54 strong lipschitz approximation for almost minimizing currents

We then can extend f̄ to Br(x) \ K with Lip(f̄) 6 CLip(f) and osc (f̄) 6 Cosc (f) and hence
define f̂(y) =

∑
i

q
(f̄i(y),Ψ(y, f̄i(y))

y
for every y ∈ Br(x) (it must be shown that (y, f̄i(y))

belongs to the domain of definition of Ψ, but this follows easily from the smallness of osc (f̄)).
Obviously f = f̂ on K. On the other hand it is straightforward to check that

Lip(f̂) 6CLip(f̄) +C(Lip(f̄) + 1)‖DΨ0‖ 6 CEβ0 +CΩr (4.7)

osc (f̂) 6C osc (f) + ‖Ψ‖0 6 Ch(T ,C4r(x)) +C(E
1
2 +Ωr)r . (4.8)

In addition we conclude∣∣∣∣ˆ
Br(x)

|Df|2 −

ˆ
Br(x)

|Df̂|2
∣∣∣∣ 6 (Lip(f)2 + Lip(f̂)2)|Br(x) \K| 6 C|K| .

Thus the estimates in Proposition 4.2 complete the proof.

The rest of the chapter is devoted to the proof of Proposition 4.2. This will be achieved in
four sections. In the first we recall the standard Lipschitz approximation result for integral
currents satisfying (4.2), which can be applied in our case without any modification (cp. [19]).
In the second we improve upon the almost minimality condition under the assumption that
the cylindrical excess is small: this section contains, indeed, the most significant new ideas
compared to [19]. Finally, in the last two sections we modify accordingly the computations
of [19] to prove Proposition 4.2.

4.1 lipschitz approximation

We start with the following definition. Recall that the notion of excess we are using here is
the one of Definition 2.6.

Definition 4.3 (Excess measure). For a current T as in Proposition 4.2 we define the excess
measure eT and its density dT :

eT (A) := ‖T‖(A×Rn) −Q |A| for every Borel A ⊂ Br(x),

dT (y) := lim sup
s→0

eT (Bs(y))

ωm sm
= lim sup

s→0
E(T ,Cs(y)),

where ωm is the measure of the m-dimensional unit ball (the subscripts T will be omitted if
clear from the context). Moreover we introduce the “non-centered” maximal function of eT :

meT (y) := sup
y∈B s

2
(w)⊂B4r(x)

eT (B s
2
(w))

ωm sm
= sup
y∈B s

2
(w)⊂B4r(x)

E(T ,C s
2
(w)).

Notice that we take the supremum over balls of radius s2 instead of s: this is to achieve the
following result in a ball of radius bigger than 3r.

Proposition 4.4 (Lipschitz approximation; cf. [19, Proposition 2.2]). There exists a constant
C22(m,n,Q) > 0 with the following property. Let T be as in Proposition 4.2 in the cylinder C4s(x).
Set E = E(T ,C4r(x)), let 0 < δ < 1 be such that

r0 := 16
m

√
E

δ
< 1,
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and define K :=
{
meT < δ

}
∩B 7r

2
(x). Then, there is u ∈ Lip(B 7r

2
(x),AQ(Rn)) such that

Lip(u) 6 C22 δ
1
2 ,

Gu (K×Rn) = T (K×Rn),

|Bs(x) \K| 6
10m

δ
eT

(
{meT > 2

−mδ}∩Bs+r0r(x)
)
∀ r 6 7r

2
. (4.9)

When δ = E2β, we will call the map u given by the proposition Eβ-Lipschitz approximation
of T in C 7r

2
(x).

For the sake of completeness we give here the same proof as in [19, Proposition 2.2]. The
proof of the proposition is based on a BV estimate which differs from the ones of [4, 42].
Note that we do not assume that T is area minimizing.

The modified Jerrard–Soner estimate

Recall that each element S ∈ I0(Rm+n) is simply a finite sum of Dirac delta, S =
∑h
i=1wi δzi ,

where h ∈ N, wi ∈ {−1, 1} and the zi’s are (not necessarily distinct) points in Rm+n. Let
T be a current as in Assumption 1 in the cylinder C4. The slicing map x 7→ 〈T ,p, x〉 takes
values in I0(Rm+n) and is characterized by (cf. [54, Section 28]):

ˆ
B4

〈T ,p, x〉(ϕ)dx = T(ϕdx) for every ϕ ∈ C∞c (C4). (4.10)

Moreover spt(〈T ,p, x〉) ⊆ p−1({x}) and therefore 〈T ,p, x〉 =
∑
iwi δ(x,yi). The assumption

(4.2) guarantees that
∑
iwi = Q for almost every x. In order to state our BV estimate, we

consider the push-forwards of 〈T ,p, x〉 into the vertical directions:

Tx := p⊥]
(
〈T ,p, x〉

)
∈ I0(Rn) . (4.11)

It follows from (4.10) that the currents Tx are characterized through the identity:
ˆ
B4

Tx(ψ)ϕ(x)dx = T(ϕψdx) for every ϕ ∈ C∞c (B4), ψ ∈ C∞c (Rn). (4.12)

Proposition 4.5 (BV estimate). Assume T satisfies Assumption 1 in C4. For every ψ ∈ C∞c (Rn),
set Φψ(x) := Tx(ψ). If ‖Dψ‖∞ 6 1, then Φψ ∈ BV(B4) and satisfies(

|DΦψ|(A)
)2

6 2m2 eT (A) ‖T‖(A×Rn) for every Borel set A ⊆ B4. (4.13)

Note that in the usual Jerrard-Soner estimate the RHS of (4.13) would be (‖T‖(A×Rn))2.

Proof. It is enough to prove (4.13) for every open set A ⊆ B4. To this aim, recall that:

|DΦψ|(A) = sup
{ˆ
A

Φψ(x)divϕ(x)dx : ϕ ∈ C∞c (A, Rm), ‖ϕ‖∞ 6 1

}
. (4.14)
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For any smooth vector field ϕ, it holds that (divϕ(x))dx = dΞ, where

Ξ =
∑
j

ϕj dx̂
j and dx̂j = (−1)j−1dx1 ∧ · · ·∧ dxj−1 ∧ dxj+1 ∧ · · ·∧ dxm.

From (4.12) and the assumption ∂T C4 = 0 in (4.2), we conclude that
ˆ
A

Φψ(x)divϕ(x)dx =
ˆ
B4

Tx(ψ)divϕ(x)dx = T(ψdivϕdx)

= T(ψdΞ) = T(d(ψΞ)) − T(dψ∧ Ξ) = −T(dψ∧ Ξ) . (4.15)

Observe that the m-form dψ∧ Ξ has no dx component, since

dψ∧ Ξ =

m∑
j=1

n∑
i=1

(−1)j−1
∂ψ

dyi
(y)ϕj(x)dy

i ∧ dx̂j. (4.16)

Write ~T = 〈~T , ~π0〉 ~π0 + ~S. Then,

(T(dψ∧ Ξ))2 =
(ˆ
〈~S,dψ∧ Ξ〉d‖T‖

)2
6 ‖|dψ∧ Ξ|‖2∞‖T‖(A×Rn)

ˆ
A×Rn

|~S|2 d ‖T‖ ,

(| · | denotes the norms on Λm and Λm induced by the natural inner products 〈, 〉). Since
|~S|2 = 1− 〈~T , ~π0〉2 6 2− 2〈~T , ~π0〉, we have

ˆ
A×Rn

|~S|2 d ‖T‖ 6 2
ˆ
A×Rn

(
1− 〈~T , ~π0〉

)
d ‖T‖ = 2eT (A).

Moreover, by (4.16), ‖|dψ∧ Ξ|‖∞ 6 m ‖Dψ‖∞ ‖ϕ‖∞ 6 m. Summarizing, we get
ˆ
A

Φψ(x)divϕ(x)dx 6
(
2m2 eT (A) ‖T‖(A×Rn)

) 1
2 . (4.17)

Taking the supremum in (4.17) over ϕ’s with ‖ϕ‖∞ 6 1, we conclude (4.13) through
(4.14).

Proof of Proposition 4.4

Since the statement is invariant under translations and dilations, without loss of generality
we assume x = 0 and s = 1. Consider the slices Tx := p⊥] 〈T ,p, x〉 ∈ I0(Rn) and recall that
‖T‖(A×Rn) >

´
AM(Tx)dx for every open set A (cf. [54, Lemma 28.5]). Therefore,

M(Tx) 6 lim
r→0

‖T‖(Cr(x))
ωm rm

6meT (x) +Q for almost every x.

Since δ11 < 1, we infer M(Tx) < Q + 1 for a.e. x ∈ K. There are, then, Q functions
gi : K → Rn such that Tx =

∑Q
i=1 δgi(x) for a.e. x ∈ K. Define g : K 7→ AQ(R

n) as
g :=

∑
i JgiK and fix ψ ∈ C∞c (Rn). Proposition 4.5 gives(

|DΦψ|(Br(y))
)2

6 2m
(
eT (Br(y))

)
‖T‖(Cr(y)) = 2m

(
eT (Br(y)))(Q|Br(y)|+eT (Br(y))) .
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Hence, if we define the maximal function

m|DΦψ|(x) := sup
x∈B r

2
(y)⊂B4r

|DΦψ|(B r
2
(y))

|B r
2
(y)|

,

we conclude that

(m|DΦψ|(x))
2 6 2mmeT (x)

2 + 2mQmeT (x) 6 Cδ11 for every x ∈ K.

Therefore, the theory of BV functions gives a dimensional constant C such that

|Φψ(x) −Φψ(y)| 6 Cδ
1
2

11 |x− y| ∀x,y ∈ K Lebesgue points of Φψ, (4.18)

(see for instance [30, Section 6.6.2]: although in that reference the authors use the cen-
tered maximal function, the proof works obviously also in our context). Consider next the
Wasserstein distance of exponent 1:

W1(S1,S2) := sup
{
〈S1 − S2,ψ〉 : ψ ∈ C1(Rn), ‖Dψ‖∞ 6 1

}
. (4.19)

Obviously, when S1 =
∑
i JS1iK ,S2 =

∑
i JS2iK ∈ AQ(R

n), the supremum in (4.19) can be
taken over a suitable countable subset of ψ ∈ C∞c (Rn), chosen independently of the Si’s.
Moreover, it follows easily from the definition in (4.19) that

W1(S1,S2) = inf
σ∈PQ

∑
i

|S1i − S2σ(i)| > inf
σ∈PQ

(∑
i

|S1i − S2σ(i)|
2
) 1
2
= G(S1,S2).

So G(g(x),g(y)) 6 Cδ
1
2

11 |x− y| for a.e. x,y ∈ K.
Next, write g(x) =

∑
i J(hi(x),Ψ(x,hi(x)))K. Obviously x 7→ h(x) :=

∑
i Jhi(x)K ∈ AQ(R

n̄)

is a Lipschitz map. Recalling Proposition 3.4, we can extend it to a map ū ∈ Lip(B 7r
2

,AQ(Rn̄))

satisfying Lip(ū) 6 Cδ
1
2

11 and osc (ū) 6 Cosc (h). Set finally u(x) =
∑
i J(ūi(x),Ψ(x, ūi(x)))K.

The estimates claimed on u follow easily.
The identity Gu (K×Rn) = T (K×Rn) is a consequence of u(x) = Tx for a.e. x ∈ K.

Indeed, recall that both T and Gu are rectifiable and observe that 〈~T , ~π0〉 6= 0 ‖T‖-a.e. on
K×Rn, becausemeT <∞ on K. Similarly, 〈~Gu, ~π0〉 6= 0 ‖Gu‖-a.e. on K×Rn, by Proposition
3.39. Thus, (Gu − T) K×Rn = 0 if and only if (Gu − T) dx1K×Rn = 0. The latter identity
follows from the slicing formula and the property 〈T ,p, x〉 = 〈Gu,p, x〉 =

∑
i δ(x,ui(x)), valid

for a.e. x ∈ K.
Finally, for each x ∈ Br \K choose a ball x ∈ Bx = Br(x)(y(x)) ⊂ B4 such that eT (Bx) >

2−mδ11ωmr(x)
m. By the 5r-Covering theorem, we choose balls B̂i = B5r(xi)(y(xi)) which

cover Br \K and such that the balls Bxi are pairwise disjoint. We then conclude

|Br \K| 6 10
mδ−111 eT

(⋃
i

Bxi

)
. (4.20)

Fix y ∈ Bxi . Since Bxi ⊂ B4, we have 2−mδ11ωmr(xi)m 6 eT (Bxi) 6 eT (B4) = 4mωmE,
which implies 2r(xi) 6 r0 < 1. Thus, y ∈ Br+r0 ⊂ B4. By definition of meT we obviously
have meT (y) > 2−mδ11. So ∪iBxi ⊂ Br+r0 ∩ {meT > 2−mδ11} and (4.20) implies (4.9).
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4.2 homotopy lemma

Before proving the main Lipchitz approximation theorem we need a lemma which estimates
carefully the difference of mass between an Ω-almost minimizer and a competitor in terms
of a power of the excess and the costant Ω. The key idea is to choose the surface S in (4.1) to
be an homotopy between the Eβ approximation of T and that of S.

Lemma 4.6 (Homotopy Lemma). Let T be anΩ-almost minimizer which satisfies Assumption 1 in
C4r(x). There are positive dimensional constants ε22 and C25 such that, if E = E(T ,C4r(x)) 6 ε22,
then the following holds. For every R ∈ Im(C3r(x)) such that ∂R = ∂(T C3r(x)), we have

‖T‖(C3r(x)) 6M(R) +C25r
m+1ΩE

1
2 . (4.21)

Moreover, let β 6 1
2m , s ∈]r, 2r[, R = Gg Cs(x) for some Lipschitz map g : Bs → AQ(R

n) with
Lip(g) 6 1 and f be the Eβ-approximation of T in C3r. If f = g on ∂Bs and P ∈ Im(Rm+n) is
such that ∂P = ∂((T −Gf) Cs), then

‖T‖(Cs(x)) 6M(Gg) +M(P) +C25Ω
(
E
3
4 rm+1 + (M(P))1+

1
m +

ˆ
Bs(x)

G(f,g)
)

. (4.22)

Proof. We will show (4.21): the reader will notice that (4.22) follows easily from a portion of
the argument.

Without loss of generality we assume x = 0. If ‖T‖(C3r) 6M(R) then there is nothing to
prove. Hence we can suppose

M(R) 6 ‖T‖(C3r). (4.23)

Define the current R ′ ∈ Im(C4r) by R ′ := R+ T (C4r \C3r). Observe that ∂(T − R ′) = 0.
So ∂(p](T − R

′)) = 0. On the other hand p](T − R
′) = k JB4rK for some constant k and thus

we conclude p](T − R
′) = 0. Therefore R ′ satisfies (4.2). Moreover we notice that, thanks to

(4.23), the cylindrical excess of R ′ enjoys the following bound:

E(R ′,C4r) =
M(R ′)

ωmrm
−Q

(4.23)
6

M(T)

ωmrm
−Q = E(T ,C4r) =: E.

Let f,h : B 7r
2
→ AQ(R

n) be the Eβ-Lipschitz approximations of T and R ′ respectively, in the
cylinders C 7r

2
(where the choice of the exponent β will be specified later). Then there exist

sets KT ,KR ′ ⊂ B 7r
2
(x) such that

M((T −Gf) C 7r
2
) 6 C21r

mE1−2β and M((R ′ −Gh) C 7r
2
) 6 C21r

mE1−2β, (4.24)

|B 7r
2
\KT | 6 C21r

mE1−2β and |B 7r
2
\KR ′ | 6 C21r

mE1−2β, (4.25)

Lip(f) 6 C21Eβ and Lip(h) 6 CEβ. (4.26)
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Next we set K := KT ∩KR ′ and we notice that by (4.25)

|B 7r
2
\K| 6 C21r

mE1−2β. (4.27)

Let | · | be the cylindrical euclidean norm, that is |(x,y)| := |x| for every (x,y) ∈ Rm ×Rn.
By slicing theory, (4.24), (4.27) and Fubini’s Theorem there exist I1, I2 ⊂ (3r, 7r2 ) such that
|(3r, 7r2 ) \ Ij| 6 r/8 and

M(〈T −Gf, | · |, s〉) 6 C21rm−1E1−2β and M(〈R ′ −Gh, | · |, s) 6 C21rm−1E1−2β .

and

|∂Bs \K| 6 C21r
m−1E1−2β ,

for every s ∈ Ij, j = 1, 2. Therefore there exists s ∈ (3r, 7/2r) such that

M(〈T −Gf, | · |, s〉) 6 C21rm−1E1−2β and M(〈R ′−Gh, | · |, s〉) 6 C21rm−1E1−2β (4.28)

and

|∂Bs \K| 6 C21r
m−1E1−2β . (4.29)

By the Isoperimetric Inequality, there exists PT ,PR ∈ Im(Rm+n) such that

∂PT = 〈T −Gf, | · |, s〉 ∂PR = 〈R ′ −Gh, | · |, s〉

and

M(PT ) +M(PR) 6 C
(
M(〈T −Gf, | · |, s〉

) m
(m−1) +C

(
M(〈R ′ −Gh, | · |, s〉

) m
(m−1)

6 CrmEm(1−2β)/(m−1).

Choosing β = 1
2m , we can conclude that

∂((T −Gf) Cs) = ∂PT ∂((R ′ −Gh) Cs) = ∂PR (4.30)

with

M(PT ) +M(PR) 6 Cr
mE . (4.31)

Next consider the functions

f ′ := ξ ◦ f : B 7r
2
→ Q ⊂ RN(Q,n) and h ′ := ξ ◦ h : B 7r

2
→ Q ⊂ RN(Q,n) .

and the homotopy between them, defined by

H̃(x, t) : [0, 1]×B 7r
2
(x) 3 (t, x)→ (x, tf ′(x) + (1− t)h ′(x)) ∈ Rm ×RN .

Consider the Lipschitz map

φ : Rm ×RN 3 (x,y)→ (x,ξ−1(ρ(y))) ∈ Rm ×AQ(R
n)
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and define H := φ ◦ H̃. H can be seen as a Q-valued map H : B2r × [0, 1] → AQ(R
2+m).

Without changing notation for H we restrict it to [0, 1]× Bs and following the notation of
Definition 3.38 we define S := TH. If we set G := H|[0,1]×∂Bs we can use Theorem 3.47 to
conclude that

∂S = (Gf −Gh) Cs + TG = (Gf −Gh) Cs + P , (4.32)

where P := TG. We now want to estimate M(S) and M(P) and we will do it using the
Q-valued area formula in Lemma 3.44. We start with M(S). We fix a point of differentiability
p where DH =

∑
JDHiK. On [0, 1]×Bs we use the coordinates (t, x) and on the target space

Rm+n the coordinates (x,y). Let p = (t0, x0). It is then obvious that the matrix DHi can be
decomposed as

DHi(p) =

(
Im×m 0m×1

An×m vn×1 .

)
where the matrices A and v can be bound using the following observation. If we consider
the map t 7→ Φ(t) := H(x0, t) and x 7→ Λ(x) := H(t0, x), we then have |v| 6 CLip(Φ) and
|A| 6 CLip(Λ), where the constant C depends only on n and Q. On the other hand, it is easy
to see that Lip(Φ) 6 CG(f(x0),h(x0)) and Lip(Λ) 6 C(Lip(h) + Lip(f)) 6 Eβ = E

1
2m . Thus

we can estimate

JHi :=
√

det(DH∗i ·DHi) 6 CG(f(x0),g(x0)) .

Using Lemma 3.44 we then conclude

M(S) 6 C
ˆ
Bs

G(f,h)

and, arguing in a similar fashion,

M(P) 6 C
ˆ
∂Bs

G(f,h) .

Observe that f and h coincides, respectively, with the slices of the currents T and R ′ on any
x0 ∈ K. On the other hand, s > 3r and T C4r \C3r = R ′ C4r \C3r. We thus conclude
that h = f on K ∩ ∂Bs. Let x ∈ ∂Bs \ K. By (4.29), there exists x0 ∈ K ∩ ∂Bs such that
|x− x0| 6 CrE(1−2β)/(m−1) = CrE2β (recall that β = 1

2m ). Thus

G(f(x),h(x)) 6 (Lip(f) + Lip(h)) |x− x0| 6 CrE3β ,

and so we conclude

M(P) 6 C
ˆ
∂Bs

G(f,h) 6 CrE3β|∂Bs \K| 6 CrmE1+β 6 CrmE . (4.33)

On the other hand, we recall that, by a standard variant of the Poincaré inequality,ˆ
Bs

G(f,h) 6 Cr‖G(f,h)‖L1(∂Bs) +Cr‖D(G(f,h))‖L1(Bs)

(4.33)
6 Crm+1E+Cr1+

m
2

(ˆ
(|Df|2 + |Dh|2

) 1
2

6 Crm+1E
1
2 . (4.34)
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Thus,

Gf −Gh = ∂S+ P (4.35)

with

M(P) 6 CrmE and M(S) 6 Crm+1E
1
2 . (4.36)

Now observe that

0 = ∂(T − R ′) = ∂((Gf −Gh) Cs) + ∂(PT − PR) = ∂∂S+ ∂P+ ∂(PT − PR) .

Hence, by the isoperimetric inequality, there is an S ′ with M(S ′) 6 Crm+1E1+
1
m and

∂S ′ = ∂(P + PT − PR). Additionally, again using the isoperimetric inequality, there are
currents ST and SR such that

∂ST = (T −Gf) Cs − PT

∂SR = (R ′ −Gh) Cs − PR

and

M(ST ) 6 C (‖T −Gf‖(Cs) +M(PT ))
(m+1)
m 6 CE

3
4 rm+1

M(SR) 6 C (‖T −Gh‖(Cs) +M(PR))
(m+1)
m 6 CE

3
4 rm+1 .

In the latter inequalities we have used ‖T −Gh‖(Cs) + ‖T −Gf‖(Cs) 6 CE1−2βrm =

CE(m−1)/mrm: in particular (1− 2β)(m+ 1)/m = 1− 1/m2 > 3/4; observe that this estimate
is valid even if β < 1/(2m) and explains the exponent of E in the third summand of the
right hand side of (4.22).

Thus, setting S ′′ = S+ ST − SR − S ′ we finally achieve (T − R) C3r = ∂S
′′ and M(S ′′) 6

Crm+1E
1
2 . Applying now the Ω-minimality of T we conclude

‖T‖(C3r) 6M(R) +C25r
m+1ΩE

1
2 .

For the proof of (4.22) we conclude with the same computations, except that this time f = g
on ∂Bs and the current R is already given by Gg C. The modifications to the argument are
then straightforward, given the remark of the previous paragraph.

4.3 harmonic approximation and gradient lp estimates

In this and in the next section we follow largely [19] with minor modifications: on the one
hand we have the additional Ω-error terms, but on the other hand the ambient Riemannian
manifold is the euclidean space. Thus the arguments are somewhat less technical.

4.3.1 Harmonic Approximation

In this subsection we prove that if T is an almost minimizer then its Eβ-Lipschitz approxi-
mation is close to a Dir-minimizing function w. This comes with an o(E)-improvement of
the estimates in Proposition 4.4.
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Remark 4.7. There exists a dimensional constant c > 0 such that, if E 6 c, then the Eβ-
Lipschitz approximation satisfies the following estimates:

Lip(f) 6 CEβ, (4.37)ˆ
B3s(x)

|Df|2 6 CEsm. (4.38)

Indeed (4.37) follows from Proposition 4.4, while (4.38) follows from the Taylor expansion of
the mass of Gu:

M(Gu) = Q |V |+

ˆ
V

|Du|2

2
+

ˆ
V

∑
i

R(Dui),

where R : Rn×m → R is a C1 function satisfying |R(D)| = |D|3 L(D) for some positive
function L such that L(0) = 0 and Lip(L) 6 C (cp. Corollary 3.49). Indeed, for E sufficiently
small we haveˆ

B3s(x)

∑
i

R(Dfi) 6 CE
2β

ˆ
B3s(x)

|Df|2 <
1

4

ˆ
B3s(x)

|Df|2,

and therefore, since T (K×Rn) = Gf (K×Rn),
ˆ
B3s(x)

|Df|2 6C (M(Gf C3s(x)) −Qωm (3 s)m)

6C (M(T (K×Rn)) −Qωm (3 s)m) +CM(Gf (B3s(x) \K)×Rn)

6C (M(T C3s(x)) −Qωm (3 s)m) +CE2β |B3s(x) \K| 6 CEs
m.

Theorem 4.8 (First harmonic approximation). For every η1, δ > 0 and every β ∈ (0, 1
2m), there

exists a constant ε23 > 0 with the following property. Let T be anΩ-almost minimizer which satisfies
Assumption 1 in C4s(x) . If E = E(T ,C4s(x)) 6 ε23 and sΩ 6 ε23E

1
2 , then the Eβ-Lipschitz

approximation f in C3s(x) satisfies
ˆ
B2s(x)\K

|Df|2 6 η1Eωm (4 s)m = η1 eT (B4s(x)). (4.39)

Moreover, there exists a Dir-minimizing function w such that

s−2
ˆ
B2s(x)

G(f,w)2 +
ˆ
B2s(x)

(
|Df|− |Dw|

)2
6 η1Eωm (4 s)m = η1 eT (B4s(x)) , (4.40)

ˆ
B2s(x)

|D(η ◦ f) −D(η ◦w)|2 6 η1Eωm (4 s)m = η1 eT (B4s(x)) . (4.41)

Proof of Theorem 4.8. By rescaling and translating, it is not restrictive to assume that x = 0

and s = 1. We proceed by contradiction. Assume there exist a constant c1 > 0, a sequence
of positive real numbers (εl)l, a sequence of currents Ωl-minimal currents (Tl)l∈N and
corresponding Eβl -Lipschitz approximations (fl)l∈N such that

El := E(Tl,C4) 6 εl → 0, Ωl 6 εlE
1
2 and

ˆ
B2\Kl

|Dfl|
2 > c1 El, (4.42)
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where Kl := {x ∈ B3 :meTl(x) < E
2β
l }. Set Γl := {x ∈ B4 :meTl(x) 6 2−mE

2β
l } and observe

that Γl ∩B3 ⊂ Kl. From Proposition 4.4, it follows that

Lip(fl) 6 C22E
β
l , (4.43)

|Br \Kl| 6 C22E
−2β
l eT

(
Br+r0(l) \ Γl

)
for every r 6 3 , (4.44)

where r0(l) = 16 E
(1−2β)/m
l < 1

2 . Then, (4.42), (4.43) and (4.44) give

c1 El 6
ˆ
B2\Kl

|Dfl|
2 6 C22 eTl(Bs \ Γl) ∀ s ∈

[
5
2 , 3
]

.

Setting c2 := c1/(2C22), we have 2c2El 6 eTl(Bs \ Γl) = eTl(Bs) − eTl(Bs ∩ Γl), thus leading
to

eTl(Γl ∩Bs) 6 eTl(Bs) − 2 c2 El , (4.45)

for l large enough Next observe that ωm4mEl = eTl(B4) > eTl(Bs). Therefore, by the Taylor
expansion in Corollary 3.49, (4.45) and El ↓ 0, it follows that, for every s ∈ [5/2, 3],

ˆ
Γl∩Bs

|Dfl|
2

2
6 (1+CE2βl )eTl(Γl ∩Bs)

6 (1+CE2βl )
(
eTl(Bs) − 2 c2 El

)
6 eTl(Bs) − c2 El. (4.46)

Our aim is to show that (4.46) contradicts the Ω-almost minimizing property (4.1) of Tl. To
construct a competitor consider gl := El−

1
2 fl. Observe that from the estimates of Remark 4.7,

we easily infer Dir(fl,B3) 6 CEl. Hence, suplDir(gl,B3) < ∞. Since |B3 \ Γl| → 0, by
Proposition 3.29 we can find a subsequence (not relabelled) of translating sheets hl satisfying
(3.17) - (3.18) and ‖G(gl,hl)‖L2(B3) → 0. In particular, we are in the position to apply
Proposition 3.30 to gl and hl, with r0 = 5

2 , r1 = 3 and η = c2
2 , and find r ∈

(
5
2 , 3
)

and
competitor functions Hl satisfying Hl|B3\Br = gl|B3\Br ,

Dir(Hl,Br) 6 Dir(gl,Br ∩ Γl) +
c2
2

, (4.47)

Lip(Hl) 6 C∗ E
β− 1

2

l (4.48)

‖G(Hl,gl)‖L2(Br) 6 C23Dir(gl,Br) +C23Dir(Hl,Br) 6M <∞. (4.49)

Note that (4.48) follows from (3.24) observing that Eβ−
1
2

l ↑∞: thus C∗ depends on c2 and
the two chosen sequences, but not on l. From now on, although this and similar constants
are not dimensional, we will keep denoting them by C, with the understanding that they do
not depend on l. Note that, from (4.43) and (4.44), one gets

‖Tl − Gfl‖(C3) = ‖Tl‖(B3 \Kl)×Rn) + ‖Gfl‖((B3 \Kl)×Rn)

6 Q |B3 \Kl|+ El +Q |B3 \Kl|+C |B3 \Kl|Lip(fl)

6 El +CE
1−2β
l 6 CE1−2βl . (4.50)
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Consider the function ϕ(z,y) = |z| and the slice 〈Tl − Gfl ,ϕ, r〉. For every l, there exists
rl ∈ (r, 3) such that M

(
〈Tl − Gfl ,ϕ, rl〉

)
6 CE1−2βl .

Let now ul := El
1
2 Hl|Brl , and consider the current Zl := Gul Crl . Since ul|∂Brl = fl|∂Brl ,

one gets ∂Zl = 〈Gfl ,ϕ, rl〉 and, hence, M(∂(Tl Crl −Zl)) 6 CE
1−2β
l . By the Isoperimetric

Inequality there is an integral current Rl such that

∂Rl = ∂(Tl Crl −Zl) and M(Rl) 6 CE
m(1−2β)/(m−1)
l .

Set Sl = Tl (C4 \Crl) +Zl + Rl. Notice that ∂Sl = ∂Tl. We assume from now on β < 1
2m

and we set 1+ γ = m(1− 2β)/(m− 1) > 1. We want to compare the mass of Sl with that of
Tl to achieve a contradiction in the limit for l→∞.

ˆ
Brl

|Dul|
2 −

ˆ
Br∩Γl

|Dfl|
2 = Dir(Brl ,ul) − Dir(Brl ∩ Γl, fl)

(4.47)
6

c2
2
El

where the factor El in the last inequality comes from the renormalizations ul = E
1
2

l Hl and

fl = E
1
2

l gl. By possibly changing γ so that 2β > γ, we can then write

M(Sl) −M(Tl) 6M(Zl) +CM(Rl) −M(Tl Cr)

6 Q |Br|+

ˆ
Br

|Dul|
2

2
+CE1+γl −Q|Br|− eTl(Br)

6
ˆ
Br∩Γl

|Dfl|
2

2
+
c2
2
El +CE

1+γ
l − eTl(Br)

(4.46)
6 −

c2 El
4

+CE1+βl +CE1+γl . (4.51)

Hence,

M(Sl) <M(Tl) for l large enough. (4.52)

This would be already a contradiction if T were area-minimizing. In our case, by (4.21) of
Lemma 4.6 we have the upper bound

M(Sl) −M(Tl) > −C25ΩlE
1
2

l > −C25εlEl.

Combining this inequality with (4.51) we obtain

c2El
4

6 CE1+γl +CεlEl

which for El, εl sufficiently small (and hence for l large enough) provides the desired
contradiction.

For what concerns (4.40), we argue similarly. Let (Tl)l be a sequence with vanishing
El := E(Tl,C4), contradicting the second part of the statement and perform the same
analysis as before. Up to subsequences, one of the following statement must be false:

(i) liml
´
B2

|Dgl|
2 =
´
B2

|Dhl0 |
2, for any l0 (recall that

´
B2

|Dhl|
2 is constant);
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(ii) hl is Dir-minimizing in B2.

If (i) is false, then there is a positive constant c2 such that, for every r ∈ [5/2, 3],
ˆ
Br

|Dhl|
2

2
6
ˆ
Br

|Dgl|
2

2
− c2 6

eTl(Br)

El
−
c2
2

,

for l large enough (where the last inequality is again an effect of the Taylor expansion of
Remark 4.7. Therefore we can argue exactly as in the proof of (4.39) (using hl instead of
Hl to construct the competitors) and reach a contradiction. If (ii) is false, then hl is not
Dir-minimizing in B5/2. This implies that one of the ζj in the translating sheets hl is not Dir-
minimizing in B2. Indeed, in the opposite case, by Theorem 3.23, ‖G(ζj,Q J0K)‖C0(B2) <∞
and, since hl =

∑
iJτyil ◦ ζ

iK and |yil − y
j
l|→∞ for i 6= j, by the maximum principle of [17,

Proposition 3.5], hl would be Dir-minimizing. Thus, we can find a competitor ζ̂j for some ζj

with less energy in the ball B2. So the functions Fl =
∑
jJτyjl

◦ ζ̂jK satisfy, for any r ∈ [5/2, 3],

ˆ
Br

|DFl|
2

2
6
ˆ
Br

|Dhl|
2

2
− c2 6 lim

l

ˆ
Br

|Dgl|
2

2
− 2 c2 6

eT (Br)

El
−
c2
2

,

provided l is large enough (where c2 > 0 is a constant indepedent of r and l). On the other
hand Fl = hl on B3 \B5/2 and therefore ‖G(Fl,gl)‖L2(B3\B5/2) → 0. We then argue as above
with Fl in place of Hl and reach a contradiction in this case as well.

4.3.2 Improved excess estimate.

The higher integrability of the Dir-minimizing functions and the harmonic approximation
lead to the following estimate, which we call “weak” since we will improve it in the next
section with Theorem 4.11.

Proposition 4.9 (Weak excess estimate). For every η2 > 0, there exist ε24,C26 > 0 with the
following property. Let T be an Ω-almost minimizer and assume it satisfies Assumption 1 in C4s(x).
If E = E(T ,C4s(x)) 6 ε24, then

eT (A) 6 η2 eT (B4s(x)) +C26Ω
2 sm+2, (4.53)

for every A ⊂ Bs(x) Borel with |A| 6 ε24|Bs(x)| (observe that the constant C26 depends on η2).

Proof. Without loss of generality, we can assume s = 1 and x = 0. We distinguish the
two regimes: ε̂2E 6 Ω2 and Ω2 6 ε̂2E, where ε̂ 6 ε24 is a parameter whose choice
will be specified later. In the former, clearly eT (A) 6 CE 6 CΩ2. In the latter, we let f
be the E

1
4m -Lipschitz approximation of T in C3. By a Fubini-type argument as the ones

already used in the previous secions, we find a radius r ∈ (1, 2) and a current P with
M(P) 6 CE1+γ and ∂((T −Gf) Cr) = ∂P for some γ(m) > 0. We can thus apply Lemma 4.6
to R = Gf Cr + P+ T (C3 \Cr). Recalling the Taylor expansion in Corollary 3.49, we have

‖T‖(Cr) 6M(R Cr) +CΩE
1
2 6 ‖Gf‖(Cr) +Cε̂E+CE1+γ

6 Q |Br|+

ˆ
Br

|Df|2

2
+Cε̂E+CE1+γ, (4.54)



66 strong lipschitz approximation for almost minimizing currents

for some positive γ (possibly smaller than the previous one). On the other hand, using again
the Taylor expansion for the part of the current which coincides with the graph of f, we
deduce as well that

‖T‖(Cr) = ‖T‖((Br \K)×Rn) + ‖T‖((Br ∩K)×Rn)

> ‖T‖((Br \K)×Rn) +Q |Br ∩K|+
ˆ
Br∩K

|Df|2

2
−CE1+γ. (4.55)

Subtracting (4.55) from (4.54), we deduce

eT (Br \K) 6
ˆ
Br\K

|Df|2

2
+Cε̂E+CE1+γ. (4.56)

If ε24 is chosen small enough, we infer from (4.56) and (4.39) in Theorem 4.8 that

eT (Br \K) 6 ηeT (B4) +CE
1+γ, (4.57)

for a suitable η = ε̂/2C to be specified later. Let now A ⊂ B1 be such that |A| 6 ε24ωm.
Combining (4.57) with the Taylor expansion, we have

eT (A) 6 eT (A \K) +

ˆ
A

|Df|2

2
+CE1+γ 6

ˆ
A

|Df|2

2
+ ηeT (B4) +CE

1+γ. (4.58)

If ε24 is small enough, we can again use Theorem 4.8 and Theorem 3.31 in (4.58) to get, for a
Dir-minimizing w,

eT (A)
(4.40)
6
ˆ
A

|Dw|2

2
+ 2 ηeT (B4) +CE

1+γ 6
(
C24|A|

1− 2
p1 + 2η

)
eT (B4) +CE

1+γ.

(4.59)

Hence, if ε24 and η are suitably chosen, (4.53) follows from (4.59).

4.3.3 Gradient Lp estimate.

The density d of the excess measure is naturally an L1 function. We prove here that for
Ω-almost minimizer this function is in fact Lp, for some p > 1.

Theorem 4.10 (Gradient Lp estimate). There exist constants p2 > 1 and C, ε25 > 0 (depending
on n,Q) with the following property. Let T be as in Assumption 1 in the cylinder C4. If T is an
Ω-almost minimizer and E = E(T ,C4) < ε25, then

ˆ
{d61}∩B2

dp2 6 CEp2−1
(
E+Ω2

)
. (4.60)

Proof. We assume without loss of generality that E > 0 and divide the proof into two steps.

Step 1. There exist constants γ > 2m and ρ > 0 such that, for every c ∈ [1, (γE)−1] and
s ∈ [2, 4] with s̄ = s+ 2 c−

1
m 6 4, we have

ˆ
{γcE6d61}∩Bs

d 6 γ−ρ
ˆ
{ cEγ 6d61}∩Bs̄

d +Cc−
2
m Ω2. (4.61)
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In order to prove it, let NB be the constant in Besicovich’s covering theorem [30, Section
1.5.2] and choose N ∈N so large that NB < 2N−1. Let ε24 be as in Proposition 4.9 when we
choose η2 = 2−2m−N, and set

γ = max{2m, ε−124 } and ρ = min
{
− logγ(NB/2

N−1),
1

4

}
.

Let c and s be any real numbers as above. For almost every x ∈ {γ cE 6 d 6 1}∩Bs, there
exists rx such that

E(T ,C4rx(x)) 6 c E and E(T ,Ct(x)) > c E ∀t ∈]0, 4 rx[. (4.62)

Indeed, since d(x) = limr→0 E(T ,Cr(x)) > γ cE > 22c E and

E(T ,Ct(x)) =
eT (Bt(x))

ωm tm
6
4m E

tm
6 c E for t >

4
m
√
c

,

we just choose 4rx = min{t 6 4/ m
√
c : E(T ,Ct(x)) 6 cE}. Note also that rx 6 1/ m

√
c. Consider

the current T in C4rx(x). Setting A = {γ cE 6 d}∩B4rx(x), we have that

E(T ,C4rx(x)) 6 c E 6
E

γE
6 ε24 and |A| 6

c E |B4rx(x)|

γ cE
6 ε24|B4rx(x)|.

Hence, we can apply Proposition 4.9 to T C4rx(x) to getˆ
Brx(x)∩{γcE6d61}

d 6
ˆ
A

d 6 eT (A) 6 2
−2m−N eT (B4rx(x)) +Cr

m+2
x Ω2

6 2−2m−N (4 rx)
mωm E(T ,C4rx(x)) +Cr

m+2
x Ω2

(4.62)
6 2−N eT (Brx(x)) +Cr

m+2
x Ω2.

(4.63)

Thus,

eT (Brx(x)) =

ˆ
Brx(x)∩{d>1}

d +

ˆ
Brx(x)∩{ cEγ 6d61}

d +

ˆ
Brx(x)∩{d< cEγ }

d

6
ˆ
A

d +

ˆ
Brx(x)∩{ cEγ 6d61}

d +
c E

γ
ωm r

m
x

(4.62), (4.63)
6

(
2−N + γ−1

)
eT (Brx(x)) +Cr

m+2
x Ω2 +

ˆ
Brx(x)∩{ cEγ 6d61}

d. (4.64)

Therefore, recalling that γ > 2m > 4, from (4.63) and (4.64) we infer:
ˆ
Brx(x)∩{γcE6d61}

d 6
2−N

1− 2−N − γ−1

ˆ
Brx(x)∩{ cEγ 6d61}

d +Crm+2
x Ω2

6 2−N+1

ˆ
Brx(x)∩{ cEγ 6d61}

d +Crm+2
x Ω2.

By Besicovich’s covering theorem, we choose NB families of disjoint balls Brx(x) whose
union covers {γ cE 6 d 6 1}∩Bs and, since as already noticed rx 6 1/ m

√
c for every x, we

conclude:ˆ
{γcE6d61}∩Bs

d 6 NB 2
−N+1

ˆ
{ cEγ 6d61}∩Bs+2/ m√c

d +Cc−
2
m Ω2,
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which, for the above defined ρ, implies (4.61).

Step 2. We iterate (4.61) in order to conclude (4.60). Denote by L the largest integer smaller
than 2−1 logγ

(
E−1 − 1

)
, sL = 2 and recursively sk = sk+1 + 2 γ

− 2k
m for k ∈ {L,L− 1, . . . , 1}.

Notice that, since γ > 2m, sk < 4 for every k. Thus, we can apply (4.61) with c = γ2k, s = sk
and s̄ = sk−1 to conclude

ˆ
{γ2k+1 E6d61}∩Bsk

d 6 γ−ρ
ˆ
{γ2k−1 E6d61}∩Bsk−1

d +Cγ−
4k
mΩ2 ∀ k ∈ {1, . . . ,L} .

In particular, iterating this estimate we get

ˆ
{γ2k+1 E6d61}∩B2

d 6 γ−kρ
ˆ
{γE6d61}∩Bs0

d +CΩ2
k−1∑
l=0

γ
−
(
4 (k−l)
m +lρ

)
. (4.65)

Set A0 = {d < γE}, Ak = {γ2k−1 E 6 d < γ2k+1 E} for k = 1, . . . ,L, and AL+1 = {γ2L+1 E 6
d 6 1}. Since ∪Ak = {d 6 1}, for p2 < 1+

ρ
2 6 1+ 1

2 , we conclude:

ˆ
B2∩{d61}

dp2 =
L+1∑
k=0

ˆ
Ak∩B2

dp2 6
∑
k

γ(2k+1) (p2−1) Ep2−1
ˆ
Ak∩B2

d

(4.65)
6 C
∑
k

γk (2 (p2−1)−ρ) Ep2 +C
∑
k

k−1∑
l=0

γk(2 (p2−1)−
4
m )+l ( 4m−ρ)Ep2−1Ω2

6 CEp2 +C
∑
k

γk(2(p2−1)−ρ)Ω2.

4.4 strong excess estimate and conclusion of the proof

4.4.1 Almgrem’s strong excess estimate.

Thanks to the higher integrability of Theorem 4.10, we can control the excess where d 6 1.
To control it outside this region, we will need the following estimate.

Theorem 4.11 (Almgren’s strong excess estimate). There are constants ε21,γ2,C27 > 0 (de-
pending on n,Q) with the following property. Assume T satisfies Assumption 1 in C4 and is Ω
almost minimizing. If E = E(T ,C4) < ε21, then

eT (A) 6 C27
(
Eγ2 + |A|γ3

) (
E+Ω2

)
for every Borel A ⊂ B1. (4.66)

Proof. Since the proof of this result is rather involved we split it into two parts.

Regularization by convolution

In this first part we construct a competitor via convolution. To do that we will need the
following Proposition, whose highly nontrivial proof can be found in [19].
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Proposition 4.12 (Cf. [19, Proposition 6.2]). For every n,Q ∈ N \ {0} there are geometric
constants δ0,C24 > 0 with the following property. For every δ ∈]0, δ0[ there is ρ?δ : RN(Q,n) →
Q = ξ(AQ(R

n)) such that |ρ?δ(P)−P| 6 C24 δ
8−nQ for all P ∈ Q and, for every u ∈W1,2(Ω, RN),

it holds
ˆ

|D(ρ?δ ◦u)|2 6
(
1+C24 δ

8−nQ−1
)ˆ

{dist(u,Q)6δnQ+1}

|Du|2+C24

ˆ
{dist(u,Q)>δnQ+1}

|Du|2 .

(4.67)

The precise claim about the smoothed competitor is contained in the following proposition.

Proposition 4.13. Let β1 ∈
(
0, 1
2m

)
and T be an Ω-almost minimizing current satisfying Assump-

tion 1 in C4. Let f be its Eβ1-Lipschitz approximation. Then, there exist constants γ3,C28 > 0 and
a subset of radii B ⊂ [1, 2] with |B| > 1/2 with the following properties. For every σ ∈ B, there exists
a Q-valued function g ∈ Lip(Bσ,AQ) such that

g|∂Bσ = f|∂Bσ , Lip(g) 6 C28 Eβ1

and ˆ
Bσ

|Dg|2 6
ˆ
Bσ∩K

|Df|2 +C28 E
1+γ3 . (4.68)

Proof. Since |Df|2 6 CdT 6 CE2β1 6 1 on K, by Theorem 4.10 there exists q2 = 2 p2 > 2

such that

‖|Df|‖2Lq2(K∩B2) 6 CE
1− 1

p1 (E+Ω2)
1
p1 6 C(E+Ω2) . (4.69)

Given two (vector-valued) functions h1 and h2 and two radii 0 < s < r, we denote by
lin(h1,h2) the linear interpolation in Br \ B̄s between h1|∂Br and h2|∂Bs . More precisely, if
(θ, t) ∈ Sm−1 × [0,∞) are spherical coordinates, then

lin(h1,h2)(θ, t) =
r− t

r− s
h2(θ, s) +

t− s

r− s
h1(θ, r) .

Next, let δ > 0 and ε > 0 be two parameters and let 1 < r1 < r2 < r3 < 2 be three radii, all to
be chosen later. To keep the notation simple, we will write ρ? in place of ρ?δ. Let ϕ ∈ C∞c (B1)
be a standard (nonnegative!) mollifier. We set f ′ := ξ ◦ f. Recall the map ρ of Lemma 3.8 and
define:

g ′ :=


√
Eρ ◦ lin

(
f ′√
E

,ρ?
(
f ′√
E

))
in Br3 \Br2 ,

√
Eρ ◦ lin

(
ρ?
(
f ′√
E

)
,ρ?

(
f ′√
E
∗ϕε

))
in Br2 \Br1 ,

√
Eρ?

(
f ′√
E
∗ϕε

)
in Br1 .

(4.70)

Finally set g := ξ−1 ◦ g ′. We claim that, for σ := r3 in a suitable set B ⊂ [1, 2] with |B| > 1/2,
we can choose r2 = r3− s and r1 = r2− s so that g satisfies the conclusion of the proposition.
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Some computations will be simplified taking into account that our choice of the parameter
will imply the following inequalities:

δ2·8
−nQ

6 s , ε 6 s and E1−2β1 6 ε2 . (4.71)

We start noticing that clearly g|∂Br3 = f|∂Br3 . Moreover we have Lip(g) 6 CEβ1 , indeed
Lip(g) 6 CLip(f ′ ∗ϕε) 6 CLip(f) 6 CEβ1 in Br1 ,

Lip(g) 6 CLip(f ′) +C ‖f
′−f ′∗ϕε‖L∞

s 6 C(1+ ε
s )Lip(f ′) 6 CEβ1 in Br2 \Br1 ,

Lip(g) 6 CLip(f ′) +CE1/2 δ
8−nQ

s 6 CEβ1 +CE1/2 6 CEβ1 in Br3 \Br2 .

In the second inequality of the last line we have used that, since Q is a cone, E−
1
2 f ′(x) ∈ Q

for every x: therefore |ρ?(f ′/E
1
2 ) − f ′/E

1
2 | 6 Cδ8

−n̄Q
. We pass now to estimate the Dirichlet

energy of g.

Step 1. Energy in Br3 \Br2 . By Proposition 4.12, |ρ?(P) − P| 6 C24 δ8
−n̄Q

for all P ∈ Q. Thus,
elementary estimates on the linear interpolation give

ˆ
Br3\Br2

|Dg|2 6
CE

(r3 − r2)
2

ˆ
Br3\Br2

∣∣∣ f ′√
E
− ρ?

(
f ′√
E

)∣∣∣2 +C ˆ
Br3\Br2

|Df ′|2

+C

ˆ
Br3\Br2

|D(ρ? ◦ f ′)|2 6 C
ˆ
Br3\Br2

|Df|2 +CEs−1 δ2·8
−n̄Q

.

