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!!!!
Zusammenfassung: !
Wir befassen uns mit einigen Fragestellungen zur Regularität von 
Almgren’s Q-valued functions. 
Insbesondere betrachten wir Regularität am Rand für Minimierer der 
Dirichlet-Energie und die Hölder-Stetigkeit von Energie minimierenden Q-
valued harmonic maps.  
Q-valued functions sind mehrwertige Funktionen mit genau Q Werten, 
wobei Multiplizitäten berücksichtigt werden. Diese Funktionen wurden von 
F. Almgren 1983 eingeführt. Wir können zeigen dass Minimierer der 
Dirchilet-Energie unter gewissen Voraussetzungen an die Regularität der 
Randwerte und des Gebietes, Hölder-stetig sind bis zum Rand.  
Energie minimierende Q-valued functions die nur Werte in einer 
Riemannschen Mannigfaltigkeit annehmen sind zumindest Hölder-stetig 
auf einer großen Teilmenge im Inneren ihres Gebietes.  
Des Weiteren geben wir Beispiele für holomorphe Funktionen die 
Nullstellen unendlicher Ordnung an Randpunkten besitzen. Diese können 
als Einladungen dienen Randregularität näher zu betrachten. Die 
präsentierten holomorphen Funktionen haben die überraschende 
Eigenschaft, dass ihre Nullstellenmenge zum Rand hin sehr groß wird. 
Trotz allem sind sie selbst nicht konstant Null. !
Summary: 

!
We address various regularity questions concerning Almgren’s Q- valued 
functions. 
In particular boundary regularity for Q-valued Dirichlet minimizers and 
interior Hölder regularity for Q-valued harmonic maps is considered. 
Q-valued functions are multiple valued functions taking exactly Q values, 
counting multiplicity introduced by F. Almgren 1983. We are able to show 
that such a functions minimizing the energy of its slope behave Hölder 
continuous up to he boundary if the boundary data and domain are 
sufficient regular. If the target is restricted to be a Riemannian manifold 
such an energy minimising functions is at least Hölder continuous on a 
large portion of the interior of its domain.  
Furthermore we present examples of holomorphic functions vanishing to 
infinite order at boundary points as an invitation to discuss boundary 
regularity. Surprisingly functions of this specific class can vanish on a large 
set towards the boundary still not being constant zero. !
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3.13. ϵ-Hölder regularity lemma 83
3.14. Properties of the singular set singH u 87
3.14.1. Properties of homogeneous degree zero minimizers 87
3.14.2. Consequences for singH u 88
Appendix A. The Luckhaus lemma 90

1



2

References 98

REPORT ON MY RESEARCH ON SOME REGULARITY

QUESTIONS REGARDING MULTIVALUED/ Q-VALUED

FUNCTIONS

JONAS HIRSCH

Introduction

In his pioneering work [1], F. Almgren developed a theory of multivalued func-
tions. He introduced them as Q-valued functions. Q ∈ N, fixed, indicates the
number of values the function takes, counting multiplicity. We will refer to them
from now on as Q-valued functions. Their purpose had been the development of a
proof of a regularity result on area minimizing rectifiable currents.
F. Almgren considered it to be the ”most pressing” problem in geometric measure
theory and he considered the theory of Q-valued functions as an essential tool as
the following quote indicates:

”Its solution has required development of several new geometric and
analytic techniques, central among which is utilization of Q-valued
functions to study branching phenomena.”1

The necessity of understanding branching and the essential motivation introducing
multivalued functions can be demonstrated by the following example in complex
function theory:
Consider the complex variety V = {(z, v) ∈ C2 : z2 = v3}. Observe that (0, 0) is a
true branch point in the sense that there does not exists an open neighbourhood U
of (0, 0) s.t. V ∩ U is an immersed surface. V ∩ U is always a multivalued graph.

To every z = reiθ on has the three roots vj = r
2
3 ei(

2θ
3 +j 2π

3 ), j = 0, 1, 2. One cannot
define a root function that is continuous on the whole complex domain C, because
assuming such a continuous function exists and following the path t ∈ [0, 1] $→ ei2πt

around zero will end up on an other sheet contradicting the continuity. But the
complex variety V can be considered as a two dimension surface in R4 ∼= C2. Based
on a classical computation of Wirtinger [24], Federer observed that complex vari-
eties are calibrated and therefore area minimizers in their homology class [6, 16,
section 5.4.19]. This example demonstrates that branching occurs for area min-
imizers in higher codimensions. If one allows a function to take several values,
something like ”z $→ {r 2

3 ei
2θ
3 +j 2π

3 }j=0,1,2”, V can still be written as a graph over a
flat disc.
Following a groundbreaking idea of De Giorgi in the single valued setting, F. Alm-
gren uses that the first order term in the Taylor expansion of the area integrand
for Q-valued Lipschitz-graph corresponds with the Dirichlet energy. Therefore he
consideres in his work [1] mainly Dirichlet minimizing Q-valued functions.
Nonetheless he was thinking already about other possible applications as the fol-
lowing quote shows:

1J. Almgren, [1], page 1
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”It is one of the objects of the study of multivalued functions to pro-
vide a setting in which very general surfaces can be represented as
images of simple domains (such as disks) under multivalued map-
pings. One of the main reasons for wanting to do this is to be
able to utilize functional analytic techniques in novel ways in the
geometric study of such surfaces;...”2

My research was mainly concerned with the study of general regularity questions of
Q-valued functions. This is a report about the outcome, three independent results.
Therefore a report structure is chosen and each can be read and understood on its
own. To facilitate this each part starts with its own introduction. There we present
its results, structure and put into context to other works.
The common thread are Q-valued functions. Since there are nonetheless some fur-
ther links between them we give now a brief overview. For example in every part
a regularity questions in this context is addressed. More precisely my research was
focused on two main aspects: boundary regularity for Dirichlet minimizers and in-
terior regularity for Q-valued harmonic maps.

Part 0
We give an overview on Q-valued functions. We restrict us to the essentials needed
to understand the three other parts. So this part recalls the basic definitions and
results omitting the proofs. More refined definitions and results are presented at
the places where they are actually needed. This is done to keep this part as short
and easy as possible. For a more detailed and a more or less complete picture we
recommend [12].

Part 1
We consider the Hölder continuity for the Dirichlet problem at the boundary. Alm-
gren introduced the Q-valued functions for studying regularity of minimal surfaces
in higher codimension. The Hölder continuity in the interior for Dirichlet minimiz-
ers is an outcome of Almgren’s original theory [1], to which C. De Lellis and E.N.
Spadaro’s work have given a simpler alternative approach [12]. This part extends
the Hölder regularity for Dirichlet minimizing Q-valued functions up to the bound-
ary assuming C1 regularity of the domain and C0,α regularity of the boundary data
with α > 1

2 .

Part 2
We present examples of holomorphic functions that vanish to infinite order at points
at the boundary of their domain of definition. They give rise to examples of Dirichlet
minimizing Q-valued functions indicating that ”higher”-regularity boundary results
are difficult. Furthermore we discuss some implication to branching and vanishing
phenomena in the context of minimal surfaces, Q-valued functions and unique con-
tinuation.

Part 3
We consider multivalued maps into a smooth, compact Riemannian manifold locally
minimizing the Dirichlet energy. An interior partial Hölder regularity result in the
spirit of R. Schoen and K. Uhlenbeck is presented. Consequently a minimizer
is Hölder continuous outside a set of Hausdorff dimension at most N − 3. As
mentioned before, F. Almgren’s original theory includes a global interior Hölder
continuity result if the minimizers are valued into some Rm. It cannot hold in

2J. Almgren, [1], page 8
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general if the target is changed into a Riemannian manifold, since it already fails
for ”classical” single valued harmonic maps.
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Part 0. Short overview of some general results on Q-valued functions

0.1. Introduction

This preamble recalls the basic definitions and results on Q-valued functions
needed to understand each of the three parts. The theory is presented omitting the
actual proofs. They can be found for instance in C. De Lellis and E. Spadaro’s work
[12]. More refined results and definitions will be introduced at places where these
are actually needed. For example the appendix to part 1 contains an interpolation
lemma in the spirit of Luckhaus with boundary functions in a fractional Sobolev
space and a W s,p, s > 1

2 selection criterion and the appendix to part 3 contains an
intrinsic proof the ”classical” Luckhaus lemma. In the appendix to this preamble
we present a concentration compactness result. It is along the same lines and indeed
inspired by C. De Lellis and E. Spadaro’s version [14, Lemma 3.2].

0.2. Q-valued functions

We follow mainly the notation and terminology introduced by C. De Lellis and
E. Spadaro in [12]. It differs slightly from Almgren’s original one. Q,Q1, Q2, . . .
are always natural numbers.
The space of unordered sets of Q points in Rn can be made into a complete metric
space.

Definition 0.2.1. (AQ(Rn),G) denotes the metric space of unordered Q-tuples
given by

AQ(Rn) =

{
T =

Q∑

i=1

!ti" : ti ∈ Rn, i = 1, . . . , Q

}

and if PQ is the permutation group of {1, . . . , Q} the metric is given by

G(S, T )2 = min
σ∈PQ

Q∑

i=1

|si − tσ(i)|2.

We use the convention !t" = δt for a Dirac measure at a point t ∈ Rn. Con-

sidering T =
∑Q

i=1!ti" as a sum of Q Dirac measures one notice that AQ(Rn)
corresponds to the set of 0-dimensional integral currents of mass Q and positive
orientation. Hence we will write

spt(T ) = {t1, . . . , tQ : T =
Q∑

i=1

!ti"} ⊂ Rn.

Furthermore AQ(Rn) is endowed with an intrinsic addition:

+: AQ1(Rn)×AQ2(Rn) → AQ1+Q2(Rn) S + T =
Q1∑

i=1

!si" +
Q2∑

i=1

!ti".

We define a translation operator

⊕ : AQ(Rn)× Rn → AQ(Rn) T ⊕ s =
Q∑

i=1

!ti + s".

The metric G defines continuity, modulus of continuity, Hölder and Lipschitz conti-
nuity and (Lebesgue) measurability for functions from a set Ω ⊂ RN into AQ(Rn),
i.e.u : Ω → AQ(Rn).
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As it has been shown in [12, Proposition 0.4] for any measurable function u : Ω →
AQ(Rn) we can find a measurable selection i.e.

v = (v1, . . . , vQ) : Ω → (Rn)Q measurable s.t. u(x) = [v](x) =
Q∑

i=1

!vi(x)".

Selections of higher regularity are considered in [11], [12, Proposition 1.2] and in
the appendix B.3.

We will write |u(x)| =
√∑Q

i=1|vi(x)|2 = G(u(x), Q!0").

Definition 0.2.2. The Sobolev space W 1,2(Ω,AQ(Rn)) is defined as the set of
measurable functions u : Ω → AQ(Rn) that satisfy

(w1) x $→ G(u(x), T ) ∈ W 1,2(Ω,R+) for every T ∈ AQ(Rn);
(w2) ∃ϕj ∈ L2(Ω,R+) for j = 1, . . . , N s.t. |DjG(u(x), T )| ≤ ϕj(x) for any

T ∈ AQ(Rn) and a.e. x ∈ Ω.

It is not difficult to show the existence of minimal functions ϕ̃j , in the sense that
ϕ̃j(x) ≤ ϕj(x) for a.e. x and any ϕj satisfying property (w2), [12, Proposition 4.2].
Such a minimal bound is denoted by |Dju| and is explicitly characterised by

|Dju|(x) = sup {|DjG(u(x), Ti)| : {Ti}i∈N dense in AQ(Rn)} .

The Sobolev ”semi-norm”, or Dirichlet energy, is defined by integrating the mea-
surable function |Du|2 =

∑N
j=1|Dju|2:

(0.2.1)

ˆ
Ω
|Du|2 =

ˆ
Ω

J∑

j=1

|Dju|2.

Strictly speaking it is not a ”semi-norm”. W 1,2(Ω,AQ(Rn)) is not a linear space
since AQ(Rn) lacks this property.
A function u ∈ W 1,2(Ω,Rn) is said to be Dirichlet minimizing if
(0.2.2)ˆ

Ω
|Du|2 = inf

{ˆ
Ω
|Dv|2 : v ∈ W 1,2(Ω,AQ(Rn)),G(u(x), v(x)) ∈ W 1,2

0 (Ω,R+)

}
.

On Lipschitz regular domains Ω ⊂ RN one has a continuous trace operator as
for classical single valued Sobolev functions

◦
∣∣
∂Ω

: W 1,2(Ω,AQ(Rn)) → L2(∂Ω,AQ(Rn)).

The definition of W 1,2(Ω,AQ(Rn)), definition 0.2.2, implies that on a Lipschitz
regular domain Ω ⊂ RN one has that G(u(x), v(x)) ∈ W 1,2

0 (Ω) corresponds to
u
∣∣
∂Ω

= v
∣∣
∂Ω

for any u, v ∈ W 1,2(Ω,AQ(Rn)).

As a consequence of a Rademacher theorem for multivalued Lipschitz functions,
[12, section 1.3 & Theorem 1.13] a Sobolev function u ∈ W 1,2(Ω,AQ(Rn)) is a.e.
approximately differentiable in the sense

(1) ∃Ux : Ω → AQ(Rn × Hom(RN ,Rn)), x $→ Ux =
∑Q

i=1!(ui(x), Ui(x))"
measurable with Ui(x) = Uj(x) whenever ui(x) = uj(x);

(2) Ux defines a 1-jet JUx : Ω × RN → AQ(Rn) by JUx(y) =
∑Q

i=1!ui(x) +
Ui(x)(y−x)", that has the additional property that JUx(x) = u(x) for a.e.
x ∈ Ω;

(3) for a.e. x ∈ Ω, ∃Ex ⊂ Ω having density 1 in x s.t. G(u(y), JUx(y)) =
o(|y − x|) on Ex.
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As one may guess the 1-jet corresponds to a first order ”Taylor expansion”, that
becomes apparent in the proof of Rademacher’s theorem, [12, Theorem 1.13]. One

can show that |Dju|(x) =
∑Q

i=1|Ui(x)ej |2 for a.e. x ∈ Ω, [12, Proposition 2.17].
From now on we will write Dui(x) for Ui(x) and Djui(x) for Ui(x)ej .
For a definition of Ck(Ω,AQ(Rn) see section 2.7.2.

A useful tool is Almgren’s bi-Lipschitz embedding of AQ(Rn) into some RN . A
remark of Brian White improved it, compare [12, Theorem 2.1 & Corollary 2.2]:

Theorem 0.2.1 (bi-Lipschitz embedding). There exists m = m(Q,n) and an in-
jective map ξ : AQ(Rn) → Rm with the properties

(i) Lip(ξ) ≤ 1 and Lip(ξ−1|ξ(AQ(Rn))) ≤ C(Q,n);
(ii) ∀T ∈ AQ(Rn) ∃δ = δ(T ) > 0 such that |ξ(T ) − ξ(S)| = G(T, S) for all

S ∈ Bδ(T ) ⊂ AQ(Rn).

There is a retraction ρ : Rm → AQ(Rn) because of (i) and the Lipschitz extension
Theorem, e.g. [12, Theorem 1.7].

