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ABSTRACT

In this paper we consider a system of conservation laws in several space
dimensions whose nonlinearity is due only to the modulus of the solution. This

system, first considered by Keyfitz and Kranzer in one space dimension, has
been recently studied by many authors. In particular, using standard methods
from DiPerna–Lions theory, we improve the results obtained by the first and

third author, showing existence, uniqueness and stability results in the class
of functions whose modulus satisfies, in the entropy sense, a suitable scalar
conservation law. In the last part of the paper we consider a conjecture on

renormalizable solutions and show that this conjecture implies another one
recently made by Bressan in connection with the system of Keyfitz and Kranzer.

Key Words: Hyperbolic systems; Several dimensions; Renormalized solutions.

Mathematics Subject Classification: 35L45; 35L40; 35L65.

*Correspondence: Camillo De Lellis, Max-Planck Institute for Mathematics in the Sciences,
Inselstr. 22, D-04103 Leipzig, Germany; E-mail: delellis@mis.mpg.de.

COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS

Vol. 29, Nos. 9 & 10, pp. 1635–1651, 2004

1635

DOI: 10.1081/PDE-200040210 0360-5302 (Print); 1532-4133 (Online)

Copyright # 2004 by Marcel Dekker, Inc. www.dekker.com

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
a
t
 
Z
u
r
i
c
h
]
 
A
t
:
 
1
0
:
0
3
 
2
5
 
A
p
r
i
l
 
2
0
1
1



ORDER                        REPRINTS

1. INTRODUCTION

In this note we consider the Cauchy problem for the system of conservation
laws

@tui þ
Xn
a¼1

@xaðfaðjujÞuiÞ ¼ 0

uið0; �Þ ¼ uið�Þ

8><>: ð1Þ

where u ¼ ðu1; . . . ; ukÞ : Rþ � Rn ! Rk. The system (1) was first considered by
Keyfitz and Kranzer in one space dimension in Keyfitz and Kranzer (1980) and then
studied by several authors (see Freistühler, 1989, 1990; Keyfitz and Mora, 2000;
see Dafermos, 2000; Frid, 2003; Serre, 1999 for the literature on (1) in one space
dimension).

As a partial answer to a conjecture of Bressan (see Sec. 3.3 of Bressan, 2003a), in
Ambrosio and De Lellis (2003) it was shown the existence of weak solutions to (1)
when j�uuj 2 L1 \ BV ðRnÞ and j�uuj � c > 0 for some c. Following the suggestion of
the last section of Bressan (2003a) these solutions were constructed with the follow-
ing method (an higher dimensional analog of what applied earlier in one space
dimension; see for example Sec. 8.2 of Serre, 1999). We first find the modulus
r :¼ juj by solving, in the sense of Kruzhkov, the conservation law

@trþ
Xn
a¼1

@xaðfaðrÞrÞ ¼ 0

rð0; �Þ ¼ rð�Þ:

8><>: ð2Þ

Then we construct an approximation scheme for the ODE _xxðtÞ ¼ fðrðt; xðtÞÞÞ, which
formally gives, via the method of characteristics, the angular part y ¼ u=r of the
solution. In this construction we used the results of Ambrosio (2004), where the first
author extended the DiPerna–Lions theory to BV vector fields satisfying natural L1

bounds, as in DiPerna and Lions (1989), on the distributional divergence.
In this paper we show how the results of Ambrosio (2004) on transport equa-

tions with BV coefficients and standard arguments from DiPerna–Lions theory yield
a straightforward proof of the existence of such solutions, without passing through
approximations of the ODE _xxðtÞ ¼ fðrðt; xðtÞÞÞ. This proof gives also uniqueness
and stability under perturbation of the initial data and allows to remove the assump-
tion j�uuj � c > 0. More precisely one can define a class of special weak solutions of
(1), called renormalized entropy solutions (see Definition 2.4 and Frid, 2003) for
which the Cauchy problem (1) is globally well-posed in the space

X :¼ fw 2 L1j jwj 2 BVlocg:

See Theorem 2.6 for the precise statements.
In the paper Bressan (2003a) an example of Lipschitz f is shown for which the

Cauchy problem (1) is ill-posed if we drop the assumption jwj 2 BVloc. Moreover, in
De Lellis (2004) it is proved that, when n � 2, the BV norm of renormalized entropy
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solutions can blow up instantaneously, even when the initial data have small oscilla-
tion and small BV norm (for n � 3 such solutions can be constructed whenever f is
not constant, i.e., as soon as (1) does not reduce to n transport equations with
constant coefficients).

In the last section we formulate a conjecture (see Conjecture 4.3) which is closely
related to the one of Sec. 3.3 of Bressan (2003a). Indeed, using arguments from
DiPerna–Lions theory, we show that a positive answer to Conjecture 4.3 would give
a positive answer to that of Bressan (see Proposition 4.4).