(4.72)

Step 2. Energy in Br2 \ Br1 . Here, using the same interpolation inequality and a standard
estimate on convolutions of W1,2 functions, we get

ˆ
Br2\Br1

|Dg|2 6 C
ˆ
Br2\Br1

|Df|2 +
C

(r2 − r1)2

ˆ
Br2\Br1

|f ′ −ϕε ∗ f ′|2

6C
ˆ
Br2\Br1

|Df|2 +Cε2s−2
ˆ
B3

|Df ′|2 = C

ˆ
Br2\Br1

|Df|2 +Cε2 E s−2 . (4.73)

Step 3. Energy in Br1 . Define Z :=
{

dist
(
f ′√
E
∗ϕε,Q

)
> δnQ+1

}
and use (4.67) to get

ˆ
Br1

|Dg|2 6
(
1+Cδ8

−n̄Q−1
)ˆ
Br1\Z

∣∣D (f ′ ∗ϕε)∣∣2+C ˆ
Z

∣∣D (f ′ ∗ϕε)∣∣2 =: I1+ I2. (4.74)

We consider I1 and I2 separately. For I1 we first observe the elementary inequality

‖D(f ′ ∗ϕε)‖2L2 6‖|Df
′| ∗ϕε‖2L2 6 ‖(|Df

′| 1K) ∗ϕε‖2L2 + ‖(|Df
′| 1Kc) ∗ϕε‖2L2

+ 2‖(|Df ′| 1K) ∗ϕε‖L2‖(|Df ′| 1Kc) ∗ϕε‖L2 , (4.75)

where Kc is the complement of K in B3. Recalling r1 + ε 6 r1 + s 6 r2 we estimate the first
summand in (4.75) as follows:

‖(|Df ′| 1K) ∗ϕε‖2L2(Br1) 6
ˆ
Br1+ε

(
|Df ′| 1K

)2
6
ˆ
Br3∩K

|Df|2 . (4.76)
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To treat the other terms recall that Lip(f) 6 CEβ1 and |Kc| 6 CE1−2β1 :

‖(|Df ′|1Kc) ∗ϕε‖2L2(Br1) 6 CE
2β1‖1Kc ∗ϕε‖2L2 6 CE

2β1 ‖1Kc‖2L1 ‖ϕε‖
2
L2 6

CE2−2β1

ε2
. (4.77)

Putting (4.76) and (4.77) in (4.75) and recalling E1−2β1 > εm and
´
|Df ′|2 6 CE, we get

I1 6
ˆ
Br2∩K

|Df|2 +Cδ8
−nQ−1

E+Cεs Es
3
2−β1 . (4.78)

For what concerns I2, first we argue as for I1, splitting in K and Kc, to deduce that

I2 6 C
ˆ
Z

(
(|Df ′| 1K) ∗ϕε

)2
+Cε−

m
2 E

3
2−β1 . (4.79)

Then, regarding the first summand in (4.79), we note that

|Z| δ2nQ+2 6
ˆ
Br1

∣∣∣ f ′√
E
∗ϕε − f ′√

E

∣∣∣2 6 Cε2. (4.80)

Recalling that q2 = 2p2 > 2, we use (4.69) to obtain
ˆ
Z

(
(|Df ′| 1K) ∗ϕε

)2
6 |Z|

p1−1
p1 ‖(|Df ′| 1K) ∗ϕε‖2Lq2 6 C

( ε

δnQ+1

) 2 (p1−1)
p1 ‖|Df ′|‖2Lq2(K)

6 C
( ε

δnQ+1

) 2 (p1−1)
p1 (E+Ω2) . (4.81)

Gathering all the estimates together, (4.74), (4.78), (4.79) and (4.81) give
ˆ
Br1

|Dg|2 6
ˆ
Br2∩K

|Df|2 +C
(
Eδ8

−nQ−1
+
E
3
2−β1

ε
+ (E+Ω2)

( ε

δnQ+1

) 2 (p1−1)
p1

)
. (4.82)

Final estimate. Summing (4.72), (4.73) and (4.82) (and recalling ε < s), we concludeˆ
Br3

|Dg|2 6
ˆ
Br1∩K

|Df|2 +C

ˆ
Br1+3s\Br1

|Df|2

+CE

(
ε2

s2
+
δ2·8

−Q

s
+
E
1
2−β1

ε
+
(
1+Ω2 E−1

) ( ε

δnQ+1

) 2 (p1−2)
p1

)
.

We set ε = Ea, δ = Eb and s = Ec, where

a =
1− 2β1
4

, b =
1− 2β1
8 (nQ+ 1)

and c =
1− 2β1

8nQ 8 (nQ+ 1)
.

This choice respects (4.71). Assume E is small enough so that s 6 1
8 . Now, if C > 0 is a

sufficiently large constant, there is a set B ′ ⊂ [1, 78 ] with |B ′| > 1/2 such that,ˆ
Br1+3s\Br1

|Df|2 6 Cs
ˆ
B2

|Df|2 6 CE1+c for every r1 ∈ B ′.

For σ = r3 ∈ B = s+B ′ we then conclude, for some γ(β1,n,N,Q) > 0,ˆ
Bσ

|Dg|2 6
ˆ
Bσ∩K

|Df|2 +CE1+γ.
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Proof of (4.66)

Using the isoperimetric inequality and a slicing argument, we find a radius σ ∈ (1, 2)
for which Proposition 4.13 applies and such that there is P ∈ Im(Rm+n) with ∂P =

∂((T −Gf) Cs) and M(P) 6 CE1+γ. We can therefore apply both Lemma 4.6 to conclude
that

‖T‖(Cσ) 6 ‖Gg‖(Cσ) +CΩ
ˆ
Bσ

G(g, f) +CE1+γ . (4.83)

In order to estimate
´
Bσ
G(g, f), we recall how g is constructed, and in particular, using the

notation of the previous section
ˆ
Bσ

G(f,g) 6 C
ˆ
Bσ\Bσ−s

∣∣∣f ′ −√Eρ ◦ lin
( f ′√

E
,ρ?
( f ′√
E

))∣∣∣︸ ︷︷ ︸
I1

+

+C

ˆ
Bσ−s\Bσ−2s

∣∣∣f ′ −√Eρ ◦ lin
(
ρ?
( f ′√
E

)
,ρ?
( f ′√
E
∗ϕε

))∣∣∣︸ ︷︷ ︸
I2

+

+C

ˆ
Bs−2η

∣∣∣f ′ −√Eρ?( f ′√
E
∗ϕε

)∣∣∣︸ ︷︷ ︸
I3

.

We will estimate I1, I2, I3 separately. Recall that ρ ◦ f ′ = f ′, ρ is Lipschitz and moreover
λρ(P) = ρ(λP), for every λ > 0,P ∈ Q, since Q is a cone.

I1 6 C
ˆ σ
σ−s

ˆ
∂Bt

√
E
∣∣∣ f ′√
E
−
t+ s− σ

s

f ′√
E
−
σ− t

s
ρ?
( f ′√

E

)∣∣∣dt
= C
√
E

ˆ σ
σ−s

σ− t

s

ˆ
∂Bt

∣∣∣ f ′√
E
− ρ?

( f ′√
E

)∣∣∣dt 6 C√Eδ8−nQ |Bσ \Bσ−s| 6 CE
1
2+c

where we used |Bσ \Bσ−s| 6 Cs 6 CEc. We next bound I2.

I2 6 C
√
E

ˆ σ−s
σ−2s

ˆ
∂Bt

∣∣∣ f ′√
E
−
t+ 2s− σ

s
ρ?
( f ′√
E

)
−
σ− s− t

s
ρ?
( f ′√
E
∗ϕε

)∣∣∣
6 C
√
E

ˆ σ−s
σ−2s

ˆ
∂Bt

(∣∣∣ f ′√
E
− ρ?

( f ′√
E

)∣∣∣+ σ− s− t
s

∣∣∣ρ?( f ′√
E

)
− ρ?

( f ′√
E
∗ϕε

)∣∣∣) dt
6 CE

1
2+c +C

ˆ
Bσ−s\Bσ−2s

∣∣f ′ − f ′ ∗ϕε∣∣
where we have used the fact that ρ? is Lipschitz. The estimate for I3 is then

I3 6 C
√
E

ˆ
Bσ−2s

(∣∣∣ f ′√
E
− ρ?

( f ′√
E

)∣∣∣+ ∣∣∣ρ?( f ′√
E

)
− ρ?

( f ′√
E
∗ϕε

)∣∣∣)
6 CE

1
2+c +C

ˆ
Bσ−2s

|f ′ − f ′ ∗ϕε| .



4.4 strong excess estimate and conclusion of the proof 73

We therefore achieve the estimate

I2 + I3 6 CE
1
2+c +

ˆ
Bσ−s

|f ′ − f ′ ∗φε|

and to conclude, we compute
ˆ
Bσ−s

∣∣f ′ − f ′ ∗ϕε∣∣ 6 ˆ
Bσ−s

ˆ
Bε

ϕε(x)|f
′(y− x) − f ′(y)|dydx

6
ˆ
Bσ−s

ˆ
Bε

ˆ 1
0

ϕε(x)|Df
′(y− tx) · x|dtdydx

6
ˆ 1
0

ˆ
Bε

ϕε(x)ε

ˆ
Bσ−s

|Df(y− tx)|dydxdt 6 ε ‖Df‖L1(Bσ) 6 CE
1
2+a ,

(where we have used the fact that ε 6 s). Putting everything together we conlude that

M(S) 6 CE
1
2+γ

for a suitable γ > 0. Then, from (4.83), the Taylor expansion for M(Gg) and Proposition 4.13

we achieve

‖T‖(Cσ) 6 Q |Bσ|+

ˆ
Bσ∩K

|Df|2

2
+CEγ(E+Ω2) . (4.84)

On the other hand, by the Taylor’s expansion in Corollary 3.49,

‖T‖(Cs) = ‖T‖((Bs \K)×Rn) + ‖Gf‖((Bs ∩K)×Rn)

> ‖T‖((Bs \K)×Rn) +Q |K∩Bs|+
ˆ
K∩Bs

|Df|2

2
−CE1+γ. (4.85)

Hence, from (4.84) and (4.85), we get eT (Bs \K) 6 CEγ (E+Ω2).
This is enough to conclude the proof. Indeed, let A ⊂ B1 be a Borel set. Using the higher

integrability of |Df| in K (and therefore possibly selecting a smaller γ > 0) we get

eT (A) 6 eT (A∩K) + eT (A \K) 6
ˆ
A∩K

|Df|2

2
+CE1+γ +CEγ (E+Ω2)

6 C |A∩K|
p1−1
p1

(ˆ
A∩K

|Df|q2
) 2
q2

+CE1+γ +CEγ (E+Ω2)

6 C |A|
p1−1
p1

(
E+Ω2

)
+CEγ (E+Ω2) +CE1+γ.

4.4.2 Proof of Proposition 4.2

As usual we assume, w.l.o.g., r = 1 and x = 0. Choose β2 < min{ 12m , γ3
2(1+γ3)

}, where γ3 is
the constant in Theorem 4.11. Let f be the Eβ2-Lipschitz approximation of T . Clearly (4.3)
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follows directly from Proposition 4.4 if γ1 < β2. Set next A :=
{
meT > 2

−mE2β2
}
∩B 9

8
. By

Proposition 4.4, |A| 6 CE1−2β2 . Apply estimate (4.66) to A to conclude:

|B1 \K| 6 CE
−2β2 eT (A) 6 CE

γ3−2β2(1+γ3)(E+Ω2).

By our choice of γ3 and β2, this gives (4.4) for some positive β0. Finally, set S = Gf. Recalling
the strong Almgren’s estimate (4.66) and the Taylor expansion in Corollary 3.49, we conclude:∣∣∣∣‖T‖(C1) −Qωm −

ˆ
B1

|Df|2

2

∣∣∣∣ 6 eT (B1 \K) + eS(B1 \K) + ∣∣∣∣eS(B1) − ˆ
B1

|Df|2

2

∣∣∣∣
6 CEγ3(E+Ω2) +C |B1 \K|+CLip(f)2

ˆ
B1

|Df|2 6 CEγ1(E+Ω2).

The L∞ bound follows from Proposition 4.4.
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5
U N I Q U E N E S S O F TA N G E N T C O N E S F O R 2 - D I M E N S I O N A L
A L M O S T M I N I M I Z I N G C U R R E N T S

In this chapter we consider 2-dimensional integer rectifiable currents T in the euclidean
space Rn+2 which are almost (area) minimizing, in the following sense.

Definition 5.1. An m-dimensional integer rectifiable current T in Rm+n is almost (area)
minimizing if for every x 6∈ spt(∂T) there are constants C0, r0,α0 > 0 such that

‖T‖(Br(x)) 6 ‖T + ∂S‖(Br(x)) +C0 rm+α0 (5.1)

for all 0 < r < r0 and for all integral (m+ 1)-dimensional currents S supported in Br(x).

Our aim is to extend Brian White’s classical result (cf. [66]) on the uniqueness of tangent
cones for area minimizing 2-dimensional currents to almost minimizers,.

To state the main theorem we recall the definition of the current Tx,r := (ιx,r)]T , where the
map ιx,r is given by Rm+n 3 y 7→ y−x

r ∈ Rm+n. Recall that an area minimizing cone S is
an integral area minimizing current such that (ι0,r)]S = S for every r > 0 (cf. [54, Theorem
19.3]). Furthermore, for any given R ∈ Im(Rm+n) we define F(R) := inf{M(Z) +M(W) :

Z ∈ Im,W ∈ Im+1,Z+ ∂W = R}.

Theorem 5.2 (Uniqueness of tangent cones for almost minimizers). Let T ∈ I2(Rn+2) be an
almost minimizer. Then there is a γ0 > 0, J 2-dim. distinct planes πi, each pair of which intersect
only at 0, and J integers ni such that, if we set S :=

∑
i ni JπiK, then

F
(
(Tx,r − S) B1

)
6 C11 r

γ0 , (5.2)

dist
(
spt(T Br(x)), spt(S)

)
6 C11 r

1+γ0 . (5.3)

Moreover, there are r̄ > 0 and J > 1 currents T j ∈ I2(Br̄(x)) such that

(i) ∂T j Br̄(x) = 0 and each T j is an almost minimizer;

(ii) T Br̄(x) =
∑
j T
j and spt(Tj)∩ spt(Ti) = {x} for every i 6= j;

(iii) njJπjK is the unique tangent cone to each T j at x.

From the latter theorem, Proposition 2.3 and Proposition 2.5 we easily deduce Theorem
2.9

The rest of the chapter is dedicated to the proof of Theorem 5.2. This will be achieved in
three sections organized as follows. In the first section we recall an important property of
2-dimensional area minimizing cones due to White and give a simplified proof of it. The
second section contains a generalization of White’s epiperimetric inequality to the case of
almost minimizers and an almost monotonicity formula for almost minimizers. Finally, in
the third section we give the proof of Theorem 5.2.

77
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5.1 white’s epiperimetric inequality (wei)

As already mentioned, the key ingredient in the proof of Theorem 5.2 is a suitable general-
ization of White’s epiperimetric inequality [66]. We record the main ingredient of White’s
argument in the following lemma. Since however the paper [66] does not state this lemma
explicitely, we provide a brief argument, referring to propositions and lemmas which are
instead explicitely stated in [66] (the only difference is in a technical point, namely the
estimate (5.4), for which we point out a shorter argument).

Lemma 5.3. Let S ∈ I2(Rn+2) be an area minimizing cone. There exists a constant ε31 > 0 with
the following property. If R := ∂(S B1) and Z ∈ I1(∂B1) is a cycle with

(i) F(Z− R) < ε31,

(ii) M(Z) −M(R) < ε31,

(iii) dist
(
spt(Z), spt(R)

)
< ε31,

then there exists H ∈ I2(B1) such that ∂H = Z and

‖H‖(B1) − ‖S‖(B1) 6 (1− ε31)
[
‖0××Z‖(B1) − ‖S‖(B1)

]
.

Proof. We start by recalling a well known result about the decomposition of 1-dimensional
integral cycles.

Lemma 5.4 ([35, Lemma 2.1]). Let R be an integral 1-cycle. Then, there is a decomposition into
simple closed curves Ri such that M(R) +

∑
iM(Ri), spt(Ri) ⊂ spt(R). The sum is either finite or

convergent.

A consequence of this lemma, the fact that an area minimazing two dimensional cone
which has a simple closed curve as a boundary must be a disk, and easy comparison
arguments, we conclude

Lemma 5.5 (Characterization of 2-dimensional area minimizng cones (cf. [35])). Any 2-
dimensional area-minimizing cone S is the sum of (integer multiples of) finitely many oriented planes,
each pair of which intersects only at the origin.

Therefore the support of the cycle R := ∂(S B1) of the statement of Lemma 5.3 consists of
a finite number (say N) of disjoint equatorial circles of ∂B1. By condition (iii), we can thus
assume that Z splits into N cycles, each close (in the sense of (i), (ii) and (iii)) to an integer
multiple of an equatorial circle of ∂B1. Thus, without loss of generality, from now on we
assume that S is given by Q Jπ0K, where π0 is the (oriented) plane R2 × {0} ⊂ Rn+2 and Q
is a positive integer. Correspondingly, we can assume that

(iv) R = Q Jγ0K for some integer Q > 0, where γ0 is the oriented equatorial circle π0 ∩ ∂B1.

Step 1. Reduction to a Lipschitz winding curve. We next recall the notation Br(x,π) for
the 2-dimensional disk x+Br(0) ∩ π and Cr(x,π) for the cylinder Br(x,π) + π⊥, omitting
x when it is the origin and π when it is the plane π0. Given any 1-dimensional cycle W
we consider the infinite 2-dimensional cone T with vertex 0 and spherical cross section
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W, namely limR→∞(ι0,R)](0××W) and denote it by (0××W)∞. The cylindrical excess of any
infinite 2-dimensional cone T in C1(τ) is then given by

E(T , τ) :=
1

2

ˆ
C1(τ)

|~T(x) − τ|2 d‖T‖(x)

whereas the cylindrical excess of Z is denoted by

E(Z) := min
τ
E((0××Z)∞, τ) .

It is simple to see that under the assumptions (i), (ii) and (iii), any minimum plane τ for
(0××Z)∞ in the expression above must be close to π0.

Let now P be the orthogonal projection onto ∂B1 (which obviously is defined in Rn+2 \

{0}). For each π, such projection is invertible when we restrict its domain of definition to
∂C1(π) and its target to ∂B1 \ π⊥. We then let P−1

π be its inverse. Note also that, under the
assumptions (i), (ii) and (iii), when τ is close enough to π0, spt(Z) ⊂ B1 \ τ⊥. Therefore, for
any such τ we have

(0××Z)∞ C1(τ) = 0×× (P−1
τ )]Z .

In particular such identity is valid for the π which minimizes E((0××Z)∞, τ).
If Z is as in the statement of the lemma, by Lemma 5.4, Z can be written as the sum

of (at most countably many) 1-dimensional cycles Zi, where each Zi is a simple closed
Lipschitz curve and

∑
M(Zi) =M(Z). Observe also that, if ε31 is sufficiently small, then

(pπ0)](P
−1
π0

)]Zi (where pπ0 is the orthogonal projection onto π0) equals ki Jγ0K for some
nonnegative integer ki. We thus have

∑
ki = Q and it follows by standard arguments that

each Zi fulfills the assumptions (i), (ii) and (iii) of the Lemma with ki in place of Q and with
ε32 > 0 in place of ε31, where the constant ε32 ↓ 0 as ε31 ↓ 0. Thus, it suffices to prove the
main estimate for each Zi and sum it over i. Observe next that assumption (ii) in the Lemma
excludes the possibility that ki < 0 for some i. Moreover, the case ki = 0 corresponds to the
trivial situation in which the minimizing cone S is 0. In this case M(Zi) < ε31 and we can
use the the isoperimetric inequality to find an H such that ∂H = Zi and

‖H‖(B1) 6 C(M(Z))2 6 Cε31M(Z) 6 Cε31
1
2‖0××Z‖(B1) .

It suffices therefore to consider the case ki > 0.
Summarizing, in addition to (i), (ii), (iii) and (iv) we can also assume, w.l.o.g., the following:

(v) Z = η] J[0,M(Z)]K, where η : [0,M(Z)]→ ∂B1 is Lipschitz and η(0) = η(M(Z));

(vi) If E((0××Z)∞, τ) = E(Z), then E((0××Z)∞, τ) < ε33 and (pτ)](P
−1
τ )]Z = Q Jγ0K (where

ε33(ε,Q) ↓ 0 as ε31 ↓ 0).

For any fixed δ > 0, we can find a second curve ζ ′ : [0, 2Qω2]→ ∂C1(τ) with the following
properties (recall that 2ω2 is the length of the unit circle in R2):

(a1) ζ ′(ϑ) = (cos ϑ, sin ϑ, f ′(ϑ)) ∈ τ× τ⊥ for some Lipschitz function f ′ : [0, 2Qω2] → τ⊥

with f ′(0) = f ′(2Qω2) and ‖f ′‖∞ + Lip(f ′) 6 δ;
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(a2) If we set Z ′ = ζ ′] J[0, 2Qω2]K, then M((Pτ)]Z−Z ′) 6 E(Z)/C(δ);

(a3) E((0××Z ′)∞, τ) 6 E((0××Z)∞, τ) = E(Z).

δ will be chosen (sufficiently small) later. Indeed assume this is not true, than we can
find a sequence of Lipschitz curves Zi = η] J[0,M(Zi)]K such that (pτ)](P−1

τ )]Z = Q Jγ0K
and E(Zi)→ 0. Therefore we are in position to apply the following Proposition and get a
contradiction for ε31 sufficiently small.

Proposition 5.6 ([66, Proposition 2.8]). Given a sequence of Lipschitz curves (Zi)i as above,
there exist Lipschitz functions fi : [0, 2ω2Q]→ Rn such that ‖fi‖∞ + Lip(fi)→ 0, and, if we set
Z ′i := (cos, sin, fi)] J[0, 2Qω2]K, then, E(Z ′i) 6 E(Zi) and M((Pτ)]Zi −Z

′
i) 6 E(Zi)/C(δ).

Since from (a2) we conclude easily

M(((0××Z)∞ − (0××Z ′)∞) C2(τ
′)) 6 E(Z)/C(δ) ,

we also infer

M(∂((0××Z− 0××Z ′) C1/2(τ
′))) 6 E(Z)/C(δ) .

After applying a rotation we can assume that τ ′ = π0. We thus achieve, in addition to (i)-(vi),
the condition

(vii) E((0××Z ′)∞,π0) = E(Z ′) and M(∂((0××Z− 0××Z ′) C1/2)) 6 E(Z)/C(δ).

Next, observe that if τ ′ minimizes E((0××Z ′)∞, τ ′), then

|τ ′ − τ| 6 2E((0××Z ′)∞, τ) 6 2E(Z) 6 2ε31

so that we can apply the reparametrization Lemma 3.17 and deduce easily that

(viii) the cycle Z ′′ := ∂((0××Z ′) C1/2) is of the form ζ] J[0, 2Qω2]K for some ζ(ϑ) =
1
2(cos ϑ, sin ϑ, f(ϑ)), where |f|+ Lip(f) 6 Cδ (C being a geometric constant);

(ix) E((0××Z ′′)∞,π0) = E(Z ′′) 6 E(Z) < ε̄31.

Step 2. Cylindrical epiperimetric inequality and conclusion. Consider the Fourier ex-
pansion of f as

f(ϑ) = α0 +

∞∑
k=0

(
αk cos

(
k
Qϑ
)
+βk sin

(
k
Qϑ
))

and let

P(f) := αQ cos+βQ sin .

We first claim the existence of a constant K (depending only upon Q) such that, provided δ
is smaller than some geometric constant, then

K ‖(f− P(f))‖W1,2 > ‖f‖W1,2 . (5.4)

Indeed consider the 2-dimensional plane τ which contains the image of the map ϑ 7→
(cos ϑ, sin ϑ,P(f)(ϑ)). It is then straightforward to check that
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• C1(τ)∩ spt((0××Z ′′)∞) ⊂ C2
• If x = rζ(ϑ) ∈ spt(Z ′′) and r > 0, then

|~T(x) − π0| >
1

C
(|Df(ϑ)|+ |f(ϑ)|) (5.5)

|~T(x) − τ| 6 C (|D(f− P(f))(ϑ)|+ |(f− P(f))(ϑ)|) , (5.6)

where C is just a geometric constant.

Using that Lip(f) 6 δ, by the area formula we easily conclude that

E((0××Z ′′)∞,π0) >
1

C
‖f‖2W1,2 (5.7)

E((0××Z ′′)∞, τ) 6 C‖f− P(f)‖2W1,2 . (5.8)

Since C is a fixed geometric constant, (5.4) follows easily from

E((0××Z ′′),π0) = E(Z ′′) 6 E((0××Z ′′)∞, τ) .

Next, following [66, Proposition 2.4] we consider the map g :]0, 12 ]× [0, 2Qω2]→ Rn given
by

g(r, ϑ) = α0 +
∞∑
k=1

r
k
Q

(
αk cos

(
k
Qϑ
)
+βk sin

(
k
Qϑ
))

and let H ′ = g]
q
]0, 12 ]× [0, 2Qω2]

y
. It is clear that

∂H ′ = Z ′′ .

Let us compute M(H ′). By the area formula we have

M(H ′) =
1

4

ˆ 1
0

ˆ 2ω2Q
0

√
1+ |gr|2 + |r−1gθ|2 + |gr ∧ r−1gθ|2 dθ rdr

6
1

4

ˆ 1
0

ˆ 2ω2Q
0

√
1+ |gr|2

√
1+ |r−1gθ|2 dθ rdr

6
1

4
sup

{ˆ 1
0

ˆ 2ω2Q
0

(1+ |gr|
2)dθ rdr ,

ˆ 1
0

ˆ 2ω2Q
0

(1+ |r−1gθ|
2)dθ rdr

}

=
Q

4
ω2 +

Q

8
ω2

∞∑
k=1

k

Q
(|αk|

2 + |βk|
2) ,

where in the last equality we have used

‖gr‖2L2(0,2ω2Q) = ‖r
−1gθ‖L2(0,2ω2Q) = ω2Q

∞∑
k=1

(
k

Q

)2
r
2k
Q −2(|αk|

2 + |βk|
2) .

In particular, we have proved that

M(H ′) −
Q

4
ω2 6

Q

8
ω2

∞∑
k=1

k

Q
(|αk|

2 + |βk|
2) (5.9)
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Next notice that, if k 6= Q, then there exists εQ = ε(Q) > 0 such that kQ 6 (1−εQ)

(
1+

(
k
Q

)2)
.

In particular, combining this with (5.9), we deduce

M(H ′) −
Q

4
ω2 6

Q

8
ω2

(
‖P(f)‖2W1,2 + (1− εQ)‖f− P(f)‖2W1,2

)
. (5.10)

On the other hand, again by the area formula and the fact that ‖f‖∞ + Lip(f) 6 Cδ, we have,
choosing ε31 = Cδ2,

M(0××Z ′′) = 1

8

ˆ 2ω2Q
0

√
1+ |f|2 + |f ′|2 + |f∧ f ′|2 dθ >

1

8

ˆ 2ω2Q
0

√
1+ |f|2 + |f ′|2 dθ

>
1

8

ˆ 2ω2Q
0

(
1+

1

2
(|f|2 + |f ′|2) −

1

8
(|f|4 + |f ′|4) −

1

4
(|f|2 |f ′|2)

)
dθ

>
1

8

ˆ 2ω2Q
0

(
1+

1

2
|f|2(1−Cδ2) +

1

2
|f ′|2(1−Cδ2)

)
dθ

>
Q

4
ω2 +

1

8
(1− ε31)Qω2 ‖f‖2W1,2 ,

where from the first to the second line we have used the inequality
√
1+ x > 1+ x

2 −
x2

8 . In
particular, we get

M(0××∂H ′) − Q
4
ω2 >

Q

8
ω2 (1− ε31)‖f‖2W1,2 . (5.11)

Finally, combining (5.10) and (5.11), we achieve

(1− ε31)

[
M(0××∂H ′) − Q

4
ω2

]
−M(H ′) −

Q

4
ω2

>
Q

8
ω2
{
(1− ε31)

2‖f‖2W1,2 − (1− εQ)] ‖f− P(f)‖2W1,2 − ‖P(f)‖2W1,2

}
>
Q

8
ω2
{
(1− ε31)

2‖f‖2W1,2 − ‖f− P(f)‖2W1,2 − ‖P(f)‖2W1,2 + εQ‖f− P(f)‖2W1,2

}
(5.4)
>
Q

8
ω2

{
(1− ε31)

2 − 1+
εQ

K

}
‖f‖2W1,2 > 0

for ε31 > 0 sufficiently small. Therefore we can conclude that

M(H ′) −
Q

4
ω2 6

1

4
(1− 8ε31)E(Z

′′) 6
1

4
(1− 8ε31)E(Z) ,

for some ε31(Q,K) > 0.
Step 3. Conclusion. Using the isoperimetric inequality we find a 2-dimensional current K

such that ∂K = ∂((0××Z) C1/2) −Z
′′ = ∂((0××Z− 0××Z ′) C1/2) and

M(K) 6 C(M(∂((0××Z) C1/2) −Z
′′))2

(vii)

6 C(δ)E(Z)2 .

Thus, if we set H := H ′ +K+ 0××Z B1 \C1/2, we have ∂H = Z and

M(H) 6
Q

4
ω2 +

1

4
(1− 8ε31)E(Z) +C(δ)E(Z)

2 +M((0××Z) B1 \C1/2) .
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Since E((0××Z)∞ < ε̄, it suffices to choose ε sufficiently small to achieve

M(H) 6
Q

4
ω2 +

1

4
(1− 4ε31)E(Z) +M((0××Z) B1 \C1/2) .

Next recall that

1

4
E(Z) 6

1

4
(E((0××Z)∞,π0) =

1

8

ˆ
C1

|~T − π0|
2d‖0××Z‖

=
1

4
(M((0××Z) C1) −Qω2) =M((0××Z) C1/2) −

Qω2
4

,

where the first equality in the last line is due to pπ0](0××Z) = Q JB1(0,π0)K. We therefore
infer

M(H) −Qω2 6M(0××Z) + ε31Qω2 − 4ε31M((0××Z) C1/2) −Qω2

6M(0××Z) + ε31Qω2 − 4ε31M((0××Z) B1/2) −Qω2

=M(0××Z) + ε31Qω2 − ε31M(0××Z) −Qω2
= (1− ε31)(M(0××Z) −Qω2) .

5.2 (wei) and almost monotonicity for almost minimizers

As already mentioned, the key ingredient in the proof of Theorem 5.2 is a suitable general-
ization of White’s epiperimetric inequality [66]. This inequality is a simple consequence of
Lemma 5.3 and a compactness argument.

Proposition 5.7. Let S ∈ I2(Rn+2) be an area minimizing cone. For every C12 > 0 there exists a
constant ε34 > 0, depending only on the constants C01 and α0 of Definition 5.1 and upon S, with
the following property. Assume that T ∈ I2(Rn+2) is an almost minimizer with 0 ∈ spt(T) and set
Tρ := (ι0,ρ)]T . If r is a positive number with

• 0 < 2 r < min{2−1dist(0, spt(∂T)), 2ε34},

• F
(
(T2r − S) B1

)
< 2ε34, ‖T‖(B2r) 6 C12r2

• and ∂(T Br) ∈ I1(Rn+2),

then

‖Tr‖(B1) − ‖S‖(B1) 6 (1− ε35)
(
‖0××∂(Tr B1)‖(B1) − ‖S‖(B1)

)
+ c̄ rα0 . (5.12)

c̄ depends only on C01, α0 and Θ(0,S) and ε35 > 0 is any number smaller than some ε̄ > 0, which
also depends on C0, α0 and Θ(0,S). Moreover c̄ depends linearly on C01. In particular, if T is as in
Definition 1.1, then α0 = 1 and: c̄ depends linearly on A := ‖AΣ‖∞ in case (a), it depends linearly
on Ω := ‖dω‖∞ in case (b) and it quals C0R−1 for some geometric constant C0 in case (c) (in the
sense of Remark 2.4).
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Proof. We argue by contradiction and assume there exist sequences of almost minimizers
(Tk)k∈N ⊂ I2(R2+n) and radii rk ↓ 0 with 0 < 2 rk < dist(0, spt(∂Tk)) such that Rk :=

(Tk)rk satisfies F((Rk − S) B2) <
1
k and

‖Rk‖(B1) − ‖S‖(B1) >
(
1−

1

k

)(
‖0××∂(Rk B1)‖(B1) − ‖S‖(B1)

)
+ k rα0k . (5.13)

It is important to notice that, in contradicting the statement of Proposition 5.7, the currents
Tk satisfy (5.1) for some constants C0 and α0 which are fixed, i.e. independent of k. First of
all, without loss of generality we can assume

‖0××∂(Rk B1)‖(B1) − ‖S‖(B1) > 0 ; (5.14)

indeed if ‖0××∂(Rk B1)‖(B1) − ‖S‖(B1) < 0 we could use the almost minimality and the
appropriate rescaling to conclude

‖Rk‖(B1) − ‖S‖(B1) 6 ‖0××∂(Rk B1)‖(B1) − ‖S‖(B1) +C1rα0k

6
(
1−

1

k

)(
‖0××∂(Rk B1)‖(B1) − ‖S‖(B1)

)
+C1 r

α0
k ,

contradicting (5.13) for k large enough.
Observe that we have a uniform bound for ‖Rk‖(B2). Thus, by the usual slicing theorem,

passing to a subsequence there is a radius ρ ∈]32 , 2[ such M(∂((Rk − S) Bρ)) is uniformly
bounded. On the other hand Rk − S is converging to 0 in the sense of currents and hence, by
[54, Theorem 31.2], F((Rk − S) Bρ)→ 0. This means that there are integral currents Hk,Gk

with M(Hk) +M(Gk)→ 0 such that

(Rk − S) Bρ = ∂Hk +Gk .

Taking the boundary of the latter identity we conclude that ∂Gk = ∂((Rk − S) Bρ). Now,
rescaling the almost minimality property of Tk, we conclude that

‖Rk‖(Bρ) 6 ‖S‖(Bρ) +M(Gk) +C1r
α0
k .

On the other hand, since (M(Gk) + rk) ↓ 0, we infer

lim sup
k→∞ ‖Rk‖(Bρ) 6 ‖S‖(Bρ) .

Since however Rk → S in B2, we also have

‖S‖(Bρ) 6 lim inf
k→∞ ‖Rk‖(Bρ) .

We thus conclude that ‖Rk‖ ∗⇀ ‖S‖ on Bρ in the sense of measures and, since ‖S‖(∂B1) = 0
by the conical property of S, we infer that ‖Rk‖(B1)→ ‖S‖(B1). Thus (5.13) and (5.14) imply

lim
k→∞M(∂(Rk B1)) =M(∂(S B1)) . (5.15)
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The almost monotonicity formula for Tk (in the rescaled version for Rk) implies through
standard arguments that spt(Rk) converges to spt(S) in the Hausdorff sense: one can follow,
for instance, the proof of [54, Lemma 17.11]. Finally, again by [54, Theorem 31.2], we conclude
that F((Rk − S) B1) → 0 and hence, arguing as above, we infer the existence of integer
rectifiable currents Gk such that ∂Gk = ∂((Rk−S) B1) andM(Gk)→ 0. In turn this implies
F(∂(Rk B1) − ∂(S B1))→ 0. So all the assumptions of Lemma 5.3 are satisfied, and there
exist integral currents Hk such that ∂Hk = ∂(Rk B1) and

‖Hk‖(B1) − ‖S‖(B1) 6 (1− ε31)
(
‖0××∂(Rk B1)‖(B1) − ‖S‖(B1)

)
. (5.16)

By the almost minimality of Tk and the usual rescaling, we conclude

‖Rk‖(B1) 6 ‖Hk‖(B1) +C0rα0k .

Thus,

‖Rk||(B1) − ‖S‖(B1) 6 ‖Hk‖(B1) − ‖S‖(B1) +C0rα0k
(5.16)
6 (1− ε31)

(
‖0××∂(Rk B1)‖(B1) − ‖S‖(B1)

)
+C0r

α0
k .

However, when k is so large that 1k < ε31 and k > C0, the latter inequality contradicts (5.13)
(recall (5.14)).

It is known that the almost minimizing condition of Definition 5.1 is alone sufficient to
derive a monotonicity formula. However, we have been unable to find a reference and we
therefore provide the proof below. Note also that in the geometric cases (a), (b) and (c), a
more precise form of the monotonicity formula could be derived directly appealing to the
fact that the corresponding induced varifolds have bounded mean curvature.

Proposition 5.8 (Almost Monotonicity). Let T ∈ Im(Rm+n) be an almost minimizer and
x ∈ spt(T) \ spt(∂T). There are constants C02, r̄,α0 > 0 such that

ˆ
Br(x)\Bs(x)

|(z− x)⊥|2

|z− x|m+2
d‖T‖(z) 6 C02

(‖T‖(Br(x))
ωk rm

−
‖T‖(Bs(x))
ωm sm

+ rα0
)

(5.17)

for all 0 < s < r < r̄ (in (5.17) (z− x)⊥ denotes the projection of the vector z− x on the orthogonal

complement of the approximate tangent to T at x). In particular the function r→ ‖T‖(Br(x))
ωk rm

+Crα

is nondecreasing.

Proof. Assume without loss of generality x = 0. For a.e. r the current ∂(T Br) is integral (cf.
[54, Section 28]) and we have, by (5.1) with W = 0××∂(T Br),

‖T‖(Br) 6 ‖W‖(Br) +C0rm+α0 =
r

m
M(∂(T Br)) +C0r

m+α0 . (5.18)

Set f(r) := ‖T‖(Br) and observe that f is an nondecreasing function and so a function of
bounded variation. As such it has left and right limits at each point and in fact f(r) = f(r−).
In particular we can decompose its distributional derivative Df, which is a nonnegative
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measure, as Df = f ′L + µs, where L denotes the Lebesgue one-dimensional measure and
µs is the singular part of Df. We multiply (5.18) by mr−m−1 and add f ′(r)

rm + µs
rm :

µs

rm
+
1

rm
f ′(r) −

1

rm
M(∂(T Br)) 6

Df

rm
−
mf(r)

rm+1
+C01r

α0−1.

Integrating on the interval [s, r[ (where r0 > r > s) we reach
ˆ
[s,r[

1

ρm
dµs(ρ)︸ ︷︷ ︸

Is

+

ˆ r
s

1

ρm
(f ′(ρ) −M(∂(T Bρ)))dρ︸ ︷︷ ︸

Ia

6
f(r)

rm
−
f(s)

sm
+C0r

α0 .

To conclude we only need to prove that I := Is + Ia bounds a multiple of the left hand side
of (5.17). Denote by x‖ the projection of x on the approximate tangent space to T at x. Recall
first (cf. [54, eq. (28.6)]) that

Tρ := 〈T , | · |, ρ〉 = ∂(T Bρ) − (∂T) Bρ = ∂(T Bρ) for a.e. ρ.

Next introduce the Borel set E := {|x‖| > 0} and its complementary Ec and recall that, by the
coarea formula (cf. [54, Lemma 28.1 & Lemma 28.5]), for any Borel map g we have

ˆ
Br\Bs

g(y)
|y‖|

|y|
d‖T‖(y) =

ˆ r
s

ˆ
g(x)d‖Tρ‖(x)dρ . (5.19)

Let R be the countable rectifiable set such that ‖T‖ = Θ(T , ·)Hm R. It then follows from the
slicing theory that ‖Tρ‖ = Θ(T , ·)Hm−1 (R∩ ∂Bρ) for a.e. ρ and thus inserting g = 1Ec in
(5.19) above we derive

Hm−1(Ec ∩ ∂Bρ) 6 ‖Tρ‖(Ec) = 0 for a.e. ρ. (5.20)

Thus, since |x‖| > 0 for every x ∈ (Br \Bs)∩ E, we conclude

Ia =

ˆ r
s

1

ρm

ˆ
E

|x|− |x‖|

|x‖|
d‖Tρ‖(x)dρ =

ˆ r
s

1

ρm

ˆ
E

|x|2 − |x‖|2

|x|‖(|x|+ |x‖|)
d‖Tρ‖(x)dρ

>
ˆ r
s

1

2ρm+2

ˆ
E

|x⊥|2|x|

|x‖|
d‖Tρ‖(x)dρ =

ˆ
(Br\Bs)∩E

|x⊥|2

2|x|m+2
d‖T‖(x) . (5.21)

Now observe that on Ec we have |x⊥| = |x| and thus
ˆ
(Br\Bs)∩Ec

|x⊥|2

2|x|m+2
d‖T‖(x) =

ˆ
(Br\Bs)∩Ec

1

2|x|m
d‖T‖(x) . (5.22)

Next, denote by S the set of radii r such that Hm−1(Ec ∩ ∂Br) > 0. We then must have

‖T‖(Ec ∩ (Bρ \Bτ)) 6 ‖T‖
(
∪s∈S∩[τ,ρ[∂Bs

)
6 Df(S∩ [τ, ρ[)

(5.20)
6 µs([τ, ρ[)

for every 0 < τ < ρ (in fact the inequalities above are all identities, but this is not really
needed). Thus for every N ∈N \ 0 we can estimate

ˆ
(Br\Bs)∩Ec

1

2|x|m
d‖T‖(x) 6

N∑
i=1

1

2smi−1
‖T‖(Ec ∩ (Bsi \Bsi−1)) 6

N∑
i=1

1

2smi−1

ˆ
[si−1,si[

dµs
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where si := s+ i
N(r− s). In particular letting N ↑∞ we conclude

ˆ
(Br\Bs)∩Ec

1

2|x|m
d‖T‖(x) 6

ˆ
[s,r[

1

2ρm
dµs(ρ) = I

s . (5.23)

From (5.21), (5.22) and (5.23) we conclude that Ia + Is bounds the right hand side of
(5.17).

To conclude this section we prove a simple consequence of the Area Formula: that is how
to compute the mass of the pushforward through the radial map of the portion of the current
in a shell.

Lemma 5.9. Let R ∈ Im(Rn) and let x ∈ spt(T) \ spt(∂T). Moreover let F(z) := z
|z| for every

z ∈ Rn and 0 < r < s. Then

M(F](T (Bt \Bs))) 6
ˆ
Bt\Bs

|x⊥|

|x|m+1
d‖T‖ .

Proof. Let ~T(x) := T1(x)∧ · · ·∧Tm(x) and notice that by the Area Formula for a push-forward
(cf. [54, Remark 27.2]), we have

M(F](T (Bt \Bs))) =

ˆ
Bt\Bs

|DF(x) T1(x)∧ · · ·∧DF(x) Tm(x)|d‖T‖(x)

=

ˆ
Bt\Bs

√
det((DF(x) Tj(x)) · (DF(x) Ti(x)))d‖T‖(x) , (5.24)

that is we need to compute det((DF(x) Tj(x)) · (DF(x) Ti(x))). To this aim set Fi(x) := xi
|x| and

notice that, if x 6= 0, we have

∂Fi
∂xj

(x) =
δij

|x|
−
xi xj

|x|3
,

so that

DF(x) Tj(x) =
1

|x|

(
Tj(x) − (Tj · x)

x

|x|2

)
.

It follows from this that

(DF(x) Tj(x)) · (DF(x) Ti(x)) =
1

|x|2

(
Tj(x) · Ti(x) −

1

|x|2
(Tj · x) (Ti · x)

)
=

1

|x|2

(
1−

1

|x|2
(Tj · x) (Ti · x)

)
,

where in the last line we used the orthonormality of (Tj)j. Set t := 1
|x|2

and Aij := (Tj · x) (Ti ·
x), then, by the usual formula for det(I+ tA) (cf. [32, 1.4.5]), we deduce

det(1+ tA) =
m∑
k=0

(
−
1

|x|2

)k ∑
16λ1<···<λk6m)

det((x · Tλi(x)) (x · Tλj(x)))

= 1−
1

|x|2

m∑
l=1

(x · Tl(x))2 +
m∑
k=2

(
−
1

|x|2

)m ∑
16λ1<···<λk6m

det((x · Tλi(x)) (x · Tλj(x))) .
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Since the column of the matrix with entries (x · Tλi(x)) (x · Tλj(x)) are linearly dependent, we
conclude that

det((DF(x) Tj(x)) · (DF(x) Ti(x))) =
1

|x|2m

(
1−

1

|x|2

m+1∑
l=1

(x · Tl(x))2
)

=
|x⊥|2

|x|2(m+1)
. (5.25)

Combining (5.24) and (5.25) we reach the conclusion.

5.3 conclusion of the proof

Without loss of generality from now on we assume that x = 0 and that dist(0, spt(∂T)) > 2.
Moreover we set Tr := (ι0,r)]T .

Step 1. Blow-up. By the almost monotonicity, the family {Tr}0<r61 ⊂ I2(Rn+2) enjoys
a uniform bound for ‖Tr‖(K) whenever K ⊂ Rn+2 is a compact set. Moreover, for any
U ⊂⊂ Rn+2 open, ∂Tr U = 0, provided r is large enough. It follows that we can apply
the compactness theorem of integral currents, and for every sequence rk ↓ 0 we can extract
a subsequence Tρk converging to an integral current S with ∂S = 0. Observe also that we
can argue as in the proof of Proposition 5.7 to conclude that for every N0 ∈ N there is a
subsequence, not relabeled, and a r̄ ∈]N0,N0 + 1[ with the following properties

• ‖Tρk‖(Br̄)→ ‖S‖(Br̄);

• There are currents Hk ∈ I2(Rn+2) with M(Hk) ↓ 0 and ∂Hk = ∂((Tρk − S) Br̄).

We then easily conclude that S is area minimizing in Br̄ and that ‖Tρk‖(V) → ‖S‖(V) for
any open set V ⊂⊂ Br̄ with ‖S‖(∂V) = 0. A standard argument shows that these properties
remain then true for every ball and for the entire sequence {Tρk}. As a consequence of the fact
that Θ(0, T) exists, we then conclude that

‖S‖(Br(0)) = Θ(T , 0)r2 := Qω2r2

for all radii but an (at most) countable family (recall that ω2 denotes the area of the unit
disk in R2). It is then a standard fact, using the monotonicity formula for area-minimizing
currents, that S is a cone (see for instance [54]). Finally, it is well known that 2-dimensional
area minimizing cones are all sum of planes intersecting only at the origin (see for instance
[35]). So we conclude from the standard theory of currents (see for instance the proof of
Proposition 5.7) that F((Tρk − S) Br)→ 0 for every r > 0.

Let ε34 be the constant of Proposition 5.7. We then conclude the existence of a radius r0 > 0
such that, for every r < r0 there is an an area minimizing cone S such that F((T2r−S) B1) 6
2 ε34. We can then apply (5.12) for every 0 < r < r0 such that ∂(T Br) ∈ I1(∂Br) (which
holds for a.e. r). After scaling back and multiplying by r2, we get

M(T Br)−Qω2 r
2 6 (1− ε35)

(
M(0××∂(T Br))−Qω2 r

2
)
+ c̄ r2+α0 for a.e. r < r0 .

(5.26)

Set f(r) :=M(T Br) −Qω2 r
2. Since r 7→M(T Br) is monotone, the function f is differ-

entiable a.e. and its distributional derivative is a measure. Its absolutely continuous part
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coincides a.e. with the classical differential and its singular part is nonnegative. Note also
that we can assume 2+α0 > ε+ 2

1−ε =: ε+ a for some ε > 0.
Therefore, by the well-known expansion for the mass of a cone, (5.26) reads

−a c̄ rε−1 6
d

dr

(
r−af(r)

)
, (5.27)

Integrating (5.27) we get −aε c̄
(
rε − sε

)
6 r−af(r) − s−af(s) for all 0 < s < r < r0. Setting

e(r) :=
f(r)
ω2r2

this implies

e(s) 6
(s
r

)a
e(r) +Crε ∀ 0 < s < r < r0. (5.28)

Step 2. Consider now the map F(x) := x
|x| and radii 0 < t

2 6 s 6 t < r0. By Lemma 5.9,

M(F](T (Bt \Bs))) =

ˆ
Bt\Bs

|x⊥|

|x|3
d‖T‖

6

(ˆ
Bt\Bs

|x⊥|2

|x|4
d‖T‖

) 1
2

︸ ︷︷ ︸
:=I1

·
(ˆ
Bt\Bs

1

|x|2
d‖T‖

) 1
2

︸ ︷︷ ︸
I2

.