As a consequence |Du|(x) = |Dξ◦u|(x) for a.e. x ∈ Ω for any u ∈ W 1,2(Ω,AQ(Rn)).
We want to remark that the image of AQ(Rn) under ξ in Rm is not convex neither
a C2 manifold. Thus there is no ”nearest point” projection not even in a tubular
neighborhood.

Two cornerstones in the context of Dirichlet minimizers that are of interest for
us in the following are (c.p. with [12, Theorem 0.8 & Theorem 0.9]): .

Theorem 0.2.2 (Existence of Dirichlet minimizers). Let v ∈ W 1,2(Ω,AQ(Rn))
be given, then there exists a (not necessarily unique) Dirichlet minimizing u ∈
W 1,2(Ω,AQ(Rn)) with G(u(x), v(x)) ∈ W 1,2

0 (Ω,R+).

Theorem 0.2.3 (interior Hölder continuity). There is a constant α0 = α0(N,Q) >
0 with the property that if u ∈ W 1,2(Ω,AQ(Rn)) is Dirichlet minimizing, then
u ∈ C0,α0(K,AQ(Rn)) for any K ⊂ Ω ⊂ RN compact. Indeed, |Du| is an element
of the Morrey space L2,N−2−2α0 with the estimate

(0.2.3) r2−N−2α0

ˆ
Br(x)

|Du|2 ≤ R2−N−2α0

ˆ
BR(x)

|Du|2 for r ≤ R,BR(x) ⊂ Ω.

For two-dimensional domains α0(2, Q) = 1
Q is explicit and optimal.

Both results had been proven first by Almgren in [1] and nicely reviewed by C.
De Lellis and E. Spadaro in [12].

J. Almgren presents in [1, Theorem 2.16] an example of non-uniqueness: there
are two Dirichlet minimizers f ̸= h ∈ W 1,2(B1,A2(R2)), B1 ⊂ R2, with f = h on
∂B1. Given any other minimzer that agrees with f or h at the boundary must be
either f or h.

Appendix A. Concentration compactness for Q-valued functions

Let Ω ⊂ RN be given, then there is a concentration compactness lemma for
sequences u(k) ∈ W 1,2(Ω,AQ(Rn)) with uniformly bounded energy.

Lemma A.1. Given a sequence u(k) ∈ W 1,2(Ω,AQ(Rn)) and a sequence of means
T (k) ∈ AQ(Rn) with

lim sup
k→∞

ˆ
Ω
|Du(k)|2 ≤ ∞ and

ˆ
Ω
G(u(k), T (k))2 ≤ C

ˆ
Ω
|Du(k)|2

for a subsequence, not relabelled, we can find:
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(i) maps bl ∈ W 1,2(Ω,AQl(Rn)) for l = 1, . . . , J ,
∑L

l=1 Ql = Q;

(ii) a splitting T (k) = T1(k) + · · ·+ TL(k) with Tl(k) ∈ AQl(Rn) and
– lim supk diam(spt(Tl(k))) < ∞ for all l = 1, . . . , L

– limk→∞ dist(spt(Tl(k)), spt(Tm(k))) = ∞ for l ̸= m;
(iii) a sequence tl(k) ∈ spt(Tl(k)) such that G(u(k), b(k)) → 0 in L2 with b(k) =∑L

l=1(bl ⊕ tl(k)).

Moreover, the following two additional properties hold:

(a) if Ω′ ⊂ Ω is open and Ak is a sequence of measurable sets with |Ak| → 0,
then

lim inf
k→∞

ˆ
Ω′\Ak

|Du(k)|2 −
ˆ
Ω′
|Db(k)|2 ≥ 0.

(b) lim infk→∞
´
Ω

(
|Du(k)|2 − |Db(k)|2

)
= 0 if and only if

lim infk→∞
´
Ω

(
|Du(k)|− |Db(k)|)2 = 0.

Before we give the proof we recall the definition of the separation sep(T ) of a

Q-point T =
∑Q

i=1!ti" ∈ AQ(Rn).

sep(T ) =

{
0, if T = Q!t"
minti ̸=tj |ti − tj |, otherwise .

The following results are of essential use in the context of the separation and
needed for the proof of the concentration compactness lemma. The first gives a
kind of relation between diam(spt(T )) and sep(T ), see [12, lemma 3.8]; the second
gives a retraction ϑ = ϑT based on sep(T ), see [12, lemma 3.7]

Lemma A.2. To every ϵ > 0 there exists β = β(ϵ, Q) > 0 with the property that
to any T ∈ AQ(Rn) there exists S = S(T ) ∈ AQ(Rn) with

spt(S) ⊂ spt(T ), G(T, S) < ϵ sep(S) and β diam(spt(T )) < sep(S).

(For example β = ϵQ 34−Q2

works.)

Lemma A.3. To a given T ∈ AQ(Rn and 0 < 4s < sep(T ) there exists a
1−Lipschitz retraction

ϑ = ϑT : AQ(Rn) → Bs(T ) = {S ∈ AQ(T ) : G(S, T ) ≤ s}
with the property that

(i) ϑ(S) = S if G(S, T ) ≤ s;

(ii) G(ϑ(S1),ϑ(S2)) < G(S1, S2) if G(S1, T ) > s.

Proof of lemma A.1. We distinguish two cases. The second will be handled by in-
duction on the first.

Case 1 and basis of the induction: lim infk→∞ diam(spt(T (k))) < ∞
( diam(spt(T (k))) = 0 for Q = 1):
Passing to an appropriate subsequence, not relabelled diam(spt(T (k))) < C for all
k. Set L = 1, and as splitting keep the sequence itself i.e. T (k) = T1(k). To every
k fix a t1(k) ∈ spt(T (k)).
Hence we have

lim sup
k

ˆ
Ω
|u(k)⊕ (−t1(k))|2 = lim sup

k

ˆ
Ω
G(u(k), Q!t1(k)")2

≤ lim sup
k

2

ˆ
Ω
G(u(k), T (k))2 + 2|Ω|G(T (k), Q!t1(k)")2 < ∞.
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Hence passing to an appropriate subsequence there is b = b1 ∈ W 1,2(Ω,AQ(Rn))
with u(k)⊕(−t1(k)) → b in L2. This proves (i),(ii),(iii), since G(u(k)⊕−t1(k), b) =
G(u(k), b ⊕ t1(k)) = G(u(k), b(k)). Furthermore, the established properties imply
that ξ ◦ u(k) ⇀ ξ ◦ b(k) in W 1,2(Ω,Rm). The additional property (a) follows, be-
cause 1Ω′\Ak

→ 1Ω′ in L2(Ω) and so 1Ω′\Ak
Dξ◦u(k)⇀ 1Ω′Dξ◦b(k). Property (b)

holds because L2(Ω) is an Hilbert space. Therefore we have, that fk = Dξ◦u(k) →
f = Dξ ◦ b(k) in L2(Ω) if and only if fk ⇀ f and ∥fk∥2L2(Ω) → ∥f∥2L2(Ω); compare

lim infk ∥fk − f∥2 = lim infk ∥fk∥2 + ∥f∥2 − 2⟨fk, f⟩ = lim infk ∥fk∥2 − ∥f∥2.

Case 2 and the induction step: lim infk diam(spt(T (k))) = +∞
Suppose the lemma holds for Q′ < Q. To every T (k) pick S(k) ∈ AQ(Rn)

using A.2 s.t. for S(k) =
∑J(k)

j=1 Qj(k)!sj(k)" ∈ AQ(Rn) set σk = sep(S(k)),

then β( 1
10 , Q) diam(spt(T (k))) < σk and G(T (k), S(k)) < σk

10 . Passing to an
appropriate subsequence, not relabelled, we may further assume that J(k) > 1
andQj(k) do not depend on k. Fix the associated 1-Lipschitz retractions of A.3

ϑk : AQ(RN ) → B 1
5 s(S(k))(S(k)) i.e. H0

(
spt(ϑk(T )) ∩Bσk

5 (sj)

)
= Qj for all

T ∈ AQ(Rn) and j = 1, . . . , J . Hence these retractions ϑk defines new sequences
vj(k) in W 1,2(Ω,AQj (Rn)) and a splitting of T (k):

ϑk ◦ u(k) = v1(k) + · · · vJ (k) with vj(k) ∈ Bσk
5
(sj);

T (k) =ϑk ◦ T (k) = T1(k) + · · ·+ TJ(k) with Tj(k) ∈ Bσk
5
(sj)

Each sequence vj(k), j = 1, . . . , J satisfies itself the assumptions of the lemma,
because ϑk is a retraction and so

J∑

j=1

|Dvj(k)|2 = |Dϑk ◦ u(k)|2 ≤ |Du(k)|2(A.1)

J∑

j=1

G(vj(k), Tj(k))
2 = G(ϑk ◦ u(k),ϑk ◦ T (k))2 ≤ G(u(k), T (k))2.(A.2)

Furthermore we record some properties:
Defining Ak = {x : ϑk ◦ u(k)(x) ̸= u(k)(x)} = {x : G(u(k), S(k)) > σk

5 } ⊂ {x :
G(u(k), T (k)) ≥ σk

10 } = Bk (subsets of Ω) we have

(1.) |Bk| → 0 as k → ∞, because

|Bk| ≤
(

10

σk)

)2∗ ˆ
Bk

G(u(k), T (k))2
∗

≤
(
10

σk

)2∗

C

(ˆ
Ω
|Du(k)|2

) 2∗
2

→ 0;

(2.) G(u(k),ϑk ◦ u(k)) → 0 in L2 as k → ∞, sinceˆ
Ω
G(u(k),ϑk ◦ u(k))2 =

ˆ
Ak

G(u(k),ϑk ◦ u(k))2

≤ 2

ˆ
Bk

G(vk, T (k))2 + G(ϑk ◦ u(k),ϑk ◦ T (k))2

≤ 4

(
10

σk

)2∗−2 ˆ
Bk

G(u(k), T (k))2
∗

≤ C

σ2∗−2
k

(ˆ
Ω
|Du(k)|2

) 2∗
2

→ 0;
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(3.) dist(spt(Ti), spt(Tj)) ≥ σk − 2G(S(k), T (k)) ≥ 4
5σk → +∞ for any i ̸= j as

k → ∞;
(4.) ||Du(k)| − |Dϑk ◦ u(k)|| → 0 in L2 as k → ∞, because |Bk| → 0, |Dϑk ◦

u(k)| ≤ |Du(k)|, Dϑk ◦ u(k) = Du(k) on Ω \Bk andˆ
Ω
(|Du(k)|− |Dϑk ◦ u(k)|)2 ≤

ˆ
Ω
|Du(k)|2 − |Dϑk ◦ u(k)|2

=

ˆ
Bk

|Du(k)|2 − |Dϑk ◦ u(k)|2 ≤
ˆ
Bk

|Du(k)|2 → 0.

Due to the induction hypothesis the lemma holds for each sequence vj(k) i.e. we can

find bj,l ∈ W 1,2(Ω,AQj,l(Rn)), with
∑Lj

l=1 Qj,l = Qj , a splitting Tj(k) = Tj,1(k) +
· · ·+Tj,Lj (k) together with sequences tj,l(k) ∈ spt(Tj,l(k)) satisfying the conditions

(i), (ii), (iii). Furthermore the additional properties (a),(b) hold. Set L =
∑J

j=1 Lj ,

Kj =
∑j−1

i=1 Li and relabel bKj+l = bj,l, TKj+l(k) = Tj,l(k), tKj+l(k) = tj,l(k) and
QKj+l = Qj,l for j ∈ {1, . . . , J} and l ∈ {1, . . . , Lj}. The induction hypothesis on
the lemma states that the obtained sequences bl, Tl(k), tl(k) for l = 1, . . . , L satisfy

(i) bl ∈ W 1,2(Ω,AQl(Rn)) for l = 1, . . . , L and
∑L

l=1 Ql = Q;

(ii) T (k) = T1(k) + · · ·+ TL(k), tl(k) ∈ spt(Tl(k)) and
– lim supk diam(spt(Tl(k))) < ∞ for all l = 1, . . . , L

– limk→∞ dist(spt(Tl(k)), spt(Tm)) = ∞ for l ̸= m for any Kj < l <
m ≤ Kj+1, j = 1, . . . , J

(iii) G(vj(k), bj(k)) → 0 in L2 with bj(k) =
∑Kj+1

l=Kj+1(bl ⊕ tl(k)) for each j.

Moreover, the following two additional properties hold for each j:

(a) if Ω′ ⊂ Ω is open and Ak is a sequence of measurable sets with |Ak| → 0,
then

lim inf
k→∞

ˆ
Ω′\Ak

|Dvj(k)|2 −
ˆ
Ω′
|Dbj(k)| ≥ 0.

(b) lim infk→∞
´
Ω

(
|Dvj(k)|2 − |Dbj(k)|2

)
= 0 if and only if

lim infk→∞
´
Ω

(
|Dvj(k)|− |Dbj(k)|)2 = 0.

Due to properties (1) to (4) we may sum in j and replace
∑J

j=1 vj(k) by u(k). This
completes the proof. !
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Part 1. Boundary regularity of Dirichlet minimizing Q-valued functions

1.2. Introduction

We address the following regularity question concerning Almgrens multivalued
functions, posed for example by C.De Lellis in [15, section 8, (7)]:
Are Dirichlet minimizers continuous, or ever Hölder, up to the boundary if the
boundary data are sufficient regular?

The following result gives a rather general first answer:

Theorem 1.2.1. Let 1
2 < s ≤ 1 be given. There is a constant α = α(N,Q, n, s) > 0

with the property that, if

(a1) Ω ⊂ RN is a bounded C1 regular domain;
(a2) u ∈ W 1,2(Ω,AQ(Rn)) is Dirichlet minimizing;
(a3) u

∣∣
∂Ω

∈ C0,s(∂Ω);

then u ∈ C0,α(Ω).

In terms of notation, for single valued functions, Sobolev spaces are denoted by
W 1,p(Ω,Rn) and W 1,p(Ω), fractional Soblev spaces by W s,p(Ω). In the case of mul-
tivalued functions we will always mention the target explicitly i.e. W 1,p(Ω,AQ(Rn))
for Sobolev spaces and the fractional ones by W s,p(Ω,AQ(Rn)). In the case of sin-
gle valued function we will sometimes use as well H1(Ω), Hs(Ω) for W 1,2(Ω) and
W s,2(Ω) (p = 2). The trace for a Sobolev function is denoted by u

∣∣
∂Ω
. It will be

clear from the context if it is the trace of a single valued or multivalued function.
The equivalent ”classical” statement of Theorem 1.2.1 for single valued harmonic

functions states:
f : Ω → Rn harmonic, f

∣∣
∂Ω

∈ C0,β(∂Ω) for some 0 < β < 1 then f ∈ C0,β(Ω).

Harmonic functions with finite energy belong to H1(Ω,Rn), but u ∈ H1(Ω) if
and only if u

∣∣
∂Ω

∈ H
1
2 (∂Ω). H

1
2 (∂Ω) can be characterised using the Gagliardo

semi-norm
´
∂Ω×∂Ω

|f(x)−f(y)|2
|x−y|N dxdy that is controlled by the C0,β(∂Ω)-norm for

β > 1
2 . Nonetheless our result is suboptimal in the sense that for classical harmonic

functions u
∣∣
∂Ω

∈ W
1
2 ,2(∂Ω) ∩ C0,β(∂Ω) for any 0 < β < 1 implies u ∈ C0,β(Ω).

