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Abstract
We consider the Cauchy problem for the system ∂t ui + divz(g(|u|)ui ) = 0 i ∈

{1, . . . , k}, in m space dimensions and with g ∈ C3. When k ≥ 2 and m = 2, we
show a wide choice of g’s for which the bounded variation (BV) norm of admissible
solutions can blow up, even when the initial data have arbitrarily small oscillation
and arbitrarily small total variation, and are bounded away from the origin. When
m ≥ 3, we show that this occurs whenever g is not constant, that is, unless the system
reduces to k decoupled transport equations with constant coefficients.

1. Introduction
Let us consider the system of conservation laws

∂tU + divz[F(U )] = 0, U : � ⊂ Rt × Rm
z → Rk

u, (1)

where F : Rk
→ Rk×m is a C1-function. In what follows we use the notation F =

(F1, . . . , Fm), where each Fi is a map from Rk to Rk , and we restrict our attention to
symmetric systems, that is, systems for which DFi |V is a symmetric matrix for every
i and for every V ∈ Rk . It is known, by a result of Rauch [14] based on a previous
paper of Brenner [6] for linear hyperbolic systems, that certain types of BV estimates
(and L p-estimates for p 6= 2) fail for all the systems (1) which do not satisfy the
commutator conditions

DFi |V · DF j |V = DF j |V · DFi |V for every V ∈ Rk . (2)

When n = 2, it was proved in [8] that (2) is also sufficient to get L p-estimates for
every p ≤ 2 and, under additional conditions, also for p = ∞.

A particular class of maps F which satisfy the commutator condition (2) is given
by F(v) = g(|v|)⊗ v, where g ∈ C1(R,Rm). Note that in this case the requirement
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F ∈ C1 implies g′(0) = 0. However, in the rest of the paper we do not impose this
condition since it is not needed in any of the proofs.

Under this particular choice of F , the system (1) becomes{
∂t u + divz[g(|u|)u] = 0,

u(0, ·) = u0,
u : R+

t × Rm
z → Rk . (3)

A natural formal procedure to construct weak solutions to (1) consists in the following
two steps.
• First, we impose the fact that ρ := |u| solves, in the sense of Kruzhkov, the

Cauchy problem for the scalar law:{
∂tρ + divz[g(ρ)ρ] = 0,

ρ(0, ·) = |u0|.
(4)

• Second, we impose the fact that θ := u/|u| solves the transport equation{
∂t (ρθ)+ divz[g(ρ)ρθ] = 0,

θ(0, ·) = u0/|u0|.
(5)

Following [12], we call such a solution u = ρθ a renormalized entropy solution. More
precisely, we use the following definition.

Definition 1.1
We say that u is a renormalized entropy solution of (3) if ρ := |u| is a Kruzhkov
solution of (4).

Renormalized entropy solutions are entropy (or admissible) solutions in the classical
sense of the theory of hyperbolic systems of conservation laws (see Section 2). In [7]
Bressan showed a Lipschitz map F : R2

→ R2×2 of the form g(|u|)⊗u for which the
Cauchy problem for renormalized entropy solutions is ill posed in L∞. Stimulated by
this work, in [2] the authors proved that such a Cauchy problem is well posed in the
space X := {u ∈ L∞

: |u| ∈ BVloc} using the extension of DiPerna-Lions theory to
BV fluxes recently achieved in [1].

In one space dimension, the fundamental result of Glimm (see [9]) gives the exis-
tence of BV entropy solutions if one starts with initial data that have sufficiently small
total variation. Hence it is natural to ask whether renormalized entropy solutions u of
(3) enjoy BV regularity when the whole initial datum u0 (and not only its modulus)
belongs to BV. In analogy with the one-dimensional case, one could ask whether such
regularity holds at least for small times and when u0 is close to a constant, uniformly
and in the BV norm.
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Note that
• in our case, Rauch’s result does not apply since F satisfies condition (2);
• in any case, when Rauch’s result applies, it does not exclude BV regularity, but

it implies that estimates of a certain kind are not available;
• one might wonder whether the notion of renormalized entropy solution is a

suitable one, and thus we can ask whether BV regularity holds for some other
notion of admissible solutions.

In this paper we prove in Theorem 2.4 that for k,m ≥ 2 and for a wide choice of
g’s, there are initial data u0 (with arbitrarily small total variation and uniformly close
to a constant c 6= 0) such that the BV norm of admissible solutions u of (3) blows
up instantaneously, no matter what criterion of admissibility is chosen among the
ones proposed in the literature. When m in (3) is strictly bigger than 2, such initial
data can be constructed for every g which is not constant, that is, for every system of
the form (3) which does not reduce to k decoupled transport equations with constant
coefficients.

2. Statement of the result and preliminaries

2.1. Statement of the result
In order to state Theorem 2.4, we first need some definitions.

Definition 2.1
A pair of functions η ∈ W 1,∞(Rk,R), q ∈ W 1,∞(Rk,Rm) is called an entropy–
entropy flux pair for (1) if Dq = Dη · DF .

General hyperbolic systems of conservation laws may not have any entropy–entropy
flux pair besides the ones where η is an affine function. However, the systems (3)
always have an abundance of entropies (see Remark 2.3).

Definition 2.2
Let U0 ∈ L∞. Then U is called an entropy solution of{

∂tU + divz[F(U )] = 0,

U (0, ·) = U0
(6)

if, for every convex entropy–entropy flux pair η, q and for every smooth test function
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ψ ≥ 0, ∫
t>0

∫
Rm

[
∂tψ(t, z) η(U (t, z))+ ∇zψ(t, z) · q(U (t, z))

]
dt dz

+

∫
Rm
ψ(0, z)η

(
U0(z)

)
dz ≥ 0. (7)

The (nonpositive) entropy production measure ∂t [η(U )] + divz[q(U )] is denoted by
µη.

Remark 2.3
Consider F of the form F(u) = g(|u|) ⊗ u. Then there are two natural families of
entropies for the system (3).
• The first one is given by entropies of the form ξ(|u|), where ξ ∈ W 1,∞(R). The

related entropy fluxes are of the form ω(|u|), where ω′(u) = ξ ′(u)ug′(u) +

ξ ′(u)g(u). Hence (ξ, ω) is an entropy–entropy flux pair for the scalar law (4).
• The second family is given by entropies of the form |u|G(u/|u|), where G ∈

W 1,∞(Sk−1). The related entropy fluxes are of the form g(|u|)|u|G(u/|u|).

Clearly, any linear combination of the entropies above is an entropy as well. Further-
more, [12, Lemma 1.1] shows that every entropy η for the system (3) is of the form
ξ(|u|)+ |u|G(u/|u|). Note that, if η is convex, then ξ must be also convex. From the
proof of [2], it follows that for all entropies of the form |u|G(u/|u|), the entropy pro-
duction vanishes. Hence, since |u| is an entropy solution of the corresponding scalar
law, we conclude that renormalized entropy solutions of (3) are indeed entropy so-
lutions. However, there are some entropy solutions that are not renormalized. This
happens already in one space dimension and is due to the hyperbolic degeneracy of
the system (3) at the origin (see, for instance, the example in [7] or [9, p. 188, top]).