I1 and I2 can be easily estimated using the almost monotonicity formula

I21
(5.17)
6 e(t) − e(s) +C1 t

α0 6 e(t) + 2C1 t
α0

(5.28)
6 Ct

ε
2 , (5.29)

I22 6
‖T‖(Bt)
s2

(5.17)
6

(
t

s

)2 [‖T‖(Br0)
r20

+C1 r
α0
0

]
6 C, (5.30)

where we took into account that, by (5.17), e(s) > −C1s
α for every s > 0 and that C > 0 is a

constant depending on r0. In particular we conclude that

M(F](T (Bt \Bs))) 6 Ct
ε
2 ∀ 0 < t

2
6 s 6 t < r0,

and, by iteration on diadic intervals,

M(F](T (Br \Bs))) 6 Cr
ε
2 ∀ 0 < s < r < r0. (5.31)

Since ∂F](T (Br \Bs)) = ∂(Tr B1) − ∂(Ts B1) for a.e. 0 < s < r, from the definition of F
we get:

F
(
∂(Tr B1) − ∂(Ts B1)

) (5.31)
6 Cr

ε
2 . (5.32)

This implies that the currents ∂(Tr B1) converges to a unique current Z. On the other
hand, by the almost monotonicity formula it follows easily that Tr B1 converge to the cone
0××Z. Since we already know that an appropriate sequence converges to S =

∑
i niJπiK, we

conclude that Tr converges to S.
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Step 3. Proof of (5.2) and (5.3). In order to prove (5.2), it is enough to find integral
currents V and W such that Tr − Ts = ∂H+W and M(H) +M(W) 6 Cr

ε
2 . To this aim, fix

a small parameter a > 0. Let Jp,qK denote the current in I1(R) induced by the oriented
segment {t : p 6 t 6 q}. Similarly JpK ∈ I0(R) is the Dirac mass at the point p. Consider the
currents Va ∈ I3(R×Rn+2) defined by

Va :=
(

J0, 1K× T (Br \Ba)
) {

(t, x) ∈ R×Rn+2 : r−1|x| 6 t 6 s−1|x|
}

.

Next, we consider the map h : R× (Rn+2 \ {0}) 3 (t, x) → tx
|x| ∈ Rn+2 and the currents

Ha := h]Va. If d1,d2 : R ×Rn+2 → R denote the functions d1(t, x) := t − s−1|x| and
d2(t, x) := t− r−1|x|, then for a.e. a > 0 we have

∂Va = J1K× T (Br \Bs) −
q
a
r , as

y
× ∂(T Ba)

+ 〈J0, 1K× T (Br \Ba),d1, 0〉− 〈J0, 1K× T (Br \Ba),d2, 0〉 .

Since ∂ commutes with the push-forward, we also get

∂Ha = F](T (Br \Bs) − h]
(q
a
r , as

y
× ∂(T Ba)

)︸ ︷︷ ︸
Za

−Tr (B1 \Ba
r
) + Ts (B1 \Ba

s
), (5.33)

where we have used the fact that h(t, x) ≡ s−1x and h(t, x) ≡ r−1x respectively in the sets
{(t, x) ∈ R× (Rn+2 \ {0}) : t = s−1|x|} and {(t, x) ∈ R× (Rn+2 \ {0}) : t = r−1|x|}. It is
simple to see that there exists H such that Ha → −H as a ↓ 0. Thus (5.33) gives

−∂H = F](T (Br \Bs)) − Tr B1 + Ts B1,

because M(Za) 6 a |s−1 − r−1|M(∂(Ta B1)) 6 Ca |s−1 − r−1|M(∂(T0 B1)) → 0. To con-
clude (5.2) we only need to estimate the mass of H. To this extent, note that h]( ∂∂t ∧ ~T) =

dh( ∂∂t)∧ h](
~T) and, since dh

(
∂
∂t

)
= x

|x| ,

H(ω) =

ˆ 1
0

ˆ
Brt\Bst

〈h]
(
∂
∂t ∧

~T
)

,ωh(x)〉d‖R‖(x)dt

=

ˆ 1
0

ˆ
Brt\Bst

〈 tx
|x| ∧ (F]~T),ωtx/|x|〉d‖T‖(x)dt

=

ˆ 1
0

ˆ
Brt\Bst

〈(tF)]~T ,ωtx/|x| x
|x|〉d‖T‖(x)dt

=

ˆ 1
0

(tF)] (T (Brt \Bst)) (ω
x
|x|)dt

Thus

M(H) 6
ˆ 1
0

M((tF)] (T (Brt \Bst))dt =

ˆ 1
0

t2M(F](T (Brt \Bst)))dt

(5.31)
6 C

ˆ 1
0

rε/2t2+ε/2 dt 6 Crε/2 .

(5.3) follows then from the lower bound on the density of T which is a consequence of the
almost monotonicity formula, see for instance [54, Lemma 17.11].
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Step 4. Decomposition. We first introduce the following notation: we call T irreducible in
Br(x) if it is not possible to find two (integral) currents with T Br(x) = T

1+T2 and spt(T1)∩
spt(T2) = {0} (cf. to the notion of indecomposabality as in [32, 4.2.25]: T is indecomposable if it
is impossible to write it as T1+ T2 with ∂T1 Br(x) = ∂T2 Br(x) = 0 andM(T1)+M(T2) =

‖T‖(Br(x))). If T is reducible, then clearly Θ(‖T‖, x) = Θ(‖T1‖, x) +Θ(‖T2‖, x). Since each
T i would be almost minimizing, Θ(‖T i‖, x) ∈N \ {0} and we can only decompose T finitely
many times. Next suppose by contradiction that T is irreducible in x but its tangent cone
Tx,0 is not a plane. Then, since Tx,0 is area minimizing, by [35], there exists J > 2 such
that Tx,0 =

∑J
i=1Qi JViK, where Vi ⊂ Rn+2 are 2-dimensional linear subspaces such that

Vi ∩ Vj = {0} for every i 6= j and Qi ∈N satisfy
∑J
i=1Qi = Q. Then consider the currents

T i := T {y ∈ Rm+n : dist(y− x,Vi) 6 Cr1+γ} for i = 1, 2, . . . , J .

By (5.3) this is a decomposition of T in two non-zero currents whose supports intersect each
other only in {0}, which is a contradiction.
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6
C E N T E R M A N I F O L D

In this chapter we construct the center manifold.

6.1 the construction algorithm

6.1.1 Choice of some parameters and smallness of some other constants

As in [20] the construction of the center manifold involves several parameters. We start
by choosing three of them which will appear as exponents of (two) lenghtscales in several
estimates.

Assumptions 6. Let T be as in Assumptions 3 and 4 and in particular recall the exponents ᾱ,b,a
and γ defined therein. We choose the positive exponents γ0, β2 and δ1 (in the given order) so that

γ0 < min{γ, ᾱ,a− b,b− b+1
2 , log2

6
5 } (6.1)

β2 < min{ε0, γ04 , ab − 1, ᾱ2 , β02 ,β0γ0} b > 1+b
2 (1+β2) (6.2)

β2 − 2δ1 >
β2
3 β0(2− 2δ1) − 2δ1 > 2β2 (6.3)

(where β0 is the constant of Theorem 2.8 and ε0 the exponent in the regularity of Σ)

Having fixed γ0, β2 and δ1 we introduce five further parameters: M0,N0,Ce,Ch and ε41.
We will impose several inequalities upon them, but following a very precise hierarchy, which
ensures that all the conditions required in the remaining statements can be met. We will
use the term “geometric” when such conditions depend only upon n̄,n,Q, Q̄,γ0,β2 and
δ1, whereas we keep track of their dependence on M0,N0,Ce and Ch using the notation
C = C(M0),C(M0,N0) and so on. ε41 is always the last parameter to be chosen: it will be
small depending upon all the other constants, but constants will never depend upon it.

Assumptions 7 (Hierarchy of the parameters). In all the statements of the paper

• M0 > 4 is larger than a geometric constant and N0 is a natural number larger than C(M0);
one such condition is recurrent and we state it here:

√
2M02

10−N0 6 1 ; (6.4)

• Ce is larger than C(M0,N0);

• Ch is larger than C(M0,N0,Ce);

• ε41 > 0 is smaller than c(M0,N0,Ce,Ch) > 0.

95



96 center manifold

6.1.2 Whitney decomposition of BQ̄,2

From now on we will use B for BQ̄,2, since the positive natural number Q̄ is fixed for the
rest of the paper. In this section we decompose B \ {0} in a suitable way. More precisely,
a closed subset L of B will be called a dyadic square if it is a connected component of
B ∩ (H×C) for some euclidean dyadic square H = [a1,a1 + 2`]× [a2,a2 + 2`] ⊂ R2 = C

with

• ` = 2−j, j ∈N, j > 2, and a ∈ 21−jZ2;

• H ⊂ [−1, 1]2 and 0 6∈ H.

Observe that L is truly a square, both from the topological and the metric point of view. 2` is
the sidelength of both H and L. Note that B∩ (H×C) consists then of Q distinct squares
L1, . . . ,LQ̄. zH := a+(`, `) is the center of the square H. Each L lying over H will then contain
a point (zH,wL), which is the center of L. Depending upon the context we will then use zL
rather than zH.

The family of all dyadic squares of B defined above will be denoted by C . We next
consider, for j ∈N, the dyadic closed annuli

Aj := B∩
(
([−2−j, 2−j]2\] − 2−j−1, 2−j−1[2)×C

)
.

Each dyadic square L of B is then contained in exactly one annulus Aj and we define
d(L) := 2−j−1. Moreover `(L) = 2−j−k for some k > 2. We then denote by C k,j the family of
those dyadic squares L such that L ⊂ Aj and `(L) = 2−j−k. Observe that, for each j > 1,k > 2,
C k,j is a covering of Aj and that two elements of C k,j can only intersect at their boundaries.
Moreover, any element of C k,j can intersect at most 8 other elements of C k,j. Finally, we
set C k :=

⋃
j>2 C k,j. Observe now that C covers a punctured neighborhood of 0 and that if

L ∈ C k, then

• L intesects at most 9 other elements J ∈ C k;

• If L ∩ J 6= ∅, then `(J)/2 6 `(L) 6 2`(L) and L ∩ J is either a vertex or a side of the
smallest among the two.

More in general if the intersection of two distinct elements L and J in C has nonempty
interior, then one is contained in the other: if L ⊂ J we then say that L is a descendant of J
and J an ancestor of L. If in addition `(L) = `(J)/2, then we say that L is a son of J and J is
the father of L. When L and J intersect only at their boundaries, we then say that L and J are
adjacent.

Next, for each dyadic square L we set rL :=
√
2M0`(L). Note that, by our choice of N0, we

have that:

if L ∈ C k,j and k > N0, then C64rL(zL) ⊂ C21−j \C2−2−j . (6.5)

In particular Vu,a ∩C64rL(zL) consists of Q connected components and we can select the
one containing (zL,u(zL,wL)), which we will denote by VL. We will then denote by TL
the current T VL. According to Lemma 2.15, VL ∩ {zL}×Rn contains at least one point of
spt(T): we select any such point and denote it by pL = (zL,yL). Correspondingly we will
denote by BL the ball B64rL(pL).
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Definition 6.1. The height of a current S in a set E with respect to a plane π is given by

h(S,E,π) := sup{|p⊥π (p− q)| : p,q ∈ spt(S)∩ E} . (6.6)

If E = Cr(p,π) we will then set h(S,Cr(p,π)) := h(S,Cr(p,π),π). If E = Br(p), T is as in
Assumption 1 and p ∈ Σ (in the cases (a) and (c) of Definition 1.1), then h(T ,Br(p)) :=

h(T ,Br(p),π) where π gives the minimal height among all π for which E(T ,Br(p),π) =

E(T ,Br(p)) (and such that π ⊂ TpΣ in case (a) and (c) of Definition 1.1). Moreover, for such
π we say that it optimizes the excess and the height in Br(p).

We are now ready to define the dyadic decomposition of B \ 0.

Definition 6.2 (Refining procedure). We build inductively the families of squares S , W =

We ∪Wh ∪Wn and their subfamilies S k = S ∩C k, S k,j = S ∩C k,j and so on. First of all,
we set S k = W k = ∅ if k < N0. For k > N0 we use a double induction. Having defined
S k ′ , W k ′ for all k ′ < k and S k,j ′ , W k,j ′ for all j ′ < j, we pick all squares L of C k,j which
do not have any ancestor in W and we proceed as follows.

(EX) We assign L to W k,j
e if

E(TL,BL) > Cem0d(L)2γ0−2+2δ1`(L)2−2δ1 ; (6.7)

(HT) We assign L to W k,j
h if we have not assigned it to We and

h(TL,BL) > Chm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 ; (6.8)

(NN) We assign L to W k,j
n if we have not assigned it to We ∪Wh and it intersects a square J

already assigned to W with `(J) = 2`(L).

(S) We assign L to S k,j if none of the above occurs.

We finally set

Γ := ([−1, 1]2 ×R2)∩B \
⋃
L∈W

L = {0}∪
⋂
k>N0

⋃
L∈S k

L. (6.9)

Proposition 6.3 (Whitney decomposition). Let T , γ0, β2 and δ1 be as in the Assumptions 3, 4
and 6. If M0 > C, N0 > C(M0), Ce,Ch > C(M0,N0) (for suitably large constants) and ε41 is
sufficiently small then:

(i) `(L) 6 2−N0+1|zL| ∀L ∈ S ∪W ;

(ii) W k = ∅ for all k 6 N0 + 6;

(iii) Γ is a closed set and sep(Γ,L) := inf{|x− x ′| : x ∈ Γ, x ′ ∈ L} > 2`(L) ∀L ∈ W .

Moreover, the following estimates hold with C = C(M0,N0,Ce,Ch):

E(TJ,BJ) 6 Cem0d(J)2γ0−2+2δ1`(J)2−2δ1 ∀J ∈ S , (6.10)

h(TJ,BJ) 6 Chm
1
4

0d(J)
γ0
2 −β2`(J)1+β2 ∀J ∈ S , (6.11)

E(TH,BH) 6 Cm0d(H)2γ0−2+2δ1`(H)2−2δ1 ∀H ∈ W , (6.12)

h(TH,BH) 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)1+β2 ∀H ∈ W . (6.13)
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6.1.3 Approximating functions and construction algorithm

We will see below that in (a suitable portion of) each BL the current TL can be approximated
efficiently with a graph of a Lipschitz multiple-valued map. The average of the sheets of this
approximating map will then be used as a local model for the center manifold.

Definition 6.4 (π-approximations). Let L ∈ S ∪W and π be a 2-dimensional plane. If
TL C32rL(pL,π) fulfills the assumptions of Theorem 2.8 in the cylinder C32rL(pL,π), then
the resulting map f : B8rL(pL,π)→ AQ(π

⊥) given by Theorem 2.8 is called a π-approximation
of TL in C8rL(pL,π).

As in [20], we wish to find a suitable smoothing of the average of the π-approximation
η ◦ f. However the smoothing procedure is more complicated in the case (b) of Definition
1.1: rather than smoothing by convolution, we need to solve a suitable elliptic system of
partial differential equations. This approach can in fact be used in cases (a) and (c) as well.
In several instances regarding case (a) and (c) we will have to manipulate maps defined
on some affine space q+ π and taking value on π⊥, where q ∈ Σ and π ⊂ TqΣ. In such
cases it is convenient to introduce the following conventions: the maps will be regarded as
maps defined on π (requiring a simple translation by q), the space π⊥ will be decomposed
into κ := π⊥ ∩ TqΣ and its orthogonal complement TqΣ⊥ and we will regard Ψq as a map
defined on π×κ and taking values in TqΣ⊥. Similarly, elements of π⊥ will be decomposed
as (ξ,η) ∈ κ × TqΣ⊥.

Lemma 6.5. Let the assumptions of Proposition 6.3 hold and assume Ce > C? and Ch > C?Ce
for a suitably large C?(M0,N0). For each L ∈ W ∪S we choose a plane πL which optimizes the
excess and the height in BL. For any choice of the other parameters, if ε41 is sufficiently small, then
TL C32rL(pL,πL) satisfies the assumptions of Theorem 2.8 for any L ∈ W ∪S .

Definition 6.6 (Smoothing). Let L and πL be as in Lemma 6.5 and denote by fL the corre-
sponding πL-approximation. In case of Definition 1.1 (a)&(c) we let f̄(x) :=

∑
i

r
pTpLΣ(fi)

z

be the projection of fL on the tangent TpLΣ, whereas in the other case (Definition 1.1(b)) we
set f̄ = f. We let h̄L be a solution (provided it exists) of

LLh̄L = FL

h̄L
∣∣
∂B8rL(pL,πL)

= η ◦ f̄L ,

(6.14)

where LL is a suitable second order linear elliptic operator with constant coefficients and
FL a suitable affine map: the precise expressions for LL and FL depend on a careful Taylor
expansion of the first variations formulae and are given in Proposition 6.16. We then set
hL(x) := (h̄L(x),ΨpL(x, h̄L(x)) in case (a) and (c) and hL(x) = h̄L(x) in case (b). The map hL
is the tilted interpolating function relative to L.

In what follows we will deal with graphs of multivalued functions f in several system of
coordinates. These objects can be naturally seen as currents Gf (see Section 3.2 of Part ii)
and in this respect we will use extensively the notation and results of Section 3.2 (therefore
Gr(f) will denote the “set-theoretic” graph).
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Lemma 6.7. Let the assumptions of Proposition 6.3 hold and assume Ce > C? and Ch > C?Ce
(where C? is the constant of Lemma 6.5). For any choice of the other parameters, if ε41 is sufficiently
small the following holds. For any L ∈ W ∪S , there is a unique solution h̄L of (6.14) and there
is a smooth gL : B4rL(zL,π0) → π⊥0 such that GgL = GhL C4rL(pL,π0), where hL is the tilted
interpolating function of Definition 6.6. Using the charts introduced in Definition 2.10, the map gL
will be considered as defined on the ball B4rL(zL,wL) ⊂ B.

The center manifold is defined by gluing together the maps gL.

Definition 6.8 (Interpolating functions). The map gL in Lemma 6.5 will be called the L-
interpolating function. Fix next a ϑ ∈ C∞c ([−1716 , 1716 ]

m, [0, 1]
)

which is nonnegative and is
identically 1 on [−1, 1]m. For each j let Pj := S j ∪

⋃j
i=N0

W i and for L ∈ Pj define
ϑL((z,w)) := ϑ(z−zL`(L) ). Set

ϕ̂j :=

∑
L∈Pj ϑLgL∑
L∈Pj ϑL

on {(z,w) ∈ B : z ∈ [−1, 1]2 \ {0}} (6.15)

and extend the map to 0 defining ϕ̂j(0) = 0. In case (b) of Definition 1.1 we set ϕj := ϕ̂j. In
cases (a) and (c) we let ϕ̄j(z,w) be the first n̄ components of ϕ̂j(z,w) and define ϕj(z,w) =(
ϕ̄j(z,w),Ψ(z, ϕ̄j(z,w))

)
. ϕj will be called the glued interpolation at step j.

We now come to the first main theorem, which yields the surface which we call “branched
center manifold” (again notice that for Q̄ = 1 there is certainly no branching, since the
surface is a classical C1,α graph). In the statement we will need to “enlarge” slightly dyadic
squares: given L ∈ C let H be dyadic square of R2 so that L is a connected component of
B∩ (H×C). Given ` < |zL| = |zH|, we let H ′ be the closed euclidean square of R2 which has
the same center as H and sides of length 2`(L), parallel to the coordinate axes. The square L ′

concentric to L and with sidelength 2`(L) = 2` is that connected component of B∩ (H ′ ×C)

which contains L.

Theorem 6.9. Under the same assumptions of Lemma 6.5, the following holds provided ε41 is
sufficiently small.

(i) For κ := β2/4 and C = C(M0,N0,Ce,Ch) we have (for all j)

|ϕj(z,w)| 6 Cm
1
4

0 |z|
1+

γ0
2 for all (z,w) (6.16)

|Dlϕj(z,w)| 6 Cm
1
2

0 |z|
1+γ0−l for l = 1, . . . , 3 and (z,w) 6= 0 (6.17)

[D3ϕj]Aj,κ 6 Cm
1
2

0 2
2j . (6.18)

(ii) The sequence ϕj stabilizes on every square L ∈ W : more precisely, if L ∈ W i and H is the
square concentric to L with `(H) = 9

8`(L), then ϕk = ϕj on H for every j,k > i+ 2. Moreover
there is an admissible smooth branching ϕ : B ∩ ([−1, 1]2 ×C) → Rn such that ϕj → ϕ

uniformly on B∩ ([−1, 1]2 ×C) and in C3(Aj) for every j > 0.

(iii) For some constant C = C(M0,N0,Ce,Ch) and for a ′ := b+ γ0 > b we have

|u(z,w) −ϕ(z,w)| 6 Cm
1
2

0 |z|
a ′ . (6.19)
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Definition 6.10 (Center manifold, Whitney regions). The manifold M := Gr(ϕ), where ϕ
is as in Theorem 6.9, is called a branched center manifold for T relative to Gu. It is convenient
to introduce the map Φ : B∩ ([−1, 1]2 ×C)→ R2+n given by Φ(z,w) = (z,ϕ(z,w)). If we
neglect the origin, Φ is then a classical (C3) parametrization of M. Φ(Γ) will be called the
contact set. Moreover, to each L ∈ W we associate a Whitney region L on M as follows:

(WR) L :=Φ(H∩ ([−1, 1]2 ×C)), where H is the square concentric to L with `(H) = 17
16`(L).

6.2 technical preliminaries

In this section we prove the two technical Lemmas 2.15 and 2.16.

Proof of Lemma 2.15. Consider x0 ∈ π0 with 2ρ = |x0|, a smooth C2 function φ : Bρ(x0)→ Rn

and the open set Vρ := {(x,y) : x ∈ Bρ/2(x0), |y−φ(x)| 6 ρ}. Recall that there is a geometric
constant C such that, if ρ 6 C/‖D2φ‖Bρ(x0), then for each p ∈ Vρ there is a unique
nearest point P(p) ∈ Gr(φ) (which defines a C1 map P : Vρ → Gr(φ)). In particular, if
‖D2φ‖Bρ(x0) 6 Cρ

α−1, the existence of such point is guaranteed under the assumption that
ρ 6 cρ1−α (where c is a, possibly small but positive, constant). Consider now an admissible
smooth branching u : BQ̄ → Rn. If Q̄ = 1, the above discussion shows easily the existence
of a well defined C1 map P : Vu,a ∩C2r → Gr(u), provided r is sufficiently small. If Q̄ > 1,
the same conclusion holds under the assumption that u is b-separated and a > b > 1.
Indeed consider p = (z,y) ∈ Vu,a and (z,wi) ∈ BQ such that |y− u(z,wi)| 6 cs|z|

a. The
assumptions of being well-separated implies easily that |p− u(ζ,ω)| > cs|z|

b whenever
z 6∈ B|z|/2(z,wi) and thus we can argue locally on the sheet Gr(u|B|z|/2(z,wi)).

Next, up to rescaling we can assume that P is well-defined on Vu,a ∩C2. The discussion
before Lemma 2.15 applies now verbatim and we conclude the first sentence of the Lemma.

To reach the other two conclusions of the Lemma we argue by contradiction: if they were
wrong, then we would find a sequence of points {xk} ⊂ B2(0) converging to 0 for which one
of the following two conditions hold:

• either {xk}×Rn contains a point pk ∈ spt(T) with Θ(pk, T) > Q+ 1
2 ;

• or one connected component Ω of ({xk}×Rn)∩Vu,a does not intersect spt(T).

Set 2rk := |xk| and consider the connected component Vk of Vu,a ∩Crk(xk) which contains
pk (in the first case) or Ωk (in the second). Let Sk := Tk Vk and let qk = (xk,u(xk,wk))
be such that qk ∈ Vk. Finally set Zk := (Sk)qk,rk . Observe that spt(Zk) is contained in a
neighborhood of height Cra−1k of π0 and we therefore conclude that Zk converges to a current
Z which is an integer multiple of JB1(0)K. On the other hand, since P](Sk) Crk/2(xk) =

QGu Crk/2(xk) for k large enough, we conclude that Z = Q JB1(0)K. Now, either spt(Zk)∩
({0}×Rn) contains a point q̄k of multiplicity Q+ 1

2 or it is empty. Since however (pπ0)]Zk =

Qk JB1(0)K → (pπ0)]Z (by the constancy theorem), for k large enough we would have
(pπ0)]Zk = Q JB1(0)K, contradic ting the emptyness of spt(Zk) ∩ ({0}×Rn) = ∅ because
Q > 1. As for the other alternative, we must have, by the almost minimality of Zk (see
Proposition 5.8)

lim sup
k→∞ ‖Zk‖(B1/2−|q̄k|(q̄k)) 6 lim

k→∞ ‖Zk‖(B1/2(0)) = Q
4ω2 .
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Since q̄k → 0, the almost monotonicity formula (see Proposition 5.8) would implyΘ(q̄k,Zk) 6
Q+ o(1).

Proof of Lemma 2.16. Since QQ̄ Jπ0K is tangent to T at 0, we obviously must have T0Σ ⊃ π0
and thus T0Σ = R2+n̄ × {0} can be achieved suitably rotating the coordinates. To achieve the
other two conclusions we scale Σ and intersect it with C4(0, T0Σ) to reach that Σ∩C4(0, T0Σ)
is the graph of some Ψ with very small C3,ε0 norm. We can then extend Ψ outside B4(0, T0Σ)
without increasing the C3,ε0 norm by more than a factor: this gives (i) and (ii) and also
shows that c can be assumed smaller than ε41 in case (a) and (c) of Definition 1.1. For the
details we refer the reader to the proof of [20, Lemma 1.5]. The rest of the Lemma is a simple
scaling argument.

6.2.1 Proof of Proposition 6.3

In this section we prove several estimates on the excess, height and tilting of planes πL in
the cubes L ∈ W ∪S . Proposition 6.3 will then be a simple corollary of these more general
statements.

Proposition 6.11 (Tilting of optimal planes). Let T be as in Assumptions 3 and 4 and assume the
various parameters satisfy Assumption 6. If Ce,Ch > C(M0,N0) and ε41 is sufficiently small then:

(i) The conclusions (i), (ii) and (iii) of Proposition 6.3 hold.

(ii) BH ⊂ BL ⊂ Bd(L)/10(pL) and TH = TL VH for all H,L ∈ W ∪S with H ⊂ L;

Moreover, if H,L ∈ W ∪S and either H ⊂ L or H ∩ L 6= ∅ and `(L)
2 6 `(H) 6 `(L), then the

following holds, for C̄ = C̄(M0,N0,Ce) and C = C(M0,N0,Ce,Ch):

(iii) d(L)/2 6 d(H) 6 2d(L) (and d(L) = d(H) when H ⊂ L);

(iv) |πH − πL| 6 C̄m
1
2

0d(L)γ0−1+δ1`(L)1−δ1 ;

(v) |πH − π0| 6 C̄m
1
2

0d(H)γ0 ;

(vi) h(TH,C36rH(pH,π0)) 6 Cm
1
4

0d(H)
γ0
2 `(H) and spt(TH)∩C36rH(pH,π0) ⊂ BH;

(vii) h(TL,C36rL(pL,πH)) 6 Cm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 and spt(TL)∩C36rL(pL,πH) ⊂ BL.

In particular, the estimates (6.12) and (6.13) hold.

The proof of the proposition will use repeatedly a few elementary observations concerning
the excess and the height, which we collect in the following lemma.

Lemma 6.12. If T is as in Proposition 6.11 there is a geometric constant C0 with the following
properties. Assume the points p,q belong to spt(T) ∩C√2, Br(p) ⊂ Bρ(q) ⊂ C2 and r > ρ/4.
Then, if ε41 6 C−1

0

(i) E(T ,Bρ(q)) 6 C0minτ E(T ,Bρ(q), τ) +C0m0ρ2;
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(ii) E(T ,Br(p)) 6 C0E(T ,Bρ(q)) +C0m0r2;

(iii) |π− τ|2 6 C0[E(T ,Br(p),π) + E(T ,Bρ(q), τ)];

(iv) h(T , F,π) 6 h(T , F, τ) +C0|π− τ|diam(spt(T)∩ F) for any set F;

(v) h(T ,Cr(0,π)) 6 C0m
1
2

0 r
1+γ0 +C0|π− π0|r whenever |π− π0| 6 C−1

0 and r < 7/4.

Proof. Recall that, by Lemma 6.21 and Allard’s monotonicity formula (which can be applied
by Proposition 2.2), we have

3ω2
4
ρ2 6 ‖T‖(Bρ(p)) 6 C0ρ2 . (6.20)

(i) is trivial in (b) of Definition 1.1, since E(T ,Bρ(q)) = minτ E(T ,Bρ(q), τ). In the cases (a)
and (c) recall that

E(T ,Bρ(q)) = min
τ⊂TqΣ

E(T ,Bρ(q), τ) .

Let now π be such that E(T ,Bρ(q),π) = minτ E(T ,Bρ(q), τ) =: E. Then, by the Chebyshev
inequality there is a point q ′ ∈ Bρ(q)∩ spt(T) such that

|~T(q ′) − ~π|2 6
ω2ρ

2

‖T‖(Bρ(q))
E 6 C0E .

Observe that ~T(q ′) is the orienting 2-vector of some space ξ ⊂ Tq ′Σ and that

|Tq ′Σ− TqΣ|
2 6 C0‖AΣ‖2C0ρ

2 6 C0m0ρ
2 .

Thus there is a 2-plane τ ⊂ TqΣ such that |τ− π|2 6 CE+C0m0ρ2. Hence

E(T ,Bρ(p)) 6 E(T ,Bρ(q), τ) 6 C(E+C0m0ρ2)‖T‖(Bρ(q))/(ω2ρ2) 6 C0E+C0m0ρ2 .

Keeping the notation of the argument above, in the case (b) of Definition 1.1 statement (ii)
follows from the simple observation

E(T ,Br(p)) 6 E(T ,Br(p),π) 6 42E(T ,Bρ(q),π) = 16E(T ,Bρ(q)) .

In the cases (a) and (c) of Definition 1.1 we combine the same idea with (i).
(iii) is a simple consequence of

|π− τ|2 6
2

‖T‖(Bρ(q))

ˆ
Bρ(q)

(|~T − ~π|2 + |~τ− ~T |2)d‖T‖

(6.20)
6 C0(E(T ,Bρ(q),π) + E(T ,Bρ(q), τ) , (6.21)

and E(T ,Bρ(q),π) 6 16E(T ,Br(p),π). Next, for p,q ∈ spt(T)∩ F we compute

|p⊥π (p− q)| 6 |p⊥τ (p− q)|+ |(p⊥τ −p⊥π )(p− q)| 6 h(T , F, τ) +C|π− τ||p− q| .

Taking the supremum over p,q ∈ F∩ spt(T) we reach (iv).
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We finally argue for (v). Fix r < 7/8, π with |π − π0| 6 C−1
0 and the cylinder C :=

Cr(0,π). Observe that, by Assumption 3, for every p = (x,y) ∈ spt(T) ∩ (R2 ×Rn) we

have |y| 6 ε
1
2

41|x|
1+α 6 ε

1
2

41|x|
1+γ0 . It follows easily that, for a sufficiently small ε41 and

a sufficiently large C0, this implies that spt(T) ∩C ⊂ C8r/7(0,π0). Hence, h(T ,C,π0) 6

h(T ,C8r/7(0,π0)) 6 C0m
1
2

0 r
1+γ0 . As a consequence diam(T ∩C) 6 C0r and (v) follows

from (iv).

Proof of Proposition 6.11. In this proof we will use the following convention: geometric con-
stants will be denoted by C0 or c0, constants depending upon M0,N0,Ce will be denoted
by C̄ or c̄ and constants depending upon M0,N0,Ce and Ch will be denoted by C or c. Next
observe that the second inclusion in (ii) is in fact correct for any cube L ∈ C j with j > N0,
provided N0 is chosen sufficiently large compared to M0. Similarly (iii) holds for N0 larger
than a geometric constant.

Proof of (i), (ii) and (iii) in Proposition 6.3. The conclusion (i) is obvious since indeed
it also holds for every L ∈ CN0 . (iii) is a simple consequence of the fact that, because
of (NN) in the refining procedure, given any pair H,L ∈ W with nonempty intersection,
1
2`(H) 6 `(L) 6 2`(H). Consider now any L ∈ C j with N0 6 j 6 N0 + 6. Observe first that
C(N0)

−1dL 6 `(L) 6 dL. We thus can use (2.24) to estimate

E(TL,BL,π(p)) 6 C(M0,N0)m0d(L)2γ0−2+2δ1`(L)2−2δ1 .

By Lemma 6.12(i) we conclude

E(TL,BL) 6 C(M0,N0)m0d(L)2γ0−2+2δ1`(L)2−2δ1 +C(M0)m0`(L)
2 .

Hence, for Ce sufficiently large, condition (EX) of Definition 6.2 cannot be a reason to stop
the refinining procedure of any cube L ∈ C j when N0 6 j 6 n0 + 6.

Recall next the chosen plane πL such that E(TL,BL,πL) = E(TL,BL) and h(TL,BL) =

h(TL,BL,πL). By Lemma 6.12(iii) we easily conclude that

|πL − π(p)| 6 C(M0,N0)Cem
1
2

0d(L)γ0 .

On the other hand |π(p) − π0| 6 C0[Du]0,α,BC0d(L)d(L)
α 6 C0m

1
2

0d(L)γ0 and thus

|πL − π0| 6 C(M0,N0)Cem
1
2

0d(L)γ0 ∀L ∈ CN0 . (6.22)

Since

BL ⊂ Cd(L)/10(pL,π0) ⊂ C(2
√
2+ 1

10 )d(L)(0,π0)

and (2
√
2+ 1

10)d(L) 6 (2
√
2+ 1

10)
1
2 6 3

2 , we infer from Lemma 6.12(v):

h(TL,BL) 6 C̄m
1
2

0d(L)1+γ0 6 C̄m
1
4

0d(L)
γ0
2 −β2`(L)1+β2 .

Thus, choosing Ch large depending upon M0,N0 and Ce, we conclude that condition (HT)
in Definition 6.2 cannot be a reason to stop the refining procedure of a cube L ∈ C j when
N0 6 j 6 N0 + 6.
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This means that: for k = N0 and j = 0 all cubes of CN0,0 are refined (the condition (NN)
is empty here). But then the same happens for k = N0 and j = 1, since W N0,0 is empty.
Proceeding inductively we conclude this for every j and thus obtain that W N0 is empty. We
now repeat the argument with W N0+1,j to conclude that W N0+1 is also empty. Proceeding
for other 5 steps we conclude then that (ii) holds.

Proof of (ii)-(iv)-(v)-(vi)-(vii) when H ⊂ L. The proof is by induction over i, where
H ∈ C i. We thus prove first the claims when i = N0. Under this assumption H = L and
hence (iv) is trivial. The second inclusion in (ii) has already been proved above and the
remaining assertions of (ii) are obvious because H = L. (v) has been shown above, cf. (6.22).

The first conclusion in (vi) follows easily, since h(TH,C36rH(pH,π0)) 6 C0m
1
2

0d(H)1+γ0 by
Lemma 6.12(v) and `(H) > d(H)/C(N0). The inclusion in (vi) follows then trivially from
this bound when m0 6 ε41 is small enough, because pH ∈ spt(TH). As for (vii), recall that
L = H in our case. First observe that |πH − π0| 6 C0Ced(L)γ0 , simply by (6.22) (assuming
Ce > C(M0,N0)). Thus we can apply Lemma 6.12(v): since d(L) and `(L) are comparable

up to a constant C(N0), we conclude that h(TL,C36rL(pL,πH)) 6 Cm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 .

As we already argued for (vi), the inclusion is a consequence of the bound.
We now pass to the inductive step. Thus fix some Hi+1 ∈ S i+1 ∪W i+1 and consider a

chain Hi+1 ⊂ Hi ⊂ . . . ⊂ HN0 with Hl ∈ S l for l 6 i. We wish to prove all the conclusions
(ii)-(iv)-(v)-(vi)-(vii) when H = Hi+1 and L = Hj for some j 6 i + 1, recalling that, by
inductive assumption, all the statements hold when H = Hk and L = Hl for l 6 k 6 i. Note
also that d(Hk) = d(Hi+1) for all k.

With regard to (ii), it is enough to prove that BHi+1 ⊂ BHi and VHi+1 ⊂ VHi . Note
that |zHi − zHi+1 | 6 2

√
2 `(Hi) (recall the notation pH = (zH,yH)). In particular notice that

CrHi+1 (pHi+1 ,π0) ⊂ CrHi (pHi ,π0). Recall the open sets VHi and VHi+1 defined in Section
6.1.2. SinceHi andHi+1 are nearby cubes in B, it is clear that pHi+1 = (zHi+1 ,u(zHi+1 ,wHi+1))
and pHi = (zHi ,u(zHi ,wHi)) must be in the same connected component ofVu,a∩CrHi (pHi ,π0).
It then follows that VHi+1 ⊂ VHi . In particular pHi+1 ∈ spt(THi) and (vi) applied to H = Hi

implies then that |pHi+1 − pHi | 6 2(
√
2+Cm

1
4

0 )`(Hi+1). In particular, assuming that ε41 6 c
for some positive constant c = c(M0,N0,Ce,Ch), we conclude |pHi+1 − pHi | 6 3

√
2`(Hi)

and BHi+1 ⊂ BHi follows from the fact that M0 is assumed larger than a suitable geometric
constant.

We now come to (iv). Notice next that Hi+1 is a son of Hi and thus Hi cannot belong to
W : it must therefore belong to S . Hence, from the inclusion BHi+1 ⊂ BHi , from the identity
THi+1 = THi BHi+1 and from Lemma 6.12(ii) we easily infer that

E(THi+1 ,BHi+1) 6 C0E(THi ,BHi)+C0m0`(Hi+1)
2 6 C̄m0d(Hi+1)2γ0−2+2δ1`(Hi+1)2−2δ1 .

We thus have, from Lemma 6.12(iii),

|πHi − πHi+1 | 6 C̄m
1
2

0d(Hi+1)γ0−1+δ1`(Hi+1)1−δ1 .

On the other hand, since d(Hl) = d(Hj) for every l > j, by the same argument with l in
place of i we also get

|πHl − πHl+1 | 6 C̄m
1
2

0d(Hi+1)γ0−1+δ1`(Hl+1)1−δ1 .
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Summing the latter estimates for l between i and j, we easily reach (iv) for H = Hi+1 and
L = Hj.

As for (v), note that it holds for HN0 and moreover we just proved (iv) for H = Hi+1 and
L = HN0 , and thus, by triangular inequality, we get (v) (with a constant independent of the
index i!).

As for (vi), note first that C36rHi+1 (pHi+1 ,π0) ⊂ C36rHi (pHi ,π0) ⊂ BHi (the latter because
(vi) holds for H = Hi by inductive hypothesis). Thus we can apply Lemma 6.12(iv) to
conclude

h(THi+1 ,C36rHi+1 (pHi+1 ,π0)) 6 Ch(THi ,BHi) +C0|πHi − π0|diam(spt(THi)∩BHi) .

On the other hand we already noticed that Hi ∈ S . Taking into account (v) we then conclude
the inequality of (vi) for H = Hi+1 and, as already noticed in other cases, the inclusion
follows from the estimate and pHi+1 ∈ BHi+1 ∩ spt(THi+1).

We finally come to (vii). Fix H = Hi+1. First we prove it for L = HN0 . Observe that by
the bound on |πH − π0|, we can bound h(THN0 ,C36rHN0

(pHN0 ,πH)) with the same argu-
ment used for h(THN0 ,C36rHN0

(pHN0 ,πHN0 )). As already argued several times, we then
conclude the inclusion C36rHN0

(pHN0 ,πH) ⊂ BHN0 . We now argue inductively on j: as-
suming that we know (vii) for H and L = Hj, we now wish to conclude it for L = Hj+1.
Notice that C36rHj+1 (pHj+1 ,πH) ⊂ C36rHj (pHj ,πH). Then the inductive assumption gives
C36rHj+1 (pHj+1 ,πH) ⊂ BHj and recalling that THj+1 = THj BHj+1 and that Hj ∈ S , we can
use Lemma 6.12(iv) to bound

h(THj+1 ,C36rHj+1 (pHj+1 ,πH)) 6 h(THj ,BHj) +C0|πH − πHj |diam(spt(THj)∩BHj) .

However, having already shown (iv), this easily shows the bound in (vii). The inclusion then
follows with the usual argument used above.

Proof of (6.12) and (6.13). Fix H ∈ W and let L be its father. Having shown (ii), we know
that BH ⊂ BL. We then use d(L) = d(H), `(L) 6 2`(H) the estimate

E(TL,BL) 6 Cem0d(L)2γ0−2+2δ1`(L)2−2δ1

and Lemma 6.12(i) to conclude (6.12) as follows

E(TH,BH) 6 E(TH,BH,πL)+Cm0r2L 6 E(TL,BL)+Cm0`(L)2 6 Cm0d(L)2γ0−2+2δ1`(L)2−2δ1

Next, we use Lemma 6.12, (iii), (iv) and

h(TL,BL) 6 Chm
1
4

0d(L)
γ0
2 −β2`(L)1+β2

to conclude (6.13).

Proof of (iv) and (vii) when H and L are neighbors. Without loss of generality assume
`(L) > `(H). If L 6∈ CN0 , then let J be the father of L. Observe that |zH− zJ|, |zL− zJ| 6 2

√
2`(J).

On the other hand, observe that pH,pL are both elements of C36rJ(pJ,π0) (provided M0 is
larger than a geometric constant). Thus, by (vi) (applied to J), for ε41 sufficiently small we
easily conclude |pH − pJ|, |pL − pJ| 6 3

√
2`(J). Since `(L), `(H) 6 `(J)/2, again assuming that
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M0 is larger than a geometric constant we have the inclusion BH ∪BL ⊂ BJ. It is also easy
to see that VH ∪VL ⊂ VJ. Now, we can use (6.10), (6.12), (iii) and Lemma 6.12(ii) to achieve

|πH − πJ|, |πL − πJ| 6 C̄m
1
2

0d(J)γ0−1+δ1`(J)1−δ1 .

Next we use again (iii), the triangle inequality and `(H) 6 `(L) 6 `(J) 6 4`(H) to show (iv).
The case L ∈ CN0 can be handled similarly, just using a ball concentric to BL and slightly
larger so to include BH: the excess and the height in this ball is then estimated with the
same argument used for estimating them in BL.

As for (vii) we fix a chain of ancestors L = Lj,Lj−1, . . . ,Li, . . . . . . ,LN0 and, as in the proof
of (vii) for the case H ⊂ L, we argue inductively over i. The argument is precisely the same
and can be applied because, using (iv) for H and L and for Li and Li+1, we can sum the
corresponding estimate to show that

|πH − πLi | 6 C̄m
1
2

0d(Li)γ0−1+δ1`(Li)1−δ1 .

6.3 π-approximations and elliptic regularizations

In this section we introduce the π-approximations and define the corresponding elliptic
regularizations of their averages, which in turn will be the building blocks of the center
manifold. We begin with the following:

Proposition 6.13. Assume the hypotheses and the conclusions of Proposition 6.11 apply and let ε41
be sufficiently small. If H,L ∈ W ∪S and either H ⊂ L or H∩ L 6= ∅ and `(L)2 6 `(H) 6 `(L), then

(pπH)](TL C32rL(pL,πH)) = Q JB32rL(pπH(pL),πH)K , (6.23)

∂TL C32rL(pL,πH) = 0 . (6.24)

Moreover Theorem 2.8 applies to the current TL C32rL(pL,πH) in C32rL(pL,πH).

Proof. (6.24) is rather straightforward: by the height estimate in Proposition 6.11 we conclude
easily spt(TL) ∩C32rL(pL,πH) ⊂ C36rL(pL,π0). On the other hand by definition of TL =

T VL and by Assumption 3, we have spt(∂TL) ⊂ ∂C64rL(pL,π0), implying spt(∂TL) ∩
C36rL(pL,π0) = ∅ and thus also spt(∂TL)∩C32rL(pL,πH) = ∅.

In order to prove (6.23) we argue as follows. First consider the chain of ancestors of L:= L =

Lj ⊂ Lj−1 ⊂ . . . ⊂ LN0 =: J, where J ∈ SN0 . We first show that (pπ0)](TJ C36rJ(pJ,π0)) =
Q

q
B36rJ(zJ,π0)

y
. This is done in the following way: consider that Gr(u) ∩C64rJ(pJ,π0)

is the graph of a C1,α function v with ‖v‖C1,α 6 C0m
1
2

0 . Define the function vt(x) :=

tv(x) and let pt be the orthogonal projection onto Gr(vt), which is well-defined on VJ
provided m0 is sufficiently small (the smallness being independent of J). The currents
St := (pt)](TJ C64rJ(pJ,π0)) are easily seen to coincide with QtGv C36rJ(zJ,π0) in the
cylinder C36rJ(pJ,π0) by the constancy theorem. On the other hand such currents vary
continuously and thus the integer Qt must be constant. This implies that Q0 = Q1 = Q. On
the other hand p0 = pπ0 and we have thus proved our claim.

Observe that (pπ0)](TL C36rL(pL,π0)) = Q JB36rL(zL,π0)K because TL C36rL(pL,π0) =
TJ C36rL(pL,π0). Choose next a continuous path of planes πt which connects π0 and πH
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and satisfies the bound |πt−π0| 6 C0|πH−π0| for some geometric constant C0. We then look
at Zt = (pπt)](TL C36rL(pL,π0)) and conclude, similarly to the previous paragraph, that
((pπH)](TL C36rL(pL,π0))) C32rL(pL,πH) = JB32rL(pπH(pL),πH)K. On the other hand
since (TL C36rL(pL,π0))) C32rL(pL,πH) = TL C32rL(pL,πH), this concludes the proof of
(6.24).

Now, by the estimates of Proposition 6.11 in order to apply Theorem 2.8 we just need to
choose ε41 sufficiently small.

We next generalize slightly the terminology of Section 6.1.2.

Definition 6.14. Let H and L be as in Proposition 6.13. After applying Theorem 2.8 to
TL C32rL(pL,πH) in the cylinder C32rL(pL,πH) we denote by fHL the corresponding
πH-approximation. However, rather then defining fHL on the disk B8rL(pL,πH), by ap-
plying a translation we assume that the domain of fHL is the disk B8rL(pHL,πH) where
pHL = pH +pπH(pL − pH). Note in particular that Cr(pHL,πH) equals Cr(pL,πH), whereas
B8rL(pHL,πH) ⊂ pH + πH and ph ∈ B8rL(pHL,πH).

Observe that fLL = fL.

6.3.1 First variations

The next proposition is the core in the construction of the center manifold and it is the main
reason behind the C3,α estimate for the glued interpolation. It is also the place where our
proof differs most from that of [20].

Definition 6.15. Let H and L be as in Proposition 6.13. In the cases (a) and (c) of Definition
1.1 we denote by κH the orthogonal complement in TpHΣ of πH and we denote by f̄HL the
map pκH ◦ fHL.

In what follows we will consider elliptic systems of the following form. Given a vector
valued map v : pH + πH ⊃ Ω → κH and after introducing an orthonormal system of
coordinates x1, x2 on πH and y1, . . . ,yn̄ on κH, the system is given by the n̄ equations

∆vk + (L1)kij∂jv
i + (L2)ki v

i︸ ︷︷ ︸
=:E k(v)

= (L3)ki (x− xH)
i + (L4)k︸ ︷︷ ︸

=:Fk

, (6.25)

where we follow Einstein’s summation convention and the tensors Li have constant coeffi-
cients. After introducing the operator L (v) = ∆v+ E (v) we summarize the corresponding
elliptic system (6.25) as

L (v) = F . (6.26)

We then have a corresponding weak formulation for W1,2 solutions of (6.26), namely v is a
weak solution in a domain D if the integral

I (v, ζ) :=
ˆ

(Dv : Dζ+ (F (v) − E (v)) · ζ) (6.27)

vanishes for smooth test functions ζ with compact support in D.
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Proposition 6.16. Let H and L be as in Proposition 6.13 (including the possibility that H = L)
and let fHL, f̄HL and κH be as in Definition 6.14 and Definition 6.15. Then, there exist tensors
with constant coefficients L1, . . . ,L4 and a constant C = C(M0,N0,Ce,Ch), with the following
properties:

(i) The tensors depend upon H and Σ (in the cases (a) and (c) of Definition 1.1) or ω (in case (b)

of Definition 1.1) and |L1|+ |L2|+ |L3|+ |L4| 6 Cm
1
2

0 .

(ii) If IH, LH and FH are defined through (6.25), (6.26) and (6.27), then

IH(η ◦ f̄HL, ζ) 6 Cm0 d(H)2(1+β0)γ0−2−β2 r4+β2L ‖Dζ‖0 (6.28)

for all ζ ∈ C∞c (B8rL(pHL,πH),κH).

Proof. Set for simplicity π = πH, κ := κH r = rL, p = pHL, f = fHL, B = B8r(p,π) and
T = TL.