In contrast, the Hölder exponent we claim in Theorem 1.2.1 is not explicit. For
dimension three and higher that is not really surprising since the optimal (or even
an explicit) exponent is not known in the interior so far.

The result for two dimensions is somewhat unsatisfactory. In two dimensions the
optimal Hölder exponent for the interior regularity for Q-valued Dirichlet minimiz-
ers is known and explicit: it is 1

Q . We obtain the two dimensional case of theorem
1.2.1 by ”lifting it” to three dimensions. So we get a ”bad”, not explicit exponent.
Therefore we try to give some additional information. That continuity extends up
to the boundary for two dimensional balls had been proven by W. Zhu in [25, The-
orem 1.3]. We will give a proof on different lines that continuity extends up to the
boundary of Lipschitz regular domains. Concerning the optimal exponent we can
give a partial first answer. At least on conical subsets of Ω the interior regularity
extends up to the boundary for boundary data u

∣∣
∂Ω

∈ C0,β(∂Ω), β > 1
2 .

The appendix contains a short introduction to fractional Sobolev spaces for sin-
gle valued functions. It includes some perhaps less known results. Furthermore
an interpolation lemma in the spirit of Luckhaus with boundaries functions in a
fractional Sobolev space W s,2 with s > 1

2 is presented. Afterwards these results are
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extended to Q-valued functions. Additionally we present a W s,p selection criterion,
needed in the two dimensional setting.

Outline of this part: section 1.3 fixes notation and general assumptions, section
1.4 contains the proof of theorem 1.2.1 for dimension three and higher, section 1.5
considers the two dimensional setting. Finally the appendix with sections A, B and
C provides tools needed in the proof.

1.3. General assumptions and notation

From now on, if not indicated differently, we will consider the following setting:
Ω ⊂ RN is a bounded C1−regular domain i.e. to every z ∈ ∂Ω there exists R =
R(z) > 0, F = Fz ∈ C1(RN−1,R) s.t. ( up to a rotation )

Ω ∩BR(z) = {z + (x′, xN ) : |x| < R, xN > F (x′)}.
In particular for F ∈ C1(RN−1, R) we set

ΩF = {(x′, xN ) : xN > F (x′)}.
Since ∂Ω is compact, the C1 regularity implies that

(A1) for any given ϵF > 0, ∃R = R(Ω, ϵF ) > 0 with the property that for
any z ∈ Ω there is F ∈ C1(RN−1,R) with F (0) = 0, gradF (0) = 0,
∥gradF∥∞ < ϵF and (up to a rotation):

Ω ∩BR(z) = {z + (x′, xN ) : |x| < R, xN > F (x′)} = ΩF ∩BR.

In other words ∂Ω is locally the graph of a C1 function with small gradient over
the tangent space Tz∂Ω.

Let 0 < r ≤ R and z ∈ ∂Ω. We define the following scaled (and translated) Ω:

Ωz,r = {x ∈ RN : z + rx ∈ Ω}.
Boundary regularity is a local question so we will often consider

Ωz,r ∩B1 = {(x′, xN ) : |x| < 1, xN > F0,r(x
′)} = ΩF0,r ∩B1

with F0,r(x′) = r−1F (rx′) ( observe that ∥grad(F0,r)∥∞,B1
= ∥gradF∥∞,Br

).
Frequently we will study such a special domain ΩF defined by

(A2)
ΩF = {(x′, xN ) : xN > F (x′)}

with F ∈ C1(RN−1,R) with F (0) = 0, gradF (0) = 0, ∥gradF∥∞ < ϵF .
Moreover we set

ΓF = ∂ΩF ∩B1 = {(x′, xN ) : |x| < 1, xN = F (x′)}.
ΓF denotes a boundary portion of the boundary to such a special domain.

The upper half space RN
+ is a particular case of such a domain i.e. Ω0 = RN

+

for F = 0. The boundary of the upper half ball B1+ = RN
+ ∩ B1 is the union of

Γ0 = B1 ∩ {xN = 0} and the upper half of the sphere SN−1
+ = SN−1 ∩ {xN > 0}.

Fractional Soblev spaces, namedW s,2, occur naturally, when dealing with bound-
ary regularity for elliptic problems. A short introduction is given in the appendix A.
We define the Gagliardo semi-norms for 0 < s < 1 and m dimensional submanifolds
Σ ⊂ RN

#f$2
s,Σ =

ˆ
Σ×Σ

|f(x)− f(y)|2

|x− y|m+2s
dxdy, f ∈ L2(Σ)

#u$2
s,Σ =

ˆ
Σ×Σ

G(u(x), u(y))2

|x− y|m+2s
dxdy, u ∈ L2(Σ,AQ(Rn)).
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The notation #·$s,Σ has been chosen in similarity to the classical notation [·]α,Σ
for the Hölder semi-norm with exponent α. We extend it to s = 1 by (abusing the
notation a little):

#f$2
1,Σ =

ˆ
Σ
|Dτf |2, f ∈ W 1,2(Σ)

#u$2
1,Σ =

ˆ
Σ
|Dτu|2, u ∈ W 1,2(Σ,AQ(Rn))

where Dτ denotes the total tangential derivative on Σ. For single a valued functions
f ∈ W 1,2(Σ) and an orthonormal frame τ1, . . . , τm of TxΣ we have |Dτf(x)|2 =∑Q

j=1|
∂f
∂τj

|2. In the case of multivalued function u we make use of the approxi-

mately differentiability of Sobolev functions: for a.e. x ∈ Σ we have |Dτu|2(x) =∑m
j=1

∑Q
i=1|Ui(x)τj |2 where Ui(x) are the elements of the 1-jet JUx, c.f. the the

discussion below definition 0.2.2 for precise statement to the approximate differen-
tiability and the definition of the 1-jet.

1.4. Hölder continuity for N ≥ 3

A more precise version of theorem 1.2.1 is:

Theorem 1.4.1. For any 1
2 < s ≤ 1, there are constants C > 0 and α1 > 0

depending on N,n,Q, s, N ≥ 3 with the property that, if

(a1) u ∈ W 1,2(Ω,AQ(Rn)) is Dirichlet minimizing;
(a2) u

∣∣
∂Ω

∈ W s,2(∂Ω,AQ(Rn)) and for some 0 < β there is a constant Mu > 0
s.t.

r2(s−β)−(N−1)#u$2
s,Br(z)∩∂Ω ≤ M2

u for all z ∈ ∂Ω, r > 0;

then the following holds

(i) |Du| is an element of the Morrey space L2,N−2+2α for any 0 < α <
min{α1,β}, more precisely the following estimate holds

(1.4.1) r2−N−2α

ˆ
Br(x)∩Ω

|Du|2 ≤ 2NR2−N−2α
0

ˆ
B2R0 (x)∩Ω

|Du|2 + C
R2(β−α)

0

β − α
M2

u

for any r < R0
2 . The positive constant R0 depends only on N,n,Q, s,Ω but

not on the specific u;

(ii) u ∈ C0,α(Ω).

Lemma 1.4.2. There is a relation between assumption (a2) and the Hölder conti-
nuity of u

∣∣
∂Ω
:

(i) (a2) is satisfied if u
∣∣
∂Ω

∈ C0,β(∂Ω) for β > 1
2 i.e. there is a dimensional

constant C > 0 s.t. for 0 < s < β

r2(s−β)−(N−1)#u$2
s,Br(z)∩∂Ω ≤ C

β − s
[u]2β,∂Ω ∀z ∈ ∂Ω, 0 < r < R(Ω, 1);

(ii) if (a2) holds then u
∣∣
∂Ω

∈ C0,β(∂Ω) i.e. there is a dimensional constant
C > 0 s.t.

G(u(x), u(y)) ≤ CM |x− y|β ∀x, y ∈ ∂Ω, |x− y| ≤ R(Ω, 1)

2
.
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Proof. To prove (i) let z ∈ ∂Ω, 0 < r < R(Ω, 1) be given and F ∈ C1(RN−1,R) the
function of (A1), then

ˆ
Br(z)∩∂Ω×Br(z)∩∂Ω

G(u(x), u(y))2

|x− y|N−1+2s
dxdy

≤ [u]2β,∂Ω

ˆ
Br(z)∩∂Ω×Br(z)∩∂Ω

|x− y|2(β−s)−(N−1) dxdy

≤ [u]2β,∂Ω(1 + ∥grad(F )∥2∞)2
ˆ
Br×Br

|x′ − y′|2(β−s)−(N−1) dx′dy′

≤
4(N − 1)ω2

N−1

2(β − s)
[u]2β,∂Ω r2(β−s)+(N−1).

To prove (ii) we observe that using the function F of (A1) to write ∂Ω locally as a
graph we can transform it to a local question on RN−1. Furthermore making use
of Almgren’s bilipschitz embedding, Theorem 0.2.1, it is sufficient to check it for
single valued functions. Hence (ii) is equivalent to check that
There is a dimensional constant C > 0 s.t. if f ∈ W s,2(RN ,Rn) and Mf > 0 be
given with the property that

(1.4.2) r2(s−β)−N#f$2
s,Br(z) ≤ M2

f ∀Br(z) ⊂ RN , 0 < r < R0

then f ∈ C0,β(RN ,Rn) with

(1.4.3) |f(x)− f(y)| ≤ CMf |x− y|β ∀|x− y| < R0.

Let us write f(z, r) =
ffl
Br(z)

f for any Br(z) ⊂ RN , then using twice Cauchy’s
inequality we have 

Br(z)
|f − f(z, r)| ≤ |Br(z)|−2

ˆ
Br(z)×Br(z)

|f(x)− f(y)| dxdy

≤ |Br(z)|−2

ˆ
Br(z)

(ˆ
Br(z)

|x− y|N+2s dy

) 1
2
(ˆ

Br(z)

|f(x)− f(y)|2

|x− y|N+2s
dy

) 1
2

dx

≤
(
4N

ω2
N

r2s−N#f$2
s,Br(z)

) 1
2

≤ CrβMf .

Hence for any r < R0 and k ∈ N

|f(z, 2−k−1r)− f(z, 2−kr)| ≤ 2N
 
B2−kr(z)

|f − f(z, 2−kr)| ≤ CMf r
β 2−βk;

i.e. k $→ f(z, 2−kr) is a Cauchy sequence because
∑∞

k=0|f(z, 2−k−1r)−f(z, 2−kr)| ≤
CMf

1−2−β rβ . Furthermore for any z1, z2 ∈ RN with |z1 − z2| = r < R0 we finf

|f(z1)− f(z2)| ≤
2∑

i=1

|f(zi)− f(zi, r)|+
 
Br(zi)∩Br(z2)

|f(x)− f(zi)| dx

≤
2∑

i=1

CMf

1− 2−β
rβ +

CMf

1− 2−β
rβ ≤ 4

CMf

1− 2−β
rβ ;

this shows that f ∈ C0,β . !

The core of the proof of theorem 1.4.1 is the estimate stated in proposition 1.4.3
below. To make its proof more accessible it is presented in the next subsection and
split into several lemmas.
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Proposition 1.4.3. For any 1
2 < s ≤ 1 there are constants ϵ0 > 0, 0 < δ < 1

N−2

and C > 0 depending on N,n,Q, s with the property that, if (A2) holds with ϵF ≤ ϵ0,
then

(1.4.4)

ˆ
ΩF∩B1

|Du|2 ≤
(

1

N − 2
− δ

) ˆ
SN−1∩ΩF

|Dτu|2 + C#u$2
s,ΓF

.

for any Dirchilet minimizer u ∈ W 1,2(B1 ∩ ΩF ,AQ(Rn)).

Let us take the previous proposition, i.e. the estimate (1.4.4), for granted and
close the argument in the proof of theorem 1.4.1.

Proof of Theorem 1.4.1. Let ϵ0, δ be the constants of proposition 1.4.3. Fix α1 ≤ α0

( α0 being the Hölder exponent of theorem 0.2.2 ) s.t. (N−2+2α1)
(

1
N−2 − δ

)
≤ 1.

Let R0 = R0(Ω, ϵ0) be the radius defined of (A1) for ϵF = ϵ0

Due to the choice of R0, for any 0 < r ≤ R0, z ∈ ∂Ω the rescaled map

uz,r(x) = u(z + rx) for x ∈ B1 ∩ Ωz,r

belongs to W 1,2(Ωz,r∩B1,AQ(Rn)) and satisfies the assumptions of the proposition
1.4.3. One readily checks that for 1

2 < s ≤ 1

#uz,r$2
s,B1∩∂Ωz,r

= r2s−(N−1)#u$2
s,Br(z)∩∂Ω.

Applying (1.4.4) and assumption (a2) we get

r2−N

ˆ
Br(z)∩Ω

|Du|2 =

ˆ
B1∩Ωz,r

|Duz,r|2

≤
(

1

N − 2
− δ

)ˆ
SN−1∩Ωz,r

|Dτuz,r|2 + C#uz,r$2
s,B1∩∂Ωz,r

≤ 1

N − 2 + 2α1
r3−N

ˆ
∂Br(z)∩Ω

|Dτu|2 + Cr2βM2
u .

Hence for a.e. 0 < r < R0 and 0 < α < min{α1,β}

− ∂

∂r

(
r2−N−2α

ˆ
Br(z)∩Ω

|Du|2
)

= −r2−N−2α

ˆ
∂Br(z)∩Ω

|Du|2 + (N − 2 + 2α)r−1−2αr2−N

ˆ
Br(z)∩Ω

|Du|2

≤ r2−N−2α

ˆ
∂Br(z)∩Ω

|Dτu|2 − |Du|2 + (N − 2 + 2α)Cr2(β−α)−1M2
u

≤ (N − 2 + 2α)Cr2(β−α)−1M2
u .

Integrating in r we achieve the following inequality for any z ∈ ∂Ω and 0 < r ≤ R0:

(1.4.5) r2−N−2α

ˆ
Br(z)∩Ω

|Du|2 −R2−N−2α
0

ˆ
BR0 (z)∩Ω

|Du|2 ≤ C

β − α
R2(β−α)

0 M2
u .

Now we can conclude (1.4.1). If x ∈ Ω satisfies dist(x, ∂Ω) > R0
2 , then Br(x) ⊂

BR0
2
(x) ⊂ Ω for any 0 < r < R0

2 and so, by (0.2.3) in Theorem 0.2.3

r2−N−2α

ˆ
Br(x)

|Du|2 ≤
(
R0

2

)2−N−2α ˆ
BR0

2

(x)
|Du|2(1.4.6)

≤ 2NR2−N−2α
0

ˆ
B2R0 (x)∩Ω

|Du|2.
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Assume therefore x ∈ Ω has dist(x, ∂Ω) ≤ R0
2 . Fix z ∈ ∂Ω s.t. dist(x, ∂Ω) = |x−z|,

and for 0 < r ≤ R0
2 set r1 = max{r, |x− z|}, r2 = r1 + |x− z| ≤ 2r1 ≤ R0. Then

r2−N−2α

ˆ
Br(x)∩Ω

|Du|2 ≤ r1
2−N−2α

ˆ
Br1 (x)∩Ω

|Du|2(1.4.7)

≤
(
r2
r1

)N−2+2α

r2−N−2α
2

ˆ
Br2 (z)∩Ω

|Du|2

≤ 2N
(
R2−N−2α

0

ˆ
BR0 (z)∩Ω

|Du|2 + C

β − α
R2(β−α)

0 M2
u

)

≤ 2N
(
R2−N−2α

0

ˆ
B2R0 (x)∩Ω

|Du|2 + C

β − α
R2(β−α)

0 M2
u

)
.