The chain rule of Vol’pert for BV functions implies that if U is a BV entropy
solution of (6), then µη(� \ JU ) = 0; that is, µη “lives” on the jump set JU (which in
this case is called the set of shocks of the solution U ). We refer to Section 2.2 for the
relevant definitions. For BV weak solutions U of (1), other criteria of admissibility
have been studied in the literature. We remark that all of them are based on imposing
some conditions on the set of shocks and that these conditions turn out to be stronger
than the entropy ones. Hence the notion of entropy solution is the weakest among the
ones proposed in the literature. We are now in a position to state the main result of
this paper.

THEOREM 2.4
Let k ≥ 2, m ≥ 3, g ∈ C3

loc, and let c ∈ Rk
\ {0} be such that g′(|c|) 6= 0. Then there

exists a sequence of initial data un
0 : Rm

→ Rk such that
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• ‖un
0 − c‖BV(Rm) + ‖un

0 − c‖∞ → 0 for n ↑ ∞;
• un

0 = c on Rm
\ BR(0) for some R > 0 independent of n;

• if un is any bounded entropy solution of (3) with initial data un
0 , then there

exists r > 0 (independent of n) such that ‖un
‖BV(]0,T [×Br (0)) = ∞ for every

positive T .
When m = 2, the same statement holds if in addition we assume that g′′(|c|) is parallel
to g′(|c|) (or vanishes).

2.2. BV functions and Vol’pert’s chain rule
For definitions, statements, and proofs of the claims contained in this section, we refer
to the book [5]. In the rest of the paper, L m denotes the Lebesgue measure on Rm

and H n the n-dimensional Hausdorff measure.
When u : Rl

→ Rk is a BV function, we denote by |∂xi u| the total variation
measure of the partial derivative ∂xi u. Moreover, we define Su as the set of points
x where u is not approximately continuous and Ju as the set of points x where u
jumps, that is, where it has approximate right and left limits with respect to some
fixed direction ν(x) ∈ Sl−1. The BV structure theorem states that Ju is a codimension
1 rectifiable set and that H l−1(Su \ Ju) = 0, where H l−1 denotes the (l − 1)-
dimensional Hausdorff measure. Moreover, ν(x) can be chosen so that ν : Ju → Sl−1

is a Borel measurable function and coincides with the approximate normal to Ju . With
this choice of ν(x), we denote by u+(x) and u−(x), respectively, the right and left
approximate limits of u at x . For any x 6∈ Su , we denote by ũ(x) the approximate limit
of u at x . The BV structure theorem implies also that the matrix-valued measure Du
can be written as

Du = µ+ [(u+
− u−)⊗ ν] H l−1 Ju, (8)

where
• H l−1 Ju denotes the Borel measure given by

H l−1 Ju (A) = H l−1(A ∩ Ju) for any Borel set A;

• µ(A) = 0 for any Borel set A such that H l−1(A) < ∞.
We denote µ by Ddu, and we call it the diffused part of the measure Du. (In the
notation of [5] this measure is just the sum of the absolutely continuous part Dau and
the Cantor part Dcu.) We can now state the chain rule of Vol’pert for BV functions.

THEOREM 2.5
Let u ∈ BV(Rl ,Rk) and η ∈ C1(Rk,Rh) be globally Lipschitz with η(0) = 0. Then
η ◦ u ∈ BV and

D[η ◦ u] = [Dη ◦ ũ] · Ddu +
{
[η(u+)− η(u−)] ⊗ ν

}
H l−1 Ju . (9)
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Remark 2.6
In [3] the authors proved a suitable extension of Theorem 2.5 to η ∈ W 1,∞. In what
follows we sometimes consider the measures D[η ◦ u] for η which are merely Lips-
chitz. However, we do not need the general result of [3] since in all the cases consid-
ered in this paper we are able to use some ad hoc considerations.

2.3. Riemann problem for scalar laws
Let us consider the Cauchy problem{

∂tρ + divx [h(ρ)] = 0,

ρ(0, ·) = ρin,
ρ : R+

t × Rm
x → R, (10)

where h : R → Rm is of class C3. Fix β, γ, α ∈ R, set ε := max{|α − β|, |α − γ |},
and define

ρin(x1, . . . , xm) =

{
β for xm < 0,

γ for xm > 0.

Consider the entropy solution ρ of (10). It is easy to see that ρ depends only on t and
xm . For each T > 0, define

ξ := max
{

xm
∣∣ ρ(T, ·, xm) = β

}
,

η := min
{

xm
∣∣ ρ(T, ·, xm) = γ

}
.

Then the following lemma holds.

LEMMA 2.7
If we denote by h′

m and h′′
m the mth components of the vector-valued functions h′ and

h′′, then there exist constants C and δ (depending only on h) such that

max
{
|ξ − T h′

m(α)|, |η − T h′
m(α)|

}
≤ 2|h′′

m(α)|ε + Cε2 for ε ≤ δ. (11)

2.4. Regular Lagrangian flows
As explained in the introduction, renormalized entropy solutions can be formally con-
structed by solving first the scalar conservation law (4) and then the transport equation
(5).

Let u be a renormalized entropy solution of (3). Assume that the initial data
u0 is bounded away from the origin, that is, that |u0| ≥ c > 0. Then, from the
maximum principle for scalar conservation laws, it turns out that the renormalized
entropy solution u is bounded away from zero as well, that is, that |u| ≥ c > 0. Hence
we can define the angular parts θ0 := u0/|u0|, θ := u/|u|, and we conclude that θ
solves the transport equation (5). In [4] the authors showed the existence of a locally
bounded map 9 : R × Rm

→ Rm such that
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• if θ0 ∈ L∞(Rm), then θ̃ (t, x) := θ0(9(t, x)) is a weak solution of (5).
In view of [2, Lemma 4.7], which gives the uniqueness of weak solutions to (5),
necessarily θ̃ = θ . In this paper we use the fact that 9(t, ·) is invertible (in a suitable
sense) for a.e. t and that if we denote by8(t, ·) the inverse of 9(t, ·), then8 satisfies
the ordinary differential equation (ODE){

d
dt8(s, x) = g

(
ρ(s,8(s, x))

)
,

8(0, x) = x,
(12)

in the sense of Proposition 2.9. This property is not explicitly stated in either [4] or [2],
though it can be derived from the analysis of [2] (which combines the results of [1]
with suitable extensions of the ideas of [11]). Such a 8 is called regular Lagrangian
flow.

First, we need the following stability property.

PROPOSITION 2.8
Assume that { fn} ⊂ C∞ is a uniformly bounded sequence and that fn → g(ρ) in
L1

loc. Let 8n be the solutions of the ODEs{
d
dt8n(s, x) = fn

(
s,8n(s, x)

)
,

8n(0, x) = x .
(13)

If for some constant C we have C−1
≤ det ∇x8n ≤ C , then8n converges to a map8

strongly in L1
loc. Moreover,8(s, 9(s, x)) = 9(s,8(s, x)) = x for L m+1-a.e. (s, x).