Cases (a) and (b) of Definition 1.1. The proof is very similar to the one of [20, Proposition 5.2].
Nevertheless, for the sake of completeness, we give here all the details. We fix a system of
coordinates (x,y,w) ∈ π×κ × (TpHΣ)

⊥ so that pH = (0, 0, 0). We drop the subscript pH for
the map ΨpH . Recall that

Ψ(0, 0) = 0, DΨ(0, 0) = 0 and ‖DΨ‖C2,ε0 6 Cm
1
2

0 .

Let ζ ∈ Cc(B8r(p,π),κ) be a test function. We consider the vector field χ : Σ→ R2+n given
by χ(q) = (0, ζ(x),DyΨ(x,y) · ζ(x)) for every q = (x,y,Ψ(x,y)) ∈ Σ. Note that χ is tangent
to Σ. Therefore we infer that δT(χ) = 0 and

|δGf(χ)| 6 |δGf(χ) − δT(χ)| 6 C
ˆ
C8r(p,π)

|Dχ|d‖Gf − T‖ . (6.29)

Observe also that |χ| 6 C|ζ| and |Dχ| 6 C|ζ|+C|Dζ| 6 C|Dζ|. Set E := E
(
T ,C32r(p,π)

)
. By

Proposition 6.11, C32r(p,π) ⊂ BL . Thus, by Proposition 6.3 and Proposition 6.11(iv) we
have

E 6 Cm0d(H)2γ0−2+2δ1`(L)2−2δ1 . (6.30)

Similarly

h(T ,C32r(p,π)) 6 Cm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 . (6.31)

Recall that, by Theorem 2.8 we have

|Df| 6 CEβ0 +Cm0r 6 Cm
β0
0 d(L)(2γ0−2+2δ1)β0rβ0(2−2δ1) (6.32)

|f| 6 Ch(T ,C32r(p,π)) + (E
1
2 + rm

1
2

0 )r 6 Cm
1
4

0 d(L)
γ0
2 −β2r1+β2 , (6.33)ˆ

B

|Df|2 6 Cr2E 6 Cm0 d(L)2γ0−2+2δ1 r4−2δ1 , (6.34)
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and

|B \K| 6 Cm1+β00 d(L)(1+β0)(2γ0−2+2δ1)r2+(1+β0)(2−2δ1) ,

(6.35)∣∣∣∣‖T‖(C8r(pL,π)) − |B|−
1

2

ˆ
B

|Df|2
∣∣∣∣ 6 Cm1+β00 d(L)(1+β0)(2γ0−2+2δ1)r2+(1+β0)(2−2δ1) ,

(6.36)

where K ⊂ B is the set

B \K = pπ ((spt(T)∆spt(Gf))∩C8rL(pL,π)) . (6.37)

Writing f =
∑
i JfiK and f̄ =

∑
i

q
f̄i

y
, since Gr(f) ⊂ Σ, we have f =

∑
i

q
(f̄i,Ψ(x, f̄i))

y
. From

Theorem 3.52 we can infer that

δGf(χ) =

ˆ
B

∑
i

(
DxyΨ(x, f̄i) · ζ︸ ︷︷ ︸

(A)

+(DyyΨ(x, f̄i) ·Df̄i) · ζ︸ ︷︷ ︸
(B)

+DyΨ(x, f̄i) ·Dxζ︸ ︷︷ ︸
(C)

)

:
(
DxΨ(x, f̄i)︸ ︷︷ ︸

(D)

+DyΨ(x, f̄i) ·Df̄i︸ ︷︷ ︸
(E)

)
+

ˆ
B

∑
i

Dζ : Df̄i + Err , (6.38)

where, the error term Err in (6.38) satisfies the inequality

|Err| 6 C
ˆ

|Dχ||Df|3 6 ‖Dζ‖L∞
ˆ

|Df|3

6 C‖Dζ‖0m1+β00 d(L)(1+β0)(2γ0−2+2δ1)r4−2δ1+β0(2−2δ1) . (6.39)

The second integral in (6.38) is Q
´
BDζ : D(η ◦ f̄). We therefore expand the product in the

first integral and estimate all terms separately, using the Taylor expansion

DΨ(x,y) = DxDΨ(0, 0) · x+DyDΨ(0, 0) · y+O
(
m

1
2

0 (|x|
2 + |y|2)

)
so that

|DΨ(x, f̄i)| 6 Cm
1
2

0 r

DΨ(x, f̄i) = DxDΨ(0, 0) · x+O
(
m

1
2+

1
4

0 d(L, 0)
γ0
2 −β2r1+β2

)
,

|D2Ψ(x, f̄i)| 6 Cm
1
2

0 and D2Ψ(x, f̄i) = D2Ψ(0, 0) +O
(
m

1
2

0 r
)

.

We compute as follows:
ˆ ∑

i

(A) : (D) =

ˆ ∑
i

(DxyΨ(0, 0) · ζ) : DxΨ(x, f̄i) +O
(
m0 r

2

ˆ
|ζ|
)

=

ˆ
Q(DxyΨ(0, 0) · ζ) : (DxxΨ(0, 0) · x) (6.40)

+O
(
m0 d(L, 0)

γ0
2 −β2 r1+β2

ˆ
|ζ|
)

.
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The integral in (6.40) has the form
´
LAD x · ζ. Next, we estimate

ˆ ∑
i

(
(A) : (E)+(B) : (D) + (B) : (E)

)
= O

(
m1+β00 d(L)β0(2γ0−2+2δ1)r1+β0(2−2δ1)

ˆ
|ζ|
)

(6.41)

and ˆ ∑
i

(C) : (E) = O
(
m1+β00 d(L)β0(2γ0−2+2δ1)r2+β0(2−2δ1)

ˆ
|Dζ|

)
. (6.42)

Finally we compute
ˆ ∑

i

(C) : (D) =

ˆ ∑
i

((DxyΨ(0, 0) · x) ·Dxζ) : DxΨ(x, f̄i)

+O
(
m0 d(L)

γ0
2 −β2r2+β2

ˆ
|Dζ|

)
= Q

ˆ
(DxyΨ(0, 0) · x) ·Dxζ) : (DxxΨ(0, 0) · x)

+O
(
m0 d(L)

γ0
2 −β2r2+β2

ˆ
|Dζ|

)
.

Integrating by parts in the last integral we reach
ˆ ∑

i

(C) : (D) =

ˆ
LCD x · ζ+O

(
m0 d(L, 0)

γ0
2 −β2r2+β2

ˆ
|Dζ|

)
. (6.43)

Set next L3 := LAD + LCD. Clearly L3 is a quadratic function of D2Ψ(0, 0), i.e. a quadratic
function of the tensor AΣ at the point pH. From (6.29), (6.39), (6.40) – (6.43), we infer (6.28)
and (i). Indeed we have to compare the following three types of errors

E1 :=m
1+β0
0 d(L)(1+β0)(2γ0−2+2δ1)r4−2δ1+β0(2−2δ1) (6.44)

E2 :=m
1+β0
0 d(L)β0(2γ0−2+2δ1)r4+β0(2−2δ1) (6.45)

E3 :=m0d(L)
γ0
2 −β2r4+β2 . (6.46)

It is easy to see that if

−2δ1 +β0(2− 2δ1) −β2 > 0 (6.47)

then

E2 6 E1 6m
1+β0
0 d(L)(1+β0)(2γ0−2+2δ1)−2δ1+β0(2−2δ1)−β2r4+β2

6m1+β00 d(L)2(1+β0)γ0−2−β2r4+β2 (6.48)

Therefore

E1,E2,E3 6m0d(L)2(1+β0)γ0−2−β2r4+β2 . (6.49)
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To conclude the proof we observe that, by the bound on E,
ˆ
C8r(p,π)

|Dχ|d‖Gf− T‖ 6 C‖Dζ‖0M(T C−Gf) 6 C0‖Dζ‖0r2Eβ0(E+m0r2) 6 CE2 .

Case (c) of Definition 1.1. Fix coordinates (x,y) ∈ R2 ×Rn such that pH = (0, 0). Consider the
vector field χ(x,y) := (0, ζ(x)) for some ζ as in the statement. Recalling Proposition 2.2 we
infer

δGf(χ) = δT(χ) + Err0 = T(dω χ) + Err0 = Gf(dω χ) + Err0 + Err1

with

|Err0 + Err1| = |δT(χ) − δGf(χ)|+
∣∣T(dω χ) −Gf(dω χ)

∣∣
6 C

(
‖Dζ‖0 + ‖dω χ‖0

)
‖T −Gf‖(C8r(p,π))

6 C
(
‖Dζ‖0 + ‖ζ‖0

)
Eβ0 (E+ r2m0) r

2

6 C ‖Dζ‖0m1+β00 d(H)(2γ0−2+2δ1)(1+β0) r2+(2−2δ1)(1+β0). (6.50)

From Theorem 3.52

δGf(χ) = Q

ˆ
D(η ◦ f) : Dζ+ Err2

with

|Err2| 6 C
ˆ

|Dζ| |Df|3 6 C ‖Dζ‖0E1+β0 r2

6 C ‖Dζ‖0m1+β00 d(H)(2γ0−2+2δ1)(1+β0) r2+(2−2δ1)(1+β0).

Next we proceed to expand Gf(dw χ). To this aim we write

dω(x,y) =
n∑
l=1

al(x,y)dyl ∧ dx1 ∧ dx2 +
∑
j=1,2

∑
l<k

blk,j(x,y)dyl ∧ dyk ∧ dxj

+
∑
l<k<j

clkj(x,y)dyl ∧ dyk ∧ dyj (6.51)

and get

dω χ =

n∑
l=1

al ζ
l dx1 ∧ dx2︸ ︷︷ ︸
ω(1)

+
∑
j=1,2

∑
l<k

blk,j ζ
ldyk ∧ dxj︸ ︷︷ ︸

ω(2)

+
∑
l<k<j

clkj ζ
l dyk ∧ dyj︸ ︷︷ ︸

ω(3)

.

(6.52)

We consider separately Gf(ω(1)),Gf(ω(2)),Gf(ω(3)). We start with the latter

Gf(ω
(3)) 6 C ‖dω‖0 ‖ζ‖0

ˆ
B

|Df|2 6 Cm20 d(H)2γ0−2+2δ1 r5−2δ1‖Dζ‖0. (6.53)
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Next

Gf(ω
(2)) =

∑
l<k

Q2∑
i=1

ˆ
ζl(x)

(
blk,2(x, fi(x))

∂fki
∂x1

− blk,1(x, fi(x))
∂fki
∂x2

)
dx

= Q2
∑
l<k

ˆ
ζl(x)

(
blk,2(0, 0)

∂(η ◦ f)k

∂x1
− blk,1(0, 0)

∂(η ◦ f)k

∂x2

)
dx+ Err3,

=

ˆ
L1D(η ◦ f) · ζ+ Err3 (6.54)

with

|Err3| 6 C‖ζ‖0 ‖D(dω)‖0
ˆ
B

(r |Df|+ |f| |Df|) dx

6 C‖Dζ‖0m0
(
r+ osc(f) +h(T ,C8r(0,π))

)
r3 Eβ0

6 C‖Dζ‖0m1+β00 r4+(2−2δ1)β0 d(H)(2γ0−2+2δ1)β0 (6.55)

and L1 : Rn×2 → Rn given by

L1A · el := Q
n∑
k=1

(
blk,2(0, 0)Ak1 − blk,1(0, 0)Ak2

)
∀ A = (Akj)

j=1,2
k=1,...,n ∈ Rn×2.

Finally

Gf(ω
(1)) =

∑
l

Q2∑
i=1

ˆ
ζl(x)al(x, fi(x))dx

= Q
∑
l

ˆ
ζl(x) (al(0, 0) +Dxal(0, 0) · x+ Dyal(0, 0) · (η ◦ f))dx+ Err4,

=

ˆ (
L2 (η ◦ f) + L3 x+ L4

)
· ζ+ Err4 (6.56)

where L2 : Rn → Rn, L3 : R2 → Rn L4 ∈ Rn are given by

L2 v · el :=
n∑
k=1

∂al
∂yk

(0, 0) vk ∀ v ∈ Rn, ∀ l = 1, . . . ,n (6.57)

L3w · el :=
2∑
j=1

∂al
∂xj

(0, 0)wj ∀ w ∈ Rn, ∀ l = 1, . . . ,n (6.58)

L4 · el := al(0, 0) ∀ l = 1, . . . ,n (6.59)

and arguing as above

|Err4| 6 C‖ζ‖0 [D(dω)]ε0

ˆ
B

(
r1+ε0 + |f|1+ε0

)
dx 6 C‖Dζ‖0m0 r4+ε0 . (6.60)
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In order to deduce (6.28) we need to compare

|Err0 + Err1 + Err2| 6 ‖Dζ‖0E1 6 ‖Dζ‖0m0d(L)2(1+β0)γ0−2−β2r4+β2

E2 = Cm
1+β0
0 d(H)(2γ0−2+2δ1)β0 r4+(2−2δ1)β0

E2.5 = Cm
2
0 d(H)2γ0−2+2δ1 r5−2δ1

E4 = Cm0 r
4+ε0 .

As before, if (6.47) holds, then E2 6 E1. Moreover, since E4 6 r4+β2 , to conclude (6.28) it is
enough to observe that if

1 > β0(2− 2δ1) (6.61)

then 0 > 2γ0− 2+ 2δ1 > (2γ0− 2+ 2δ1)(1+β0) and 5− 2δ1 > 2+ (2− 2δ1)(1+β0), so that

d(H)2γ0−2+2δ1 r5−2δ1 6 d(H)(2γ0−2+2δ1)(1+β0) r2+(2−2δ1)(1+β0) ,

that is E2.5&4 6 E1.

6.3.2 Tilted interpolating functions, L1 and L∞ estimates

In this subsection we generalize the definition of the tilted interpolating functions hL. More
precisely we consider

Definition 6.17. Let H and L be as in Proposition 6.13, assume that the conclusions of
Proposition 6.16 applies and let LH and FH be the corresponding operator and map as given
by Proposition 6.16 in combination with (6.25), (6.26) and (6.27). Let fHL be as in Definition
6.14, κH and f̄HL be as in Definition 6.15 and fix coordinates (x,y, z) ∈ πH ×κH × TpHΣ⊥ as
in the proof of Proposition 6.16. We then let h̄HL be the solution of

LHh̄HL = FH

h̄HL
∣∣
∂B8rL(pHL,πH)

= η ◦ f̄HL .

(6.62)

In case (b) of Definition 1.1 we then define hHL = h̄HL, whereas in the other cases we define
hHL(x) = (h̄HL(x),ΨpH(x, h̄HL(x))).

In order to show that the maps h̄HL are well defined, we need to show that there is a
solution of the system (6.62).

Lemma 6.18. Under the assumptions of Definition 6.17, if ε41 is sufficiently small, then the elliptic
system

LHv = F

v|∂B8rL(pHL,πH) = g .

(6.63)

has a unique solution for every F ∈W−1,2 and every g ∈W1,2(B8rL(pHL,πH)). Observe moreover

that we have the estimate ‖Dv‖L2 6 C0rL(‖F‖L2 +m
1
2

0 ‖g‖L2) +C0‖Dg‖L2 .
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Proof. As for the first assertion, it suffices to show the Lemma for g = 0, since we can define
w = v− g and solve LH(w) = F+ LH(g) . Setting B = B8rL(pHL,πH), the existence and
uniqueness for the latter case reduces, by Lax-Milgram, to the coercivity of the suitable
quadatic form Q(v, v) on W1,2

0 (B). The latter follows easily from

Q(w,w) :=
ˆ
(|Dw|2 − L1Dw ·w− L2w ·w)

> ‖Dw‖2L2(B) −
|L1|

2
‖Dw‖2L2(B) −

(
|L1|

2
+ |L2|

)
‖w‖2L2(B) .

Since rL 6 1, by the Poincaré inequality ‖w‖2
L2

6 C0‖Dw‖2L2 for every w ∈ W1,2
0 (B). The

coercivity follows then from |L1|+ |L2| 6 Cm
1
2

0 6 Cε41, where the constant C depends only
upon M0,N0,Ce and Ch. In particular we can assume the coercivity factor to be 12 .

On the other hand, multiplying the equation by w and integrating by parts we easily see
(using the coercivity) that

1

2

ˆ
|Dw|2 6

ˆ
(|Dw||Dg|+ |F||w|) +Cm

1
2

0

ˆ
(|g||w|+ |w||Dg|)

6
1

4

ˆ
|Dw|2 +

r2L
γ

ˆ
|F|2 +

2γ

r2L

ˆ
|w|2 +C

ˆ
(|Dg|2 + m0

γ r
2
L|g|

2) ,

where γ is any fixed positive number and C does not depend upon it.
We choose γ smaller than a geometric constant, so that we can use the Poincaré in-

equality to absorb the terms
´
|w|2 on the right hand side. We then conclude the desired

estimate ‖Dw‖L2 6 C(‖Dg‖L2 +m
1
2

0 rL‖g‖L2 + rL‖FL‖L2). Since v = w+ g, we then conclude

‖Dv‖L2 6 C(‖Dg‖L2 +m
1
2

0 rL‖g‖L2 +CrL‖FL‖L2) .

Observe that hHH = hH. We next record three fundamental estimates, which regard,
respectively, the L∞ norms of derivatives of solutions of LH(v) = F, the L∞ norm of
h̄HL −η ◦ f̄HL and the L1 norm of h̄HL −η ◦ f̄HL.

Proposition 6.19. Let H and L be as in Proposition 6.16 and assume the conclusions in there apply.
Then the following estimates hold for a constant C = C(m0,N0,Ce,Ch) for B̂ := B8rL(pHL,πH)
and B̃ := B6rL(pHL,πH):

‖h̄HL −η ◦ f̄HL‖L1(B̂) 6 Cm0d(L)2(1+β0)γ0−2−β2`(L)5+β2 (6.64)

‖h̄HL −η ◦ f̄HL‖L∞(B̃) 6 Cm0d(L)2(1+β0)γ0−2−β2`(L)3+β2 +Cm
1
2

0 `(L)
2 . (6.65)

Moreover, if LH is the operator of Proposition 6.16, r a positive number no larger than 1 and v a
solution of LH(v) = F in B8r(q,πH), then

‖v‖L∞(B6r(q,πH)) 6
C0
r2
‖v‖L1(B8r(q,πH)) +Cr

2‖F‖L∞(B8r(q,πH)) (6.66)

and, for l ∈N

‖Dlv‖L∞(B6r(q,πH)) 6
C0
r2+l

‖v‖L1(B8r(q,πH)) +Cr
2
l∑
j=0

rj−l‖DjF‖L∞(B8r(q,πH)), (6.67)

where the latter constants depend also upon l.
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Proof. Proof of (6.66). The estimate will be proved for a linear constant coefficient operator
of the form L = ∆ + L1 ·D + L2 when L1 and L2 are sufficiently small. We can then
assume πH = R2 and q = 0. Besides, if we define u(x) := v(rx) we seee that u just satisfies
∆u+ rL1 ·Du+ r2L2 · u = 0 and thus, without loss of generality, we can assume r = 1. We
thus set B = B8(0) ⊂ R2.

We recall the following interpolation estimate on the ball of radius 1, see [45, Theorem 1].
For 0 6 j 6 m and j

m 6 a 6 1 we have, for a constant C0 = C0(m, j,q, r),

‖Dju‖Lp(B1) 6 C‖D
mu‖aLs(B1) ‖u‖

1−a
Lq(B1)

+C ‖u‖Lq(B1) , (6.68)

where

1
p = j

2 + a
(
1
s −

m
2

)
+ (1− a) 1q .

We apply the estimate (6.68) for j = 1, m = 2, q = 1 and p = s = 2, a = 2
3 and use Young’s

inequality and a simple scaling argument to achieve the inequality

‖Du‖L2(Bρ(x)) 6 C0ρ‖D
2u‖L2(Bρ(x)) +C0ρ

−2‖u‖L1(Bρ(x)) . (6.69)

Moreover, by Sobolev embedding:

‖u‖L2(Bρ(x)) 6 C0ρ‖Du‖L2(Bρ(x)) +C0ρ
−1‖u‖L1(Bρ(x)) . (6.70)

Next, recall the standard L2 esimates for second order derivatives of solutions of the Laplace
equations: if B2ρ(x) ⊂ B, then

‖D2u‖L2(Bρ(x)) 6 C0‖∆u‖L2(B2ρ(x)) +C0ρ
−3‖u‖L1(B2ρ(x)) . (6.71)

Now, recall that ∆u = −L1 ·Du− L2 · u+ F. Using the fact that |L1|+ |L2| 6 C0m
1
2

0 , we can
combine all the inequalities above to conclude

ρ6‖D2u‖2L2(Bρ(x)) 6 C0ρ
6m

1
2

0 ‖D
2u‖2L2(B2ρ(x)) +C0‖u‖

2
L1(B8)

+C0‖F‖2L∞ . (6.72)

Define next

S := sup{ρ3‖D2u‖L2(Bρ(x)) : B2ρ(x) ⊂ B8} (6.73)

and let ρ and ξ be such that B2ρ(ξ) ⊂ B8 and

ρ3‖D2u‖L2(Bρ(x)) >
S

2
. (6.74)

We can cover Bρ(ξ) with N0 balls Bρ/2(xi) with xi ∈ Bρ(ξ), where N0 is only a geometric
constant. We then can apply (6.72) to conclude that

S

2
6 C0N0m

1
2

0S+C0N0‖u‖L1(B8) +C0N0‖F‖L∞(B8) .

Therefore, when m
1
2

0 is smaller than a geometric constant we conclude S 6 C0‖u‖L1(B8) +
C0‖F‖L∞(B8). By definition of S, we have reached the estimate

ρ3‖D2u‖L2(Bρ(x)) 6 C0‖u‖L1(B8) +C0‖F‖L∞(B8) whenever B2ρ(x) ⊂ B8.



116 center manifold

Of course, with a simple covering argument, this implies

‖D2u‖L2(B6) 6 C0‖u‖L1(B8) +C0‖F‖L∞(B8) . (6.75)

Next, again using the interpolation inequality (6.69) we get

‖Du‖L2(B6) 6 C0‖u‖L1(B8) +C0‖F‖L∞(B8) .

So, by Sobolev embedding

‖Du‖L4(B6(0)) 6 C0‖Du‖W1,2(B6)
6 C0‖u‖L1(B8(0)) +C0‖F‖L∞(B8(0)) .

Again using interpolation and Sobolev we finally achieve

‖u‖L∞(B6) 6 C0‖u‖W1,4(B6)
6 C0‖u‖L1(B8(0)) +C0‖F‖L∞(B8(0)) .

Proof of (6.67). As in the previous step, we can, without loss of generality, assume r = 1.
Note that a byproduct of the argument given above is also the estimate

‖Du‖L1(B6) 6 C0‖u‖L1(B8) +C0‖F‖L∞(B8) .

In fact, by a simple covering and scaling argument one can easily see that

‖Du‖L1(Bτ) 6 C0(τ)‖u‖L1(B8) +C0(τ)‖F‖L∞(B8) for every τ < 8.

We can then differentiate the equation and use the proof of the previous paragraph to show

‖Du‖L∞(Bσ) 6 C0(σ, τ)‖Du‖L1(Bτ) +C0(σ, τ)‖DF‖L∞(Bτ) .

Again, arguing as above, a byproduct of the proof is also the estimate

‖D2u‖L1(Bσ) 6 C0(σ, τ)‖Du‖L1(Bτ) +C0(σ, τ)‖DF‖L∞(Bτ) .

This can be applied inductively to get estimates for all higher derivatives.

Proof of (6.64). Let B := B8rL(pHL,πH). We use the coordinates introduced in the proof of
Proposition 6.16. We set w := h̄HL −η ◦ f̄HL and observe that

Lw = FH −LH(η ◦ f̄HL)

w|∂B = 0

Next, for 1 < p < ∞, we define the continuous (by Calderon-Zygmund theory) linear
operator T : Lp(B)→W

1,p
0 (B)∩W2,p by T(g) = ψ if

−∆ψ = g in B

ψ = 0 on B.
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Applying the Sobolev embedding W1,3
0 (B) ↪→ C0(B) to the derivative of ζ ∈ W2,3 ∩W1,3

0

and using (6.28) we get
ˆ
B

(Dw : Dζ− L1Dw · ζ− L2w · ζ) 6 Cm0 d(L)2(1+β0)γ0−2−β2 r4+β2L r
1− 2

3

L ‖D2ζ‖L3 .

Then, we can estimate the L
3
2 -norm of w as follows:

‖w‖
L
3
2 (B)

= sup
‖h‖

L3(B)
=1

ˆ
B

wh = − sup
‖h‖

L3(B)
=1

ˆ
B

w∆T(h)

6 sup
‖h‖

L3(B)
=1

ˆ
B

Dw ·DT(h)

6 Cm0 d(L)2(1+β0)γ0−2−β2 r5+β2−
2
3

L sup
‖h‖

L3(B)
=1

‖D2T(h)‖L3

+ sup
‖h‖

L3(B)
=1

ˆ
B

(−L1Dw · T(h) − L2w · T(h)) .

Recalling the Calderon-Zygmund estimates we have

‖D2T(h)‖L3 6 C0‖h‖L3
‖DT(h)‖L3 6 C0rL‖h‖L3
‖T(h)‖L3 6 C0r2L‖h‖L3 .

Integrating by parts we then achieve

‖w‖
L
3
2 (B)

6 Cm0 d(L)2(1+β0)γ0−2−β2 r5+β2−
2
3

L + sup
‖h‖

L3(B)
=1

ˆ
B

w · (L1DT(h) − L2T(h))

6 Cm0 d(L)2(1+β0)γ0−2−β2 r5+β2−
2
3

L +Cm
1
2

0 ‖w‖L3/2(B) .

Therefore, if m
1
2

0 is sufficiently small, that is ε is sufficiently small, we deduce that

‖w‖L1 6 Cr
2
3

L‖w‖L 32 (B) 6 Cm0 dist(H)2(1+β0)γ0−2−β2 r5+β2L .

Proof of (6.65). The estimate follows easily from (6.64) and (6.66), recalling that ‖FH‖0 6
Cm

1
2

0 .

6.4 main estimates on the interpolating functions

In this section we adopt the terminology of the previous subsection and we show that

Proposition 6.20. Assume the conclusions of Proposition 6.13 applies, let κ := β2
4 and assume

ε41 is sufficiently small, depending upon the other parameters. Then there exists a constant C =

C(M0,N0,Ce,Ch) such that for any cube H ∈ W ∪S , the following conclusions hold.
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(i) Lemma 6.7 applies and thus gH is well-defined.

(ii) The following estimates hold:

‖hH −p⊥πH(pH)‖C0(B6rH(pH,πH)) 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)1+β2 (6.76)

‖gH‖C0 6 Cm
1
4

0d(H)1+
γ0
2 (6.77)

‖DgH‖C0 + d(H)‖D2gH‖C0 + d(H)2‖D3gH‖Cκ 6 Cm
1
2

0d(H)γ0 (6.78)

‖gH − u(zH,wH)‖C0 6 Cm
1
4

0 d(H)
γ0
2 `(H) + csd(H)a (6.79)

|πH − T(x,gH(x))GgH | 6 Cm
1
2

0d(H)γ0−1+δ1`(H)1−δ1 ∀x ∈ B4rH(zH,wH) .
(6.80)

(iii) If L ∈ W ∪S , L∩H 6= ∅ and `(H) 6 `(L) 6 2`(H), then, for every l = 0, . . . , 3,

‖DlgL −DlgH‖C0(BrL(zL,wL)) 6 Cm
1
2

0 d(H)2(1+β0)γ0−β2−2 `(H)3+κ−l . (6.81)

(iv) If L ∈ W ∪S and d(H) 6 d(L) 6 2d(H), then

|D3gH(zH,wH) −D3gL(zL,wL)| 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2 |zH − zL|
κ , (6.82)

where d(·, ·) denotes the distance in B.

6.4.1 Proof of (i) and (ii) in Proposition 6.20

We start by fixing H,L, J so that H ∈ S ∪W , L is an ancestor of H (possibly H itself) and
J is the father of L. We denote by B ′ the ball B8rJ(pHJ,πH), by B the ball B8rL(pHL,πH),
by C ′ the cylinder C8rJ(pJ,πH) and by C the cylinder C8rL(pL,πH). Observe that B ⊂ B ′
(this just requires M0 sufficiently large, given the estimate |pJ − pL| 6 2

√
2`(J)) and thus

C ⊂ C ′. We let A ⊂ B be the projection onto πH of spt(TJ) ∩Gr(fHL) ∩Gr(fHJ). Next, set
E := E(TL,C32rL(pL,πH)) and E ′ := E(TJ,C32rJ(pJ,πH)) and recalling the argument in the
proof of Proposition 6.16, we get

E 6Cm0d(L)2γ0−2+2δ1`(L)2−2δ1 6 Cm0d(H)2γ0−2+2δ1`(J)2−2δ1 (6.83)

E ′ 6Cm0d(J)2γ0−2+2δ1`(J)2−2δ1 6 Cm0d(H)2γ0−2+2δ1`(J)2−2δ1 (6.84)

h(T ,C) 6Cm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 6 Cm

1
4

0d(H)
γ0
2 −β2`(J)1+β2 (6.85)

h(T ,C ′) 6Cm
1
4

0d(J)
γ0
2 −β2`(J)1+β2 6 Cm

1
4

0d(H)
γ0
2 −β2`(J)1+β2 . (6.86)

Next let K̄ be the projection of Gr(fHL)∩Gr(fHJ) onto pH + πH and, recalling the estimates
of Theorem 2.8 we achieve

|B \ K̄| 6 C0r
2
J (E

β0(E+C0m0r
2
J )+E

′β0(E ′+C0m0r
2
J )) 6 Cm

1+β0
0 d(H)2(1+β0)γ0−2`(J)4 .

In particular K is certainly nonempty, provided ε41 is small enough, and thus we can use
the estimates of Theorem 2.8 on the oscillation of fHL and fHJ to conclude that

‖η ◦ fHL −η ◦ fHJ‖L∞(B) 6 Cm
1
4

0d(H)
γ0
2 −β2`(J)1+β2 .
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Set therefore ζ := η ◦ f̄HL −η ◦ f̄HJ and conclude that

‖ζ‖L1(B) 6 ‖η ◦ fHL−η ◦ fHJ‖L∞(B) |B \ K̄| 6 Cm
1+β0+

1
4

0 d(H)
γ0
2 −β2+2(1+β0)γ0−2`(J)5+β2 .

If we define ξ := h̄HL − h̄HJ we can use (6.64) of Proposition 6.19 and the triangular
inequality to infer

‖ξ‖L1(B) 6 Cm0d(H)2(1+β0)γ0−2−β2`(J)5+β2 .

In turn, again by Proposition 6.19, this time using the fact that LHξ = 0 and (6.67), we infer

‖Dl(h̄HL − h̄HJ)‖C0(B̂) 6 Cd(H)2(1+β0)−2−β2`(J)3+β2−l

6 Cd(H)2(1+β0)γ0−2−β2`(J)3+2κ−l for l = 0, 1, 2, 3, 4,
(6.87)

where B̂ = B6r(pHL,πH). Interpolating we get easily also

[D3(h̄HL − h̄HJ)]0,κ,B̂ 6 Cd(H)2(1+β0)γ0−2−β2`(J)3+κ . (6.88)

In case (b) of Definition 1.1 we have hHL = h̄HL and hHJ = h̄HJ. In case (a) and (c), using
the system of coordinates introduced in the proof of Proposition 6.16 we have

hHL(x) = (h̄HL(x),ΨpH(x, h̄HL(x)))

hHJ(x) = (h̄HJ(x),ΨpH(x, h̄HJ(x)))

and we use the chain rule and the regularity of ΨpH to achieve the corresponding estimates

‖Dl(hHL − hHJ)‖C0(B̂) 6 Cd(H)2(1+β0)γ0−2`(J)3−l for l = 0, 1, 2, 3. (6.89)

[D3(hHL − hHJ)]0,κ,B̂ 6 Cd(H)2(1+β0)γ0−2−β2`(J)3+κ . (6.90)

Fix now a chain of cubes H = Hj ⊂ Hj−1 ⊂ . . . ⊂ HN0 =: L, where each Hj+1 is the father of
Hj. Summing the estimates above and using the fact that `(Hj) = 2−j and `(H) 6 d(H) =
d(HN0), we infer

‖Dl(hHL − hH)‖C0(B̃) 6 Cd(H)2(1+β0)γ0+1−l for l = 0, 1, 2, 3 (6.91)

[D3(hHL − hH)]0,κ,B̃ 6 Cd(H)2(1+β0)γ0−β2+κ−2 , (6.92)

where B̃ = B6rH(pH,πH). Observe that, assuming that we have fixed coordinates so that
pH = (0, 0, 0) we also know, arguing as in the proof of Proposition 6.16, that, if we set
B̄ := B8rL(pHL,πH), then

‖η ◦ f̄‖L∞(B̄) 6 Cm
1
4

0d(H)1+
γ0
2 .

In particular, applying (6.66) of Proposition 6.19, we conclude

‖h̄HL‖C0(B̂) 6 Cm
1
4

0d(H)1+
γ0
2 .
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Since the graph of fH and the support of T coincide on K× π⊥ for a set K ⊂ B8rH(pH,πH)
whose complement has very small measure, on such set we have

|η ◦ fH| 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)1+β2

(recall that pH = 0 ∈ spt(T)). On the other hand, given the bound on |K| and the oscillation
of fH, we conclude that

‖η ◦ fH‖L1(B8rH(pH,πH)) 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)3+β2

Using (6.64) we conclude

‖h̄H‖L1(B8rH(pH,πH)) 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)3+β2 .

Using next (6.66) we achieve

‖h̄H‖L∞(B6rH(pH,πH)) 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)1+β2 . (6.93)

Using the estimates upon ΨpH and the fact that ΨpH(0) = 0, DΨpH(0) = 0 we easily conclude

‖hH‖L∞(B6rH(pH,πH)) 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)1+β2 . (6.94)

Next, let pH = (ξ,η) ∈ πH × π⊥H. Observe that pH ∈ spt(T) and thus, for every q ∈
spt(T) ∩C8rH(pH,πH), we must have |pπH(q) − η| 6 Cm

1
4

0d(H)
γ0
2 −β2`(H)1+β2 . Since the

graph of fH and the support of T coincide on K× π⊥ for a set K ⊂ B8rH(pH,πH) whose
complement has very small measure, on such set we have

|η ◦ fH − η| 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)1+β2 .

Given the Lipschitz bound on η ◦ fH, actually this bound is true over all B8rH(pH,πH).
Next, by the smallness of ‖hH −η ◦ fH‖L1 there is at least one point x ∈ B8rH(pH,πH) such

that |hH(x) − η| 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)1+β2 and we can the extend the same estimate to all

points in B7rH(pH,πH) using the C0 bound on hH. We namely achieve

‖hH − η‖C0 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)1+β2 , (6.95)

that is (6.76)
We next estimate the derivatives of hHL. Let E := E(TL,CrL(pL,πH)) and recall the

discussion above and the estimates of Theorem 2.8 to conclude thatˆ
B̄

|DfHL|
2 6 C0r

2
LE 6 Cm0d(H)2γ0−2+2δ1`(L)4−2δ1 . (6.96)

We thus conclude that ‖Dη ◦ f̄HL‖L2(B̄) 6 Cm
1
2

0d(H)γ0−1+δ1 `(H)2−δ1 . We can now use the

Lemma 6.18 to estimate ‖Dh̄HL‖L2 6 Cm
1
2

0d(H)γ0−1+δ1 `(H)2−δ1 and thus ‖Dh̄HL‖L1 6

Cm
1
2

0d(H)γ0−1+δ1 `(H)3−δ1 . If we differentiate the equation defining h̄HL we then find

LH∂jh̄
i
HL = (L2)ij
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and we can thus apply (6.66) of Proposition 6.19, with v = Dh̄HL, to conclude that

‖Dlh̄HL‖L∞(B6rL)
6 Cm

1
2

0d(H)γ0−1+δ1`(L)2−δ1−l 6 Cm
1
2

0d(H)γ0+1−l for l = 1, 2, 3, 4,

(6.97)

where we used the fact, for the starting cubes L = HN0 , d(H) = d(L) 6 C`(L).
Arguing as above we achieve a similar estimate for hHL. We observe however that the

condition DΨpH(0, 0) = 0 plays an important role (assuming to have moved the origin so
that it coincides with pH). For instance we have

DhHL = (Dh̄HL,DxΨpH(x, h̄HL(x)) +DyΨpH(x, h̄HL(x))Dh̄HL(x)) .

Thus we can easily estimate

|DhHL(x)| 6 Cm
1
2

0d(H)γ0 + |DΨpH(x, h̄HL(x))| . (6.98)

Now, the second summand in (6.98) is estimated with ‖D2ΨpH‖`(H) 6 Cm
1
2

0d(H), precisely
because DΨpH(0, 0) = 0.

It follows by (6.89), (6.90), (6.97) and the triangular inequality that we have the uniform
estimates

‖DhH‖C0(B) + d(H)‖D2hH‖C0(B) + d(H)2‖D3hH‖Cκ(B) 6 Cm
1
2

0d(H)γ0 (6.99)

Recall now that, by Proposition 6.11 we have |πH − π0| 6 Cm
1
2

0d(H)γ0 . We can therefore
apply Lemma 3.17 to the rescaling kH(x) := d(H)−1hH(d(H)x) and conclude the existence
of the interpolating functions gH and that the estimates (6.78) hold.

Using now Lemma 3.17, together with (6.76), we finally get

‖gH −p⊥π0(pH)‖C0 6 Cm
1
4

0d(H)
γ0
2 `(H) . (6.100)

On the other hand pπ0(pH) = zH and since pH ∈ spt(TH)∪Vu,a, we conclude immediately
|p⊥π0(pH) − u(zH,wH)| 6 csd(H)a. Combining this last estimate with (6.100) we conclude
(6.79).

Finally, recall that, if E := E(T ,C32rH(pH,πH)), then
ˆ
B8rH(pH,πH)

|DfH|
2 6 Cm0d(H)2γ0−2+2δ2`(H)4−2δ1 ,

from which clearly we get
ˆ
B8rH(pH,πH)

|Dη ◦ fH|2 6 Cm0d(H)2γ0−2+2δ1`(H)4−2δ1 .

By the estimate in Lemma 6.18, we deduce
ˆ
B8rH(pH,πH)

|Dh̄H|
2 6 Cm0d(H)2γ0−2+2δ1`(H)4−2δ1 .
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Thus we conclude the existence of a point p such that

|Dh̄H(p)| 6 Cm
1
2

0d(H)γ0−1+δ1`(H)1−δ1 . (6.101)

Assume now to be in the case (a) or (c) of Definition 1.1 and shift the origin so that it
coincides with pH. Given the bound on D2h̄H we then conclude

|Dh̄H(0)| 6 Cm
1
2

0d(H)γ0−1+δ1`(H)1−δ1

and, since DΨpH(0) = 0, we also have |DhH(0)| 6 Cm
1
2

0d(H)γ0−1+δ1`(H)1−δ1 . Hence using

the bound on ‖D2hH‖0, we finally conclude |Dh̄H(q)| 6 Cm
1
2

0d(H)γ0−1+δ1`(H)1−δ1 for all
q’s in the domain of h̄H. This implies the estimate

|TqGhH − πH| 6 Cm
1
2

0d(H)γ0−1+δ1`(H)1−δ1 ∀p ∈ Gr(hH)∩C6rH(pH,πH) .

Since however Gr(gH) ⊂ Gr(hH) ∩C6rH(pH,πH), we then conclude (6.80). The same
conclusion for case (b) in Definition 1.1 follows directly from (6.101).

6.4.2 Proof of (iii) and (iv)

We observe first that (iv) is a rather simple consequence of (iii). Indeed fix H and L as in the
statements and consider H = Hi ⊂ Hi−1 ⊂ . . . ⊂ HN0 and L = Lj ⊂ Lj−1 ⊂ . . . ⊂ LN0 so
that Hl is the father of Hl+1 and Ll is the father of Ll+1. We distinguish two cases:

(A) If HN0 ∩ LN0 6= ∅, we let i0 and j0 be the smallest indices so that Hi0 ∩ Lj0 6= ∅;

(B) HN0 ∩ LN0 = ∅.

In case (A) observe that max{`(Hi0), `(Lj0)} 6 d((zH,wH), (zL,wL)) := d. On the other hand,
recalling that d(Hl) = d(H), d(Ll) = d(L) and d(L) 6 2d(H), by (iii) with l = 3 we have

|D3gH(zH,wH) −D3gHi0 (zHi0 ,wHi0 )| 6
i−1∑
l=i0

|D3gHl(zHl ,wHl) −D
3gHl+1(zHl+1 ,wHl+1)|

6Cm
1
2

0d(H)2(1+β0)γ0−β2−2`(Hi0)
κ
i−1∑
l=i0

2(i0−l)κ 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2dκ

|D3gL(zL,wL) −D3gLj0 (zLj0 ,wLj0 )| 6
j−1∑
l=j0

|D3gLl(zLl ,wLl) −D
3gLl+1(zLl+1 ,wLl+1)|

6Cm
1
2

0d(L)2(1+β0)γ0−β2−2`(Lj0)
κ

j−1∑
l=j0

2(j0−l)κ 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2dκ

|D3gLj0 (zLj0 ,wLj0 ) −D
3gHi0 (zHi0 ,wHi0 )| 6 Cm

1
2

0d(Hi0)
2(1+β0)γ0−β2−2`(Hi0)

κ

6m
1
2

0d(H)2(1+β0)γ0−β2−2dκ .
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The triangle inequality implies then the desired estimate.
In case (B) we first notice that by the very same argument we have the estimates

|D3gH(zH,wH) −D3gHN0 (zHN0 ,wHN0 )| 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2dκ

|D3gL(zL,wL) −D3gLN0 (zLN0 ,wLN0 )| 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2dκ .

Next we find a chain of cubes HN0 = J0, J1, . . . , JN = LN0 , all distinct and belonging to SN0 ,
so that

• d(H) 6 d(Jl) 6 d(L) 6 2d(H);

• Jl ∩ Jl+1 6= ∅ and thus `(HN0) 6 `(Jl) 6 `(LN0);

• N is smaller than a constant C(N0, Q̄).

Using again (iii) and arguing as above we conclude

|D3gHN0 (zHN0 ,wHN0 ) −D
3gLN0 (zLN0 ,wLN0 )|

6
N∑
l=1

|D3gJl(zJl ,wJl) −D
3gJl−1(zJl−1 ,wJl−1)| 6 CNm

1
2

0d(H)2(1+β0)γ0−β2−2dκ .

Again, using the triangular inequality we conclude (iv).

We now come to (iii). Fix therefore two cubes H and L as in the statement and set
r := rH. Observe that, by (i) and Lemma 6.24, it suffices to show that ‖gH − gL‖L1(B) 6

Cm
1
2

0d(H)
γ0
2 −2`(H)5+κ. where B = Br(zL,π0). Consider now the two corresponding tilted

interpolating functions, namely hL and hH. Given the estimate upon hL proved in the
previous paragraph, we can find a function ĥL : B7r(pL,πH) → π⊥H such that GĥL =

GhL C6r(pL,πH) (in this paragraph ·̂ will always denote the riparametrization on πL).
Obviously GĥL Cr(zL,π0) = GgL . We can therefore apply Lemma 3.17 to conclude that

‖gH − gL‖L1(B) 6 C‖hH − ĥL‖L1(B5r(pL,πH)) .

Consider next the tilted interpolating function hHL and observe that, by (6.87) and the usual
estimates on Ψ, we know

‖hH − hHL‖L1(B5r(pH,πH)) 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2`(H)5+β2 .

Hence, since β2 > κ, we are reduced to show

‖hHL − ĥL‖L1(B5r(pH,πH)) 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2`(H)5+κ . (6.102)

In turn, consider the πH-approximating function fHL and the πL-approximating function
fLL = fL. In the πH ×κH × TpHΣ⊥ coordinates we set

fHL(x) = (pκH(η ◦ fHL(x)),ΨpH(x,pκH(η ◦ fHL(x))))
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and recall that, by Proposition 6.19, we have

‖hHL − fHL‖L1(B8rL(pHL,πH)) 6 Cm
1
2

0d(L)2(1+β0)γ0−β2−2`(L)5+β2 . (6.103)

Similarly, in the πL ×κL × TpLΣ⊥ coordinates we set

fL(x) = (pκL(η ◦ fL(x)),ΨpL(x,pκL(η ◦ fL(x))))

and get

‖hL − fL‖L1(B8rL(pL,πL)) 6 Cm
1
2

0d(L)2(1+β0)γ0−β2−2`(L)5+β2 .

Next we denote by f̂L the map f̂L : B6rL(pHL,πH)→ π⊥H such that Gf̂L = GfL C6rL(pL,πH)
and we use again Lemma 3.17 to infer

‖ĥL− f̂L‖L1(B6rL(pHL,πH)) 6 C‖hL− fL‖L1(B8rL(pL,πL) 6 Cm
1
2

0d(L)2(1+β0)γ0−β2−2`(L)5+β2 .

(6.104)

In view of (6.103) and (6.104), (6.102) is then reduced to

‖fHL − f̂L‖L1(B5rL(pHL,πH)) 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2`(H)5+κ . (6.105)

Consider now the map f̂L : B6rL(pHL,πH)→ AQ(π
⊥
H) such that Gf̂L = GfL C6rL(pL,πH).

Let A and Â be the projections on pH + πH of the Borel sets Gr(fHL)) \ spt(T) and Gr(f̂L) \
spt(T) ⊂ Gr(fL) \ spt(T). We know that

|A∪A ′| 6‖GfHL − T‖(C8rL(pL,πH)) + ‖GfL − T‖(C8rL(pL,πL))

6Cm1+β00 d(H)2(1+β0)γ0−2`(H)4 .

On the other hand, it is not difficult to see, thanks to the height bound, that ‖η ◦ fHL −η ◦
f̂L‖∞ 6 Cm

1
4

0d(H)
γ0
2 −β2`(H)1+β2 . We thus conclude that

‖η ◦ fHL −η ◦ f̂L‖L1(B6rL(pHL,πH)) 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2`(H)5+β2 .

Define in the πH ×κH × TpHΣ⊥ co-ordinates the function

g(x) := (pκH(η ◦ f̂L(x)),ΨpH(x,pκH(η ◦ f̂L(x)))) .

We can thus conclude that

‖fHL −g‖L1(B6rL(pHL,πL)) 6 Cm
1
2

0d(L)2(1+β0)γ0−β2−2`(L)5+β2 . (6.106)

Thus, (6.105) is now reduced to

‖g− f̂L‖L1(B5rL(pHL,πH)) 6 Cm
1
2

0d(H)2(1+β0)γ0−β2−2`(H)5+κ . (6.107)
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Denoting by An the distance |πH − πL|, by B̂ the ball B6rL(pHL,πH) and by B̃ the ball
B8rL(pL,πL), we then have, by Lemma 6.23

‖g− f̂L‖L1(B̂) 6 C0(osc (fL) + rLAn)
(ˆ

|DfL|
2 + r2L(‖DΨpL‖

2
C0(B̃)

+ An2)
)

.

Recall that DΨpL(pL) = 0 and thus ‖DΨpL‖2C0(B̃) 6 C0m0r
2
L. Recalling the estimate on

|πH − πL| and upon the Dirichlet energy of fL, we then conclude
ˆ

|DfL|
2 + r2L(‖DΨpL‖

2
C0(B̃)

+ An2) 6 Cm0d(L)2γ0−2+2δ1`(H)4−2δ1 .

On the other hand

osc (fL) + rLAn 6 Cm
1
4

0d(H)
γ0
2 −β2`(H)1+β2 .

Thus (6.107) follows by our choice of the various parameters, in particular β2− 2δ1 >
β2
4 = κ.

6.5 conclusion of the proof: existence of the center manifold

6.5.1 Proof of (i)

As in all the proofs so far, we will use C0 for geometric constants and C for constants
which depend upon M0,N0,Ce and Ch. Define χH := ϑH/(

∑
L∈Pj ϑL) for each H ∈Pj(cf.

Definition 6.8) and observe that∑
H∈Pj

χH = 1 on Ak ∀k ∈N and ‖χH‖Ci 6 C0 `(H)−i ∀i ∈ {0, 1, 2, 3, 4} .