The fact (ii) i.e. u ∈ C0,α(Ω) follows now classically. We established that |Du|
is an element of the Morrey space L2,N−2+2α(Ω). Ω is C1 regular and therefore by
Poincarés inequality this implies that ξ ◦ u is an element of the Campanato space
L2,N+2α(Ω), see for instance [10, Proposition 3.7]. Furthermore L2,N+2α(Ω) =
C0,α(Ω), [10, Theorem 2.9]. !

1.4.1. Proof of Proposition 1.4.3. The proof can be subdivided into two parts:
paragraph 1.4.1.1:
We show that it is necessary and sufficient for a Dirichlet minimizer on the upper
half ball B1 ∩ {xN > 0} to be trivial that it has constant boundary data on B1 ∩
{xN = 0}.
paragraph 1.4.1.2:
We show that if proposition would fail we could construct a non-trivial Dirichlet
minimizer on the upper half ball B1 ∩ {xN > 0} with constant boundary data
contradicting the previous step.

1.4.1.1. Non-existence of certain non-trivial minimizers. This paragraph is devoted
to establish the following two results for certain Dirichlet minimizers on the upper
half ball B1+ = B1 ∩ {xN > 0} , recalling that SN−1

+ = SN−1 ∩ {xN > 0} and
Γ0 = B1 ∩ {xN = 0}.

Proposition 1.4.4. Every 0-homogeneous Dirichlet minimizer in B1+ with u
∣∣
Γ0

=

const. is trivial i.e. constant.

Corollary 1.4.5. A Dirichlet minimizer on B1+ with u
∣∣
Γ0

= const. satisfying

(1.4.8)

ˆ
B1+

|Du|2 =
1

N − 2

ˆ
SN−1
+

|Dτu|2

needs to be constant.

They are both consequence of an appropriately chosen inner variation:

Lemma 1.4.6 (a special kind of inner variation). Given a Dirichlet minimizer
u ∈ W 1,2(B1+,AQ(Rn)) with u

∣∣
Γ0

= const. and a vector field X = (X1, . . . , XN ) ∈
C1

c (B1,RN ) with eN ·X(x′, 0) = XN (x′, 0) ≥ 0 on Γ0, then

(1.4.9) 0 ≤
ˆ
B1+

|Du|2 div(X)− 2
Q∑

i=1

⟨Dui : Dui DX⟩.
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Proof. Let u and X be given and set T = u
∣∣
Γ0
(x) for x ∈ Γ0. Observe that xN +

tXN (x′, xN ) = xN+t (XN (x′, xN )−XN (x′, 0))+tXN (x′, 0) ≥ (1−t ∥DXN∥∞)xN+
tXN (x′, 0) ≥ 0 for xN > 0 and sufficient small 0 < t < t0. Then for t0 > 0 small

Φt(x) = x+ tX(x)

defines a 1-parameter family of C1-diffeomorphism that satisfy

At = Φt(B1+) ⊂ B1+ for 0 ≤ t ≤ t0.

So

vt(x) =

{
u ◦ Φ−1

t (x) for x ∈ At

T for x ∈ B+
1 \At

defines a C1 family of competitors to u. Standard calculations give

DΦ−1
t ◦ Φt = (DΦt)

−1 =
∞∑

k=0

(−t)k (DX)k = 1− tDX + o(t)

det (DΦt) = 1 + t div(X) + o(t)

so that

|Dvt|2 ◦ Φt =
Q∑

i=1

|DuiDΦ−1
t ◦ Φt|2 =

Q∑

i=1

|Dui (1− tDX + o(t))|2

=
Q∑

i=1

|Dui|2 − 2t
Q∑

i=1

⟨Dui : DuiDX⟩+ o(t).

In total we found that for all 0 ≤ t ≤ t0ˆ
B1+

|Dvt|2 =

ˆ
At

|Dvt|2 =

ˆ
B1+

|Dvt|2 ◦ Φt |detDΦt|

=

ˆ
B1+

|Du|2 + t

ˆ
B1+

|Du|2 div(X)− 2
Q∑

i=1

⟨Dui : DuiDX⟩+ o(t).

Since
´
B1+

|Dvt|2 ≥
´
B1+

|Du|2, we necessarily have

0 ≤
ˆ
B1+

|Du|2 div(X)− 2
Q∑

i=1

⟨Dui : DuiDX⟩.

!
Proof of Proposition 1.4.4. u being 0−homogeneous implies that u(x) = u( x

|x| ) for

a.e. x. Thus ∂u
∂r (x) = 0 for a.e. x ∈ B1+, which corresponds to

(1.4.10) 0 =
∂u

∂r
(x) =

Q∑

i=1

% N∑

j=1

Djui(x)
xj

|x|

&
.

Fix 0 < R < 1 and consider the vector field X(x) = η(|x|)eN = (0, . . . , η(|x|)) with

η(r) =

{
1− r

R r ≤ R

0 r ≥ R.

Thus we have XN (x) ≥ 0 and DX(x) = η′(|x|)eN ⊗ x
|x| . This gives div(X)(x) =

η′(|x|)xN
|x| and due to (1.4.10)

⟨Dui : DuiDX⟩ =
N∑

j=1

〈
xj

|x|Djui, DNui

〉
η′(|x|) = 0 for a.e. x.
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Using η′(|x|) = − 1
R1BR(x) and applying Lemma 1.4.6 we get

0 ≤ − 1

R

ˆ
BR+

|Du|2xN

|x| .

This is only possible for |Du| = 0 on BR+ and so |Du| = 0 on B1+. !

Proof of corollary 1.4.5. Let u ∈ W 1,2(B1+,AQ(Rn)) be as assumed. Observe that

(1.4.8) implies that u ∈ W 1,2(SN−1
+ ,AQ(Rn)). Hence v(x) = u

(
x
|x|

)
defines a

0-homogeneous competitor using u
∣∣
Γ0

= const..
ˆ
B1+

|Dv|2 =
1

N − 2

ˆ
SN−1
+

|Dτv|2 =
1

N − 2

ˆ
SN−1
+

|Dτu|2 =

ˆ
B1+

|Du|2.

where we used firstly the 0−homogeneity of v, then u
∣∣
SN−1
+

= v
∣∣
SN−1
+

and finally

(1.4.8). Therefore v has to be minimizing as well, and moreover Dv = 0 as a
consequence of proposition 1.4.4. This proves the corollary since then Du = 0 as
well. !

1.4.1.2. contradiction argument. In this section we want to establish by contradic-
tion the estimate of Proposition 1.4.3ˆ

ΩF∩B1

|Du|2 ≤
(

1

N − 2
− δ

)ˆ
SN−1∩ΩF

|Dτu|2 + C#u$2
s,ΓF

.

To prove Theorem 1.4.1 from such an estimate we only needed the scaling property
#uz,r$2

s,B1∩∂Ωz,r
= r2s−(N−1)#u$2

s,Br(z)∩∂Ω and the existence of positive constants

β,Mu > 0 both depending possibly on u s.t. in combination #uz,r$s,B1∩∂Ωz,r ≤
rβMu.
Before coming to the proof we discuass some subtleties in the strategy.A C0,β-
Hölder norm, [u]β,Σ = supx,y∈Σ

G(u(x),u(y))
|x−y|β , for any 0 < β < 1 shares this property

since

[ur,z]β,∂Ωz,r∩B1 = rβ [u]β,∂Ω∩B1(z) ≤ rβ [u]β,∂Ω.

Replacing the W s,2(∂Ω)-norm, (s > 1
2 ) by a Hölder-norm with exponent β < 1

2
would be desirable since it would get us closer to the already mentioned classical
result: u ∈ W 1,2(Ω) harmonic with u

∣∣
∂Ω

∈ C0,β(∂Ω) for some β > 0 implies

u ∈ C0,βΩ.
Nonetheless we cannot hope to prove an estimate like (1.4.4) by contradiction if
the fractional Sobolev norm (s > 1

2 ) is replaced by an C0,β-Hölder norm, β < 1
2

because vanishing of energy through the boundary needs to be excluded. Bounds
on W s,2(∂Ω)-, or C0,s(∂Ω)-norms with s < 1

2 are insufficient. This is demonstrated
by the following two dimensional example on the disc B1 ⊂ R2. It uses polar
coordinates x =

( r cos(θ)
r sin(θ)

)
= reiθ.

Example 1.4.1. For any ϵ > 0 there is a sequence of harmonic functions fk ∈
W 1,2(B1,R) a positive constant c > 0 with the following properties: for all k we
have

´
B1

|Dfk|2 > c, fk(eiθ) = 0 for |θ| > ϵ. Furthermore fk → 0 uniformly on B1

and ∥fk∥s,S1 , [fk]s,S1 → 0 for every s < 1
2 .

Proof of example 1.4.1. To a given 0 < ϵ < π
2 , fix a smooth, symmetric, non-

negative bump function η with η(0) > 0 and η(θ) = 0 for |θ| ≥ ϵ. Let
∑∞

l=0 al cos(lθ)
be the Fourier series of η(θ). It is converging uniformly to η in the C∞ topology
since η is smooth and

∑∞
l=0 l

m|al| < ∞ for all m ∈ N. Fix k0 ∈ N sufficient large

s.t. 2|ak| < a0 = η(0) for k ≥ k0 and set A =
∑∞

l=0(l + 1)|al| ≥
(∑∞

l=0(l + 1)a2l
) 1

2 .
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The addition theorem 2 cos(lθ) cos(kθ) = cos((l + k)θ) + cos((l − k)θ) shows that
the harmonic extension of 2η(θ) cos(kθ) in B1 is

gk(r e
iθ) =

∞∑

l=0

al
(
rl+k cos((l + k)θ) + r|l−k| cos((l − k)θ)

)

=
∞∑

m=0

(am−k + am+k)r
m cos(mθ) with am−k = 0 for m < k.

For k ≥ k0

1

π

ˆ
B1

|Dgk|2 =
∞∑

m=1

m(am−k + am+k)
2

≥ k(a0 + a2k)
2 ≥ 1

4
ka20

≤ 2
∞∑

l=0

(l + k)a2l + |l − k|a2l ≤ 4kA2.

We consider now the sequence of harmonic functions on B1 given by fk(x) =
gk(x)

k
1
2

∈
W 1,2(B1). fk has the desired properties: using the equivalence

(i) 1
4a

2
0 ≤ 1

π

´
B1

|Dfk|2 = ∥fk∥21
2 ,S

1 ≤ 4A2 for all k ≥ k0;

(ii) fk(eiθ) = 0 for |θ| > ϵ and all k;

(iii) ∥fk∥∞ ≤ 2∥η∥∞

k
1
2

→ 0 as k → ∞;

(iv) for any 0 < s < 1
2

∥fk∥2s,S1 =
∞∑

m=0

m2s

k
(am−k + am+k)

2 ≤ 8k2s−1A2

[fk]s,S1 ≤
∞∑

m=0

ms

k
1
2

|am−k + am+k| ≤ 2ks−
1
2

∞∑

l=0

(l + 1)|al|

converging to 0 as k → ∞.

(iii) follows from the maximum principle on harmonic functions. The fact that the
W s,2-norm on S1 corresponds to the sum in (iii), i.e. the equivalence Hs(S1) =
W s,2(S1), is the content of corollary A.13. It is straightforward to check that one
has [ϕ]β,S1 ≤

∑∞
l=0 l

β |cl| for a converging Fourier series ϕ(θ) =
∑∞

l=0 cl cos(lθ). !

Proof of proposition 1.4.3. If u /∈ W 1,2(SN−1 ∩ ΩF ,AQ(Rn)) ∩W s,2(ΓF ,AQ(Rn))
the LHS of (1.4.4) is infinite and so there is nothing to prove. Hence assuming
that the proposition would not hold, we can find sequences F (k) ∈ C1(RN−1,R)
satisfying (A2) with ϵF < 1

k and associated u(k) ∈ W 1,2(B1 ∩ ΩF (k),AQ(Rn))
failing (1.4.4) i.e.
(1.4.11)ˆ

ΩF (k)∩B1

|Du(k)|2 >

(
1

N − 2
− 1

k

)ˆ
SN−1∩ΩF (k)

|Dτu(k)|2 + k#u(k)$2
s,ΓF (k)

.

We may assume that the LHS of (1.4.11) is 1 by dividing each u(k) by its Dirichlet

energy
(´

ΩF (k)∩B1
|Du(k)|2

)− 1
2
. We also assume, w.l.o.g., k > k0 > 4.

To every k we may fix a C1-diffeomorphism G(k) : B1+ → ΩF (k) ∩B1, arguing
for example on the base of Lemma C.2. F (k) → F0 = 0 in C1 as k → ∞ and
therefore G(k), G(k)−1 → 1 in C1 (1 deontes the indentiy map on RN ).
We consider now instead of the sequence u(k) itself the sequence v(k) = u(k) ◦
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G(k) ∈ W 1,2(B1+,AQ(Rn)). v(k) has up to order o(1) the same properties as u(k)
since G(k), G(k)−1 → 1 in C1 i.e.

ˆ
B+

1

|Dv(k)|2 = (1 + o(1))

ˆ
ΩF (k)

|Du(k)|2 ≤1 + o(1);

ˆ
SN−1
+

|Dτv(k)|2 = (1 + o(1))

ˆ
SN−1∩ΩF (k)

|Dτu(k)|2 <
1 + o(1)
1

N−2 − 1
k

< 2N ;(1.4.12)

#v(k)$2
s,Γ0

= (1 + o(1))#u(k)$2
s,ΓF (k)

≤1 + o(1)

k
≤ 1

2k
.

(1.4.11) with LHS= 1 provides the upper bounds. The second and third show that
v(k)

∣∣
∂B1+

∈ W 1,2(SN−1
+ ,AQ(Rn)) ∩W s,2(Γ0,AQ(Rn)).

To every k fix a mean T (k) ∈ AQ(Rn) and apply the concentration compactness
Lemma A.1 to the sequences v(k), T (k). For a subsequence v(k′) we can find maps
bj ∈ W 1,2(B1+,AQj (Rn)), sequences tj(k′) ∈ spt(T (k′)) and a splitting T (k′) =
T1(k′) + · · ·+ TJ (k′). We will prove now that the bj satisfy also the following:

(i) bj
∣∣
SN−1
+

∈ W 1,2(SN−1
+ ,AQj (Rn)) and bj

∣∣
Γ0

= const.;

(ii)
´
B1+

|Dbj |2 ≤ 1
N−2

´
SN−1
+

|Dτ bj |2 for all j;

(iii) bj ∈ W 1,2(B1+,AQj (Rn)) is Dirichlet minimizing and

J∑

j=1

ˆ
B1+

|Dbj |2 = lim
k′→∞

ˆ
B1+

|Dv(k′)|2 = lim
k′→∞

ˆ
ΩFk′ ∩B1

|Du(k′)|2 = 1.

From now on we use b(k′) =
∑J

j=1(bj ⊕ tj(k′)) as in the proof of the concentration
compactness result.

