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Abstract

In this thesis we present a result concerning existence and regularity of min-

imal surfaces with boundary in Riemannian manifolds obtained via a min-max

construction, both in fixed and free boundary context.

We start by considering a smooth, compact, oriented Riemmanian manifold

(M, g) of dimension n+ 1 with a uniform convexity property (the principal cur-

vatures of ∂M with respect to the inner normal have a uniform positive lower

bound). In the spirit of an analogous approach presented in Colding-De Lellis (cf.

[10]), we then construct generalized families of hypersurfaces inM, with appro-

priate boundary conditions. To be more precise, in the fixed boundary setting this

will basically mean that these hypersurfaces will have a fixed common boundary

γ, which is an (n− 1)-dimensional smooth, closed, oriented submanifold of ∂M,

and in the free boundary setting that their boundaries lie in ∂M. Moreover, we

will consider more general parameter spaces for these families. After constructing

a suitable homotopy class of such families and assuming that it satisfies a certain

"energy gap", we can prove the existence of a nontrivial, embedded, minimal

hypersurface (with a codimension 7 singular set) and corresponding boundary

conditions.

As a corollary, we consider a special case of two smooth, strictly stable surfaces

bounding an open domain A and meeting only in the common boundary γ ⊂ ∂M,

and show the existence of a homotopy class with the required energy gap. The

main theorem then furnishes the existence of a third minimal surface.
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Zusammenfassung

In dieser Arbeit stellen wir ein Resultat über die Existenz und Regularität

von Minimalflächen mit Randbedingung in Riemann’sche Mannigfaltigkeiten, er-

halten durch Min-Max Konstruktion, vor. Wir betrachten die festen und freien

Randbedingungen.

Sei (M, g) eine glatte, kompakte, orientierbare, (n + 1)-dimensionale Rie-

mann’sche Mannigfaltigkeit mit einer uniformen Konvexitätseigenschaft (die Haup-

tkrümmungen von ∂M bezüglich dem nach innen gerichteten Normalvektor haben

eine uniforme, positive, untere Schranke). Analog zum Vorgehen in Colding-De

Lellis (cf. [10]) konstruieren wir verallgemeinerte Familien von Hyperflächen in

M mit entsprechenden Randbedingungen. Genauer, bei dem Problem mit festem

Rand bedeutet das, dass diese Hyperflächen einen gemeinsamen Rand γ haben,

welcher eine (n − 1)-dimensionale, glatte, geschlossene, orientierbare Unterman-

nigfaltigkeit von ∂M ist. Bei dem Problem mit freiem Rand liegen die Ränder

von diesen Hyperflächen in ∂M. Ausserdem betrachten wir allgemeinere Parame-

terräume für diese Familien. Nachdem wir eine geeignete Homotopieklasse solcher

Familien konstruiert haben, und angenommen dass diese Klasse eine bestimmte

"Energielücke"-Annahme erfüllt, können wir die Existenz einer nicht trivialen,

eingebetteten, minimalen Hyperfläche (mit Kodimension 7 Menge der Singular-

itäten) mit entsprechender Randbedingung zeigen.

Als Korollar betrachten wir den Spezialfall von zwei glatten, strikt stabilen

Hyperflächen, die eine offene Menge A begrenzen und nur auf dem gemeinsamen

Rand γ ⊂ ∂M treffen, und zeigen die Existenz von einer Homotopieklasse mit

der benötigten "Energielücke". Das Haupttheorem liefert dann die Existenz von

einer dritten Minimalfläche.
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Chapter 1
Introduction

1.1 Theory of Minimal Surfaces
The foundations of what would later develop into a mathematical theory of min-
imal surfaces were laid out by Lagrange and Euler in the 1760s. In its inception,
the objects of interest were surfaces which minimize area within a given boundary
configuration. Lagrange considered these surfaces as graphs over a plane, some-
times referred to as non-parametric surfaces, and through the use of variational
calculus derived the minimal surface equation, which gives a necessary condition
that they must satisfy. Meusnier later showed a more geometric but equivalent
characterization, which states that such surfaces must have a vanishing mean cur-
vature, i.e. H = 0. He also found two (non-trivial) examples of such objects, the
helicoid and the catenoid. In the modern sense of the name minimal surfaces, the
condition H = 0 is the most widely used as definition. Hence it refers to surfaces
which are critical points of the area functional, but not necessarily minimizers.

Usually, one distinguishes between two major types of boundary configura-
tions when treating the problem of finding these surfaces; the first is when the
boundary of the surface is fixed a priori, and the second is the so called free bound-
ary problem, when the boundary must lie on some given supporting surface S.
In the second case, the surface must be stationary for the area with respect to
deformations which allow its boundary to move freely on S. This will be made
more precise in Chapter 3. A comprehensive collection of nearly all of the histor-
ical references presented throughout this introduction (and many more) can be
found in the book by Dierkes, Hildebrandt and Sauvigny [14].

1.1.1 A Short History of the Plateau Problem

Although the study of minimal surfaces is interesting from a purely theoretical
point of view, a connection to real world phenomena was established by the
Belgian physicist Plateau, when he conducted experiments with soap films. He
conjectured that every closed wire frame, when dipped into a soap solution, should
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Chapter 1. Introduction 2

bound a surface of least energy. In mathematical terms, it will correspond to a
minimal surface, and the problem of finding one (i.e. showing the existence
thereof) was later named as the Plateau problem. However, there are many ways
to precisely formulate such a problem, depending on the definition of the words
surface and boundary.

When considering the nonparametric definition of surfaces as mentioned above,
the first general existence proof was published by Haar [26] in 1927, with impor-
tant contributions from Rado. The more general (and interesting) formulation of
the problem was the parametric one, which was to find a surface parametrized
by a two dimensional disc of least area spanning a given rectifiable Jordan curve.
The breakthrough came in the early 1930s, when Douglas [15] and Rado [43] in-
dependently proved the existence of a solution. A generalization to Riemannian
manifolds is due to Morrey [37].

A natural question which arises once existence of a solution is known is its
regularity. In the case of the Douglas-Rado solution, the surface is known only
to be an immersion, after Osserman, Gulliver and Alt [40],[25],[6] excluded the
existence of interior branch points. In particular, it might have self-intersections
(and in a lot of situations it will). The question of boundary branch points
is still open, unless the boundary curve is real analytic (see [24]). In order to
achieve embeddedness of the solution, one has to impose certain restrictions on the
boundary curve. For instance, if the boundary curve lies inside the C2 boundary
∂K of a mean convex set K, the minimal disk is embedded by a result of Meeks
and Yau [36] (see also Almgren-Simon [3]).

In view of these drawbacks and in order to attack the Plateau problem in more
generality, it was clear that the parametric formulation is not very well suited.
Perhaps the greatest disadvantage is that one a priori fixes the topology of the
minimal surface to be that of a disk. This in particular makes it difficult for
minimal surfaces to be embedded (by constructions similar to that of Almgren
and Thurston in [4], one can produce unknotted boundary curves for which the
only embedded minimal surfaces have an arbitrarily prescribed lower bound on
the genus). Moreover, the Douglas-Rado approach consists of minimizing the
Dirichlet energy, which has better functional analytic properties than the area
functional, in a suitable class of surfaces. It then relies on the facts that for
conformally parametrized surfaces the two functionals are equal, and that by the
celebrated Lichtenstein theorem, in two dimensions one can always find conformal
parametrizations. This theorem is false in general for higher dimensions.

Using tools from geometric measure theory, several different generalized no-
tions of surfaces were introduced to overcome the difficulties presented above, the
most notable of which perhaps are currents and varifolds. Loosely speaking, both
of these notions represent classes of objects which are regular enough to be con-
sidered surfaces in some weak sense, and at the same time general enough to have
good compactness properties, ensuring the existence of area minimizers through
the use of the direct method of calculus of variations (both of these objects will
be introduced in more detail in Chapter 2). In the framework of integer rectifi-
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Chapter 1. Introduction 3

able currents, one is able to formulate and solve the Plateau problem in general
dimension (and codimension), since there is a natural notion of a boundary for
such surfaces.

As for the regularity of such objects, in the codimension 1 case of n-dimensional
surfaces in Rn+1 (which is of most interest to us in this thesis), the regularity the-
ory due to De Giorgi, Fleming, Almgren, Simons and Federer [11],[18],[2],[50],[17]
shows that in the interior the minimizing current is smooth and embedded for
n ≤ 6, has isolated singularities for n = 7 and has a codimension 7 singular set for
n ≥ 8. Moreover, this regularity is sharp by a paper of Bombieri, De Giorgi and
Giusti [9], which shows the (7-dimensional) Simons’ cone to be area minimizing
in R8. The question of boundary regularity was settled by Hardt and Simon [27],
who show that if the boundary of the minimizing current is an oriented, closed
(n − 1)-dimensional C1,α submanifold, then at every boundary point it is a C1

manifold with boundary. We briefly mention that this regularity results come at
a cost that, due to the weak notion of convergence, one has in general no control
over the topological type of the minimal surface.

1.1.2 Min-Max Method

Since minimal surfaces are defined as critical points of the area and not merely
as minimizers, another important problem involves finding minimal surfaces of
higher index. A natural setting to use in this problem would be the theory of
critical points due to M. Morse and to L.A. Lusternik and L. Schnirelmann, which
generally relates topological properties of a manifold to the number and type of
critical points of certain functionals defined on it. For the purpose of this thesis,
we are interested in a special part of that theory, which is a type of statement
commonly referred to as the "Mountain Pass Theorem". The name stems from
an appropriate topographical analogy; given two points which are separated by
a "wall" of high elevation (in particular if they are strict local minima), there
exists a path between them with a "mountain pass", which is an unstable critical
point of saddle type (i.e. unstable) of the elevation function. To find this point,
heuristically speaking, one would find a point of maximum elevation on a path
between the two points, and then minimize among all possible paths - hence the
label "min-max" is sometimes used for this type of argument.

First results of this kind for parametric surfaces, which show the existence of
unstable minimal surfaces spanning a given boundary, were proved simultaneously
by Shiffman [48] and by Morse and Tompkins [38]. A nice exposition of Shiffman’s
approach can be found in the treatise of Nitsche [39]. We will state the theorem
here, as an appropriate analogy to the result in this thesis can be drawn later on.
We define, for a rectifiable 1 Jordan curve Γ, the space of surfaces

H(Γ) = {X ∈ H1,2(B,R3) ∩ C0(B̄,R3) |X harmonic in B, X|∂B : ∂B → Γ is
weakly monotonic and fixed for 3 points yi ∈ ∂B, i = 0, 1, 2},

1there is an additional condition on this curve which we omit here, see §25 in [39]

3



Chapter 1. Introduction 4

where B is the unit 2-dimensional disk, and endow this space with the C0 topol-
ogy. Now let X1, X2 ∈ H(Γ) be two maps with Dirichlet integrals D(Xi) < ∞,
and let I be a closed connected subset of H containing these maps. We denote
d[X1, X2] = infI supX∈I D(X). We then say that the two maps X1 and X2 are
separated by a wall if

(1.1.1) d[X1, X2]−max{D(X1), D(X2)} > 0.

We can now state the theorem as follows:

Theorem 1. Let the space H(Γ) contain two different maps which define gen-
eralized2 minimal surfaces (by the isoperimetric inequality, these surfaces have
finite Dirichlet integrals). If X1 and X2 are separated by a wall of positive ele-
vation, then there exists another map (distinct from X1 and X2) which defines a
generalized minimal surface.

Using a degree theory approach to the Plateau problem, Tromba [56, 55]
was able to derive a limited Morse theory for disk-type surfaces, generalizing
the Morse-Shiffman-Tompkins result. M. Struwe [52, 53, 54] then developed a
general Morse theory for minimal surfaces of disk and annulus type, based on
the H1,2 topology (as opposed to C0 topology used in Morse-Shiffman-Tompkins
approach). These (and other related works) were expanded by Jost and Struwe in
[29], where they consider minimal surfaces of arbitrary topological type. Among
other things, they succeed in applying saddle-point methods to prove the existence
of unstable minimal surfaces of prescribed genus.

Min-max arguments have also been used to show existence of closed minimal
submanifolds in compact Riemannian manifolds. This approach is particularly
effective in producing closed geodesics. In this setting, the two local minimiz-
ers correspond to constant maps γ0 and γ1, and the paths between them to
1-parameter families {γt} of maps from S1 into the manifold. Whereas in the
Morse-Tompkins and Shiffman result one had to work with a weaker topology
in order to obtain a necessary compactness argument, in the case of curves it
is the energy functional (defined on an appropriate space) that satisfies the so
called Palais-Smale compactness condition (C), which (along with some other
topological properties) thus enabled Lyusternik and Fet [32] to prove existence of
closed geodesics in arbitrary closed Riemannian manifolds via a mountain pass
argument. This had already been done in the case of manifolds homeomorphic
to the sphere, by Birkhoff [8] back in 1917. Unfortunately, one cannot apply the
same method directly to produce closed minimal submanifolds, due to lack of
such compactness. Nevertheless, for 2-spheres, there is a famous work by Sacks
and Uhlenbeck [44] where they consider a family of perturbed energy function-
als that (unlike the Dirichlet energy) satisfy the condition (C), find their critical
points with a mountain pass argument, and finally obtain the minimal surface as
a limit for these critical points.

2this means isolated branch points are allowed, see definition in §283 of [39]
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Chapter 1. Introduction 5

A renewed effort to produce closed minimal surfaces via the min-max con-
struction using tools from geometric measure theory started with Almgren [5],
who showed the existence of stationary varifolds in arbitrary dimension and codi-
mension. His student J. Pitts [41] later expanded on this work and proved reg-
ularity in the codimension one case. More precisely, he showed the existence of
smooth, closed, embedded minimal hypersurfaces in Riemannian manifolds of di-
mension less than or equal to 6, since the curvature estimates of Schoen, Simon
and Yau [47], valid in those dimensions, were crucially used. These estimates
were improved by Schoen and Simon [46], which enabled them to extend Pitts’
existence proof to arbitrary dimensions, with the addition of a possible singular
set of codimension 7 to the hypersurface.

Currently, interest in min-max constructions is once again starting to gain
traction. This is largely due to the celebrated recent work of Marques and Neves
[33] which used Almgren-Pitts min-max theory to solve a long-standing conjecture
of Willmore in differential geometry.

Unfortunately, due to the lack of Hilbert space structure and the Palais-Smale
condition in the approach of Almgren and Pitts, it turns out to be very difficult to
extract information on the Morse index, or to establish genus bounds for the min-
max minimal surface. The main problem is the very weak notion of convergence
(in the sense of varifolds). In fact, no general information on the Morse index in
Pitts’ construction was known until, very recently, such bounds were established
by Marques and Neves [34]. There is however a variant of Almgren-Pitts theory
for 3-dimensional ambient manifols, attributed to Simon and Smith, which allows
to control the topology of the min-max minimal surface, see [51], [42], [12], [30].
This variant is restricted to three dimensions, as it crucially uses a famous result
by Meeks, Simon and Yau [35] that is not available in higher dimensions. We
omit further details here, as it goes beyond the scope of this thesis. M. Grüter
and J. Jost [23] [28] used the Simon-Smith variant of min-max theory to con-
struct embedded minimal disks with free boundary when the ambient manifold
M is diffeomorphic to the sphere and ∂M is mean convex. Within the same
setting, Martin Man-chun Li [31] proved existence of minimal surfaces with free
boundaries in 3-manifolds, without any convexity assumption on ∂M.

1.2 Setting and Main Result
Pitts’ groundbreaking monograph introduced new ideas used in many subsequent
works, including this thesis, which implements the same general approach in
order to prove existence and regularity of minimal hypersurfaces with certain
boundary conditions. In fact, Pitts’ proof was shortened considerably by De Lellis
and Tasnady in [13], and we will develop our min-max theory in the framework
introduced in that paper, which essentially is a variant of that developed by
Pitts. This allows us to avoid a lot of technical details and yet be sufficiently self-
contained. However, several of the tools developed in this thesis can be applied
to a suitable modification of Pitts’ theory as well and we believe that the same

5



Chapter 1. Introduction 6

statements can be proved in that framework.
We start by considering a smooth, compact, oriented Riemannian manifold

(M, g) of dimension n + 1 with boundary ∂M. We will assume that ∂M is
strictly uniformly convex, namely:

Assumption 1.1. The principal curvatures of ∂M with respect to the unit nor-
mal ν pointing insideM have a uniform, positive lower bound.

Sometimes we write the condition above as A∂M � ξg, where ξ > 0, A∂M
denotes the second fundamental form of ∂M (with the choice of inward pointing
normal) and g the induced metric as submanifold of M. We also note that we
do not really needM to be C∞ since a limited amount of regularity (for instance
C2,α for some positive α) suffices for all our considerations, although we will not
pay any attention to this detail.

We proceed by recalling the continuous families of hypersurfaces used in [13].

Definition 1.2. We fix a smooth compact k-dimensional manifold P with bound-
ary ∂P (possibly empty) and we will call it the space of parameters.

A smooth family of hypersurfaces inM parametrized by P is given by a map
t 7→ Γt which assigns to each t ∈ P a closed subset Γt of M and satisfies the
following properties:

(s1) For each t there is a finite St ⊂ M such that Γt is a smooth oriented
hypersurface inM\ St with boundary ∂Γt ⊂ ∂M\ St;

(s2) Hn(Γt) is continuous in t and t 7→ Γt is continuous in the Hausdorff sense;

(s3) on any U ⊂⊂M\ St0, Γt
t→t0−→ Γt0 smoothly in U .

From now on we will simply refer to such objects as families parametrized
by P and we will omit to mention the space of parameters when this is obvious
from the context. Additionally we will distinguish between two classes of smooth
families according to their behaviour at the boundary ∂M.

Definition 1.3. Consider a smooth, closed submanifold γ ⊂ ∂M of dimension
n− 1. A smooth family of hypersurfaces parametrized by P is constrained by γ if
∂Γt \St = γ \St for every t ∈ P. Otherwise we talk about “uncostrained families”.

Two unconstrained families {Γt} and {Σt} parametrized by P are homotopic
if there is a family {Λt,s} parametrized by P × [0, 1] such that

• Λt,0 = Σt ∀t ∈ P,

• Λt,1 = Γt ∀t ∈ P,

• and Λt,s = Λt,0 ∀t ∈ ∂P and for all s ∈ [0, 1].

When the two families are constrained by γ we then additionally require that the
family {Λt,s} is also constrained by γ.

Finally a set X of constrained (resp. unconstrained) families parametrized by
the same P is called homotopically closed if X includes the homotopy class of
each of its elements.

6



Chapter 1. Introduction 7

Definition 1.4. Let X be a homotopically closed set of constrained (resp. uncon-
strained) families parametrized by the same P. The min-max value of X, denoted
by m0(X) is the number

(1.2.1) m0(X) = inf

{
max
t∈P
Hn(Σt) : {Σt} ∈ X

}
.

The boundary-max value of X is instead

(1.2.2) bM0(X) = max
t∈∂P
{Hn(Σt) : {Σt} ∈ X} .

A minimizing sequence is given by a sequence of elements {{Σt}`} ⊂ X such that

lim
`↑∞

max
t∈P
Hn(Σ`

t) = m0(X).

A min-max sequence is then obtained from a minimizing sequence by taking the
slices {Σ`

t`
}, for a choice of parameters t` ∈ P such that Hn(Σ`

t`
)→ m0(X).

As it is well known, even the solutions of the codimension one Plateau problem
can exhibit singularities if the dimension n+ 1 of the ambient manifold is strictly
larger than 7. If we say that an embedded minimal hypersurface Γ is smooth
then we understand that it has no singularities. Otherwise we denote by Sing (Γ)
its closed singular set, i.e. the set of points where Γ cannot be described locally
as the graph of a smooth function. Such singular set will always have Hausdorff
dimension at most n − 7 and thus with a slight abuse of terminology we will
anyway say that Γ is embedded, although in a neighborhood of the singularities
the surface might not be a continuous embedded submanifold. When we write
dim (Sing (Γ)) ≤ n − 7 we then understand that the singular set is empty for
n ≤ 6.

Our main theorem is the following.

Theorem 1.5. LetM be a smooth Riemannian manifold that satisfies Assump-
tion 1.1 and X be a homotopically closed set of constrained (resp. unconstrained)
families parametrized by P such that

(1.2.3) m0(X) > bM0(X) .

Then there is a min-max sequence {Σ`
t`
}, finitely many disjoint embedded and con-

nected minimal hypersurfaces {Γ1, . . . ,ΓN} with boundaries ∂Γi ⊂ ∂M (possibly
empty) and finitely many positive integers ci such that

Σ`
t`

⇀∗
∑
i

ciΓi

in the sense of varifolds and dim (Sing (Γi)) ≤ n− 7 for each i. In addition:

(a) If X consists of unconstrained families, then each Γi meets ∂M orthogo-
nally;

7
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(b) If X consists of families constrained by γ, then:
∑
∂Γi = γ, Sing (Γi) ∩

∂M = ∅ for each i and ci = 1 whenever ∂Γi 6= ∅.

We can immediately draw a parallel with Theorem 1, since the assumption
(1.2.3) for P = [0, 1] can be interpreted as surfaces Σ0 and Σ1 being "separated
by a wall", similar to the assumption (1.1.1) in that theorem. Thus it can be
understood in the spirit of a mountain-pass theorem in a somewhat generalized
sense.

Our main concern is in fact the case (b) of Theorem 1.5, because the regularity
at the boundary requires much more effort. The regularity at the boundary for the
case (a) is instead much more similar to the usual interior regularity for minimal
surfaces and for this reason we will not spend much time on it but rather sketch
the needed changes in the arguments. As an application of the main theorem we
give the following two interesting corollaries.

Corollary 1.6. Under the assumptions above there is always a nontrivial embed-
ded minimal hypersurface Γ inM, meeting the boundary ∂M orthogonally, with
dim (Sing (Γ)) ≤ n− 7

Note that the corollary above does not necessarily imply that Γ has nonempty
boundary; we do not exclude that Γ might be a closed minimal surface. On the
other hand, if Γ has nonempty boundary, then it is contained in ∂M and any
connected component of Γ is thus a nontrivial solution of the free boundary
problem. Therefore the existence of such nontrivial solution is guaranteed by the
following

Assumption 1.7. M does not contain any nontrivial, minimal, closed hyper-
surface Σ, embedded and smooth except for a singular set Sing (Σ) satisfying
dim (Sing (Σ)) ≤ n− 7.

Note that the property above holds if M satisfies some stronger convexity
condition than Assumption 1.1: for instance if there is a point p such thatM\{p}
can be foliated with convex hypersurfaces, it follows from the maximum principle.
In particular both the Assumptions 1.1 and 1.7 are satisfied by any bounded
convex subset of the Euclidean space, or by any ball of a closed Riemannian
manifold with radius smaller than the convexity radius.

Likewise, under the very same assumptions we can conclude the following
Morse-theoretical result for the Plateau’s problem.

Corollary 1.8. LetM be a smooth Riemannian manifold satisfying Assumptions
1.1 and 1.7 and let γ ⊂ ∂M be a smooth, oriented, closed (n − 1)-dimensional
submanifold. Assume further that:

(i) there are two distinct smooth, oriented, minimal embedded hypersurfaces
Σ0 and Σ1 with ∂Σ0 = ∂Σ1 = γ which are strictly stable, meet only at
the boundary and bound some open domain A (in particular Σ0 and Σ1 are
homologous).

8



Chapter 1. Introduction 9

Then there exists a third distinct embedded minimal hypersurface Γ2 with ∂Γ2 = γ
such that dim (Sing (Γ2)) ≤ n− 7 and Sing (Γ2) ∩ ∂M = ∅.

The corollary above asks for two technical assumptions which are not really
natural:

• Σ0 and Σ1 intersect only at the boundary;

• they are regular everywhere.

We use both to give an elementary construction of a 1-dimensional sweepout
which “connects” Σ0 and Σ1 (i.e. a one-parameter family {Σt}t∈[0,1]), but by
taking advantage of more avdanced techniques in geometric measure theory and
algebraic topology - as for instance Pitts’ approach via discretized faimly of cur-
rents, it should suffice to assume that Σ0 and Σ1 are homologous and that the
dimension of their singular set does not exceed n − 7. The smoothness enters
however more crucially in showing that any sweepout (i.e. smooth family of hy-
persurfaces) connecting Σ0 and Σ1 must have a “slice” with n-dimensional volume
larger than max{Hn(Σ0),Hn(Σ1)}. It is needed to take advantage of an argument
of White [57], where regularity is a key ingredient. The following local minimality
property could replace strict stability and smoothness:

• For each i ∈ {1, 2} there is a ε > 0 such that any current Γ with boundary
γ which is distinct from Γi and at flat distance smaller than ε from Γi has
mass strictly larger than that of Γi.