(6.108)

Fix any H ∈Pj and let k be such that H ⊂ Ak. Set Pj(H) := {L ∈Pj : L∩H 6= ∅} \ {H} for
each H ∈ Pj. By construction 1

2`(L) 6 `(H) 6 2 `(L) and 2−k−1 6 d(L) 6 2−k+1 for every
L ∈Pj(H). Moreover the cardinality of Pj(H) is at most 13. Fix a point p = (z,w) ∈ H and
observe that C−1

0 2−k 6 |z| 6 C02−k. From (6.77) of Proposition 6.20 we then conclude

|ϕ̂j(z,w)| 6 Cm
1
4

0d(H)1+
γ0
2 6 Cm

1
4

0 |z|
1+

γ0
2 .

Recall now that Ψ(0) = 0, DΨ(0) = 0 and ‖D2Ψ‖C0 6 Cm
1
2

0 . Considering that

ϕj(z,w) = (ϕ̄j(z,w),Ψ(z, ϕ̄j(z,w))) (6.109)

(where ϕ̄j(z,w) is the vector consisting of the first n̄ components of ϕ̂j(z,w)), we easily
conclude

|ϕ̂j(z,w)| 6 Cm
1
4

0 |z|
1+

γ0
2 +C‖D2Ψ‖C0 |z|2 6 Cm

1
4

0 |z|
1+κ .

This gives (6.16) and the continuity of ϕj, since by definition ϕj(0, 0) = 0.
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For (z,w) ∈ H we next write

ϕ̂j(z,w) =
(
gHχH +

∑
L∈Pj(H)

gLχL

)
(z,w) = gH(x) +

∑
L∈Pj(H)

(gL − gH)χL (z,w) ,

(6.110)

because H does not meet the support of ϑL for any L ∈Pj which does not meet H. Using
the Leibniz rule, (6.108) and the estimates of Proposition 6.20, for l ∈ {1, 2, 3} we get

‖Dlϕ̂j‖C0(H) 6 ‖DlgH‖C0 +C0
∑
06i6l

∑
L∈Pj(H)

‖gL − gH‖Ci(H)`(L)
i−l

6Cm
1
2

0d(H)γ0+1−l +Cm
1
2

0d(H)2(1+β0)γ0−β2−2
∑
06i6l

`(H)3+β2−i`(H)i−l

6Cm
1
2

0d(H)γ0+1−l .

Again using the formula (6.109) and the estimate ‖Ψ‖C3,ε0 6m
1
2

0 (together with DΨ(0) = 0
and Ψ(0) = 0) we easily reach (6.17). With an argument entirely similar we obtain

[D3ϕj]κ,H 6 Cm
1
2

0d(H)γ0−2 . (6.111)

Thus, pick any two points (z,w), (z ′w ′) ∈ Ak. If they belong to the same cube H ∈Pj with
H ⊂ Ak, then

|D3ϕj(z,w) −D3ϕj(z ′,w ′)| 6Cm
1
2

0d(H)−2d((z ′,w ′), (z,w))κ

6Cm
1
2

0 2
2kd((z ′,w ′), (z,w))κ . (6.112)

If they do not belong to the same cube, then let H,L ∈Pj be two cubes contained in Ak such
that (z,w) ∈ H and (z ′,w ′) ∈ L. Next observe that, by our choice of the cut-off functions ϑJ,
ϕj = gH in a neighborhood of (zH,wH) and ϕj = gL in a neighborhood of (zL,wL). We can
then estimate, using Proposition 6.20(iv) and (6.111)

|D3ϕj(z,w) −D3ϕj(z ′,w ′)| 6 |D3ϕj(z,w) −D3gH(zH,wH)|

+ |D3gH(zH,wH) −D3gL(zL,wL)|+ |D3ϕj(zL,wL) −D3ϕj(z ′,w ′)|

6Cm
1
2

0d(H)−2 (`(H)κ + d((zH,wH), (zL,wL))κ + `(L)κ))

6Cm
1
2

0d(H)−2d((z,w), (z ′,w ′))κ 6 Cm
1
2

0 2
2kd((z ′,w ′), (z,w))κ . (6.113)

From (6.112) and (6.113) we conclude (6.18) and thus the proof of Theorem 6.9(i).

6.5.2 Proof of (ii)

The first statement is an obvious consequence of the construction algorithm: indeed note
that, if i, j,k, L and H are as in the statement then Pj(L) = Pk(L) and moreover χJ = 0 on
H for any J ∈Pj \Pj(L) and for any J ∈Pk \Pk(L). Then it turns out that ϕ̂j = ϕ̂k on
H, which in turn obviously implies that ϕj and ϕk coincide on H.
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As for the second statement, if we can show that there is a uniform limit ϕ for ϕj, the C3

convergence and the regularity of ϕ will follow from the estimates of point (i). Fix a point
(z,w) 6= 0 and let H ∈ Pj which contains it. If H ∈ W i and i 6 j− 2, then ϕ̂j+1 and ϕ̂j
coincide on it. Otherwise we can assume that H ∈ C j−1 ∪C j. In this case we can estimate

|ϕj(z,w) −ϕj(zH,wH)| 6 Cm
1
2

0d(H)κ`(H) 6 C2−j .

A similar estimate holds for ϕj+1: notice that we can choose L ∈Pj+1 such that (z,w) ∈ L
and L is either H or a son of H. Moreover, we can estimate

|ϕj+1(z,w) −ϕj+1(zL,wL)| 6 C2−j .

Next, recall that ϕj(zH,wH) = gH(zH,wH) and that ϕj+1(zL,wL) = gL(zL,wL). Since
moreover L = H or L is a son of H, by Proposition 6.20 we achieve

|ϕj+1(zL,wL) −ϕj(zH,wH)| 6 C0‖DgH‖C0`(H) +C‖gH − gL‖C0 6 C2−j .

Summarizing, we conclude that

‖ϕj+1 −ϕj‖C0 6 C2−j .

The latter estimate gives that ϕj is a Cauchy sequence in C0 and thus that it converges
uniformly to some ϕ.

6.5.3 Proof of (iii)

Observe first that, if (z,w) does not belong to some H ∈ W , then ϕ(z,w) is necessarily a
point in the support of T and we can estimate

|ϕ(z,w) − u(z,w)| 6 cs|z|a . (6.114)

In fact, in this case for every j > N0 there is Hj ∈ S j such that (z,w) ∈ Hj. Observe that
ϕj(zHj ,wHj) = gHj(zHj ,wHj) and that

lim
j→∞

(
d((zHj ,wHj), (z,w)) + |gHj(zHj ,wHj) −ϕ(z,w)|

)
= 0 .

But we also have

lim
j→∞ |(zHj ,gHj(zHj ,wHj)) − pHj | = 0 .

On the other hand, since

|pHj − (zHj ,u(zHj ,wHj))| 6 cs|zHj |
a ,

we then conclude (6.114) taking the limit in j→∞.
From now on we therefore assume that (z,w) ∈ H for some H ∈ W .

Step 1. In this step we show that

`(H) 6 C0d(H)(b+1)/2 . (6.115)

In fact we claim that this is the case for any H ∈ W . First of all we observe that it suffices
to show it for H ∈ We ∪Wh: given indeed any H ∈ Wn we find a chain of cubes H =

Hl,Hl−1, . . . ,Hi with the properties that
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• Hk ∩Hk+1 6= ∅;

• `(Hk) = 2`(Hk+1);

• Hl ∈ Wn for any l > i+ 1 and Hi ∈ We ∪Wh.

It is easy to see that, provided M0 is larger than a geometric constant, 12d(H) 6 d(Hi) 6
2d(H). Since `(H) 6 1

2`(Hi), it suffices to show `(Hi) 6 C0d(Hi)(b+1)/2.
Next, assume H ∈ We. Then we know that

E(TH,BH) > Cem0d(H)2γ0−2+2δ1`(H)2−2δ1 > Cem
1
2

0d(H)2γ0−2`(H)2 . (6.116)

Now recall that d = |zH| 6 2
√
2d(H). Moreover, if rH were larger than 1

2d
(b+1)/2, then by

(2.24) there would be a π such that (recall that C2i 6m0)

E(TH,BH,π) 6m0d(H)2γ−2r2H .

By Lemma 6.12(i), we then would have

E(TH,BH(π)) 6m0d(H)2γ−2r2H +C0m0r
2
H 6 C(M0)m0d(H)2γ0−2`(H)2 (6.117)

(recall that γ0 < γ). Thus we conclude that (6.117) contradicts (6.116).
It remains to show (6.115) when H ∈ Wh. Assume therefore that rH > 1

2d
(b+1)/2. As

above observe that we know

E(TH,BH,πH) =E(TH,BH) 6 C̄m0d(H)2γ−2`(H)2 (6.118)

whete the constant C̄ does not depend on H. We thus conclude from Lemma 6.12 that

|π− πH| 6 C̄m
1
2

0d(H)γ−1`(H) . (6.119)

We next wish to estimate h(TH,BH,π). π is tangent to Gu at qH := (zH,u(zH,wH)). For
simplicity shift the coordinates so that qH = 0 and recall that |pH| = |pH − qH| 6 cs|d|

a.
Fix a point p ∈ BH ∩ spt(TH) and recall that there is a point p ′ in Gr(u) ∩VH such that
|p− p ′| 6 2ada, since |pπ0(p

′)| > d
2 . Obviously |pπ(p

′)| 6 2rH and since π is tangent to
Gr(u) at 0, we have the estimate

|p⊥π (p
′)| 6 C0m

1
2

0d
α−1|pπ(p

′)|2 6 C̄m
1
2

0d(H)α−1`(H)2 .

We can therefore estimate

|p⊥π (p)| 6 C̄m
1
2

0d(H)α−1`(H)2 + C̄m
1
2

0d(H)a .

This implies the estimate

h(TH,BH,π) 6 C̄m
1
2

0d(H)α−1`(H)2 + C̄m
1
2

0d(H)a . (6.120)

Using now Lemma 6.12 and (6.119) we then estimate

h(TH,BH) 6 C̄m
1
2

0d(H)α−1`(H)2 + C̄m
1
2

0d(H)a + C̄m
1
2

0d(H)γ−1`(H)2 , (6.121)
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where C̄ depends upon M0,N0 and Ce, but not upon Ch.
On the other hand, since H ∈ Wh, we then have

h(TH,BH) > Chm
1
4

0d(H)γ0−β2`(H)1+β2 . (6.122)

By our choice of the exponents it is obvious that the first and third summand in (6.121) are

smaller than a fraction (say 1
4 ) of Chm

1
4

0d(H)γ0−β2`(H)1+β2 , provided that Ch is chosen
large enough. Recalling that we are assuming `(H) > C̄d(H)(1+b)/2, to achieve the same
conclusion with the second summand we need

1+ b

2
(1+β2) −β2 + γ0 < a .

However, since a > b, the latter inequality is implied by (6.2), and we reach a contradiction.

Step 2. Recall that we have fixed (z,w) ∈ H with H ∈ W and that our aim is to establish
(6.19). From the previous step we know that `(H) 6 C0|z|

(1+b)/2 and that d(H) 6 C0|z|.
Assume H ∈ W j and pick any k > j+ 2. By (ii)Theorem 6.9, we know that ϕ = ϕk on H.
Recalling the arguments above (in particular (6.81)), we also have

‖ϕj−gH‖C0 6
∑

L∈Pk(H)

‖gH−gL‖C0 6 Cm
1
2

0d(H)1γ0−2−β2`(H)3+κ 6 Cm
1
2

0d
γ0−2+

(3+κ)(b+1)
2

Since γ0 − 2+ (3+ κ)(b+ 1)/2 > γ0 + 3
b
2 − 1

2 > γ0 + b, it suffices then to show that

|u(z,w) − gH(z,w)| 6 Cm
1
4

0 |z|
a ′ . (6.123)

We next consider both u and gH as two functions defined on π0 and having defined the ball
B := BrH(zH,π0), our goal is indeed to show that

‖u− gH‖C0(B) 6 Cm
1
4

0d(H)a
′
.

Recall next that the graph of gH is indeed a subset of the graph of the tilted interpolating
function hH. If v : B8rH(pH,πH) → π⊥H is the function which gives the graph of u in the
system of coordinates πH × π⊥H and we set B ′ := B6rH(pH,πH), we then claim that it suffices
to show

‖v− hH‖C0(B ′) 6 Cm
1
4

0d(H)a
′
. (6.124)

In fact let p = (ζ,gH(ζ)) ∈ π0 × π⊥0 and let ω ∈ πHbe such that p = (ω,hH(ω)) ∈ πH × π⊥H.
Consider also q = (ζ,u(z)) and q ′ = (ω, v(ω)) and let ζ ′ ∈ π0 such that q ′ = (ζ ′,u(ζ ′)).
Let T be the triangle with vertices q, p and q ′. The angle θp at p can be assumed to be

small, because |πH − π0| 6 Cm
1
2

0 . On the other hand the angle θq in q is close to π
2 , since

the Lipschitz constant of u is small. Thus the angle θq ′ is also close to π
2 . From the sinus

theorem applied to the triangle T we then conclude

|u(ζ) − gH(ζ)| = |p− q| =
sin θq ′
sin θq

|p− q ′| . (6.125)
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By choosing ε41 small we then reach

‖u− gH‖C0(B) 6 2‖v− hH‖C0(B ′) .

As usual, we assume now to have shifted the origin so that pH = 0. Recall that ΨpH(0) = 0
and DΨpH(0) = 0, so that we can estimate

‖hH −η ◦ fH‖C0(B ′) 6 C0‖h̄H −η ◦ f̄H‖C0 +Cm
1
2

0 `(H)
2 .

Using now Proposition 6.19 we then conclude

‖hH −η ◦ fH‖C0(B ′) 6 Cm0d(H)2γ0−2`(H)3 +Cm
1
2

0 `(H)
2 . (6.126)

Since `(H) 6 d(H)(1+b)/2, we again see that (6.124) can be reduced to the estimate

‖η ◦ fH − v‖C0(B ′) 6 Cm
1
4

0d(H)a
′
. (6.127)

We will in fact show such estimate in the ball B̂ := B8rH(pH,πH). Consider a point p ∈
spt(TH)∩C8rH(pH,πH) and let p = (ζ,η) ∈ π0×π⊥0 . We also let q be the point (ζ,u(ζ)) and
q ′ = (ω, v(ω)) ∈ πH × π⊥H, where ω = pH(p). The argument above can be applied literally
to the triangle T with vertices p, q and q ′ to conclude that

|p− q ′| 6 2|p− q| 6 Cm
1
2

0d(H)a .

Recall that, except for a set of points ω ∈ A of measure no larger than Cm0d(H)2γ0−2`(H)4,
the slice 〈T ,pπH ,ω〉 coincides with the slice 〈GfH ,pπH ,ω〉. Thus on the set A we obviously
have

|η ◦ fH(ω) − v(ω)| 6 Cm
1
2

0d(H)a .

Now, for any point ω 6∈ A there is a point ω ′ ∈ A at distance at most d(H)γ0−1`(H)2. Since

both Lip(v) and Lip(η ◦ fH) are controlled by m
1
2

0 , this gives the estimate

‖η ◦ fH − v‖C0(B ′) 6 Cm
1
2

0d(H)a +Cd(H)γ0−1`(H)2 .

On the other hand, since `(H) 6 Cd(H)(b+1)/2 and a > b+ 1, we easily see that

‖η ◦ fH − v‖C0(B ′) 6 Cm
1
2

0d(H)γ0+b .

This completes the proof of (6.127) and hence of (6.19)

6.6 appendix a: density and height bound

In this appendix we record two estimates which are standard for area-minimizing currents
and can be extended with routine arguments to the three cases of Definition 1.1. Both
statements are valid for general m without additional efforts and we therefore do not restrict
to m = 2 here. Consistently with [24, 18] we introduce the parameter Ω, which equals
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• A = ‖AΣ‖C0 in case (a) of Definition 1.1;

• max{‖dω‖C0 , ‖AΣ‖C0} in case (b);

• C0R
−1 in case (c).

Lemma 6.21. There is a positive geometric constant c(m,n) with the following property. If T is a
current as in Definition 1.1, where Ω 6 c(m,n), then

‖T‖(Bρ(x)) > ωm(Θ(T ,p) − 1
4)ρ

m > ωm34ρ
m ∀p ∈ spt(T), ∀r ∈ dist(p,∂U) . (6.128)

Proof. By [24, Proposition 1.2] ‖T‖ is an integral varifold with bounded mean curvature in
the sense of Allard, where CΩ bounds the mean curvature for some geometric constant
C. It follows from Allard’s monotonicity formula that eCΩr‖T‖(Br(x)) is monotone non-
decreasing in r, from which the first inequality in (6.128) follows. The second inequality
is implied by Θ(T ,p) > 1 for every p ∈ spt(T): this holds because the density is an upper
semicontinuous function which takes integer values ‖T‖-almost everywhere.

For the proof of the next statement we refer to [20, Theorem A.1]: in that Theorem T

satisfies the stronger assumption of being area-minimizing (thus covering only case (a) of
Definition 1.1), but a close inspection of the proof given in [20] shows that the only property
of area-minimizing currents relevant to the arguments is the validity of the density lower
bound (6.128).

Theorem 6.22. Let Q, m and n be positive integers. Then there are ε > 0, c > 0 and C geometric
constants with the following property. Assume that π0 = Rm × {0} ⊂ Rm+n and that:

(h1) T is an integer rectifiable m-dimensional current as in Definition 1.1 with U = Cr(x0) and
Ω 6 c;

(h2) ∂T Cr(x0) = 0, (pπ0)]T Cr(x0) = Q JBr(pπ0(x0))K and E := E(R,Cr(x0)) < ε.

aThen there are k ∈N, points {y1, . . . ,yk} ⊂ Rm+n and positive integers Q1, . . . ,Qk such that:

(i) having set σ := CE
1
2m , the open sets Si := Rm × (yi+ ] − rσ, rσ[n) are pairwise disjoint and

spt(T)∩Cr(1−σ| logE|)(x0) ⊂ ∪iSi;

(ii) (pπ0)][T (Cr(1−σ| logE|)(x0)∩Si)] = Qi
r
Br(1−σ| logE|)(pπ0(x0),π0)

z
∀i ∈ {1, . . . ,k}.

(iii) for every p ∈ spt(T)∩Cr(1−σ| logE|)(x0) we have Θ(T ,p) < max{Qi}+ 1
2 .

6.7 appendix b: two technical lemmas

Lemma 6.23 ([20, Lemma 5.6]). Fix m,n, l and Q. There are geometric constants c0,C0 with the
following property. Consider two triples of planes (π,κ,$) and (π̄, κ̄, $̄), where

• π and π̄ are m-dimensional;

• κ and κ̄ are n̄-dimensional and orthogonal, respectively, to π and π̄;



132 center manifold

• $ and $̄ l-dimensional and orthogonal, respectively, to π×κ and π̄× κ̄.

Assume An := |π− π̄|+ |κ − κ̄| 6 c0 and let Ψ : π× κ → $, Ψ̄ : π̄× κ̄ → $̄ be two maps
whose graphs coincide and such that |Ψ̄(0)| 6 c0r and ‖DΨ̄‖C0 6 c0. Let u : B8r(0, π̄)→ AQ(κ̄)
be a map with Lip(u) 6 c0 and ‖u‖C0 6 c0r and set f(x) =

∑
iJ(ui(x), Ψ̄(x,ui(x)))K and

f(x) = (η ◦ u(x), Ψ̄(x,η ◦ u(x))). Then there are

• a map û : B4r(0,π)→ AQ(κ) such that the map f̂(x) :=
∑
i J(ûi(x),Ψ(x, ûi(x)))K satisfies

Gf̂ = Gf C4r(0,π)

• and a map f̂ : B4r(0,π)→ κ ×$ such that Gf̂ = Gf C4r(0,π).

Finally, if g(x) := (η ◦ û(x),Ψ(x,η ◦ û(x))), then

‖f̂−g‖L1 6 C0 (‖f‖C0 + rAn)
(
Dir(f) + rm

(
‖DΨ̄‖2C0 + An2

))
. (6.129)

The proof of this Lemma can be found in [20, Appendix D].

Lemma 6.24 ([20, Lemma C.2]). For everym, r < s and κ there is a positive constant C (depending
on m, κ and sr ) with the following property. Let f be a C3,κ function in the ball Bs ⊂ Rm. Then

‖Djf‖C0(Br) 6 Cr
−m−j‖f‖L1(Bs) +Cr

3+κ−j[D3f]κ,Bs ∀j ∈ {0, 1, 2, 3} . (6.130)

Proof. A simple covering argument reduces the lemma to the case s = 2r. Moreover, define
fr(x) := f(rx) to see that we can assume r = 1. So our goal is to show

3∑
j=0

|Djf(y)| 6 C‖f− g‖L1 +C[D3f]κ ∀y ∈ B1,∀f ∈ C3,κ(B2) . (6.131)

By translating it suffices then to prove the estimate

3∑
j=0

|Djf(0)| 6 C‖f‖L1(B1) +C[D
3f]κ,B1 ∀f ∈ C3,κ(B1) . (6.132)

Consider now the space of polynomials R in m variables of degree at most 3, which we write
as R =

∑3
j=0Ajx

j. This is a finite dimensional vector space, on which we can define the
norms |R| :=

∑3
j=0 |Aj| and ‖R‖ :=

´
B1

|R(x)|dx. These two norms must then be equivalent, so
there is a constant C (depending only on m), such that |R| 6 C‖R‖ for any such polynomial.
In particular, if P is the Taylor polynomial of third order for f at the point 0, we conclude

3∑
j=0

|Djf(0)| = |P| 6 C‖P‖ = C
ˆ
B1

|P(x)|dx 6 C‖f‖L1(B1) +C‖f− P‖L1(B1)

6 C‖f‖L1 +C[D3f]κ .
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T H E N O R M A L A P P R O X I M AT I O N

In what follows we assume that the conclusions of Theorem 6.9 apply and denote by M

the corresponding center manifold. For any Borel set V ⊂ M we will denote by |V| its
H2-measure and will write

´
V f for the integral of f with respect to H2. Br(q) denotes the

geodesic balls in M. Moreover, we refer to Chapter 3 for all the relevant notation pertaining
to the differentiation of (multiple valued) maps defined on M, induced currents, differential
geometric tensors and so on.

7.1 estimates, separation and splitting

We next define the open set

(V) V := {(x,y) : x ∈ [−1, 1]2 and |ϕ(x,w) − y| 6 cs|x|b/2}.

V is clearly an horned neighborhood of the graph ofϕ. By (2.18), Assumption 3 and Theorem
6.9 it is clear that the following corollary holds

Corollary 7.1. Under the hypotheses of Theorem 6.9, there is r > 0 such that

(i) For every x ∈ R2 with 0 < |x| = 2ρ < 2r, the set Cρ(x)∩V consists of Q̄ distinct connected
components and spt(T) ⊂ V.

(ii) There is a well-defined nearest point projection p : V ∩C4r → Gr(ϕ), which is a C2,κ map.

(iii) For every L ∈ W with d(L) 6 2r and every q ∈ L we have spt(〈T ,p,Φ(q)〉) ⊂
{
y :

|Φ(q) − y| 6 Cm
1
4

0d(L)
γ0
2 −β2`(L)1+β2

}
.

(iv) 〈T ,p,p〉 = Q JpK for every p ∈Φ(Γ)∩C2r \ {0}.

The main goal of this paper is to couple the branched center manifold of Theorem 6.9
with a good map defined on M and taking values in its normal bundle, which approximates
accurately T in a neighborhood of the origin.

Definition 7.2 (M-normal approximation). Let r be as in Corollary 7.1 and define

(U) U := p−1(C2r ∩BQ).

An M-normal approximation of T is given by a pair (K, F) such that

(A1) F : C2r ∩BQ̄ → AQ(U) is Lipschitz and takes the form F(x) =
∑
i Jx+Ni(x)K, with

Ni(x) ⊥ TxM and x+Ni(x) ∈ Σ for every x and i.

(A2) K ⊂M is closed, contains Φ
(
Γ ∩C2r) and TF p−1(K) = T p−1(K).

The map N =
∑
i JNiK : M→ AQ(R

2+n) is the normal part of F.

133
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In the definition above it is not required that the map F approximates efficiently the current
outside the set Φ(Γ). However, all the maps constructed here will approximate T with a
high degree of accuracy in each Whitney region: such estimates are detailed in the next
theorem. In order to simplify the notation, we will use ‖N|V‖C0 (or ‖N|V‖0) to denote the
number supx∈V G(N(x),Q J0K) = supx∈V |N(x)|.

Theorem 7.3 (Local estimates for the M-normal approximation). Let r be as in Corollary 7.1
and U as in Definition 7.2. Then there is an M-normal approximation (K, F) such that the following
estimates hold on every Whitney region L associated to L ∈ W with d(L) 6 r:

Lip(N|L) 6 Cm
β0
0 d(L)β0 γ0 `(L)β0γ0 and ‖N|L‖C0 6 Cm

1
4

0d(L)
γ0
2 −β2`(L)1+β2 ,

(7.1)

|L \K|+ ‖TF − T‖(p−1(Li)) 6 Cm
1+β0
0 d(L)(1+β0)(2γ0−2+2δ1) `(L)2+(1+β0)(2−2δ1),

(7.2)ˆ
L

|DN|2 6 Cm0 d(L)2γ0−2+2δ1 `(L)4−2δ1 . (7.3)

Moreover, for every Borel V ⊂ L, it holds
ˆ
V

|η ◦N| 6 Cm0d(L)2(1+β0)γ0−2−β2 `(L)5+β2/4

+Cm
1
2+β0
0 d(L)2β0γ0+γ0−1−β2 `(L)1+β2

ˆ
V

G
(
N,Q Jη ◦NK

)
. (7.4)

The constant C = C(M0,N0,Ce,Ch) does not depend on ε41.

7.1.1 Separation and splitting

We conclude this section with two theorems which allow us to estimate the sidelengths of
the squares of type Wh and We. The squares in Wn do not enjoy similar bounds, but they can
be partitioned in families, each of which consists of squares sufficiently close to an element
of We.

Proposition 7.4 (Separation). There is a dimensional constant C] > 0 with the following property.
Assume the hypotheses of Theorem 7.3, and in addition C4h > C]Ce. If ε41 is sufficiently small, then
the following conclusions hold for every L ∈ Wh with d(L) 6 r :

(S1) Θ(TL,p) 6 Q− 1
2 for every p ∈ B16rL(pL).

(S2) L∩H = ∅ for every H ∈ Wn with `(H) 6 1
2`(L).

(S3) G
(
N(x),Q Jη ◦N(x)K

)
> 1
4Chm

1
4

0 d(L)
γ0
2 −β2`(L)1+β2 ∀x ∈Φ(B4`(L)(zL,wL)).

A simple corollary of the previous proposition is the following.

Corollary 7.5 (Domains of influence). For any H ∈ Wn there is a chain L = L0, . . . ,Ln = H

such that
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(a) L0 ∈ We and Lk ∈ Wn for all k > 0;

(b) Lk ∩ Lk−1 6= ∅ and `(Lk) =
`(Lk−1)
2 for all k > 0.

In particular H ⊂ B3√2`(L)(zL,wL).

We use this last corollary to partition Wn.

Definition 7.6 (Domains of influence). We first fix an ordering of the squares in We as {Ji}i∈N

so that their sidelengths do not increase. Then H ∈ Wn belongs to Wn(J0) (the domain of
influence of J0) if there is a chain as in Corollary 7.5 with L0 = J0. Inductively, Wn(Jr) is
the set of squares H ∈ Wn \∪i<rWn(Ji) for which there is a chain as in Corollary 7.5 with
L0 = Jr.

Proposition 7.7 (Splitting). There are constants C1,C2(M0), r̄(M0,N0,Ce) such that, if M0 >
C1, Ce > C0(M0), if the hypotheses of Theorem 7.3 hold and ε41 is chosen sufficiently small,
then the following holds. If L ∈ We with d(L) 6 r̄, q ∈ B with dist(L,q) 6 4

√
2 `(L) and

Ω :=Φ(B`(L)/8(q)), then:

Cem0 d(L)2γ0−2+2δ1`(L)4−2δ2 6 `(L)2E(Tl,BL) 6 C
ˆ
Ω

|DN|2 , (7.5)
ˆ
L

|DN|2 6 C`(L)2E(T ,BL) 6 C`(L)−2
ˆ
Ω

|N|2 , (7.6)

where C = C(M0,N0,Ce,Ch).

7.2 the construction of the approximating map n

In this section we prove Corollary 7.1 and Theorem 7.3.

7.2.1 Proof of Corollary 7.1

Statement (i) is an obvious consequence of (2.18) and (6.19). As for statement (ii), the
argument is the same given in the proof of Lemma 2.15 for the existence of the nearest point
projection P : Vu,a ∩C1 → Gr(u).

For what concerns (iii), let L ∈ W , denote by (zL,wL) its center and set p :=Φ(q) We start
by observing that spt(〈T ,p,p〉) ⊂ spt(TJ) for some ancestor J of L, given the thickness of the
horned neighborhood V and the estimates in Theorem 6.9. We next claim that

spt(〈T ,p,p〉) ⊂ BrL(p) . (7.7)

Assuming this for the moment, recall that we have already shown the estimate

‖ϕ− gL‖C0(L) 6 Cm
γ0
2

0 `(L)
1+β2 ,

cf. the previous section. Recall also that the graph of gL coincides with that of hL and that
we have shown

‖hL − η‖C0 6 Cm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 ,
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where (ξ,η) ∈ πL × π⊥L are the coordinates for pL, cf. (6.95). Since spt(TJ)∩C8rL(pL,πL) ⊂
spt(TL), we must then have spt(〈T ,p,p〉) ⊂ spt(〈T ,p,p〉)∩BrL(p) ⊂ spt(TL)∩C8rL(pL,πL).
Recalling that pL ∈ spt(TL) and that we have the bound

h(TL,C8rL(pL,πL)) 6 Cm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 ,

we conclude that no point of spt(〈T ,p,p〉) can be at distance larger than

m
1
4

0d(L)
γ0
2 −β2`(L)1+β2

from the graph of hL. Putting all these estimates together, no point of spt(〈T ,p,p〉) can be at

a distance larger than m
1
4

0d(L)
γ0
2 −β2`(L)1+β2 from Gr(ϕ). Since for every p ′ ∈ spt(〈T ,p,p〉)

the point p is the closest in the graph of ϕ, this completes the proof of (iii), provided we
show (7.7).

If (7.7) is false, there is a p ′ ∈ spt(〈T ,p,p) and an ancestor J with largest sidelength among
those for which |p ′ − p| > rJ. Let π be the tangent to M at p and observe that we have the

estimates |π− πJ| 6 Cm
1
2

0 and |π− π0| 6 Cm
1
2

0 . If J were an element of SN0 , the height

bound would imply |p ′−p| 6 Cm
1
4

0 r
1+γ0
J . If J 6∈ SN0 and we letH be the father of J, we then

conclude that q ∈ BH and thus we have |p ′−p| 6 Ch(T ,BH) 6 Cm
1
4

0 `(H)
1+β2 . In both cases

this would be incompatible with |p ′−p| > rJ =
rH
2 , provided ε41 6 c(β2, δ2,M0,N0,Ce,Ch)

We next prove (iv). Fix a point (z,w) ∈ B which belongs to Γ and set p := (z,ϕ(z,w)) =
Φ(z,w). To prove our statement we claim in fact that:

Q JTpMK is the unique tangent cone to T at p (7.8)

spt(T)∩p−1({p}) = {p}. (7.9)

By construction there is an infinite chain LN0 ⊃ LN0−1 ⊃ . . . ⊃ Li ⊃ . . . where (z,w) ∈ Li ∈
S i for every i. Set πi := πLi . By our construction and the estimates of the previous sections,

it is obvious that πLi → π = TpM. In fact since |πLi − πLi+1 | 6 Cm
1
2

0 |z|
γ0+δ1−1`(Li)

1+δ1 , we
easily infer

|π− πLi | 6 Cm
1
2

0 |z|
γ0+δ1−1`(Li)

1+δ1 . (7.10)

On the other hand by the height and excess bounds, it also obvious that TpLi ,rLi converges,
in B1, to Q JπK. Since rLi/rLi+1 = 2 and pLi → p (in fact |Φ(z,w) − pL,i| 6 C2−i), (7.8) is
then obvious.

Assume now that (7.9) is false and let p ′ ∈ spt(〈T ,p,p〉). Again by the height of V it
turns out that p ′ ∈ spt(TLN0 ). Let j be the integer such that 2−j−1|z| 6 |p− p ′| 6 2−j|z|. By
the height bound in C2|z|(0,π0) it follows that, if ε41 is sufficiently small, then certainly
j > N0 + 2. This means that there is an Li such that p ′ ∈ BLi and obviously `(Li) 6 C|z|2−j.
Recall that spt(TLN0 )∩BLi ⊂ spt(TLi) On the other hand, by (7.10), we have

|p− p ′| 6 (1+C|πLi − π|)h(TLi ,BLi) 6 Cm
1
4

0d(Li)
γ0
2 −β2`(Li)

1+β2 6 Cm
1
4

0 |z|
1+

γ0
2 2−j .

Since the constant C depends upon the parameters Ch,Ce,M0 and N0, but not upon ε41,
the latter bound contradicts |p− p ′| > 2−j−1 provided ε41 is chosen sufficiently small.
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7.2.2 Proof of Theorem 7.3: Part I

We set F(p) = Q JpK for p ∈Φ(Γ). For every L ∈ W j consider the πL-approximating function
fL : C8rL(pL,πL)→ AQ(π

⊥
L ) of Definition 6.4 and KL ⊂ B8rL(pL,πL) the projection on πL of

spt(TL)∩Gr(fL). In particular we have GfL|KL = TL (KL × π⊥L ). We then denote by D(L) the
portions of the supports of TL and Gr(fL) which differ:

D(L) := (spt(TL)∪Gr(fL))∩
[
(B8rL(pL,πL) \KL)× π⊥L

]
.

Observe that, by Theorem 2.8 and our choice of the parameters, for E := E(TL,C32rL(pL,πL)),
we have

Hm(D(L)) 6 CEβ0(E+ `(L)2m0)`(L)
2

6 Cm1+β00 d(L)(1+β0)(2γ0−2+2δ1)`(L)2+(1+β0)(2−2δ1) (7.11)

Let L be the Whitney region in Definition 6.10 and set L ′ := Φ(J) where J is the cube
concentric to L with `(J) = 9

8`(L). Observe that the graphical structure of Φ, our choice of
the constants and condition (NN) ensure that

L∩H = ∅ ⇐⇒ L ′ ∩H ′ = ∅ ∀H,L ∈ W , (7.12)

Φ(Γ)∩L ′ = ∅ ∀L ∈ W . (7.13)

We then apply Theorem 3.18 to the map fL, the plane πL the center manifold ϕ as a graph
over πL to obtain maps FL : L ′ → AQ(U), NL : L ′ → AQ(R

m+n) with the following
poperties:

• FL(p) =
∑
i Jp+ (NL)i(p)K,

• (NL)i(p) ⊥ TpM for every p ∈ L ′

• and GfL (p−1(L ′)) = TFL (p−1(L ′)).

For each L consider the set W (L) of elements in W which have a nonempty intersection with
L. We then define the set K in the following way:

K = (M∩C2r) \
( ⋃
L∈W

(
L ′ ∩

⋃
M∈W (L)

p(D(M))
))

. (7.14)

In other words K is obtained from M by removing in each L ′ those points x for which there
is a neighboring cube M such that the slice of TFM at x (relative to the projection p) does
not coincide with the slice of T . Observe that, by (7.13), K contains necessarily Γ. Moreover,
recall that Lip(p) 6 C, that the cardinality W (L) is bounded by a geometric constant and
that each element of W (L) has side-length at most twice that of L. Thus (7.11) implies

|L \K| 6 |L ′ \K| 6
∑

M∈W (L)

∑
H∈W (M)

‖TH‖(D(H))

6Cm1+β00 d(L)(1+β0)(2γ0−2+2δ1)`(L)2+(1+β0)(2−2δ1) . (7.15)
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By (7.12), if J and L are such that J ′ ∩ L ′ 6= ∅, then J ∈ W (L) and therefore FL = FJ on
K∩ (J ′ ∩L ′). We can therefore define a unique map on K by simply setting F(p) = FL(p) if
p ∈ K∩L ′. Notice that TF = T p−1(K), which implies two facts. First, by Corollary 7.1(iii)
we also have that N(p) :=

∑
i JFi(p) − pK enjoys the bound

‖N|L∩K‖C0 6 Cm
1
4

0 d(L)
γ0
2 −β2 `(L)1+β2 .

Secondly,

‖T‖(p−1(L \K)) 6
∑

M∈W (L)

∑
H∈W (M)

‖TH‖(D(H))

6Cm1+β00 d(L)(1+β0)(2γ0−2+2δ1)`(L)2+(1+β0)(2−2δ1) . (7.16)

Finally, since M is given on πL as the graph of hL, the Lipschitz constant of NL can be
estimated, using Theorem 3.18 and (6.97) with L = H, by

Lip(NL) 6 C
(
‖D2hL‖C0 ‖N‖C0 + ‖DhL‖C0 + Lip(fL)

)
6 C (m0 d(L)γ0 `(L)γ0)β0 , (7.17)

so that our map has the Lipschitz bound of (7.1). Hence, F and N satisfy the bounds (7.1) on
K. We next extend them to the whole center manifold and conclude (7.2) from (7.16) and
(7.15). The extension is achieved in three steps:

• we first extend the map F to a map F̄ taking values in AQ(V);

• we then modify F̄ to achieve the form F̂(x) =
∑
iJx+ N̂i(x)K with N̂i(x) ⊥ TxM for

every x;

• in the cases (a) and (c) of Definition 1.1 we finally modify F̂ to reach the desired
extension F(x) =

∑
i Jx+Ni(x)K, with Ni(x) ⊥ TxM and x+Ni(x) ∈ Σ for every x.

First extension. We use on M the coordinates induced by its graphical structure, i.e. we
work with variables in flat domains. Note that the domain parameterizing the Whitney region
for L ∈ W is then the cube concentric to L and with side-length 17

16`(L). The multivalued map
N is extended to a multivalued N̄ inductively to appropriate neighborhoods of the skeleta of
the Whitney decomposition. The extension of F will obviously be F̄(x) =

∑
iJx+ N̄i(x)K. The

neighborhoods of the skeleta are defined in this way:

1. if p belongs to the 0-skeleton, we let L ∈ W be (one of) the smallest cubes containing it
and define Up := B`(L)/16(p);

2. if σ = [p,q] ⊂ L is the edge of a cube and L ∈ W is (one of) the smallest cube
intersecting σ, we then define Uσ to be the neighborhood of size 14

`(L)
16 of σ minus the

closure of the unions of the Ur’s, where r runs in the 0-skeleton.

Denote by Ū the closure of the union of all these neighborhoods and let {Vi} be the connected
components of the complement. For each Vi there is a Li ∈ W such that Vi ⊂ Li. Moreover,
Vi has distance c0`(L) from ∂Li, where c0 is a geometric constant. It is also clear that if τ
and σ are two distinct facets of the same cube L with the same dimension, then the distance
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V1

V2

V6

Up, Uq

Uσ, Uτ

Figure 1: The sets Up, Uσ and Vi.

between any pair of points x,y with x ∈ Uτ and y ∈ Uσ is at least c0`(L). In Figure 1 the
various domains are shown in a piece of a 2-dimensional decomposition.

At a first step we extend N to a new map N̄ separately on each Up, where p are the points
in the 0-skeleton. Fix p ∈ L and let St(p) be the union of all cubes which contain p. Observe
that the Lipschitz constant of N|K∩St(p) is smaller than

C (m0 d(L)γ0 `(L)γ0)β0

and that

|N| 6 Cm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 .

We can therefore extend the map N|K∩St(p) to Up ∪ (K ∩ St(p)) at the price of slightly
enlarging this Lipschitz constant and this height bound, using Proposition 3.4. Being the Up

disjoint, the resulting map, for which we use the symbol Ñ, is well-defined.
It is obvious that this map has the desired height bound in each Whitney region. We

therefore want to estimate its Lipschitz constant. Consider L ∈ W and H concentric to L with
side-length `(H) = 17

16`(L). Let x,y ∈ H. If x,y ∈ Up ∪ (K∩ St(p)) for some p, then there is
nothing to check. If x ∈ Up and y ∈ Uq with p 6= q, observe however that this would imply
that p,q are both vertices of L. Given that L \K has much smaller measure than L there is at
least one point z ∈ L∩K. It is then obvious that

G(N̄(x), N̄(y)) 6 G(N̄(x), N̄(z)) + G(N̄(z), N̄(y)) 6 C (m0d(L)γ0 `(L)γ0)β0 `(L),

and, since |x− y| > c0`(L), the desired bound readily follows. Observe moreover that, if x is
in the closure of some Uq, then we can extend the map continuously to it. By the properties
of the Whitney decomposition it follows that the union of the closures of the Uq and of K is
closed and thus, w.l.o.g., we can assume that the domain of this new N̄ is in fact closed.

We can repeat this procedure with the edges of the skeleta, that is in the argument above
we simply replace points p with 1-dimensional faces σ, defining St(σ) as the union of the
cubes which contain σ. In the final step we then extend over the domains Vi’s: this time
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St(Vi) will be defined as the union of the cubes which intersect the cube Li ⊃ Vi. The correct
height and Lipschitz bounds follow from the same arguments. Since the algorithm is applied
3 times, the original constants have been enlarged by a geometric factor.

Second extension. For each x ∈ M let p⊥(x, ·) : Rm+n → Rm+n be the orthogonal
projection on (TxM)⊥ and set N̂(x) =

∑
iJp
⊥(x, Ñi(x))K. Obviously |N̂(x)| 6 |Ñ(x)|, so the

L∞ bound is trivial. We now want to show the estimate on the Lipschitz constant. To
this aim, fix two points p,q in the same Whitney region associated to L and parameterize
the corresponding geodesic segment σ ⊂ M by arc-length γ : [0,d(p,q)] → σ, where
d(p,q) denotes the geodesic distance on M. Use Lemma 3.3 to select Q Lipschitz functions
N ′i : σ → U such that Ñ|γ =

∑ q
N ′i

y
and Lip(N ′i) 6 Lip(Ñ). Fix a frame ν1, . . . ,νn on the

normal bundle of L ⊂M with the property that ‖νi‖C0(L) 6 C‖Dϕ‖C0 6 Cm
1
2

0 d(L)γ0 and

‖Dνi‖C0(L) 6 C‖D2ϕ‖C0 6 m
1
2

0d(L)γ0−1 (which is possible by [18, Appendix A], indeed
we do this in M\ {0}, where our manifold is C3,γ0 and then we extend N to be 0 in the
origin). We have N̂(γ(t)) =

∑
iJN̂i(t)K, where

N̂i(t) =
∑

[νj(γ(t)) ·N ′i(γ(t))]νj(γ(t)).

Hence we can estimate∣∣∣∣∣dN̂idt
∣∣∣∣∣ 6 C∑

j

[‖Dνj‖‖N ′i‖C0 + Lip(N ′i)] 6 C (m0 d(L)γ0 `(L)γ0)β0 .

Integrating this inequality we find

G(N̂(p), N̂(q)) 6
Q∑
i=1

|N̂i(d(p,q)) − N̂i(0)| 6 C (m0 d(L)γ0 `(L)γ0)β0 d(p,q) .

Since d(p,q) is comparable to |p− q|, we achieve the desired Lipschitz bound.

Third extension and conclusion. We still need to modify the map N̂ in the cases (a)
and (c) of Definition 1.1. For each x ∈ M ⊂ Σ consider the orthogonal complement κx of
TxM in TxΣ. Let T be the fiber bundle

⋃
x∈M\{0} κx and observe that, by the regularity of

both M\ {0} and Σ, there is a C2,γ0 trivialization (argue as in [18, Appendix A]). It is then
obvious that there is a C0,γ0 map Ξ : T → Rm+n with the following property: for each
(x, v), q := x+ Ξ(x, v) is the only point in Σ which is orthogonal to TxM and such that
pκx(q− x) = v. Let us denote by Ω(x,q) the map Ξ(x,pκx(q)). This map extends to a C0,γ0

map to the origin with the estimates

|DxΩ(x,q)| 6 Cm
1
2

0 |x|
γ0−1 ∀x ∈ B \ {0} ∀q with |q| 6 1 (7.18)

|D2xΩ(x,q)| 6 Cm
1
2

0 |x|
γ0−2 ∀x ∈ B \ {0} ∀q with |q| 6 1 (7.19)

We then setN(x) =
∑
iJΞ(x,pκx(N̂i(x)))K. Obviously,N(x) = N̂(x) for x ∈ K, simply because

in this case x+Ni(x) belongs to Σ.
In order to show the Lipschitz bound, notice that, by the regularity of Σ,

|Ω(x,q) −Ω(x,p)| 6 C |q− p| . (7.20)
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Moreover, since Ω(x, 0) = 0 for every x ∈ M ⊂ Σ, we have DxΩ(x, 0) = 0. We therefore

conclude that |DxΩ(x,q)| 6 Cm
1
2

0 |x|
γ0−1|q| and hence that

|Ω(x,q) −Ω(y,q)| 6 Cm
1
2

0 |x|
γ0−1|q||y− x| . (7.21)

Thus, fix two points x,y ∈ Li and let us assume that G(N̂(x), N̂(y))2 =
∑
i |N̂i(x) − N̂i(y)|

2

(which can be achieved by a simple relabeling). We then conclude

G(N(x),N(y))2 6 2
∑
i

|Ω(x, N̂i(x)) −Ω(x, N̂i(y))|2 + 2
∑
i

|Ω(x, N̂i(y)) −Ω(y, N̂i(y))|2

6 Cm
1
2

0 G(N̂(x), N̂(y))2 +C |x|2γ0−2
∑
i

|N̂i(y)|
2|x− y|2

6 C (m0 d(L)γ0 `(L)γ0)2β0 |x− y|2 (7.22)

+Cm0d(L)2γ0−2+γ0−2β2`(L)2+2β2 |x− y|2

6 C (m0 d(L)γ0 `(L)γ0)2β0 |x− y|2 , (7.23)

which proves the desired Lipschitz bound. Finally, using the fact that Ω(x, 0) = 0, we have
|Ω(x, v)| 6 C|v| and the L∞ bound readily follows.

7.2.3 Proof of Theorem 7.3, Part II

In this section we show the estimates (7.3) and (7.4). We start with the first one. Fix a Whitney
region L and a corresponding square L ∈ W . First consider the cylinder C := C8rL(pL,πL),
the tilted interpolating function gL and the interpolating function hL. Denote by ~M the unit
m-vector orienting TM and by ~τ the one orienting TGhL = TGgL . Recalling that gL and ϕ
coincide in a neighborhood of (zL,wL) of L, by Theorem 6.9 we have

sup
p∈M∩C

|~τ(zL,gL(zL,wL)) − ~M(p)| 6 C‖D2ϕi‖C0 `(L) 6 Cm
1
2

0d(L)γ0−1`(L).

On the other hand recalling (6.80) in Proposition 6.20, we have

|πL − ~τ(zL,gL(zL,wL))| 6 Cm
1
2

0d(L)γ0−1+δ1`(L)1−δ1 .

This in turn implies that

sup
C∩M

| ~M− πL| 6 Cm
1
2

0d(L)γ0−1+δ1`(L)1−δ1 . (7.24)

Therefore, we can estimateˆ
p−1(L)

|~TF(x)− ~M(p(x))|2 d‖TF‖(x)

6 C
ˆ
p−1(Li)

|~T(x) − ~M(p(x))|2 d‖T‖(x) +Cm1+β00 d(L)2(1+β0)γ0−2`(L)4

6
ˆ
p−1(Li)

|~T(x) − πL|
2 d‖T‖(x) +Cm0d(L, 0)2γ0−2+2δ1`(L)4−2δ1 . (7.25)
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Since p−1(L) ∩ spt(TL) ⊂ C, the integral in (7.25) is bounded by C`(L)2E(TL,C,πL). By
Proposition 3.50 we then conclude

ˆ
L

|DN|2 6 C
ˆ
p−1(L)

|~TF(x) − ~M(p(x))|2 d‖TF‖(x) +C‖AM‖2C0(Cd(L))\Cd(L)/4)

ˆ
L

|N|2

6 Cm0 d(L)2γ0−2+2δ1 `(L)4−2δ1 +Cm0 d(L)2γ0−2`(L)4+2β2 ,

where we have used ‖AM‖C0(Cd(L))\Cd(L)/4)
6 Cm

1
2

0dist(L, 0)γ0−1. This shows (7.3).

We finally come to (7.4). First observe that, by (7.1) and (7.2),
ˆ
L\K

|η ◦N| 6 Cm
1
4

0d(L)
γ0
2 −β2`(L)1+β2 |L \K|

6 Cm
1+β0+

1
4

0 d(L)(1+β0)(2γ0−2+2δ1)+(
γ0
2 −β2)`(L)3+β2+(1+β0)(2−2δ1) .