Proof of (i): The concentration compactness lemma states that ξ ◦ v(k′) ⇀
ξ ◦ b(k′) in W 1,2(B1+,Rm) and ξ ◦ v(k′) → ξ ◦ b(k′) in L2(B1+,Rm). This implies
that ξ◦v(k′)⇀ ξ◦b(k) inW 1,2(SN−1

+ ,Rm) and ξ◦v(k′) → ξ◦b(k′) in L2(SN−1
+ ,Rm),

because ξ ◦ v(k′) ∈ W 1,2(SN−1
+ ,Rm) is uniformly bounded as seen in (1.4.12). The

lower semicontinuity of energy together with (1.4.12) then states

1

N − 2

J∑

j=1

ˆ
SN−1
+

|Dτ bj |2 =
1

N − 2

ˆ
SN−1
+

J∑

j=1

|Dτξ ◦ bj |2(1.4.13)

≤ lim inf
k′→∞

((
1

N − 2
− 1

k′

)ˆ
SN−1
+

|Dτξ ◦ v(k′)|2
)

≤ 1.

G(v
∣∣
Γ0
(k′), b

∣∣
Γ0
(k′)) → 0 in L2(Γ0) due to the weak convergence in the interior.

Hence due to dominated convergence for any δ > 0 and (1.4.12)

J∑

j=1

ˆ
Γ0×Γ0
|x−y|≥δ

G(bj
∣∣
Γ0
(x), bj

∣∣
Γ0
(y))2

|x− y|N−1+2s

= lim
k′→∞

ˆ
Γ0×Γ0
|x−y|≥δ

G(v
∣∣
Γ0
(k′)(x), v

∣∣
Γ0
(k′)(y))2

|x− y|N−1+2s
≤ lim

k′→∞

2

k′
= 0;

consequently bj
∣∣
Γ0

= const. for all j.
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Proof of (ii): Having established (i), aj(x) = bj
(

x
|x|

)
∈ W 1,2(B1+,AQj (Rn)) is

well-defined and an admissible competitor.ˆ
B1+

|Dbj |2 ≤
ˆ
B1+

|Daj |2 =
1

N − 2

ˆ
SN−1
+

|Dτaj |2 =
1

N − 2

ˆ
SN−1
+

|Dτ bj |2

for every j due to the 0-homogeneity of aj and aj
∣∣
SN−1
+

= bj
∣∣
SN−1
+

.

Proof of (iii): Let G : B1 → B1+ be the bilipschitz map constructed in Lemma
C.1. #v(k′) ◦ G$s,SN−1 is uniformly bounded: Firstly apply Corollary B.1 to esti-
mate

#v(k′) ◦G$s,SN−1 ≤ C
(
#v(k′) ◦G$s,SN−1∩{xN>−1√

5
} + #v(k′) ◦G$s,SN−1∩{xN<−1√

5
}

)
;

secondly G is bilipschitz and G(SN−1∩{xN > −1√
5
}) = SN−1

+ and G(SN−1∩{xN <
−1√
5
}) = Γ0, so that

#v(k′) ◦G$s,SN−1∩{xN>−1√
5
} ≤ C#v(k′)$s,SN−1

+

#v(k′) ◦G$s,SN−1∩{xN<−1√
5
} ≤ C#v(k′)$s,Γ0 ;

thirdly the interpolation property #f$2
s,SN−1

+

≤ C
´
SN−1
+

|Df |2 gives

#v(k′)$s,SN−1
+

≤ ∥|Dv(k′)|∥L2(SN−1
+ ) ;

finally we combine all of them and use (1.4.12) to conclude

#v(k′) ◦G$s,SN−1 ≤ C
(
∥|Dv(k′)|∥L2(SN−1

+ ) + #v(k′)$s,Γ0

)
≤ C (2N) .

The same bound holds for b(k′) ◦ G ∈ W s,2(SN−1,AQ(Rn)) because of the lower
semicontinuity of energy established in (1.4.13). Furthermore in the proof of (i) we
showed that G(v(k′), b(k′)) → 0 in L2(SN−1

+ ) and L2(Γ0), so that

∥G(v(k′) ◦G, b(k′) ◦G)∥L2(SN−1) = o(1).

Fix any small ϵ > 0 and Rϵ > 0 determined by the interpolation Lemma B.2. So to
every k′ we can find w(k′) ∈ W s,2(A1,Rϵ ,AQ(Rn)) on the annulus A1,Rϵ = B1 \BRϵ

interpolating between v(k′) ◦ G and b(k′) ◦ G. Hence w(k′)(x) = v(k′) ◦ G(x),
w(k′)(Rϵx) = b(k′) ◦G(x) for all x ∈ SN−1 andˆ

A1,Rϵ

|Dw(k′)|2

≤ ϵ
(
#v(k′) ◦G$2

s,SN−1 + #b(k′) ◦G$2
s,SN−1

)
+ C ∥G(v(k′) ◦G, b(k′) ◦G)∥2L2(SN−1)

≤ ϵC 4N + Co(1).

To check the minimizing property let cj ∈ W 1,2(B1+,AQj (Rn)) be an arbitrary

competitor to bj for j = 1, . . . , J . Set c(k′) =
∑J

j=1 (cj ⊕ tj(k′)). For 0 < R ≤ 1

we denote the map G ◦ 1
R ◦G−1(x) = eN

2 + 1
R

(
x− eN

2

)
by ψR. So we foundˆ

CR

|Dc(k′) ◦ ψR|2 = RN−2

ˆ
B1+

|Dc(k′)|2 ≤
ˆ
B1+

|Dc(k′)|2

with CR = ψ−1
R (B1+) ⊂ B1+. We define C(k′) ∈ W 1,2(B1+,AQ(Rn)) considering

G(BR) = CR by

C(k′) =

{
w(k′) ◦G−1, if x ∈ B1+ \ CRϵ = G(A1,Rϵ)

c(k′) ◦ ψRϵ . if x ∈ CRϵ .
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C(k′)◦G(k′) ∈ W 1,2(ΩF (k)∩B1,AQ(Rn)) is now an admissible competitor to u(k′)
and therefore

(1− o(1))

ˆ
B1+

|Dv(k′)|2 ≤
ˆ
ΩF (k)∩B1

|Du(k)|2 ≤ (1 + o(1))

ˆ
B1+

|DC(k′)|2

≤ (1 + o(1))C

ˆ
A1,Rϵ

|Dw(k′)|2 + (1 + o(1))

ˆ
B1+

|Dc(k′)|2

≤ C (ϵ+ Co(1)) + (1 + o(1))
J∑

j=1

ˆ
B1+

|Dcj |2.

Pass to the lim inf and apply the lower semicontinuity ensured by the concentration
compactness Lemma A.1 to conclude

J∑

j=1

ˆ
B1+

|Dbj |2 ≤ lim inf
k′→∞

(1− o(1))

ˆ
B1+

|Dv(k′)|2 ≤ Cϵ+
J∑

j=1

ˆ
B1+

|Dcj |2.

ϵ can be chosen arbitrary small and C is a dimensional constant so that bj has to
be Dirichlet minimizing for every j = 1, . . . , J . The strong convergence in energy
follows choosing cj = bj for every j in the inequality above.

The maps bj constructed above with the properties (i),(ii),(iii) contradict corol-
lary 1.4.5. Firstly we found due to (iii), that

J∑

j=1

ˆ
B1+

|Dbj |2 = lim
k′→∞

ˆ
ΩF (k′)∩B1

|Du(k′)|2

≥ lim
k′→∞

(
1

N − 2
− 1

k′

)ˆ
ΩF (k)∩SN−1

|Dτu(k
′)|2

= lim
k′→∞

(
1

N − 2
− 1

k′

)ˆ
SN−1
+

|Dτv(k
′)|2

≥ 1

N − 2

J∑

j=1

ˆ
SN−1
+

|Dτ bj |2.

Combining this with (ii) gives, for j = 1, . . . , J
ˆ
B1+

|Dbj |2 =
1

N − 2

ˆ
SN−1
+

|Dτ bj |2.

Corollary 1.4.5 states now that Dbj = 0 on B1+ because bj
∣∣
Γ0

= const. by (i). This

contradicts (iii), because 1 =
´
ΩF (k′)∩B1

|Du(k′)|2 for all k′.

This contradiction proves that the proposition must hold. !

1.5. Boundary regularity in dimension N = 2

1.5.1. Global Hölder regularity. In this section we will show that Theorem 1.4.1
extends directly to two dimensions. We can consider the two dimensional case as a
special case of a certain minimizer on a three dimensional domain.

Lemma 1.5.1. Let u ∈ W 1,2(Ω,AQ(Rn)) be a minimizer on a domain Ω ⊂ RN ,
N ≥ 1, then U(x, t) = u(x) is an element of W 1,2(Ω× I,AQ(Rn)) for any bounded
open interval I ⊂ R. U is Dirichlet minimizing.
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Proof. Assuming the contrary there exists V ∈ W 1,2(Ω × I,AQ(Rn)) with V = U
on the boundary of Ω× I i.e. (x, t) $→ G(U(x, t), V (x, t)) ∈ W 1,2

0 (Ω× I) and

(1.5.1)

ˆ
Ω×I

|DV |2 <

ˆ
Ω×I

|DU |2 = |I|
ˆ
Ω
|Du|2;

the second equality actually shows that U ∈ W 1,2(Ω× I,AQ(Rn)).
Consider the subset J ⊂ I

J = {t ∈ I : x $→ vt(x) = V (x, t) ∈ W 1,2(Ω,AQ(Rn)) and vt
∣∣
∂Ω

= u
∣∣
∂Ω
};

then by Fubini’s theorem |I \ J | = 0.

Furthermore there must be a t ∈ J with

(1.5.2)

ˆ
Ω
|Dvt|2dx <

ˆ
Ω
|Du|2;

non existence would contradict (1.5.1) because then

|I|
ˆ
Ω
|Du|2 =

ˆ
J

ˆ
Ω
|Du|2 dt ≤

ˆ
J

ˆ
Ω
|Dvt|2 dx dt =

ˆ
Ω×I

|DV |2.

vt for t ∈ J satisfying (1.5.2) is an admissible competitor to u, but (1.5.2) violates
the minimality of u. !

Remark 1.5.1. The converse of this lemma holds as well in the following sense, if
u(x) ∈ W 1,2(Ω,AQ(Rn)) and U(x, t) = u(x) is Dirichlet minimizing on Ω×R then
u itself is minimizing in Ω, in the sense of compact perturbations:ˆ

{U ̸=V }
|DU |2 ≤

ˆ
{U ̸=V }

|DV |2

for all V ∈ W 1,2(Ω× R,AQ(Rn)) with {U ̸= V } compact.
This had been proven in [12], but for the sake of completeness we recall their proof
in the appendix, Lemma B.3.

From now on Ω denotes a C1 regular domain in R2.

Theorem 1.5.2. For any 1
2 < s ≤ 1, there are constants C > 0 and α1 > 0

depending on n,Q, s with the property that,

(a1) u ∈ W 1,2(Ω,AQ(Rn)) Dirichlet minimizing;
(a2) u

∣∣
∂Ω

∈ W s,2(∂Ω,AQ(Rn));

then the following holds

(i) |Du| is an element of the Morrey space L2,2α for any 0 < α < min{α1, s−
1
2}, more precisely the following estimate holds

(1.5.3) r−2α

ˆ
Br(x)∩Ω

|Du|2 ≤ 27R−2α
0

ˆ
B2R0 (x)∩Ω

|Du|2 + C
R2s−1−2α

0

2s− 1− 2α
#u$2

∂Ω

for any r < R0
4 . The positive R0 depends only on n,Q, s,Ω but not on the

specific u;

(ii) u ∈ C0,α(Ω).

Proof. Set ΩI = Ω×] − 2L, 2L[⊂ R3 for some large L > 0. The boundary portion
∂Ω×]−L,L[ is C1 regular by assumption on the regularity of ∂Ω. U(x, t) = u(x) is
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an element of W 1,2(ΩI ,AQ(Rn)) and Dirichlet minimizing as seen in lemma 1.5.1.
For any (z, t0) ∈ ∂Ω×]− L,L[ and 0 < r < L we found

r2(s−β)−2#U$2
s,Br(z,t0)∩∂ΩI

≤ r2(s−β)−2#U$2
s,(Br(z)∩∂Ω)×]t0−r,t0+r[

= r2(s−β)−2

ˆ
Br(z)∩∂Ω×Br(z)∩∂Ω

ˆ t0+r

t0−r

G(u(x), u(y))2

(|x− y|2 + (t1 − t2)2)
2+2s

2

dt1dt2dxdy

≤ C2r2(s−β)−1

ˆ
Br(z)∩∂Ω×Br(z)∩∂Ω

G(u(x), u(y))2

|x− y|1+2s
dxdy ≤ 2C r2(s−β)−1#u$2

s,∂Ω.

(We have applied above the following auxiliary calculation. Let α > 0 and J =
[a, a+ δ]. After the change of variables t1 = a+ rx, t2 = a+ ry, we haveˆ

J×J

1

(r2 + (t1 − t2)2)
α+1
2

dt1dt2 = 2r1−α
ˆ
[0, δr ]×[0, δr ]

x≥y

1

(1 + (x− y)2)
α+1
2

dxdy

= 2r1−α
ˆ δ

r

0

ˆ δ
r−y

0

1

(1 + z2)
α+1
2

dzdy ≤ 2r−αδ

ˆ ∞

0

1

(1 + z2)
α+1
2

= C|J |r−α.

The dimensional constant C = 2
´∞
0

1

(1+z2)
α+1
2

≤ α+1
α is therefore finite.)

Combining all obtained estimates we found that U satisfies the assumption of the-
orem 1.4.1 with β = s− 1

2 and MU = #u$s,∂Ω in (a2).
Apply Theorem 1.4.1, in particular (1.4.1), to U on a point (x, 0) ∈ Ω×]− L,L[

with r < R0
4 < L. This gives the desired (1.5.3), because

r−2α

ˆ
Br(x)∩Ω

|Du|2 =
r−2α

2r

ˆ r

−r

ˆ
Br(x)∩Ω

|DU |2 ≤ 22(2r)−1−2α

ˆ
B2r((x,0))∩ΩI

|DU |2

≤ 25
(
R−1−2α

0

ˆ
B2R0 ((x,0))∩ΩI

|DU |2 + C
R2(β−α)

0

β − α
M2

U

)

≤ 27R−2α
0

ˆ
B2R0 (x)∩Ω

|Du|2 + C
R2s−1−2α

0

2s− 1− 2α
#u$2

s,∂Ω.

(ii) i.e. u ∈ C0,α(Ω) now follows as outlined in the proof to theorem 1.4.1. !

1.5.2. Continuity up to boundary. That continuity extends up to the boundary
for 2-dimensional ball has been proven by W.Zhu in [25]. His idea is based on the
Courant-Lebesgue lemma and can be modified to work on Lipschitz regular domains
as well. We will give here a different proof, that on a first glimpse doesn’t seem
to be so restricted to the 2-dimensional setting as it is for Zhu’s proof due to the
Courant-Lebesgue lemma. Our proof uses an interplay of classical trace estimates
and energy decay. We shortly recall the classical trace estimates and their proof.
The proof here is taken from [23, Lemma 13.5]. As introduced in the general
assumptions, section 1.3, we use the notation ΩF = {(x′, xN ) : xN > F (x′)} for
F : RN−1 → R.