Proof
From the results of [1], it follows that the renormalization [2, Conjecture 4.3] holds
for (ρ, ρg(ρ)). Hence it follows from the proof of [2, Proposition 4.4] that {8n} is
strongly precompact in L1

loc. Denote by 8 the limit point of a subsequence of {8n}.
Note that from the proof of Proposition 4.4 it follows that

• there exists a 9̃ such that 9̃(s,8(s, x)) = 8(s, 9̃(s, x)) = x for L m+1-a.e.
(s, x);

• for any θ0 ∈ L∞, the function θ̃ (t, x) := θ0(9̃(t, x)) is a weak solution of (5).
Thus, [2, Lemma 4.7] (which gives the uniqueness of weak solutions of (5)) implies
that 9̃ coincides with 9 and that 8 is independent of the subsequence.

PROPOSITION 2.9
For L m-a.e. x , we have the following:
(a) 8(·, x) is Lipschitz (and hence it is differentiable in t for L 1-a.e. t);
(b) (t,8(t, x)) is a point of approximate continuity of ρ for L 1-a.e. t;
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(c) d
dt8(t, x) = g(ρ(t,8(t, x)) for L 1-a.e. t .

Proof
By a standard smoothing argument, it is easy to produce a sequence of smooth maps
fn, ρn such that
• C−1

≤ ρn ≤ C for some constant C independent of n;
• fn is uniformly bounded and converges to g(ρ) strongly in L1

loc;
• ∂tρn + div( fnρn) = 0 on R+

× Rm .
Denote by 8n the solution of (13), and set Jn := det(∇x8n). From Liouville’s the-
orem it follows that ∂t Jn + div( fn Jn) = 0. Since Jn(0, ·) = 1, the maximum prin-
ciple applied to the continuity equation ∂tw + div( fnw) = 0 yields the fact that
C−1ρn ≤ Jn ≤ Cρn , and hence C−2

≤ Jn ≤ C2.

Step 1. We can apply Proposition 2.8 and conclude that 8n → 8 strongly in L1
loc.

Since for every x the curves 8n(·, x) are uniformly Lipschitz, we conclude that
8(·, x) is a Lipschitz curve for L m-a.e. x . This gives (a).

Step 2. Fix a t and a subsequence (not relabeled) of8n(t, ·)which converges to8(t, ·)
in L1

loc(R
m). (Such a subsequence exists for L 1-a.e. t .) Let E ⊂ Rm be an open set.

It is not difficult to show that

L m(
8(t, ·)−1(E)

)
≤ lim sup

n↑∞

L m(
8n(t, ·)−1(E)

)
≤ C2L m(E). (14)

Hence, for L 1-a.e. t , this bound holds for every open set E . This property gives (b).

Step 3. The strong convergence of 8n implies that if hn ∈ C(R × Rm) converges
locally uniformly to h ∈ C(R × Rm), then hn(·,8n) converges to h(·,8) strongly
in L1

loc. If hn → h strongly in L1
loc and it is uniformly bounded, applying Egorov’s

theorem we find a closed set E such that hn converges locally uniformly to h on E
and L m+1(R × Rm

\ E) is as small as desired. Recall that 8n is locally uniformly
bounded. Applying Step 2, it follows that fn(·,8n) converges strongly to f (·,8).

Step 4. Since 8n solves (13), we have

8n(t, x) = x +

∫ t

0
fn

(
τ,8n(τ, x)

)
dτ. (15)

From Step 3 we can find a subsequence (not relabeled) of {8n} such that fn(·,8n)

converges to g(ρ(·,8)) pointwise almost everywhere on R×Rm . From the dominated
convergence theorem we get

8(t, x) = x +

∫ t

0
g
(
ρ(τ,8(τ, x))

)
dτ for L m+1-a.e. (t, x).
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From this identity we easily conclude (c).

3. Blowup of the BV norm for renormalized entropy solutions
In this section we prove the following proposition.

PROPOSITION 3.1
Let k ≥ 2, m ≥ 3, and g ∈ C3

loc. Then, for every c ∈ Rk
\ {0} such that g′(|c|) 6= 0,

there exists a sequence of initial data un
0 : Rm

→ Rk such that
• ‖un

0 − c‖BV(Rm) + ‖un
0 − c‖∞ → 0 for n ↑ ∞;

• un
0 = c on Rm

\ BR(0) for some R > 0 independent of n;
• if un denotes the unique renormalized entropy solution of (3) with un(0, ·) =

un
0 , then there exists r > 0 such that un(t, ·) 6∈ BV(Br (0)) for every n and for

every t ∈ ]0, 1[.
When m = 2, the same statement holds if, in addition, g′′(|c|) is parallel to g′(|c|) or
g′′(|c|) = 0.

Before giving the proof of Proposition 3.1 we consider the special case of system (3)
when g = ( f, 0, . . . , 0), that is,{

∂t u + ∂x1[ f (|u|)u] = 0,

u(0, ·) = u0.
(16)

The following is a corollary of Proposition 3.1.

PROPOSITION 3.2
Let k ≥ 2, m ≥ 2, and c ∈ Rk

\ {0} be such that f ′(|c|) 6= 0. Then there exists a
sequence of initial data un

0 : Rm
→ Rk such that

• ‖un
0 − c‖BV(Rm) + ‖un

0 − c‖∞ → 0 for n ↑ ∞;
• un

0 = c on Rm
\ BR(0) for some R > 0 independent of n;

• if un denotes the unique renormalized entropy solution of (16) with un(0, ·) =

un
0 , then there exists r > 0 such that un(t, ·) 6∈ BVloc(Br (0)) for every n and

for every t ∈ ]0, 1[.

Roughly speaking, the proof of Proposition 3.1 is based on the following remark:
When m = 3, we can choose initial data, close to a constant, in such a way that
the behavior of the renormalized entropy solutions of (3) is close to the behavior of
solutions of (16). This seems to be no longer true for m = 2 unless g′′(|c|) is parallel to
g′(|c|) (or g′′(|c|) = 0). Due to this remark, we choose to give a quick self-contained
proof of Proposition 3.2.
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Remark 3.3
Concerning the behavior of un for large times, in the case of Proposition 3.2 one can
construct initial data un

0 such that un(t, ·) 6∈ BVloc for any positive time t > 0. In the
case of Proposition 3.1, it is difficult to track what happens for large times since in
order to carry on our proof we need the fact that the rarefaction waves generated by
|u0| do not interact.

3.1. Proof of Proposition 3.2
In the following, for any real number α, we denote by [α] the largest integer that is
less than or equal to α.

For the sake of simplicity, we prove the proposition when m = 2, f ′(|c|) = 1,
and f (|c|) = 0. Only minor adjustments are needed to handle the general case. To
simplify the notation, on R2 we use the coordinates (x, y) in place of (x1, x2).