2. PRELIMINARIES AND STATEMENT OF THEOREM 2.6

Before stating the main theorem, we recall the notion of entropy solution of
a scalar conservation law and the classical theorem of Kruzhkov, which provides
existence, stability and uniqueness of entropy solutions to the Cauchy problem for
scalar laws.

Definition 2.1. Let g 2 W
1;1
loc ðR;RnÞ. A pair ðZ; qÞ of functions Z 2 W

1;1
loc ðR;RÞ,

q 2 W
1;1
loc ðR;RnÞ is called an entropy–entropy flux pair relative to g if

q0 ¼ Z0g0 L1�almost everywhere on R. ð3Þ

If, in addition, Z is a convex function, then we say that ðZ; qÞ is a convex entropy–
entropy flux pair. A weak solution r 2 L1ðRþ

t � Rn
xÞ of

@trþ divx½gðrÞ� ¼ 0

rð0; �Þ ¼ rð�Þ

(
ð4Þ

is called an entropy solution if @t½ZðrÞ� þ divx½qðrÞ� � 0 in the sense of distributions
for every convex entropy–entropy flux pair ðZ; qÞ.

In what follows, we say that r 2 L1ðRþ � RnÞ has a strong trace r at 0 if for
every bounded O � Rn we have

lim
T#0

1

T

Z
½0;T ��O

jrðt; xÞ � rðxÞjdx dt ¼ 0:

Theorem 2.2 (Kruzhkov, 1970). Let g 2 W
1;1
loc ðR;RnÞ and r 2 L1. Then there exists

a unique entropy solution r of (4) with a strong trace at 0. If in addition
r 2 BVlocðRnÞ, then, for every open set A �� Rn and for every T 2 �0;1½, there
exists an open set A0 �� Rn (whose diameter depends only on A, T , g and krk1)
such that

krkBVð�0;T ½ �AÞ � krkBVðA0Þ: ð5Þ

Conservation Laws in Several Space Dimensions 1637
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Remark 2.3. In many cases the requirement that r has strong trace at 0 is not
necessary. Indeed, when g is sufficiently regular and satisfies suitable assumptions
of genuine nonlinearity, Vasseur (2001) proved that any entropy solution has a
strong trace at 0.

Definition 2.4. A weak solution u of (1) is called a renormalized entropy solution if
juj is an entropy solution of the scalar law (2) with a strong trace at 0.

The suggestion of using the terminology ‘‘renormalized entropy solutions’’ has
been taken from Frid (2003). This terminology is more appropriate than the one of
‘‘entropy solutions’’ used in Ambrosio and De Lellis (2003), because the usual
notion of entropy (or admissible) solution of a hyperbolic system of conservation
laws does not coincide with the one of renormalized entropy solutions. Let us recall
the usual notion of entropy solution for systems (cp. Sec. 4.3 of Dafermos, 2000):

Definition 2.5. Let Fa : R
k ! Rk, a ¼ 1; . . . ; n, be Lipschitz and consider the system

@tuþ
Xn
a¼1

@xa ½FaðuÞ� ¼ 0 u : O � Rþ � Rn ! Rk : ð6Þ

A pair ðZ; qÞ of functions Z 2 W
1;1
loc ðRk;RÞ, q 2 W

1;1
loc ðRk;RnÞ is called a convex

entropy–entropy flux pair for the system (6) if Z is convex and if for every open set
O and for every smooth solution u of (6) we have @t½ZðuÞ� þ divx½qðuÞ� ¼ 0. A weak
solution u of (6) is called an entropy solution if for for every convex entropy–entropy
flux pair we have @t½ZðuÞ� þ divx½qðuÞ� � 0 in the sense of distributions.

Indeed it can be shown that, already in one space dimension, there exist entropy
solutions of (1) which are not renormalized entropy solutions, see for example
Sec. 3.1 of Bressan (2003a). On the other hand one can show (at least when f 2 C2) that
every entropy Z for (1) is of the form hðjvjÞ þ jvjHðv=jvjÞ for jvj > 0 (see for example
Lemma 1.1 of Frid, 2003). Thus, it follows from Corollary 3.6 of Ambrosio (2004)
(see Lemma 2.8 below) that if u is a renormalized entropy solution, then u satisfies
@t½ZðuÞ� þ divx½qðuÞ� � 0 for every convex entropy–entropy flux pair.

Under appropriate assumptions on the initial data, it is reasonable to expect that
any entropy solution coincides with the unique renormalized entropy solution (see
for instance De Lellis, 2004).

Theorem 2.6. Let f 2 W
1;1
loc ðR;RkÞ and j�uuj 2 L1 \ BVloc. Then there exists a unique

renormalized entropy solution u of (1). If �uuj is a sequence of initial data such that

(a) j�uujj � C for some constant C,
(b) for every bounded open set O, there is a constant CðOÞ such that��j�uujj��

BV ðOÞ � CðOÞ,
(c) �uuj ! �uu strongly in L1

loc,

then the corresponding renormalized entropy solutions converge strongly in L1
loc to u.