Lemma 1.5.3. For F Lipschitz continuous and 1 < p < ∞, one has

(1.5.4)

∥∥∥∥∥
f(x′, xN )− f

∣∣
∂ΩF

(x′)

xN − F (x′)

∥∥∥∥∥
Lp(Ω̃

≤ p

p− 1

∥∥∥∥
∂f

∂xN

∥∥∥∥
Lp(Ω̃)

∀f ∈ W 1,p(ΩF ,R);

and any subset Ω̃ ⊂ ΩF of the following type:

Ω̃ = {(x′, xN ) : x′ ∈ Ω′, F (x′) < xN < G(x′)}
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Ω̃ ⊂ RN−1 and G ≥ F continuous.
Equivalently one has
(1.5.5)∥∥∥∥∥
G(u(x′, xN ), u

∣∣
∂ΩF

(x′))

xN − F (x′)

∥∥∥∥∥
Lp(Ω̃)

≤ p

p− 1
∥|DNu|∥Lp(Ω̃) ∀u ∈ W 1,p(ΩF ,AQ(Rn)).

Proof. For p > 1 Hardy’s inequality, compare for instance with [23, Lemma 13.4],

states that, if h ∈ Lp(R+), g(t) :=
1
t

´ t
0 h(s)ds ∈ Lp(R+) satisfies

(1.5.6) ∥g∥p ≤ p

p− 1
∥f∥p .

For f ∈ C1
c (ΩF ) set

h(t) := 1[0,G(x′)−F (x′)](t)
∂f

∂xN
(x′, F (x′) + t).

Apply Hardy’s inequality to it and observe that for 0 < t < G(x′) − F (x′) and
t = xN − F (x′)

g(t) =
f(x′, F (x′) + t)− f(x′, F (x′))

t
=

f(x′, xN )− f
∣∣
∂ΩF

(x′)

xN − F (x′)
.

Hence take the power p and integrate in x′ ∈ Ω′ to conclude (1.5.5). By a density
argument the inequality extends to all of W 1,p(ΩF ).
For a Lipschitz continuous u ∈ W 1,p(ΩF ), we have u

∣∣
∂ΩF

(x′) = u(x′, F (x′)).

k(t) := G(u(x′), F (x′) + t) is Lipschitz continuous in t. Furthermore k′(t) ≤
|DNu|(x′, F (x′) + t) for a.e. x′. Apply Hardy’s inequality this time to h(t) =
1[0,G(x′)−F (x′)](t) k

′(t), take the power p and integrate in x′ ∈ Ω′. This shows
(1.5.5) under the additional assumption that u is Lipschitz. It extends by density
to all of W 1,p(ΩF ). !

Proposition 1.5.4. Given a Dirichlet minimizer u ∈ W 1,2(Ω,AQ(Rn)) on a Lip-
schitz regular domain Ω ⊂ RN that satisfies

(a1) u
∣∣
∂Ω

is continuous;

(a2) N = 2 or

(1.5.7) r2−N

ˆ
Br(z)∩Ω

|Du|2 → 0 as r → 0 uniformly for all z ∈ ∂Ω;

then u is continuous on Ω.

Proof. Observe that in case of N = 2, r2−N
´
Br(z)∩Ω|Du|2 =

´
Br(z)∩Ω|Du|2 → 0

uniformly due to the absolute continuity of the integral and |Du|2 ∈ L1(Ω). Hence
it is sufficient to prove the proposition under the assumption that (1.5.7) holds.
u is Hölder continuous in the interior (theorem 0.2.3) and so it remains to check
that continuity extends up to the boundary. This is a local question so we assume
that Ω = ΩF for some Lipschitz continuous F , with Lipschitz norm Lip(F ) < L.
Furthermore let z0 = (z′, F (z′)) ∈ ∂ΩF be fixed.
Consider a generic sequence xk = (x′

k, xN,k) converging to z0 from the interior. Set
rk = xN,k − F (x′

k) > 0 and ϵ = 1
2
√
1+L2 . Then B2ϵrk(xk) ⊂ ΩF for all k and

(1.5.8) r2k ≤ 2(xN,k − zN )2 + 2(F (z′)− F (x′
k))

2 ≤ 1

2ϵ2
|xk − z0|2.



26 J.HIRSCH

To show continuity we have to check that G(u(xk), u
∣∣
∂ΩF

(z0)) is of order o(1). The

triangle inequality and convexity gives

1

3
G(u(xk), u

∣∣
∂ΩF

(z0))
2 ≤ G(u(xk), u(x))

2

+ G(u(x), u
∣∣
∂ΩF

(x′))2 + G(u
∣∣
∂ΩF

(x′), u
∣∣
∂ΩF

(z0))
2.

Integration in x ∈ Bϵrk(xk) gives

1

3
G(u(xk), u

∣∣
∂ΩF

(z0))
2 ≤

 
Bϵrk

(xk)
G(u(xk), u(x))

2

+

 
Bϵrk

(xk)
G(u(x), u

∣∣
∂ΩF

(x′))2 +

 
Bϵrk

(xk)
G(u

∣∣
∂ΩF

(x′), u
∣∣
∂ΩF

(z0))
2.

It is sufficient to check that all integrals are of order o(1). 
Bϵrk

(xk)
G(u

∣∣
∂ΩF

(x′), u
∣∣
∂ΩF

(z0))
2 ≤ sup

x∈B|xk−z0|(z0)
G(u

∣∣
∂ΩF

(x′), u
∣∣
∂ΩF

(z0))
2 = o(1)

where we used (1.5.8) and assumption (a1).
For a fixed k set Ω̃ = {(x′, xN ) : x′ ∈ Ω′, F (x′) < xN < G(x′)} with Ω′ =
Bϵrk(x

′
k) ⊂ RN−1, G(x′) = xN,k + ϵrk. The trace estimate, Lemma 1.5.3 states

1

r2k

ˆ
Ω̃
G(u(x), u

∣∣
∂ΩF

(x′))2 ≤ 4

ˆ
Ω̃

G(u(x), u
∣∣
∂ΩF

(x′))2

|xN − F (x′)|2 ≤ 16

ˆ
Ω̃
|Du|2;

where we used 1
rk

≤ 2
xN−F (x′) because of xN − F (x′) = xN − xN,k + rk + F (x′

k)−
F (x′) ≤ ϵrk+rk+Lϵrk ≤ 2rk. We may combine it with Bϵrk(xk) ⊂ Ω̃ ⊂ B2rk(zk)∩
ΩF and assumption (a2) to deduce 

Bϵrk
(xk)

G(u(x), u
∣∣
∂ΩF

(x′))2 ≤ 16

ωN ϵN
r2−N
k

ˆ
B2rk

(zk)∩ΩF

|Du|2 = o(1).

Finally the first integral is estimated using the internal Hölder continuity result:
since B2ϵrk(xk) ⊂ ΩF for positive C,β

G(u(x), u(xk))
2 ≤ C

(
|x− xk|
ϵrk

)2β

(ϵrk)
2−N

ˆ
B2ϵrk

(xk)
|Du|2 for all x ∈ Bϵrk(xk).

Integration in x and B2ϵrk(xk) ⊂ B2rk(zk) gives 
Bϵrk

(xk)
G(u(x), u(xk))

2 ≤ C

(ϵrk)N−2

ˆ
B2ϵrk

(xk)
|Du|2 ≤ C

ϵN−2
r2−N
k

ˆ
B2rk

(zk)
|Du|2;

that is of order o(1) by assumption (a2). !

Remark 1.5.2. u ∈ W 1,2(Ω,AQ(Rn)) implies that u
∣∣
∂Ω

∈ W
1
2 ,2(∂Ω,AQ(Rn)) but

this is just not sufficient to ensure continuity. W
1
2 ,2(R) = H

1
2 (R) does not embed

into L∞(R) but only the slightly smaller space (H1(R), L2(R)) 1
2 ,1

embeds into

C0(R), compare for instance [23, chapter 25].

1.5.3. Partial improvement of the Hölder exponent. In the introduction we
mentioned already that it would be desirable to extend the optimal Hölder expo-
nent 1

Q in the interior up to the boundary. We want to present in this subsection
a partial improvement of theorem 1.5.2:
Let Ω ⊂ R2 be a C1-regular domain the following holds:
u ∈ W 1,2(Ω,AQ(Rn)) Dirichlet minimizing with u

∣∣
∂Ω

∈ C0,β(∂Ω) for some β > 1
2

then u ∈ C0,α(K), if α = 1
Q for Q > 2, 0 < α < 1

2 for Q = 2 and if K ⊂ Ω has the
property that it is closed and touches ∂Ω in at most 1 point z non-tangential.
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To every closed set K of this type there is a cone Cz,θ = {x ∈ R2 : |x| cos(θ) <
−⟨ν∂Ω(z), x⟩} for some 0 < θ < π

2 ( ν∂Ω(z) denotes the outward pointing normal to

∂Ω at z ) and a radius 0 < R s.t. K∩BR(z) ⊂ Cz,θ ∩BR(z). Shrinking R > 0 if nec-
essary we may even assume w.l.o.g. that Cz,θ ∩BR(z) ⊂ Ω. This is sketched in the
figure.
K \ BR(z) is a compact subset of
Ω hence the interior regularity theory
holds. It remains to prove regularity
for conical subsets Cz,θ ∩ BR(z). The
precise statement is:

Corollary 1.5.5. Let 1
2 < s ≤ 1 and

Cθ = {x = (x1, x2) : |x| cos(θ) ≤ x2}
with 0 < θ < π

2 (a cone). Under the
assumptions

(a1) u ∈ W 1,2(ΩF ∩ B1,AQ(Rn))
Dirichlet minimizing

(a2) u
∣∣
∂ΩF

∈ W s,2(ΓF ,AQ(Rn))

and for some 0 < γ there is a
constant Mu > 0 s.t.

r2(s−γ)−1#u$2
s,Br∩ΓF

≤ M2
u ,

then there exists 0 < R < 1 depending on u(0) and θ s.t., for any α < min{γ, 1
2}

and α ≤ 1
Q the following holds

(i) |Du| is an element of the Morrey space L2,2α(ΩF ∩BR
2
∩Cθ), more precisely

(1.5.9) r−2α

ˆ
Br(x)∩ΩF

|Du|2 ≤ 4

δ2α

(ˆ
BR∩ΩF

|Du|2 + CR2(γ−α)

γ − α
M2

u

)

where δ = cos(θ)− cos( 2θ+π4 );

(ii) u ∈ C0,α(ΩF ∩BR
2
∩ Cθ).

Concerning the optimality of the achieved Hölder exponent and assumption (a2)
consider the following:

Remark 1.5.3. (a2) is obviously always satisfied for γ = s− 1
2 .

(a2) is satisfied for γ > 1
2 and any s < γ if u

∣∣
ΓF

∈ C0,γ(ΓF ) as we have seen in

lemma 1.4.2. Furthermore this implies that

u ∈ C0,α(ΩF ∩BR ∩ Cθ) with α =
1

Q
for Q > 2 and any α <

1

2
for Q = 2;

i.e. the optimal exponent extends on cones up to the boundary.

The proof of the corollary follows similar lines as in the higer dimeinsional case.
We will prove an improve estimate in the spirit of proposition 1.4.3, that will
lead eventually to corollary 1.5.5. Before we present this final argument we prove
the preliminary lemmas. As in the previous sections: B1+ = B1 ∩ {x2 > 0},
S1 = ∂B1,S1

+ = S1 ∩ {x2 > 0}, and Γ0 = B1 ∩ {x2 = 0}.

Lemma 1.5.6. Let 1
2 < s ≤ 1 be given, then there is a constant C = C(s) s.t. any

single valued harmonic function f ∈ W 1,2(B1+) satisfies

(1.5.10)

ˆ
B1+

|Df |2 ≤ (1 + ϵ)

ˆ
S1
+

|Dτf |2 +
C

ϵ

ˆ
Γ0

#f$2
s,Γ0

∀ϵ > 0.
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Proof. In a first step we show the existence of C = C(s) s.t. any classical single-
valued harmonic h ∈ W 1,2(B1+) satisfies

(1.5.11)

ˆ
B1+

|Dh|2 ≤ C

(ˆ
S1
+

|Dτh|2 + #h$2
s,Γ0

)
.

If h /∈ W s,2(Γ0) the RHS is +∞ so there is nothing to check. G : B1 → B1+

denotes the bilipschitz map of Lemma C.1. Let
∑

k∈Z ake
ikθ be the Fourier series

of h ◦G
∣∣
S1 = h

∣∣
S1 ◦G. Its harmonic extension is then

h̃(r eiθ) =
∑

k∈Z
akr

keikθ.

h is harmonic, hence minimizing the Dirichlet energy, and h̃ ◦G−1 is an admissible
competitor, so thatˆ

B1+

|Dh|2 ≤
ˆ
B1+

|D(h̃ ◦G−1)|2 ≤ C

ˆ
B1

|Dh̃|2 = C2π
∑

k∈Z
|k||ak|2.

For s = 1 we estimate (the constant C depends only on the Lipschitz norms of
G,G−1)

2π
∑

k∈Z
|k||ak|2 ≤ 2π

∑

k∈Z
k2|ak|2 =

ˆ
S1
+

|Dτ h̃|2 +
ˆ
S1
−

|Dτ h̃|2

≤ C

(ˆ
S1
+

|Dτh|2 +
ˆ
Γ0

|Dτh|2
)
.

for 1
2 < s < 1:

(A short auxiliary argument: Lemma A.14 implies the equivalence of the norms
|b0| +

∑
k∈Z|k|2s|bk|2 and ∥f∥2L2(S1) + #f$2

s,S1 for a function f(θ) =
∑

k∈Z bke
ikθ.

In the case of S1 this follows more directly. f(θ+ τ)−f(θ) =
∑

k∈Z(e
ikτ −1)akeikθ

and therefore ˆ 2π

0
|f(θ + τ)− f(θ)|2 dθ =

∑

k∈Z
4 sin2(

k

2
τ)|ak|2.

This implies
ˆ
[0,2π]2

|f(θ)− f(ϕ)|2

|θ − ϕ|1+2s
dθdϕ =

ˆ 2π

0

1

τ1+2s

ˆ 2π

0
|f(θ + τ)− f(θ)|2 dθdτ

=
∑

k∈Z
|ak|2

(
4

ˆ 2π

0

sin2(k2 τ)

τ1+2s
dτ

)
=
∑

k∈Z
ck|k|2s|ak|2;

where ˆ 2π

0

sin2(k2 τ)

τ1+2s
dτ = |k|2s 41−s

ˆ kπ

0

sin2(τ)

τ1+2s
dτ = |k|2sck

and 0 < c1 ≤ ck ≤ c∞ < ∞.)
Firstly the auxiliary argument gives

2π
∑

k∈Z
|k||ak|2 ≤ 2π

∑

k∈Z
|k|2s|ak|2 ≤ C#h̃$2

s,S1 ;

secondly Corollary A.8 gives

#h̃$2
s,S1 ≤ C

(
#h̃$2

s,S1∩{x2> 1
5}

+ #h̃$2
s,S1∩{x2< 1

5}

)
;
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thirdly G is Lipschitz continuous and G(S1 ∩ {x2 > 1
5}) = S1

+, G(S1 ∩ {x2 < 1
5}) =

Γ0 so that

#h̃$2
s,S1∩{x2> 1

5}
+ #h̃$2

s,S1∩{x2< 1
5}

≤ C
(
#h$2

s,S1
+
+ #h$2

s,Γ0

)
;

finally combining these with the interpolation property #·$s,S1
+

≤ C#·$s,S1
+

we
estimate

2π
∑

k∈Z
|k||ak|2 ≤ C

(ˆ
S1
+

|Dτh|2 + #h$2
s,Γ0

)
.