(7.26)

Fix now p ∈ K. Recalling that FL(p) =
∑
j

q
p+Nj(p)

y
is given by Theorem 3.18 applied to

the map fL, we can conclude that

|η ◦NL(p)| 6 C |η ◦ fL(pπL(p)) −p
⊥
πL

(p)|+CLip(NL|L) |TpM− πL| |NL|(p)

(7.24)
6 C|η ◦ fL(pπL(p)) −p

⊥
πL

(p)|

+Cm
1
2+β0
0 d(L)β0(2γ0−2+2δ1)+γ0−1+δ1`(L)1−δ1+β0(2−2δ1) (7.27)

(G(NL(p),Q Jη ◦NL(p)K) +Q|η ◦NL|(p)) .

For ε2 sufficiently small (depending only on β2,γ2,M0,N0,Ce,Ch), we then conclude that

|η ◦NL(p)| 6 C |η ◦ fL(pπL(p)) −pπ⊥L (p)|

+Cm
1
2+β0
0 d(L)β0(2γ0−2+2δ1)+γ0−1+δ1 `(L)1−δ1+β0(2−2δ1)G(NL(p),Q Jη ◦NL(p)K)

(7.28)

Let next ϕ ′ : πL → π⊥L such that Gϕ ′ = M. Applying Lemma 3.17 we conclude that
ˆ
K∩V

|η ◦ fL(pπL(p))−pπ⊥L (p))| 6
ˆ
pπL(K∩V)

|η ◦ fL(x)−ϕ ′(x)| 6 C‖gL−ϕ‖C0(H)`(L)
2 ,

where H is a cube concentric to L with side-length `(H) = 9
8`(L). Next assume L ∈ W j and

let k > j+ 2. Consider the subset Pk(L) of all cubes in Pk which intersect L and recall that
ϕ coincides with ϕk on H. Thus we can estimate

‖ϕi − gL,i‖L1(H) 6 C
∑

L ′∈Pk(L)

‖gL ′ − gL‖L1(BrL(pL,π0))

6 Cm0 d(L, 0)2(1+β0)γ0−2−β2`(L)5+κ , (7.29)

where in the last inequality we used (6.81). We then conclude

‖ϕi − gL,i‖L1(H) 6 Cm0dist(L, 0)2(1+β0)γ0−2−β2`(L)5+κ

and (7.4) follows integrating (7.28) over V∩K and using (7.26).
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7.3 separation and splitting before tilting

7.3.1 Vertical separation

In this section we prove Proposition 7.4 and Corollary 7.5.

Proof of Proposition 7.4. Let J be the father of L. By Lemma 6.5 and Proposition 6.3, Theorem
6.22 can be applied to the cylinder C := C36rJ(pJ,πJ). Moreover, |pJ − pL| 6 C`(J), where C
is a geometric constant, and rJ = 2rL. Thus, if M0 is larger than a geometric constant, we
have BL ⊂ C34rJ(pJ,πJ). Denote by qL, qJ the projections pπ̂⊥L and pπ⊥J respectively. Since
L ∈ Wh, there are two points p1,p2 ∈ spt(TL)∩BL such that

|qL(p1 − p2)| > Chm
1
4

0 d(L)
γ0
2 −β2`(L)1+β2 .

On the other hand, recalling Proposition 6.11, |πJ − π̂L| 6 C̄d(L)γ0−1+δ1`(L)1−δ1 , where C̄
depends upon all the parameters except Ch and ε41. Thus,

|qJ(p1 − p2)| > |qL(p1 − p2)|−C0|πL − πJ||p1 − p2|

> Chm
1
4

0d(L)
γ0
2 −β2 `(L)1+β2 − C̄m

1
2

0d(L)γ0−1+δ1 `(L)2−δ1

> Chm
1
4

0d(L)
γ0
2 −β2 `(L)1+β2 − C̄m

1
2

0d(L)
γ0
2 −β2 `(L)1+β2 ,

where C0 is a geometric constant and C̄ a constant which does not depend on Ch and ε41.
Hence, if ε41 is sufficiently small, we actually conclude

|qJ(p1 − p2)| >
15

16
Chm

1
4

0d(L)
γ0
2 −β2 `(L)1+β2 . (7.30)

Set E := E(TJ,C36rJ(pJ,πJ)) and apply Theorem 6.22 to TJ and C: the union of the corre-
sponding “stripes” Sj contain the set spt(TJ) ∩C

36rJ(1−CE
1
24 | logE|)

(pJ,πJ)), where C is a

geometric constant. We can therefore assume that they contain spt(TL)∩C34rJ(pJ,πJ). The
width of these stripes is bounded as follows:

sup
{
|qJ(x− y)| : x,y ∈ Sj

}
6 C0 E

1
4 rJ 6 C0C

1
4
em

1
4

0d(L)(2γ0−2+2δ1)/4`(L)1+(2−2δ1)/4

6 C0C
1
4
em

1
4

0d(L)
γ0
2 −β2 `(L)1+β2

where C0 is a geometric constant. So, if C] is chosen large enough, we actually conclude
that p1 and p2 must belong to two different stripes, say S1 and S2. By Theorem 6.22(iii) we
conclude that all points in C34rJ(pJ,πJ) have density Θ strictly smaller than Q− 1

2 , thereby
implying (S1). Moreover, by choosing C] appropriately, we achieve that

|qJ(x− y)| >
7

8
Chm

1
4

0 d(L)
γ0
2 −β2 `(L)1+β2 ∀x ∈ S1,y ∈ S2 . (7.31)

Assume next there is H ∈ Wn with `(H) 6 1
2`(L) and H ∩ L 6= ∅. From our construc-

tion it follows that `(H) = 1
2`(L), d(H) 6 2d(L), BH ⊂ C34rJ(pJ,πJ) and |πH − πJ| 6
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C̄m
1
2

0 d(L)γ0−1+δ1`(H)1−δ1 , with C̄ which does not depend upon Ch and ε41. Hence choos-
ing ε41 sufficiently small we conclude We then conclude

|pπ⊥H
(x− y)| >

3

4
Chm

1
4

0 d(L)
γ0
2 −β2 `(L)1+β2

>
3

2

(1
2

)γ0
2
Chm

1
4

0 d(H)
γ0
2 −β2`(H)1+β2

>
5

4
Chm

1
4

0 d(H)
γ0
2 −β2`(H)1+β2 ∀x ∈ S1,y ∈ S2 , (7.32)

where the latter inequality holds because γ0 6 log2
6
5 . Now, recalling Proposition 6.11, if ε41

is sufficiently small, C32rH(pH,πH)∩ spt(TH) ⊂ BH and spt(TJ)∩BH ⊂ spt(TH). Moreover,
by Theorem 6.22(ii) ,

(pπJ)](TJ (Sj ∩C32rH(pH,πJ))) = Qj JB32rH(pH,πJ)K for j = 1, 2, Qj > 1.

A simple argument already used several other times allows to conclude that indeed

(pπH)](TH (Sj ∩C32rH(pH,πH))) = Qj JB32rH(pH,πH)K for j = 1, 2, Qj > 1.

Thus, BH must necessarily contain two points x,y with

|pπ⊥H
(x− y)| >

5

4
Chm

1
4

0 d(H)
γ0
2 −β2`(H)1+β2 .

But then the refining in H should have stopped because of condition (HT) and so H cannot
belong to Wn.

Coming to (S3), set Ω := Φ(B2
√
m`(L)((zL,wL)) and observe that p](T (Ω ∩ Si)) =

Qi JΩK. Thus, for each p ∈ K∩Ω, the support of p+N(p) must contain at least one point
p+N1(p) ∈ S1 and at least one point p+N2(p) ∈ S2. Now,

|N1(p) −N2(p)| >
7

8
Chm

1
4

0d(L)
γ0
2 −β2`(L)1+β2 −C0`(L) |TpM− πJ| . (7.33)

Recalling, Proposition 6.20 and that M and Gr(gJ) coincide on a nonempty open set, we easily

conclude that (see for instance the proof of (7.3)) |TpM− πJ| 6 Cm
1
2

0d(L, 0)
γ0
2 −β2`(L)−β2

and, via (7.33),

G
(
N(p),Q Jη ◦N(p)K

)
>
1

2
|N1(p) −N2(p)| >

3

8
Chm

1
4

0d(L)
γ0
2 −β2`(L)1+β2 .

Next observe that, by the property of the Whitney decomposition, any cube touching
B2
√
m`(L)((zL,wL)) has sidelength at most 4`(L). Thus

|Ω \K| 6 Cm1+β00 d(L)(1+β0)(2γ0−2+2δ1)`(L)2+(1+β0)(2−2δ1) .
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So, for every point p ∈ Ω there exists q ∈ K ∩Ω which has geodesic distance to p at

most Cm
1
2+

β0
2

0 d(L)(1+β0)(γ0−1+δ1)`(L)(1+β0)(1−δ1). Given the Lipschitz bound for N and
the choice β2 6 1

4 , we then easily conclude (S3):

G(N(q),Q Jη ◦N(q)K) >
3

8
Chm

1
4

0 d(L)
γ0
2 −β2`(L)1+β2

−Cm
1
2+

3β0
2

0 d(L)(
3β0
2 +1)γ0−β2`(L)1+β2

>
1

4
Chm

1
4

0 d(L)
γ0
2 −β2`(L)1+β2 ,

where again we need ε41 < c(β2, δ2,M0,N0,Ce,Ch) for a sufficiently small c.

Proof of Corollary 7.5. The proof is straightforward. Consider any H ∈ W j
n. By definition it

has a nonempty intersection with some cube J ∈ W j−1: this cube cannot belong to Wh by
Proposition 7.4. It is then either an element of We or an element Hj−1 ∈ W j−1

n . Proceeding
inductively, we then find a chain H = Hj,Hj−1, . . . ,Hi =: L, where Hl̄ ∩Hl̄−1 6= ∅ for every
l̄, Hl̄ ∈ W l̄

n for every l̄ > i and L = Hi ∈ W i
e . Observe also that

|xH − xL| 6
j−1∑
l̄=i

|xHl̄ − xHl̄+1 | 6
√
m`(L)

∞∑
l̄=0

2−l̄ 6 2
√
m`(L) .

It then follows easily that H ⊂ B3√m`(L)(L).

7.3.2 Splitting before tilting: Proof of Proposition 7.7

As customary we use the convention that constants denoted by C depend upon all the
parameters but ε41, whereas constants denoted by C0 depend only upon m,n, n̄ and Q.

Given L ∈ W j
e , let us consider its ancestors H ∈ S j−1 and J ∈ S j−6, which exists thanks to

Proposition 6.3. Set ` = `(L),π = πH and C := C8rJ(pJ,π), and let f : B8rJ(pJ,π)→ AQ(π
⊥)

be the π-approximation of Definition 6.4, which is the result of Theorem 2.8applied to
C32rJ(pJ,π) (recall that Proposition 6.11 ensures the applicability of Theorem 2.8 in the latter
cylinder).

The following are simple consequences of Proposition 6.11:

E := E(TJ,C32rJ(pJ,π)) 6 Cm0 d(L)2γ0−2+2δ1 `2−2δ1 , (7.34)

h(TJ,C,πH) 6 Cm
1
4

0 d(L, 0)
γ0
2 −β2`1+β2 , (7.35)

cCem0 d(L)2γ0−2+2δ1`2−2δ1 6 E, (7.36)

where (7.36) follows from BL ⊂ C, L ∈ We and rL
rJ

= 2−6. In particular the positive constants
c and C do not depend on ε41. We divide the proof of Proposition 7.7 in three steps.

Step 1: decay estimate for f. Let 2ρ := 64rH − C̄m
1
4

0d(L)
γ0
2 −β2`1+β2 : since pH ∈ spt(TJ),

it follows from (7.35) that, upon having chosen C̄ appropriately, spt(TJ) ∩C2ρ(pH,πH) ⊂
spt(TH)∩BH ⊂ C. Observe in particular that C̄ does not depend on ε41, although it depends
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upon the other parameters. In particular, setting B = B2ρ(x,πH) with x = pπH(pH), using
the Taylor expansion in Corollary 3.49 and the estimates in Theorem 2.8, we get

Dir(B, f) 6 2|B|E(TJ,C2ρ(xH,πH)) +Cm
1+β0
0 d(L, 0)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1)

6 2ω2ρ
2E(TH,BH) +Cm

1+β0
0 d(L)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1) .

(7.37)

Consider next the cylinder C64rL(pL,πH), and set x ′ := pπH(pL). Recall that |x − x ′| 6
|pH − pL| 6 C0`(H), where C0 is a geometric constant (cf. Proposition 6.11), and set σ :=

64rL +C`(H) = 32rH +C`(H). If λ is the constant in (3.39) and M0 is chosen sufficiently
large (thus fixing a lower bound for M0 which depends only on δ1) we reach

σ 6

(
1

2
+
λ

4

)
64 rH 6

(
1+

λ

2

)
ρ+ C̄m

1
4

0 d(L)
γ0
2 −β2 `1+β2 .

In particular, choosing ε41 sufficiently small we conclude σ 6 (1+ λ)ρ and thus also BL ⊂
C(1+λ)ρ(pL,πH) =: C ′. Define B ′ = B(1+λ)ρ(x,πH). Set A := −́

B ′ D(η ◦ f), Ā : πH → π⊥H the
linear map x 7→ A · x and π for the plane corresponding to GĀ. Using Theorem 3.51, we can
estimate

1
2

ˆ
B ′

G(Df,Q JAK)2 >|B ′|E(TJ,C ′,π) −Cm
1+β0
0 d(L)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1)

>|B ′|E(TJ,BL,π) −Cm1+β00 d(L)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1)

>ω2((1+ λ)ρ)
2E(TL,BL)

−Cm1+β00 d(L)(1+β0)(2γ0−2+2δ1)`2+(1+β0)(2−2δ1).
(7.38)

Next, considering that BH ⊃ BL and that, by L ∈ W j
e ,

E(TL,BL) > Cem0 d(L)2γ0−2+2δ1`2−2δ1 ,

we conclude from (7.37) and (7.38) that

Dir(B, f) 6 2ω2(2ρ)2(1+m
β0
0 )E(TH,BH) . (7.39)ˆ

B ′
G(Df,Q JAK)2 > 2ω2((1+ λ)ρ)2(1−Cm

β0
0 )E(TL,BL) . (7.40)

Step 2: harmonic approximation. From now on, to simplify our notation, we use Bs(y)
in place of Bs(y,πH). Set p := pπH(pJ). Consistently with [24, 25, 19] we introduce the
parameter Ω, which equals

• A = ‖AΣ‖C0 in case (a) of Definition 1.1;

• max{‖dω‖C0 , ‖AΣ‖C0} in case (b);

• C0R
−1 in case (c).
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Then, from (7.36) we infer that, for any ε32 > 0, if r̄ is chosen sufficiently small, we then
have

8rJΩ 6 C`(L)m
1
2

0 6 ε32C
1
2
em

1
2

0 d(L)γ0−1+δ1`(L)1−δ1 6 ε32E
1
2 , (7.41)

because `(L) 6 d(L) 6 r̄. Therefore, for every positive η̄, we can apply [19, Theorem 1.6] (in
case (a) of Definition 1.1) and [25, Theorem 4.2] (in the cases (b) and (c) of Definition 1.1) to
the cylinder C and achieve a map w : B8rJ(p,πH)→ AQ(π

⊥
H) of the form w = (u,Ψ(y,u))

(in fact w = u in case (b) of definition 1.1) for a Dir-minimizer u and such that

(8 rJ)
−2

ˆ
B8rJ(p)

G(f,w)2 +
ˆ
B8rJ(p)

(|Df|− |Dw|)2 6 η̄ E (8 rJ)
2, (7.42)

ˆ
B8rJ(p)

|D(η ◦ f) −D(η ◦w)|2 6 η̄ E (8 rJ)2 . (7.43)

In the cases (a) and (c) of Definition 1.1, by the chain rule we have D(Ψ(y,u(y))) =∑
j

q
DxΨ(y,uj(y)) +DvΨ(y,uj(y)) ·Duj(y)

y
, so that

ˆ
B(1+λ)ρ(x)

|D(Ψ(y,u))|2 6 C0m0
ˆ
B(1+λ)ρ(x)

|Du|2 +C0m0ρ
4,

where C0 is a geometric constant. Consider now Ã := −́D(η ◦w), and observe that, since
Dη ◦ u = η ◦Du is harmonic, we have Dη ◦ u(x) = −́

B ′ η ◦Du. We can use (7.42) and (7.43),
together with (7.40) to infer, for ε41 small enough,

ˆ
B(1+λ)ρ(x)

G
(
Du,Q JD(η ◦ u)(x)K

)2
>
ˆ
B(1+λ)ρ(x)

G
(
Dw,Q ˜JAK

)2
−C0m0ρ

4

>
ˆ
B(1+λ)ρ(x

G
(
Df,QJAK

)2
−C0m0ρ

4 −C0η̄Eρ
2

>2ω2((1+ λ)ρ)
2(1−Cmβ00 )E(TL,BL) −C0m0ρ4 −C0η̄Eρ2. (7.44)

Analogously, using (7.42) and (7.42), we easily deduce
ˆ
B2ρ(x)

|Du|2 6 2ω2(2ρ)
2(1+mβ00 )E(TH,BH) +C0m0ρ4 +C0η̄Eρ2 (7.45)

Now recall that, since d(L) = d(H) = d(J), and L ∈ We,

E(TL,BL) > Cem0d(L)2γ0−2+2δ1`(L)2−2δ1 > 22δ1−2E(TH,BH) ,

and combining this with (7.45) and (7.44) we achieve

ˆ
B(1+λ)ρ(x)

G
(
Du,Q JD(η ◦ u)(x)K

)2
> (22δ1−4−Cmβ00 )

ˆ
B2ρ(x)

|Du|2−C0m0ρ
4−C0η̄Eρ

2 .

(7.46)
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To estimate the last two errors in terms of the energy of u we use again L ∈ We to conclude

Eρ2 6 C0 E(TL,BL)
(7.40)
6 C0

ˆ
B(1+λ)ρ

|Du|2 +C0m0 ρ
4 +C0η̄Eρ

2

so that, for η̄ 6 1
2C0

we have

Eρ2 6 C0

ˆ
B(1+λ)ρ

|Du|2 +C0m0 ρ
4 . (7.47)

Next, using once again, L ∈ We and this last inequality,

C0m0ρ
4 6

C0ρ
2

Ce
d(L)2−2γ0−2δ1E(TL,BL)

(7.40)
6

C0
Ce

ˆ
B(1+λ)ρ(x)

|Df|2

6
C0
Ce

ˆ
B(1+λ)ρ(x)

|Du|2 +
C0
Ce
m0ρ

4 +
C0
Ce
η̄Eρ2 6

C0
Ce

ˆ
B(1+λ)ρ(x)

|Du|2 +
C0
Ce
m0ρ

4 .

which for Ce bigger than a geometrical constant implies

C0m0ρ
4 6

C0
Ce

ˆ
B(1+λ)ρ(x)

|Du|2 . (7.48)

We can therefore combine (7.46) with (7.47) and (7.48) to achieve
ˆ
B(1+λ)ρ(x)

G
(
Du,Q JD(η ◦ u)(x)K

)2
>
(
22δ1−4 −

C0
Ce

−Cmβ00 −C0η̄
)ˆ
B2ρ(x)

|Du|2 .

(7.49)

It is crucial that the constant C, although depending upon β2, δ2,M0,N0,Ce and Ch, does
not depend on η and ε41, whereas C0 depends only upon Q,m, n̄ and n. So, if Ce is
chosen sufficiently large, depending only upon λ (and hence upon δ2), we can require
that 22δ1−4 − C0

Ce
> 23δ1/4−4. We then require η̄ and ε41 to be sufficiently small so that

23δ1/4−4 −Cmβ00 −Cη̄ > 2δ2−4.
We can now apply Lemma 3.33 and Proposition 3.34 to u and conclude

Ĉ−1

ˆ
B(1+λ)ρ(x)

|Du|2 6
ˆ
B`/8(q)

G(Du,Q JD(η ◦ uK)2 6 Ĉ`−2
ˆ
B`/8(q)

G(u,Q Jη ◦ uK)2 ,

for any ball B`/8(q) = B`/8(q,π) ⊂ B8rJ(p,π), where Ĉ depends upon δ2 and M0. In
particular, being these constants independent of ε41 and Ce, we can use the previous
estimates and reabsorb error terms (possibly choosing ε41 even smaller and Ce larger) to
conclude

m0 `
m+2−2δ2 6 C̃`m E(T ,BL) 6 C̄

ˆ
B`/8(q)

G(Df,Q JD(η ◦ f)K)2

6 Č`−2
ˆ
B`/8(q)

G(f,Q Jη ◦ fK)2, (7.50)
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where C̃, C̄ and Č are constants which depend upon δ2, M0 and Ce, but not on ε41.

Step 3: Estimate for the M-normal approximation. We next complete the proof showing
(7.5) and (7.6). Now, consider any ball B`/4(q,π0) with dist(L,q) 6 4

√
2 ` and let Ω :=

Φ(B`/4(q,π0)). Observe that pπ(Ω) must contain a ball B`/8(q ′,π), because of the estimates
on ϕ and |π0 − πH|, and in turn it must be contained in B8rJ(p,π).

Let ϕ ′ : B8rJ(p,π) → π⊥ be such that Gϕ ′ = JMK and Φ ′(z) = (z,ϕ ′(z)). Since D(η ◦
f)(z) = η ◦Df(z) for a.e. z, we obviously haveˆ

B`/8(q
′,πH)

G(Df,Q JD(η ◦ f)K)2 6
ˆ
B`/8(q

′,πH)
G(Df,Q

q
Dϕ ′

y
)2 . (7.51)

Let now ~Gf be the orienting tangent m-vector to Gf and τ the one to M. For a.e. z we have
the inequality

C0
∑
j

|~Gf(fj(z)) − ~τ(ϕ ′(z))|2 > G(Df(z),Q
q
Dϕ ′(z)

y
)2 ,

for some geometric costant C0, because |~Gf(fj(z)) − ~τ(ϕ ′(z))| 6mβ00 . Therefore

−

ˆ
B`/8(q

′,πH)
G(Df,Q2

q
Dϕ ′

y
)2 6 C−

ˆ
C`/8(q

′,πH)
|~Gf(z) − ~τ(ϕ ′(pπH(z))|

2d‖Gf‖(z)

6 C−
ˆ
C`/8(q

′,πH)
| ~TL(z) − ~τ(ϕ ′i(pπH(z))|

2d‖TL‖(z)

+Cm1+β00 d(L)(1+β0)(2γ0−2+2δ2)`2+(2−2δ2)(1+β0) . (7.52)

Now, thanks to the height bound and to the fact that |~τ − πH| 6 Cm
1
2

0d(L)
γ0
2 −1` in the

cylinder Ĉ = C`/8(q
′,πH), we have the inequality

|p(z) −ϕ ′(pπH(z))| 6 Cm
1
4+

1
2

0 d(L)γ0−β2`2+β2 ∀z ∈ spt(T)∩ Ĉ .

Using the estimate |D2ϕ ′(pπH(z)| 6 Cm
1
2

0d(L)
γ0
2 −1 (which is valid for any z ∈ spt(T)∩ Ĉ)

we then easily conclude from (7.52) that

−

ˆ
B`/8(p,πH)

G(Df,Q
q
Dϕ ′

y
)2

6C−
ˆ
Ĉ

|~TL(z) − ~τ(p(z))|2d‖T‖(z) +Cm1+
1
2

0 d(L)2γ0−2−2β2`2+2β2

6C−
ˆ
p−1(Ω)

|~TF(z) − τ(p(z))|
2d‖TF‖(z) +Cm1+β00 d(L)2γ0−2+2δ1`2−2δ1 ,

where we used (7.2).
Since, on the region where we are interested, namely Ω, we have the bounds |DN| 6

Cmβ00 d(L)β0γ0 , |N| 6 Cm
1
4

0d(L)
γ0
2 −β2`1+β2 and ‖AM‖2 6 Cm0d(L)γ0−2, applying now

Proposition 3.50 we conclude

−

ˆ
p−1(Ω)

|~TF(x) − τ(p(x))|
2d‖TF‖(x) 6(1+Cm2β00 d(L)2γ0β0)

ˆ
Ω

|DN|2

+Cm
1+ 1

2

0 d(L)2γ0−2−2β2`2+2β2 .



150 the normal approximation

Thus, putting all these estimates together we achieve

m0 d(L)2γ0−2+2δ1`2−2δ2 6 C(1+Cm2β00 d(L)2γ0β0)−
ˆ
Ω

|DN|2+Cm1+β00 d(L)2γ0−2+2δ1`2−2δ2 .

(7.53)

Since the constant C might depend on the various other parameters but not on ε41, we
conclude that for a sufficiently small ε41 we have

m0d(L)2γ0−2+2δ1`2−2δ1 6 C−
ˆ
Ω

|DN|2 . (7.54)

But E(TL,BL) 6 Cm0 d(L)2γ0−2+2δ1`2−2δ2 and thus (7.5) follows.

We finally show (7.6). Observe that p−1(Ω) ∩ spt(T) ⊃ C`/8(q ′,π) ∩ spt(T) and, for an
appropriate geometric constant C0, Ω cannot intersect a Whitney region L ′ corresponding
to an L ′ with `(L ′) > C0`(L) or d(L ′) > 2d(L). In particular, Theorem 7.3 implies that

‖TF−T‖(p−1(Ω))+‖TF−Gf‖(p−1(Ω)) 6 Cm1+β00 d(L)(1+β0)(2γ0−2+2δ1) `2+(1+β0)(2−2δ1) .

(7.55)

Let now F ′ be the map such that TF ′ (p−1(Ω)) = Gf (p−1(Ω)) and let N ′ be the corre-
sponding normal part, i.e. F ′(x) =

∑
i

q
x+N ′i(x)

y
. The region over which F and F ′ differ

is contained in the projection onto Ω of (Im(F) \ spt(T)) ∪ (Im(F ′) \ spt(T)) and therefore
its Hm measure is bounded as in (7.55). Recalling the height bound on N and f, we easily

conclude |N|+ |N ′| 6 Cm
1
4

0d(L)
γ0
2 −β2`1+β2 , which in turn implies

ˆ
Ω

|N|2 >
ˆ
Ω

|N ′|2 −Cm
1+ 1

4+β0
0 d(L)(1+β0)(2γ0−2+2δ1)+γ0−2β2`4+2β2+(2−2δ1)(1+β0) .

(7.56)

On the other hand, applying Theorem 3.18, we conclude

|N ′(Φ ′(z))| >
1

2
√
Q

G(f(z),Q
q
ϕ ′(z)

y
) >

1

4
√
Q

G(f(z),Q Jη ◦ f(z)K) ,

which in turn implies

m0 d(L)2γ0−2+2δ1 `2−2δ2
(7.50)
6 C`−2

ˆ
B`/8(q

′,π)
G(f,Q Jη ◦ fK)2 6 C`−2

ˆ
Ω

|N ′|2 . (7.57)

For ε41 sufficiently small, (7.56) and (7.57) lead to the second inequality of (7.6), while the
first one comes from Theorem 7.3 and E(T ,BL) > Cem0 d(L)2γ0−2+2δ1`2−2δ2 .



8
P R O O F O F T H E C E N T E R M A N I F O L D T H E O R E M

This chapter is devoted to the proof of Theorem 2.18, that is

Theorem 8.1 (Center Manifold Approximation). Let T be as in Assumption 3. Then there exist
η0,γ0, r0,C > 0, an admissible b-separated γ0-smooth Q̄-branching M, a corresponding conformal
parametrization Ψ : BQ̄,2 → R2+n and a Q-valued map N : BQ̄,2 → AQ(R

2+n) with the
following properties

(i) Q̄Q = Θ(T , 0) and |AM(Ψ(z,w))|+ |z|−1|DMAM(Ψ(z,w))| 6 Cm
1
2

0 |z|
γ0−1, where AM

denotes the second fundamental form of M\ {0}; moreover |DΨ(z,w) − Id| 6 Cm1/20 |z|γ0 and

|D2Ψ(z,w)| 6 Cm
1
2

0 |z|
γ0−1.

(ii) N i(z,w) is orthogonal to the tangent plane, at Ψ(z,w), to M;

(iii) Setting

F (z,w) :=
∑
i

JΨ(z,w) +N (z,w)K and S := T0,r0 ,

then spt(S)∩C1 is contained in a suitable horned neighborhood of the Q̄-branching, where the
orthogonal projection p onto it is well-defined. Moreover, for every r ∈]0, 1[ we have

‖N |Br‖0 + sup
p∈spt(S)∩p−1(Ψ(Br))

|p−p(p)| 6 Cm
1
4

0 r
1+

γ0
2 ; (8.1)

(iv) If we define

D(r) :=

ˆ
Br

|DN |2 and H(r) :=

ˆ
∂Br

|N |2 ,

F(r) :=

ˆ r
0

H(t)

t2−γ0
dt and Λ(r) := D(r) + F(r) ,

then the following estimates hold for every r ∈]0, 1[:

Lip(N |Br) 6Cmin{Λη0(r),mη00 r
η0} (8.2)

mη00

ˆ
Br

|z|γ0−1|η ◦N (z,w)| 6CΛη0(r)D(r) +C F(r) (8.3)

‖S− TF‖
(
p−1(Ψ(Br))

)
6CΛη0(r)D(r) +C F(r) . (8.4)

Proof. The center manifold M is given by Theorem 6.9: the fact that M is a b-separated
admissible Q̄-branching is a simple consequence of the estimates in Theorem 6.9. We then
apply Proposition 2.17 to find the map Ψ which is a conformal parametrization of M in
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a neighborhood of 0 and, after a suitable scaling, we assume that it is defined on BQ̄,2.
Secondly we consider the normal approximation N of the current T on M constructed in
Theorem 7.3. The relation Q̄Q = Θ(T , 0) is obvious from the construction. Again, after
scaling, we assume that:

• The radius r of Theorem 8.1 is 4;

• Ψ(B) ⊂ C3(0);

Rather than call the rescaled current S, as it is done in the statement of Theorem 8.1, we
keep denoting it by T .

The maps N and F are then defined as

N (z,w) :=N(Ψ(z,w)) =
∑
i

JNi(Ψ(z,w))K (8.5)

F (z,w) :=
∑
i

JΨ(z,w) +N i(z,w)K =
∑
i

JΨ(z,w) +Ni(Ψ(z,w))K . (8.6)

By the estimate (6.17) it follows immediately that

|AM(ζ, ξ)|+ |ζ|−1|DMAM(ζ, ξ)| 6 Cm
1
2

0 |ζ|
γ0−1

at any point p = (ζ, ξ) ∈ M with ζ ∈ R2 \ 0. On the other hand by (2.29), if we set
(ζ, ξ) := Ψ(z,w), then we have

|z|−Cm
1
4

0 |z|
1+γ0 6 |ζ| 6 |z|+Cm

1
4

0 |z|
1+γ0 (8.7)

and thus the estimates in (i) follow. By construction N i(z,w) = Ni(Ψ(z,w)) is orthogonal
to TΨ(z,w)M, which shows (ii).

The fact that T is contained in a horned neighborhood of M where the prejection p is well
defined is a consequence of Corollary 7.1. Moreover, by (8.7) we can assume Ψ(Br(0)) ⊂ C2r
(this is true for a sufficiently small r and hence, after scaling, we can assume it holds for any
r 6 1). On the other hand, consider a cube L of W which intersects B3/2r(0). By construction
its sidelength is necessarily smaller than r. Thus (8.1) is a simple consequence of (7.1).

We are left to show the three estimates claimed in point (iv) of Theorem 8.1: the rest of the
section is devoted to this task.

8.0.3 The special covering

. First of all consider the set Ψ(Br(0)) and let Br ⊂ B be defined by

Br := {(z,w) ∈ B :Φ(z,w) ∈ Ψ(Br(0))} . (8.8)

Observe that, by the estimates on Ψ, the following two facts are obvious for r small:

(g1) Br is star-shaped with respect to the origin, more precisely if q = (z,w) ∈ ∂Br, then
the geodesic segment σ in B joining (0, 0) and q is contained in Br;

(g2) If q̄ denotes the point on σ at distance r
4 , the disk Br/4(q̄) is contained in Br.
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We next select an (at most countable) family of triples {(Lj,Bj,Uj)}j∈N of subsets of BQ̄ with
the following properties:

(c1) The Lj’s are distinct cubes of the Whitney decomposition with Lj ∈ We ∪Wh and
Lj ⊂ B̄2r+6`(Lj);

(c2) Bj = B `(Lj)
4

(zj,wj) ⊂ Br are disjoint balls such that |zLj − zj| 6 7 `(Lj);

(c3) Uj is the union of an at most countable family of cubes W (Lj) ⊂ W where H ⊂
B30`(Lj)(zLj ,wLj) for every H ∈ W (Lj) and ∪jW (Lj) consists of all cubes in W which
intersect Br; in particular

Br ⊂ Γ ∪
⋃
j

Uj . (8.9)

To this aim we start by selecting all the cubes L ∈ We ∪Wh such that either L ∩Br 6= ∅
or there exists H ∈ Wn in the domain of influence of L with H ∩Br 6= ∅, and we denote
the collection of such cubes by W (r). Observe that, `(L) 6 C02

−N0r and thus, provided
N0 is chosen sufficiently large, we can assume that the ratio `(L)

r is smaller than any fixed
geometric constant. Moreover, by Corollary 7.5, it is obvious that L ⊂ B2r+6`(Lj).

The triples above are then chosen according to the following procedure:

• We start selecting recursively {Lj} ⊂ W (r). L0 is a cube with the largest sidelength in
W (r). Having chosen {L0, . . . ,Lj} we select Lj+1 as a cube with the largest sidelength
among those L ∈ W (r) such that B15`(L)(zL,wL)∩B15`(Li)(zLi ,wLi) = ∅ for all i 6 j.

• For every Lj we use the geometric properties (g1) and (g2) to choose a ball Bj as in
(c2): for instance we consider zj :=

zLj
|zLj |

(
|zLj |−

7
√
2
2 `Lj

)
and let (zj,wj) be the unique

point of B that belongs to the connected component of B ∩ (BLj ×C) that contains
(zLj ,wLj). The Bj’s are disjoint because they are contained in B15`(Lj)(zLj ,wLj);

• For what concerns Uj, we need to define W (Lj); consider then H ∈ W such that
H∩Br 6= ∅:

(a) If H ∈ We ∩Wh, then H ∈ W (r) and we select the Lj with largest sidelength such
that B15`(Lj)(zLj ,wLj)∩B15`(H)(zH,wH) 6= ∅;

(b) If H ∈ Wn, then H belongs to the domain of influence Wn(L) of some L ∈
W (r); we then select the Lj with largest sidelength such that B15`(Lj)(zLj ,wLj)∩
B15`(L)(zL,wL) 6= ∅.
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8.0.4 Estimates on Uj and Λ

Let U| = Φ(Uj) and Bj := Φ(Bj) and set, for notational convenience, dj := d(Lj) and
`j := `(Lj). As a simple consequence of Theorem 7.3 we deduce the following estimates for
every j ∈N:

ˆ
Uj

|η ◦N| 6 Cm0 d2γ0−2+2β0γ0−β2j `
5+

β2
4

j +Cm
1
2+β0
0 dγ0−1j `

1+β2
j

ˆ
Uj

|N| (8.10)
ˆ
Uj

|DN|2 6 Cm0 d2γ0−2+2δ1j `(Lj)
4−2δ1 , (8.11)

‖N‖C0(Uj) + sup
p∈spt(T)∩p−1(Uj)

|p−p(p)| 6 Cm
1
4

0 d
γ0
2 −β2
j `

1+β2
j , (8.12)

Lip(N|Uj) 6 C
(
m0dγ0j `

γ0
j

)β0
, (8.13)

‖T − TF‖(p−1(Uj \K)) 6 Cm1+β00 d(1+β0)(2γ0−2+2δ1)
j `

2+(1+β0)(2−2δ1)
j . (8.14)

Indeed, observe that d(H) 6 dj 6 2d(H) for every H ∈ W (Lj) and
∑
H∈W (Ji)

`(H)2 6 C`2j ,
because all H ∈ W (Ji) are disjoint and contained in a ball of radius comparable to `j. This
in turn implies that

∑
H∈W (Jj)

`(H)2+ε 6 C`2+εj , because `(H) 6 `j for any H ∈ W (L), and
(8.10) - (8.14) follows in view of (i’).

Next we claim the following inequality for every t > 0, where η(t) and C(t) are suitable
positive functions,

sup
j

(
m0 dj `j

)t
6 C(t)Λη(t)(r) , (8.15)

Indeed, using Propositions 7.4 and 7.7 and the disjointness of Bj we have

Cem0 d(Lj)2γ0−2+2δ1 `(Lj)4−2δ1 6 C
ˆ
Bj

|DN|2 if Lj ∈ We , (8.16)

Chm
1
2

0 d(Lj)γ0−2β2 `(Lj)4+2β2
ˆ
Bj

|N|2 if Lj ∈ Wh . (8.17)

On the other hand∑
j

ˆ
Bj

|DN|2 6
ˆ
Br

|DN|2 =

ˆ
Br

|DN |2

by conformality of Ψ and∑
j

ˆ
Bj

|N|2 6
ˆ
Br

|N|2 6 C
ˆ
Br

|N |2

by the Lipschitz regulari of Ψ. Thus (8.15) follows easily by suitably choosing C(t) and η(t).
Observe therefore that (8.2) is an obvious consequence of (8.15), (8.13) and the uniform

bound on |DΨ|.
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8.0.5 Proof of (8.3)

First of all observe that, by the bounds on Ψ,
ˆ
Br

|z|γ0−1|η ◦N (z,w)| 6 C
ˆ
Br

|ζ|γ0−1|η ◦N(ζ, ξ)| .

On the other hand, since Uj ⊂ B30`j(zLj ,wLj),
dj
2 6 |z| 6 2dj and thus

ˆ
Br

|z|γ0−1|η ◦N(z,w)| 6 C
∑
j

dγ0−1j

ˆ
Uj

|η ◦N(z,w)| .

Now considering that d3γ0−3+2β0γ0−β2j `
5+

β2
4

j 6 d3γ0−2j `
4+2β2
j , for 2β2 6 β0γ0, we have

ˆ
Br

|z|γ0−1|η ◦N(z,w)|

(8.10)
6 C

∑
j∈N

m0 d3γ0−2j `
4+2β2
j +Cm

1/2+β0
0 dγ0−1j `

1+β2
j

ˆ
Uj

|N|

|z|1−γ0︸ ︷︷ ︸
=:A

 .

We treat the second term in the summand above via Young’s inequality inequality;

A 6 2

(
m
1/2+β0
0 d

3γ0
2 −1

j `
2+β2
j

)2
+ 2

(
`−1j

ˆ
Uj

|N|

|z|1−
γ0
2

)2
6 2m1+2β00 d3γ0−2j `

4+2β2
j +C

ˆ
Uj

|N|2

|z|2−γ0
.

Moreover, observe that, if Lj ∈ Wh, then by (8.17) and dj
2 6 |z| 6 2dj,

m1+η00 d3γ0−2j `
4+2β2
j 6 Cm0 d2β2j

ˆ
Uj

|N|2

|z|2−γ0

while, if Lj ∈ We, using (8.16) and (8.15), we deduce, for a suitable choice of η0,

m1+η00 d3γ0−2j `
4+2β2
j 6 Cmη00 dγ0j `

2β2
j

ˆ
Uj

|DN|2 6 CΛ(r)η0
ˆ
Uj

|DN|2 .

Collecting all these estimates together and using the properties of Ψ we conclude
ˆ
Br

|z|γ0−1|η ◦N (z,w)| 6 CΛ(r)η0D(r) +C

ˆ
Br

|N |2(z,w)
|z|2−γ0

.

However the later integral is precisely
ˆ t
0

H(t)

t2−γ0
.

This shows (8.3).
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8.0.6 Proof of (8.4)

Observe that TF = TF . Thus using (8.14) we have

‖T − TF‖(p−1(Ψ(Br)))
(8.14)
6 C

∑
j∈N

m1+β00 d(2γ0−2+2δ1)(1+β0)
j `

2+(2−2δ1)(1+β0)
j .

Now, if Lj ∈ We, then using (8.15) with a suitable η, we have

m1+β00 d(2γ0−2+2δ1)(1+β0)
j `

2+(2−2δ1)(1+β0)
j 6

(
m0 dγ0j `

γ0
j

)β0 (
m0 d2γ0−2+2δ1j `4−2δ1j

)
6 CΛη(r)

ˆ
Uj

|DN|2 .

On the other hand, if Lj ∈ Wh, then by our choice of the constants,

m1+β00 d(2γ0−2+2δ1)(1+β0)
j `

2+(2−2δ1)(1+β0)
j

=m1+β00 d(2γ0−2+2δ1)(1+β0)
j `

−2δ1+β0(2−2δ1)−2β2
j `

4+2β2
j

6m
1
2+β0
0 d2γ0β0j m

1
2

0dγ0−2β2+γ0−2j `
4+2β2
j

6m
1
2+β0
0 d2γ0β0j

ˆ
Uj

|N|2

|z|2−γ0

where we used that −2δ1+β0(2− 2δ1) − 2β2 > 0. Summing both contributions and arguing
as in the previous paragraph we conclude the proof of (8.4).
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The normal approximation N inherits from T an almost minimizing property for the
Dirichlet energy, where the errors involved are in fact expressed in terms of some specific
norms of N itself and of its competitors. Combining this almost minimality with a suitably
constructed harmonic competitor we will prove two very usefull inequalities that will be
fundamentals in the proof of the Poincaré and epiperimetric inequalities of the next chapter.

9.1 dirichlet almost minimizing property

For technical reasons we introduce the map F :=
∑Q
i=1 Jp+Ni(p)K, where N := N ◦Ψ−1. In

order to state the almost minimizing property of N we introduce an appropriate notion of
competitor.

Definition 9.1. A Lipschitz map L : Br → AQ(R
n+2) is called a competitor for N in the

ball Br if

(a) L |∂Br = N |∂Br ;

(b) spt(G (z,w)) ⊂ Σ for all (z,w) ∈ Br, where G (z,w) :=
∑Q
j=1

q
Ψ(z,w) +Lj(z,w)

y
;

We are now ready to state the almost minimizing property for N . We use the notation
pTpΣ for the orthogonal projection on the tangent space to Σ at p. We recall that, given our
choice of coordinates, pT0Σ is the projection on R2+n̄ × {0}. Since this projection will be
used several times, we will denote it by p0. By the C3,ε0 regularity of Σ, there exists a map
Ψ0 ∈ C3,ε0(R2+n̄, Rl) such that

Ψ0(0) = 0 , DΨ0(0) = 0 and (p,Ψ0(p)) ∈ Σ for every p ∈ R2+n̄ .

Next, for each function L satisfying condition (b) in Definition 9.1, we consider the map
L̄ := p0 ◦L , which is a multivalued L̄ : B → AQ(R

2+n̄). We observe that it is possible
to determine L from L̄ . In particular, fix coordinates (ξ,η) ∈ R2+n̄ × Rn−n̄ and let
L =

∑
JLiK, L̄ =

∑ q
L̄i

y
, where L̄i = p0 ◦Li. Then the formula relating Li and L̄i is

Li(z,w) =
(
L̄i(z,w),Ψ0

(
p0(Ψ(z,w)) + L̄i(z,w)

)
−Ψ0

(
p0(Ψ(z,w))

))
. (9.1)

Proposition 9.2. There exists a constant C9.2 > 0 such that the following holds. If r ∈ (0, 1) and
L : Br → AQ(R

2+n) is a Lipschitz competitor for N with ‖L ‖∞ 6 r and Lip(L ) 6 C−1
9.2, then

ˆ
Br

|DN |2 6 (1+C9.2 r)

ˆ
Br

|DL̄ |2 +C9.2 Err1(N ,Br) +C9.2 Err2(L ,Br) +C9.2 r
2D ′(r)

(9.2)

159
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where L̄ := p0 ◦L and the the errors terms Err1(N ,Br) Err2(L ,Br) are given by the following
expressions:

Err1(N ,Br) = Λη(r)D(r) + F(r) +H(r) +m
1
2

0 r
1+γ0

ˆ
∂Br

|η ◦N | (9.3)

and

Err2(L ,Br) =m
1
2

0

ˆ
Br

|z|γ0−1|η ◦L | . (9.4)

For the proof of Proposition 9.2 we consider separately the three cases:

(a) T is mass minimizing;

(b) T is the cross-section of a mass minimizing three-dimensional cone;

(c) T is semicalibrated.

For notational convenience we set L := L ◦Ψ−1, G := G ◦Ψ.
Observe also that, by Lemma 10.13 and 10.14, it is enough to prove that
ˆ
Br

|DN |2 6 (1+C9.2 r)

ˆ
Br

|DL |2+CErr1(N ,Br)+CErr2(L ,Br)+
C

r

ˆ
Br

|L |2 . (9.5)

Indeed Lemma 10.14 implies that
ˆ
Br

|DL |2 6(1+Cr)

ˆ
Br

|DL̄ |2 +Cr

ˆ
∂Br

|L̄ |2 6 (1+Cr)

ˆ
Br

|DL̄ |2 +Cr

ˆ
∂Br

|L |2

=(1+Cr)

ˆ
Br

|DL̄ |2 +Cr

ˆ
∂Br

|N |2 6 (1+Cr)

ˆ
Br

|DL̄ |2 +CErr1(N ,Br) ,

whereas Lemma 10.13 implies

1

r

ˆ
Br

|L |2 6Cr
ˆ
Br

|DL |2 +C

ˆ
∂Br

|L |2 6 Cr
ˆ
Br

|DL̄ |2 +CErr1(N ,Br) .

9.1.1 Proof of Proposition 9.2 case (a): T mass minimizing.

We fix L , L̄ , L, Ḡ and G as above. Let us set

Z := T − TF |Br
+ TG . (9.6)

Since F |∂Br = G |∂Br , from Theorem 3.47 it follows that ∂(TG − TF |Br
) = 0. Moreover

spt(Z) ⊂ Σ and therefore we must have M(T) 6 M(Z). Taking into account (8.4), we
conclude that

M(TF |Br
) 6M(T p−1(Ψ(Br))) + ‖T − TF |Br

‖(p−1(Ψ(Br)))

6M(TG ) + 2 ‖T − TF |Br
‖(p−1(Ψ(Br)))

6M(TG ) +CErr1(N ,Br) . (9.7)
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Observe now that TF |Br
= TF|Ψ(Br)

and we can use the Taylor expansion in Theorem 3.48 to
bound the mass of TF with:

M(TF |Br
) > QH2(Ψ(Br)) +

1

2

ˆ
Ψ(Br)

|DN|2 −Q

ˆ
Ψ(Br)

〈η ◦N,HM〉

−C

ˆ
Ψ(Br)

(
|AM|2|N|2 + |DN|4

)
, (9.8)

where HM denotes the mean curvature vector of M. Note that in order to apply the Taylor
expansion in Theorem 3.48, we need the manifold M to be C2, with an apriori bound on the
C2 norm. However, if we take TF Br \Br/2 and rescale by a factor 1/r, the corresponding
rescaled current, map and manifold fall under the assumptions of the Taylor expansion in
Theorem 3.48. We can then scale back to find the corresponding inequalities for TF Br \Br/2
and sum over dyadic annuli to conclude (9.8).

Using the conformality of Ψ we conclude
ˆ
Ψ(Br)

|DN|2 =

ˆ
Br

|DN |2 ,

As for the other terms, we recall
ˆ
Ψ(Br)

|〈η ◦N,HM〉| 6 Cm
1
2

0

ˆ
Br

|η ◦N |
(8.3)
6 CErr1(N ,Br) , (9.9)

ˆ
Ψ(Br)

|DN|4 6 CLip(N |Br)
2

ˆ
Br

|DN |2
(8.2)
6 CErr1(N ,Br) , (9.10)

ˆ
Ψ(Br)

|AM|2|N|2 6 Cm0

ˆ
Br

|z|2γ0−2|N |2 = Cm0

ˆ r
0

H(s)

s2γ0−2
ds 6 CErr1(N ,Br) .

(9.11)

Combining the latter estimates with (9.6) and (9.7) we achieve

1

2

ˆ
Br

|DN |2 6 CErr1(N ,Br) +M(TG) −QH2(Ψ(Br(x)) . (9.12)

Next, fix an orthonormal frame ξ1, ξ2 on Br and, using the area formula from Lemma 3.44,
compute

M(TG) =

ˆ
Ψ(Br)

∑
i

|(ξ1 +DLi · ξ1)∧ (ξ2 +DLi · ξ2)|

6
1

2

ˆ
Ψ(Br)

∑
i

(
|ξ1 +DLi · ξ1)|2 + |ξ2 +DLi · ξ2|2

)
=QH2(Ψ(Br)) +

1

2

ˆ
Ψ(Br)

|DL|2 +Q

ˆ
Ψ(Br)

(〈Dη ◦ L · ξ1, ξ1〉+ 〈Dη ◦ L · ξ2, ξ2〉) .