1638 Ambrosio, Bouchut, and De Lellis
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The proof of the theorem follows from the theory of renormalized solutions to
the transport equation

@tðrwÞ þ divxðgwÞ ¼ 0; w : O � R� Rn ! Rk ð7Þ

and from the results of Ambrosio (2004).

Definition 2.7 (DiPerna–Lions renormalized solutions, DiPerna and Lions,
1989). Let O � R� Rn be open and assume that ðr; gÞ 2 L1ðO;R� RnÞ satisfy
@trþ divxg ¼ 0 in the sense of distributions. A w 2 L1ðO;RkÞ is called a renorma-
lized solution of (7) if for every h 2 C1ðRkÞ we have

@tðrhðwÞÞ þ divxðghðwÞÞ ¼ 0 in D0ðOÞ:

Corollary 3.6 of Ambrosio (2004) gives

Lemma 2.8. If ðr; gÞ in Definition 2.7 are in BVloc, then every bounded weak
solution w : O ! Rk of (7) is a renormalized solution.

For the reader convenience we recall Corollary 3.6 of Ambrosio (2004) and show
why it directly implies Lemma 2.8 above.

Theorem 2.9 (Corollary 3.6 of Ambrosio, 2004). Let O � Rd be open and let
B 2 BVlocðO;RdÞ, v 2 L1

locðO;RN Þ, c 2 L1
locðO;RN Þ. Assume that

divðviBÞ � vidiv B ¼ ci for i ¼ 1; . . .N and div B < < Ld: ð8Þ

Then, for every h 2 C1ðRN Þ we have

divðhðvÞBÞ � hðvÞdiv B ¼
XN
i¼1

@h

@yi
ðvÞ ci: ð9Þ

Proof of Lemma 2:8. We apply Theorem 2.9 by letting d ¼ nþ 1, B ¼ ðr; gÞ,
N ¼ k and v ¼ w. Clearly B 2 BVloc and div B ¼ 0. Moreover,

ci ¼ divðviBÞ � vi div B ¼ @tðrwiÞ þ divxðgwiÞ ¼ 0 :

Hence (9) gives that @tðrhðwÞÞ þ divxðghðwÞÞ ¼ 0 for every h 2 C1ðRkÞ. &

Remark 2.10 (Initial Conditions). If ðz;mÞ 2 L1ðR� Rn;R� RnÞ satisfy @tzþ
divxm ¼ 0 in �0;T ½�Rn, then by simply testing the equation against appropriate
smooth functions we get that for every j 2 C1

c ðRnÞ the map t ! R
Rn jðxÞzðt; xÞdx

coincides almost everywhere with a uniformly continuous function. Hence, by a

Conservation Laws in Several Space Dimensions 1639
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density argument we conclude that, after discarding a set of t’s of measure 0,

t ! zðt; �Þ has a weak limit in L1
loc as t # 0: ð10Þ

This gives that z has a ‘‘weak’’ trace �zz at 0. Assume r and g are as in Definition 2.7
and that w solves @tðrwÞ þ divxðgwÞ ¼ 0 in �0;T ½�Rn. Apply (10) to z ¼ r and m ¼ g

and denote by rð0; �Þ the trace of r at 0. Then note that we can apply (10) to z ¼ rw
and m ¼ gw. Thus, it is natural to understand a bounded weak solution w of

@tðrwÞ þ divxðgwÞ ¼ 0

rwð0; �Þ ¼ rð0; �Þwð�Þ;

(

as a function which solves the first equation in the sense of distribution and such that
rw has rð0; �Þ�wwð�Þ as weak trace at 0. It can be easily checked that this is equivalent
to the usual notion of solution in the sense of distributions, i.e., for every
j 2 C1

c ðR� RnÞ we have

Z
Rþ�Rn

wðt; yÞ ½rðt; yÞ@tjðt; yÞ þ gðt; yÞ � Hxjðt; yÞ�dy dt

¼
Z
Rn

rð0; xÞwðxÞjð0; xÞdx :

It turns out that this weak trace property is not sufficient for some of our arguments
as this notion of trace is, in general, not stable under left composition. In all the cases
treated here we could overcome this issue by using Theorem 3.3 of Bouchut (2001),
where the author proved strong L1 continuity in t for solutions of transport equa-
tions with BD coefficients. However we prefer to give a more elementary argument
which uses suitable extensions of r, g, and u to negative times.

Proposition 2.11 below is a direct consequence of DiPerna–Lions theory of
renormalized solutions. Its proof is based on a classical inequality for transport
equations with finite speed of propagation. This inequality is stated independently
in Lemma 2.12 and for the reader’s convenience we report a proof of it.

Proposition 2.11. Let r; g 2 L1 \ BVlocðRþ � RnÞ be such that @trþ divxg ¼ 0,
rð0; �Þ 2 BVloc, and jgj � cr for some constant c. Assume u1; u2 are bounded weak
solutions of

@tðruiÞ þ divxðguiÞ ¼ 0

ruið0; �Þ ¼ rð0; �Þuið�Þ:

(
ð11Þ

If rð0; �Þ�uu1 ¼ rð0; �Þ�uu2ðxÞ, then ru1 ¼ ru2.