Let {mi } be a sequence of positive even numbers such that∑
i

mi 2−i < ∞. (17)

Let δ > 0 be so small that
• f is injective on [|c| − 2δ, |c| + 2δ];
• [−δ, δ] ⊂ f ([|c| − 2δ, |c| + 2δ]).
Then, for i sufficiently large, we define ri as the unique number in [−2δ, 2δ] such
that f (|c| + ri ) = 2−i . Notice that for i sufficiently large, we have ri ≤ 2−i+1. Set
α = c/|c|, and for every i , choose an αi ∈ Sk−1 such that |αi − α| = i−2.

Let Ii be the interval [2−i , 2−i+1
[ , and subdivide it into mi equal subintervals

I j
i :=

[
2−i

+
( j − 1)2−i

mi
, 2−i

+
j2−i

mi

[
, j ∈ {1, . . . ,mi }.

Next, define the functions ψi : R2
→ Sk−1 as

ψi (x, y) :=

{
αi if y ∈ Ii and [x2i

] is odd,

α otherwise,

and define the functions χi : R2
→ R as

χi (x, y) :=


ri if y ∈ I j

i for j even and x ∈ [−M,M],

ri+1 if y ∈ I j
i for j odd and x ∈ [−M,M],

0 otherwise.
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Here M is a positive real number that is chosen later. Finally, we define
ρn

0 := |c| +
∑

∞

i=n χi ,

θn
0 (x, y) :=

{
ψi (x, y) if y ∈ Ii for some i ≥ n and x ∈ [−M,M],

α otherwise,

un
0 := ρn

0 θ
n
0 .

Figure 1 gives a picture of the partition of R2 on which we based the definition of un
0 .

y

I 1
1

I 1
2

x

y

x

ρn
0 is constant

on these strips

θn
0 is constant

on these rectangles

Figure 1. Decomposition of the plane in open sets where ρn
0

(resp., θn
0 ) is constant

Clearly, ‖un
0−c‖∞ ≤ |c||αn−α|+rn . Hence, as n ↑ ∞, we have ‖un

0−c‖∞ → 0.
Moreover, notice that un

0 − c is supported on [−M,M] × [0, 1]. From now on we
assume that M is chosen larger than 1.

In order to show that
‖un

0 − c‖BV(R2) → 0,

it is sufficient to show

‖ρn
0 − |c|‖BV([−2M,2M]2) → 0, (18)

‖θn
0 − α‖BV([−2M,2M]2) → 0. (19)

Note that

‖ρn
0 − |c|‖BV([−2M,2M]2) ≤ 4‖un

0 − c‖∞M2
+ 2M

∑
i≥n

miri + (4M + 2)rn

≤ 4‖un
0 − c‖∞M2

+ 4M
∑
i≥n

mi 2−i
+ (4M + 2)rn,
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and, since
∑

2−i mi is summable, we get (18). Moreover,

‖θn
0 − α‖BV([−2M,2M]2) ≤ 4‖θn

0 − α‖∞M2
+ 2M

∑
i≥n

2−i i−22i

+ 2M
∑
i≥n

[i−2
+ (i + 1)−2

] + (4M + 2)n−2,

and the summability of
∑

i−2 gives (19).
Now we let un be the unique renormalized solution of (16). Recall that ρn

:= |un
|

is the unique entropy solution of (4) with initial data ρn
0 , which in our case is given by{

∂tρ
n

+ ∂x
(

f (ρn)ρn)
= 0,

ρn(0, ·) = ρn
0 .

Hence, if ρn
0 did not depend on x , we would have ρn(t, y, x) = ρn

0 (x, y). Since ρn
0

is “truncated,” this is not true. However, ρn
0 (·, y) is constant on [−M,M], and by the

finite speed of propagation of scalar laws, it follows that ρn(t, x, y) = ρn
0 (x, y) if

(t, x, y) belongs to the cone {√
y2

+ x2
≤ c(M − t)

}
,

where c is a constant that depends only on ‖ρn
0 ‖∞. Thus for every λ > 1, we can

choose M large enough (but independent of n) so that

ρn(t, x, y) = ρn
0 (x, y) for t ∈ [0, 1] and (x, y) ∈ [−λ, λ] × [0, 1].

To find the angular part θn(t, x, y) := un/|un
|(t, x, y), we use the fact that θn is

constant on the curves 8n(·, x), where 8n solves the ODEs{
d
dt8n(s, x, y) = g

(
ρn(s,8n(s, x, y))

)
,

8n(0, x, y) = (x, y)
(20)

in the sense of Propositions 2.8 and 2.9. Hence it follows that for L 3-a.e. (τ, x1, y1),
there is (x0, y0) ∈ R2 such that
• the curve 8(·, x0, y0) is Lipschitz;
• 8(τ, x0, y0) = (x1, y1);
• 8(·, x0, y0) solves (20) in the sense of Proposition 2.9.
Therefore every connected component of the intersection of the curve 8(·, x0, y0)

with [0, 1] × [−λ, λ] × [0, 1] is a straight segment lying on a plane {y = const}.
If (τ, x1, y1) ∈ [0, 1]

3
⊂ [0, 1] × [−λ, λ] × [0, 1], one of these segments contains

(τ, x1, y1), and hence its slope is given by f (ρn(τ, x1, y1)). If we choose λ large
enough, the curve8(·, x0, y0) remains “trapped” on the plane {y = y1} for the whole
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time interval ]0, τ [. Note that this choice of λ depends only on f and on the L∞-norm
of ρn , which is uniformly bounded.

From now on, we assume that λ (and hence M) have been chosen so as to
satisfy the requirement above. Recall that for L 3-a.e. (t, x, y) ∈ [0, 1]

3, we have
ρn(t, x, y) = |c|+ri for some i , and hence f (ρn(t, x, y))) = 2−i . From the previous
discussion we derive the following formulas, valid for L 3-a.e. (t, x, y) ∈ [0, 1]

3:
• if ρn

0 (x, y) = |c|, then θn(t, x, y) = θn
0 (x, y);

• if ρn
0 (x, y) = |c| + ri , then θn(t, x, y) = θn

0 (x − t2−i , y).
Hence, for j ∈ {1,mi − 1}, i ≥ n, and l ∈ {1, . . . , 2i

− 1}, the function θn(t, ·) jumps
on the segments

S j,i,l :=

{
y = 2−i

+
j2−i

mi
x ∈ [l2−i , (l + t)2−i

]

}
(see Figure 2).

θn(t, ·) is constant on
these rectangles

the segments S j,i,l

I
j

i

Figure 2. The function θn(t, ·) and the segments S j,i,l

The total amount of this jump is given by

Ji :=

∫
S j,i,l

∣∣(θn)+
(t, x, y)− (θn)−(t, x, y)

∣∣dH 1(x) = t2−i
|αi − α| = t2−i i−2.

Thus

‖θn(t, ·)‖BV([0,1]2) ≥

∑
i≥n

mi −1∑
j=1

2i
−1∑

l=1

Ji =

∑
i≥n

(2i
− 1)(mi − 1)Ji ≥

t
2

∑
i≥n

(mi − 1)i−2.