By conformality the second summand in the last inequality equals 12
´
Br

|DL |2. We integrate
by parts the third summand. Recall that on η ◦ L = η ◦N on Ψ(∂Br) = ∂(Ψ(Br)): since η ◦N
is orthogonal to ξi the boundary term vanishes. Moreover, since the origin is a singularity,
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we must in fact integrate by parts in Br \ Bε and then let ε → 0. A specific choice of ξi is
ξi = λ

− 1
2DΨ · ei, where e1, e2 is the parallel frame on BQ naturally induced by the standard

flat coordinates. It then turns out that

|Dξ1ξ1 +Dξ2ξ2|(Ψ(z,w)) 6 Cm
1
2

0 |z|
γ0−1 .

In particular |Dξ1ξ1 +Dξ2ξ2| is integrable on Br and we can therefore conclude

M(TG) −QH2(Ψ(Br)) 6
1

2

ˆ
Ψ(Br)

|DL|2 +Q

ˆ
Ψ(Br)

〈η ◦ L,Dξ1ξ1 +Dξ2ξ2〉

6
1

2

ˆ
Br

|DL |2 +CErr2(L ,Br) . (9.13)

Combining (9.12) and (9.13) we conclude (9.5).

9.1.2 Proof of Proposition 9.2 case (c): T semicalibrated

We proceed as in the previous step and define the current Z as in (9.6). If S is any current
such that

∂S = T −Z = TF |Br
− TG = TF|Ψ(Br)

− TG ,

then the semicalibrated condition gives

M(T) 6M(Z) + S(dω) ,

where ω is the calibrating form. In particular, in order to conclude the proof it suffices to
find an S such that

|S(dω)| 6 CErr1(N ,Br) +CErr2(L ,Br) +
C

r

ˆ
Br

|L |2 : (9.14)

combining the latter inequality with the estimates of the previous subsection we reach the
desired conclusion.

To do this we first define Hi : [0, 1]×Ψ(Br)→ AQ(R
2+n) for i = 1, 2 by

[0, 1]×Ψ(Br) 3 (t,p) 7→ H1(t,p) :=
Q∑
i=1

Jp+ tNi(p)K ∈ AQ(R
2+n)

[0, 1]×Ψ(Br) 3 (t,p) 7→ H2(t,p) :=
Q∑
i=1

Jp+ (1− t)Li(p)K ∈ AQ(R
2+n) .

We choose S := S1 + S2, where Si := THi for i = 1, 2. Thanks to Theorem 3.47, we get

∂S1 = TF|Ψ(Br)
−Q JMK− TH1|[0,1]×Ψ(∂Br)

,

∂S2 = Q JMK− TG − TH2|[0,1]×Ψ(∂Br)
.

On the other hand since N = L on Ψ(∂Br), we conclude ∂S = ∂(S1 + S2) = T −Z.
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We next estimate |S1(dω)| and |S2(dω)|. Since the estimates are analogous, we give the
details only for the first. We start from the formula

S1(dω) =

ˆ
Ψ(Br)

ˆ 1
0

Q∑
i=1

〈
~ζi(t,p),dω((H1)i(t,p))

〉
dH2(p)dt,

with

~ζi(t,p) =
(
ξ1 + t∇ξ1Ni(p)

)
∧
(
ξ2 + t∇ξ2Ni(p)

)
∧Ni(p)

=: ξ1 ∧ ξ2 ∧Ni(p) + ~Ei(t,p) ,

and

|~Ei(t,p)| 6 C (|DN|(p) + |DN|2(p)) |N|(p). (9.15)

Next we note that

dω((H1)i(t,p)) = dω(p) + I(t,p), (9.16)

with I(t,p) naturally estimated by

|I(t,p)| = |dω((H1)i(t,p)) − dω(p)| 6 C ‖D2ω‖L∞ |N|(p). (9.17)

Therefore, we have∣∣∣ Q∑
i=1

〈
~ζi(t,p),dω((H1)i(t,p))

〉∣∣∣ 6 Q∑
i=1

〈ξ1 ∧ ξ2 ∧Ni(p),dω(p)〉+ ‖dω‖L∞
Q∑
i=1

|~Ei(t,p)|

+C

Q∑
i=1

(
(|Ni|+ |~Ei|)|I|

)
(t,p)

6 Cm
1
2

0 |η ◦N|+C|N|2(p) +C|DN|(p) |N|(p) +Cr|DN|2(p) ,

where we have only used the bound |N|(p) 6 Cr on Ψ(Br). Arguing similarly for S2 (observe
that we have the bound |L|(p) 6 Cr) and estimating |N||DN|+ |L||DL| 6 r−1(|N|2 + |L|2) +

Cr(|DN|2 + |DL|2), we conclude

|S1(dω)|+ |S2(dω)| 6 Cm
1
2

0

ˆ
Ψ(Br)

(
|η ◦N|+ |η ◦ L|

)
+Cr−1

ˆ
Ψ(Br)

(
|N|2 + |L|2

)
+Cr

ˆ
Ψ(Br)

(
|DN|2 + |DL|2

)
,

and by a change of variable and Theorem 6.9 the claim follows.

9.1.3 Proof of Proposition 9.2 in case (b): T is the cross-section of a three dimensional area minimizing
cone

Recall that in this case spt(T) ⊂ ∂BR(p0), where p0 = (0, . . . , 0,R) = Ren+2 and R−1 6m
1
2

0 .
For the computations of this subsection it is indeed convenient to change coordinates so that
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p0 is in fact the origin, whereas Ψ(0, 0) is the point (0, . . . , 0,−R). In these new coordinates
we then have M, spt(T), Im(F ) ⊂ ∂BR(0). These coordinates will however be used only in
here, whereas in the next sections we will return to the usual ones.

We introduce the following notation: C(r) is the cone over Ψ(Br) with vertex 0, i.e.

C(r) :=
{
ρp ∈ Rn+2 : ρ ∈ [0, 1], p ∈ Ψ(Br)

}
,

with the orientation compatible with that of 0×× JMK. We extend F to F̃ : C(r)→ AQ(R
n+2)

by setting F̃(ρp) := ρ F(p) for every p ∈ Ψ(Br).
In order to estimate the Dirichlet energy of N in terms of that of L, we construct a suitable

function K : C(r)→ AQ(R
n+2) (depending on L and N) such that K|∂C(r) = F̃|∂C(r): we can

then test the minimizing property of 0×× T comparing its mass with that of the current

Z := 0×× T − TF̃ + TK = 0×× (T − TF|Ψ(Br)
) + TK

which is easily recognized to satisfy ∂Z = ∂(0×× T). In particular, using the minimality of
0×× T , we conclude

R−1M(0×× TF|Ψ(Br)
) 6 R−1M(TK) +CErr1(N ,Br) . (9.18)

We consider the space of parameters [0, 1] × Br and recall that the points in BQ are
identified by four co-ordinates (z,w) ∈ R2×R2. For the definition of K we need to introduce
the following sets

A1 :=

{
(ρ, z,w) ∈ [0, 1]×Br : 1− r 6 ρ 6 1, |z| 6

ρ+ 2 r− 1

2

}
, (9.19)

A2 :=

{
(ρ, z,w) ∈ [0, 1]×Br : 1− 2 r 6 ρ 6 1− r, |z| 6

1− ρ

2

}
, (9.20)

B :=[1− 2 r, 1]×Br \
(
A1 ∪A2

)
, (9.21)

We then define the function H : [0, 1]×Br → AQ(R
n+2) given by

H (ρ, z,w) :=



ρL (z,w) if ρ 6 1− 2 r,

ρ l1(ρ)N

(
2rz

ρ+2r−1 , (2r)
1
Q

(ρ+2r−1)
1
Q

w

)
if (ρ, z,w) ∈ A1,

−ρ l1(ρ)L

(
2rz
1−ρ , (2r)

1
Q

(1−ρ)
1
Q

w

)
if (ρ, z,w) ∈ A2,

ρ l2(|z|)N

(
rz
|z| ,

r
1
Q

|z|
1
Q

w

)
if (ρ, z,w) ∈ B,

(9.22)

where l1, l2 : R→ R are the affine functions

l1(t) :=
t+ r− 1

r
and l2(t) :=

2 t− r

r
. (9.23)

The following are simple properties of H which can be easily verified:

(1) H (1, z,w) = N (z,w) for every (z,w) ∈ Br, as (1, z,w) ∈ A1 and l1(1) = 1;
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(2) H (ρ, z,w) = ρN (z,w) for every ρ ∈ [0, 1] and for every z with |z| = r, as L |∂Br =

N |∂Br and l2(r) = 1;

(3) H is well-defined and continuous, as H ≡ 0 in A1 ∩A2 from l1(1− r) = 0,

H (ρ, z,w) = ρ ρ+r−1r N

(
rz
|z| ,

r
1
Q

|z|
1
Q

z

)
in A1 ∩ ∂B,

and

H (ρ, z,w) = ρ ρ+r−1r N

(
rz
|z| ,

r
1
Q

|z|
1
Q

w

)
in A2 ∩ ∂B.

The competitor map K : C(r)→ AQ(R
n+2) is now given by

K(ρp) :=

Q∑
i=1

Jρp+Hi(ρp)K with H(ρp) := H (ρ,Ψ−1(p)).

Note that by (1) and (2) above it follows that K|∂C(r) = F̃|∂C(r).
We start now estimating the masses of the various currents introduced above. Since

spt(TF) ⊂ ∂BR(0), it follows that M(0×× TF) = RM(TF)/3 and, by the expansion of the mass
of TF, we have that

M(TF|Ψ(Br)
) > QH2(Ψ(Br)) +

1

2

ˆ
Br

|DN |2 −CErr1(N ,Br) . (9.24)

Combining the latter estimate with (9.18) we conclude
ˆ
Br

|DN |2 6 6R−1M(TK) − 2QH2(Ψ(Br)) + Err1(N ,Br) . (9.25)

For what concerns the mass of TK, recalling that p+ spt(L(p)) ∈ ∂BR(0) for every p ∈
Ψ(Br), we deduce that

M(TK BR(1−2r)) =M(0×× TG BR(1−2r) = R
(1− 2r)3M(TG)

3

and

M(TG) 6 QH2(Ψ(Br)) +
1

2

ˆ
Br

|DL |2 + Err2(L ,Br) .

In particular we conclude

6R−1M(TK BR(1−2r)) 6 2Q(1− 2r)3H2(Ψ(Br)) +

ˆ
Br

|DL |2 + Err2(L ,Br) . (9.26)

Next we pass to estimating M(TK BR \BR(1−2r)). In order to carry on our estimates we
use the area formula for multifunctions, cf. Lemma 3.44. In particular we fix an orthonormal
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frame ξ1, ξ2 for M as in the proof of case (a) and we let ξ3 = R−1∂t be normal to them in
TC(r), i.e. pointing in the radial direction of the cone. We then have

M(TK (BR \BR(1−r)) =

ˆ
C(r)

∑
i

|(ξ1 +DHi · ξ1)∧ (ξ2 +DHi · ξ2)∧ (ξ3 +DHi · ξ3)|︸ ︷︷ ︸
(A)

.

Using the Taylor expansion for (A), cf. [18], we can bound (recall that Ω = 3 R−1 6m
1
2

0 )

R−1M(TK (BR \BR(1−2r))) 6 QR
−1H3

(
C(r)∩B1 \B1−2r

)
+Qm

1
2

0

ˆ 1
1−2r

ˆ
Ψ(Br)

d

dt
[(η ◦H)(tp)]t2dt

+Qm
1
2

0

ˆ 1
1−2r

ˆ
Ψ(Br)

2∑
i=1

〈∇ξi(η ◦H), ξi〉 t
2dt+C

ˆ 1
1−2r

ˆ
Ψ(Br)

|DH|2 t2dt .

(9.27)

The linear terms can be integrated by parts: since ∇p(η ◦H)(tp) = d
dt(η ◦H)(tp), we have

ˆ 1
1−2r

ˆ
Ψ(Br)

d

dt
[(η ◦H)(tp)]t2dt =

ˆ
Ψ(Br)

〈
(η ◦H)(p) − (1− 2r)2(η ◦H)

(
(1− 2r)p

)
,p
〉

− 2

ˆ 1
1−2r

ˆ
Ψ(Br)

〈(η ◦H)(tp),p〉 tdt (9.28)

ˆ 1
1−2r

ˆ
Ψ(Br)

2∑
i=1

〈∇ξi(η ◦H), ξi〉 t
2dt = −

ˆ 1
1−2r

ˆ
Ψ(Br)

〈(η ◦H),HM〉 t2dt. (9.29)

Therefore, by a simple change of coordinates we can estimate

R−1M(TK (BR \BR(1−r))) 6
Q
(
1− (1− 2r)3

)
3

H2
(
Ψ(Br)

)
+Cm

1
2

0 r

ˆ
Br

(
|η ◦N |+ |η ◦L |

)
+Cm

1
2

0

ˆ 1
1−2r

ˆ
Br

|z|γ0−1|η ◦H |(t, z,w)dzdt+C
ˆ 1
1−2r

ˆ
Br

|DH |2(t, z,w)dzdt.

(9.30)

In order to bound the various integrands of (9.30), we start with the following general
remark. Assume that χ : [1− 2r, 1]×Br → [0,+∞) has the structure

χ(ρ, x,y) =



χ1

(
2rz

ρ+2r−1 , (2r)
1
Q

(ρ+2r−1)
1
Q

w

)
if (ρ, z,w) ∈ A1,

χ2

(
2rz
1−ρ , (2r)

1
Q

(1−ρ)
1
Q

w

)
if (ρ, z,w) ∈ A2,

χ3

(
rz
|z| ,

r
1
Q

|z|
1
Q

w

)
if (ρ, z,w) ∈ B,

(9.31)
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for some χ1,χ2,χ3 : B
Q
r → [0,+∞). Then one can compute the integral of χ in the following

way:
ˆ 1
1−r

ˆ
Br

χ(t, z,w)dzdt =
ˆ
A1

χ(t, z,w)dzdt+
ˆ
A2

χ(t, z,w)dzdt+
ˆ
B

χ(t, z,w)dzdt,

and one can easily compute that
ˆ
A1

χ(t, z,w)dzdt =
ˆ 1
1−r

ˆ
B t+2r−1

2

χ1(t, z,w)dzdt

=

ˆ 1
1−r

ˆ
B t+2r−1

2

χ1

(
2 r z

t+ 2r− 1
,

(2 r)
1
Q

(t+ 2 r− 1)
1
Q

w

)
dzdt

=

ˆ 1
1−r

(
t+ 2r− 1

2r

)2 ˆ
Br

χ1(z,w)dzdt 6 r
ˆ
Br

χ1(z,w)dzdt . (9.32)

Similarlyˆ
A2

χ(t, z,w)dzdt 6 r
ˆ
Br

χ2(z,w)dµ0 dt, (9.33)

and ˆ
B

χ(t, z,w)dzdt =
ˆ 1
1−r

dt

ˆ r
t+2r−1
2

s

r
ds

ˆ
∂Br

χ3(z,w)dz

+

ˆ 1−r
1−2r

ˆ
1−t
2

r
s

r
ds

ˆ
∂Br

χ3(z,w)dz 6 r2
ˆ
∂Br

χ3(z,w)dz . (9.34)

By direct computations one verifies that the integrands in (9.30) are all bounded from above
by functions χ with the structure (9.31): in particular,

(i) |z|γ0−1|η ◦H |(t, z,w) 6 χ(t, z,w) if we choose

χ1(z,w) = χ3(z,w) = |z|γ0−1|η ◦N |(z,w) and χ2(z,w) = |z|γ0−1|η ◦L |(x,y);

(ii) |DH |2(t, z,w) 6 χ(t, z,w) if we choose

χ1(z,w) = χ3(z,w) =
C

r2
|N |2(z,w) +C |DN |2(z,w)

χ2(z,w) =
C

r2
|L |2(z,w) +C |DL |2(z,w).

for some dimensional constant C > 0.

It then turns out from (9.32), (9.33), (9.34) and (i), (ii), (iii) that

6R−1M(TK (BR \BR(1−r))) 6 Q
(
1− (1− 2r)3

)
H2
(
Ψ(Br)

)
+ Err1(N ,Br) + Err2(L ,Br) . (9.35)

Summing (9.35) and (9.26) we conclude

6R−1M(TK) 6 2QH2(Ψ(Br)) +

ˆ
Br

|DL |2 + Err1(N ,Br) + Err2(L ,Br) .

Combining the latter estimate with (9.25) we conclude the proof.
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9.2 harmonic competitor and two useful inequalities

The most natural choice for the competitor L is a suitable “harmonic” extension of the
boundary value N |∂Br . Following the ideas of [9] we estimate carefully the energy of such
competitor. To this purpose it is useful to introduce “polar” coordinates with center 0 in B

and split accordingly the Dirichlet integrand in radial and angular parts. More precisely,
consider (z0,w0) = ((ξ0, ζ0),w0) ∈ ∂Br and take, locally, the standard flat coordinates
z = (x1, x2) of Definition 2.10. We then denote by ν the exterior unit vector normal to ∂Br at
(z0,w0) and by τ the corresponding tangent unit vector obtained by rotating ν of an angle
π/2 in the counterclockwise direction, namely

ν := |z0|
−1

(
ξ0

∂

∂x1
+ ζ0

∂

∂x2

)
and τ := |z0|

−1

(
−ζ0

∂

∂x1
+ ξ0

∂

∂x2

)
.

The directional derivatives of any (multi)function f on B gives then two (multi)functions

Dνf =
∑
i

JDfi · νK and Dτf =
∑
i

JDfi · τK .

The Dirichlet integrand |Df|2 enjoys then the splitting

|Df|2 = |Dνf|
2 + |Dτf|

2 .

For the rigorous justification of these identities see [17].

Proposition 9.3. There are constants C > 0, σ > 0 such that, for every r ∈ (0, 1) there exists a
competitor L : Br → AQ(R

2+n) for N with the following additional properties:

(i) Lip(L ) 6 C9.2, ‖L ‖0 6 Cr;

(ii) The following estimate hold:
ˆ
Br

|DL̄ |2 6 Cr
ˆ
∂Br

|DN̄ |2 6 CrD ′(r) , (9.36)
ˆ
Br

|z|γ0−1|η ◦L | 6 Crγ0
ˆ
∂Br

|η ◦N |+H(r) ; (9.37)

(iii) For every a > 0 there exists b0 > 0 such that, for all b ∈ (0,b0), the following estimate holds:

(2 a+ b)

ˆ
Br

|DL̄ |2 6 r
ˆ
∂Br

|DτN |2 +
a (a+ b)

r

ˆ
∂Br

|N |2 +Cr1+σD ′(r) .

(9.38)

Using this competitor in Proposition 9.2, we then infer the following corollary.

Corollary 9.4. For every r ∈ (0, 1) the following inequality holds

D(r) 6 CrD ′(r) +Cr1−γ0 H(r) +C F(r) +Cm
1
2

0 r
γ0

ˆ
∂Br

|η ◦N | . (9.39)
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For every a > 0 there exists b0 > 0 such that, for all b ∈ (0,b0) and all r ∈]0, 1[

D(r) 6 (1+Cr)

[
r

(2 a+ b)

ˆ
∂Br

|DτN |2 +
a (a+ b)

r (2 a+ b)
H(r)

]
+CEQM(r) +Cr1+σD ′(r) ,

(9.40)

with

EQM(r) 6 Λ(r)η0D(r) + F(r) +H(r) +m
1
2

0 r
γ0

ˆ
∂Br

|η ◦N | .

Proof of Corollary 9.4. Recalling thatH(r) 6 Cr‖N ‖2∂Br 6 Cr
3+γ0 we easily infer thatΛ(r) 6

Cr2 and thus the inequalities follow readily from Proposition 9.2 and Proposition 9.3.

9.2.1 Proof of Proposition 9.3: Step 1

First of all we observe that it suffices to exhibit L̄ , as L can be recovered from it via the
formula (9.1). Moreover, it suffices to show the estimates with N̄ replacing N , because we
obviously have |N̄ | 6 |N | and |DN̄ | 6 |DN | so that the corresponding error terms can all
be absorbed in EQM (observe that the definition of N̄ also ensures |η ◦ N̄ | 6 |η ◦N|). Next
we wish to relate η ◦ L and η ◦ L̄ for two maps satisfying the relation (9.1). Note that by a
simple Taylor expansion (cp. (10.84)) we have

|η ◦L | 6 C|η ◦ L̄ |+CG(L̄ ,η ◦ L̄ )2 ,

where the constant C depends on the C2 norm of Ψ0. In particular we record the following
conclusion:

ˆ
Br

|z|γ0−1|η ◦L | 6 C
ˆ
Br

|z|γ0−1|η ◦ L̄ |+C

ˆ
Br

|z|γ0−1|L̄ |2 . (9.41)

In this step we exhibit an “harmonic”1 competitor H which satisfies all the requirements
of the proposition except for the Lipschitz estimate. In fact we will show that there is a W1,2

map H : Br → AQ(R
2+n̄) such that

H |∂Br = N̄ |∂Br and ‖H ‖L∞(Br) 6 ‖N̄ ‖L∞(∂Br) (9.42)ˆ
Br

|DH |2 6 Cr
ˆ
∂Br

|DN̄ |2 (9.43)
ˆ
Br

|z|γ0−1|η ◦H | 6 Crγ0
ˆ
∂Br

|η ◦ N̄ | (9.44)
ˆ
Br

|z|γ0−1|H |2 6 Crγ0
ˆ
∂Br

|N̄ |2 (9.45)

(2 a+ b)

ˆ
Br

|DH̄ |2 6 r
ˆ
∂Br

|DτN̄ |2 +
a (a+ b)

r

ˆ
∂Br

|N̄ |2 . (9.46)

1 We remark that the competitor used here does not coincide, in general, with the Dirichlet minimizer with
boundary value N̄ |∂Br .
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In these estimates we do not use any of the particular properties of N̄ and indeed for any
Lipschitz multivalued map N̄ : Br → AQ(R

2+n̄) there is such an “harmonic” competitor.
Therefore, given the scaling invariance of the estimates, we will assume without loss of
generality that r = 1.

Let Dr := {|z| < r} denote the disk of radius r in R2, which we identiy with the complex
plane. We start by defining the “winding map” W : R2 ⊃ D̄1 → B given (in complex
notation) by

W(z) := (zQ̄, z) .

We then consider the multivalued map U := N̄ ◦W. Let θ 7→ u(θ) be its trace on ∂D1(0),
which we parametrize with the angle θ ∈ [0, 2π]. According to Lemma 3.16 we can decompose
u in a superposition of simple functions u(θ) =

∑J
j=1 uj(θ) such that, for every j = 1, . . . , J,

uj(θ) =

Qj∑
i=1

s
γj

(
θ+ 2πi

Qj

){
,

where the γj : [0, 2π]→ R2+n̄ are periodic Lipschitz functions. Next consider the Fourier’s
expansion of each γj

γj(θ) =
aj,0

2
+

∞∑
l=1

(
aj,l cos(lθ) + bj,l sin(lθ)

)
,

and its harmonic extension, which in polar coordinates (ρ, θ) reads as

ζj(ρ, θ) :=
aj,0

2
+

∞∑
l=1

ρl
(
aj,l cos(lθ) + bj,l sin(lθ)

)
. (9.47)

We then can define the “harmonic” competitor for U , which is the Q-valued map

V (ρ, θ) :=
J∑
j=1

Qj∑
i=1

s
ζj

(
ρ
1
Qj ,

θ+ 2πi

Qj

){

and the “harmonic” competitor for N̄ , which is H = V ◦W. Observe that the first claim in
(9.42) is obvious, whereas the second claim follows from the maximum principle for classical
harmonic functions.

Simple computations and the conformality of W, see for instance [17, Proof of Proposition
5.2], yield

ˆ
B1

|DH |2 =

ˆ
D1

|DV |2 =π

J∑
j=1

∞∑
l=1

l
(
|aj,l|

2 + |bj,l|
2
)

, (9.48)

ˆ
∂B1

|DτH |2 =
π

Q̄

J∑
j=1

∞∑
l=1

l2

Qj

(
|aj,l|

2 + |bj,l|
2
)

, (9.49)



9.2 harmonic competitor and two useful inequalities 171

ˆ
∂B1

|H |2 =πQ̄

J∑
j=1

Qj

( |aj,0|2
2

+

∞∑
l=1

(
|aj,l|

2 + |bj,l|
2
))

. (9.50)

Clearly, (9.43) follows from the first and second inequality, with the constant C = Q̄Q1 6 Q̄Q.
(9.46) follows from the fact that, for any chosen a > 0, if b0 is sufficiently small and
0 < b < b0, then

(2a+ b)` 6
`2

Q̄Qj
+ Q̄Qj`a(a+ b) ∀` ∈N .

The latter claim is elementary and the reader can consult, for instance, Step 2 in the proof of
[17, Proposition 5.2].

Observe next that η ◦ V is the classical harmonic extension of the single-valued function
η ◦U |∂D1 . We then have the classical estimates

‖η ◦ V ‖L∞(D
2

1
Q̄

) + ‖η ◦ V ‖L1(D1) 6 C‖η ◦U ‖L1(∂D1) .

In particular we conclude easily

‖η ◦H ‖L∞(B1/2) + ‖η ◦H ‖L1(B1\B1/2) 6 C
ˆ
∂B1

|η ◦ N̄ | ,

because the change of variables W−1 is smooth on B1 \B1/2. The integrability of |z|γ0−1 on
B1 gives then

ˆ
B1

|z|γ0−1|η ◦H (z,w)|dz 6C‖η ◦H ‖L∞(B1/2) +C‖η ◦H ‖L1(B1\B1/2) ,

which in turn completes the proof of (9.44).
A similar argument proves (9.45). Using the classical theory of single valued harmonic

functions we see indeed that ‖ζj‖L2(B1) + ‖ζj‖L∞(B1/2) 6 C‖γj‖L2(∂B1) and thus, using the
fact that W is smooth on B1 \B1/2, we conclude that

‖H ‖2L∞(B1/2) + ‖H ‖2L2(B1\B1/2) 6 C
ˆ
∂B1

|N̄ |2 .

From this we easily conclude (9.45).

9.2.2 Proof of Proposition 9.3: Step 2

We keep the notation of the previous paragraphs and assume that N̄ is defined in B1, after
scaling. The specific scaling that we are using is the one which preserves the Lipschitz
constant and is given by

N̄ (z,w) 7→ r−1N
(
rz, r

1
Q̄w
)

.
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Under this scaling we then have the estimates ‖N̄ ‖L∞ 6 Cm
1
4

0 r
γ0/2 and Lip(N̄ ) 6 Λ(r)η

and we want to show that we can modify H to a competitor L̄ with Lip(L̄ ) 6 C9.2,
satisfying

L̄ |∂B1 = N̄ |∂B1 and ‖L̄ ‖L∞(B1) 6 ‖N̄ ‖L∞(∂B1) (9.51)ˆ
B1

|DL̄ |2 6
ˆ
B1

|DH |2 +Crσ
ˆ
∂B1

|DN̄ |2 (9.52)
ˆ
Br

|z|γ0−1|L̄ |2 6 C
ˆ
∂B1

|N̄ |2 (9.53)
ˆ
B1

|z|γ0−1|η ◦ L̄ | 6 C
ˆ
∂B1

|η ◦ N̄ | . (9.54)

Observe that the harmonic functions ζj defined in (9.47) are Lipschitz in every ball D1−t for
0 < t < 1 with an estimate of the form

‖Dζj‖L∞(D1−t) 6
C

t
Lip(γj) 6

C

t
Lip(N̄ ) 6

CΛ(r)η0

t
. (9.55)

They are not Lipschitz up to the boundary ∂D1 because the Dirichlet to Neumann map
γj →

∂ζj
ρ (1, ·) does not map L∞ into L∞. However we have the Schauder estimate

‖Dζj‖Lp(D1) 6 Cp‖γj‖W1,p(∂D1)
6 CpΛ(r)η0

for every p <∞. In particular, we can bound

‖ζj(1− t, ·) − γj‖W1,1(∂D1)
6 C2t

1
2Λ(r)η0 ,

which in turn implies

max
θ

|ζj(1− t, θ) − γj(θ)| 6 C2t
1
2Λ(r)η0 . (9.56)

Choose t := Λ(r)
η0
2 and define a new map ξj as

ξj(ρ, θ) :=


ζj(ρ, θ) for ρ 6 1− t

1−ρ
t ζj(1− t, θ) +

ρ−(1−t)
t γj(θ) for 1− t 6 ρ 6 1.

Now, (9.55) and (9.56) imply that ‖Dζj‖ 6 CΛ(r)
η0
2 . Moreover we obviously have

ˆ
D1

|Dξj|
2 6
ˆ
D1

|Dζj|
2 +CΛ(r)

η0
2

(ˆ
∂D1−t

|Dζj|
2 +

ˆ
∂D1

|Dγj|
2
)

6
ˆ
D1

|Dζj|
2 +CΛ(r)

η0
2

ˆ
∂B1

|Dγj|
2 . (9.57)

We can now define two “intermediate” maps

V 0(ρ, θ) :=
J∑
j=1

Qj∑
i=1

s
ξj

(
ρ
1
Qj ,

θ+ 2πi

Qj

){
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and L 0 := V 0 ◦W−1. It is then immediate to see that L 0 enjoys the bound Lip(L 0) 6
CΛ(r)

η
2 on the domain B1 \B1/4 and that all the estimates (9.51), (9.52) and (9.54). On the

other hand the differential DL 0 is singular in the origin and in fact it is rather easy to see
that we have the bound

|DL 0(z,w)|2 6 C|z|2−
2

(QQ̄)

ˆ
B1

|DL 0|2 . (9.58)

In order to produce L̄ we need to smooth the singularity of L 0 at the origin. There are
several ways to do this and we present here one possibility. First of all we fix 2 < p <

2QQ̄/(2QQ̄− 2) and observe that (9.58) yields the estimateˆ
B3/4

|DL 0(z,w)|p 6 C
(ˆ
B1

|DL 0|2
)p
2

. (9.59)

Next we define

M|DL 0(z,w)| := sup
ρ<1/4

1

ρ2

ˆ
Bρ(z,w)

|DL 0(z,w)|

and let

A := {(z,w) :M|DL 0(z,w)| > c0}

where c0 is a constant to be chosen later. Observe that, given the Lipschitz bound for L 0

outside the origin, for r sufficiently small the set A is contained in B1/2. Arguing as in
the proof of [17, Proposition 4.4] we have the Lipschitz estimate Lip(L 0) 6 Cc0 on B1 \A,
where C is a dimensional constant. We can then use the Lipschitz extension of Proposition
3.4 to extend L 0 to L̄ on A so that Lip(L ) 6 Cc0. Choosing c0 accordingly we achieve the
desired Lipschitz bound on B1. As for (9.51) and (9.53) observe that the extension satisfies

‖L̄ ‖2L∞(B1/2)
6 C‖H ‖2L∞(B3/4)

and coincides with L0 on B1 \ B1/2. As for (9.54), it would suffice to show that |η ◦ L̄ | 6
C|η ◦ N̄ |. This can be easily achieved in the following way: we make a Lipschitz extension
of L 0, subtract from each sheet the average and then sum back to each sheet a Lipschitz
extension of η ◦L 0.

As for (9.52) we computeˆ
|DL̄ |2 6

ˆ
|DL 0|2 +Cc20|A| 6

ˆ
|DL 0|2 +Cc2−p0

ˆ
B3/4

|DL 0|p

6
ˆ

|DL 0|2
(
1+Cc2−p0

(ˆ
|DL 0|2

)p
2−1

)
. (9.60)

Observe that p/2− 1 > 0 and that by (9.57) and (9.43)ˆ
|DL 0|2 6

ˆ
|DH |2 +CΛ(r)

σ
2

ˆ
∂B1

|DN̄ |2 6 C
ˆ
∂B1

|DN̄ |2 6 Crσ ,

so thatˆ
B1

|DL̄ |2 6 (1+Crσ)

ˆ
B1

|DH |2+Crσ
ˆ
∂B1

|DN̄ |2
(9.43)
6
ˆ
B1

|DH |2+Crσ
ˆ
∂B1

|DN̄ |2 .
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B L O W U P A N A LY S I S

This chapter is dedicated to the proof of Theorem 2.20, which we recall for the reader
convenience.

Theorem 10.1 (Blowup Analysis). Under the assumptions of Theorem 2.18, the following dichotomy
holds:

(i) either there exists s > 0 such that N |Bs ≡ Q J0K,

(ii) or there exist constants I0 > 1, a0, r̄,C > 0 and an I0-homogeneous nontrivial Dir-minimizing
function g : BQ̄ → AQ(R

2+n) such that η ◦ g ≡ 0, g =
∑
i J(0, ḡi, 0)K, where ḡi(x) ∈ Rn̄,

and

G
(
N (z,w),g(z,w)

)
6 C|z|I0+a0 ∀ (z,w) ∈ BQ, |z| < r̄, (10.1)

and moreover the following estimates hold
ˆ
Br+2ρ\Br−2ρ

|DN |2 6 Cr2I0+a0 +Cr2I0−1 ρ ∀ 4 ρ 6 r < 1, (10.2)

H(r) 6 CrD(r) ∀ r < 1. (10.3)

10.1 outer variations and the poincaré inequality

In this section we begin to exploit the variations of the area functional on T in conjunction
with the estimates of the previous section. The main conclusion will be the following Poincaré
inequality:

Theorem 10.2 (Poincaré inequality). There exists a constant C10.2 > 0 such that if r is sufficiently
small, then

H(r) 6 C10.2 rD(r) . (10.4)

We record however the two main tools used to prove Theorem 10.2, since they will be
useful in the future. The first one is an elementary computation. In order to state it we
introduce the quantity

E(r) :=

ˆ
∂Br

Q∑
j=1

〈N j,DνN j〉 . (10.5)

Lemma 10.3. H is a Lipschitz function and the following identity holds for a.e. r ∈ (0, 1)

H ′(r) =
H(r)

r
+ 2E(r) . (10.6)
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The second identity is a consequence of the first variation of T under certain specific vector
fields, which we call “outer variations”: such variations “stretch” the normal bundle of M
suitably and they are defined using the map N . In the case of semicalibrated currents it
is convenient to modify the Dirichlet energy suitably to gain a new quantity which enjoys
better estimates. Thus, from now on Ω will denote D in the cases (a) and (c) of Definition
1.1, whereas in the case (b) it will be given by

Ω(r) := D(r) + L(r) := D(r) +

Q∑
i=1

ˆ
Ψ(Br)

〈ξ1 ∧Dξ2Ni ∧Ni +Dξ1Ni ∧ ξ2 ∧Ni,dω〉 .

Proposition 10.4 (Outer variations). There exist constants C10.4 > 0 and κ > 0 such that, if
r > 0 is small enough, then the inequality

|Ω(r) − E(r)| 6 C10.4 EOV(r) (10.7)

holds with

EOV(r) = Λ(r)κ
(
D(r) +

H(r)

r
+ rD ′(r)

)
+ F(r) + r1+γ0

d

dr
‖T − TF‖(p−1(Ψ(Br))) .

(10.8)

Moreover

|L(r)| 6Cm
1
2

0 r
2−γ0D(r) +Cm

1
2

0 F(r). (10.9)

10.1.1 Proof of Lemma 10.3

The Lipschitz regularity of H follows from the Lipschitz regularity of N . Consider next the

map ir : B→ B given by ir(z,w) =
(
rz, r

1
Q̄w
)

. By a simple change of variables we compute

H(r) =

ˆ
∂B1

|N |2(ir(z
′,w ′)) r .

The formula (10.6) is then an elementary computation using the chain rule for multifunctions,
cf. Proposition 3.6.

10.1.2 Proof of Proposition 10.4

The inequality (10.9) is a simple consequence of

|L(r)| 6 Cm
1
2

0

ˆ
Br

|DN ||N | 6 Cm
1
2

0

ˆ
Br

|z|2−γ0 |DN |2 +Cm
1
2

0

ˆ
Br

|z|γ0−2|N |2 .

In order to show (10.7) we fix a test function φ ∈ C∞c (R), nonnegative, symmetric, with
support in ] − 1, 1[ and monotone decreasing on [0, 1]. We then follow [21, Section 3.3] and,
having fixed r, we define the vector field Xo on Vu,a via

Xo(p) := ϕ(p(p))(p−p(p)) where ϕ(Ψ(z,w)) = φ
(
|z|
r

)
.
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For r small enough, by (8.2) we can use Theorem 3.53 and deduce via the change of
coordinates given by Ψ, that

δTF(X) =

ˆ
B
φ
( |z|
r

)
|DN |2 + r−1

´
Bφ

′( |z|
r

) ∑Q
j=1〈N j,DνN j〉+

∑3
i=1 Erroi , (10.10)

with

Erro1 =
∣∣∣ˆ

M

ϕ 〈HM,η ◦N〉
∣∣∣ 6 Cm 1

2

0

ˆ
Br

|z|γ0−1 |η ◦N |
(8.3)
6 CΛη(r)D(r) +C F(r) ,

(10.11)

Erro2 6 C
ˆ
M

|ϕ| |AM|2 |N|2 6 C F(r) , (10.12)

Erro3 6C
ˆ
M

(
|ϕ|
(
|DN|2 |N| |AM|+ |DN|4

)
+ |Dϕ|

(
|DN|3 |N|+ |DN| |N|2 |AM|

))
6C
ˆ
Br

[( |N |2

|z|2−2γ0
+ |DN |4

)
− r−1φ ′(

|z|
r ) r

1+γ0 |DN |3 − r−1φ ′(
|z|
r ) |DN |

|N |2

|z|1−γ0

]
(8.2)&(8.1)

6 CΛη(r)D(r) +CF(r) −CΛ(r)η
ˆ
Br

r−1φ ′(
|z|
r )

|N |2

|z|1−γ0

−Cr1+γ0 Λη
ˆ
Br

r−1φ ′(
|z|
r ) |DN |2 . (10.13)

(We recall that φ ′ 6 0 on [0, 1])).

We next distinguish two situations:

• in the cases (a) and (c) of Definition 1.1, we denote by X⊥ and XT the projections of
X on the normal and the tangential bundle of Σ, respectively. Then δT(XT ) = 0 and
therefore

|δTF(X)| 6 |δTF(X) − δT(X)|︸ ︷︷ ︸
Err4o

+ |δT(X⊥)|︸ ︷︷ ︸
Err5o

;

• in case (b), since δT(X) = T(dw X), we estimate∣∣δTF(X) − TF(dω X)
∣∣ 6 |δTF(X) − δT(X)|+ |T(dω X) − TF(dω X)|︸ ︷︷ ︸

Err4o

.

In both cases we have

Erro4 6Q
ˆ

spt(T)\Im(F)

∣∣div~TX
∣∣ d‖T‖+Q ˆ

Im(F)\spt(T)

∣∣∣div~TF
X
∣∣∣ d‖TF‖

+Q‖dω‖∞
ˆ

|X|d‖T − TF‖ ,
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where we use the convention that ω = 0 in the cases (a) and (c). We then can estimate

Erro4 6 C
ˆ

(ϕ ′(p(p)) |p−p(p)|+ϕ(p(p))) d‖T − TF‖

(8.1)&(8.4)
6 CΛη(r)D(r) +C F(r) +Cr1+γ0

ˆ
|∇ϕ(p(p))| |p−p(p)|d‖T − TF‖︸ ︷︷ ︸

S(ϕ)

.

(10.14)

In case (b) we have that

TF(dω X) =

Q∑
i=1

ˆ
M

ϕ 〈(ξ1 +Dξ1Ni)∧ (ξ2 +Dξ2Ni · ξ2)∧Ni , dω(p+Ni(p)),

and therefore

∣∣D(r) + L(r) − E(r)
∣∣ 6 4∑

j=1

Erroj .

Letting φ converge to the characteristic function of the interval [−1, 1], we reach the conclu-
sion. The only term which needs some care is the term S(ϕ) in (10.14). Note that we can
approximate the characteristic function of [−1, 1] with an increasing sequence of functions
φj with the property that |φ ′j| 6 Cj, 0 6 φj 6 1 and φj ≡ 1 on [−1+ 1/j, 1− 1/]. Then we
would have

lim sup
j

S(ϕj) 6 C lim sup
j

j

r
‖T − TF‖(Ψ(Br \Br(1−1/j))) 6 C

d

dr
‖T − TF‖(Ψ(Br)) ,

by the monotonicity of the function r 7→ ‖T − TF‖(Ψ(Br)).
In the cases (a) and (c) we follow the same argument, but we need to bound the additional

term Err5o. In order to deal with the latter term we argue as in [21, Section 4.1]. In particular
we bound

Erro5 6

∣∣∣∣ˆ div~TX
⊥ d‖T‖

∣∣∣∣
6
ˆ

spt(T)\Im(F)

∣∣div~TX
∣∣ d‖T‖+ ˆ

Im(F)\spt(T)

∣∣∣div~TF
X
∣∣∣ d‖TF‖︸ ︷︷ ︸

I1

+

∣∣∣∣ˆ 〈X⊥,h(~TF(p))〉d‖TF‖
∣∣∣∣︸ ︷︷ ︸

I2

, (10.15)

where h(v1 ∧ v2) :=
∑2
i=1AΣ(vi, vi). Since the projection on the normal to Σ is a C1,ε0 map,

X⊥ enjoys the same C1 bounds as X and I1 can be controlled as Err4o. The term I2 can be
estimated using

|Xo⊥(p)| = ϕ |pTpΣ⊥(p−p(p))| 6 Cc(Σ)ϕ |p−p(p)|2 6 Cm
1
2

0 ϕ |p−p(p)|2 ∀ p ∈ Σ.

In particular we achieve I2 6 CH(r), which concludes the proof.
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10.1.3 Proof of Theorem 10.2

In order to prove the theorem we start estimating the error term F.

Lemma 10.5. There exist a constant C10.5 > 0 (depending on γ0) such that

F(r) 6 C10.5 r
γ0−1H(r) +C10.5 r

γ0D(r) ∀ r ∈ (0, 1). (10.16)

Proof. Using (10.6) and an integration by parts we infer that

γ0

ˆ r
0

H(ρ)

ρ2−γ0
dρ =

H(ρ)

ρ1−γ0

∣∣∣r
0
−

ˆ r
0

d

dρ

(
H(ρ)

ρ

)
ργ0 dρ =

H(r)

r1−γ0
−

ˆ r
0

2E(ρ)

ρ1−γ0
dρ.

(10.17)

The Cauchy–Schwarz inequality yields then the following bound for every ε:

|E(r)| 6
ε

r

ˆ
∂Br

|N |2 +
r

4ε

ˆ
∂Br

|DN |2 = ε
H(r)

r
+
rD ′(r)

4ε
. (10.18)

Therefore, by choosing ε = γ0
2 , we deduce (10.16) from (10.17) and (10.18).

Proof of Theorem 10.2. In view of Lemma 10.5, for r sufficiently small, the almost minimizing
condition (9.39) reads as

D(r) 6 CrD ′(r) +C
H(r)

r1−γ0
+Cm

1
2

0 r
γ0

ˆ
∂Br

|η ◦N | .

Dividing by the radius and integrating we get

ˆ r
0

D(s)

s
ds 6 C

ˆ r
0

(
D ′(ρ) +

H(ρ)

ρ2−γ0
+ ργ0−1

ˆ
∂Bρ

|η ◦N |

)
dρ

6 CD(r) +C F(r) +Cm
1
2

0

ˆ
Br

|η ◦N |

|z|1−γ0

(8.3)
6 CD(r) +C (Λη(r)D(r) + F(r))

(10.16)
6 CD(r) +Crγ0−1H(r) (10.19)

Therefore, using Lemma 10.3 we deduce that

H(r)

r
=

ˆ r
0

2E(ρ)

ρ
dt

(10.7)
6 C

ˆ r
0

D(ρ)

ρ
dρ

+C

ˆ r
0

(
H(ρ)

ρ2−2γ0
+ ργ0D ′(ρ) + ργ0

d

dρ
‖T − TF‖(p−1(Ψ(Bρ)))

)
dρ

(10.19)
6 CD(r) +C

H(r)

r1−γ0
+Crγ0D(r) +C F(r) +Crγ0‖T − TF‖(p−1(Ψ(Br)))

(8.4)&(10.16)
6 CD(r) +C

H(r)

r1−γ0
,

For r sufficiently small this concludes the proof.
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10.2 inner variations and key estimates

Using the Poincaré inequality in Theorem 10.2, we can give a very simple estimates of the
error terms in the “inner variations” of the current T . The latter corresponds to deformations
of T along appropriate vector fields which are tangent to M. In order to state out main
conclusion we need to introduce yet another quantity

G(r) :=

ˆ
∂Br

|DνN |
2 . (10.20)

Proposition 10.6 (Inner Variations). There exist constants C10.6 > 0 and η > 0 such that, if r > 0
is small enough, than the following holds∣∣D ′(r) − 2G(r)

∣∣ 6 CEIV(r) , (10.21)

where

EIV(r) = r
2η−1D(r) +D(r)ηD ′(r) +

m
1
2

0

r1−γ0

ˆ
∂Br

|η ◦N (z,w)|

+
d

dr
‖T − TF‖(p−1(Ψ(Br))) . (10.22)

For further use we summarize in the next lemma a set of inequalities which will be used
in the next sections and which are direct consequences of all the conclusions derived so far

Lemma 10.7. There exist constant C10.7 > 0 and η > 0 such that for every r sufficiently small the
following holds:

F(r) + rF ′(r) 6C10.7 r
γ0D(r) (10.23)

|L(r)| 6C10.7 rD(r) (10.24)

|L ′(r)| 6C10.7
(
H(r)D ′(r)

) 1
2 (10.25)

EOV 6C10.7D
1+η(r) +C10.7 F(r) +C10.7rD

η(r)D ′(r) +CrEBP(r), (10.26)

EIV(r) 6C10.7 r
2η−1D(r) +C10.7D(r)ηD ′(r) +CEBP(r), (10.27)

where

EBP(r) :=
m

1
2

0

r1−γ0

ˆ
∂Br

|η ◦N |+
d

dr
‖T − TF‖(p−1(Ψ(Br)))

Moreover, for every a > 0 there exist constants b0(a),C(a) > 0 such that

D(r) 6
rD ′(r)

2(2 a+ b)
+
a(a+ b)H(r)

r(2 a+ b)
+C(a) rEIV(r) ∀ b < b0(a). (10.28)

An important corollary of the previous lemma is the following

Corollary 10.8. There exists a constant C10.8 > 0 such that, if η is the constant of Lemma 10.7,
then for every γ < η and r sufficiently small, the function

s(r) := ΣOV(r) +ΣIV(r) :=
EIV(r)

rγD(r)
+

EOV(r)

r1+γD(r)

is integrable and, setting Σ(r) :=
´ r
0 s(t)dt,

Σ(r) 6 C10.8 r
η−γ . (10.29)
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10.2.1 Proof of Proposition 10.6

We evaluate the first variation of T along a suitably defined vector field X. To this aim we fix a
function φ ∈ C∞c (] − 1, 1[), symmetric, nonnegative and identically one on ] − 1+ 1/j, 1− 1/j[
and with the property that |φ ′| 6 Cj. Then we introduce the vector field Y : M → Rn+2

defined, for every (z,w) ∈ B, by

Y(Ψ(z,w)) := |z|
r φ(

|z|
r )DνΨ(z,w) ∈ TΨ(z,w)M ,

Next we define the vector field Xi : Va,u → Rn+2 by Xi(p) := Y(p(p)). Note that Xi is the
infinitesimal generator of a one parameter family of diffeomorphismsΦε defined asΦε(p) :=
Γε(p(p)) + p−p(p), where Γε is the one-parameter family of biLipschitz homeomorphisms
of M generated by Y. In fact, since Γε fixes the origin, we can consider it as a C2,γ0 map of
M\ {0} onto itself. Note moreover that Xi is Lipschitz on the entire B.