1640 Ambrosio, Bouchut, and De Lellis
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Lemma 2.12. Let z 2 L1ð½0;T � � RnÞ and m 2 L1ð½0;T � � Rn;RnÞ be such that

� @tzþ divxm � 0.
� t ! zðt; �Þ is weakly continuous in L1

loc.
� jmj � Cz.

Then, for every t 2 ½0;T �, x0 2 Rn and R > 0, we haveZ
BRðx0Þ

zðt; xÞdx �
Z
BRþCtðx0Þ

zð0; xÞdx : ð12Þ

Proof. Without loss of generality we assume x0 ¼ 0. Let we 2 C1�RþÞ be such that

we ¼ 1 on ½0; 1�; we ¼ 0 on ½1þ e;þ1½; and w0e � 0:

Define the test function jðt; xÞ :¼ we
� jxj
RþCðt�tÞ

�
. Note that j is nonnegative and

belongs to C1ð½0; t� � RnÞ. Since t ! zðt; �Þ is weakly continuous in L1
loc, we can test

@tzþ divxm ¼ 0 with jðt; xÞ1½0;t�ðtÞ. Indeed let m be the measure @tzþ divxm and let
0 < t1 < t2 < t. Consider a standard family of nonnegative mollifiers xd 2 C1ðRÞ
and set zd :¼ 1½t1;t2� 	 xd. Testing @tzþ divxm ¼ m with jðt; xÞzdðtÞ we getZ

zðs; yÞjðs; yÞ�xdðt2 � sÞ � xdðt1 � sÞ�ds dy
¼
Z

zd½z @tjþm � Hxj� þ
Z

zdjdm : ð13Þ

Note that
R
zd dm � 0. Moreover, by the weak continuity of t ! zðt; �Þ, the integralsZ

zðs; yÞjðs; yÞxdðti � sÞds dy

converge to
R
jðti; xÞzðti; xÞdx as d # 0. Hence, in the limit we getZ

½t1;t2��Rn

½z @tjþm � Hxj� �
Z
Rn

jðt2; xÞzðt2; xÞdx�
Z
Rn

jðt1; xÞzðt1; xÞdx:

Then, letting t2 " t and t1 # 0 we getZ
½0;t��Rn

½z @tjþm � Hxj� �
Z
Rn

jðt; xÞzðt; xÞdx�
Z
Rn

jð0; xÞzð0; xÞdx : ð14Þ

We compute zðs; yÞ@tjðs; yÞ þmðs; yÞ � Hxjðs; yÞ as

w0e
jyj

Rþ Cðt� sÞ
� �

Cjyjzðs; yÞ
ðRþ Cðt� sÞÞ2 þ

y �mðs; xÞ
jyjðRþ Cðt� sÞÞ

" #
: ð15Þ
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Letting a :¼ jyj=ððRþ Cðt� sÞÞ, the expression in (15) becomes

w0eðaÞ
Rþ Cðt� sÞ Czaþm � y

jyj
� 	

:

For a � 1 we have w0eðaÞ ¼ 0, whereas for a � 1 we have w0eðaÞ � 0 and Cza � jmj.
Thus we conclude that the integrand of the left hand side of (14) is nonpositive.
HenceZ

Rn

we
jxj
R

� �
zðt; yÞdx �

Z
Rn

we
jxj

Rþ Ct

� �
dy :

Letting e # 0 we get (12). &

Proof of Proposition 2:11. By linearity, it is sufficient to prove that, if u is a
bounded weak solution of (11) and �uuð�Þrð0; �Þ 
 0, then ru ¼ 0. We extend ðr; gÞ
to the whole Rþ � Rn by setting

aðt; xÞ :¼
rð0; xÞ for t < 0

rðt; xÞ for t � 0

(

bðt; xÞ :¼
0 for t < 0

gðt; xÞ for t � 0.

(

Clearly a; b 2 BVlocðR� RnÞ and @taþ divxb ¼ 0. Now extend u to negative times
by setting uðt; xÞ ¼ �uuðxÞ. Then we have @tðauÞ þ divxðbuÞ ¼ 0. Applying Lemma 2.8,
if we denote by v the square of juj, we have

@tðavÞ þ divxðbvÞ ¼ 0 on R� Rn

v ¼ 0 on ft < 0g:



ð16Þ

Thanks to Remark 2.10, the map t ! aðt; �Þvðt; �Þ is weakly continuous in L1
loc,

and hence avð0; �Þ ¼ 0. We can apply Lemma 2.12 with z ¼ rv and m ¼ bv. We
conclude that z is identically 0. This implies that ru ¼ 0 on ft > 0g, which is the
desired conclusion. &