(21)
Clearly, since |un

|(t, ·) ∈ BV ∩L∞ for every t , and it is bounded away from zero, it is
sufficient to show that θn(t, ·) 6∈ BV([0, 1]

2) for any t ∈ ]0, 1[.
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Recall that the bound (17) is the only condition required on the sequence of even
numbers {mi }. If we set mi = 2i2, then (17) is clearly satisfied, whereas (21) is infinite.

3.2. Proof of Proposition 3.1
As in the proof of Proposition 3.2, for β ∈ R we denote by [β] the largest integer that
is less than or equal to β.

The idea is to mimic the construction of Proposition 3.2. Hence we start with
piecewise constant initial moduli ρn

0 which are constant along m − 1 orthogonal di-
rections e1, . . . , em−1 and oscillate along the direction ω orthogonal to each ei . The
solution ρn of the scalar law (4) is then constant along the directions e1, . . . , em−1.
Moreover, for small times, this solution consists of shocks and rarefaction waves that
do not interact. We impose two requirements on this construction.
• We choose ω and the sizes and heights of the oscillations in such a way that

the distinct shocks and rarefaction waves do not interact for times less than
1. Hence in this range of times, between each couple of nearby shock and
rarefaction wave there is a space-time strip on which ρ is constant (see Figure
3).

• We choose ω in such a way that the trajectories of solutions of (12) are
“trapped” in the strips for a sufficiently long time.

shocks rarefaction waves

t

ρ is constant
on these strips (denoted later by Si, j )

ω = x3

Figure 3. A (t, ω)-slice of the evolution of ρn
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Finally, we choose initial data θn
0 which oscillate along a direction perpendicular

to ω in such a way that in the strip mentioned above, θn reproduce the behavior of the
construction of Proposition 3.2.

These requirements translate into geometric conditions on ω and into analytical
ones on the various parameters that govern the oscillations. When m ≥ 3 and g is not
constant, we can always satisfy these conditions. When m = 2, we are able to do it
only in some cases.

Since the construction is the same, we present the proof only when m ≥ 3, and
without losing generality, we assume m = 3. We denote by h the function given by
h(ρ) = ρg(ρ) and by β the positive real number |c|. Clearly, there exists a unit vector
ω ∈ R3 such that

ω · g(β) = ω · h′(β), (22)

ω · g′(β) = 0, (23)

ω · h′′(β) = 0. (24)

Indeed, since h′(β) = g(β)+βg′(β), (22) reduces to (23). Thus the conditions above
reduce to finding a unit vector ω ∈ R3 which is perpendicular to both the vectors
g′(β) and h′′(β). We fix an orthonormal system of coordinates in R3 in such a way
that ω = (0, 0, 1).

Step 1: Construction of the modulus. Let {σl} be a sequence of vanishing positive real
numbers such that

∑
σl < ∞, and let Il ⊂ R be the intervals

I1 := [0, σ1[, Il :=

[ ∑
i≤l−1

σi ,
∑
i≤l

σi

]
.

Let ml be a strictly increasing sequence of even integers, and divide every Il into ml

equal subintervals I j
l for j ∈ {1, . . . ,ml}. Finally, let {al} be a vanishing sequence of

real numbers, and set

ρin(x1, x2, x3) :=

{
β + al if x3 ∈ I j

l for some even j,

β otherwise.

Then, let ρ be the entropy solution of the Cauchy problem{
∂tρ + divx [h(ρ)] = 0,

ρ(0, ·) = ρin.
(25)

Clearly, ρ is a function of t and x3 only. Moreover, recalling that h′′

3(β) = 0, we can
apply Lemma 2.7 in order to get the following property.
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(T) For every C1 > 0, there exists a C2 > 0 such that if

σl

ml
≥ C2a2

l , (26)

then every I j
l contains a subinterval J j

l such that
• the length of J j

l is bigger than C1a2
l ;

• for every (t, ξ1, ξ2, ξ3) ∈ [0, 1] × R2
× J j

l , we have

ρ
(
t, ξ1, ξ2, ξ3 + th′

3(β)
)

= ρ
(
0, ξ1, ξ2, ξ3). (27)

For each couple j, l, we let Sl, j be the strip

Sl, j :=
{
(t, x1, x2, x3)

∣∣ 0 ≤ t ≤ 1 and (x3 − th′

3(β)) ∈ J j
l
}
.

Step 2: The flux generated by ρ. Denote by BR ⊂ R3 the ball of radius R centered at
the origin. It is easy to check that there exists a constant C3 such that

‖ρin
‖BV(BR) ≤ C3 R3

+ C3 R2
( ∑

l

(ml + 1)|al |
)
. (28)

Hence, to ensure that ρin
∈ BVloc, it is sufficient to assume∑

l

(ml + 1)|al | < ∞. (29)

Assuming that this condition is fulfilled, from the classical result of Kruzhkov we get
the existence of a constant M such that ‖ρ‖BV(]0,1[×BR) ≤ M‖ρin

‖BV(BR+Mt ). Thus
we can consider the regular Lagrangian flow 8 for the ODE{

d
dt8(s, ·) = g

(
ρ(s,8(s, ·))

)
,

8(0, x) = x

(see Propositions 2.8 and 2.9). Fix any strip Sl, j as defined in Step 1. Clearly, for
a.e. x , every connected component of the intersection of the trajectory curve γx :=

{8(t, x) | t ∈ R} with the strip Sl, j is a straight segment. If j is even, then this
segment is parallel to (1, g(β)); otherwise, it is parallel to (1, g(β + al)). Thus, if j
is even and (t, x) ∈ Sl, j , the portion of trajectory

Tt,x :=
{
8(s, ξ) for ξ such that 8(t, ξ) = x and for s ∈ [0, t]

}
is a straight segment contained in Sl, j .

Let us now turn to the case where j is odd. Note that

g(β + al) = g(β)+ g′(β)al + O(a2
l ). (30)
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Thanks to the properties of ω = (0, 0, 1), we have the fact that segments of the form{(
t, ξ + t (g(β)+ al g′(β))

) ∣∣ 0 ≤ t ≤ 1 and (0, ξ) ∈ Sl, j
}

(31)

are subsets of Sl, j . Recall (T) of Step 1. From (30) and (31) it follows that for C1 in
(T) sufficiently large, there exists a subinterval Kl, j such that
• the length of Kl, j is bigger than a2

l ;
• if t ∈ [0, 1] and x3 − tg′(β) ∈ Kl, j , then the set

Tt,x =
{
8(s, ξ)

∣∣ s ∈ [0, t] and 8(t, ξ) = x
}

is a straight segment contained in Sl, j .
From now on, we fix C1 (and hence C2) in such a way as to ensure the existence of
the segments Kl, j .

Step 3: Construction of the angular part. We recall that g′

3(β) = g′(β) · ω = 0 and
that g′

3(β) 6= 0. Since the construction of Step 2 is independent of the choice of the
coordinates x1 and x2, we can choose them so that g′(β) = (0,C4, 0), with C4 > 0.
Choose the al ’s in such a way that

g2(β + al)− g2(β) = 2−l .