9



Chapter 2
Preliminaries

2.1 Notation
Since we are always dealing with manifoldsM which have a nonempty boundary,
as it is customary an open subset U of M can contain a portion of ∂M. For
instance, ifM is the closed unit ball in Rn+2, P the north pole (0, 0, . . . , 1) and
Ũ a neighborhood of P in Rn+2, then Ũ ∩M is, in the relative topology, an open
subset ofM. Hence, although we will denote by Int (M) the setM\ ∂M, the
latter is not the topological interior ofM and our notation is slightly abusive. In
the following table we present notations, definitions and conventions used consis-
tently throughout the thesis:

Bρ(x), Bρ(x) open and closed geodesic balll of radius ρ and center x inM;
∂Bρ(x) geodesic sphere of radius ρ and center x inM
Int (U) “interior” of the open set U , namely U \ ∂M;
Inj(M) injectivity radius ofM;
An(x, τ, t) open annulus Bt(x) \Bτ (x);
AN r(x) the set {An(x, τ, t) with 0 < τ < t < r};
diam(G) diameter of a subset G ⊂M;
Hk k-dim Hausdorff measure inM;
ωk volume of the unit ball in Rk;
ν unit normal to ∂M, pointing inwards
spt support (of a function, vector field, varifold, current, etc.);
Xc(U) smooth vector fields χ with spt(χ) ⊂ U ;
X0
c(U) χ ∈ Xc(U) which vanish on ∂M;

Xt
c(U) χ ∈ Xc(U) tangent to ∂M, i.e. χ(x) ∈ Tx∂M ∀x ∈ ∂M

X−c (U) χ ∈ Xc(U) pointing inwards at ∂M (i.e. χ · ν ≥ 0)

10



Chapter 2. Preliminaries 11

Vk(U),V(U) vector space of k-varifolds in U ;
Gk(U), G(U) Grassmanian bundle of unoriented k-planes on U ;
JSK (rectifiable) current induced by the k-dimensional

submanifold S (taken with multiplicity 1);
M(S) mass norm of a current S;
F(S) flat norm of a current S;
v(R, θ) varifold induced by the k-rectifiable set R, with multiplicity θ;
W0 the set {(x1, . . . , xn+1) ∈ Rn+1 : |xn+1| ≤ x1 tan θ} with θ ∈

]0, π
2
[, which we refer to as the canonical wedge with opening

angle θ.

Note that all of the different spaces of vector fields introduced above, namely
Xc(U),X0

c(U),Xt
c(U) and X−c (U), coincide when U ∩ ∂M = ∅. Otherwise X0

c(U),
Xt
c(U) and X−c (U) are all proper subsets of Xc(U) since we could construct a

vector field χ ∈ Xc(U) such that χ(x) · ν < 0 for some x ∈ U ∩ ∂M. Additional
clarification is provided at the beginning of Chapter 3.

2.2 Varifolds and Currents
For the notation and terminology about currents and rectifiable varifolds we will
follow [49], and we refer the reader to it for more details. Here we present the
definitions and recall briefly some basic facts.

If U is an open subset of M, we define a k-varifold (k ≤ n + 1) in U to be
a Radon measure on the Grassmanian bundle Gk(U) of unoriented k-planes on
U , and we denote the space of k-varifolds by Vk(U). When it is clear from the
context, we will sometimes drop the exponent k in the notations.
The space V(U) is endowed with the topology of weak convergence of measures,
thus a sequence {V k} ⊂ V(U) converges to a varifold V if

lim
k→∞

∫
ϕ(x, t) dV k(x, π) =

∫
ϕ(x, t) dV (x, π)

for every function ϕ ∈ Cc(Gn(U)), where π is a k-plane in TxM. To any k-varifold
V in U we can associate a unique Radon measure ||V || obtained by pushing V
forward with the projection p of Gk(U) onto U , so ||V ||(A) = V (p−1(A)), A ⊂ U .
The number ||V ||(A) will be called the mass of V in U .
If R ⊂ U is a k-rectifiable set, i.e. a countable union of closed subsets of C1 k-
dimensional submanifolds ofM (modulo sets of Hk-measure 0), and if h : R→ R
is a Borel map, we can define a varifold V by∫

ϕ(x, π) dV (x, π) =

∫
R

h(x)ϕ(x, TxR) dHk(x).

11
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Here, TxR is the approximate tangent space to R. We say that such a varifold is
induced by R and we will sometimes denote it by v(R, h), or simply R when it is
clear from the context. Moreover, if the multiplicity h is integer-valued, we say
it is an integer rectifiable varifold.
If V ∈ V(U), then for any diffeomorphism ψ : U → U ′ we can define the push-
forward ψ]V ∈ V(U ′) by

(2.2.1)
∫
G(U ′)

ϕ(y, σ) d(ψ]V )(y, σ) =

∫
G(U)

Jψ(x, π)ϕ(ψ(x), dψx(π)) dV (x, π)

where (y, σ) = (ψ(x), dψx(π)), and Jψ(x, π) denotes the Jacobian determinant
(i.e. area element) of the differential dψx restricted to the plane π. This allows
to define variations with respect to local deformations. If ψt := ψ(x, t) represents
the one-parameter family of smooth maps generated by vector fields1 χ ∈ Xc i.e.
∂ψ
∂t

= χ, then the first variation of a k-varifold V with respect to χ is given as

(2.2.2) [δV ](χ) :=
d

dt
(||(ψt)]V ||)

∣∣∣
t=0

=

∫
Gk(U)

divπχ(x) dV (x, π),

where the second equality is obtained by differentiating under the integral in
(2.2.1). A varifold V is said to be stationary in U if [δV ](χ) = 0 for any
χ ∈ X0

c(U). When the varifold is stationary for every open set U , it is called
a stationary varifold. In the case when the varifold is induced by a surface, this
corresponds to the surface being minimal.

A k-dimensional current (or simply a k-current) in some open set U ⊂M is
a continuous linear functional on the space Dk(U) of smooth differential n-forms
supported in U . The space of k-currents in U is usually denoted by Dk(U). If S
is a k-dimensional oriented submanifold of M, or more generally a k-rectifiable
set, we can associate to it a k-current JSK ∈ Dk(M) defined by

JSK(ω) =

∫
S

〈ω(x), ξ(x)〉 dHk(x), ω ∈ Dk(M)

where ξ : S → ΛkM :=
⊔
p∈M Λk(TpM) orients S (in case S is k-rectifiable it is

an Hk-measurable function such that for Hk-a.e. x ∈ S, ξ(x) can be expressed as
τ1∧ . . .∧τk, where τ1, . . . , τk is an orthonormal basis for TxS), and 〈, 〉 denotes the
dual pairing between ΛkM and ΛkM. Additionally, one can multiply the above
integrand with a locally Hk-integrable positive function θ called the multiplicity.
Generally, such currents are called rectifiable, and in the special case where θ is
integer-valued, the current is said to be an integer rectifiable current.

Viewed as generalized surfaces, currents allow for a natural notion of a bound-
ary, whose definition is motivated by the classical Stokes’ theorem (in case the

1technically, if at ∂M the vector field points outwards, one would use Remark 5.3, and thus
generate an isotopy in M̃ which does not preserveM

12
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current is induced by a smooth submanifold with boundary). Thus we define the
boundary ∂T ∈ Dk−1(M) of a k-current T ∈ Dk(M) by

∂T (ω) = T (dω), ω ∈ Dk(M).

Although the boundary of an integer rectifiable current T may not be integer
rectifiable in general, if it is, then the current T is called an integral current.

In addition to the weak* topology on Dk(M) (which comes naturally equipped
by duality), one usually introduces two other important topologies (induced by
seminorms) on the space of k-currents: the mass norm M, and the flat norm F.
These are defined in the following way for a k-current T :

M(T ) = sup{T (ω) : sup ‖ω(x)‖∗ ≤ 1},
F(T ) = inf{M(A) + M(B) : T = A+ ∂B, A and B integer rectifiable},

where ‖.‖∗ denotes the comass norm for Λk(M). Note that in case T = JSK
we have M(T ) = Hk(S). Furthermore, by the compactness theorem proved by
Federer and Flemming (27.3 in [49]), the weak and the flat topology coincide
on the space of integral currents with bounded mass and bounded mass of the
boundary.

We remark here that in the following, we will only work with integer multi-
plicity currents. However we warn the reader that, unless we specify that a given
varifold is integer rectifiable, in general it will be not and will be understood as a
suitable measure on the space of Grassmanians, according to the definition above.

2.3 Outline of the Thesis
As mentioned before, we will follow the presentation in [10], and hence the gen-
eral outline will be very similar. First of all in the Section 3 we will introduce
two adapted classes of stationary varifolds for the constrained and unconstrained
case, which are a simple variants of the usual notion of stationary varifold in-
troduced by Almgren, defined in the preceding section. Then in Proposition 3.2
we prove the existence of a suitable sequence of families {{Σt}`} in X with the
property that each min-max sequence generated by it converges to a stationary
varifold: the argument is a straightforward adaptation of Almgren’s pull-tight
procedure used in Pitts’ book and in several other later references. Conceptually,
this step is usually attributed to Birkhoff in the case of geodesics, where it is
sometimes known as Birkhoff’s "curve shortening map". In this thesis we also
need to accommodate for the fact that the surfaces in a smooth family which are
parametrized by t ∈ ∂P must remain fixed.

In the sections 4.1 and 4.2 we adapt the notion of almost minimizing surfaces
used in [13] to the case at the boundary, as well as to the more general parameter
space, and we ultimately prove the existence of a min-max sequence which is
almost minimizing in any sufficiently small annulus centered at any given point,

13
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cf. Proposition 4.3. The arguments follow closely those used by Pitts in [41]
and a trick introduced in [13] to avoid Pitts’ discretized families. The min-max
sequence generated in Proposition 4.3 is the one for which we will conclude the
properties claimed in Theorem 1.5. Indeed the interior regularity follows from
the arguments of Pitts (with a suitable adapation by Schoen and Simon to the
case n ≥ 6) and we refer to [13] for the details. The remaining sections are thus
devoted to the boundary regularity.

First of all in Chapter 5 we collect several tools about the boundary behavior
of stationary varifolds (such as the monotonicity formulae in both the constrained
and uncostrained case and a useful maximum principle in the constrained one),
but more importantly, we will use a very recent argument of White to conclude
suitable curvature estimates at the boundary in the constrained case, under the
assumption that the minimal surface meets ∂M transversally in a suitable (quan-
tified) sense, cf. Theorem 5.10.

In Chapter 6 we recall the celebrated Schoen-Simon compactness theorem for
stable minimal hypersurfaces in the interior and its variant by Grüter and Jost in
the free boundary case. Moreover, we combine the Schoen-Simon theorem with
Theorem 5.10 to conclude a version of the Schoen-Simon compactness theorem
for stable hypersurfaces up to the boundary, when the latter is a fixed given
smooth γ and the surfaces meet ∂M transversally. In Section 6.5 we will then
adapt the maximum principle to show that any stationary varifold produced in
the constrained case meet the boundary at an angle which is uniformly positive.

In Chapter 7 we modify the proof in [13] to construct replacements for almost
minimizing varifolds. The main difficulty and contribution here is to preserve
the boundary conditions for the surfaces in the constrained case, throughout the
various steps of the construction. Following the arguments in [13], we analogously
define the (2m+2j)−1 - homotopic Platau problem for j ∈ N, and we conclude that
in sufficiently small balls, the corresponding minimizers are actually minimizing
for the Plateau problem. Hence their regularity (with no singular points!) at
the boundary will follow from Allard’s boundary regularity in [1] (see also Hardt-
Simon [27]). Furthermore, we are in position to apply the tools of Chapter 6 and
7, which are then used in Chapter 8 to conclude the boundary regularity and
hence the proof of Theorem 1.5.

Finally, in the last Chapter we provide the proofs to Corollaries 1.6 and 1.8.
The main challenge here is to find a homotopically closed set of constrained
families and prove that it satisfies Assumption 1.2.3, namely the mountain-pass
condition.

14



Chapter 3
Existence of Stationary Varifolds

The first step in the min-max construction consists of finding a niceminimizing se-
quence having the property that any min-max sequence belonging to it converges
to a stationary varifold. From now on we will denote the subset of stationary
varifolds by Vs(M) (or simply Vs). We will however consider two slightly smaller
subclasses of Vs, depending on whether we are dealing with the constrained or
unconstrained problem. To get an intuition consider the one-parameter families
of smooth maps Φτ generated by vector fields in Xc following their flows.

(C) If χ ∈ X0
c(U) then, for every τ , Φτ is a diffeomorphism of M onto itself

which fixes any point not in Int (U) (and thus it is the identity on ∂M);

(T) If χ ∈ Xt
c(U) then, for every τ , Φτ is a diffeomorphism of M onto itself

which fixes any point not in U and maps ∂M∩ U onto itself;

(I) If χ ∈ X−c (U) then Φτ is a well-defined map for τ ≥ 0, but not necessarily
for τ < 0; moreover, for each τ ≥ 0, Φτ is a diffeomorphism of M with
Φτ (M) ⊂M, but in general Φτ (M) will be a proper subset ofM, i.e. Φτ

rather than mapping ∂M into itself might “push it inwards”.

It is thus clear that Xt
c is a natural class of variations for the uncostrained prob-

lem, whereas a vector field in X−c gives a natural (one-sided) variation for the
constrained problem if we impose that it vanishes on the fixed boundary γ. This
motivates the following

Definition 3.1. In the “constrained” min-max problem, where the boundary con-
straint is γ, we introduce the set Vcs(M, γ) (or shortly Vcs(γ)) which consists of
those varifolds satisfying the condition

(3.0.1) δV (χ) ≥ 0 for all χ ∈ X−c (M\ γ).

In the “unconstrained” min-max problem we introduce the set Vus which consists
of those varifolds which are stationary for all variations in χ ∈ Xt

c(M):

(3.0.2) δV (χ) = 0 for all χ ∈ Xt
c(M).

15



Chapter 3. Existence of Stationary Varifolds 16

Clearly, since X0
c(M) ⊂ Xt

c(M), Vus is a subset of the stationary varifolds Vs.
Note moreover that, if χ ∈ X0

c(M), then both χ and −χ belong to X−c (M\ γ):
therefore we again conclude Vcs(γ) ⊂ Vs.

For the purpose of this section, we will consider the subset V(M, 4m0) of
varifolds with mass bounded by 4m0. Recall that the weak* topology on this
set is metrizable, and we choose a metric D which induces it. In addition, we
introduce the set

V∂ := {Ξt | t ∈ ∂P , {Ξt} ⊂ X},

which is a closed subset of V(M). Note that, according to our notion of homotopy
in Definition 1.3, this definition is independent of the family {Ξt} ⊂ X we choose.
We are now ready to state the main technical proposition of this section which,
as already mentioned, will be proved using the classical pull-tight procedure of
Almgren.

Proposition 3.2. Let X be a homotopically closed set of smooth families which
are parametrized by P, such that (1.2.3) is satisfied. Then:

(C) In the problem constrained by γ there exists a minimizing sequence {{Γt}`} ⊂
X such that, if {Γ`t`} is a min-max sequence, then D(Γ`t` ,V

c
s(γ))→ 0;

(U) In the unconstrained problem there exists a minimizing sequence {{Γt}`} ⊂
X such that, if {Γ`t`} is a min-max sequence, then D(Γ`t` ,V

u
s )→ 0.

Proof. In what follows we will use Vcs in place of Vcs(γ) for the constrained case.
The key idea of the proof is to find a continuous map Ω : V(M)→ Is(M), where
Is is the set of smooth isotopies - with a slight abuse of this term, note case
(I) mentioned above. For a varifold V , the map ΩV : [0, 1]×M→M, where
the subscript V is used to denote Ω(V ), will be the trivial one for any varifold
belonging to V∂ or Vcs (or Vus , depending on the case considered), and decrease
the mass of V not belonging to either of these sets (when considering the push-
forward of V with respect to it).

These maps will be generated as flows of certain vector fields defined for each
of the varifolds in V(M). The first step is therefore to find a map from the set of
varifolds to the set of smooth vector fields in M. Afterwards, we construct the
corresponding flows for each of these vector fields, and prove that they possess
the properties described above. We will in fact repeat the first two steps in the
proof of [10, Proposition 4.1] verbatim (for the sake of completeness), the only
exception being that we consider vector fields in Xt

c(M) or X−c (M\ γ) and thus
we replace Vs with Vus and Vcs in the respective cases. Since both these sets of
vector fields are convex subsets of X(M), the vector field HV produced in Step
1 will also belong to the same class. Finally, in the last step we take a minimiz-
ing sequence and apply the flows generated by such vector fields to construct a
competitor sequence. After some technical adjustments to ensure that it has the
necessary properties, we prove that this sequence satisfies the requirements of the
proposition.
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Chapter 3. Existence of Stationary Varifolds 17

Step 1: A map from V to the space of vector fields. For l ∈ Z we
define the annuli

Vl = {V ∈ V(M) : 2−l+1 ≥ D(V,V�
s ) ≥ 2−l−1},

where � is either u or c, depending on the case considered. These Vl are compact.
Therefore there are constants c(l) > 0 depending only on l, such that for all V ∈ Vl
there is a smooth vector field χV ∈ X−c (M\ γ) (alternatively Xt

c(M)) with

‖χV ‖∞ ≤
1

l
, δV (χV ) ≤ −c(l).

For, if not, then there is a sequence {Vj} of varifolds in Vl such that for all vector
fields χ with ‖χ‖∞ ≤ 1

|δVj(χ)| ≤ 1

j
.

Therefore ‖δvj‖ → 0. Compactness and lower-semicontinuity of the first variation
then yield a subsequence which converges to a stationary varifold. But this is a
contradiction to the definition of Vl. This proves the existence of the constants
c(l).

Next, we want to show that the associated vector fields χV can be chosen in
a continuous dependence on V . For this first note that we have

δW (χV ) ≤ δV (χV ) + δ(W − V )(χV )

≤ −c(l) + ‖δ(W − V )‖.

Thus, by the lower semicontinuity of the first variation there is r > 0 such that

δW (χV ) ≤ −c(l)
2
, W ∈ Ur(V ),

where Ur(V ) denotes the ball in V . Using again compactness we can find for any
l ∈ Z balls {U l

i}
N(l)
i=1 and corresponding vector fields χli such that

• the balls Ũ l
i , concentric to U l

i with half the radii, cover Vl;

• for all W ∈ U l
i we have δW (χli) ≤ −

c(l)
2
;

• the balls U l
i are disjoint from Vj for |j − l| ≥ 2.

The balls {U l
i}i,l form a locally finite covering of V \ V�

s . Hence we can pick a
continuous partition of unity {ϕli} subordinate to this covering. Then we define
the vector fields HV :=

∑
i,l ϕ

l
i(V )χli. The map

H : V → C∞(M, TM), V 7→ HV

is continuous and ‖HV ‖∞ ≤ 1 for all V ∈ V(M).
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Chapter 3. Existence of Stationary Varifolds 18

Step 2: A map from V to the space of isotopies. Let V ∈ Vl. Then,
by the above covering, V is contained in at least one ball Ũ l

i . We denote by r(V )
the radius of the smallest such ball. As there are only finitely many such balls,
we can find r(l) depending only on l such that r(V ) ≥ r(l) > 0. Moreover, by
the properties of the covering,

δW (HV ) ≤ −1

2
min{c(l − 1), c(l), c(l + 1)}

for all W ∈ Ur(V )(V ). Thus, we have two continuous functions g : R+ → R+ and
r : R+ → R+ such that

(3.0.3) δW (HV ) ≤ −g(D(V,V�
s )) if D(W,V ) ≤ r(D(V,V�

s )).

The function −g for instance can be obtained by dominating the step function
depending on the c(l) by a continuous function. By the compactness ofM and
the smoothness of each HV we can construct for all V a 1-parameter family of
maps

ΦV : [0,∞)×M→M with
∂ΦV

∂t
(t, x) = HV (ΦV (t, x)).

Note that in the unconstrained case ΨV (s, ·) is a diffeomorphism from M to
itself, whereas in the constrained case it is a diffeomorphism ofM with ΨV (s,M)
which however keeps γ fixed. The key is now to prove that these diffeomorphisms
decrease the mass of a varifold by an amount depending on its distance to the
stationary varifolds. More precisely, we claim that there are continuous functions
T : R+ → [0, 1] and G : R+ → R+ such that

• if η = D(V,V�
s ) > 0 and V ′ is obtained from V (pushing forward) by the

diffeomorphism ΦV (T (η), ·), then ‖V ′‖(M) ≤ ‖V ‖(M)−G(η);

• G(s) and T (s) both converge to 0 as s→ 0.

For this we fix V ∈ V \ V�
s . For all r > 0 there is T > 0 such that the curve

{V (t) = (ΦV (t, ·))]V, t ∈ [0, T ]}

stays in Ur(V ). This implies the inequality

‖V (T )‖(M)− ‖V ‖(M) = ‖V (T )‖(M)− ‖V (0)‖(M) ≤
∫ T

0

δV (t)(HV ) dt.

If we choose r = r(D(V,V�
s ) as in (3.0.3), this yields

‖V (T )‖(M)− ‖V ‖(M) ≤ −Tg(D(V,V�
s )),

or we can rewrite this as

‖V (T )‖(M)− ‖V ‖(M) ≤ −G(D(V,V�
s )).
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Chapter 3. Existence of Stationary Varifolds 19

Moreover T and G are continuous. Clearly T (s)→ 0 as s→ 0. The boundedness
of g then gives G(s)→ 0 as s→ 0. Arguing as in the first step, using a continuous
partition of unity, we can find a choice of T that is continuous in V and depends
only on D(V,V�

s ).

Step 3: Construction of the competitor. At this point we diverge some-
what from [10]. We define b(V ) := min{D(V,V∂), 1} for V ∈ V(M), and re-
mark that b : V(M) → R is a continuous function. Let V ∈ V be such that
D(V,V�

s ) = η. We now renormalize the maps ΦV by setting

ΩV (t, ·) = ΦV (b(V )T (η)t, ·), t ∈ [0, 1].

By the definition of T the varifolds (ΩV (t, ·))]V stay in Ur(η)(V ) for all t ∈ [0, 1].
Moreover, the introduction of the additional scaling parameter b(V ) keeps the
varifolds in V∂ intact by the flow. A quick computation as in Step 2 then yields

(3.0.4) ||ΩV (1, ·)]V ||(M) ≤ ||V ||(M)− b(V )L(D
(
V,V�

s )
)
.

where L : R → R is a strictly increasing function with L(0) = 0. The function
G above is not necessarily strictly increasing, but all the choices can be made in
such a way that this goal is achieved.

We now take a sequence of families {{Σt}`} ⊂ X such that maxt∈P Hn(Σ`
t) ≤

m0(X) + 1
`
. Naturally, we would consider the family defined by Γ̃`t = ΩΣ`t

(1,Σ`
t)

as the required competitor. But, since the dependence of the vector field (cor-
responding to) ΩΣ`t

is merely continuous in t, the new family is not necessarily
smooth. We overcome this obstacle by smoothing the continuous map

h : P → X−c (M\ γ) (or Xt
c(M)),

where X−c (M) is endowed with the topology of Ck-seminorms, and the smooth
vector field h`t = b(Σ`

t)T
(
D(Σ`

t,V�
s )
)
HΣ`t

generates ΩΣ`t
. Note that ht = 0 for

t ∈ ∂P , and we smooth h by keeping it 0 on ∂P . We obtain this way a smooth
map h̃, and consequently, the 1-parameter family of diffeomorphisms Ω̃`

t generated
by h̃(t). We then consider the smooth family

Γ`t = Ω̃`
t(1,Σ

`
t).

Since Ω̃`
t(s, ·) is the identity for t ∈ P , the new family {Γ`t}t is homotopic to {Σl

t}t.
Whenever supt ‖ht − h̃t‖C1 is small enough, the calculations as before give

(3.0.5) Hn(Γ`t) ≤ Hn(Σ`
t)−

b(Σ`
t)L
(
D(Σ`

t,V�
s )
)

2
.

Moreover, there will be an increasing continuous map λ : R+ → R+ with λ(0) = 0
and

(3.0.6) D(Σ`
t,V�

s ) ≥ λ
(
D(Γ`t,V�

s )
)
.
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Finally, we claim that for every ε, there exist δ > 0 and N ∈ N such that

(3.0.7) if

{
k > N

and Hn(Γ`t`) > m0 − δ

}
, then D(Γ`t` ,V

�
s ) < ε.

Let us therefore fix ε > 0. Considering that b(W ) = 0 ∀W ∈ V∂, the continuity
of mass of varifolds clearly implies that, if we set ξ := m0(X)−bM0(X)

2
, then for all

V ∈ V(M) with Hn(V ) ≥ m0 − ξ = bM0(X) + ξ we have b(V ) ≥ c(ξ) > 0. We
will choose 0 < δ < ξ and N ∈ N satisfying

c(ξ)L(λ(ε))

2
− δ > 1

N
.