3. PROOF OF THEOREM 2.6

3.1. Existence

Fix �uu 2 L1ðRnÞ with r :¼ juj 2 BVloc. Set

yðxÞ :¼ uðxÞ=jrjðxÞ when jrjðxÞ > 0

ð1; 0; . . . ; 0Þ otherwise:
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Let r be the entropy solution of the scalar law (2) with initial data r as strong trace.
It follows from Theorem 2.2 that r 2 BVloc. Consider the Cauchy problem for the
transport equation

@tðryÞ þ divxðfðrÞryÞ ¼ 0

ryð0; �Þ ¼ rð0; �Þyð�Þ:



ð17Þ

Let us approximate r; fðrÞr with a sequence of uniformly bounded and smooth
functions rj; gj such that:

rj ! r; rjð0; �Þ ! rð0; �Þ; and gj ! fðrÞr strongly in L1
loc; ð18Þ

@trj þ divxg
j ¼ 0; ð19Þ

rj � j�1: ð20Þ

Let us solve the Cauchy problem

@tðrjyjÞ þ divxðgjyjÞ ¼ 0

rjyjð0; �Þ ¼ rð0; �Þyð�Þ:

(
ð21Þ

This can be done with the method of characteristics. Indeed set fj :¼ gj=rj and solve
the ODE

d

dt
Fjðt; xÞ ¼ fjðt;Fjðt; xÞÞ

Fjð0; xÞ ¼ x:

8<:
Since fj is smooth there exists a unique smooth Fj and for each t the map
Fjðt; �Þ : Rn ! Rn is invertible. Denoting by Cjðt; �Þ its inverse, yjðt; xÞ is given by
yðCjðt; xÞÞ.

Clearly we get kyjk1 ¼ 1. Thus, up to subsequences, we can assume that yj

converges to a bounded y weakly	 in L1. Hence, by (18) rjyj ! ry and gjyj !
fðrÞry in the sense of distributions, from which we conclude that y is a bounded
weak solution of (17).

As in Proposition 2.11, we extend the vector field ðr; fðrÞrÞ to the whole R� Rn

by setting

aðt; xÞ :¼ rð0; xÞ for t < 0

rðt; xÞ for t � 0




bðt; xÞ :¼ 0 for t < 0

rðt; xÞfðrðt; xÞÞ for t � 0.



Then we extend y to negative times by setting yðt; xÞ ¼ yðxÞ for t < 0. Thus
@tðayÞ þ divxðbyÞ ¼ 0 on the whole Rþ � Rn. Lemma 2.8 implies that y is a
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renormalized solution. Thus jyj2 satisfies @tðajyj2Þ þ divxðbjyj2Þ ¼ 0 in the sense of dis-
tributions. Note that jyðt; xÞj2 is identically 1 on ft < 0g. Thus, jyj2 is a weak solution of

@tðrjyj2Þ þ divxðfðrÞrjyj2Þ ¼ 0

rjyj2ð0; �Þ ¼ rð0; �Þ:

(
ð22Þ

Since the function identically equal to 1 is a weak solution of the same Cauchy
problem, Proposition 2.11 implies that rjyj2 ¼ r on R� Rn.

3.2. Uniqueness

If u1 and u2 are two renormalized entropy solutions of (1), then ju1j ¼ ju2j
because of Theorem 2.2. Let r :¼ ju1j ¼ ju2j and define

yiðt; xÞ :¼ uiðt; xÞ=rðt; xÞ when rðt; xÞ 6¼ 0
0 when rðt; xÞ ¼ 0,




yðxÞ ¼ uðxÞ=jujðxÞ when jujðxÞ 6¼ 0
0 when jujðxÞ ¼ 0.



Thus yi solve the transport problem

@tðryiÞ þ divxðrfðrÞyiÞ ¼ 0

ryið0; �Þ ¼ rð0; �Þyð�Þ:

(
ð23Þ

Hence, thanks to Proposition 2.11, u1 ¼ ry1 ¼ ry2 ¼ u2.

3.3. Stability

Let �uu; u; �uuj; uj be as in the statement of the Theorem. Recall that rj :¼ jujj is the
entropy solution of the scalar law

@trj þ divxðfðrjÞrjÞ ¼ 0

rjð0; �Þ ¼ jujjð�Þ;

(

hence Theorem 2.2 and condition (b) imply that krjkBVð�0;T ½�OÞ � CðT ;OÞ < 1 for
every T > 0 and for every bounded open set O � Rn. Hence the sequence jrjj is
strongly precompact in L1

loc. Since r is the unique entropy solution of

@trþ divxðfðrÞrÞ ¼ 0

rð0; �Þ ¼ jujð�Þ;




we conclude that rj ! r strongly in L1
loc.
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Set yj :¼ uj=rj where rj 6¼ 0 and yj :¼ 0 everywhere else. Define y
j
analogously.