Then, clearly, there exists a constant C5 such that

2−l

C5
≤ al ≤ C52−l . (32)

Set η = c/|c|, and let ηl ∈ Sk−1 be such that |ηl − η| = l−2. Then define

θ in(x1, x2, x3) :=

{
ηl if x3 ∈ Il and [2l x2] is even,

η otherwise.

Set uin
:= ρinθ in. Let u be the renormalized entropy solution of{

∂t u + divz[g(|u|)u] = 0,

u(0, ·) = uin.
(33)

We denote by θ the angular part u/|u|. According to Propositions 2.8 and 2.9, θ is
given by the formula

θ(t, x) = θ in(9(t, x)
)
,

where 9 is a map such that 8(t, 9(t, x)) = 9(t,8(t, x)) = x for L 4-a.e. (t, x). In
what follows, we denote by 8−1

t the map 9(t, ·).
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Step 4: Choice of parameters. We prove that for an appropriate choice of the various
parameters, uin

∈ BVloc, whereas u(t, ·) is not in BVloc for any t ∈ ]0, 1]. Recall that
ρin

= |uin
| and ρ(t, ·) = |u|(t, ·) are both in BVloc and that C−1

6 ≤ ρ ≤ C6 for some
positive constant C6. Thus our goal is to choose the parameters σl and ml in such
a way that θ in

∈ BVloc and θ(t, ·) 6∈ BVloc for every t ∈ ]0, 1]. Note that for some
constant C7,

‖θ in
‖BV(BR) ≤ C7 R3

+ C7 R2
( ∑

l

2l

l2 σl +

∑
l

l−2
)
. (34)

Hence, choosing σl = 2−l , we conclude that θ in
∈ BV(BR) for every R > 0.

Now we choose ml = 2l2, and since from (32) we have al ≤ C2
52−l , we clearly

fulfill the condition (29), which is the only one we required on the sequence {ml}.
Thus we get

σl

ml
= l−22−l+1.

Since from (32) we have a2
l ≤ C52−2l , clearly (26) is fulfilled for any constant C2,

provided that l is large enough. Thus we get the existence of a constant C8 such that
the segments Kl, j of Step 2 exist for any l ≥ C8.

Fix t ∈ ]0, 1] and l ≥ C8. Recalling that θ(t, x) = θ in(8−1
t (x)) and taking into

account the properties of 8 proved in Step 2, we conclude the following.
• If j ∈ [1,ml ] is even and ξl, j belongs to the segment Jl, j , then

θ
(
t, x1, x2, ξl, j + tg3(β)

)
=

{
ηl if [2l(x2 − tg2(β))] is even,

η otherwise.

• If j ∈ [1,ml ] is odd and ξl, j belongs to the segment Kl, j , then

θ
(
t, x1, x2, ξl, j + tg3(β)

)
=

{
ηl if [2l(x2 − tg2(β + al))] is even,

η otherwise.

Recall that g2(β + al)− g2(β) = 2−l . Thus for any j ∈ [1,ml − 1], we have

Al, j :=

∫
[0,1]2

∣∣θ(t, x1, x2, ξl, j + tg3(β)
)
− θ

(
t, x1, x2, ξl, j+1 + tg3(β)

)∣∣ dx1 dx2

= t |ηl − η| = tl−2.

Thus ∑
l≥C8

∑
1≤ j≤ml−1

Al, j = t
∑
l≥C8

ml − 1
l2 = t

∑
l≥C8

2l2
− 1

l2 = ∞. (35)
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Note that if θ(t, ·) were locally in BV, then ∂x3θ(t, ·) would be a Radon measure.
Denote by µ the total variation measure of ∂x3θ(t, ·), and denote by Sl, j the stripes

Sl, j :=
{
(x1, x2, x3)

∣∣ (x1, x2) ∈ [0, 1]
2 and

(
x3 − tg3(β)

)
∈ [ξl, j , ξl, j+1]

}
.

Then Al, j ≤ µ(Sl, j ). The Sl, j are pairwise disjoint, and for R′ sufficiently large,
they are all contained in the ball BR′ . Thus we would get∑

l≥C8

∑
1≤ j≤ml−1

Al, j ≤

∑
l≥C8

∑
1≤ j≤ml−1

µ(Sl, j ) ≤ µ(BR′) < ∞,

which contradicts (35). Hence we conclude that θ(t, ·) is not in BV(BR′) for any
t ∈ ]0, 1].

Step: Truncation of the construction and conclusion. Next, define ũn
0 : R3

→ R2 as

ũn
0(x1, x2, x3) :=

{
uin(x1, x2, x3) if x3 ∈ Il for some l ≥ n,

c otherwise.

Clearly, ‖ũn
0 − c‖∞ + ‖ũn

0 − c‖BV(U ) → 0 for every bounded open set U ⊂ R3.
Moreover, if we denote by ũn the renormalized entropy solution of{

∂t u + divz[g(|u|)u] = 0,

u(0, ·) = ũn
0,

(36)

then ũn(t, ·) 6∈ BV(BR′) for any t ∈ ]0, 1]. Finally, let M > 0, and define

un
0(x1, x2, x3) :=

{
ũn

0(x1, x2, x3) if x2
1 + x2

2 + x2
3 ≤ M,

c otherwise.

Let un be the renormalized entropy solution of{
∂t u + divx [g(|u|)u] = 0,

u(0, ·) = un
0 .

(37)

The proof of [2, Proposition 2.11] gives the existence of an M sufficiently large such
that un

= ũn on [0, 1]× BR′ for any n. Hence the sequence {un
0} has all the properties

required by the proposition.

3.3. Bounds in different spaces
Varying the parameters involved in the proof of Proposition 3.2, one can construct
initial data un

0 with renormalized solutions un which have the following properties:
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• the sequence {un
0} satisfies the BV- and L∞-bounds of Proposition 3.2;

• the restriction of un to {t} × [0, 1]
m is piecewise constant on the elements U n

i
of a countable partition by open sets;

• Jun :=
(
{t} × [0, 1]

m)
\

⋃
U n

i is the union of countably many Lipschitz hy-
persurfaces;

• if we denote by (un)+ and (un)
− the right and left traces of un on Jun , then∫

Jun
|(un)+ − (un)−|

j dH m−1
= ∞ for every positive j . (38)

Similar examples are possible in the more general case, but the maximal j for which
(38) holds seems to depend on the number of space variables and on the regularity of
g. Building on them, it would be interesting to understand if Wα,p-norms (for α < 1)
also blow up in finite time. However, this requires more than (38); in particular, it
needs more subtle computations involving the dislocation of the jump set (see, for
instance, [10]).

4. Proof of Theorem 2.4
Theorem 2.4 is a consequence of Proposition 3.1 and of the following.

PROPOSITION 4.1
Let u0 ∈ L∞(Rm,Rk), and let C be the closure of the convex hull of its essential
image. Assume that
(a) either 0 6∈ C or it is an extremal point of C;
(b) u is a bounded entropy solution of (3);
(c) u ∈ BV(]0, T [ × U ) for some T > 0 and for some bounded open U ⊂ Rm .
Then u is a renormalized entropy solution of (3) on ]0, T [ × U .