Assume now, contrary to (3.0.7), there are k > N and t ∈ P such that

Hn(Γ`t`) > m0 − δ and D(Γ`t` ,V
�
s ) > ε.

Then, by (3.0.5), (3.0.6) and the fact that Hn(Σ`
t`

) ≥ Hn(Γ`t`) > m0−δ > m0−ξ,
we get

Hn(Σ`
t`

) ≥ Hn(Γ`t`) + δ +
c(ξ)L(λ(ε))

2
− δ

≥ m0 +
1

N
.

This contradicts maxt∈P Hn(Σ`
t) ≤ m0(X) + 1

`
, and thus completes the proof of

claim (3.0.7), which in turn implies the proposition.
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Chapter 4
Existence of Almost Minimizing Varifolds

4.1 Almost Minimizing Property
Following its introduction by Pitts [41], an important concept to achieve regularity
for stationary varifolds produced by min-max theory is that of almost minimizing
surfaces. Roughly speaking, a surface is almost minimizing if any area-decreasing
deformation must eventually pass through some surface with sufficiently large
area. The precise definition we require here is the following:

Definition 4.1. Let ε > 0, U ∈M be an open subset, and fix m ∈ N. A surface
Σ is called ε-almost minimizing in U if there is no family of surfaces {Σt}t∈[0,1]

satisfying the properties:

(s1), (s2) and (s3) of Definition 0.1 hold;(4.1.1)
Σ0 = Σ and Σt \ U = Σ \ U for every t ∈ [0, 1];(4.1.2)

Hn(Σt) ≤ Hn(Σ) +
ε

2m+2
for all t ∈ [0, 1];(4.1.3)

Hn(Σ1) ≤ Hn(Σ)− ε(4.1.4)

A sequence {Ωi} of surfaces is called almost minimizing (or a.m.) in U if each
Ωi is εi-almost minimizing in U for some sequence εi → 0 (with the same m).

Remark 4.2. The definition above is practically the same as the one given in
[13] when m = 1. The generalization is due to the more general parameter space
P. To be precise, we will henceforth fix m ∈ N such that P can be smoothly
embedded into Rm.

The main goal of this section is to prove an existence result regarding almost
minimizing property in annuli:

Proposition 4.3. Le X be a homotopically closed set of (constrained or uncon-
strained) families in Mn+1, parameterized by a smooth, compact k-dimensional
manifold P (with or without boundary), and satisfying the condition (1.2.3). Then
there is a function r :M→ R+ and a min-max sequence {Γk} = {Γktk} such that
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Chapter 4. Existence of Almost Minimizing Varifolds 22

• {Γk} is a.m. in every An ∈ AN r(x)(x) with x ∈M

• {Γk} converges to a stationary varifold V as k →∞.

An important corollary of the above proposition is the interior regularity, for
which we refer to [13]. We record the consequence here

Proposition 4.4. The varifold V of Proposition 4.3 is a regular embedded min-
imal surface in Int (M), except for a set of Hausdorff dimension at most n− 7.

In order to prove Proposition 4.3 we will be following the strategy laid out in
Section 5 of [10] (see also Section 3 of [13]), which contains a similar statement. In
fact, the main difference is the significant generalization of the parameter space
P . The case of higher dimensional cubes was covered in the master thesis of
Fuchs [19], and in this paper, some necessary modifications were made. The key
ingredient of the proof is a combinatorial covering argument, a variant of the
original one by Almgren and Pitts (see [41]), and which we therefore refer to as
the Almgren-Pitts combinatorial lemma. We will use it to prove Proposition 4.3
at the end of this section, and its proof will be provided in the next one.

Definition 4.5. Let d ∈ N and U1, . . . Ud be open sets in M. A surface Σ is
said to be ε-almost minimizing in (U1, . . . , Ud) if it is ε-a.m. in at least one of
the open sets U1, . . . Ud.
Furthermore, we define

dist(U, V ) := inf
u∈U,v∈V

dg(u, v)

as the distance between the two sets U and V (dg being the Riemannian distance).
Finally, for any d ∈ N we denote by COd the set of d-tuples (U1, . . . , Ud), where
U1, . . . , Ud are open sets with the property that

dist(U i, U j) ≥ 4 ·min{diam(U i), diam(U j)}

for all i, j ∈ {1, . . . , d} with i 6= j.

We require also the following lemma as preparation:

Lemma 4.6. Let p ∈ N. Then there exists ωp ∈ N with the following property:

(CA) Assume F1 = (U1
1 , . . . , U

ωp
1 ), . . . ,F2p = (U1

2p , . . . , U
ωp
2p ) are 2p families of

open sets with the property that

(4.1.5) dist(U j
i , U

j′

i ) ≥ 2 ·min{diam(U j
i ), diam(U j′

i )}

for all i ∈ {1, . . . , 2p} and for all j, j′ ∈ {1, . . . , ωp} with j 6= j′.
Then we can extract 2p subfamilies F sub1 ⊂ F1, . . . ,F sub2p ⊂ F2p such that
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• dist(U, V ) > 0 for all U ∈ F subi , V ∈ F subj with i, j ∈ {1, . . . , 2p} and
i 6= j;

• F subi contains at least 2p open sets for every i ∈ {1, . . . , 2p}.

Proof. Let F1, . . . ,F2p be as in the assumption (CA), with ωp some (natural)
number, to be fixed later. First note that, if U ∈ Fi and V 1, . . . V l ∈ Fs with i 6= s
and diam(U) ≤ diam(V j), j ∈ {1, . . . , l}, then there is at most one j ∈ {1, . . . , l}
with dist(U, V j) = 0. Otherwise, assuming there are two such sets V j1 , V j2 with
dist(V j1 , U) = 0, dist(V j2 , U) = 0 and w.l.o.g. diam(V j1) ≤ diam(V j2), we would
get

dist(V j1 , V j2) ≤ diam(U) ≤ diam(V j1),

which contradicts the assumption (4.1.5). Now, in order to produce the subfam-
ilies, one can employ the following algorithm:

– take all the sets in all the families and arrange them in an ascending order
with respect to their diameters, left to right (from smallest to largest). In
the first step, fix the leftmost set;

– at each step of the process, remove all the sets to the right of the fixed set
which are at distance zero with respect to it. Furthermore, if to the left of
the currently fixed set there are 2p−1 remaining sets from the same family,
remove all the sets to the right which belong to the same family;

– move on to the first (remaining) set to the right of the previously fixed set,
fix it, and repeat the step above.

We claim that the remaining sets belong to the required subfamilies. Firstly, it
is obvious from the construction that for any two remaining sets U, V we have
dist(U, V ) > 0. Secondly, we see from the consideration at the beginning of the
proof, that at each step, at most one set from each family the fixed set does not
belong to, is removed (and none from the same family, due to (4.1.5)). Finally,
since any family that reaches 2p remaining elements is removed from the process,
it can account for no more than 2p removed elements from any other family.
Hence we can remove no more than 2p(2p − 1) from each family, so if we choose
any ωp ≥ 4p we can ensure that at least 2p elements remain.

Proposition 4.7. (Almgren-Pitts combinatorial lemma) Let X be a homotopi-
cally closed set of families as in Proposition 4.3. Assume P is smoothly embedded
into Rm, and let ωm be as in Lemma 4.6. Then there exists a min-max sequence
{ΓN} =

{
ΓNtN
}
such that

• {ΓN} converges to a stationary varifold;

• for any (U1, . . . , Uωm) ∈ COωm , ΓN is 1
N
-a.m. in (U1, . . . , Uωm), for N large

enough.
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We can now prove the main proposition as a corollary of the above.

Proof of Proposition 4.3. We will show that a subsequence of {Γj} in Propo-
sition 4.7 satisfies the requirements. Let r1 > 0 be such that r1 < Inj(M), and
for each x ∈M define the tuple (U1

r1
(x), . . . , Uωm

rωm
(x)) by

U1
r1

(x) :=M\Br1(x);

(4.1.6)

U l
rl

(x) := Br̃l(x) \Brl(x) where r̃l :=
1

9
rl−1 and rl < r̃l for 2 ≤ l ≤ ωm − 1;

(4.1.7)

Uωm
rωm

:= Brωm (x) where rωm ≤
1

9
rωm−1.

(4.1.8)

Then, by definition, (U1
r1

(x), . . . , Uωm
rωm

(x)) ∈ COωm and Γj is therefore (for j large
enough) 1

j
-a.m. in at least one U l

rl
(x), 1 ≤ l ≤ ωm. Having fixed r1 > 0, one of

the following options holds:

(a) either {Γj} is (for j large) 1
j
-a.m. in (U2

r2
(y), . . . , Uωm

rωm
(y)) for every y ∈M;

(b) or, for each K ∈ N, there exists some sK ≥ K and a point xsKr1 ⊂ M such
that ΓsK is 1

sK
-a.m. inM\Br1(x

sK
r1

).

Assume there is no r1 > 0 such that (a) holds. Thus, choosing option (b)
with r1 = 1

j
and K = j for each j ∈ N, we obtain a subsequence {Γsj}j∈N, and a

sequence of points {xsjj }j∈N ⊂M such that Γsj is 1
sj
-a.m. inM\B 1

j
(x

sj
j ). Since

M is compact, there exists some x ∈ M such that xsjj → x. We conclude that,
for any N ∈ N, Γsj is 1

sj
-a.m. inM\B 1

N
(x) for j large enough. Consequently, if

y ∈ M \ {x}, we can choose r(y) such that Br(y)(y) ⊂⊂ M \ {x}, whereas r(x)
can be chosen arbitrarily.
Assume now that there is some fixed r1 > 0 such that (a) holds. Note that, in
this case, it is implied that Γj is not 1

j
-a.m. in U1

r1
for all j large enough. Due to

compactness, we can divide the manifoldM into finitely many, nonempty, closed
subsetsM1, . . . ,MN ⊂M such that

• 0 < diam(Mi) < r̃2 = 1
9
r1 for every i ∈ {1, . . . , N};

• M = ∪Mi.

Similar to the reasoning above, for eachMi, starting withM1, we consider two
mutually exclusive cases:

24



Chapter 4. Existence of Almost Minimizing Varifolds 25

(a) either there exists some fixed r2,i > 0 such that {Γj} must be (for j large) 1
j
-

a.m. in (U3
r3

(y), . . . , Uωm
rωm

(y)) for every y ∈Mi, where of course, r̃3 ≤ 1
9
r2,i;

(b) or we can extract a subsequence {Γj}, not relabeled, and a sequence of
points xi,j ⊂Mi such that Γj is 1

j
-a.m. in Br̃2(xi,j) \B 1

j
(xi,j)

Again, if (b) holds, we know xi,j → xi ∈ Mi, and we can choose r(xi) ∈
(diam(Mi), r̃2). Accordingly, for any other y ∈ Mi, we can choose r(y) such
that Br(y)(y) ⊂⊂ Br(xi)(xi) \ {xi}. We proceed ontoMi+1, where either (a) gets
chosen, or we possibly extract a futher subsequence, and define further values of
the function r. For the subsets Mi1 , . . . ,Mil where option (a) holds, we define
r2 := min{r2,i1 , . . . , r2,il}, and then continue iteratively, by first subdividing the
sets and then considering the relevant cases. Finally, note that if in the last in-
stance of the iteration we choose option (a) for certain subsets, it means that, in
those sets, Γj must be (for j large) 1

j
-a.m. in Brωm (y) for some rωm > 0 and all

y, hence we can choose r(y) = rωm , and we are done.

4.2 Almgren-Pitts Combinatorial Lemma
In this section, we turn to proving Proposition 4.7, which will be done by con-
tradiction. Assuming no min-max sequence (extracted from an apropriate min-
imizing sequence) with the required property exists, we are able to construct a
competitor minimizing sequence {Σt}N with energy (i.e. maxt∈P{Σt}N), lowered
by a fixed amount, thus reaching a contradiction to the minimality of the original
sequence. This will be done using two main ingredients. The first is a technical
lemma which enables us to use the "static" variational principle in Definition
4.1 for a single, fixed time slice to construct a "dynamic" competitor family of
surfaces. This is achieved by using a tool called "freezing", introduced in [13]
(see Lemma 3.1). The statement and proof we present here are slightly different.
They go as follows:

Lemma 4.8. Let U ⊂⊂ U ′ ⊂ M be two open sets, and {Ξt}t∈[0,1]p be a smooth
family parameterized by [0, 1]p, with p ∈ N fixed. Given an ε > 0 and t0 ∈
(0, 1)p, suppose {Σs}s∈[0,1] is a 1-parameter family of surfaces satisfying properties
(4.1.1)-(4.1.4), with Σ0 = Ξt0 and m = p. Then there is an η > 0 such that the
following holds for every a′, a with 0 < a′ < a < η:
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There is a competitor (smooth) family {Ξ′t}t∈[0,1]p such that

Ξt = Ξ′t for t ∈ [0, 1]p \Q(t0, a), and Ξt \ U ′ = Ξ′t \ U ′ for t ∈ Q(t0, a);

(4.2.1)

Hn(Ξ′t) ≤ Hn(Ξt) +
ε

2p+1
for every t ∈ [0, 1]p;

(4.2.2)

Hn(Ξ′t) ≤ Hn(Ξt)−
ε

2
for every t ∈ Q(t0, a

′),

(4.2.3)

where

Q(t0, r) :=
{
t = (t1, . . . , tp) ∈ [0, 1]p | ∀i ∈ {1, . . . , p} : ti0 − r < ti < ti0 + r

}
Moreover, {Ξ′t} is homotopic to {Ξt}.

Proof. Step 1: Freezing. First we will choose open sets A1, A2 and B1, B2

satisfying
U ⊂⊂ A1 ⊂⊂ A2 ⊂⊂ B1 ⊂⊂ B2 ⊂⊂ U ′,

and such that Ξt0 ∩ C̃ is a smooth surface, where C̃ := B2 \ Ā1 , which is possible
since Ξt0 contains only finitely many singularities. In a tubular δ-neighborhood
(w.r.t the normal bundle) of Ξt0 ∩ C̃ we fix normal coordinates (z, σ) ∈ Ξt0 ∩
C̃ × (−δ, δ). By choosing δ small enough and/or redefining Ai-s and Bi-s, we can
ensure that Ξt0 ∩ A2 × (−δ, δ) ⊂⊂ B1 and Ξt0 ∩B1 × (−δ, δ) ⊂⊂ B2. Now, after
defining the open sets A := A1 ∪

(
Ξt0 ∩ A2 × (−δ, δ)

)
, and B :=

(
B1 ∩ Ξt0 ×

(−δ, δ)
)
∪
(
B2 \ (B̄2 ∩Ξt0 × [−δ, δ])

)
, we set C := B \ Ā and deduce the following

properties:

(a) U ⊂⊂ A ⊂⊂ B ⊂⊂ U ′;

(b) Ξt0 ∩ C is a smooth surface;

(c) we can fix η > 0 such that Ξt ∩C is the graph of a function gt over Ξt0 ∩C
for t ∈ Q(t0, η).

Note that the slightly complicated definitons above are only to ensure the property
(c), or in other words, that the set C is "cylindrical" near Ξt0 so that Ξt ∩C can
in fact be entirely represented as a graph over Ξt0 ∩ C, i.e. Ξt ∩ C = {(z, σ)|σ =
gt(z), z ∈ Ξt0 ∩ C} ∀t ∈ Q(t0, η).
Next, we fix two smooth functions ϕA and ϕB such that

• ϕA + ϕB = 1;
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• ϕA ∈ C∞c (B), ϕB ∈ C∞c (M\ Ā)

We then introduce the functions

gt,s,τ := ϕBgt + ϕA((1− s)gt + sgτ ), t, τ ∈ Q(t0, η), s ∈ [0, 1]

Since gt converges smoothly to gt0(= 0) as t→ t0, we can make sups,τ ‖gt,s,τ−gt‖C1

arbitrarily small by choosing η small. Moreover, if we express the area of the graph
of a function g over Ξt0 ∩ C as an integral functional of g, we know that it only
depends on g and its first derivatives. Thus, if Γt,s,τ is the graph of gt,s,τ , we can
find η small enough such that

(4.2.4) max
s∈[0,1]

Hn(Γt,s,τ ) ≤ Hn(Ξt ∩ C) +
ε

2p+3
.

Now, given 0 < a′ < a < η, we choose a′′ ∈ (a′, a) and fix:

• a smooth function ψ : Q(t0, a) → [0, 1] which is identically equal to 0 in a
neighborhood of ∂Q(t0, a) and equal to 1 on Q(t0, a

′′);

• a smooth function γ : Q(t0, a) → Q(t0, η) which is equal to the identity in
a neighborhood of ∂Q(t0, a) and equal to t0 in Q(t0, a

′′).

We now define a new family {∆t} as follows:

• ∆t = Ξt for t /∈ Q(t0, a);

• ∆t \ B̄ = Ξt \ B̄ for all t;

• ∆t ∩ A = Ξγ(t) ∩ A for t ∈ Q(t0, a);

• ∆t ∩ C = {(z, σ) |σ = gt,ψ(t),γ(t), z ∈ Ξt0 ∩ C} for t ∈ Q(t0, a).

Note that {∆t} is a smooth family homotopic to {Ξt}, they both coincide outside
of B (and hence outside of U ′) for every t, and that in A (and hence in U) we
have ∆t = Ξγ(t) for t ∈ Q(t0, a). Since γ(t) is equal to t0 for t ∈ Q(t, a′′), it follows
that ∆t ∩ U = Ξt0 ∩ U for t ∈ Q(t0, a

′′), or in other words, ∆ ∩ U is frozen in
Q(t0, a

′′). Furthermore, because of (4.2.4),

(4.2.5) Hn(∆t ∩ C) ≤ Hn(Ξt ∩ C) +
ε

2p+3
for t ∈ Q(t0, a).

Step 2: Dynamic competitor. We fix a smooth function χ : Q(t0, a
′′) →

[0, 1] which is identically 0 in a neighborhood of ∂Q(t0, a
′′), and identically 1 on

Q(t0, a
′). We then define a competitor family {Ξ′t} in the following way:
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• Ξ′t = ∆t for t /∈ Q(t0, a
′′);

• Ξ′t \ A = ∆t \ A for t ∈ Q(t0, a
′′);

• Ξ′t ∩ A = Σχ(t) ∩ A for t ∈ Q(t0, a
′′).

The new family {Ξ′t} is also a smooth family, which is obviously homotopic in
the sense of Definition 1.3 to {∆t} and hence to {Ξt}, so long as we ensure a is
small enough that Q(t0, a) ⊆ (0, 1)p. We can now start estimating Hn(Ξ′t).
For t /∈ Q(t0, a), we have Ξ′t = ∆t = Ξt, so

(4.2.6) Hn(Ξ′t) = Hn(Ξt) for t /∈ Q(t0, a).

For t ∈ Q(t0, a), we have Ξt \ B̄ = Ξ′t \ B̄ and hence Ξ′t \U ′ = Ξt \U ′. This shows
property (4.2.1) of the lemma.
In the set C it holds Ξ′t = ∆t for t ∈ Q(t0, a), thus owing to (4.2.5),

Hn(Ξ′t)−Hn(Ξt) = [Hn(∆t ∩ C)−Hn(Ξt ∩ C)] + [Hn(Ξ′t ∩ A)−Hn(Ξt ∩ A)]

(4.2.5)
≤ ε

2p+3
+ [Hn(Ξ′t ∩ A)−Hn(Ξt ∩ A)].(4.2.7)

Next, we want to estimate the area in A for t ∈ Q(t0, a). To do so, we consider
several cases separately:

(i) Let t ∈ Q(t0, a) \ Q(t0, a
′′). Then Ξ′t ∩ A = ∆t ∩ A = Ξγ(t) ∩ A. However,

t, γ(t) ∈ Q(t0, η) and, having chosen η small enough, we can assume that

(4.2.8) |Hn(Ξs ∩ A)−Hn(Ξσ ∩ A)| ≤ ε

2p+3
for every σ, s ∈ Q(t0, η).

Hence, we deduce with (4.2.7) that

(4.2.9) Hn(Ξ′t) ≤ Hn(Ξt) +
ε

2p+2
.

(ii) Let t ∈ Q(t0, a
′′) \ Q(t0, a

′). Then Ξ′t ∩ A = Σχ(t) ∩ A. Therefore, with
(4.2.7) it follows

Hn(Ξ′t)−Hn(Ξt) ≤
ε

2p+3
+ [Hn(Ξt0 ∩ A)−Hn(Ξt ∩ A)]

+ [Hn(Σχ(t) ∩ A)−Hn(Ξt0 ∩ A)]

(4.1.3),(4.2.8)
≤ ε

2p+3
+

ε

2p+3
+

ε

2p+2
=

ε

2p+1
.(4.2.10)

(iii) Let t ∈ Q(t0, a
′). Then we have Ξ′t ∩ A = Σ1 ∩ A. Using (4.2.7) again, we
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have

Hn(Ξ′t)−Hn(Ξt) ≤
ε

2p+3
+ [Hn(Σ1 ∩ A)−Hn(Ξt0 ∩ A)]

+ [Hn(Ξt0 ∩ A)−Hn(Ξt ∩ A)]

(4.1.4),(4.2.8)
≤ ε

2p+3
− ε+

ε

2p+3
< − ε

2
.(4.2.11)

Gathering the estimates (4.2.6), (4.2.9), (4.2.10) and (4.2.11), we finally obtain
the properties (4.2.2) and (4.2.3) of the lemma, which concludes the proof.

By retracing the steps of the previous proof, we can see that it allows for (at
least) two generalizations, which will be useful.

Remark 4.9. (i) Note that the choice to have the cubes Q(t0, a
′) and Q(t0, a)

centered at t0 is unnecessary and only for the sake of notational simplicity. Indeed,
with the appropriate choice of cut-off functions ψ, γ and χ, the proof is almost
identical if we replace them with cubes Q(t1, a

′) and Q(t2, a) (or even more general
sets) that are nested inside each other, i.e. Q(t1, a

′) ⊂⊂ Q(t2, a) ⊂⊂ Q(to, η).
(ii) The lemma also works with minimal modifications if the family {Ξt}t∈[0,1]p

is parameterized by a k-dimensional smooth submanifold P of [0, 1]p, with ∂P ∩
(0, 1)p = ∅ in case it has a boundary. One can simply take restrictions of the
relevant subsets of [0, 1]p to their intersection with P, both in the statement and
the proof.

In order to use the previous lemma to construct the aforementioned competi-
tor minimizing sequence and prove the Almgren-Pitts lemma, we will require a
combinatorial covering argument, which is the second main ingredient. The idea
is to decrease areas of certain "large-area" slices by a definite amount, while si-
multaneously keeping the potential area increase for other slices under control.

Proof of Proposition 4.7. Let {{Γ`t}}` ⊂ X be a minimizing sequence which
satisfies Proposition 3.2, and such that F({Γ`t}) := max

t∈P
Hn(Γ`t) < m0(X)+ 1

2m+2`
.

The following claim clearly implies the propositon:

Claim: For every N large enough there exists tN ∈ P such that ΓN := ΓNtN is
1
N
-a.m. in every (U1, . . . , Uωm) ∈ COωm and Hn(ΓN) ≥ m0(X)− 1

N
.

We define

(4.2.12) KN :=
{
t ∈ P | Hn(ΓNt ) ≥ m0(X)− 1

N

}
and suppose, contrary to the claim, that there is some subsequence {Nj}j such
that for every t ∈ KNj there exists an ωm-tuple (U1, . . . , Uωm) such that Γ

Nj
t is

not 1
Nj

-a.m. in it. After a translation and/or dilation, we can assume, without
loss of generality, that P ⊂ [0, 1]m (in the embedding). Note that, if we assume
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N to be large enough that m0(X)− 1/N > bM0(X), the set KN will surely lie in
the interior of P . In fact, in everything that follows, it is tacitly assumed that the
subsets of P we choose stay away from ∂P , in order to comply with our definition
of homotopic families.
By a slight abuse of notation, from now on we do not rename the subsequence,
and also drop the super- and subscript N from ΓNt and KN . Thus for every
t ∈ K there is a ωm-tuple of open sets (U1,t, . . . , Uωm,t) ∈ COωm and ωm families
{Σi,t,τ}τ∈[0,1] such that the following properties hold for every i ∈ {1, . . . , ωm}:

• Σi,t,0 = Γt;

• Σi,t,τ \ Ui,t = Γt \ Ui,t;

• Hn(Σi,t,τ ) ≤ Hn(Γt) + 1
2m+2N

;

• Hn(Σi,t,1) ≤ Hn(Γt)− 1
N
.