Take a subsequence jðlÞ such that the yjðlÞ’s and the y
jðlÞ

’s converge weakly	 in L1 to
bounded functions y1 and y

1
. Recall that rjðlÞ ! r strongly in L1

locðRþ � RnÞ and
that rjðlÞð0; �Þ ¼ j�uujðlÞð�Þj ! j�uuð�Þj ¼ rð0; �Þ strongly in L1

locðRnÞ. Hence, we can pass
to the limit in the problems

@tðrjðlÞyjðlÞÞ þ divxðfðrjðlÞÞrjðlÞyjðlÞÞ ¼ 0

rjðlÞyjðlÞð0; �Þ ¼ rjðlÞð0; �ÞyjðlÞð�Þ;

(

and conclude that y1 solves

@tðry1Þ þ divxðfðrÞry1Þ ¼ 0

ry1ð0; �Þ ¼ rð0; �Þy1ð�Þ:



Set y :¼ u=juj where r 6¼ 0 and y :¼ 0 everywhere else, and define y in an analogous
way. Then y solves

@tðryÞ þ divxðfðrÞryÞ ¼ 0

ryð0; �Þ ¼ rð0; �Þyð�Þ;




thanks to assumption (c), we have rð0; �Þy1ð�Þ ¼ rð0; �Þyð�Þ. Hence we can apply
Proposition 2.11 to conclude that

rðt; xÞy1ðt; xÞ ¼ rðt; xÞyðt; xÞ for almost every ðt; xÞ:

Hence, ujðlÞ converges weakly	 to u. Since jujðlÞj ! juj strongly in L1
loc, we conclude

that ujðlÞ ! u strongly in L1
loc.

The argument above shows that from every subsequence fujðlÞg � fujg we can
extract a further subsequence which converges strongly in L1

loc to u. This implies that
the whole sequence fujg converges to u.

4. BRESSAN’S CONJECTURE

In this section we show that a suitable renormalization property is closely related
to a conjecture recently made by Bressan on the compactness of Lagrangian flows.
We also indicate some cases when the compactness is known.

Conjecture 4.1 (Bressan, 2003a). Let fj : Rþ � Rn ! Rn be a sequence of smooth
maps and define Fj : Rþ � Rn ! Rn by

d

dt
Fjðt; xÞ ¼ fjðt;Fjðt; xÞÞ

Fjð0; xÞ ¼ x:

8<:
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Denote by Jjðt; xÞ the Jacobian determinants of HxFjðt; xÞ. Assume that

kfjk1 þ kHt;xf
jkL1 � C and C�1 � Jj � C;

for some constant C. Then Fj is strongly precompact in L1
loc.

Remark 4.2. Let Cjðt; �Þ be the inverse of Fjðt; �Þ and let rjðt; xÞ :¼ 1=Jjðt;Cjðt; xÞÞ.
Note that @trj þ divxðfjrjÞ ¼ 0 and that, thanks to our assumptions, C � rj � C�1.
We can assume that, up to subsequences, rj converges to a bounded function r
weakly	 in L1. Moreover, again up to subsequences, we can assume that fj

converges strongly in L1 to a BV map f . This gives that @trþ divxðrfÞ ¼ 0.

In view of DiPerna–Lions theory, the following seems closely related to
Conjecture 4.1:

Conjecture 4.3. Let f 2 L1 \ BVlocðR� RnÞ and let r 2 L1ðR� RnÞ be such that

r � c > 0 and @trþ divxðrfÞ ¼ 0 :

Then every bounded weak solution w of @tðrwÞ þ divxðrfwÞ ¼ 0 is a renormalized
solution.

Indeed we will prove

Proposition 4.4. Conjecture 4.3 implies Conjecture 4.1.

Remark 4.5 (Absolutely ContinuousDivergence). Note that the results of Ambrosio
(2004) give a positive answer to Conjecture 4.3 when divxf is absolutely continuous.
Indeed fix w : R� Rn ! Rk as in Conjecture 4.3 and consider the vector-valued map
v :¼ ðr; rwÞ. Note that @tvþ divxðvfÞ ¼ 0. In view of Corollary 3.6 of Ambrosio
(2004) (i.e., Theorem 2.9), v is a renormalized solution, which in this case means that

@tðHðvÞÞ þ divxðfHðvÞÞ ¼
Xkþ1

j¼1

vj
@H

@yj
ðvÞ � HðvÞ

 !
divxf ð24Þ

for all H 2 C1ðRkþ1Þ.
Let z : Rkþ1 ! Rk be a smooth map such that

zðyÞ ¼ ðy2=y1; . . . ; yk=y1Þ on y1 � C�1.

For every h 2 C1ðRkÞ consider the map HðyÞ :¼ y1hðzðyÞÞ and note that

HðvÞ ¼ rhðwÞ and
Xkþ1

j¼1

vj
@H

@yj
ðvÞ �HðvÞ ¼ 0:

Thus from (24) we get @tðrhðwÞÞ þ divxðrhðwÞfÞ ¼ 0.
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Concerning Conjecture 4.1, we know from Theorem 6.5 of Ambrosio (2004) that
it holds provided the fj’s converge to an f whose divergence is absolutely continuous
and with negative part in L1. The proof in Ambrosio (2004) actually uses only the
lower bound on Jj and not the upper bound.