Hence (1.5.11) holds.

Now we are able to improve (1.5.11) to (1.5.10). Let f be the harmonic function
as assumed. We may assume f ∈ W s,2(Γ0) otherwise the RHS is +∞ and (1.5.10)
holds trivially. Define the linear function

l(x1, x2) =
f(1, 0)− f(−1, 0)

2
x1 +

f(1, 0) + f(−1, 0)

2
.

The same calculations as in lemma 1.4.2 give a constant C = C(s) with

#l$2
s,Γ0

≤ C ∥grad l∥∞ = C|f(1, 0)− f(−1, 0)|.
We achieved that f(1, 0) − l(1, 0) = 0 = f(−1, 0) − l(−1, 0) and hence the glueing
lemma A.7 provides that

h̃(x) =

{
0, if x ∈ S1

+

f(x)− l(x), if x ∈ Γ0

is an element of W s,2(S1
+ ∪ Γ0). Hence there is a unique harmonic h ∈ W 1,2(B1+)

with h
∣∣
S1
+∪Γ0

= h̃. g = f − (h+ l) is harmonic in B1+ and satisfies g(x) = 0 on Γ0.

The antisymmetric reflexion

g̃(x1, x2) =

{
g(x1, x2), if x2 ≥ 0

−g(x1,−x2), if x2 ≤ 0

is by means of the Schwarz reflexion principle harmonic in B1 with

2

ˆ
B1+

|Dg|2 =

ˆ
B1

|Dg̃|2 ≤
ˆ
S1

|Dτ g̃|2 = 2

ˆ
S1
+

|Dτg|2.

Young’s inequality for 2⟨Dτf,Dτ l⟩ ≤ ϵ|Dτf |2 + 1
ϵ ∥grad l∥

2
∞ givesˆ

S1
+

|Dτg|2 ≤ (1 + ϵ)

ˆ
S1
+

|Dτf |2 + (1 +
1

ϵ
)π ∥grad l∥2∞

(1 + ϵ)

ˆ
S1
+

|Dτf |2 +
C

ϵ
#f$2

s,Γ0

where we used grad l = f(1,0)−f(−1,0)
2 and W s,2(Γ0) ⊂ C0,s− 1

2 (Γ0). Young’s in-
equality for 2⟨Dif,Di(h+ l)⟩ ≥ −ϵ|Dif |2 − 1

ϵ |Di(h+ l)|2 givesˆ
B1+

|Dg|2 ≥ (1− ϵ)

ˆ
B1+

|Df |2 − 1

ϵ

ˆ
B1+

|D(h+ l)|2;

applying (1.5.11) we may conclude
ˆ
B1+

|D(h+ l)|2 ≤ C

(ˆ
S1
+

|Dτ (h+ l)|2 + #h+ l$2
s,Γ0

)

≤ C
(
π ∥grad l∥2∞ + #f$2

s,Γ0

)
≤ C#f$2

s,Γ0
.
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!

Lemma 1.5.6 behaves well under perturbations of B1+, as made quantitive in
the following corollary.

Corollary 1.5.7. Let 1
2 < s ≤ 1. There is a constant C > 0 s.t. to any ϵ > 0 there

is ϵF = ϵF (ϵ) > 0 s.t. any single valued harmonic function f ∈ W 1,2(ΩF ∩ B1)
satisfies ˆ

ΩF∩B1

|Df |2 ≤ (1 + ϵ)

ˆ
ΩF∩S1

|Dτf |2 +
C

ϵ
#f$2

s,ΓF
.

Proof. This follows as a perturbation of the previous lemma making use of the
bilipschitz equivalence of ΩF ∩B1 and B1+ i.e. fix

GF : B1+ → ΩF ∩B1

as given by lemma C.2. Hence ∥DGF − 1∥∞ ,
∥∥DG−1

F − 1
∥∥
∞ < 10 ∥gradF∥∞ ≤

10ϵF . Let f as assumed with finite RHS, otherwise there is nothing to prove.
f ◦ GF ∈ W 1,2(B1+) hence there is an unique harmonic f̃ ∈ W 1,2(B1+) with
f̃
∣∣
S1∪Γ0

= f ◦GF

∣∣
S1∪Γ0

. f, f̃ are Dirichlet minimizer on their domains so that

ˆ
ΩF∩B1

|Df |2 ≤
ˆ
ΩF∩B1

|D(f̃ ◦G−1
F )|2 ≤ (1 + 10ϵF )

4

ˆ
B1+

|Df̃ |2.

The previous lemma showed that, for some constant C > 0,ˆ
B1+

|Df̃ |2 ≤ (1 + ϵ1)

ˆ
S1
+

|Dτ f̃ |2 +
C

ϵ1
#f̃$2

s,Γ0

≤ (1 + ϵ1)(1 + 10ϵF )
3

ˆ
S1∩ΩF

|Dτf |2 +
C

ϵ1
(1 + 10ϵF )

5#f$2
s,ΓF

.

We conclude choosing ϵ1 = ϵ
2 and then ϵF > 0 sufficient small for (1 + ϵ

2 )(1 +
10ϵF )7 ≤ 1 + ϵ. !

We can use the obtained results to get an estimate for Dirichlet minimizers in
the spirit of proposition 1.4.3.

Lemma 1.5.8. For 1
2 < s ≤ 1 and ϵ > 0, there is a constant C = C(s) > 0 with

the property that if (A2) holds with ϵF = ϵF (ϵ) > 0 thenˆ
Br∩ΩF

|Du|2 ≤ (1 + ϵ)

ˆ
∂Br∩ΩF

|Dτu|2 +
C

ϵ
r2s−1#u$2

s,Br∩ΩF
∀0 < r < R0

for any Dirichlet minimizing u ∈ W 1,2(ΩF ∩B1,AQ(Rn)) and R0 = R0(u(0)) > 0.

Proof. As usual we may assume that the RHS is finite. Let ϵF > 0 be the constant
of the previous corollary 1.5.7 and ∥gradF∥∞,B1

< ϵF .
Suppose s(u(0)) = 0 i.e. u(0) = Q!p" for some p ∈ Rn. Since we assumed the
RHS is finite u ∈ W 1,2(∂Br ∩ΩF ,AQ(Rn)). Fix for such a radius t− < 0 < t+ and
−π

2 < θ+ < θ− < 3π
2 s.t.

∂Br ∩ ΩF = {x+ = (rt+, F (rt+)) = reiθ+ , x− = (rt−, F (rt−)) = reiθ−}.

There is b = (b1, . . . , bQ) ∈ W 1,2([θ+, θ−],RnQ) s.t. [b(θ)] = u0,r(eiθ) = u(re−θ) for
θ+ ≤ θ ≤ θ− due to the 1-dim. W 1,2-selection criterion [12, proposition 1.2].
There are a(t) = (a1, . . . , aQ) ∈ W s′,2([0, t+],RnQ) and b(t) = (b1, . . . , bQ) ∈
W s′,2([t−, 0],RnQ) for any s′ < s with [a(t)] = u(rt, F (rt)), [b(t)] = u(rt, F (rt))
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respectively due to the W s,2-selection, lemma B.4. Permuting a and c if necessary
we may assume that a(t+) = b(θ+), c(t−) = b(θ−). We may define

g(x) =

⎧
⎪⎨

⎪⎩

a(x1), if rx ∈ Br ∩ ΓF , x1 ≥ 0

b(θ), if rx = reiθ ∈ ∂Br ∩ ΩF

c(x1), if rx ∈ Br ∩ ΓF , x1 ≤ 0.

g = (g1, . . . , gQ) ∈ W s′,2(∂(B1, (ΩF )0,r),RnQ) as a consequence of the glueing

lemma A.7. [g(x)] =
∑Q

i=1!gi(x)" = u0,r(x) for all x ∈ ∂(B1 ∩ (ΩF )0,r). Hence
there is h = (h1, . . . hQ) ∈ W 1,2(B1 ∩ (ΩF )0,r,RnQ) harmonic with g as boundary

values. [h] =
∑Q

i=1!hi" is a competitor to u0,r so thatˆ
Br∩ΩF

|Du|2 =

ˆ
B1∩(ΩF )0,r

|Du0,r|2 ≤
ˆ
B1∩(ΩF )0,r

|D[h]|2 =

ˆ
B1∩(ΩF )0,r

|Dh|2.

The previous corollary 1.5.7 applies to h since ∥gradF0,r∥∞,B1
= ∥gradF∥∞,Br

<

ϵF . So, we find for a fixed 1
2 < s′ < s, e.g. s′ = 1+2s

4 ,ˆ
B1∩(ΩF )0,r

|Dh|2 ≤ (1 + ϵ)

ˆ
S1∩(ΩF )0,r

|Dτh|2 +
C

ϵ
#h$2

s′,(ΓF )0,r

≤ (1 + ϵ)r

ˆ
∂Br∩ΩF

|Dτu|2 +
C

ϵ
r2s−1#u$2

s,ΩF∩Br

considering in the last line [h(x)] = [g(x)] = u0,r(x) for x ∈ ∂(B1 ∩ (ΩF )0,r)
and #h$s′,(ΓF )0,r ≤ C#u0,r$s,(ΓF )0,r = Cr2s−1#u$2

s,ΩF∩Br
from the W s,2-selection,

lemma B.4.
If s(u(0)) > 0, i.e. u(0) =

∑J
j=1 Qj!pj", |pi − pj | ≥ s(u(0)) for i ̸= j. Fix R0 > 0

s.t.

Rα̃0 [u]α̃,ΩF∩BR0
<

1

3
s(u(0))

where [·]α̃,ΩF∩BR0
denotes the Hölder semi-norm on ΩF ∩BR0 with exponent α̃ > 0

provided by theorem 1.5.2. Hence there are Dirichlet minimizing uj ∈ W 1,2(ΩF ∩
BR0 ,AQj (Rn)) with

(1.5.12) G(uj(x), Qj!pj") <
1

3
s(u(0)) for all x ∈ ΩF ∩BR0 .

To each uj the assumption s(uj(0)) = 0 is satisfied. So, by the previous considera-
tions for a.e. 0 < r ≤ R0ˆ

Br∩ΩF

|Du|2 =
J∑

j=1

ˆ
Br∩ΩF

|Duj |2

≤
J∑

j=1

(1 + ϵ)r

ˆ
∂Br∩ΩF

|Dτuj |2 +
C

ϵ
r2s−1#uj$2

s,ΩF∩Br

= (1 + ϵ)r

ˆ
∂Br∩ΩF

|Dτu|2 +
C

ϵ
r2s−1#u$2

s,ΩF∩Br

where we used in the last step that G(u(x), u(y))2 =
∑J

j=1 G(uj(x), uj(y))2 to to
(1.5.12). !

As theorem 1.4.1 follows from proposition 1.4.3, we can now use lemma 1.5.8 to
give the final argument leading to the Hölder estimate of corollary 1.5.5.

Proof of corollary 1.5.5. Let α > 0 be given as stated. Fix ϵ > 0 s.t. 1 + ϵ ≤ 1
2α

and 0 < R < 1 sufficient small s.t.

(1) R ≤ R0 when R0 is the radius of the previous lemma, 1.5.8;
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(2) ∥gradF∥∞,BR∩ΩF
< cos( 2θ+π4 ).

(2) ensures that Cθ ∩ BR ⊂ C 2θ+π
4

∩ BR ⊂ ΩF ∩ B1. Following the steps in the

proof of theorem 1.4.1 for a.e. 0 < r ≤ R

− ∂

∂r
r−2α

ˆ
Br∩ΩF

|Du|2 = −r−2α

ˆ
∂Br∩ΩF

|Du|2 + 2αr−2α−1

ˆ
Br∩ΩF

|Du|2

≤ C

ϵ
r(2s−1−2α)−1#u$2

s,Br∩ΓF
≤ C

ϵ
r2(γ−α)−1M2

u .

Integration in 0 < r ≤ R gives

(1.5.13) r−2α

ˆ
Br∩ΩF

|Du|2 ≤ R−2α

ˆ
BR∩ΩF

|Du|2 + CR2(γ−α)

γ − α
M2

u .

By definition of δ = cos(θ) − cos( 2θ+π4 ), for all x ∈ BR
2
∩ Cθ we have Bδ|x|(x) ⊂

C 2θ+π
4

∩ BR. Let x ∈ BR
2
∩ Cθ and 0 < r < R

2 be given, set r1 = max{r, δ|x|} and

r2 = r1 + |x| ≤ 2
δ r1. We found

r−2α

ˆ
Br(x)∩ΩF

|Du|2 ≤ r−2α
1

ˆ
Br1 (x)∩ΩF

|Du|2 ≤ 22α

δ2α
r−2α
2

ˆ
Br2 (x)∩ΩF

|Du|2

≤ 4

δ2α

(ˆ
BR∩ΩF

|Du|2 + CR2(γ−α)

γ − α
M2

u

)
.

where we applied at first the internal estimate since α ≤ 1
Q and finally the just

established (1.5.13). Having established (i), (ii) follows as indicated in the proof of
theorem 1.4.1. !
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Appendix A. Fractional Sobolev spaces

We will restrict our overview to the special case of W s,2 = Hs for 0 < s < 1.

A.1. General facts. At first let us consider the spaces on RN , there are several
ways to define them:

(a) using Fourier transform:

Hs(RN ) = {u ∈ L2(RN ) |ξ|sFu(ξ) ∈ L2(RN )};

(b) using real interpolation:

W s,2(RN ) =
(
W 1,2(RN ), L2(RN )

)
1−s,2

;

(c) using the the Gagliardo semi-norm #·$s,RN

W s,2(RN ) =

{
u ∈ L2(RN ) : #u$2

s,RN =

ˆ
RN×RN

|u(x)− u(y)|2

|x− y|N+2s
dxdy;< ∞

}
;

All of these definitions define the same Banach space as can found for instance in
[23]: (a)=(c) corresponds to Lemma 16.3 or Lemma 35.2, (a)=(b) can be found in
Lemma 23.1.

We will be mostly interested in the case of an open domain Ω ⊂ RN .In this case
several definitions are possible, compare [23, section 34 and section 36]:

(a) as restriction

W s,2(Ω) = space of restrictions of functions in W s,2(RN );

(b) using interpolation

W s,2(Ω) =
(
W 1,2(Ω), L2(Ω)

)
1−s,2

;

(c) using the Gagliardo norm

W s,2(Ω) = {u ∈ L2(Ω) : #u$2
s,Ω =

ˆ
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dxdy < ∞};

For Ω with Lipschitz boundary one has the existence of an extension operator
that is linear and continuous:

E : W 1,2(Ω) → W 1,2(RN );

E extends to a continuous linear operator mapping
(
W 1,2(Ω), L2(Ω)

)
1−s,2

into(
W 1,2(RN ), L2(RN )

)
1−s,2

; therefore (a) and (b) agree in these cases, compare [23,

section 34].
For Lipschitz domains one can show the existence of a linear continuous extension
operator Ẽ : L2(Ω) → L2(RN ) with #Ẽu$s,RN ≤ #u$s,Ω, so that all definitions
agree; compare [23, Lemma 36.1].