By recalling the definition of COωm , for every t ∈ K and every i ∈ {1, . . . , ωm}
we can choose an open set U ′i,t such that Ui,t ⊂⊂ U ′i,t and

(4.2.13) dist(U ′i,t, Ui,t) ≥ 2 ·min{diam(U ′i,t), diam(U ′j,t)}

for all i, j ∈ {1, . . . , ωm} with i 6= j. Next, we apply Lemma 4.8 with Ξt = Γt,
U = Ui,t, U ′ = U ′i,t and Στ = Σi,t,τ . Hence, for every t ∈ K and i ∈ {1, . . . , ωm}
we get a corresponding constant ηi,t given by the statement of the lemma.

Step 1: Initial covering. We first assign to each t ∈ K exactly one constant
ηt, by setting ηt := min

i∈{1,...,ωm}
ηi,t. We would like to initially decompose the cube

[0, 1]m into a grid of small, slightly overlapping cubes, such that we might be able
to apply the constructions in Lemma 4.8 to each of those (after discarding the
ones which have empty intersection with K). For this, we would like their size
to be smaller than the size of the cube given by the lemma for any point lying in
the center of one of these cubes. Therefore, we choose a covering of K:{
Q
(
((2r1 + 1)η̃, . . . , (2rm + 1)η̃), η

) ∣∣∣∣∣ r1, . . . , rm ∈ {1, . . . , ξ}
Q
(
((2r1 + 1)η̃, . . . , (2rm + 1)η̃), η

)
∩K 6= ∅

}
,

where η̃ = 9
10
η, ξ = min{n ∈ N0 | (2n+1)η̃ > 1−η}, and η is yet to be determined.

Ideally, we would like η to be smaller than any ηt. The problem, however, is that
for each t ∈ K, the constant ηt (which is determined by the proof of Lemma 4.8)
depends also on the sets Ui,t, so one might not in general expect to prove lower
boundedness. Nevertheless, using Remark 4.9(i), we deduce that if t0 ∈ K, then
for any t ∈ Q(t0,

ηi,t0
2

), the conclusions of the lemma hold with η =
ηi,t0

2
(t being

the center of the cubes now), and U = Ui,t0 . Therefore, for t (∈ K) close enough
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to t0, we can replace (U1,t, . . . , Uωm,t) by (U1,t0 , . . . , Uωm,t0) if necessary. Now, we
can start by covering K with Q(t, ηt

2
), t ∈ K. Since K is compact, it suffices to

pick finitely many t0, . . . , tl with K ⊂
⋃
Q(ti,

ηti
2

). We then set:

(4.2.14) η′ := min
j∈{0,...,l}

ηtj
2

Also note that for N large enough, because of condition (1.2.3), the set K lies
in the interior of P (in case it has a boundary). That means there exists some
η′′ > 0 such that for any cube Q(t, η′′) intersecting K we have ∂P ∩Q(t, η′′) = ∅.
We define η := min{η′

4
, η′′}, which determines the size of the cubes in the covering.

Furthermore, we set

r := (r1, . . . , rm);

tr := ((2r1 + 1)η̃, . . . , (2rm + 1)η̃)

Qr := Q
(
((2r1 + 1)η̃, . . . , (2rm + 1)η̃), η

)
To eachQr with tr ∈ K we can assign a corresponding ωm-tuple (U1,tr , . . . , Uωm,tr) ∈
COωm by assumption. On the other hand, to any cube Qr in the covering (i.e.
Qr ∩K 6= ∅) where the center tr /∈ K, owing to Remark 4.9(i) and the choice of
η above, we can also assign (U1,t̃, . . . , Uωm,t̃) belonging to some t̃ ∈ K, where we
are able to apply Lemma 4.8. With a slight abuse of notation, we will denote this
tuple by (U1,tr , . . . , Uωm,tr).

Step 2: Refinement of the covering. Our aim is to find a refinement
{Qr(a)}, a ∈ {−2

5
, 2

5
}m of the initial covering, such that

(i) Qr(a) ⊂ Qr for any a;

(ii) for every r and every a there is a choice of Ua,tr such that

– U ′a,tr ∈ {U
′
1,tr , . . . , U

′
ωm,tr},

– dist(U ′a,tr , U
′
a′,t′r

) > 0 if Qr(a) ∩Qr′(a
′) 6= ∅;

(iii) every point t ∈ [0, 1]m is contained in at most 2m cubes Qr(a).

To do this, we cover each cube Qr with 2m smaller cubes in the following way:
(4.2.15){

Q
((

(2r1 + 1)η̃ + a1η, . . . , (2rm + 1)η̃ + amη
)
,
3

5
η
)
| a1, . . . , am ∈

{
−2

5
,
2

5

}}
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We simplify the notation by setting

a := (a1, . . . , am) ∈
{
−2

5
,
2

5

}
;

Qr(a) := Q
((

(2r1 + 1)η̃ + a1η, . . . , (2rm + 1)η̃ + amη
)
,
3

5
η
)
.

Note that this choice of the refinement, as well as that of the initial covering,
immediately guarantees properties (i) and (iii).

After assigning a family of open sets to each cube of the initial covering in the
previous step, we now want to assign a subfamily to every cube of the refined
covering. Consider a cube Qr1(a) ⊂ Qr1 of the refinement. Assume that Qr1(a)
intersects 1 ≤ j ≤ 2m − 1 different cubes of the initial covering, say Qr2 , . . . ,Qrj ,
and let

Fr1 := (U ′1,tr1 , . . . , U
′
ωm,tr1

), . . . ,Frj := (U ′1,trj . . . , U
′
ωm,trj

)

be the corresponding tuples of open sets. Applying Lemma 4.6, we extract sub-
families F subri

⊂ Fri for every i ∈ {1, . . . , j}, each containing at least 2m open sets
such that

(4.2.16) dist(U, V ) > 0 ∀ U ∈ F subra , V ∈ F subrb
.

We then assign to Qr1(a) the subfamily F subr1
, which we now denote by Fr(a).

We can do this for every cube in the refinement. By construction, the property
(4.2.16) surely holds for each two subfamilies Fri(a),Frj(a

′) assigned to cubes
Qri(a),Qrj(a

′), such that Qri(a) ∩Qrj(a
′) 6= ∅ and Qri 6= Qrj . On the other

hand, the subfamilies assigned to two cubes belonging to the same cube of the
initial covering (i.e. Qri = Qrj), are not necessarily different. Note however, that
each subfamily contains at least 2m open sets, and every cube Qr of the initial
covering is covered by exactly 2m cubes of the refinement. Hence we can assign
to each of those a distinct open set U ′a,tr ∈ Fr(a).
Thus we have a refinement of the covering {Qr(a)} and corresponding open sets
U ′a,tr which have all the three properties listed in the beginning of Step 2. More-
over, since K is compact, and Qr(a) = Q(tr + aη, 3

5
η) according to (4.2.15), we

can choose a δ > 0 such that every t ∈ K is contained in at least one of the cubes
Q(tr + aη, 3

5
η − δ).

For the sake of simplicity, let us now rename the refinement {Qr(a)} and call
it {Pi}, the corresponding smaller cubes Q(tr + aη, 3

5
η − δ) we call P δ

i , and the
associated open sets we now denote by Ui and U ′i .

Step 3: Conclusion. In order to deduce the existence of a family {Γi,t} with
the properties

• Γi,t = Γt if t /∈ Pi and Γi,t \ U ′i = Γt \ U ′i if t ∈ Pi;
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• Hn(Γi,t) ≤ Hn(Γt) + 1
2m+1N

for every t;

• Hn(Γi,t) ≤ Hn(Γt)− 1
2N

if t ∈ P δ
i ,

we apply Lemma 4.8 for Ξt = Γt, U = Ui, U
′ = U ′i and Στ = Σi,t,τ .

Recall that from the construction of the refined covering {Pi} and the choice of
U ′i it follows that, if Pi∩Pj 6= ∅ for i 6= j, then dist(U ′i , U ′j) > 0. We can therefore
define a new family {Γ′t}t∈P with

• Γ′t = Γt if t /∈ ∪Pi;

• Γ′t = Γi,t if t is contained in in a single Pi;

• Γ′t =
[
Γt \ (U ′i1 ∪ . . .∪U

′
is)
]
∪
[
Γi1,t ∩U ′i1

]
∪ . . .∪

[
Γis,t ∩U ′is

]
if t ∈ Pi1 ∩ . . .∩

Pis , s ≥ 2.

This family is clearly homotopic to {Γt} and hence belongs to X.
We now want to estimate F({Γ′t}). If t /∈ K, then t is contained in at most 2mPi’s
and Γ′t can therefore gain at most 2m · 1

2m+1N
in area:

(4.2.17) t /∈ K =⇒ Hn(Γ′t) ≤ Hn(Γt) + 2m · 1

2m+1N
≤ m0(X)− 1

2N
.

Note that the last inequality is due to the definition of K. If t ∈ K, then t is
contained in at least one cube P δ

i and at most 2m− 1 other cubes Pi1 , . . . , Pi2m−1
.

Hence the area of Γ′t looses at least
1

2N
and gains at most (2m−1) · 1

2m+1N
in area.

Thus,
(4.2.18)

t ∈ K =⇒ Hn(Γ′t) ≤ Hn(Γt) + (2m − 1) · 1

2m+1N
− 1

2N
≤ m0(X)− 1

2m+2N
,

where the last inequality holds since Hn(Γt) ≤ F({ΓNs }s∈P) ≤ m0(X) + 1
2m+2N

by
assumption.
From the preceding inequalities we conclude

F({Γ′t}) ≤ m0(X)− 1

2m+1N
,

which is a contradiction to m0(X) = inf
X
F . This finishes the proof.
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Chapter 5
Boundary behavior of stationary varifolds

In this chapter, we start by recollecting some of the basic tools and concepts in
regularity theory for minimal surfaces. In the last section we introduce a crucial
ingredient, in the form of a bound for the second fundamental form of a minimal
surface at the boundary, necessary to conclude regularity in the constrained case.

5.1 Maximum Principle
The first important tool which we recall is the following classical maximum prin-
ciple for the constrained case.

Proposition 5.1 (Maximum principle). LetM be a smooth (n+ 1)-dimensional
submanifold satisfying Assumption 1.1 and U ⊂M an open set. If V ∈ Vcs(U, γ)
for some C2,α (n−1)-dimensional submanifold of γ (namely δV (χ) ≥ 0 for every
χ ∈ X−c (U \ γ)), then spt(V ) ∩ ∂M⊂ γ.

The above proposition is classical if we were to consider M as a subset of
a larger manifold M̃ without boundary and we had a varifold V which were
stationary in M′ \ γ. For a proof we refer the reader to White’s paper [59].
However it is straightforward to check that the proof in [59] works in our setting,
since the condition δV (χ) ≥ 0 for the class of vector fields X−c (U \ γ) pointing
“inwards” is what White really uses in his proof.

As a corollary to the above proposition we obtain the following

Corollary 5.2. Let M be a smooth (n + 1)-dimensional Riemannian manifold
isometrically embedded in a Euclidean space RN and satisfying Assumption 1.1.
If U ′ is an open subset of RN and V a varifold in Vcs(U ′ ∩M, γ) for some n− 1-
dimensional C2,α submanifold γ of ∂M , then V has, as a varifold in RN , bounded
generalized mean curvature in the sense of Allard away from γ: in particular all
the conclusions of Allard’s boundary regularity theory in [1] are applicable.

The proof is straightforward: after viewing M as a subset of a closed sub-
manifold M̃, Proposition 5.1 implies the stationarity of V in M̃ \ γ and reduces
the statement to a classical computation (see for instance [49, Remark 16.6(2)]).
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Remark 5.3. While one can in principle work with objects defined intrinsically
on M, it is often more convenient to embed M (smoothly) isometrically into
some Euclidean space RN . In fact, by possibly choosing a larger N , one can do
this so thatM is a compact subset of a closed (n+ 1)-dimensional manifold M̃.

5.2 Monotonicity Formulae
Perhaps the most important tool in regularity theory for stationary varifolds is
the monotonicity formula. For x ∈ Int(M) it says that there exists a constant Λ
(depending on the ambient Riemannian manifoldM, and which is 0 if the metric
is flat, see [49]) such that the function

(5.2.1) f(ρ) := eΛρ ||V ||(Bρ(x))

ωnρn

is non-decreasing for every x ∈M and ρ < min{Inj(M), dist(x, ∂M)}. A similar
conclusion assuming the existence of a "boundary" was reached by Allard [1].
Combined with Corollary 5.2 the results in [1] give the following

Proposition 5.4. Consider an open subset U ⊂M and a varifold V ∈ Vcs(U, γ)
for some C2,α submanifold γ of M. Then for every x ∈ γ, there exists a ρ0 > 0
and a (smooth) function Φ(ρ) with Φ(ρ)→ 0 as ρ→ 0, such that the quantity

(5.2.2) f(ρ) = eΦ(ρ) ||V ||(Bρ(x))

ωnρn

is a monotone non-decreasing function of ρ as long as 0 < ρ < ρ0.

In particular, we conclude that the limit
||V ||(Bρ(x))

ωnρn
exists and it is finite

at any point x ∈ γ, which in turn, by a standard covering argument implies the
following important fact:

Corollary 5.5. Let V and γ be as in Proposition 5.4. Then ‖V ‖(γ) = 0. In
particular the varifold V of Proposition 4.3 is integer rectifiable in the whole M
in the constrained case.

The case with free boundaries has been addressed by Grüter and Jost in
[23, 21, 22], who proved a suitable version of the monotonicity formula. The
results in these papers were proved in the Euclidean space, but they are easily
extendable to the case of stationary varifolds in compact Riemannian manifolds
using the embedding trick of Remark 5.3. We summarize the conclusion in the
following

Proposition 5.6. Assume M ⊂ M̃ ⊂ RN , where M̃ is a closed manifold, let
U ⊂ M be an open set and V a varifold in Vus (U). Then for each x ∈ U , there
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exists an r < dist(x, ∂U), and a constant c(x, r), with c(x, r)→ 1 as r → 0, such
that

(5.2.3)
||V ||(Bσ(x)) + ||V ||(B̃σ(x))

ωkσk
≤ c(x, r)

||V ||(Bρ(x)) + ||V ||(B̃ρ(x))

ωkρk

for all 0 < σ < ρ < r. Here, B̃σ(x) denotes the reflection of the ball Bσ(x) across
the boundary ∂M .

Note that, for points in Int (U) and r < dist(x, ∂M), the monotonicity for-
mula of Grüter and Jost reduces to (5.2.1). An important consequence of the
monotonicity in all of the above cases is the existence of the density function of
the varifold under consideration:

(5.2.4) Θ(V, x) = lim
r→0

||V ||(Br(x))

ωnrn

is well defined at all points x ∈ U . Moreover, in the case V ∈ Vus , one can
conclude that the function

Θ̃(V, x) :=

{
Θ(V, x) x ∈ Int(M) ∩ U
2Θ(V, x) x ∈ ∂M∩ U

is upper semicontinuous in U . In the constrained case we conclude instead that
the density function is upper semicontinuous in Int (U) and in ∂M∩ U .

5.3 Blow-up and Tangent Cones
In this section we recall the usual “rescaling” procedure which allows to blow-
up minimal surfaces at a given point. Following Remark 5.3, we adhere to the
standard procedure of first embedding the Riemannian manifoldM into RN . We
will use the term (n + 1)-dimensional wedge of opening angle θ ∈]0, π

2
[ for any

closed subset W of the form R(W0), where R ∈ SO(n + 1) is an orientation-
preserving isometry of Rn+1 and we recall that that W0 is the canonical wedge
with opening angle θ, namely the set

{(x1, . . . , xn+1) ∈ Rn+1 : |xn+1| ≤ x1 tan θ} .

The half-hyperplane R({xn+1 = 0, x1 > 0}) will be called the axis of the wedge
and the (n − 1)-dimensional plane ` := R({xn+1 = x1 = 0}) will be called the
tip of the wedge. As stated above, when W = W0, we call it the canonical wedge
with opening angle θ.

Definition 5.7. LetM be a smooth (n+ 1)-dimensional manifold with boundary
satisfying Assumption 1.1 and γ a C2,α (n− 1)-dimensional submanifold of ∂M.
We say that a closed set K ⊂M meets ∂M in γ with opening angle at most θ if
the following holds:
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• γ = K ∩ ∂M;

• for any x ∈ γ, let τ ∈ Tx∂M be a unit vector orthogonal to Txγ and
ν ∈ TxM be the unit vector orthogonal to Tx∂M and pointing inwards;
then for every C1 curve σ : [0, 1]→ K, with σ(0) = x and parameterized by
arc length, we have

(5.3.1) |〈σ̇(0), τ〉| ≤ 〈σ̇(0), ν〉 tan θ .

γ

M

K

Figure 5.1: A set K meeting γ at some angle at most θ < π
2 .

We are now ready to state the blow-up procedure which we will use in the
rest of the thesis, especially at boundary points. Recall that, for x ∈ ∂M, ν is
the unit vector of TxM orthogonal to Tx∂M and pointing inwards.

Lemma 5.8. LetM⊂ RN be a smooth Riemannian manifold satisfying Assump-
tion 1.1, U ⊂ M an open set and V a varifold which is stationary in Int (U).
Given a point x ∈ spt (V ) ⊂M we introduce the map ιx,r : RN → RN defined by
ιx,r(y) := (y − x)/r and letMx,r := ιx,r(M) and Vx,r := (ιx,r)]V .

(I) If x ∈ Int (U), thenMx,r converges as r → 0, locally in the Hausdorff sense,
to TxM (which is identified with the corresponding linear subspace of RN).
Up to subsequences Vx,r converges, in the sense of varifolds, to a varifold S
which is a cone and it is stationary in TxM.

(B) If x ∈ ∂M, thenMx,r converges, locally in the Hausdorff sense, to T+
xM :=

TxM∩{y : ν ·y ≥ 0}. Vx,r converges, in the sense of varifolds, to an integer
varifold S which is a cone, it is supported in T+

xM and it is stationary in
TxM∩ {y : y · ν > 0}.

(W) If x ∈ ∂M and we assume in addition that spt (V ) is contained in a closed
K which meets ∂M at a C2,α submanifold γ with opening angle at most θ,
then each such S (as in statement (B)) is supported in the wedge W ⊂ TxM
of opening angle θ with tip Txγ and axis orthogonal to Tx∂M .
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In the cases (I) and (W) the limit varifold W is integer rectifiable if V is integer
rectifiable. From now on any such varifold will be called a tangent varifold to V
ay the point x.

Definition 5.9. At every point x we denote by Tan (x, V ) the set of varifolds W
which are limits of subsequences (with rk ↓ 0) of {Vx,r}r and which will be called
tangent cones to V at x. We observe moreover that

(5.3.2) Θ(V, x) = Θ(W, 0) =
‖W‖(Br(0))

ωnrn
∀W ∈ Tan (x, V ), ∀r > 0 .

5.4 White’s curvature estimate at the boundary
In this section we introduce the most important tool in the boundary regularity
theory which we will develop in the sequel. The tool is a suitable curvature
estimate at the boundary, suggested by Brian White, which is valid for stationary
smooth hypersurfaces constrained in a wedge.

Theorem 5.10. LetM be an (n+ 1)-dimensional smooth Riemannian manifold
satisfying Assumption 1.1, γ ⊂ ∂M a C2,α submanifold of ∂M and r ∈]0, 1[.
Denote by D the inverse of the distance between the closest pair of points in
γ which belong to distinct connected components; if there is a single connected
component, set D = 0. For everyM > 0 and θ ∈ [0, π[ there are positive constants
C(D,M,M, γ, n, η) and δ(D,M,M, γ, n, η) with the following property: Assume
that

(CE1) x0 ∈ γ and Σ is a stable, minimal hypersurface in B2r(x0) such that:

– Hn(Σ) ≤Mrn, ∂Σ ⊂ ∂B2r(x0) ∪ ∂M and ∂Σ ∩ ∂M = γ;

– Σ is C1 apart from a closed set sing (Σ) with Hn−2(sing (Σ)) = 0 and
γ ∩ sing (Σ) = ∅;

– Σ is contained in a closed set K meeting ∂M in γ with opening angle
at most θ.

Then Σ is C2,α in Bδr(x0) and

(5.4.1) |A| ≤ Cr−1 in Bδr(x0).

Furthermore, Σ ∩Bδr(x0) consists of a single connected component.

The proof requires two elementary but important lemmas, which we state
immediately.

Lemma 5.11. Let V be an integer n-dimensional rectifiable varifold in Rn+1 such
that

(a) V is stationary in a wedge W0 of opening angle θ;

38



Chapter 5. Boundary behavior of stationary varifolds 39

(b) δV = (w1, w2, 0, . . . , 0)Hn−1 ` for some Borel vector field w = (w1, w2) ∈
L1
loc(Hn−1 `;R2).

Then for Hn−1-a.e. x ∈ ` we have the representation

w(x) =
m∑
i=1

vi(x)

where

• m = 2Θ(x, V );

• each vi is of the form (− cos θi,− sin θi) for some θi ∈ [−θ, θ].

Lemma 5.12. Let k ∈ N \ {0} and vi = (− cos θi,− sin θi) 2k+ 1 unit vectors in
the plane with −π

2
< θi <

π
2
. Then the sum v1 + . . . + v2k+1 has length strictly

larger than 1.

The simple proofs of the lemmata will be postponed to the end of the section,
while we first deal with the proof of the main Theorem (given the two lemmata).

Proof of Theorem 5.10. We will in fact prove that the constants δ and C
depend on the C2,α regularity of γ, M and ∂M. First of all we focus on the
curvature estimate.

Without loss of generality, we again assume thatM is isometrically embedded
in a euclidean space RN . Observe that the dimension N can be estimated by n
and thus we can assume that N is some fixed number, depending only on n. Upon
rescaling we can also assume that r = 1: the rescaling would just lower the C2,α

norm ofM, ∂M and γ and increase the distance D between different connected
components of γ.

Assuming by contradiction that the statement does not hold, we would find a
sequence of manifoldsMk, boundaries γk, minimal surfaces Σk and points pk ∈ Σ
with the properties that:

• |AΣk |(pk) ↑ ∞, or pk is a singular point, and the distance between pk and
γk converges to 0

• Mk,Σk and γk satisfy the assumptions of the Theorem with r = 1, with
a uniform bound on the C2,α regularities of both γk and Mk and with a
uniform bound on M and θ.

We let qk ∈ γk be the closest point to pk and, w.l.o.g. we translate the surfaces
so that qk = 0. We next rescale them by a factor ρ−1

k where ρk is the maximum
between |pk| and |AΣk(pk)|−1 (where we understand the latter quantity to be 0
if pk is a singular point). We denote by γ̄k, M̄k, Σ̄k and p̄k the corresponding
rescaled objects. It turns out that, up to subsequences,
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(a) the rescaled manifolds M̄k are converging, locally in C2,α, to a half (n+ 1)-
dimensional plane, that w.l.o.g. we can assume to Rn+1

+ = {x : xn+2 = . . . =
xN = 0, x1 ≥ 0};

(b) the rescaled manifolds ∂M̄k are converging, locally in C2,α, to an n-dimensional
plane, namely {x : x1 = xn+2 = . . . = xN = 0};

(c) the rescaled surfaces γ̄k are converging, locally in C2,α, to an n−1-dimensional
plane, that w.l.o.g. we can assume to be ` := {x1 = xn+1 = xn+2 = . . . =
xN = 0};

(d) the points p̄k are converging to some point p̄ and lim infk |AΣ̄k | > 0;

(e) the surfaces Σ̄k are converging, in the sense of varifolds, to an integral
varifold V , which is supported in the standard wedge W contained in Rn+1

+

with tip `, axis π+ = {x1 > 0, xn+1 = xn+2 = . . . = xN = 0};

(f) the integral varifold V is stationary insideW \` and in fact |δV | ≤ Hn−1 `.

All these statements are simple consequences of elementary considerations and of
the theory of varifolds. For (f), observe that |δΣ̄k| ≤ Hn−1 γk+‖AMk

‖C0Hn Σk

and use the semicontinuity of the total variation of the first variations under
varifold convergence.

We next show that the varifold V is necessarily half of an n-dimensional plane
τ bounded by ` and lying inW . This would imply, by Allard’s regularity theorem,
that the surfaces Σk are in fact converging in C2,α to τ , contradicting (d).

We first start to show that the density 2Θ(V, x) is odd at Hn−1 a.e. p ∈ `. By
White’s stratification theorem, see Theorem 5 of White [58], with the exception
of a closed set of dimension at most n− 2, for any point x ∈ ` there is a tangent
cone V∞ to V which is invariant under translations along `. This implies that V∞
is necessarily given by

m∑
i=1

Jπi ∩W0K

for some family of n-dimensional planes (possibly with repetitions) containing
`, where m = m(x) = 2Θ(V∞, 0) = 2Θ(V, x). Observe that any such plane is
contained in the wedge W . Consider the first of them, π1 and let B ⊂ π1 be a
compact connected set not intersecting `. By a simple diagonal argument, V∞ is
also the limit of an appropriate sequence of rescalings of the surfaces Σ̄k, namely
(Σ̄k(j))0,rj . If k(j) converges to infinity sufficiently fast, we keep the convergence
conclusions in (a), (b), (c), (e) and (f) even when we replace Σ̄k, M̄k, ∂̄Mk

and γ̄k with the corresponding rescalings (Σ̄k(j))0,rj , (M̄k(j))0,rj , (∂̄Mk(j))0,rj and
(γ̄k(j))0,rj . For notational simplicity, let us keep the label Σ̄k even for the rescaled
surfaces.