Proof
Define ρ := |u| and ρ0 := |u0|. The goal is to show that ρ is an entropy solution of
the scalar law {

∂tρ + divx [g(ρ)ρ] = 0,

ρ(0, ·) = |u0|
(39)

in ]0, T [ × U .
Actually, it is sufficient to show that ρ is a weak solution of (39) in ]0, T [ × U .

Indeed, note that for every η : R+
→ R which is convex and increasing, η(|u|) is a

convex entropy for the system (3). (The entropy flux is of the form q(|u|) for q such
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that q ′
= η′g′.) Thus we have∫

t>0

∫
Rm

[
∂tψ(t, z) η

(
ρ(t, z)

)
+ ∇xψ(t, z) · q

(
ρ(t, z)

)]
dt dz

+

∫
Rm
ψ(0, z)η

(
ρ0(z)

)
dz ≥ 0 (40)

for every nonnegative smooth test function ψ . Moreover, if ρ is a weak solution of
(39) in ]0, T [ × U , then for every linear function L : R → R we get the following
equality for every ψ ∈ C∞

c (] − T, T [ × U ):∫
t>0

∫
Rm

[
∂tψ(t, z) L

(
ρ(t, z)

)
+ ∇xψ(t, z) · Q

(
ρ(t, z)

)]
dt dz

+

∫
Rm
ψ(0, z)L

(
ρ0(z)

)
dz = 0, (41)

where Q : R → Rm is given by Q = (L(g1), . . . , L(gm)). Given any convex function
ξ , we can write it as L+η, where L is an appropriate linear function and η is increasing
on the half-line R+. Thus, summing (40) and (41), we conclude that ρ satisfies the
entropy inequality for ξ and for every nonnegative ψ ∈ C∞

c (] − T, T [ × U ), and
hence that ρ is an entropy solution of (39) in ]0, T [ × U .

We now come to the proof that ρ is a weak solution of (39), which we split into
several steps.

Step 1. Recall that ρ is a weak solution of (39) in ]0, T [ × U if it satisfies the identity∫
t>0

∫
Rm
ρ(t, z)

[
∂tψ(t, z)+g

(
ρ(t, z)

)
·∇xψ(t, z)

]
dt dz +

∫
Rm
ψ(0, z)ρ0(z) dz = 0

(42)
for every ψ ∈ C∞

c (] − T, T [ × U ).
Recall that ‖u‖BV(U×]0,T [) is finite. Hence we claim that, thanks to the trace prop-

erties of BV functions, in order to prove (42) it suffices to check that

the Radon measure µ = ∂tρ + div
(
ρg(ρ)

)
vanishes on ]0, T [ × U . (43)

Indeed, by a standard approximation argument, we get the following estimate for every
t < T :∫ t

0

∫
U

|u(τ, z)− u0(z)| dz dτ ≤

∫ t

0
|∂t u|(]0, τ [ × U ) dτ ≤ t |∂t u|(]0, t[ × U ).

From this we conclude∫ t

0

∫
U

|ρ(τ, z)− ρ0(z)| dz dτ ≤ t |∂t u|(]0, t[ × U ). (44)

Fix ψ ∈ C∞
c (] − T, T [ × U ), and let {χi } ⊂ C∞([0, T ]) be such that
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• χi = 1 for t ≥ 2/ i ;
• χi = 0 for t ≤ 1/ i ;
• 0 ≤ χ ′

i ≤ 4i .
Then ψχi is compactly supported in ]0, T [ × U , and from (43) we get∫ T

0

∫
Rm
χi (τ )ρ(τ, z)

[
∂tψ(τ, z)+ g

(
ρ(τ, z)

)
· ∇xψ(τ, z)

]
dz dτ

+

∫ 2/k

0

∫
Rm
χ ′

i (τ )ρ(τ, z)ψ(τ, z) dz dτ = 0. (45)

As i ↑ ∞, the first integral in (45) converges to∫ T

0

∫
Rm
ρ(τ, z)

[
∂tψ(τ, z)+ g

(
ρ(τ, z)

)
· ∇xψ(τ, z)

]
dz dτ.

Concerning the second integral, we recall that
∫ 2/ i

0 χ ′

i = 1 and we write∣∣∣ ∫ 2/ i

0

∫
Rm
χ ′

i (τ )ρ(τ, z)ψ(τ, z) dz dτ −

∫
Rm
ρ0(z)ψ(0, z) dz

∣∣∣
=

∣∣∣ ∫ 2/ i

0

∫
Rm
χ ′

i (τ )[ρ(τ, z)ψ(τ, z)− ρ0(z)ψ(0, z)] dz dτ
∣∣∣

≤ 4i
∫ 2/ i

0

∫
Rm

|ρ(τ, z)ψ(τ, z)− ρ0(z)ψ(0, z)| dτ dz

≤ 4i‖ρ‖∞

∫ 2/ i

0

∫
Rm

|ψ(τ, z)− ψ(0, z)| dτ dz

+ 4i‖ψ‖∞

∫ 2/ i

0

∫
Rm

|ρ(τ, z)− ρ(0, z)| dτ dz.

Note that, for i ↑ ∞ the first term tends to 0 because ψ is smooth. Thanks to (44), the
second term is bounded by

C |∂t u|(]0, 2/ i[ × U ), (46)

where C is a constant independent of t and U is a bounded set. Since |∂t u| is a Radon
measure, we conclude that the expression (46) tends to zero for i ↑ ∞. Thus we
conclude that

lim
i↑∞

∫ 2/ i

0

∫
Rm
χ ′

i (τ )ρ(τ, z)ψ(τ, z) dz dτ =

∫
Rm
ρ0(z)ψ(0, z) dz.

Hence, passing into the limit in (45), we get (42). Therefore we are left with the task
of proving (43).
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Step 2. We wish to use the entropy inequalities and apply Theorem 2.5 to conclude that
µ is supported on the jump set (or shock set) Ju . However, this is not possible since
the function |u| is not C1 in the origin (cf. Remark 2.6). We approximate this function
uniformly with smooth C1 convex functions of the form ηn(|u|). Clearly, these func-
tions are also entropies for the system of Keyfitz and Kranzer, and their entropy fluxes
are of the form qn(|u|) for some functions qn(t) which converge uniformly to tg(t).

Let ν : Ju → Rm be a Borel vector field, and let ζ : Ju → R be a nonnegative
Borel function such that (ζ, ν)/

√
ζ 2 + |ν|2 is normal to Ju H m-a.e. Then the chain

rule of Vol’pert gives

∂t [ηn(ρ)] + divx [qn(ρ)] = (ζ 2
+ |ν|2)−1/2[(ηn(|u+

|)− ηn(|u−
|)
)
ζ

+
(
qn(|u+

|)− qn(|u−
|)
)
· ν

]
H m Ju .

Passing to the limit in n, we get

µ = (ζ 2
+ |ν|2)−1/2[(|u+

| − |u−
|)ζ +

(
|u+

|g(|u+
|)− |u−

|g(|u−
|)
)
· ν

]
H m Ju .