Note that Proposition 4.4 yields a proof of Conjecture 4.1 under the only
assumption that the divergence of f is absolutely continuous.

Before coming to the proof of Proposition 4.4 we need two lemmas. Up to
subsequences, we assume that rj ! r weakly	 in L1 and that fj ! f strongly in
L1
loc. Thus r satisfies the transport equation

@trþ divxðrfÞ ¼ 0 ;

and, by Remark 2.10, the map t ! rðt; �Þ is weakly continuous in L1
loc. Arguing as in

Remark 2.10, it is easy to see that for every test function j 2 C1
c ðRnÞ the functions

t ! R
jðxÞrjðt; xÞ dx are equicontinuous and thus they converge uniformly to the

map t ! R
jðxÞrðt; xÞdx. Since rjð0; xÞ ¼ 1, we conclude that

rðt; �Þ ! 1 weakly	 in L1 for t # 0: ð25Þ

In view of this, w 2 L1 is a weak solution of

@tðrwÞ þ divxðrfwÞ ¼ 0

rwð0; �Þ ¼ rð0; �Þwð�Þ

(
ð26Þ

if for every j 2 C1
c ðR� RnÞ we have

Z
Rþ�Rn

rðt; yÞwðt; yÞ ½@tjðt; yÞ þ fðt; yÞ � Hxjðt; yÞ�dy dt

¼
Z
Rn

rð0; xÞwðxÞjð0; xÞdx :

Lemma 4.6. Let rj and fj be as in Remark 4.2 and assume that rj ! r weakly	 in
L1 and fj ! f strongly in L1

loc. Assume that Conjecture 4.3 holds. If
w : Rþ � Rn ! Rk is a bounded weak solution of (26), then for every h 2 C1ðRkÞ
the function hðwÞ is a weak solution of

@tðrhðwÞÞ þ divxðrfhðwÞÞ ¼ 0

rhðwð0; �ÞÞ ¼ rð0; �Þhðwð�ÞÞ

(
ð27Þ

Lemma 4.7. Let rj and fj be as in Remark 4.2 and assume that rj ! r weakly	 in
L1 and fj ! f strongly in L1

loc. If �ww 2 L1 and Conjecture 4.3 holds, then there
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exists a unique weak solution of (26). Moreover, if wj are the solutions of

@tðrjwjÞ þ divxðrjfjwjÞ ¼ 0

rwjð0; �Þ ¼ rð0; �Þwð�Þ;

(
ð28Þ

then wj ! w strongly in L1
loc.

Proof of Lemma 4:6. Conjecture 4.3 implies that

@tðrhðwÞÞ þ divxðrfhðwÞÞ ¼ 0

in the sense of distributions. Thus, in order to prove the lemma we have to ensure
that hðwÞ satisfies the right boundary conditions.

As in the proof of Lemma 2.11, we extend the field r and f to maps a and b

defined on the whole R� Rn by setting

aðt; xÞ :¼ 1 for t < 0

rðt; xÞ for t � 0



bðt; xÞ :¼ 0 for t < 0

fðt; xÞ for t � 0:



Clearly b 2 BVlocðR� RnÞ. Moreover, thanks to (25), it is clear that
@taþ divxðabÞ ¼ 0. Extend w to negative times by setting

wðt; xÞ :¼ wðxÞ for t < 0:

Then @tðawÞ þ divxðbawÞ ¼ 0 on the whole R� Rn. Applying Conjecture 4.3 to the
field ða; bÞ we get that @tðahðwÞÞ þ divxðabhðwÞÞ ¼ 0 on the whole R� Rn. Since
hðwðt; xÞÞ ¼ hð�wwðxÞÞ for t < 0, clearly hðwÞ is a weak solution of (28). &

Proof of Lemma 4:7. For the uniqueness we repeat the same proof of Lemma 2.11.
First of all, by linearity it is sufficient to prove the lemma when �ww ¼ 0. Then we set
v :¼ jwj2 and by Lemma 4.6 we get that v is a weak solution of

@tðrvÞ þ divxðrfvÞ ¼ 0

rvð0; �Þ ¼ 0:



ð29Þ

Thanks to Remark 2.10, the map t ! rðt; �Þvðt; �Þ is weakly continuous in L1
loc. Thus

we can apply Lemma 2.12 to z ¼ rv and h ¼ rfv. We conclude that rv ¼ 0 and,
since r > 0, we get v ¼ 0.