Note that, since the varifold V∞ is a finite number of affine graphs over the set
B (and m is the sum of the multiplicities, including the ones of π1), the Schoen-
Simon theorem implies smooth convergence of the Σ̄k, so the Σ̄k will also be a
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union of m graphs over B (distinct, because the Σk are surfaces with multiplicity
1). Let κ = π⊥1 and, after giving compatible orientations to π1 and κ, for every
x ∈ B where κ + x intersects Σ̄k transversally, we define the degree

d(x) :=
∑

y∈κ∩Σ̄k

ε(TyΣ̄k,κ),

where ε(TyΣ̄k,κ) takes, respectively, the value 1 or −1 according to whether the
two transversal planes have compatible or non-compatible orientation. For k large
enough γk does not intersect B + κ and thus d is constant on B. Moreover, it
turns out that d is either 1 or −1. To see this, one can for instance consider Σ̄k

as integral currents and project them onto π1. Due to (c), for k large enough
(and inside some large ball around the origin), the projection of γ̄k’s will have
multiplicity one, and since the projection and the boundary operator commute,
the projection of Σ̄k’s onto π1 inside B will be simply ±Jπ1K B. Thus the number
of intersections of y + κ with Σ̄k must be odd for a.e. y ∈ B. This obviously
implies that m is odd.

We next infer that 2Θ(V, x) must be 1 at Hn−1-a.e. x ∈ `. Apply indeed
Lemma 5.11 and, using the Borel maps w and vi defined in there, consider the
Borel function

f(x) := |w(x)| =
∣∣∣∑ vi(x)

∣∣∣ .
We then have |δV | = fHn−1 ` and from Lemma 5.12, we conclude that f > 1 at
every point where 2Θ(V, x) is an odd number larger than 1. Since by the previous
step such number is odd a.e., we infer our claim by using item (f) from above.
By Allard’s regularity theorem, any point x as above (i.e. where there is at least
one tangent cone invariant under translations along `) is then a regular point.

Hence, it turns out that

• the set of interior singular points of V has Hausdorff dimension at most
n− 7, by the Schoen-Simon compactness theorem;

• the set of boundary singular points has Hausdorff dimension at most n− 2.

Consequently, there is only one connected component of the regular set of V whose
closure contains `. Thus there cannot be any other connected component, because
its closure would not touch ` and would give a stationary varifold contained in
the wedge W , violating the maximum principle. Hence we infer that any interior
regular point of V can be connected with a curve of regular points to a regular
boundary point. In turn this implies that the varifold V has density 1 at every
regular point. So V can be given the structure of a current and in particular we
conclude that the Σk’s are converging to V as a current.

Consider next that,

lim
R↑∞

‖V ‖(BR(0))

Rn
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is bounded uniformly, depending only on the constant M . Thus, by the usual
monotonicity formula, there is a sequence Rk → ∞ such that V0,RK converges
to a cone V∞ stationary in W . Again, by a diagonal argument, V∞ is also the
limit of a sequence of rescalings (Σ̄k(j))0,Rj , and if k(j) converges to infinity suffi-
ciently fast, we retain the conclusions in (a), (b), (c), (e) and (f) when we replace
Σ̄k, M̄k, ∂̄Mk and γ̄k with the corresponding rescalings (Σ̄k(j))0,Rj , (M̄k(j))0,Rj ,
(∂̄Mk(j))0,Rj and (γ̄k(j))0,Rj .

All the conclusions inferred above for V are then valid for V∞ as well, namely:
V∞ has multiplicity 1 a.e., it can be given the structure of a current and the
surfaces (Σ̄k(j))0,Rj are converning to it in the sense of currents. In particular the
boundary of V∞ (as a current) is given by ` (with the appropriate orientation).
We can then argue as in [1, Lemma 5.2] to conclude that the current V∞ is in
fact the union of finitely many half-hyperplanes meeting at `. But since ` has
many regular points, where the multiplicity must be 1

2
, we conclude that indeed

V∞ consists of a single plane.

In particular we infer from the argument above that Θ(V∞, 0) = 1
2
. This in

turn implies

lim
R↑∞

‖V ‖(BR(0))

Rn
=
ωn
2
.

On the other hand
lim
r↓0

‖V ‖(Br(0))

rn
= ωnΘ(V, 0) .

But the upper semicontinuity of the density implies implies that Θ(V, 0) ≥ 1
2
.

Since ` is flat, Allard’s monotonicity formula implies that

r 7→ ‖V ‖(Br(0))

rn

is monotone and thus constant. Again the monotonicity formula implies that
such function is constant if and only if V is itself a cone. This means that V
coincides with V∞ and is half of a hyperplane, as desired.

We now come to the claim that, choosing δ possibly smaller, the surface Σ has
a single connected component in Bδr(x0). Again this is achieved by a blow-up
argument. Given the estimate on the curvature, for every sufficiently small η
we have that x0 belongs to a connected component of Σ which is the graph of
a function f for some given system of coordinates in B2η(x0). Let us denote by
Γ such a connected component. For η small we can assume that the tangent to
Γ is as close to Tx0Γ as we desire and thus we can assume that the connected
component is actually a graph of a function f : Tx0Γ → Tx0Γ

⊥, with gradient
smaller than some ε > 0, whose choice we specify in a moment. From now on in
all our discussion we assume to work in normal coordinates based at x0. In fact
it is convenient to consider a closed manifold M̃ which contains ∂M and from
now on we let B̃r(x0) be the corresponding geodesic balls.

Assume now, by contradiction, that Bδη(x0) contains another point y0 which
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does not belong to Γ, where δ is a small parameter, depending on the maximal
opening angle θ with which the set K can meet ∂M. Thus y0 belongs to a second
connected component Γ′. By the curvature estimates we can assume that Γ′ as
well is graphical and more precisely it is a graph over some plane π of a function
g with gradient smaller than ε and height smaller than εη. Moreover, without
loss of generality, we can assume that π passes through the point y0.

Observe that by assumption (CE1) Γ′ cannot intersect ∂M, hence any point
in ∂Γ′ is at distance 2η from x0. Since ‖g‖0 ≤ εη, it turns out that any point
z0 ∈ π ∩ B̃(2−2ε)η(x0) must be in the domain of g, which we denote by Dom (g).
To see this observe first that, since π ∩ B̃(2−2ε)η(x0) is convex, we can join y0 and
z0 with a path γ lying in π ∩ B̃(2−2ε)η(x0). Assume that γ is parametrized over
[0, 1] and that γ(0) = y0. For a small ε we know that γ([0, ε]) ⊂ Dom (g). If
γ(1) ∈ Dom (g) we are finished. Otherwise we let τ be the infimum of {t : γ(t) 6∈
Dom (g)}. Obviously the point p in the closure of the graph of g lying over γ(τ)
is a boundary point for Γ′. On the other hand, since γ(τ) ∈ B̃(2−2ε)η(x0) and
‖g‖ ≤ εη, clearly p cannot be at distance 2η from x0. This is a contradiction and
thus we have proved the conclusion

π ∩ B̃(2−2ε)η(x0) ⊂ Dom (g) .

In particular we conclude that π∩B̃(2−4ε)η(x0) cannot meet ∂M: if the intersection
were not empty, then there would be a point q contained in π∩(B̃(2−2ε)η(x0)\M)
which lies at distance at least 3

2
εη from ∂M. In particular the point of the graph

of g lying on top of q could not belong toM, although it would be a point of Γ′.
By a similar argument, we conclude that π ∩ B̃(2−6ε)η(x0) cannot intersect

Tx0Σ, otherwise we would have nonempty intersection between the graphs of f
and g, i.e. a point belonging to Γ ∩ Γ′, which we know to be different connected
components of Σ ∩B2η(x0), hence disjoint.

At this point we choose ε = 1
12
. Summarizing, the plane π has the following

properties:

(a) π contains a point y0 ∈ Bδη(x0);

(b) π does not intersect ∂M∩ B̃3η/2;

(c) π does not intersect Tx0Σ ∩ B̃3η/2;

(d) Tx0Σ meets Tx0∂M at an opening angle at most θ.

It is now a simple geometric property that, if δ is chosen sufficiently small com-
pared to θ, then the plane π cannot exist, cf. Figure 5.2.

Proof of Lemma 5.11. By White’s stratification theorem, see Theorem 5 of
White [58], at Hn−1-a.e. point x ∈ ` there is a tangent cone V∞ to V which is
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π

Tx0Σ

x0

∂M

Figure 5.2: If two planes π and Tx0Σ satisfy the assumption (b), (c) and (d), then π cannot
contain a point which is δη close to x0.

invariant under translations along `. This implies that V∞ is necessarily given by

m∑
i=1

Jπi ∩W0K

for some family of n-dimensional planes containing `, wherem = m(x) = 2Θ(V∞, 0) =
2Θ(V, x). It is therefore obvious that

δV∞ =
m∑
i=1

viHn−1 `

where each vi = vi(x) is the unit vector contained in πi \W0 and orthogonal to
`: therefore for each i we have vi = (− cos θi,− sin θi) for some θi ∈ [−θ, θ].

Let rk ↓ 0 be a sequence such that the rescaled varifolds Vx,rk converge weakly
to V∞. Then δVx,r converges to δV∞ in the sense that δVx,rk(ϕ) → δV∞(ϕ) for
any smooth compactly supported vector field on Rn+1. On the other hand for
a.e. x we have δVx,r⇀∗w(x)Hn−1 `. This completes the proof since for a.e. x
we must have w(x) =

∑m(x)
i vi(x).

Proof of Lemma 5.12. We order the vectors so that θ1 ≤ θ2 ≤ . . . ≤ θ2k+1.
For each i ≤ k, the sum wi of the pair vi + v2k+2−i is a positive multiple of(

− cos θi+θ2k+2−i
2

,− sin θi+θ2k+2−i
2

)
.

Since θi ≤ θk+1 ≤ θ2k+2−i, it is easy to see that the vectors wi and vk+1 form
an angle strictly smaller than π

2
. We therefore have 〈wi, vk+1〉 > 0 and we can
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estimate

|v1 + . . .+ v2k+1|2 ≥
2k+1∑
j=1

〈vj, vk+1〉 = 1 +
k∑
i=1

〈wi, vk+1〉 > 1 .
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Chapter 6
Stability and compactness

A varifold will be called stable (in an open set U) if the second variation δ2V is
nonnegative when evaluated at every vector field compactly supported in Int (U).
Strict stability will mean that the second variation is actually strictly positive,
except for the trivial situation where the vector field vanishes everywhere on the
support of the varifold. Since the ground-breaking works of Schoen [45], Schoen-
Simon-Yau [47] and Schoen-Simon [46], it is known that, roughly speaking, all
the smoothness and compactness results which are valid for hypersurfaces (resp.
integer rectifiable hypercurrents) which minimize the area are also valid (in the
form of suitable a priori estimates) for stable hypersurfaces.

6.1 Interior compactness and regularity
We recall here the fundamental compactness/regularity theorem of Schoen and
Simon (cf. [46]) for stable minimal surfaces.

Theorem 6.1. Let {Σk} be a sequence of stable minimal hypersurfaces in some
open subset U ⊂M\ ∂M and assume that

(i) each Σk is smooth except for a closed set of vanishing Hn−2-measure;

(ii) Σk has no boundary in U ;

(iii) supkHn(Σk) <∞.

Then a subsequence of {Σk} (not relabeled) converges, in the sense of varifolds,
to an integer rectifiable varifold V such that

(a) V is, up to multiplicity, a stable minimal hypersurface Γ with dim (Sing (Γ)) ≤
n− 7;

(b) at any point p 6∈ Sing (Γ) the convergence is smooth, namely there is a
neighborhood of V such that, for k large enough, Σk ∩ V can be written as
the union of N distinct smooth graphs over (the normal bundle of ) Γ ∩ U ,
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converging smoothly (where the number N is uniformly controlled by virtue
of (iii)).

In fact the Theorem of Schoen and Simon gives a more quantitative version of
the smooth convergence, since for every point p 6∈ Sing (Γ) the second fundamen-
tal form of Σk at p can be bounded, for k large enough, by Cdist(p, Sing (Γ))−1,
where the constant C is independent of k.

6.2 Boundary version for free boundary surfaces
In [23] the fundamental result of Schoen and Simon has been extended to the case
of free boundary minimal surfaces, under a suitable convexity assumption in the
case of n = 2 in the Euclidean case. However, it can be readily checked that the
arguments presented in [23] to adapt the proof of Schoen and Simon in [46] to the
free boundary case are independent both of the dimensional assumption n = 2
and of the assumption that M is a convex subset of the Euclidean space. We
state the resulting theorem below, where we need the following stronger stability
condition, which we will call stability for the free boundary problem.

Definition 6.2. Let M be a smooth (n + 1)-dimensional Riemannian manifold
and U ⊂ M an open set. A vaifold V ∈ Vus (U) is said to be stable for the free
boundary problem if δ2V (χ) ≥ 0 for every χ ∈ Xt

c(U).

Theorem 6.3. Let M be a smooth (n + 1)-dimensional Riemannian manifold
which satisfies Assumption 1.1. Let Σk be a sequence of stable minimal hypersur-
faces in some open subset U ⊂M and assume that

(i) each Σk is smooth except for a closed set of vanishing Hn−2-measure;

(ii) ∂Σk ∩ U is contained in ∂M and Σk meets ∂M orthogonally (thus, Σk is
stationary for the free boundary problem);

(iii) Σk is stable for the free boundary problem;

(iv) supkHn(Σk) <∞.

Then a subsequence of Σk (not relabeled) converges, in the sense of varifolds, to
an integer rectifiable varifold V such that

(a) V is, up to multiplicity, a stable minimal hypersurface Γ with dim (Sing (Γ)) ≤
n− 7;

(b) at any point p 6∈ Sing (Γ) the convergence is smooth;

(c) Γ meets ∂M orthogonally, thus V ∈ Vus (U);

(d) V is stable for the free boundary problem.
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6.3 Boundary version for the constrained case
We shall now combine Theorem 5.10 with the interior estimates of Schoen and
Simon to get a compactness theorem for stable minimal hypersurfaces which have
a fixed given boundary γ and meet ∂M transversally in a suitable quantified way.

Theorem 6.4. Let M be an (n + 1)-dimensional smooth Riemannian manifold
which satisfies Assumption 1.1, γ ⊂ ∂M a C2,α submanifold of ∂M, U an open
subset ofM and K ⊂ U a set which meets ∂M in γ at an opening angle smaller
than π

2
. Let Σk be a sequence of stable minimal hypersurfaces in U ⊂ M and

assume that

(i) each Σk is smooth except for a closed set of vanishing Hn−2-measure and
γ ∩ sing (Σ) = ∅;

(ii) ∂Σk ∩ U = γ ∩ U ;

(iii) supkHn(Σk) <∞;

(iv) Σk ⊂ K.

Then a subsequence of Σk, not relabeled, converges, in the sense of varifolds, to
an integer rectifiable varifold V such that

(a) V is, up to multiplicity, a stable minimal hypersurface Γ with dim (Sing (Γ)) ≤
n− 7;

(b) at any point p 6∈ Sing (Γ) the convergence is smooth;

(c) Sing (Γ) ∩ ∂M = ∅ and ∂Γ = γ (in particular, the multiplicity of any
connected component of Γ which intersects ∂M must be 1).

Proof. First of all, after extraction of a subsequence we can assume that Σk

converges to a varifold V . Observe that V is stationary in Int (U) and thus it
is integer rectifiable in there, by Allard’s compactness theorem. Note also that
each Σk belongs to Vcs(U, γ) and thus, by continuity of the first variations, V
belongs as well to Vcs(U, γ). Thus, by the maximum principle of Proposition 5.1
we conclude that ‖V ‖(∂M) = ‖V ‖(γ). In particular, as argued for Corollary 5.5,
Allard’s monotonicity formula (cf. Proposition 5.4) implies that ‖V ‖(∂M) = 0
and that V is integer rectifiable in U .

Next observe that in U \ ∂M we can apply the Schoen-Simon compactness
theorem: thus, except for a set K ′ in U \ ∂M, the smooth convergence holds at
every point x0 ∈ U \ (γ ∪ K ′) and dim (K ′) ≤ n − 7. As for the points x ∈ γ,
consider first an open subset U ′ which has positive distance from ∂U \ ∂M. By
the boundary curvature estimates of Theorem 5.10, there is an r0 > 0 and a
constant C0, both independent of k, such that |AΣk | ≤ C0 in any ball Br0(x) with
center x ∈ γ∩U ′. This implies that, in a fixed neighborhood U ′′ of γ, Σk consists
of a single smooth component which is a graph at a fixed scale, independent of
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k. The estimate on the curvature in Theorem 5.10 gives then the convergence of
these graphs in C1,α for every α < 1. Since the limit turns out to be (locally)
graphical and a solution of an elliptic PDE, classical Schauder estimates implies
its smoothness and the smooth convergence.

6.4 Varying the ambient manifolds
In all the situations above, we can allow also for the manifolds M to vary in
a controlled way, namely to change as Mk along the sequence. One version
which is particularly useful is when the Mk are embedded in a given, fixed,
Euclidean space and they are converging smoothly to aM. All the compactness
statements above still hold in this case and in particular the corresponding obvious
modifications (left to the reader) will be used at one occasion in the very simple
situation where the Mk are rescalings of the same M at a given point, thus
converging to the tangent space at that point, cf. Section 8.1 and Section 8.3.2
below.

6.5 Wedge property
In this section we use the maximum principle to prove that, given a smooth γ
any stationary varifold V ∈ Vcs(U, γ) meets γ “transversally” in a quantified way,
namely it lies in suitable wedges that have a controlled angle. This property is
necessary to apply to the compactness Theorem 6.4. The precise formulation is
the following

Lemma 6.5. Let M be a smooth (n + 1)-dimensional submanifold satisfying
Assumption 1.1, γ be a C2 (n− 1)-dimensional submanifold ofM and U ′ ⊂⊂ U
two open subsets ofM. Then there is a constant θ0(U,U ′, γ) < π

2
and a compact

set K ⊂ U ′ with the following properties:

(a) K meets γ at an opening angle at most θ0;

(b) spt(V ) ∩ U ′ ⊂ K for every varifold V ∈ Vcs(U, γ).

Note that in the special case of U =M, we are allowed to choose U ′ =M and
thus we conclude a uniform transversality property for any varifold in Vcs(M, γ),
in particular for the varifold V of Proposition 4.3. On the other hand we do need
the local version above for several considerations leading to the regularity of V
at the boundary. WhenM is a subset of the Euclidean space, the lemma above
follows easily from the following two considerations:

(i) By the classical maximum principle, spt(V ) is contained in the compact
subset K which is the convex hull of (γ ∩U)∪ (∂U \ ∂M), see for instance
the reference [49];
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(ii) Such convex hull K meets γ at an opening angle which is strictly less than
π
2
at every point x ∈ γ ∩U (here the C2 regularity of γ is crucially used, cf.

the elementary Lemma 6.6 below).

The uniform (upper) bound on the angle is then obtained in U ′ ⊂⊂ U simply by
compactness.

Unfortunately, although the extension of (i) above to general Riemannian
manifolds is folklore among the experts, we do not know of a reference that
we could invoke for Lemma 6.5 without some additional technical work. This
essentially amounts to reducing to the Euclidean situation by a suitable choice of
coordinates.

6.5.1 Wedge property and convex hull

We start by recording the following elementary fact, which in fact proves claim
(ii) above.

Lemma 6.6. Consider a bounded, open, smooth, uniformly convex setM⊂ Rn+1

and a C2 (n − 1)-dimensional connected submanifold γ ⊂ Br(0) ∩ ∂M passing
through the origin. Then there is a wedge W contaning γ such that:

(a) The axis of W is orthogonal to T0∂M;

(b) The tip of W is T0γ;

(c) The opening angle is bounded away from π
2
in terms of the principal curva-

tures of ∂M and of ‖Aγ‖∞.

Proof. For simplicity fix coordinates so that T0γ = {x1 = xn+1 = 0}, T0∂M =
{x1 = 0} andM is lying in {x1 > 0}. For every θ < π

2
letMθ be the portion of

M lying in {xn+1 > x1 tan θ}, and consider r > 0 such that the open ball

Br((0, 0, . . . , 0, r))

contains Mθ. Let ρ(θ) be the smallest such radius. ρ(θ) is a non-increasing
function of θ and by the uniform convexity of M, ρ(θ) → 0 as θ ↑ π

2
. On

the other hand we know that if ρ(θ) < ‖Aγ‖−1
∞ , then Bρ((0, 0, . . . , 0, ρ)) is an

osculating ball for γ at 0 and cannot contain any point of γ. This shows that
for all θ sufficiently close to π

2
, γ is contained in {xn+1 ≤ x1 tan θ}. By a simple

reflection argument we obtain the same property with {−xn+1 ≤ x1 tan θ}, which
completes the proof of the lemma.

6.5.2 Proof of Lemma 6.5

First of all, we observe that by a simple covering argument it suffices to show
the lemma in a sufficiently small neighborhood U of any point p ∈ ∂M, since we
already know by the maximum principle in Proposition 5.1 that spt(V )∩∂M ⊂ γ.
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Recall that we can assume thatM is a subset of a closed Riemannian manifold
M̃, cf. Remark 5.3. Let p ∈ γ, and Ũ a normal neighborhood of p in M̃. We
then consider normal coordinates on M̃ centered at p, given by the chart ϕ :=
E ◦exp−1

p : U → Rn+1, where the isomorphism E : TpM̃ → Rn+1 is chosen so that
E(Tp∂M) = {x ∈ Rn+1 : x1 = 0}, and E(Tpγ) = {x ∈ Rn+1 : x1 = xn+1 = 0}.

Now, if we let A denote the second fundamental form of ∂M in M with
respect to the unit normal ν pointing insideM, B the second fundamental form
of ϕ(∂M) in Rn+1 with respect to the unit normal n pointing inside ϕ(M),
and ∇, ∇̄ the ambient Riemannian and Euclidean connection respectively, we
immediately see that

A(X, Y )
∣∣
p

= −g(∇̄Xν, Y )
∣∣
p

= g(ν, ∇̄XY )
∣∣
p

= 〈n,∇XY 〉
∣∣
0

= −〈∇Xn, Y 〉
∣∣
0

= B(X, Y )
∣∣
0
,

since ν(p) = n(0), g(., .)
∣∣
p

= 〈., .〉 and ∇
∣∣
p

= ∇̄
∣∣
0
by the properties of the

exponential map. Hence, it follows from Assumption 1.1 that B � ξ Id at 0.
Thus, if we represent ϕ(∂M) as a graph of a function f over its tangent plane
{x ∈ Rn+1|x1 = 0} at 0, the Hessian of f is equal to B at 0, and hence there are
some Cartesian coordinates (y2, . . . , yn+1) on this plane such that f has the form

(6.5.1) f(y2, . . . , yn+1) =
1

2
(κ2y

2
2 + . . .+ κn+1y

2
n+1) +O(|y|3),

where κ2, . . . , κn+1 > ξ > 0 are principal curvatures (w.r.t. inward pointing
normal at 0).

In particular we can assume that U is chosen so small that f is uniformly
convex in the Euclidean sense, namely that D2f > 0 everywhere on ϕ(Ũ). By
abuse of notation we keep using Ũ for ϕ(Ũ), M for ϕ(M) and thus V for the
varifold ϕ]V . Since we can now regard M as a convex subset of the euclidean
space, we can apply Lemma 6.6 and conclude that γ is contained in a wedgeW of
the form {|xn+1| ≤ tan θx1}. However we cannot apply the maximum principle to
conclude that spt(V ) ⊂ W because V is not stationary in the Euclidean metric.
Our aim is however to show that, if we enlarge slightly θ, but still keep it smaller
than π

2
, then spt(V ) ⊂ W . The resulting θ will depend on the manifoldM, the

submanifold γ and the size of Ũ , but not on the point p. Thus this argument
completes the proof, since the set K can be taken to be, in a neighborhood
of γ ∩ U ′, the union of the corresponding wedges for p (intersected with the
corresponding neighborhoods Ũ) as p varies in γ ∩ U ′.

Recall that, in our notation,M is in fact the set {y1 ≥ f(y2, . . . , yn+1)}. For
each λ ≥ 0 consider now the function

fλ(y2, . . . , yn+1) = (1− λ)f(y2, . . . , yn+1) + λ
yn+1

tan θ
.