(47)
Thus we must prove that(

ζ + g(|u+
|) · ν

)
|u+

| =
(
ζ + g(|u−

|) · ν
)
|u−

|, H m-a.e. on Ju . (48)

In what follows, for the sake of simplicity we drop the H m-a.e.
Since u is a weak solution of (3), when F(v) := g(|v|) ⊗ v is C1 we can apply

Theorem 2.5 to get (
g(|u+

|) · ν + ζ
)
u+

=
(
g(|u−

|) · ν + ζ
)
u−. (49)

In order to derive (49) when 0 is a singularity for DF , we approximate F with Fn :=

g(ηn(u))⊗ u. Then we get

∂t u + divx
(
Fn(u)

)
= Ddu + DFn(ũ) · Ddu

+
[
(u+

− u−)ζ +
(
F(u+)− F(u−)

)
· ν

]
H m Ju . (50)

Clearly, the left-hand side converges to 0 = ∂t u + divx (F(u)). Moreover, the second
term of the right-hand side converges to[(

g(|u+
|) · ν + ζ

)
u+

−
(
g(|u−

|) · ν + ζ
)
u−

]
H m Ju

in the sense of measures. If we choose the approximations Fn in such a way that the
DFn are locally uniformly bounded, the measures DFn(ũ) · Ddu converge to γ |Ddu|

for some bounded Borel function γ . Since |Ddu|(Ju) = 0, we conclude that (49)
holds.
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From (49) we get∣∣g(|u+
|) · ν + ζ

∣∣|u+
| =

∣∣g(|u−
|) · ν + ζ

∣∣|u−
|. (51)

If |u+
| (or |u−

|) vanishes, (48) follows trivially. Hence, after setting ρ±
:= |u±

|, we
restrict our attention to the subset of Ju given by G := {ρ+

6= 0 6= ρ−
}. On this set

we define θ±
:= u±/ρ±, and we note that (49) becomes[(

g(ρ+) · ν + ζ
)]
ρ+θ+

=
[(

g(ρ−) · ν + ζ
)]
.ρ−θ−. (52)

Since θ±
∈ Sk−1, we conclude that either θ+

= θ− or θ+
= −θ−. In the next

step we prove that if D is the closure of the convex hull of the essential image of
u|]0,T [×Rm , then either 0 6∈ D or 0 is an extremal point of D. This rules out the
alternative θ+

= −θ−. Therefore we conclude that θ+
= θ− on G, from which (48)

easily follows.

Step 3. In order to complete the proof, it remains to show that if D denotes the closure
of the convex hull of the essential image of u|]0,T [×Rm , then either the origin is not
contained in D or it is an extremal point of D. Recalling (a), this property is true for
the closure C of the convex hull of the essential image of u0. Choose ξ1, . . . , ξk unit
vectors of Rk such that

C ⊂
{

x
∣∣ x · ξi ≤ 0 for every i

}
and 0 is an extremal point of {x | x · ξi ≤ 0 for every i}. We show that the essential
image of u is contained in {x | x · ξi ≤ 0} for every i .

Fix i , and denote by η : Rk
→ R, q : Rk

→ Rm the functions

η(U ) :=

{
0 if ξi · U ≤ 0,

ξi · U otherwise,
q(U ) := g(|U |)η(U ).

Note that (η, q) is a convex entropy–entropy flux pair. Clearly, η(u0) = 0, and a
standard argument borrowed from the theory of Kruzhkov for scalar laws implies that
η(u) = 0. We include this argument for the convenience of the reader.

Since η(u0) = 0, the boundary term in the entropy inequality (7) disappears. Fix
a nonnegative test functionψ ∈ C∞

c (R×Rm), and for every τ < T , define a sequence
χτ,i ⊂ C∞([0, τ ]) such that
• χτ,i (s) = 0 for s > τ ;
• χτ,i (s) = 1 for s < τ − 1/ i ;
• 0 ≥ χ ′

τ,i ≥ −2/ i .
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We test (7) with ψ(s, x)χτ,i (s), and we let i ↑ ∞. Using a Fubini-type argument, we
conclude that the following inequality is valid for a.e. τ :∫ τ

0

∫
Rm
η(u)∂tψ(s, x)+ q(u) · ∇xψ(s, x) ds dx −

∫
Rm
η
(
u(τ, x)

)
ψ(τ, x) dx ≥ 0.

(53)
Using a countable dense set of test functions, we conclude that for a.e. τ , (53) holds
for any test function ψ ∈ C∞

c (R × Rm).
Since u is bounded, there is a constant C such that |g(|U |)| ≤ C , and hence

Cη(u) ≥ |q(u)|. It is not difficult to show that for every R > 0, there exists a non-
negative test function ψ such that

−∂tψ ≥ C |∇xψ | on [0, τ ] × Rm,

ψ(τ, x) = 1 for every x ∈ BR .

For such a test function, the first term on the left-hand side of (53) is nonpositive.
Thus we get ∫

BR

η
(
u(τ, x)

)
dx ≤

∫
Rm
η
(
u(τ, x)

)
ψ(τ, x) dx ≤ 0.

Since this inequality holds for every R > 0 and for a.e. τ ∈]0, T [ , we get η(u) ≤ 0.
This completes the proof.

In view of this proof, the following seems likely.

CONJECTURE 4.2
Let u be a bounded entropy solution of (3), and denote by C the closure of the convex
hull of its essential image. If 0 6∈ C or if it is an extremal point of C , then u is a
renormalized entropy solution.

We conclude the section with the following.

Proof of Theorem 2.4
Let un

0 be the initial data of Proposition 3.1, and let λ > 0 be such that the correspond-
ing renormalized entropy solutions un(t, ·) are not in BV(Bλ(0)) for any t ∈ ]0, 1[. Let
ũn be any other entropy solution of (3) with initial data un

0 . For any c > ‖un
0‖∞, we

apply the argument of Step 3 of the proof of Proposition 4.1 to the entropy η(|u|) :=

(|u|−c)1|u|≥c. It turns out that η(|u|) = 0, from which we conclude ‖ũn
‖∞ ≤ ‖un

0‖∞.
Hence ũn is uniformly bounded.

Fix T ∈ ]0, 1[ , and let γ ≥ 0 be the supremum of the nonnegative R’s such that
ũn

∈ BV(]0, T [×BR(0)). From Proposition 4.1, we get the fact that ũn is a renormal-
ized entropy solution on ]0, T [×Bγ (0). The proof of [2, Proposition 2.11] gives that
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there exists a constant C > 1 depending only on f and ‖un
‖∞ such that if γ ≥ Cλ,

then ũn
= un on ]0, T [×Bλ(0). But in this case we have un

∈ BV(]0, T [×Bλ). Hence
we conclude that γ < Cλ. Therefore ũn

6∈ BV(]0, T [×BCλ(0)) for every T ∈ ]0, 1[ ,
and hence ũn

6∈ BV(]0, T [×BCλ(0)) for any positive T .
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