Observe that, by Lemma 10.5 and the Poincaré inequality, F(r) 6 Crγ0D(r), so that
Λ(r) 6 CD(r). Moreover,

|DMY|(Ψ(z,w)) + |divM Y|(Ψ(z,w)) 6 −Cr−2|z|φ ′(
|z|
r ) +Cr

−1φ(
|z|
r ) , (10.30)

where we recall that φ ′ 6 0 on [0, 1].
If r is small enough, by (8.2) we can apply Theorem 3.54 and, proceeding as in the proof

of Proposition 10.4, deduce that

1

2

∣∣∣∣∣
ˆ
M

(
|DN|2 divMY − 2

Q∑
i=1

〈DNi : (DNi ·DMY)〉

)∣∣∣∣∣ 6
5∑
k=1

Errik ,

where the error terms can be bounded in the following manner.
First of all,

Erri1 = Q
∣∣∣∣ˆ

M

(
〈HM,η ◦N〉divMY + 〈DYHM,η ◦N〉

)∣∣∣∣
6 Cr−1m

1
2

0

ˆ
B

(
φ
( |z|
r

)
|z|γ0−1 |η ◦N (z,w)|−φ ′

( |z|
r

)
|z|γ0−1 |η ◦N (z,w)|

)
(8.3)
6 Cr−1D1+η(r) −Cm

1
2

0 r
γ0−1

ˆ
Br

r−1φ ′
( |z|
r

)
|η ◦N (z,w)| ,

where in the first inequality we used (10.30) and the fact that

〈DYHM,η ◦N〉 6 |Y| |DHM| |η ◦N| 6 C |z|
r φ(

|z|
r ) |z|

γ0−2 |η ◦N | .

As for Erri2 and Err3i we have similarly

Erri2 = C
ˆ
M

|AM|2
(
|DY| |N|2 + |Y| |N| |DN|

)
6 Cm0

ˆ
B

[
r−1

(
−

|z|
r φ
′(
( |z|
r

)
) +φ

( |z|
r

)) |N |2

|z|2−2γ0
+

|z|
r φ

( |z|
r2

) |N | |DN |

|z|2−2γ0

]
6 Cm0 r

γ0−1D(r) −Cr−1
ˆ
Br

r−1φ ′
( |z|
r

) |N |2

|z|1−γ0
,
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and

Erri3 6 C
ˆ
M

(
|Y| |AM| |DN|2

(
|N|+ |DN|

)
+ |DY|

(
|AM| |DN| |N|2 + |DN|4

))
6 Crγ0−1D(r) −CD(r)η

ˆ
B
r−1φ ′

( |z|
r

)
|DN |2 +Cr−1D(r)η

ˆ
B
r−1φ

( |z|
r

) |N |2

|z|2−γ0
.

The errors Erri4 and Erri5 are the same as Erro4 and Erro5 respectively, in Section 10.1.2,
evaluated along a different vector field. Proceeding in the same way as in the estimate of
Erro4 , we deduce

Erri4 =
ˆ

spt(T)\Im(F)

∣∣div~TXi
∣∣ d‖T‖+ ˆ

Im(F)\spt(T)

∣∣∣div~TF
Xi

∣∣∣ d‖TF‖
6 Crγ0−1D(r) +C

ˆ
αd‖T − TF‖︸ ︷︷ ︸
S(φ)

.

where α(p) = ϕ(p(p)) and ϕ(Ψ(z,w)) = r−2|z|φ
(
r−1|z|) − r−1φ ′(r−1|z|). In particular using

(8.4) and the fact that −φ ′ 6 Cj on [0, 1], we infer

S(φ) 6 Crγ0−1D(r) +C
j

r
‖T − TF‖(p−1(Ψ(Br \Br(1−1/j))) .

As for Err5i , we observe that it only appears in the cases (a) and (c) and arguing as in Section
10.1.2 we can bound it as

Err5i 6 I1 +
∣∣∣∣ˆ 〈X⊥i ,h(~TF(p))〉d‖TF‖

∣∣∣∣︸ ︷︷ ︸
I2

,

where h(v1 ∧ v2) :=
∑2
i=1AΣ(vi, vi) and I1 enjoys the same bounds as Err4i . Denote by

ν1, . . . ,νl an orthonormal frame for TpΣ⊥ of class C2,ε0 (cf. [18, Appendix A]) and set
h
j
p(~λ) := −

∑m
k=1〈Dvkνj(p), vk〉 whenever v1 ∧ . . .∧ vm = ~λ is an m-vector of TpΣ (with

v1, . . . , vm orthonormal). For the sake of simplicity, we write

hjp := hjp(~TF(p)) and hp =

l∑
j=1

hjpνj(p),

h
j
p(p) := h

j
p(p)(

~M(p(p))) and hp(p) =

l∑
j=1

h
j
p(p)νj(p(p)).

Consider the exponential map exp(p) : Tp(p)Σ→ Σ and its inverse ex−1p(p). Recall that:

• the geodesic distance dΣ(p,q) is comparable to |p− q| up to a constant factor;

• νj is C2,ε0 and ‖Dνj‖C1,ε0 6 Cm
1
2

0 ;

• exp(p) and ex−1
p(p) are both C2,ε0 and ‖d exp(p)‖C1,ε0 + ‖d ex−1

p(p)‖C1,ε0 6m
1
2

0 ;
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• |h
j
p| 6 C‖AΣ‖C0 6 Cm

1
2

0 ;

where all the constants involved are just geometric. We then conclude that

hp − hp(p) =
∑
j

νj(p)(h
j
p − h

j
p(p)) +

∑
j

(
νj(p) − νj(p(p))

)
h
j
p(p)

=
∑
j

νj(p)(h
j
p − h

j
p(p)) +

∑
j

Dνj(p(p)) · ex−1
p(p)(p)h

j
p(p) +O(|p−p(p)|

2). (10.31)

On the other hand, Xi(p) = Y(p(p)) is tangent to M in p(p) and hence orthogonal to hp(p).
Thus

〈Xi(p),hp〉 = 〈Xi(p), (hp − hp(p))〉 =
∑
j

〈Xi(p(p)),Dνj(p(p)) · ex−1
p(p)(p)〉h

j
p(p)

+
∑
j

〈νj(p),Xi(p)〉
(
hjp − h

j
p(p)

)
+O

(
|p−p(p)|2

)
=
∑
j

〈Xi(p(p)),Dνj(p(p)) · ex−1
p(p)(p)〉h

j
p(p)

+O
(
|~TF(p) − ~M(p(p))||p−p(p)|+ |p−p(p)|2

)
, (10.32)

where we used elementary calculus to infer that |〈Xi(p),νj(p)〉| 6 C|p−p(p)| and

|hjp − h
j
p(p)| 6 C

(
|~TF(p) − ~M(p(p)|+ |p−p(p)|

)
.

We only need that the constants C appearing in the above inequalities are bounded by

a geometric factor: in fact they enjoy explicit bounds in terms of m
1
2

0 which are at least
linear, but such degree of precision is not needed. Finally recalling that p ∈ spt(TF), we can
bound |p−p(p)| 6 |N(p)| and |~TF(p) − ~M(p(p))| 6 C|DN(p(p))|. We therefore conclude the
estimate

〈Xi(p),hp〉 =
∑
j

〈Xi(p(p)),Dνj(p(p)) · ex−1
p(p)(p)〉h

j
p(p) +O

(
|N|2(p(p)) + |DN|2(p(p))

)
.

We combine it with the expansion of the area functional in [18, Theorem 3.2] to conclude the
estimate on Ii2. Recalling that p(Fi(x)) = x we get

I2 =

∣∣∣∣ˆ 〈Xi,hp〉d‖TF‖∣∣∣∣ =
∣∣∣∣∣
Q∑
i=1

ˆ
M

〈Y,hFi〉JFi

∣∣∣∣∣
(10.32)
6

∣∣∣∣∣∣
ˆ
M

l∑
j=1

Q∑
i=1

〈Y(x),Dνj(x) · ex−1x (Fi(x))〉hjxdHm(x)

∣∣∣∣∣∣+C
ˆ
M

ϕr(|N|2 + |DN|2)

Using the Taylor expansion for ex−1x at x (and recalling that Fi(x) − x = Ni(x)) we conclude

∣∣∣ Q∑
i=1

ex−1x (Fi(x))
∣∣∣ 6 ∣∣d ex−1x (η ◦N(x))

∣∣+O(|N|2) 6 C|η ◦N(x)|+C|N|2 .
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Next consider that |〈Y,Dνj · v〉| 6 Cϕ‖AΣ‖C0 |v| 6 Cϕm
1
2

0 |v| for every tangent vector v and

|h
j
x| 6 C‖AΣ‖C0 6m

1
2

0 . We thus conclude with the estimate

I2 6 Cm0

ˆ
M

ϕ |η ◦N|+C

ˆ
M

ϕ(|N|2 + |DN|2) =: J1 + J2 .

Clearly J1 can be estimated as Erri1 and J2 as Erri2.

To conclude the proof notice that, with analogous computation as in [17, Proposition 3.1],

d

dε

∣∣∣
ε=0

ˆ
M

|D(N ◦ Γε)|2 =
ˆ
M

(
2

Q∑
i=1

〈DNi : (DNi ·DMY)〉− |DN|2 divMY

)
. (10.33)

However, by the conformal invariance of the Dirichlet energy, we have
ˆ
M

|D(N ◦ Γε)|2 =
ˆ
B
|D(N ◦ Γ̂ε)|2 ,

where Γ̂ε is the one parameter family of diffeomorphisms generated by the vector field
Ŷ : B→ B defined by

Ŷ(z,w) :=
|z|

r
φ

(
|z|

r

)
ν .

Hence

d

dε

∣∣∣
ε=0

ˆ
M

|D(N ◦ Γε)|2 =
ˆ
B

(
2

Q∑
i=1

〈DN i :
(
DN i ·DŶ

)
〉− |DN |2 div Ŷ

)
, (10.34)

where the differentiation is taken with respect to the (local) flat structure of B.
In particular we conclude

d

dε

∣∣∣
ε=0

ˆ
M

|D(N ◦ Γε)|2 =
ˆ
Br

|z|

r2
φ ′
(
|z|

r

)
(2|DνN |2 − |DN |2) . (10.35)

Collecting together (10.33), (10.35) and the error estimates, and letting φ converge to the to
the indicator function of [−1, 1] (namely letting j ↑∞) we conclude the proof.

10.2.2 Proof of Lemma 10.7

The lemma is a very simple corollary of the estimates proven so far. (10.23) is a simple
consequence of the Poincaré inequality (10.4) and of (10.16). Similarly, by Lemma 10.5,
we have that Λ(r) 6 CD(r), and therefore (10.26) follows in view of (10.23). The same
arguments hold for (10.27). Next for (10.24) we can estimate as follows:

|L(r)| 6 Cm
1
2

0

ˆ
Br

|N | |DN | 6 Cm
1
2

0

(ˆ r
0

H(t)dt

) 1
2

D
1
2 (r)

(10.2)
6 Cm

1
2

0

(
C10.2

ˆ r
0

tD(t)dt

) 1
2

D
1
2 (r) 6 Cm

1
2

0 rD(r) . (10.36)
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Similarly

|L ′(r)| 6 Cm
1
2

0

ˆ
∂Br

|N | |DN | 6 Cm
1
2

0

(
D ′(r)H(r)

) 1
2 . (10.37)

Finally, we notice that by Proposition 10.6 implies∣∣∣∣D ′(r)2
−

ˆ
∂Br

|DτN |2
∣∣∣∣ 6 CEIV(r).

Therefore, using the almost minimizing property in (9.40) and the Poincaré inequality we
infer that

D(r) 6 (1+Cr)

[
rD ′(r)

2(2 a+ b)
+
a(a+ b)H(r)

r(2 a+ b)

]
+C(a) rEIV(r) + EQM(r) +Cr1+σD ′(r) .

Absorbing the error term r1+σD ′(r) and dividing by (1+Cr) we get

D(r) 6

[
rD ′(r)

2(2 a+ b)
+
a(a+ b)H(r)

r(2 a+ b)

]
+C(a) rEIV(r) + EQM(r) +CrD(r) .

from which (10.28) follows straightforwardly by noticing that EQM(r) + rD(r) 6 CrEIV(r).

10.2.3 Proof of Corollary 10.8

Recall first thet η < γ0. We start with EBP(r). Notice that, using H(t) 6 CtD(t) together
with the definition of F(r), we have

ˆ r
0

(
1

tγD(t)

) ′
F(t)dt 6 C

F(r)

rγD(r)
+C

ˆ r
0

1

tγD(t)

H(t)

t2−γ0
dt 6 Crγ0−γ

Next, by a simple integration by parts and the fact that D(r) 6 Cr2, we deduce
ˆ r
0

1

tγD(t)

d

dt
‖T − TF‖(p−1(Ψ(Bt)))dt =

1

rγD(r)
‖T − TF‖(p−1(Ψ(Br)))

+

ˆ r
0

(
1

tγD(t)

) ′
‖T − TF‖(p−1(Ψ(Bt)))dt

(8.4)
6 C

D1+η(r) + F(r)

rγD(r)
+

ˆ r
0

(
1

tγD(t)

) ′ (
D(t)1+η + F(t)

)
dt 6 Crη−γ . (10.38)

In a similar fashion we have

ˆ r
0

m
1
2

0

tγD(t)

ˆ
∂Bt

|η ◦N (z,w)|
t1−γ0

dt 6
m

1
2

0

rγD(r)

ˆ
Br

|η ◦N (z,w)|
|z|1−γ0

+

ˆ r
0

(
1

tγD(t)

) ′
m

1
2

0

ˆ
Bt

|η ◦N (z,w)|
|z|1−γ0

(8.3)
6 C

D1+η(r) + F(r)

rγD(r)
+

ˆ r
0

(
1

tγD(t)

) ′ (
D(t)1+η + F(t)

)
dt 6 Crη−γ .

(10.39)
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so that
ˆ r
0

EBP(t)

tγD(t)
dt 6 Crη−γ

To conclude, we compute separately the integral of each addendum of s.
ˆ r
0

EIV(t)

tγD(t)
dt

(10.27)
6 2C10.7

ˆ r
0

(
tγ0−γ−1 + t−γD(t)η−1D ′(t) +

EBP(t)

tγD(t)

)
dt

6 Crη−γ
(
1+D(t)

η
2

)
6 Crη−γ , (10.40)

where in the second inequality we used D(t) 6 Ct2, and
ˆ r
0

EOV(t)

t1+γD(t)
dt

(10.26)
6 C10.7

ˆ r
0

(
Dη(t)

t1+γ
+

F(t)

t1+γD(t)
+ t−γDη−1(t)D ′(t)

+
EBP(t)

tγD(t)

)
dt 6 Crη−γ . (10.41)

10.3 almost monotonicity and decay of the frequency function

In this section we study the asymptotic behaviour of the normal approximation N . The first
step consists in proving approximate monotonicity and decay estimates for the frequency
function.

For every r ∈ (0, 1) such that H(r) > 0, we set Ī(r) := rΩ(r)
H(r) where we recall that

Ω(r) :=

{
D(r) in the cases (a) and (b) of Definition 1.1;

D(r) + L(r) in case (c).

Furthermore we define K̄(r) := Ī(r)−1 whenever Ω(r) 6= 0. By (10.24) there exists r0 > 0
such that

1

2
D(r) 6 (1−Cr)D(r) 6Ω(r) 6 (1+Cr)D(r) 6 2D(r) ∀r 6 r0 . (10.42)

Having fixed r0, K̄(r) is well defined whenever D(r) > 0 and hence, by the Poincaré
inequality, whenever Ī(r) is defined. Moreover, if for some ρ 6 r0, K̄(ρ) is not well defined,
that is Ω(ρ) = 0, then obviously Ω(r) = D(r) = 0 for every r 6 ρ.

We are now ready to state the first important monotonicity estimate.

Theorem 10.9. There exists a constant C10.9 > 0 with the following property: if D(r) > 0 for some
r 6 r0, then the function

K̄(r) exp(−4ΣIV(r)) − 4ΣOV(r) (10.43)

is monotone non-increasing on any interval [a,b] where D is nowhere 0. In particular, either there is
r̄ > 0 such that D(r̄) = 0 or K̄ is well-defined on ]0, r0[ and the limit K0 := limr→0 K̄(r) exists.

A fundamental consequence of Theorem 10.9 is the following dichotomy.
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Corollary 10.10. There exists r̄ > 0 such that

(A) either K̄(r) is well-defined for every r ∈]0, r0[, the limit

K0 := lim
r↓0
K̄(r) (10.44)

is positive and thus there is a constant C and a radius r̄ such that

C−1 rD(r) 6 H(r) 6 CrD(r) ∀ r ∈]0, r̄[ ; (10.45)

(B) or T p−1(Ψ(Br̄)) = Q JΨ(Br̄)K for some positive r̄.

In turn, using the above dichotomy we will show

Theorem 10.11. Assume that condition (i) in Theorem 10.1 fails. Then the frequency Ī(r) is well-
defined for every sufficiently small r and its limit I0 = limr→0 Ī(r) = K−1

0 exists and it is finite
and positive. Moreover there exist constants λ,C10.11,H0,D0 > 0 such that, for every r sufficiently
small the following holds:∣∣I(r) − I0∣∣+ ∣∣∣∣ H(r)

r2I0+1
−H0

∣∣∣∣+ ∣∣∣∣D(r)

r2I0
−D0

∣∣∣∣ 6 C10.11 r
λ . (10.46)

10.3.1 Proof of Theorem 10.9

In the first step we claim the monotonicity of the function K̄(r) exp(−ΣIV(r)) − 2ΣOV(r) on
any interval contained in [a,b] on which D is everywhere positive. Recalling that Ω and
H are absolutely continuous functions, we can compute the following derivative: for every
r ∈ [a,b]

K̄ ′(r) =

(
H(r)

r

) ′
1

Ω(r)
−
H(r)

r

Ω ′(r)

Ω2(r)

(10.6)
6

1

rΩ2(r)

(
2E(r)Ω(r) −D ′(r)H(r) + |L ′(r)|H(r)

)
. (10.47)

Then, either K̄ ′ 6 0, or the RHS of the inequality above is positive, that is

D ′(r)H(r) 6 2E(r)Ω(r) + |L ′(r)|H(r)
(10.37)
6 2E(r)Ω(r) + rD ′(r)H(r) +

H2(r)

r
.

In turn, using H(r) 6 CrD(r) 6 CrΩ(r), the latter inequality implies

D ′(r)H(r) 6 CE(r)Ω(r) +CrΩ2(r) .

From this we deduce

E2(r) 6 H(r)G(r) 6 H(r)D ′(r) 6 C
Ω2(r)

2
+
E2(r)

2

which implies that E(r) 6 CΩ(r) and so, by (10.24),

|L ′(r)| 6 Cm
1
2

0 (D
′(r)H(r))

1
2 6 Cm

1
2

0 Ω(r) . (10.48)
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Next using again the Cauchy-Schwarz inequality and (10.26), we have

Ω(r)E(r) 6 Ω(r)H(r)
1
2 G(r)

1
2 6

Ω(r)2

2
+
H(r)G(r)

2

6
Ω(r)E(r)

2
+
Ω(r)EOV(r)

2
+
H(r)G(r)

2
,

which implies

Ω(r)E(r) 6 H(r)G(r) +Ω(r)EOV(r) . (10.49)

Collecting all these estimates together and using (10.21), we conclude that, if K̄ ′(r) > 0, then

K̄ ′(r)
(10.49)
6

1

rΩ2(r)

(
2H(r)G(r) −D ′(r)H(r) + |L ′(r)|H(r) + 2Ω(r)EOV(r)

)
(10.21)&(10.48)

6
1

rΩ2(r)

(
2H(r)G(r) − 2H(r)G(r) +Ω(r)H(r) +H(r)EIV(r) + 2Ω(r)EOV(r)

)
62

EOV(r)

rΩ(r)
+ K̄(r)

EIV(r)

Ω(r)
6 4

EOV(r)

rD(r)
+ 4 K̄(r)

EIV(r)

D(r)
. (10.50)

On the other hand the final inequality

K ′(r) 6 4
EOV(r)

rD(r)
+ 4 K̄(r)

EIV(r)

D(r)

is certainly correct when K ′(r) 6 0, because the right hand side is positive. The monotonicity
of the function in (10.43) is then obvious.

Next, as already observed, either D is always positive, or it vanishes on some interval
]0, r̄[. If D is always positive, then K̄ is well defined on ]0, r0[ and the existence of the limit
K0 := limr↓0 K̄(r) is a direct consequence of (10.43) and Corollary 10.8.

10.3.2 Proof of Corollary 10.10

First of all observe that, if D(r̄) vanishes, then N ≡ Q J0K on Br̄. In particular by (8.4) we
conclude that we are in the alternative (B). We can thus assume, without loss of generality,
that D is positive on ]0, r0[. Assuming that K0 vanishes we will then reach a contradiction.

Under the assumption K0 = 0, consider the monotonicity of K̄(r) exp(−4ΣIV(r)) −
4ΣOV(r) between two radii 0 < s < r and let s→ 0 to get

K̄(r) 6 4 e4ΣIV(r)ΣOV(r) 6 CΣOV(r) ,

where the last inequality holds for r sufficiently small, since ΣIV(r) 6 Crη−γ. Next observe
that, since the function ΣOV(r) is non-decreasing (it is the primitive of a positive function),

F(r)

D(r)
6

1

D(r)

ˆ r
0

H(s)

s2−γ0
D(s)

D(s)
ds 6 C

ˆ r
0

K̄(s)

s1−γ0
ds 6 Crγ0 ΣOV(r) , (10.51)
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and that ˆ r
0

1

D(s)

d

ds
‖T − TF‖(p−1(Ψ(Bs)))ds

(8.4)
6 C

D1+η(r) + F(r)

D(r)
+C

ˆ r
0

(
1

D(s)

) ′ (
D1+η(s) + F(s)

)
ds

6CDη(r) +Crγ0ΣOV(r) +C
F(r)

D(r)
+C

ˆ r
0

F ′(s)

D(s)
ds

6CDη(r) +Crγ0ΣOV(r) +C
ˆ r
0

K̄(s)

s1−γ0
ds 6 CDη(r) +Crγ0ΣOV(r) . (10.52)

Using these two estimates and 2−1D(r) 6Ω(r) 6 2D(r) in the formula for EOV , we have

ΣOV(r)

6 C
ˆ r
0

1

sD(s)

(
D(s)1+η + sDη(s)D ′(s) + F(s) + s

d

ds
‖T − TF‖(p−1(Ψ(Bs)))

)
ds

6 CrηD(r)
η
2 +Crγ0 ΣOV(r) .

Hence, for r sufficiently small,

K̄(r) 6 CΣOV(r) 6 CD(r)
η
2 . (10.53)

In particular this implies that

H(r) 6 CrD(r)1+
η
2 . (10.54)

Combining this with (10.7) and the Cauchy-Schwarz inequality, we deduce

1

2
D(r) 6Ω(r) 6

E(r)

r
+ EOV(r) 6

(
H(r)

rD(r)
η
4

) 1
2 (
rD ′(r)D(r)

η
4

) 1
2
+ EOV(r)

(10.54)
6 CD(r)1+

η
4 +CrD(r)

η
4D ′(r) + EOV(r) .

Dividing the expression above by rD(r), integrating between two radii 0 < s < r and using
the bound D(r) 6 Cr2 we obtain

log
(r
s

)
6 C
ˆ r
s

(
D(ρ)

η
4

ρ
+D(ρ)

η
4−1D ′(ρ) +

EOV(ρ)

ρD(ρ)

)
dρ 6 C (r

η
2 − s

η
2 ) .

Sending s→ 0 we get a contradiction.

10.3.3 Proof of Theorem 10.11

Clearly, if (i) in Theorem 10.1 does not hold, then D is always positive and we are in
alternative (A) of Corollary 10.10. Thus K0 is positive and the first statement is obvious.

Let K(r) := I(r)−1 and observe that by (10.42) we have

(1−Cr)I(r) 6 Ī(r) 6 (1+Cr)I(r) , ∀0 6 r 6 r0 ,
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which implies

(1−Cr)K̄(r) 6 K(r) 6 (1+Cr)K̄(r) ∀ 0 6 r 6 r0 ,

so that in particular K(r) 6 C K̄(r) <∞ for every 0 < r < r0 and K(r)→ K0 as r→ 0. Using
the monotonicity formula of Theorem 10.9 together with Corollary 10.8 we have

K̄(r) −K0 6 C s(r) 6 Cr
η .

and therefore

K(r) −K0 6 Cr
η +CK(r) r 6 Crη . (10.55)

To control K(r) − K0 from below we apply (10.28) with a = I0 = 1
K̄0

and b = λ 6

min{η2 ,b0(I0)} to infer, after dividing by rD(r), that

−
D ′(r)

D(r)
6
2

r
(I0(I0 + λ)K(r) − (2I0 + λ)) .

Multiplying this expression by K(r) > 0 and adding 2
r , we get

2

r
−
D ′(r)

D(r)
K(r) 6

2

r

[
1+ I0(I0 + λ)K

2(r) − (2I0 + λ)K(r)
]
+
CEIV(r)

D(r)

6
2

r
I0

(
K(r) −

1

I0

)
((I0 + λ)K(r) − 1) +

CEIV(r)

D(r)
(10.56)

Since (I0 + λ)K(r) converges to 1+ λK0, we easily deduce that for r small enough (I0 +

λ)K̄(r) − 1 > λ
2K0. Using this together with (10.55), we deduce from (10.56) that

2

r
−
D ′(r)

D(r)
6
λ

r

(
K(r) −

1

I0

)
+
CEIV(r)

D(r)
+C

rη

r
. (10.57)

A simple application of the usual variational formulas leads to

K ′(r) =

(
H(r)

r

) ′
1

D(r)
−
H(r)

rD(r)

D ′(r)

D(r)

(10.6)
6

2E(r)

rD(r)
−
D ′(r)

D(r)
K(r)

(10.7)
6

2

r
−
D ′(r)

D(r)
K(r) +C

EOV(r)

rD(r)
(10.57)
6

λ

r

(
K(r) −

1

I0

)
+
CEIV(r)

D(r)
+C

EOV(r)

rD(r)
+C

rη

r
. (10.58)

Recalling that K(r) 6 C, we deduce

d

dr

[
K(r) −K0

rλ

]
6 C

EOV(r)

r1+λD(r)
+C

EIV(r)

rλD(r)
+C

1

r1+λ−η
(10.59)

Integrating (10.59) on the interval ]s, r[ and using (10.29), we get

K(r) −K0 6
rλ

sλ
(K(s) −K0) +Cr

η−λ
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that is K(s) −K0 > Csλ. The inequality |K(r) −K0| 6 Crλ easily implies |I(r) − I0| 6 Crλ.
For what concerns the other inequalities we compute[

log
(
H(r)

r2I0+1

)] ′
=
H ′(r)

H(r)
−
2 I0 + 1

r
=
2E(r)

rH(r)
−
2 I0
r

6
2D(r)

H(r)
−
2 I0
r

+C
EOV(r)

H(r)

6
2

r
(I(r) − I0) +C

EOV(r)

H(r)
(10.60)

and similarly[
log
(
H(r)

r2I0+1

)] ′
>
2

r
(I(r) − I0) −C

EOV(r)

H(r)
. (10.61)

Integrating (10.60) and (10.61) and using (10.29), we deduce that there exists the limit

H0 := lim
s↓0

H(s)

s2I0+1
, with

∣∣∣∣ H(r)

r2I0+1
−H0

∣∣∣∣ 6 Crλ.

Moreover, from (10.60) we also infer that for r sufficiently small

H0 >
H(r)

r2I0+1
e−Cr

λ

> 0.

Finally the last assertion follows simply setting D0 := I0 ·H0 and from∣∣∣∣D(r)

r2I0
−D0

∣∣∣∣ = ∣∣∣∣I(r) H(r)

r2I0+1
− I0H0

∣∣∣∣
6 |I(r) − I0|

H(r)

r2I0+1
+ I0

∣∣∣∣ H(r)

r2I0+1
−H0

∣∣∣∣ 6 Crλ.

10.4 proof of the blow-up theorem

As a consequence of the decay estimate in Theorem 10.11 we can show that suitable rescaling
of the normal approximation N converge to a unique limiting profile. To this aim we consider
for every r ∈ (0, 1) the functions fr : ∂B1 → AQ1(R

2+n) given by

fr(z,w) :=
N (ir(z,w))

rI0
.

Recall that T0M = R2 × {0}, and T0Σ = R2 ×Rn̄ × {0}. In the following, with a slight abuse
of notation, we write Rn̄ for the subspace {0}×Rn̄ × {0}.

The final step in the proof of Theorem 10.1 is then the following proposition.

Proposition 10.12. Assume alternative (i) in Theorem 10.1 fails and let I0 and λ be the positive
numbers of Theorem 10.11. Then I0 > 1 and there exists a function f0 : ∂B1 → AQ(R

n̄) such that

(i) η ◦ f0 = 0 and f0 6≡ Q1 J0K;

(ii) for every r sufficiently small

G(fr(z,w), f0(z,w)) 6 Cr
λ
16 ∀ (z,w) ∈ ∂B1 ; (10.62)



192 blow up analysis

(iii) the I0-homogeneous extension g(z,w) := |z|I0f0

(
z
|z| ,

w
|w|

)
is nontrivial and Dir-minimizing.

In particular, by (iii) Im(g0) \ {0} ⊂ R2+n is a real analytic submanifold.

Theorem 10.1 follows immediately from Proposition 10.12 and Theorem 10.11.

Proof of Theorem 10.1. Since we have identitied Rn̄ with {0}×Rn̄ × {0}, it is obvious that the
map g has all the properties claimed in (ii), namely it is Dir-minimizing, η ◦ g ≡ 0 and it is
nontrivial. (10.1) is a corollary of (10.62) provided a0 6 λ

16 . Next note that (10.3) has been
shown in Theorem 10.2. As for (10.2) observe that, if 4ρ 6 r < 1, then, by Theorem 10.11,

D0(r− 2ρ)
2I0 −C(r− 2ρ)2I0+λ 6 D(r− 2ρ) 6 D(r+ 2ρ) 6 D0(r+ 2ρ)

2I0 +C(r+ 2ρ)2I0+λ .

Since 2I0 > 2, (10.2) follows easily fromˆ
Br+2ρ\Br−2ρ

|DN |2 = D(r+ 2ρ) −D(r− 2ρ) ,

provided a0 6 λ.

The rest of this final section of the note is devoted to the proof Proposition 10.12, which
is split in several steps. Before starting with it, let us however observe that the conclusion
I0 > 1 is an obvious consequence of the decay estimates of Theorem 10.11 and the fact that
D(r) 6 Cr2+2γ0 .

10.4.1 Step 1: uniqueness of the limit f0

For r sufficienly small and s ∈ [ r2 , r], we start estimating the following quantity:
ˆ
∂B1

G(fr, fs)2 6 (r− s)

ˆ
∂B1

ˆ r
s

∣∣∣∣ ddtft(z,w)
∣∣∣∣2 dt . (10.63)

Using the differentiability properties of Lipschitz multiple valued functions and the 1-
dimensional theory in Chapter 3 (note that t 7→ N (it(z,w)) is a Lipschitz map), we easily
infer that∣∣∣∣ ddtft(z,w)

∣∣∣∣2 = Q∑
j=1

∣∣∣∣DN j(it(z,w)) · z
tI0

− I0
N j(it(z,w))

tI0+1

∣∣∣∣2

=
|z|2|∂r̂N |2(it(z,w))

t2I0
− 2 I0

|z|

t2I0+1

Q∑
j=1

〈∂r̂N j, N j〉(it(z,w)) +
|N |2(it(z,w))

t2I0+2
.

Therefore, by the change of variable (z ′,w ′) = it(z,w) in (10.63) we infer thatˆ
∂B1

G(fr, fs)2 6
r

2

ˆ r
r
2

(
G(t)

t2I0+1
− 2 I0

E(t)

t2I0+2
+ I20

H(t)

t2I0+3

)
dt

6
r

2

ˆ r
r
2

(
D ′(t)

2t2I0+1
− 2 I0

D(t)

t2I0+2
+ I20

H(t)

t2I0+3
+C

EIV(t)

t2I0+1
+C

EOV(t)

t2I0+2

)
dt

=
r

2

ˆ r
r
2

[
1

2t

(
D(t)

t2I0

) ′
+ I0

H(t)

t2I0+3
(I0 − I(t)) +C

EIV(t)

t2I0+1
+C

EOV(t)

t2I0+2

]
dt.
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Using Theorem 10.11, we can then conclude that

ˆ
∂B1

G(fr, fs)2 6 C

∣∣∣∣∣D(r)

r2I0
−
D
(
r
2

)(
r
2

)2I0
∣∣∣∣∣+C

ˆ r
r
2

[
|I0 − I(t)|

t
+C

EIV(t)

D(t)
+C

EOV(t)

tD(t)

]
dt

6 Crλ. (10.64)

By an elementary dyadic argument analogous to that of [17, Theorem 5.3], we then infer the
existence of f0 : ∂B1 → AQ(R

2+n) such that, for r sufficiently small,

‖G(fr, f0)‖2L2(∂B1) 6 Cr
λ. (10.65)

10.4.2 Step 2: uniform convergence

Set next h(z,w) := G
(

N (z,w)

|z|I0
,

N (i1/2(z,w))

| z2 |
I0

)
. It follows from (10.64) that for r sufficiently

small
ˆ
Br

h2 6
ˆ r
0

ˆ
∂B1

G(ft, f t
2
)2 t dt

(10.64)
6 Cr2+λ , (10.66)

and from (8.1) and (8.2)

Lip(h|B1\Bs) 6 Cs
−I0 . (10.67)

Moreover, for every ρ < |z|
4 we claim the estimate

ˆ
Bρ(z,w)

|Dh|2 6 Cρ+C |z|λ . (10.68)

Indeed |Dh| 6 C
∣∣∣D( N

|z|I0

)∣∣∣ and by Theorem 10.11

ˆ
Bρ(z,w)

∣∣∣∣D( N

|z|I0

)∣∣∣∣2 6 2 ˆ |z|+ρ

|z|−ρ

ˆ
∂Bt

(
|DN |2

t2I0
+ I20

|N |2

t2I0+2

)
dt

6
ˆ |z|+ρ

|z|−ρ

((
D(t)

t2I0

) ′
+ 2 I0

D(t)

t2I0+1
+ I20

H(t)

t2I0+2

)
dt

6 C (|z|+ ρ)λ +C log
(
|z|+ ρ

|z|− ρ

)
6 C |z|λ +C

ρ

|z|
.
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In particular, applying (10.66), (10.67) and (10.68) with ρ = |z|1+
λ
4 , we infer that for every

point p = (z,w) ∈ BQ̄ with |z| sufficiently small

h(p) 6

∣∣∣∣∣h(p) −−

ˆ
B

|z|
1+λ
4

2k

(p)
h

∣∣∣∣∣+
k−1∑
i=0

∣∣∣∣∣−
ˆ
B

|z|
1+λ
4

2i

(p)
h−−

ˆ
B

|z|
1+λ
4

2i+1

(p)
h

∣∣∣∣∣+−

ˆ
B

|z|
1+λ
4
(p)
h

6 Lip(h|B1(p)\B |z|
2

(p))
|z|1+

λ
4

2k
+C

k−1∑
i=0

|z|1+
λ
4

2i
−

ˆ
B

|z|
1+λ
4

2i

(p)
|Dh|+−

ˆ
B

|z|
1+λ
4
(p)
h

(10.67)
6 C |z|1+

λ
4 +C

k−1∑
i=0

ˆ
B

|z|
1+λ
4

|Dh|2

 1
2

+
C

|z|1+
λ
4

(ˆ
B2|z|

|h|2

) 1
2

, (10.69)

where we have used the standard Poincaré inequality∣∣∣∣∣−
ˆ
Br

f−−

ˆ
B r
2

f

∣∣∣∣∣ 6 Cr−
ˆ
Br

|Df| f ∈W1,2.

Now choose k ∈N such that |z|1+
λ
4

2k
< |z|1+

λ
4+I0 6 |z|1+

λ
4

2k−1
(in particular k 6 | log |z||) and use

(10.66) together with (10.68) to bound

h(z,w) 6 C |z|1+
λ
4 +C | log |z|| |z|

λ
8 +C |z|

λ
4 6 C |z|

λ
16 , (10.70)

This gives that, for a sufficiently small r,

max
∂B1

G(fr, fr/2) 6 Cr
λ
16 .

Thus

max
∂B1

G(fr, f0) 6
∞∑
k=0

G(fr2−k , fr2−k−1) 6 Cr
λ
16 .

10.4.3 Step 3: nontriviality of the limit and other properties

To show that f0 6= Q J0K it is enough to observe that, by Theorem 10.11,
ˆ
∂B1

|f0|
2 = lim

r→0

ˆ
∂B1

|fr|
2 = lim

r→0

H(r)

r2I0+1
= H0 > 0.

In order to show that η ◦ f0 ≡ 0, we notice that by a simple slicing argument combined with
(8.3) there exists a sequence of radii rk ∈ [2−k−1, 2−k] such that

ˆ
∂Brk

|η ◦N | 6 2k+1
ˆ
B
2−k

\B
2−k−1

|η ◦N | 6 Crγ0k

ˆ
B
2−k

|z|γ0−1|η ◦N |

6 Crγ0+2ηk D(2rk) 6 Cr
γ0+2η+2I0
k , (10.71)
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from which
ˆ
∂B1

|η ◦ f0| = lim
rk→0

ˆ
∂B1

|η ◦ frk | = lim
rk→0

r−I0−1k

ˆ
∂Br

|η ◦N |

6 C lim
rk→0

r
γ0+2η+I0−1
k = 0.

Next we show that f0 takes values in Rn̄. We start by showing that f0 must take val-
ues in T0Σ = R2+n̄ × {0}. Indeed, if we set fr(z,w) := N̄ (ir(z,w)), using (10.84) and
|N |(ir(z,w)) 6 Cr1+

γ0
2 we conclude

ˆ
∂B1

G(fr, f̄r)2 6
Cr2

r2I0+1

ˆ
∂Br

|N |2 6 Cr2 ,

which implies that f0(z,w) ∈ AQ(T0Σ).
Next observe that fr(z,w) =

∑
i JN i(ir(z,w))K has the property that each N i(ir(z,w)) is

orthogonal to TΨ(ir(z,w))M. In particular, if |z| = 1 and r ↓ 0, the tangent planes TΨ(ir(z,w))M

converge to R2 × {0}: it follows, by the uniform convergence of fr to f0, that f0(z,w) =∑
i J(f0)i(z,w)K for some (f0)i(z,w) which are orthogonal to R2 × {0}. We thus conclude

that each (f0)i(z,w) belongs to {0}×Rn̄ × {0}.

10.4.4 Step 4: Minimality of g

In order to complete the proof of Proposition 10.12 we need to show that g is Dir-minimizing.
Given the homogeneity of g in the radial direction, it suffices to show that there is no W1,2

multifunction h : B1 → AQ(R
n̄) which has the same trace of g on ∂B1 and less energy on

B1. Assume thus by contradiction that there is an h ∈ W1,2(B1,AQ(Rn̄)) such that h|∂B1
and ˆ

|Dh|2 6
ˆ

|Dg|2 − δ (10.72)

for some positive δ > 0. Recall the definition of W1,2 according to Remark 2.19: using the
map W in there and the functions h ◦W and g ◦W we can use the theory of Chapter 3 and
assume that h ◦W is a Dir-minimizer on the euclidean disk D1 ⊂ R2. Observe also that,
since η ◦ g ≡ 0, we must have η ◦ h ≡ 0 as well. Indeed since h ◦W = g ◦W on ∂D1, we
have η ◦ h ◦W = η ◦ g ◦W = 0 on the boundary and considering that

ˆ
D1

∑
i

|D(hi ◦W−η ◦ h ◦W)|2 6
ˆ
D1

|D(h ◦W)|2 −Q

ˆ
D1

|D(η ◦ h ◦W)|2 ,

the minimality of h ◦W forces the Dirichlet energy of η ◦ h ◦W to vanish identically.
Using (8.3), the decay D(r) 6 Cr2I0 and a Fubini-type argument we can find a sequence

of radii sj → 0 such that
ˆ
∂B1

|Df0|
2 6 lim sup

j

ˆ
∂B1

|Dfsj |
2 6 lim sup

j

D ′(sj)

s2I0−1j

6 C . (10.73)
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We now wish to “smooth” h, i.e. to approximate it with a sequence of Lipschitz maps hε
such that η ◦ hε ≡ 0,ˆ

B1

|Dhε|
2 − |Dh|2 6 ε2 (10.74)

ˆ
∂B1

G(f0,hε)2 +

∣∣∣∣∣
ˆ
∂B1

|Df0|
2 − |Dhε|

2

∣∣∣∣∣ 6 ε2 . (10.75)

We would like to appeal to Lemma 3.11, but there is the slight technical complication that B
is not regular. We postpone this technical step and continue with the argument assuming
the existence of the approximations hε.

Next we would like to apply Lemma 3.15 to hε and pT0Σ(fsj) =: f̄sj , to get a family of
competitor functions (f̂sj) ⊂W1,2(B1,AQ(R2+n̄)), such that f̂sj |∂B1 = f̄sj |∂B1) and

ˆ
B1

|Df̂sj |
2 6
ˆ
B1

|Dhε|
2 + ε

ˆ
∂B1

(
|Dτhε|

2 + |Dτf̄sj |
2
)
+
C

ε

ˆ
∂B1

G(hε, f̄sj)
2 , (10.76)

Lip(f̂sj) 6 C

(
Lip(hε) + Lip(f̄sj) +

1

ε
sup
∂B1

G(f̄sj ,hε)

)
(10.77)

η ◦ f̂sj = η ◦ f̄sj . (10.78)

Again, this is not straightforward because Lemma 3.15 is stated for euclidean domains. We
postpone this second technical problem and continue with our argument assuming the
existence of f̂sj .

We are now ready to define our comptetior function. We set L̄sj(z,w) := s
I0
j f̂sj(i 1sj

(z,w))

and, observing that L̄sj takes value in AQ(T0Σ), we use (9.1) to define a corresponding Lsj ,
which clearly is a competitor N in Bsj according to Definition 9.1. Moreover

Lip(Lsj) 6 Cs
I0+1
j Lip(f̂sj |B1)

(10.67)
6 Csj

η .

Therefore we can apply Proposition 9.2 with L̄ = L̄sj . In particular, taking into account
Theorem 10.11 and (10.73), we conclude thatˆ

Bsj

|DN̄ |2 6 (1+Csj)

ˆ
Bsj

|DL̄sj |
2 +Cm

1
2

0

ˆ
Bsj

|z|γ0−1|η ◦Lsj |+Cs
2I0+η
j .

Next, recall the inequality (9.41):ˆ
Bsj

|z|γ0−1|η ◦Lsj | 6 C
ˆ
Bsj

|z|γ0−1|η ◦ L̄sj |+C

ˆ
Bsj

|z|γ0−1|L̄sj |
2 .

By (10.78) the first term in the right hand side equals indeed

C

ˆ
Bsj

|z|γ0−1|η ◦ N̄ | 6 Csηj D(sj) 6 Cs
2I0+η
j .

For the second term we use the Poincaré inequalityˆ
Bsj

|z|γ0−1|L̄sj |
2 6 Cs1+γ0j

ˆ
Bsj

|DL̄sj |
2 +Csγ0j

ˆ
∂Bsj

|L̄sj |
2 , (10.79)
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whose proof is given in Lemma 10.13.
Using thatˆ

∂Bsj

|L̄sj |
2 =

ˆ
∂Bsj

|N̄ |2 = H(sj) 6 Cs
2I0+1
j ,

we easily conclude thatˆ
Bsj

|DN̄ |2 6 (1+Csj)

ˆ
Bsj

|DL̄sj |
2 +Cs2I0+ηj . (10.80)

Changing variables and dividing by s2I0j we infer thatˆ
B1

|Df̄sj |
2 6
ˆ
B1

|Df̂sj |
2 +Csηj . (10.81)

Using (10.74), (10.75) and (10.76), we concludeˆ
B1

|Df̄sj |
2 6
ˆ
B1

|Dh|2 +Csηj +Cε+
C

ε

ˆ
∂B1

G(f0, f̄sj)
2

6
ˆ
B1

|Dg|2 − δ+Csηj +Cε+
C

ε

ˆ
∂B1

G(f0, f̄sj)
2 ,

where the constant C is independent of ε. In particular, if we fix ε sufficiently small and we
then let sj ↓ 0, by the uniform convergence of fsj to f0 on ∂B1 we conclude

lim sup
j→∞

ˆ
B1

|Df̄sj |
2 6
ˆ
B1

|Dg|2 −
δ

2
.

Since however fsj → g in B1, the latter inequality contradicts the semicontinuity of the
Dirichlet energy.

10.4.5 Step 5: Technical leftovers

First of all we show the existence of the map hε as in (10.74) and (10.75). We consider h ◦W,
which is defined on the closed unit disk D̄1 ⊂ R2. We then can apply Lemma 3.11 to the
latter map and generate approximations ĥε which satisfy the bounds (10.74) and (10.75)
with D1 in place of B1 and h ◦W in place of h. The maps hε := ĥε ◦W would then satisfy
the desired estimates because of the conformality of W−1 (which keeps the Dirichlet energy
invariant) and its regularity in B1 \ {0} (which results into the loss of a constant factor in
(10.75)). However the resulting map would not be Lipschitz because of the singularity of
W−1 in the origin. To overcome this difficulty it suffices to perturb slightly ĥε so that it
is constant in a small neighborhood of the origin. As for the condition η ◦ hε ≡ 0, this
can easily be achieved subtracting the average to whichever extension satisfies (10.74) and
(10.75).

Secondly we show the existence of f̂sj . First of all we observe that the condition (10.78)
can be easily achieved after we prove the existence of a map which satisfies the other two
conditions: as above it suffices to subtract the average of this map and add back η ◦ f̄sj .
At this point we observe that it suffices, as above, to compose with the map W, apply [17,
Lemma 2.14] and Lemma 3.15 and compose the resulting map with W−1: indeed the latter
would coincide with hε ◦W on D1−ε and on the complement W−1 is regular.
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10.5 appendix a: some useful lemmas.

The first lemma is a simple version of the Poincaré inequality for W1,2 functions.

Lemma 10.13. There exists a universal constant C > 0 such that for every f ∈ W1,2(Br,AQ),
where Br ⊂ BQ, the following two inequalities holdˆ

Br

|f|2 6 Cr2
ˆ
Br

|Df|2 +Cr

ˆ
∂Br

|f|2 (10.82)
ˆ
Br

|z|γ0−1|f|2 6 Cr1+γ0
ˆ
Br

|Df|2 +Crγ0
ˆ
∂B1

|f|2 . (10.83)

Proof. By approximation we can assume, without loss of generality, that f is Lipschitz and,
by scaling, it suffices to show the inequalities (10.82) and (10.83) on the ball B1. Fixing |z| = 1

and integrating along rays

|f(rz, r1/Qw)|2 6 2|f(z,w)|2 + 2
ˆ 1
r

|Df(tz, t1/Qw)|2 dt .

Using radial coordinates we then conclude
ˆ
B1

|z|γ0−1|f|2 6 C
ˆ
∂B1

|f|2 +

ˆ
∂B1

ˆ 1
0

r
γ
0

ˆ 1
r

|Df(tz, t
1
Qw)|2 dtdr dz .

Using Fubini the latter integral can be rewritten as
ˆ 1
0

ˆ
∂B1

|Df(tz, t
1
Qw)|2

ˆ t
0

rγ0 dtdzdr 6
ˆ 1
0

t

ˆ
∂B1

|Df(tz, t
1
Qw)|2 dzdr .

This completes the proof of (10.83). The proof of (10.82) is a simple variation of this one and
is left to the reader.

Lemma 10.14. Let L̄ : BQ̄ → AQ(R
2+n̄) be Lipschitz and consider the map L : BQ̄ →

AQ(R
2+n) defined by (9.1). Then there exists a constant C := C(‖Ψ0‖C3) > 0 such that

G(L , L̄ )(z,w) 6 Cr |L̄ |(z,w) +C |L̄ |2(z,w) , ∀(z,w) ∈ Br (10.84)ˆ
Br

|DL |2 6 (1+Cr)

ˆ
Br

|DL̄ |2 +Cr

ˆ
∂Br

|L̄ |2 . (10.85)

Proof. For what concerns (10.84), observe that DΨ(0) = 0 implies ‖DΨ0‖L∞(Br)) 6 Cr.
Therefore, by the C3 regularity of Ψ0, we get

G(L , L̄ )(z,w) =
Q∑
j=1

|Ψ(p0(Ψ) + L̄j) −Ψ0(p0(Ψ))|(z,w)

6 ‖Dψ‖(Ψ(z,w)) |L̄ |(z,w) + ‖AΣ‖ |L̄ |2(z,w)

6 Cr |L̄ |(z,w) +C |L̄ |2 .

An analogous computation givesˆ
Br

|DL |2 6 (1+Cr)

ˆ
Br

|DL̄ |2 +C

ˆ
Br

|L̄ |2

and we conclude (10.85) using Lemma 10.13.
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