For λ ↓ 0, the function fλ converges in C2 to the function f . Thus the set
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Mλ = {y1 ≥ fc,λ(y2, . . . , yn+1)} is uniformly convex in the Riemannian manifold
M̃ as soon as λ ≤ ε.

Observe next that all the graphs of all the functions fλ intersect in an n− 1-
dimensional submanifold, which is indeed the intersection of the graphs of f1 and
f0 = f . Consider now the region

R = {f0(y2, . . . , yn+1) ≤ y1 ≤ fε(y2, . . . , yn+1)} ,

cf. Fig. 6.1. Since the graph of f0 is in fact ∂M, we know from Proposition 5.1
that spt(V )∩∂M∩R ⊂ γ and from the choice of the wedgeW we thus know that
spt(V ) ∩ ∂M∩R = {0}. Assume now by contradiction that R contains another
point p ∈ spt(V ). Then this point does not belong to γ. On the other hand there
must be a minimum δ such that the graph of fδ contains this point. But then,
by the fact thatMδ is uniformly convex in M̃, this would be a contradiction to
the maximum principle of Proposition 5.1.

We thus conclude that the region R intersects the support of V only in the
origin. On the other hand recall that fδ is convex also in the Euclidean sense.
Thus its graph lies above its tangent at 0, which is given by {yn+1 = y1δ

−1 tan θ}.
This implies that the support of V intersected with Ũ is in fact contained in

{yn+1 ≤ y1δ
−1 tan θ} .

Symmetrizing the argument we find the new desired wedge in which the support
of our varifold is contained.

f1

f0

M

fε

T0∂M

R

Figure 6.1: The region R foliated by the graps of fλ.
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Chapter 7
Replacements at the Boundary

We have now all the tools for proving the boundary regularity of the varifold V
in Proposition 4.3 and we can start with the argument leading to

Theorem 7.1. The varifold V of Proposition 4.3 has all the properties claimed
in Theorem 1.5.

The argument is indeed split into two main steps. In the first one we employ
another important concept first developed by Pitts, called a replacement.

Definition 7.2. Let V ∈ V(M) be a stationary varifold in M and U ⊂ M an
open set. A stationary varifold V ′ ∈ V(M) (in the appropriate sense) is called
a replacement for V in U if V = V ′ on G(M \ U), ‖V ‖(M) = ‖V ′‖(M), and
V U is a stable minimal hypersurface Γ. In the constrained case we require that
∂Γ∩U = γ ∩U (in particular the connected components of Γ that intersect γ will
arise with multiplicity 1 in the varifold V ). In the unconstrained case the surface
Γ ∩ U meets ∂M orthogonally.

Our goal now is to show that the almost minimizing property of the sequence
{Γj} from Proposition 4.3 is sufficient to prove the existence of a replacement for
the varifold V . More precisely, we prove:

Proposition 7.3. Let {Γj}, V and r be as in Proposition 4.3. Fix x ∈ M and
consider an annulus An ∈ AN r(x)(x). Then there exist a varifold Ṽ , a sequence
{Γ̃j} and a function r′ :M→ R+ such that

• Ṽ is a replacement for V in An and Γ̃j converges to Ṽ in the sense of var-
ifolds;

• Γ̃j is almost minimizing in every An′ ∈ AN r′(y)(y) with y ∈M;

• r(x) = r′(x).
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7.1 Homotopic Plateau’s Problem
Let us fix a point x ∈ M and An ∈ AN r(x)(x) from now on. If x ∈ IntM,
then the statement above is indeed proved in [13]. We fix therefore x ∈ ∂M .
The strategy of the proof will be analogous to the one in [13] and follows anyway
the pioneering ideas of Pitts: in An we will indeed replace the a.m. sequence
Γj with a suitable Γ̃j, which is a minimizing sequence for a suitable (homotopic)
variational problem.

As a starting point for the proof we consider for each j ∈ N the following class
and the corresponding variational problem:

Definition 7.4. Let U ⊂ M be an open set and for each j ∈ N consider the
class Hc(Γ

j, U) (resp. Hs(Γ
j, U)) of surfaces Ξ such that there is a constrained

(resp. unconstrained) family of surfaces {Γt} satisfying Γ0 = Γj, Γ1 = Ξ, (4.1.1),
(4.1.2), and (4.1.3) for ε = 1/j (recall that m is fixed by Remark 4.2). The
subscript c (resp. u) will dropped when clear from the context. A minimizing
sequence in H(Γj, U) is a sequence Γj,k for which the volume of Γj,k converges
towards the infimum.

We will call the variational problem above the (2m+2j)−1 - homotopic Plateau
problem. Next, we take a minimizing sequence {Γj,k}k∈N ⊂ H(Γj, An). Up to
subsequences, we have that

• as integral currents, JΓj,kK converge weakly to an integral current Zj;

• as varifolds, Γj,k converge to a varifold V j;

• V j, along with a suitable diagonal sequence Γ̃j = Γj,k(j) converges to a
varifold Ṽ .

The rest of the section will then be devoted to prove that the varifold Ṽ is in
fact the replacement of Proposition 7.3 and that the sequence Γ̃j satisfies the
requirements of the same proposition.

The proof is split into two steps. In the first one we will show that, at all
sufficiently small scales, the current Zj is indeed a minimizer of the area in the
corresponding variational problem (constrained and unconstrained) without any
restriction on the competitors. More precisely we show that

Lemma 7.5. Let j ∈ N and y ∈ An. Then there are a ball B = Bρ(y) ⊂ An and
a k0 ∈ N such that every set Ξ with the following properties (satisfied for some
k ≥ k0) belongs to the class H(Γj, An):

• Ξ is a smooth hypersurface away from a finite set;

• ∂Ξ∩∂M∩B = γ∩B in the constrained problem, whereas ∂Ξ∩ Int (B) = ∅
in the unconstrained problem;

• Ξ \B = Γj,k \B;
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• Hn(Ξ) < Hn(Γj,k).

As a simple corollary, using the regularity theory for area minimizing currents
for a given prescribed boundary (and the corresponding regularity theory for the
minimizers in the free boundary case, as developed by Grüter in [21]) we then
get the following

Corollary 7.6. Let B̃ be the ball concentric to the ball B in Lemma 7.5 with
half the radius. In the constrained case the current Zj has boundary γ in B and
any competitor Zj + ∂S, where S is an integer rectifiable current supported in
B̃, cannot have mass smaller than that of Zj. In the unconstrained case Zj is a
minimizer with respect to free boundary perturbations, namely any current Zj +T
with spt(∂T ) ⊂ B ∩ ∂M and spt(T ) ⊂ B̃, cannot have mass smaller than that of
Zj.

Thus, Zj An = V j An = Γ̄j is a regular, minimal, embedded hypersurface
except for a closed set Sing (Γ̄j) of dimension at most n−7. In the unconstrained
case it meets the boundary ∂M orthogonally and it is stable for the free boundary
problem. In the constrained case Sing (Γ̄j) does not intersect ∂M and ∂Γ̄j = γ
(in An; in particular any connected component of Γj that intersects ∂M must
have multiplicity 1).

The second step in the proof of Proposition 7.3 takes advantage of the com-
pactness theorems in Section 6 to pass into the limits in j and conclude that Ṽ
has the desired regularity properties.

7.2 Proof of Lemma 7.5
We focus on the constrained case, since the proof in the unconstrained case follows
the same line and it is indeed easier.

We will exhibit a suitable homotopy between Γj,k and Ξ by first deforming
Γj,k inside B to a cone with vertex y and base Γj,k ∩∂B, and then deforming this
cone back to Ξ, without increasing the area by more than (2m+2j)−1, which will
prove the claim. To this end, we borrow the "blow down -blow up" procedure
from [13], which in turn is borrowed from Smith [51] (see also Section 7 of [10])
and we only need to modify the idea because x ∈ ∂M.

Fix y ∈ An ∩ ∂M, and j ∈ N. If y /∈ γ, by considering M as a subset of
M̃ as in Remark 5.3, and simply making sure to choose ρ small enough that
Bρ(y) ⊂⊂ M̃\ γ, we can reduce to the interior case. Note that we also make use
of the convexity assumption onM to make sure all the surfaces in the homotopy
stay insideM. Therefore, we are left to prove the case y ∈ An ∩ ∂M∩ γ.
First, in a small neighborhood around y, we can find (smooth) diffeomorphisms

Ψ1 : Rn−1 × R→ ∂M, Ψ−1
1 (γ) ⊂ Rn−1 × {0}, Ψ1(0) = ι(y);

Ψ2 : ∂M× R→M, Ψ2(x, t) = expx(tν(x)),
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with ι : ∂M→M the inclusion map, and ν(x) unit normal to ∂M. By taking
Ψ2(Ψ1(x), t) and composing it with a linear map if necessary, we get a (smooth)
local coordinate chart Ψ : U ⊆ Rn → V in a neighborhood V ⊂ An ⊂ M of y,
with Ψ(0) = y, ∂M ∼= Rn × {0}, γ ∼= Rn−1 × {0} × {0} , and DΨ0 = Id. In the
following, Be

r(0) andHn,e are used to denote the ball of radius r and the Hausdorff
measure w.r.t the euclidean metric in the given coordinates. We will choose
τ > 0 small enough, that Be

2τ (0) ⊆ U . The required radius ρ of the geodesic ball
B = Bρ(y) will be fixed later, but chosen small enough that Ψ−1(Bρ(y)) ⊂⊂ Be

τ (0)
(and, of course, smaller than the injectivity radius). Furthermore, by choosing
U (and consequently τ) small enough, we can ensure for any surface Σ ⊂ Be

2τ (0)
that

(7.2.1)
1

c
Hn,e(Σ) ≤ Hn(Σ) ≤ cHn,e(Σ),

where c depends on the metric, and c → 1 for τ → 0. From now on, we will
use the same symbols to denote sets and their representations in the coordinates
given by Ψ.
Step 1: Stretching Γj,k ∩ ∂Be

r(0). First of all , we will choose r ∈ (τ, 2τ) such
that, for every k,

Γj,k is regular in a neighborhood of ∂Be
r(0)

and intersects it transversally
(7.2.2)

This is implied by Sard’s lemma, since each Γj,k has only finitely many singular-
ities. We let K be the cone

K = {λz | 0 ≤ λ < 1, z ∈ ∂Be
r(0) ∩ Γj,k}

We now show that Γj,k can be homotopized through a family Ω̃t to a surface Ω̃1

in such a way that

• maxtHn,e(Ω̃t)−Hn,e(Γj,k) can be made arbitrarily small;

• Ω̃1 coincides with K in a neighborhood of ∂Be
r(0)

To this end, we consider a smooth function ϕ : [0, 2τ ]→ [0, 2τ ] with

• |ϕ(s)− s| ≤ ε and 0 ≤ ϕ′ ≤ 2;

• ϕ(s) = s if |s− r| > ε and ϕ ≡ r in a neighborhood of r.

Set Φ(t, s) := (1− t)s+ tϕ(s). If A is any set, we use λA as usual to denote the
set {λx |x ∈ A}. We can now define Ω̃t in the following way:

• Ω̃t \ Ane(0, r − ε, r + ε) = Γj,k \ Ane(0, r − ε, r + ε);
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• Ω̃t ∩ ∂Be
s(0) = s

Φ(t,s)

(
Γj,k ∩ ∂Be

Φ(t,s)

)
for every s ∈ (r − ε, r + ε),

where the annuli (with the superscript e) are with respect to the euclidean metric.
Note that our choice of coordinates ensures that γ is preserved as the boundary.
Furthermore, the surfaces are smooth (with the exception of a finite number of
singularities), since the only possible irregularity of the slice Γj,k ∩ ∂Be

r(0), which
is at ∂Be

r(0)∩ ∂M, gets propagated along the boundary γ as we "stretch" it to a
cone, and hence we are within the parameters of a constrained family. Moreover,
owing to (7.2.1) and (7.2.2), and for ε sufficiently small, Ω̃t will have the desired
properties. Finally, since Ξ coincides with Γj,k onM\ Bρ(y) (and in particular,
outside Be

τ (0)), the same argument can be applied to Ξ. This shows that

w.l.o.g. we can assume K = Ξ = Γj,k

in a neighborhood of Be
r(0)

(7.2.3)

Step 2: The homotopy. We now construct the required homotopy mentioned
in the beginning of the proof, as the family {Ωt}t∈[0,1] of hypersurfaces which
satisfy:

• Ωt \ B̄e
r(y) = Γj,k \ B̄e

r(y) for every t;

• Ωt ∩ Ane(0, |1− 2t|r, r) = K ∩ An(y, |1− 2t|r, r) for every t;

• Ωt ∩ B̄e
(1−2t)r(0) = (1− 2t)(Γj,k ∩ B̄e

r(0)) for t ∈ [0, 1
2
];

• Ωt ∩ B̄e
(2t−1)r(0) = (2t− 1)(Ξ ∩ B̄e

r(0)) for t ∈ [1
2
, 1].

Note again that, because of the way we chose our coordinates and deformations,
and consequently (7.2.3), this satisfies the properties of a smooth constrained
family. The only property left to check is that

(7.2.4) max
t
Hn(Ωt) ≤ Hn(Γj,k) +

1

2m+2j
∀k ≥ k0

holds for a suitable choice ρ, r and k0.
First we observe the following standard facts, for every r < 2τ and λ ∈ [0, 1]:

Hn,e(K) =
r

n
Hn−1,e

(
Γj,k ∩ ∂Be

r(0)
)
;(7.2.5)

Hn,e
(
λ(Γj,k ∩ B̄e

r(0)
)

= Hn,e
(
λ(Γj,k ∩Be

r(0)
)
≤ Hn,e

(
Γj,k ∩Be

r(0)
)
;(7.2.6)

Hn,e
(
λ(Ξ ∩ B̄e

r(0)
)

= Hn,e
(
λ(Ξ ∩Be

r(0)
)
≤ Hn,e

(
Ξ ∩Be

r(0)
)
;(7.2.7) ∫ 2τ

0

Hn−1,e
(
Γj,k ∩ ∂Be

s(0)
)
ds ≤ Hn,e

(
Γj,k ∩Be

2τ (0)
)
,(7.2.8)

where the equalities in (7.2.6) and (7.2.7) are due to (7.2.2). From (7.2.1) and
the assumption on Ξ we conclude Hn,e(Ξ∩Be

2τ (0)) ≤ c2Hn,e(Γj,k∩Be
2τ (0)), which
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together with (7.2.5), (7.2.6) and (7.2.7) gives us the estimate

max
t
Hn(Ωt)−Hn(Γj,k) ≤ cHn,e

(
Ωt ∩Be

2τ (0)
)

≤ c2Hn,e
(
Γj,k ∩Be

2τ (0)
)

+ rHn−1,e
(
Γj,k ∩ ∂Be

r(0)
)

(7.2.9)

By (7.2.8) we can find r ∈ (τ, 2τ) which, in addition to (7.2.2) (and consequently
(7.2.3)), satisfies

(7.2.10) Hn−1,e
(
Γj,k ∩Be

r(0)
)
≤ 2

τ
Hn,e

(
Γj,k ∩Be

2τ (0)
)
.

Hence,

(7.2.11) max
t
Hn(Ωt) ≤ Hn(Γj,k) + (4 + c2)Hn,e

(
Γj,k ∩Be

2τ (0)
)
.

By a metric comparison argument similar to (7.2.1) relating the lenghts of curves
inside Be

2τ (0), we can obtain the inclusions Bρ(y) ⊂⊂ Be
τ (0) ⊂ Be

2τ (0) ⊂⊂ Bc̄ρ(y),
where the constant c̄ depends on the metric, assuming of course that τ is initially
chosen small enough. Next, by the convergence of Γj,k to the stationary varifold
V j, we can choose k0 such that

(7.2.12) Hn,e
(
Γj,k ∩Be

2τ (0)
)
≤ 2||V j||(Bc̄ρ(y)) for k ≥ k0.

Finally, by the monotonicity formula (see Theorem 3.4.(2) in [1]),

(7.2.13) ||V j||(Bc̄ρ(y) ≤ CM||V j||(M)ρn.

By gathering the estimates (7.2.11), (7.2.12), and (7.2.13) (and having chosen τ
small enough as instructed, depending only onM), we deduce that if ρ is chosen
small enough that

2(4 + c2)CM||V j||(M)ρn <
1

2m+2j
,

holds, k0 large enough that (7.2.12) holds, and finally fixing r ∈ (τ, 2τ) satisfying
(7.2.2) and (7.2.10), we can construct {Ωt} as above, concluding the proof.

7.3 Proof of Corollary 7.6
Step 1. Minimality in the interior. Again, we focus on the constrained
problem, since the unconstrained problem is exactly the same. Strictly speaking,
the conclusion of the corollary is new even in the interior, because in [13] the
homotopic Plateau’s problem was stated in the framework of Caccioppoli sets,
i.e. not allowing multiplicities for our currents. We thus first show how to remove
this technical point in the interior.

Fix j ∈ N, y ∈ Int (An), and let Bρ(y) ⊂ An be the ball given by Lemma 7.5
where we assume in addition ρ < dist(y, ∂M). We will prove, by contradiction,
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that the integral current Zj (obtained as the weak limit of currents JΓj,kK) is area
minimizing in Bρ/2(y). Assume, therefore, it is not, and there exists and integral
current S, with ∂S = γ, S = Zj onM\Bρ/2(y) and

(7.3.1) M(S) <M(Zj)− η

Since supk(M(Γj,k) + M(γ)) < ∞, and therefore the weak and flat convergence
are equivalent, we have

(7.3.2) Γj,k − Zj = ∂Aj +Bj, M(Aj) + M(Bj)→ 0

In fact, considering that ∂(Γj,k − Zj) = 0, we can assume w.l.o.g. that Bj = 0.
By slicing theory, we can choose ρ/2 < τ < ρ and a subsequence (not relabeled)
such that

(7.3.3) ∂(Aj Bτ (y)) = (∂Aj) Bτ (y) +Rj, M(Rj)→ 0

where sptRj ⊂ ∂Bτ (y), and Rj is integer multiplicity (cf. Fig. 7.1). Now, define
the integer n-rectifiable current

Sj,k := S Bτ (y)−Rj + Γj,k (M\Bτ (y)).

It is easy to check from the above that ∂Sj,k = γ. Moreover, from the weak con-
vergence Γj,k ⇀ Zj we get M(Zj Bτ ) ≤ lim infk→∞M(Γj,k Bτ ), and together
with (7.3.1), (7.3.3), this implies

(7.3.4) lim sup
j→∞

(
M(Sj,k)−M(Γj,k)

)
≤ −η.

We now proceed to approximate Sj,k with smooth surfaces, which would by con-
struction exhibit a similar gap in area (mass) with respect to Γj,k. The idea is to
then apply Lemma 7.5, thereby showing that these smooth surfaces belong to the
class H(Γj, An), and thus contradicting the minimality of the original sequence
Γj,k.

Let us first fix (a, b) ⊂⊂ (τ, ρ) with the property that Γj,k ∩ An(y, a, b) is a
smooth surface. Since ∂[Sj,k Bb(y)] ⊂ ∂Bb(y), we can find an n-rectifiable cur-
rent Ξ with spt (Ξ) ⊂ ∂Bb(y) and ∂Ξ = ∂[Sj,k Bb(y)]. Taking R = Sj,k Bb(y)−
Ξ we apply 4.5.17 of [16] to find a decreasing sequence of Hn+1-measurable sets
{Ui}∞i=−∞ (of finite perimeter in Bb) and use them to construct rectifiable currents

Sj,ki = ∂JUiK Bb(y) with spt ∂Sj,ki ⊂ ∂Bb(y), and

Sj,k Bb(y) =
∑
i∈Z

Sj,ki , M(Sj,k Bb(y)) =
∑
i∈Z

M(Sj,ki ).(7.3.5)

In fact, R = ∂T where T =
∑∞

i=1JUiK −
∑0

i=−∞JBb(y) \ UiK. Let us therefore
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Zj

S

Aj Bτ

Γj,k

∂Bτ

∂Bρ

Sj,k

Figure 7.1: The cut-and-paste procedure to produce a suitable competitor.

define the integer valued function f : Bb(y)→ Z by

f :=
∞∑
i=1

χUi −
0∑

i=−∞

χBb\Ui ,

where χA denotes the characteristic function of a set A. Because the sequence
{Ui}∞i=−∞ is decreasing, we see immediately that Ui = {x : f(x) ≥ i}. In fact, f
is of bounded variation inside Bb(y), which follows from (7.3.5) and the fact that
(see Remark 6.3.7 in [49])

(7.3.6) M(∂JUiK Bb(y)) =

∫
Bb(y)

|DχUi |.

By recalling the standard way of approximating functions of bounded variation
by smooth functions, we take a compactly supported convolution kernel ϕ and
consider the functions fε = f ∗ϕε, for ε < ρ−b (hence spt fε ⊂ Bρ(y)). Of course,∫
Bρ
|Dfε| →

∫
Bρ
|Df | for ε → 0. If we define Ut,ε := {x : fε(x) ≥ t}, then by

coarea formula ∫
|Dfε| =

∫ ∞
−∞

dt

∫
|DχUt,ε |.

By a simple argument, which essentially follows from Chebyshev’s inequality
applied to the function fε(x)− f(x) (see Lemma 1.25 in [20]), we get χUt,ε → χUi
in L1 for every t ∈ (i − 1, i), i ∈ Z. Taking a sequence εl → 0, and using the
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lower semicontinuity of the perimeter w.r.t L1 convergence, we deduce∫
Bb

|Df | = lim
j→∞

∫
Bb

|Dfεl | ≥
∫ ∞
−∞

dt lim inf
l→∞

∫
Bb

|DχUt,εl |

≥
∞∑

i=−∞

∫ i

i−1

dt

∫
Bb

|DχUi | =
∫
Bb

|Df |.(7.3.7)

Hence, for all i ∈ Z and almost all t ∈ (i − 1, i), lim inf l→∞
∫
Bb
|DχUt,εl | →∫

Bb
|DχUi |. Moreover, since almost all level sets are smooth by Sard’s lemma, for

all i ∈ Z we may choose a ti ∈ (i− 1, i) such that:

• ∂Uti,εl is smooth;

• lim infj→∞
∫
Bb
|DχUti,εl | →

∫
Bb
|DχUi |.

By choosing a diagonal subsequence (without relabeling), we can ensure that the
lim infj→∞ is replaced by a limj→∞. We now define a current

∆j,k,l =
∞∑

i=−∞

∂JUti,εlK Bb(y),

and note that it is induced by a smooth surface (for each l ∈ N), since it is
composed of smooth level sets of a smooth function. Furthermore, the properties
above together with (7.3.5) and (7.3.6) imply that M(∆j,k,l) → M(Sj,k Bb(y))
as l→∞.

We would now like to patch ∆j,k,l with Γj,k outside Bb(y). For this, recall that
Sj,k ∩An(y, a, b) = Γj,k ∩An(y, a, b) is also a smooth surface. Therefore, fixing a
regular tubular neighborhood T of Sj,k inside An(y, a, b) and the corresponding
normal coordinates (ξ, σ) on it, we conclude that for l sufficiently large (conse-
quently εl sufficiently small), T∩∆j,k,l is the set {σ = gεl(ξ)} for some function gεl .
Moreover, gεl → 0 smoothly, as l→∞. Now, using a patching argument entirely
analogous to the one of the freezing construction in Lemma 4.8 (one dimensional
version) allows us to modify ∆j,k,l to coincide with Sj,k (and therefore Γj,k) in
some smaller annulus An(y, b′, b) ⊂ An(y, a, b), without increasing the area too
much. Thus, observing the definition of Sj,k and (7.3.4), we are able to construct
currents ∆j,k with the following properties:

• ∆j,k is smooth outside of a finite set;

• ∆j,k (M\Bρ(y)) = Γj,k (M\Bρ(y)) ;

• lim supk
(
M(∆j,k)−M(Γj,k)

)
≤ −η < 0.

For k large enough, Lemma 7.5 tells us that ∆j,k ∈ H(Γj), An), which would in
turn imply that Γj,k is not a minimizing sequence, thus closing the contradiction

61



Chapter 7. Replacements at the Boundary 62

argument.