We now pass to the second part of the lemma. Let us fix wj as in the statement.
By possibly extracting a subsequence, assume that rjwj converge, weakly	 in L1, to a
function v. Set w :¼ v=r. Since fj ! f strongly in L1

loc, it follows easily that w is a
weak solution of (26). Since rj and fj are smooth, for every h 2 C1 we have

@tðrjhðwjÞÞ þ divxðrjfjhðwjÞÞ ¼ 0

rhðwjð0; �ÞÞ ¼ rð0; �Þhðwð�ÞÞ:

(
ð30Þ
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As above, we can assume that, up to subsequences, rjhðwjÞ converge to a function z,
weakly	 in L1. Setting ~zz ¼ z=r, we find that ~zz solves

@tðr~zzÞ þ divxðrf~zzÞ ¼ 0

r~zzð0; �Þ ¼ rð0; �Þhðwð�ÞÞ:

(
ð31Þ

Thanks to Lemma 4.6, hðwÞÞ solves the same transport problem. Thus, by the first
part of the lemma, we have that ~zz ¼ hðwÞ. Hence for every such h, rjhðwjÞ converges
(weakly	 in L1) to rhðwÞ.

Fix a bounded set O � Rþ � Rn. ThenZ
O
rjjwj � wj2 ¼

Z
Rþ�Rn

1Orjjwjj2 þ
Z
Rþ�Rn

1Orjjwj2 � 2

Z
Rþ�Rn

1Orjwj � w:

Since rj *
	
r, rjwj *

	
rw, and rjjwjj2 *	 rjwj2, we get that

R
O rjjwj � wj2 # 0. Since

rj � C�1, we conclude that
R
O jwj � wj2 # 0. &

Proof of Proposition 4:4. Let fj and Fj be as in Conjecture 4.1 and define Cj as in
Remark 4.2. Without loosing our generality we assume that fj ! f strongly in L1

loc.
Fix T > 0 and consider the ODE

d

dt
Ljðt; xÞ ¼ fjðt;Lðt; xÞÞ

LjðT ; xÞ ¼ x:

8<:
Note that Ljðt; �Þ ¼ Fjðt;CjðT ; �ÞÞ. Thus, if we denote by eJJðt; �Þ the Jacobian of
Ljðt; �Þ, we get that 0 � C�2 � eJJðt; �Þ � C2. Denote by Gjðt; �Þ the inverse of Ljðt; �Þ
and set ~rrjðt; xÞ :¼ 1=eJJðt;Gjðt; xÞÞ. Moreover, for every �ww 2 L1ðRn;RnÞ define the
function wjðt; xÞ :¼ �wwðGjðt; xÞÞ. Clearly we have

@tð~rrjwjÞ þ divxð~rrjfjwjÞ ¼ 0

rjwjðx;TÞ ¼ wðxÞ:

(

We claim that the ~rrj’s have a unique weak	 limit. Indeed, assume that ~rr and r̂r are
weak	 limits of two convergent subsequences of ~rrj’s. Then @t~rrj þ divzðf~rrÞ ¼ 0 and
@tr̂rj þ divzðf r̂rÞ ¼ 0. Moreover, thanks to the discussion preceding (25), both ~rr and r̂r
have weak trace equal to 1 at t ¼ T . Thus, if we set v :¼ r̂r=~rr we have

@tð~rrvÞ þ divxð~rrvfÞ ¼ 0

~rrvðT ; �Þ ¼ 1:

(

Since 1 is a weak solution of the same Cauchy problem, by Lemma 4.7 we have
that v ¼ 1, and hence ~rr ¼ r̂r. Indeed note that by the change of variables t ! t� T ,
the conclusion of Lemma 4.7 holds even when we replace the initial conditions
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rwð0; �Þ ¼ �wwð�Þ with rwðT ; �Þ ¼ �wwðT ; �Þ. Similarly, the change of variables t ! �t

shows that the same holds if we solve the transport equations backward in time.
Note that there exists a constant C such that jGjðt; xÞ � xj � CðT � tÞ for every t,

x and j. Fix r > 0 and choose R > 0 so large that R� CT > r. Let �ww be the vector
valued map x ! x 1BRð0ÞðxÞ. Thus, for every t < T and every jxj < r, wjðt; xÞ is equal
to the vector Gjðt; xÞ. Thanks to Lemma 4.7, wj converges strongly in L1

loc to a unique
w. Hence, by the arbitrariness of r we conclude that Gj converges to a unique G
strongly in L1

loc.
For each x, Gjð�; xÞ is a Lipschitz curve, with Lipschitz constant uniformly

bounded. Thus we infer that, for a.e. x, Gjð�; xÞ converges uniformly to the curve
Gð�; xÞ on ½0;T �. Hence, we conclude that, after possibly changing G on a set of mea-
sure 0, for every t � 0 the maps Gjðt; �Þ converge to Gðt; �Þ in L1

locðRnÞ.
Since Gjð0; �Þ ¼ FjðT ; �Þ we conclude that for every T there exists a FðT ; �Þ such

that FjðT ; �Þ converges to FðT ; �Þ in L1
locðRnÞ. Since Fj is locally uniformly bounded,

we conclude that Fj converges to F strongly in L1
locðRþ � RnÞ. &
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