Step 2. Minimality at the boundary. We are still left with proving the
statement in case y ∈ γ ⊂ ∂M. As before, we start with a competitor current
S and the assumption (7.3.1). As a matter of fact, we will reduce this to the
previous case by constructing the current Sj,k, "pushing" it slightly towards the
interior of M, and then "attaching" to it a smooth segment which connects it
to γ. If the mass of the resulting current is very close to the mass of Sj,k, we
retain (7.3.1) with a smaller constant, and proceed with smoothing as before.
First, analogously to the above, we obtain the currents Sj,k and (7.3.4). Choose
(a, b) ⊂⊂ (τ, ρ) such that Γj,k∩An(y, a, b) (and hence also Sj,k) is a smooth surface
with boundary γ ∩ An(y, a, b). Parametrize a tubular neighborhood Uδ(∂M) =
{x ∈M : |dist(x, ∂M)| < δ} of ∂M with the usual smooth diffeomorphism

Φ : ∂M× [0, δ)→ Uδ(∂M), (t, s) 7→ Φ(t, s) = expt(sν(t)),

where ν(t) is the inward pointing normal of ∂M at t. Let us denote by N :=
γ × [0, δ) the smooth hypersurface which meets ∂M orthogonally in γ. Next,
we pick a < a′ < b′ < b and slightly deform Sj,k to make it coincide with N in
An(y, a′, b′)∩Uξ(∂M) for some ξ small enough. To do this, note for example that
near γ, Sj,k ∩An(y, a′, b′) is a graph of a function g over N , due to the convexity
assumption onM. By considering g(1−ψ), where ψ is a suitable cutoff function
supported in An(y, a, b) ∩ U2ξ(∂M) and equal to 1 in An(y, a′, b′) ∩ Uξ(∂M), we
obtain the desired surface. Furthermore, its area will be arbitrarily close to the
area of Sj,k, provided ξ is chosen small enough. Thus, w.l.o.g. we can assume

(7.3.8) Sj,k = N in An(y, a′, b′) ∩ Uξ(∂M), for some ξ small enough.

We fix:

• a smooth function ϕ : [0,∞) → [0, ε] such that ϕ(0) = ε, ϕ(x) = 0 for
x ≥
√
ε, and |ϕ′(x)| ≤ C

√
ε (where ε will be fixed later);

• a smooth function η : ∂M→ [0, 1] such that η(t) = 1 for t ∈ ∂M∩Ba′(y)
and η(t) = 0 for t ∈ ∂M\Bb′(y).

Consider now the map

(7.3.9) Ψ(x) :=

{
(t, s) 7→ (t, s+ ϕ(s)η(t)) for x = (t, s) ∈ U√ε(∂M);

Id for x ∈M \ U√ε(∂M).

If ε < δ2 is small enough that |ϕ′(x)| < 1, we ensure that s 7→ s + ϕ(s)η(t) is
monotone increasing, and Ψ : M → M is a well defined, smooth, proper map,
with a Lipschitz constant 1 + O(

√
ε). This means that we can push forward the

current Sj,k to obtain Ψ#(Sj,k) with a (possibly) small gain in mass, and with
∂(Ψ#(Sj,k)) = Ψ#(∂Sj,k) = Ψ#(γ) being a smooth submanifold of N . It is now
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obvious that, by attaching to it a smooth surface γ|spt (η) × [0, εη(t)) with mass
O(ε) (and the proper orientation assigned), we are able to construct a current
S̃j,k with ∂S̃j,k = γ, S̃j,k \Bρ(y) = Γj,k \Bρ(y) and with M(S̃j,k) arbitrarily close
to M(Sj,k). Moreover, it follows from the construction and (7.3.8) that S̃j,k is
smooth in Uε(∂M) ∩Bb(y) (in fact, it coincides with N in Uε(∂M) ∩Bb′(y)), cf.
Figure 7.2.
We can now repeat the smoothing procedure from the previous case, centered
around the point y′ = Ψ(y) ∈ S̃j,k, with one modification; we may not be able to
actually choose (metric) balls around y′ with some radii ã, b̃, contained in Int(M)
such that S̃j,k∩An(y′, ã, b̃) is smooth, as before. Nevertheless, it follows from the
above that we may choose some open neighborhoods Va(y′) ⊂⊂ Vb(y

′) ⊂⊂ Bb(y)
diffeomorphic to balls, such that this is true. All the arguments can be easily
modified for this case, and we reach a contradiction once again.

γ

N
y

∂Ba(y)

∂Bb(y)
Sj,k

Figure 7.2: The currrent Sj,k is pulled away from γ by the map Ψ, and the surface N (in the
shaded region) is attached to it. In the regions bounded by the dotted line, Sj,k and N coincide.

Step 3. Zj = V j. We first show that M(Γj,k) converges to M(Zj). Indeed,
if this were not the case, we would have

M(Zj ∩Bρ/2)(y) < lim sup
k→∞

M(Γj,k ∩Bρ/2)(y)

for some y ∈ An and some ρ to which we can apply the conclusion of Lemma
7.5. We can then use Zj instead of S in the beginning of this proof to once again
contradict the minimality of the sequence {Γj,k}k∈N. The convergence of the mass
is then a simple consequence of the following well known fact

Lemma 7.7. Let V j be a sequence of rectifiable currents inM such that

(i) V j ⇀ V in the flat norm;

(ii) M(V j)→M(V ).

Let the rectifiable varifolds W j associated do V j converge to a (rectifiable) varifold
W . Then W is the varifold associated to the rectifiable current V .
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In the codimension 1 case (which we need), the proof of the lemma follows
from Reshetnyak continuity theorem (cf. [7, Theorem 2.39]), whereas the general
case can be proved by constructions analogous to those of [16, 5.1.5] (cf. [41,
page 63]).

Step 4. Regularity and stability. In the constrained case the regularity
in the interior follows from the standard theory for area-minimizing currents, see
for instance [49]. The regularity at the boundary follows instead from [1] because
∂M is uniformly convex. Indeed, one could apply Lemma 5.2 in that paper, which
admittedly deals with the case whereM is a subset of the Euclidean space, but
the modifications to handle the case of a general Riemannian manifold are just
routine ones. In the unconstrained case, the regularity is proved in Grüter’s work
[21] (here again, the arguments, given in the euclidean setting, can be easily
adapted to deal with the general Riemannian one).

We finally turn to the proof of Proposition 7.3, which mimics precisely the
one of Proposition 4.6 in [13]. We write it here for completeness.

Proof of Proposition 7.3. Consider the varifolds V j, and the diagonal sequence
Γ̃j = Γj,k(j) in the beginning of this chapter. Observe that Γ̃j is obtained from Γj

through a suitable homotopy which leaves everything fixed outside An. It follows
then from the a.m. property of {Γj} that {Γ̃j} is also a.m. in any An(x, ε, r(x)−ε)
containing An. Note next that if a sequence is a.m. in an open set U , then it is
also a.m. in an open set U ′ contained in U . This trivial observation and the one
preceding it imply that {Γ̃j} is a.m. in any An ∈ AN r(x)(x).

Fix now an annulus An′ = An(x, ε, r(x)− ε) ⊃⊃ An. ThenM = An′ ∪ (M\
An). For any y ∈ M \ An (and y 6= x) set r′(y) := min{r(y), dist(y, An)}. If
An′′ ∈ AN r′(y)(y), then Γ̃j ∩ An′′ = Γj ∩ An′′, and hence {Γ̃j} is a.m. in An′′.
For y ∈ An′ we set r′(y) := min{r(y), dist(y,M \ An′)}. If An′′ ∈ AN r′(y)(y),
then An′′ ⊂ An′ and, since {Γ̃j} is a.m. in An′ by the argument above, it must
also be a.m. in An′′.

We next show that Ṽ is a replacement for V . By the compactness theorems
in Chapter 6, Ṽ is a stable minimal hypersurface in An, with the regularity
properties and appropriate boundary conditions required by Definition 7.2. In the
unconstrained case we use Theorem 6.3, whereas in the constrained case we use
Theorem 6.4. Note that we can apply the latter theorem thanks to Lemma 6.5. It
remains to show that Ṽ is stationary. It is obviously stationary inM\An, because
it coincides with V there. Let now An′ ⊃⊃ An. Since {An′,M\An} is a covering
ofM, we can subordinate a partition of unity {ϕ1, ϕ2} to it. By the linearity of
the first variation, we get [δṼ ](χ) = [δṼ ](ϕ1χ) + [δṼ ](ϕ2χ) = [δṼ ](ϕ1χ), so it
suffices to show stationarity in An′. Suppose to the contrary that there is some
χ ∈ X−c (An′) or χ ∈ Xt

c(An
′), depending on whether we are considering the fixed

boundary or the free boundary case, such that [δṼ ](χ) ≤ −C < 0. Let ψ denote
the flow generated by χ, i.e. ∂ψ(x,t)

∂t
= χ(ψ(x, t)). We set

(7.3.10) Ṽ (t) := ψ(t)]Ṽ , Σj(t) = ψ(t, Γ̃j).
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By continuity of first variation there is ε > 0 such that δṼ (t)(χ) ≤ −C/2 for all
t ≤ ε. Moreover, since Σj(t)→ Ṽ (t) in the sense of varifolds, there is J such that

(7.3.11) [δΣj(t)](χ) ≤ −C
4

for j > J and t ≤ ε.

Integrating (7.3.11) we conclude Hn(Σj(t)) ≤ Hn(Γ̃j) − Ct/8 for every t ∈ [0, ε]
and j ≥ J . This contradicts the a.m. property of Γ̃j in An′ for j large enough.

Finally, observe that Hn(Γ̃j) ≤ Hn(Γj) and

lim inf
n

(Hn(Γ̃j)−Hn(Γj)) ≥ 0

because otherwise we would contradict the a.m. property of {Γj} in An. We thus
conclude ||V ||(M) = ||Ṽ ||(M).
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Chapter 8
Proof of Theorem 7.1 and Theorem 1.5

Clearly Theorem 1.5 is a direct consequence of Theorem 7.1 and Proposition 4.3.
Thus from now on we focus on Theorem 7.1: we fix a varifold V as in there and
we want to prove that it is regular. In particular, we already know that V is
regular in the interior. Moreover,

(a) In the constrained case we know that spt(V ) ∩ ∂M ⊂ γ. We thus need to
show the regularity of V at any point p ∈ γ, and more precisely that for
every p ∈ γ there is a neighborhood U such that V is a regular minimal
surface Γ in U counted with multiplicity 1, such that ∂Γ = γ (in U).

(b) In the unconstrained case we need to show that, with the exception of a
closed set of dimension at most n − 7, for any p ∈ ∂M there is a neigh-
borhood U such that V is a regular minimal surface Γ in U (counted with
integer multiplicity, not necessarily 1) which meets ∂M orthogonally.

8.1 Tangent Varifolds and Integrality
We already know, in the constrained case, that V is an integer rectifiable varifold
and that ‖V ‖(∂M) = 0. In the unconstrained case we know the integrality of
V in Int (M). We now wish to show that ‖V ‖(∂M) = 0 even in this case. Fix
a point p ∈ ∂M and consider the blow-up procedure of Lemma 5.8. Denote by
Tan (V, p) the set of tangent varifolds and fix a W ∈ Tan (V, p). Let Vp,rk be a
corresponding sequence of rescaled varifolds which is converging to W . Thanks
to Proposition 7.3, there exists a varifold Ṽk which is a replacement for V in the
annulus An(p, rk, 2rk). Rescaling such a replacement suitably we get a second
varifold V̄k which is a replacement for Vp,rk in ιp,rk(An(p, rk, 2rk)). In particular,
by the compactness Theorem 6.3 (in the appropriately modified version discussed
in Section 6.4) we obtain the convergence of V̄k to a replacement W̄ for W . Now,
this replacement has the property that it is regular in B2(0) \B1(0) ⊂ TpM and
meets Tp∂M orthogonally. However, since W is a cone, it turns out that such
property is in fact valid in the punctured plane TpM \ {0}. Moreover, by the
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considerations in [21] and [23], the reflection of W along Tp∂M gives a stable
minimal hypercone in TpM\ {0}, regular up to a set of codimension at least 7.
Finally, see for instance [46], since the origin has zero 2-capacity, such a cone
turns out to be stable on the whole TpM. In particular, by the classical result of
Simons, the cone is in fact a hyperplane if n ≤ 6.

Before going on, we observe that the argument above applies literally in the
same way to the constrained case as well. We conclude that W is a cone C in
TpM\ {0} with the property that ∂C = Tpγ. In particular we conclude that C
is a multiplicity 1 half-hyperplane and indeed, by the Wedge property of Lemma
6.5, C meets Tp∂M transversally.

We summarize our conclusions in the following

Lemma 8.1. Let V be as in Theorem 7.1, p a point in ∂M and W ∈ Tan (V, p)
a tangent varifold.

(i) In the constrained case W = 0 unless p ∈ γ and if p ∈ γ then W is a
half hyperplane of TpM, counted with multiplicity 1, which meets Tp∂M
transversally at Tpγ.

(ii) In the unconstrained case W is a minimal hypersurface Ξ meeting Tp∂M
orthogonally, which is half of a stable minimal cone in TpM (counted with
multiplicity), regular up to a set of dimension at most n− 7. When n ≤ 6,
Ξ is half of a hyperplane meeting Tp∂M orthogonally.

Next, in the unconstrained case the lemma above implies that ‖W‖(∂M) = 0.
In particular, since ∂M is a closed subset ofM, we easily conclude that

lim
k→∞

r−nk ‖V ‖(∂M∩Brk(p)) = lim
r↓0
‖Vp,rk‖(ιp,rk(∂M∩Brk(p))

≤ ‖W‖(Tp∂M∩B1) = 0 .

Therefore,

lim
r↓0

r−n‖V ‖(∂M∩Br(p)) = 0 for every p ∈ ∂M ,

which in turn implies easily ‖V ‖(∂M) = 0.

8.2 Constrained Case
In the constrained case, Lemma 8.1 implies that we fall under the assumptions
of Allard’s boundary regularity theorem for stationary varifolds: V is therefore
regular at every point p ∈ γ, which completes the proof.
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8.3 Unconstrained Case
Note that the modification of the arguments from [10] to conclude regularity at the
free boundary has already been covered in [31]. We present the main arguments
in the remaining sections, but refer the reader to that paper for additional details,
if necessary.

8.3.1 Regularity in the Punctured Ball

Our first goal is to show that, if p ∈ ∂M, then there is a radius r such that V
is regular up to the boundary in the punctured ball Br(p) \ {p}. First of all, we
observe the following simple consequence of the maximum principle:

Lemma 8.2. Assume ρ is smaller than the convexity radius of M. Let V be
an integer rectifiable varifold in Bρ(p), which is stationary for the free boundary
problem. Then spt(V ) must contain at least a point q at distance ρ from p.

Proof. Assume the opposite and let q ∈ spt(V ) be a point at maximum distance
from p. By integer rectifiability, the support of V cannot be contained in {p} and
thus the distance between p and q is a positive number ρ̄ smaller than ρ. But
then V touches the convex set Bρ̄(p) from the interior and it can be seen from
the argument in [59] that there is a vector field orthogonal to ∂Bρ̄(p)\∂M which
violates the stationarity condition for V : to get a contradiction we only need to
show that such a vector field can be taken to be tangent to ∂M, which however
is a simple consequence of the construction in [59].

Fix now a point p ∈ ∂M and a radius r which is smaller than the convexity
radius ofM. Recall that in Int (Br(p)), Γ is given by a stable minimal hyprersur-
face which is regular up to a set Sing (Γ) of dimension at most n − 7. Let Γ̃ be
any connected component of Γ ∩ Br(p). We want to argue that the closure C
of Γ̃ must contain at least one point of ∂Br(p) \ ∂M. If this were not the case
the closure of C \Reg (Γ̃) would then be contained in the union of ∂Br(p)∩ ∂M
and Sing (Γ), which is a set of dimension at most n − 2. We can then apply
[13, Lemma 5.5] to conclude that the closure of Γ̃ induces a varifold which is
stationary in the whole M, and hence in particular in any Bρ(p) with ρ > r
([13, Lemma 5.5] is not stated in the context of the free boundary problem, but
the proof given in [13, Appendix A] easily transposes to cover this case as well).
Choosing ρ smaller than the convexity radius and applying Lemma 8.2 above we
then get a contradiction.

Fix now an r > 0 which is smaller than the convexity radius and smaller than
the number r(p) of Proposition 4.3. Moreover, by Sard’s Lemma, we can assume
that ∂Br(p) does not intersect Sing(Γ) and that at any point of ∂Br(p) ∩ Γ the
tangent plane to Γ is transversal to ∂Br(p). Consider a replacement V ′ for V in
any An(p, σ, r) with σ < r. Let Ξ be the corresponding stable minimal surface
which induces V ′ in the annulus: for such a hypersurface we know the regularity
up to the boundary ∂M, except for a closed singular set of dimension at most
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n − 7. The arguments of [13, Section 5.4] apply at any point y ∈ ∂Br(p) \ ∂M,
since such a point is in Int (M), and show that the varifold V ′ is indeed regular
in a neighborhood of any such point. Thus Γ \Br(p) and Γ̃ join smoothly across
∂Br(p) \ ∂M. In particular, if Γ̃ is a connected component of Γ∩Bρ(p), knowing
that there is a point q ∈ ∂Bρ \∂M which belongs to the closure of Γ̃, we conclude
that Γ̃ and Ξ intersect on a set of positiveHn measure. But then a classical unique
continuation argument implies actually that Γ̃ ⊂ Ξ. Since Ξ is regular up to the
boundary and meets it orthogonally, we conclude that the same property holds
for Γ̃.

This gives the desired regularity of Γ ∩ An(p, σ, r) for any σ < r and thus,
letting σ ↓ 0, we conclude the desired regularity in the punctured ball Br(p)\{p}.

8.3.2 Removing Singular Points for n ≤ 6

From the previous step and by a simple covering argument, we conclude that the
set of singular points at the boundary is at most finite when n ≤ 6. We now wish
to remove said points. Again the argument is a suitable variant of the argument
which deals with the same issue in the interior. Consider the smooth surface Γ
(counted with multiplicity) which gives the varifold V in Br(p)\{p}. If we choose
r sufficiently small, by Lemma 8.1, for every ρ < r we know that the rescalings
ιp,ρ(Γ) are ε close, in the varifold sense and in the annulus ιp,ρ(An(p, ρ/8, 4ρ)),
to a varifold of the form Θ(V, p)π(ρ) where π(ρ) ⊂ TpM is a half-hyperplane
meeting Tp∂M orthogonally. We can also assume that the tilt between π(ρ) and
π(2ρ) is smaller than ε, provided r is chosen even smaller.

By the compactness Theorem 6.3 (again, in the more general version where
the ambient manifolds can change, cf. Section 6.4), if r is sufficiently small and
ρ < r, then Vp,ρ ιp,ρ(An(p, ρ/4, 2ρ)) consists of finitely many Lipschitz graphs
Γ1(ρ), . . . ,Γk(ρ) over π(ρ), with controlled Lipschitz constant (say, at most 1),
each counted with multiplicity mi. The same then holds for V An(p, ρ/4, 2ρ).
Moreover since the tilt between π(ρ) and π(ρ/2) is small, we easily conclude that
each of the numbers of connected components in An(p, ρ/8, ρ) is the same and
that they can be ordered so that Γi(ρ) and Γi(ρ/2) overlap smoothly.

We can repeat the above argument over dyadic radii ρ2−j and we conclude that
V (Bρ(p) \ {p} consists of finitely many connected components Γi counted with
multiplicity mi, which are topologically punctured n-dimensional balls, smooth
up to ∂M. Taking one such connected component and removing the multiplicity,
we get a multiplicity 1 varifold in Bρ(p) which is stationary for the free boundary
problem and has flat tangent cones at p, with multiplicity 1. This falls therefore
under the assumptions of the Allard’s type theorem proved by Grüter and Jost in
the paper [22], from which we conclude that p is a regular point. Hence each Γi
continues smoothly across p. The classical maximum principle now implies that
the Γi cannot actually touch at the point p, implying in fact that the number of
connected components of Γ in any ball Bρ is 1.
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Competitors: proofs of Corollary 1.6 and
1.8

We start with Corollary 1.6, as the proof is a straightforward adaptation of the
sweepout construction in [10].

Proof of Corollary 1.6. Without loss of generality we can assume thatM is
connected.

First of all we show that there is a generalized family {Σt}t∈[0,1] where Σ0 and
Σ1 are trivial (namely as closed sets which consist of a collection of finitely many
points). Indeed it suffices to take the level sets of a Morse function f whose range
is [0, 1], with the additional requirement that the restriction of f to ∂M is also
a Morse function. Since Morse functions are generic on smooth manifolds, the
existence of such an f is guaranteed. We now construct a homotopically closed
family X by taking the smallest such family which contains Σt.

Take now any {Σ′t}t ∈ X. Away from the singularities St the family {Σ′t}
can be given locally and for t in an interval [a, b] as the image of a smooth map
Φ : U × [a, b]. Thus the family {Σ′τ}τ∈[0,1] induces canonically a current Ω′t such
that ∂Ω′t = Σ′t. If {Γt,s}(t,s)∈[0,1]2 is a homotopy between {Σt}t∈[0,1] and {Σ′t}t∈[0,1],
it is easy to check that the corresponding currents Ωt,s such that ∂Ωt,s = Γt,s also
vary continuosly. Observe however that:

• Ωt,0 = J{f < t}K and thus Ω1,0 = JMK, whereas Ω0,0 = 0;

• Since Σ1,s, resp. Σ0,s are all trivial currents, each Ω1,s, resp. Ω0,s, is either
0 orM (because we are assuming thatM is connected);

• The continuity of Ω1,t and Ω0,t ensures then that Ω′1 = Ω1,1 = JMK and
Ω′0 = Ω′0,1 = 0.

We thus conclude that there must be one Ω′t such that M(Ω′t) = 1
2
Vol(M).

Now the isoperimetric inequality implies that Hn(Σ′t) ≥ c0(M) > 0, where the
constant c0 depends only upon the ambient manifold.
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The above argument shows that m0(X) > bM0(X) = 0 and thus we can apply
Theorem 1.5 to find a free boundary minimal hypersurface with total area equal
to m0(X). This completes the proof.

Similarly, Corollary 1.8 will be an immediate consequence of Theorem 1.5
applied to constrained families, once we are able to show the existence of two
strictly stable minimal surface gives a homotopically closed set X of constrained
families parametrized by P = [0, 1] which satisfies the condition (1.2.3). The
proof will be divided into two lemmas. In the first one we show the existence
of a particular smooth family of hypersurfaces {Σ}t∈[0,1], starting from Σ0 and
ending in Σ1. In the second lemma we show that any integer rectifiable current
with sufficiently small flat distance to Σ0 or Σ1 must have mass which is strictly
greater, with a uniform lower bound depending on the distance. More precisely
our two lemmas are

Lemma 9.1. Assume Σ0 and Σ1 are as in Corollary 1.8. Then there exists a
smooth family of hypersurfaces {Σt} parametrized by [0, 1] which is constrained
by γ.

Lemma 9.2. Let Σ0,Σ1 be as above. There exists an ε0 > 0 and f : (0, ε0]→ R+

such that

(S)
If Γ is an integer rectifiable current with F(JΣiK− Γ) = ε, i ∈ {0, 1} , and
∂Γ = ∂JΣiK = γ, then M(Γ) ≥M(JΣiK) + f(ε)

The two lemmas above easily imply our corollary.

Proof of Corollary 1.8. Obviously, by taking the homotopy class of the fam-
ily in Lemma 9.1 we construct a homotopically closed set X. The second lemma
then clearly implies that any smooth family {Γt} with Γ0 = Σ0 and Γ1 = Σ1

must satisfy (1.2.3), since F(Γt,Γs) is a continuous function of t and s and
F(Γ0,Γ1) > 0. In particular there is a smooth minimal surface Γ with volume
equal to m0(X) > max{Hn(Σ0),Hn(Σ1)} which bounds γ.

Now, by Assumption 1.7 the surface Γ cannot be given by Σ0 (or Σ1) plus a
closed minimal hypersurface, since the latter cannot exist. Moreover, since the
volume of Γ must be strictly larger than Σ0 (resp. Σ1) and the multiplicity of Γ
must be everywhere 1 thanks to part (b) of Theorem 1.5, we conclude that Γ is
distinct from Σ0 (resp. Σ1).

9.1 Proof of Lemma 9.1
Step 1: Let us first extendM slightly across ∂M, in order to make the following
arguments more elegant (as per Remark 5.3 we can even do this such thatM⊂
M̃, for some closed manifold M̃, if necessary). Consider the normal tubular
neighborhood of γ inM, which is realized by an embedding ι : U →M, where
U ⊂ Nγ is a neighborhood of the zero section of the normal bundle Nγ, such
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that ι|γ = 1γ and ι(U) is open inM. Take a (smooth) vector field e1(x) along γ,
which is the normal to ∂M pointing inwards.

For each point x of γ, consider the sets ι−1(Σi ∩ ι(U))∩Ux, i ∈ {1, 2}, where
Ux ∼= R2 is the fiber of the normal bundle at x. Since Σ0 and Σ1 are smooth and
minimal, we can use the same arguments as in the proof of Lemma 6.5 to conclude
that, if U is small enough, these are smooth, non-intersecting curves (starting at
the origin) which are contained inside a 2-dimensional wedge of opening angle at
most θ < π

2
, with e1(x) lying on its axis. Hence, choosing U even smaller than

necessary, we can make sure that they are graphs over e1(x). That is, for each
Ux there exist (smooth) functions φ0

x, φ
1
x such that:

φ0
x, φ

1
x : Wx → R, φix(Wx) = ι−1(Σi ∩ ι(U)) ∩ Ux for i = 0, 1

where Wx := e1(x) ∩ Ux.
Consider a point y ∈ Ā ∩ ι(Ux) (recall A from the statement of the lemma), for
some x ∈ γ. Note that the orthogonal projection of ι−1(y) on e1(x), which we
denote by ȳ, lies on the line segment Wx. We define:

(9.1.1) ux(y) := t, where ι−1(y) = tφ1
x(ȳ) + (1− t)φ0

x(ȳ), t ∈ [0, 1].

Now, by the properties of the tubular neighborhood, to each y ∈ A ∩ ι(U) is
associated a unique fiber Ux, hence there exists an η > 0, such that when we are
at most η-away from ∂M, i.e. on some open set E0 = A ∩ ι(U) ∩ (M\Mη) with
Mη := {x ∈ M : dist(x, ∂M) ≥ η}, these fiber-wise constructions yield a well
defined function f0 : E0 → R such that,

f0(y) := ux(y), where y ∈ ι(Ux).

Furthermore, this function is smooth (by smoothness of Σ0,Σ1 and ι), and it
has no critical points, provided we choose η small enough, since obviously the
derivative in the direction orthogonal to e1 (and γ) will be different from 0.

Now, we construct a covering of the rest of Ā with balls, satisfying the follow-
ing two properties:

a) Each ball has a radius less or equal than η
2
;

b) Each ball can only contain points from one of the surfaces Σ0 and Σ1, and
if it does, its center must lie on the surface.

Through compactness, we obtain a finite subcover, consisting of balls centered at
the points x1, x2, . . . , xN . We will denote these balls by E1, . . . , EN .
Around each of these points xk lying on one of the Σi-s, we can characterize
the submanifold through a local trivialization, i.e. there exists a neighborhood
W ⊂ M of the point (which we can w.l.o.g. assume to be bigger than the ball
Ek), an open set W ′ ⊂ Rn+1 ∼= Rn × R1, and a diffeomorphism

Ψxk : W → W ′, Ψxk(Σi ∩ U) = W ′ ∩ (Rn × {0}).
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We assume in these cases that the points lying inside the set A are mapped into
the positive half-space Rn+1

+ := {(y1, . . . , yn+1), yn+1 > 0}. We now define the
functions fi defined on the balls Ei, i ∈ {1, . . . , N}, the following way:

(9.1.2) fi(y) :=


1
2

if xi lies in the interior of A;

(yn+1 ◦Ψxi)(y) if xi lies on Σ0;

1− (yn+1 ◦Ψxi)(y) if xi lies on Σ1.

Here, yn+1 : Rn+1 → R is just a function which evaluates the corresponding
coordinate. Functions fi defined in this way are obviously smooth.

Finally, take a partition of unity {ϕj}0≤j≤N of Ā, subordinate to the covering
E0, . . . , EN . This allows us to define a function h : Ā→ R via:

(9.1.3) h(x) :=
N∑
i=0

ϕi(x)fi(x),

which is smooth up to the boundary of A, excluding γ of course.

Step 2: The function h defined in (9.1.3) has no critical points near Σ0 and
Σ1, as well as in a small neighborhood of γ. Moreover, it holds h(Σ0 \ γ) = 0 and
h(Σ1 \ γ) = 1.

It is obvious from (9.1.1), (9.1.2) and (9.1.3) that h(Σ0 \ γ) = 0 and h(Σ1 \
γ) = 1. Note also that, by the definitions of Ei, when we are at most η

2
away from

∂M, only ϕ0 is supported in this region, hence here it must hold h(x) = f0(x),
and we already know that f0 has no critical points in it. In points q ∈ Σ0, we
have

∂h

∂yn+1

∣∣∣∣
q

=
∑
i

∂ϕi
∂yn+1

· fi +
∑
i

ϕi ·
∂fi
∂yn+1

where yn+1 again denotes the "height" with respect to some fixed local chart Ej.
It holds fi(q) = 0 ∀i according to (9.1.1) and (9.1.2), so the first sum vanishes.
We also see that ∂fj

∂yn+1
= 1 and ∂fi

∂yn
> 0 for i 6= j, i > 0 due to the compatibility

of charts. so since ϕi-s are nonnegative and
∑

i ϕi = 1, it follows that the second
sum is positive. Hence q cannot be a critical point of h. With similar arguments,
we deduce this also for points lying on Σ1. It can be seen from the construction,

however, that the function h will be mostly constant inside the open set A away
from Σ0 and Σ1. So in this region we will use the fact that Morse functions form
a dense, open subset in the C2 topology, and define one such function g, say on
the open set B := A ∩ Int(Mη/4) (recall the definition above), such that

(9.1.4) ‖h− g‖C2(B) < ε

for some small ε > 0, which will be fixed later. Next, we define a cut-off function
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ψ :M→ R, such that ψ = 0 onM\Mη/4 and ψ = 1 onMη/2, and finally we
define:

(9.1.5) f : Ā→ R, f(x) := ψ(x)g(x) + (1− ψ(x))h(x)

Step 3: For ε small enough, the function f is Morse inside A, and its
level sets provide a smooth family parametrized by [0, 1], where f−1(1) = Σ1 and
f−1(0) = Σ0.

It follows from the construction that f does not have any degenerate critical
points in the regions where ψ = 0 or ψ = 1. In the intermediate region, due to
(9.1.4) we have:

Df = Dh+Dψ(g − h) + ψ(Dg −Dh)

Due to the previous steps, we know h = f0 when at most η
2
away from ∂M, and

thus not near critical points, so |Dh| > δ for some δ > 0. So we have

|Df | ≥ |Dh| − (|Dψ|+ |ψ|)‖h− g‖C2 ≥ δ − Cε,

for some constant C depending on ψ (which in turn depends only on η). Now,
we can fix ε small enough so that |Df | > 0. It is clear from the construction that
the level sets of f will be smooth hypersurfaces near γ and will in fact have γ as
boundary.

9.2 Proof of Lemma 9.2
W.l.o.g. we assume i = 0. By Theorem 2 of White [57], there exists an open set
U containing Σ0 such that

(9.2.1) M(Γ) >M(JΣ0K) ∀Γ with ∂Γ = ∂JΣ0K, and spt (Γ) ⊂ U.

Observe also that, if the neighborhood U is sufficiently small, having the same
boundary is equivalent to be in the same homology class.

We define

(9.2.2) m0(ε) := inf{M(Γ) : ∂Γ = ∂JΣ0K and F(Γ− JΣ0K) = ε}.

Our aim is to show that m0(ε) > M(JΣ0K) ∀ε ∈ (0, ε0], which clearly implies
the statement (S), by setting f(ε) = m0(ε) −M(JΣ0K). Note that the infimum
in (9.2.2) is actually a minimum. Observe that, by setting ε0 small enough, we
ensure that any current, which is in flat distance at most ε0 away from Σ0 and
with the same boundary as Σ0, must be homologous to Σ0 (see proof of Theorem
5.7 in [? ]). We would like to show that, if ε sufficiently small, a minimizer Γε
must be contained in the tubular neighborhood U of Σ0: this would then conclude
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the proof because by (9.2.1) the mass of Γε would be strictly larger than that of
JΣ0K. In fact, what we will really show is that there is certainly a Z which has
at most the same mass as Γε, has boundary γ and is contained in U , which still
suffices to reach the desired conclusion.

Step 1: Let us denote by Uδ(Σ0) the δ-tubular neighborhood of Σ0. We will
choose δ small enough so that U2δ(Σ0) ⊂ U . Note that ∂Uτ (Σ0) \ ∂M is smooth
for all τ ∈ (δ, 2δ). Hence, by the isoperimetric inequality, we can choose some
constant C > 0 (independent of τ) such that for every (n−1)-dimensional integer
rectifiable current α homologous to 0 in ∂Uτ (Σ0), there exists an n-dimensional
i.r. current S in ∂Uτ (Σ0) with

(9.2.3) ∂S = α and M(S) ≤ CM(α)
n
n−1 .

Take Γε to be the minimizer in (9.2.2). For every τ ∈ (δ, 2δ) we define:

• A(τ) := M
(
Γε (Uτ (Σ0))c

)
;

• L(τ) := M
(
∂
(
Γε (Uτ (Σ0))c

))
= M

(
∂(Γε Uτ (Σ0))− γ

)
.

A standard inequality using coarea formula yields

(9.2.4) L(τ) ≤ −A′(τ).

Let us now fix τ ∈ (δ, 2δ). One of the following alternatives must hold:

(A1) L(τ) = 0. This means that ∂
(
Γε Uτ (Σ0)

)
= γ, and hence Γε Uτ (Σ0) is

homologous to Σ0 in U . Consequently, by (9.2.1),

m0(ε) = M(Γε) ≥M(Γε Uτ (Σ0)) >M(JΣ0K),

hence we are finished.

(A2) L(τ) > 0. Since F(Γε − JΣ0K) is sufficiently small, then F(Γε − JΣ0K) =
M(T ) with ∂T = Γε − JΣ0K. Note that the slice of the (n + 1)-current T
which is supported in ∂Uτ (Σ0) has the slice of n-current Γε as its boundary.
Let us denote this slice by S. This means that S lies in ∂Uτ (Σ0) with
∂S = γ − ∂(Γε Uτ (Σ0)), and by (9.2.3),

M(S) ≤ CL(τ)
n
n−1

Let us set Z = Γε Uτ (Σ0)+S. At this point, we make a further distinction
between two cases:

(A2.1) M(Z) ≤ M(Γε). By construction, Z is homologous to Σ0 in U ; thus
by (9.2.1),

m0(ε) = M(Γε) ≥M(Z) >M(JΣ0K),

and the claim follows.
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(A2.2) M(Z) ≥M(Γε). By the above, this implies

M
(
Γε (Uτ (Σ0))c

)
≤M(S) ≤ CL(τ)

n
n−1 .

In summary, it follows from the considerations above that for the rest of the proof
we may assume w.l.o.g. ∀τ ∈ (δ, 2δ):

• L(τ) > 0

• A(τ) ≤ CL(τ)
n
n−1 .

Step 2: We claim that the minimizers Γε satisfy

(9.2.5) M(Γε)→M(JΣ0K) as ε→ 0.

By the lower semicontinuity of mass with respect to flat convergence, we imme-
diately get

lim inf
ε→0

M(Γε) ≥M(JΣ0K).

The other inequality needed to prove the claim follows by constructing suitable
competitors. Consider the currents Γ̃r := JΣ0K + ∂JBr(p)K, where Br(p) ⊂ U ,
Br(p) ∩ Σ0 = ∅. Clearly, F(Γ̃r − JΣ0K)→ 0 as r → 0, hence (for ε small enough)
there exists some r(ε) such that F(Γ̃r(ε) − JΣ0K) = ε. Moreover, M(Γ̃r(ε)) →
M(JΣ0K) as ε→ 0. This shows that

lim sup
ε→0

M(Γε) ≤M(JΣ0K),

and the claim follows.

Step 3: We next prove that

(9.2.6) lim
ε→0

M
(
Γε (U3δ/2(Σ0))c

)
= 0.

As before, we can assume Γε − JΣ0K = ∂Tε, with M(Tε)→ 0 as ε→ 0. If (9.2.6)
were wrong, there would exist a sequence εk ↓ 0 and an α > 0 such that

(9.2.7) M
(
Γεk (U3δ/2(Σ0))c

)
≥ α.

If we let 〈Tεk , τ〉 = ∂(Tεk Uτ (Σ0))−(∂Tεk) Uτ (Σ0) denote the slices of Tεk (w.r.t
the distance from Σ0), then by coarea formula∫ 3

2
δ

δ

M(〈Tεk , τ〉) dτ ≤M(Tεk)→ 0

as k → 0. Since L1 convergence implies a.e. pointwise convergence, we are able to
extract a subsequence (not relabeled) and a τ ∈ (δ, 3

2
δ) such thatM(〈Tεk , τ〉)→ 0.
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On the other hand, we can apply (9.2.1) to the current 〈Tεk , τ〉+ Γεk Uτ (Σ0) as
we did in Step 1, which gives us

M
(
〈Tεk , τ〉+ Γεk Uτ (Σ0)

)
>M(JΣ0K).

Using these two facts together with (9.2.5), one easily concludes

lim
k→∞

M
(
Γεk (Uτ (Σ0))c

)
→ 0,

which is a contradiction to (9.2.7).

Step 4: Note that the previous step tells us that A
(

3
2
δ
)
→ 0 as ε→ 0. Recall

that we assume L(τ) > 0 ∀τ ∈ (δ, 2δ) since Step 1, which immediately implies
that also A(τ) > 0. However, from (9.2.4) and the other conclusion of Step 1 we
deduce

A(τ) ≤ CL(τ)
n
n−1 ≤ C(−A′(τ))

n
n−1 ,

giving (by a slight abuse of notation regarding the constants involved)

− A′(τ)

A(τ)
n−1
n

≥ 1

C
∀τ ∈ (δ, 2δ).

Integrating the above inequality between 3
2
δ and 2δ, we get

A
(

3
2
δ
) 1
n ≥ A

(
3
2
δ
) 1
n − A(2δ)

1
n ≥ δ

2nC

which gives a contradiction for ε small enough.

77



Bibliography

[1] William K. Allard. On the first variation of a varifold: boundary behavior.
Ann. of Math. (2), 101:418–446, 1975.

[2] Frederick J. Almgren, Jr. Some interior regularity theorems for minimal
surfaces and an extension of Bernstein’s theorem. Ann. of Math. (2), 84:277–
292, 1966.

[3] Frederick J. Almgren, Jr. and Leon Simon. Existence of embedded solutions
of Plateau’s problem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 6(3):447–
495, 1979.

[4] Frederick J. Almgren, Jr. and William P. Thurston. Examples of unknotted
curves which bound only surfaces of high genus within their convex hulls.
Ann. of Math. (2), 105(3):527–538, 1977.

[5] Frederick J. Almgren Jr. The theory of varifolds. Mimeographed notes,
Princeton University. 1965.

[6] Hans Wilhelm Alt. Verzweigungspunkte von H-Flächen. II. Math. Ann.,
201:33–55, 1973.

[7] Luigi Ambrosio, Nicola Fusco, and Diego Pallara. Functions of bounded vari-
ation and free discontinuity problems. Oxford Mathematical Monographs.
The Clarendon Press, Oxford University Press, New York, 2000.

[8] George D. Birkhoff. Dynamical systems with two degrees of freedom. Trans.
Amer. Math. Soc., 18(2):199–300, 1917.

[9] Enrico Bombieri, Ennio De Giorgi, and Enrico Giusti. Minimal cones and
the Bernstein problem. Invent. Math., 7:243–268, 1969.

[10] Tobias H. Colding and Camillo De Lellis. The min-max construction of
minimal surfaces. In Surveys in differential geometry, Vol. VIII (Boston,
MA, 2002), Surv. Differ. Geom., VIII, pages 75–107. Int. Press, Somerville,
MA, 2003.

78



Bibliography 79

[11] Ennio De Giorgi. Frontiere orientate di misura minima. Seminario di Matem-
atica della Scuola Normale Superiore di Pisa, 1960-61. Editrice Tecnico Sci-
entifica, Pisa, 1961.

[12] Camillo De Lellis and Filippo Pellandini. Genus bounds for minimal surfaces
arising from min-max constructions. J. Reine Angew. Math., 644:47–99,
2010.

[13] Camillo De Lellis and Dominik Tasnady. The existence of embedded minimal
hypersurfaces. J. Differential Geom., 95(3):355–388, 2013.

[14] Ulrich Dierkes, Stefan Hildebrandt, and Friedrich Sauvigny. Minimal sur-
faces, volume 339 of Grundlehren der Mathematischen Wissenschaften [Fun-
damental Principles of Mathematical Sciences]. Springer, Heidelberg, second
edition, 2010. With assistance and contributions by A. Küster and R. Jakob.

[15] Jesse Douglas. Solution of the problem of Plateau. Trans. Amer. Math. Soc.,
33(1):263–321, 1931.

[16] Herbert Federer. Geometric measure theory. Die Grundlehren der mathe-
matischen Wissenschaften, Band 153. Springer-Verlag New York Inc., New
York, 1969.

[17] Herbert Federer. The singular sets of area minimizing rectifiable currents
with codimension one and of area minimizing flat chains modulo two with
arbitrary codimension. Bull. Amer. Math. Soc., 76:767–771, 1970.

[18] Wendell H. Fleming. On the oriented Plateau problem. Rend. Circ. Mat.
Palermo (2), 11:69–90, 1962.

[19] Rebecca Fuchs. The almost minimizing property in annuli. Master’s thesis,
Universität Zürich, 2011.

[20] Enrico Giusti. Minimal surfaces and functions of bounded variation, vol-
ume 80 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1984.

[21] Michael Grüter. Optimal regularity for codimension one minimal surfaces
with a free boundary. Manuscripta Math., 58(3):295–343, 1987.

[22] Michael Grüter and Jürgen Jost. Allard type regularity results for varifolds
with free boundaries. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13(1):129–
169, 1986.

[23] Michael Grüter and Jürgen Jost. On embedded minimal disks in convex
bodies. Ann. Inst. H. Poincaré Anal. Non Linéaire, 3(5):345–390, 1986.

[24] Robert Gulliver and Frank David Lesley. On boundary branch points of
minimizing surfaces. Arch. Rational Mech. Anal., 52:20–25, 1973.

79



Bibliography 80

[25] Robert D. Gulliver, II. Regularity of minimizing surfaces of prescribed mean
curvature. Ann. of Math. (2), 97:275–305, 1973.

[26] Alfred Haar. Über das Plateausche Problem. Math. Ann., 97(1):124–158,
1927.

[27] Robert Hardt and Leon Simon. Boundary regularity and embedded solutions
for the oriented Plateau problem. Ann. of Math. (2), 110(3):439–486, 1979.

[28] Jürgen Jost. Embedded minimal surfaces in manifolds diffeomorphic to the
three-dimensional ball or sphere. J. Differential Geom., 30(2):555–577, 1989.

[29] Jürgen Jost and Michael Struwe. Morse-Conley theory for minimal surfaces
of varying topological type. Invent. Math., 102(3):465–499, 1990.

[30] Dan Ketover. Degeneration of min-max sequences in three-manifolds. Phd
thesis, MIT, 2013. arXiv:1312.2666 [math.DG].

[31] Martin Man-chun Li. A general existence theorem for embedded minimal
surfaces with free boundary. Communications on Pure and Applied Mathe-
matics, 68(2):286–331, 2015.

[32] Lazar A. Lyusternik and Abram I. Fet. Variational problems on closed man-
ifolds. Doklady Akad. Nauk SSSR (N.S.), 81:17–18, 1951.

[33] Fernando C. Marques and André Neves. Min-max theory and the Willmore
conjecture. Ann. of Math. (2), 179(2):683–782, 2014.

[34] Fernando C. Marques and André Neves. Morse index and multiplicity of
min-max minimal hypersurfaces. 2015. arXiv:1512.06460 [math.DG].

[35] William Meeks, III, Leon Simon, and Shing-Tung Yau. Embedded minimal
surfaces, exotic spheres, and manifolds with positive Ricci curvature. Ann.
of Math. (2), 116(3):621–659, 1982.

[36] William W. Meeks, III and Shing-Tung Yau. The existence of embedded
minimal surfaces and the problem of uniqueness. Math. Z., 179(2):151–168,
1982.

[37] Charles B. Morrey, Jr. The problem of Plateau on a Riemannian manifold.
Ann. of Math. (2), 49:807–851, 1948.

[38] Marston Morse and C. Tompkins. The existence of minimal surfaces of
general critical types. Ann. of Math. (2), 40(2):443–472, 1939.

[39] Johannes C. C. Nitsche. Lectures on minimal surfaces. Vol. 1. Cambridge
University Press, Cambridge, 1989. Introduction, fundamentals, geometry
and basic boundary value problems, Translated from the German by Jerry
M. Feinberg, With a German foreword.

80



Bibliography 81

[40] Robert Osserman. A proof of the regularity everywhere of the classical
solution to Plateau’s problem. Ann. of Math. (2), 91:550–569, 1970.

[41] Jon T. Pitts. Existence and regularity of minimal surfaces on Riemannian
manifolds, volume 27 of Mathematical Notes. Princeton University Press,
Princeton, N.J.; University of Tokyo Press, Tokyo, 1981.

[42] Jon T. Pitts and Joachim H. Rubinstein. Existence of minimal surfaces of
bounded topological type in three-manifolds. In Miniconference on geome-
try and partial differential equations (Canberra, 1985), volume 10 of Proc.
Centre Math. Anal. Austral. Nat. Univ., pages 163–176. Austral. Nat. Univ.,
Canberra, 1986.

[43] Tibor Radó. On Plateau’s problem. Ann. of Math. (2), 31(3):457–469, 1930.

[44] Jonathan Sacks and Karen Uhlenbeck. The existence of minimal immersions
of 2-spheres. Ann. of Math. (2), 113(1):1–24, 1981.

[45] Richard Schoen. Estimates for stable minimal surfaces in three-dimensional
manifolds. In Seminar on minimal submanifolds, volume 103 of Ann. of
Math. Stud., pages 111–126. Princeton Univ. Press, Princeton, NJ, 1983.

[46] Richard Schoen and Leon Simon. Regularity of stable minimal hypersurfaces.
Comm. Pure Appl. Math., 34(6):741–797, 1981.

[47] Richard Schoen, Leon Simon, and Shing-Tung Yau. Curvature estimates for
minimal hypersurfaces. Acta Math., 134(3-4):275–288, 1975.

[48] Max Shiffman. The Plateau problem for non-relative minima. Ann. of Math.
(2), 40:834–854, 1939.

[49] Leon Simon. Lectures on geometric measure theory, volume 3 of Proceedings
of the Centre for Mathematical Analysis, Australian National University.
Australian National University, Centre for Mathematical Analysis, Canberra,
1983.

[50] James Simons. Minimal varieties in riemannian manifolds. Ann. of Math.
(2), 88:62–105, 1968.

[51] Francis R. Smith. On the existence of embedded minimal 2-spheres in the 3-
sphere, endowed with an arbitrary Riemannian metric. Phd thesis, University
of Melbourne, 1982.

[52] Michael Struwe. On a critical point theory for minimal surfaces spanning a
wire in Rn. J. Reine Angew. Math., 349:1–23, 1984.

[53] Michael Struwe. A Morse theory for annulus-type minimal surfaces. J. Reine
Angew. Math., 368:1–27, 1986.

81



Bibliography 82

[54] Michael Struwe. Plateau’s problem and the calculus of variations, volume 35
of Mathematical Notes. Princeton University Press, Princeton, NJ, 1988.

[55] Anthony J. Tromba. Degree theory on oriented infinite-dimensional vari-
eties and the Morse number of minimal surfaces spanning a curve in Rn.
Manuscripta Math., 48(1-3):139–161, 1984.

[56] Anthony J. Tromba. Degree theory on oriented infinite-dimensional varieties
and the Morse number of minimal surfaces spanning a curve in Rn. I. n ≥ 4.
Trans. Amer. Math. Soc., 290(1):385–413, 1985.

[57] Brian White. A strong minimax property of nondegenerate minimal sub-
manifolds. Journal für die reine und angewandte Mathematik, 457:203–218,
1994.

[58] Brian White. Stratification of minimal surfaces, mean curvature flows, and
harmonic maps. J. Reine Angew. Math., 488:1–35, 1997.

[59] Brian White. The maximum principle for minimal varieties of arbitrary
codimension. Comm. Anal. Geom., 18(3):421–432, 2010.

82


	Introduction
	Theory of Minimal Surfaces
	A Short History of the Plateau Problem
	Min-Max Method

	Setting and Main Result

	Preliminaries
	Notation
	Varifolds and Currents
	Outline of the Thesis

	Existence of Stationary Varifolds
	Existence of Almost Minimizing Varifolds
	Almost Minimizing Property
	Almgren-Pitts Combinatorial Lemma

	Boundary behavior of stationary varifolds
	Maximum Principle
	Monotonicity Formulae
	Blow-up and Tangent Cones
	White's curvature estimate at the boundary

	Stability and compactness
	Interior compactness and regularity
	Boundary version for free boundary surfaces
	Boundary version for the constrained case
	Varying the ambient manifolds
	Wedge property
	Wedge property and convex hull
	Proof of Lemma 6.5


	Replacements at the Boundary
	Homotopic Plateau's Problem
	Proof of Lemma 7.5
	Proof of Corollary 7.6

	Proof of Theorem 7.1 and Theorem 1.5
	Tangent Varifolds and Integrality
	Constrained Case
	Unconstrained Case
	Regularity in the Punctured Ball
	Removing Singular Points for n6


	Competitors: proofs of Corollary 1.6 and 1.8
	Proof of Lemma 9.1
	Proof of Lemma 9.2