W 1,2(RN ) is dense in W s,2(RN ) and W 1,2(Ω) in W s,2(Ω). Since C∞
0 (RN ) is

dense in W 1,2(RN ) and C∞(Ω) in W 1,2(Ω), if Ω is Lipschitz regular, the same
holds true for the interpolation spaces W s,2(RN ) and W s,2(Ω).

The trace spaces are our main concern. Using the characterisation via the Fourier
transform one finds the following, [23, Lemma 16.1]:
For s > 1

2 functions in Hs(RN ) have a trace on the hyperplane xN = 0 belonging

to Hs− 1
2 (RN−1) and this mapping is surjective.

But our concern is the trace on ∂Ω which will be a C1 or Lipschitz manifold. We
would like to have a statement as follows: For s > 1

2 functions in W s,2(Ω) have a
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trace u
∣∣
∂Ω

belonging to W s− 1
2 ,2(∂Ω) and this mapping is surjective.

How can we best describe W s,2(∂Ω)? The definitions (a),(b),(c) for W s,2(Ω),
Ω ⊂ RN an open Lipschitz regular domain are all non-local. One can check that all
definitions share the following property: Let U1, U2 ⊂ Ω be an open cover of Ω and
u ∈ L2(Ω) satisfies u

∣∣
Ui

∈ W s,2(Ui) for i = 1, 2 then u ∈ W s,2(Ω). We are looking

now for an general approach to localize that works for all three definitions. This is
desirable to define W s,2(∂Ω) for a C1- or Lipschitz regular domain Ω ⊂ RN since Ω
has the defining property that locally Ω looks like ΩF = {x ∈ RN : xN > F (x′)},
for a C1 or Lipschitz continuous function F , where x′ = (x1, . . . , xN−1). We would
like to reduce our analysis to such a local description.
For this aim the following two observations are useful:

(i) equivalence under bilipschitz transformations;

(ii) one can ”localise” and a ”local” description controls the global one.

Concerning (i): let ψ : Ω′ → Ω be bilipschitz, Ω N -dimensional; then we may
define a linear operator u $→ ψ♯u = u ◦ ψ with

∥∥ψ♯u
∥∥
L2(Ω′)

≤ Lip(ψ−1)
N
2 ∥u∥L2(Ω)

∥∥grad(ψ♯u)
∥∥
L2(Ω′)

=
∥∥Dψt grad(u) ◦ ψ

∥∥
L2(Ω′)

≤ Lip(ψ)Lip(ψ−1)
N
2 ∥gradu∥L2(Ω) ;

therefore ψ♯ extends to a continuous linear operator on the interpolation spaces(
W 1,2(Ω′), L2(Ω′)

)
1−s,2

→
(
W 1,2(Ω), L2(Ω)

)
1−s,2

.

For the Gagliardo semi-norm,we define the constant Cψ = Lip(ψ−1)2NLip(ψ)N+2s

and use |x− y| ≤ Lip(ψ)|ψ−1(x)− ψ−1(y)| with a change of variables to conclude
that,

ˆ
Ω′×Ω′

|ψ♯u(x)− ψ♯u(y)|2

|x− y|N+2s
dydx ≤ Cψ

ˆ
Ω×Ω

|u(x)− u(y)|2

|x− y|N+2s
dydx.

Concerning (ii): Interpolation behaves well for finite tensor products in the sense
that

(A.1)

(
L⊗

i=1

E0,i,
L⊗

i=1

E1,i

)

θ,p

=
L⊗

i=1

(E0,i, E1,i)θ,p.

We will show that below. Assuming (A.1) holds true we can check (ii). Given any
finite open cover {Ui}i=1,...,L of Ω with subordinate partition of unity (θi)i=1,...,L

we define

R : W 1,2(Ω) →
L⊗

i=1

W 1,2(Ui) Ru = (u1, . . . , uL),

where ui is the restriction of u to Ui, and

T :
L⊗

i=1

W 1,2(Ui) → W 1,2(Ω) T (u1, . . . , uL) =
L∑

i=1

θiui.
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Both operators are linear and continuous, because

L∑

i=1

∥ui∥L2(Ui)
≤ L ∥u∥L2(Ω)

L∑

i=1

∥grad(ui)∥L2(Ui)
≤ L ∥grad(u)∥L2(Ω)

∥∥∥∥∥

L∑

i=1

θiui

∥∥∥∥∥
L2(Ω)

≤
L∑

i=1

∥ui∥L2(Ui)

∥∥∥∥∥

L∑

i=1

grad(θiui)

∥∥∥∥∥
L2(Ω)

≤
L∑

i=1

|grad(θi)|∞ ∥ui∥L2(UI
+ |θi|∞ ∥grad(ui)∥L2(Ui)

.

Using (A.1) they extend to linear continuous operators

R : W s,2(Ω) →
L⊗

i=1

W s,2(Ui)

T :
L⊗

i=1

W s,2(Ui) → W s,2(Ω).

By definition T ◦R = 1W s,2(Ω) since the equality is obvious on W 1,2(Ω). This shows
(ii) in the interpolation case.

It remains to check (A.1). Let {(E0,i, E1,i)}i=1,...,L be finitely many tuples of
Banach spaces admissible for interpolation. We can consider the interpolation of
their tensor product:

E0 =
L⊗

i=1

E0,i equipped with the norm ∥a∥0 =
∑

i

∥ai∥0,i

E1 =
L⊗

i=1

E1,i equipped with the norm ∥a∥1 =
∑

i

∥ai∥1,i

Hence for the K functional in real interpolation we have

K(t, a) = inf
a=a0+a1⇔

ai=a0,i+a1,i;i=1,...,L

∥a0∥0 + t ∥a1∥1 =
L∑

i=1

Ki(t, ai) ≥ Kj(t, aj)

and this establishes (A.1) because

1

L

L∑

i=1

∥∥t−θKi(t, ai)
∥∥
Lp(R+; dtt )

≤
∥∥t−θK(t, a)

∥∥
Lp(R+; dtt )

≤
L∑

i=1

∥∥t−θKi(t, ai)
∥∥
Lp(R+; dtt )

.

To check (ii) in the case of the Gagliardo semi-norm we have for the restrictions

L∑

i=1

#ui$s,Ui ≤ L#u$s,Ω.
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For an arbitrary Lipschitz function f and Ω1 = Ω ∩ supp(f) writeˆ
Ω×Ω

|(fu)(x)− (fu)(y)|2

|x− y|N+2s
dydx =

ˆ
Ω1×Ω1

|(fu)(x)− (fu)(y)|2

|x− y|N+2s
dydx

=

ˆ
Ω1×Ω1
|x−y|<1

|(fu)(x)− (fu)(y)|2

|x− y|N+2s
dydx+

ˆ
Ω1×Ω1
|x−y|≥1

|(fu)(x)− (fu)(y)|2

|x− y|N+2s
dydx;

for the second integral we haveˆ
Ω1×Ω1
|x−y|≥1

|(fu)(x)− (fu)(y)|2

|x− y|N+2s
dydx ≤ 4|f |2∞

NωN

2s

ˆ
Ω1

|u|2

where we used symmetry in x, y andˆ
Ω\B1(x)

1

|x− y|N+2s
dy ≤ NωN

ˆ ∞

1
r−1−2sdr =

NωN

2s
;

for the first integral we haveˆ
Ω1×Ω1
|x−y|<1

|(fu)(x)− (fu)(y)|2

|x− y|N+2s
dydx

≤ 2|f |2∞
ˆ
Ω1×Ω1

|u(x)− u(y)|2

|x− y|N+2s
dydx+ Lip(f)2

2NωN

2− 2s

ˆ
Ω1

|u|2

where we used |(fu)(x) − (fu)(y)| ≤ |f |∞|u(x) − u(y)| + |f(x) − f(y)||u(x)| ≤
|f |∞|u(x)− u(y)|+ |u(x)|Lip(f)|x− y| andˆ

Ω∩B1(x)

|x− y|2

|x− y|N+2s
≤ NωN

ˆ 1

0
r2−2s−1dr =

NωN

2− 2s
.

Hence we got the desired estimate with the constant Cf = 2|f |2∞+ 2NωN
s(1−s) (Lip(f)

2+

|f |2∞) ˆ
Ω×Ω

|(fu)(x)− (fu)(y)|2

|x− y|N+2s
dydx ≤ Cf

(
#u$2

s,Ω1
+ ∥u∥2L2(Ω1)

)
.

Using this estimate we can conclude (ii) in case of using the Gagliardo semi-norm
since

#
L∑

i=1

θiui$s,Ω ≤
L∑

i=1

#θiui$s,Ω ≤ C

(
L∑

i=1

#ui$s,Ui + ∥ui∥L2(Ui)

)
.

Due to (ii) it is sufficient to consider the case ΩF , Furthermore using (i) with the
bilipschitz mapping (x′, xN ) $→ (x′, xN +F (x′)) between RN

+ and ΩF , it is sufficient
to understand RN

+ . Hence as definition for the spaces on the boundary we may use

W s,2(∂ΩF ) = {u(x′, xN − F (x′)) : u ∈ W s,2(RN
+ )};

for the Gagliardo seminorm we may use as well the global version

#u$2
s,∂Ω =

ˆ
∂Ω×∂Ω

|u(x)− u(y)|2

|x− y|N−1+2s
dydx.

Corollary A.1. For s > 1
2 functions of W s,2(RN

+ ) have a trace on the hyperplane

xN = 0 belonging to W s− 1
2 ,2(RN−1) and this linear continuos mapping

∣∣
∂RN+

is

surjective.

Proof. u ∈ W s,2(RN
+ ) if and only if the extension

Eu(x) =

{
u(x′, xN ), if xN > 0

u(x′,−xN ), if xN < 0
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is an element of W s,2(RN ) = Hs(RN ). Composing this operator with the contin-
uous linear trace operator defined on the whole space using the Fourier transform
shows existence. Furthermore it inherits all its properties and hence concludes the
proof. !

The following characterisation for the trace of a function provides a tool to
check that a function u ∈ W s,2(Ω) can be patched together with a function v ∈
W s,2(RN \ Ω) to a function U ∈ W s,2(RN ) if their traces coincide. As introduced
before: ΩF = {x ∈ RN : xN > F (x′)},F Lipschitz continuous

Lemma A.2. For u ∈ W s,2(ΩF ), one has

(A.2)

∥∥∥∥∥
u(x′, xN )− u

∣∣
∂ΩF

(x′)

|xN − F (x′)|s

∥∥∥∥∥
L2(ΩF )

≤ C#u$s,ΩF

Proof. Using the bilipschitz mapping (x′, xN ) $→ (x′, xN − F (x′)) and v(x′, xN ) =
u(x′, F (x′) + xN ) ∈ W s,2(RN

+ ) together with

ˆ
ΩF

|u(x′, xN )− u
∣∣
∂ΩF

(x′)|2

|xN − F (x′)|2s dx =

ˆ
RN

+

|u(x′, xN + F (x′))− u
∣∣
∂ΩF

(x′)|2

|xN |2s dx;

one has only to consider the case F = 0, i.e. RN
+ .

We may extend u by u(x′,−xN ) for xN < 0 to obtain u ∈ W s,2(RN ) = Hs(RN ).
We define vxN (x′) = u(x′, xN ), then FvxN (ξ′) =

´
R e2iπξNxNFu(ξ′, ξN )dξN and

F ′u
∣∣
∂RN+

(ξ′) = Fv0(ξ′) =
´
R Fu(ξ′, ξN )dξN ; hence by Cauchy inequality

|FvxN (ξ′)− Fv0(ξ
′)|2 =

(ˆ
R
(e2iπξNxN − 1)Fu(ξ′, ξN )dξN

)2

≤ 4

(ˆ
R

|sin(πξNxN )|
|ξNxN |α xNdξN

)
xα−1
N

(ˆ
R
|sin(πξNxN )||ξN |α|Fu|2(ξ′, ξN )dξN

)
;

Multiply this by |xN |−2s and integrate in xN to concludeˆ
R
|xN |−2s|FvxN (ξ′)− Fv0(ξ

′)|2dxN

≤ 4C(α)

ˆ
R

(ˆ
R

|sin(πξNxN )|
|ξNxN |1+2s−α |ξN |dxN

)
|ξN |2s|Fu|2(ξ′, ξN )dξN

= 4C(α)2
ˆ
R
|ξN |2s|Fu|2(ξ′, ξN )dξN

where C(α) =
´
R

sin(πt)
|t|α dt < ∞ for α = 1 + 2s− α (note that 1 < 1

2 + s = α < 2).

This gives the desired result by integrating in ξ′, since

ˆ
RN

|u(x′, xN )− u
∣∣
∂ΩF

(x′)|2

|xN |2s dx =

ˆ
R
|xN |−2s

ˆ
RN−1

|FvxN (ξ′)− Fv0(ξ
′)|2dξ′dxN .

!

For s = 1 compare lemma 1.5.3, that corresponds to [23, Lemma 13.5]. We can
conclude the following corollary

Corollary A.3. v ∈ L2(RN−1) is the trace of u (and so in W s− 1
2 ,2(RN−1)) if

(A.3)

∥∥∥∥
u(x′, xN )− v(x′)

|xN − F (x′)|s

∥∥∥∥
L2(ΩF )

< ∞
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Proof.ˆ
RN−1

|v(x′)− u
∣∣
∂ΩF

(x′)|2dx′ ≤ 2ϵ2s
1

ϵ

ˆ ϵ

0

ˆ
RN−1

|v(x′)− u(x′, F (x′) + xN )|2

|xN |2s

+ 2ϵ2s
1

ϵ

ˆ ϵ

0

ˆ
RN−1

|u(x′, F (x′) + xN )− u
∣∣
∂ΩF

(x′)|2

|xN |2s dx′dxN

≤ 2ϵ2s−1

⎛

⎝
∥∥∥∥
u(x′, xN )− v(x′)

|xN − F (x′)|s

∥∥∥∥
2

L2(ΩF )

+

∥∥∥∥∥
u(x′, xN )− u

∣∣
∂ΩF

(x′)

|xN − F (x′)|s

∥∥∥∥∥

2

L2(ΩF )

⎞

⎠ ;

converging to 0 as ϵ→ 0 hence v = u
∣∣
∂ΩF

. !

Corollary A.4. Let u ∈ W s,2(ΩF ) and v ∈ W s,2(RN \ ΩF ) for s > 1
2 satisfying

u
∣∣
∂ΩF

= v
∣∣
∂ΩF

then

(A.4) U(x) =

{
u(x), if x ∈ ΩF

v(x), if x ∈ RN \ ΩF

defines an element in W s,2(RN ) satisfying

(A.5) #U$s,RN ≤ C
(
#u$s,ΩF + #v$s,RN\ΩF

)

Proof. As before using the bilipschitz mapping (x′, xN ) $→ (x′, xN −F (x′)) one has
only to consider the case F = 0; then

∥U∥2L2(RN ) = ∥u∥2L2(RN
+ ) + ∥v∥2L2(RN

− )ˆ
RN×RN

|U(x)− U(y)|2

|x− y|N+2s
dydx = 2

ˆ
RN

+×RN
−

|u(x)− v(y)|2

|x− y|N+2s
dydx

+

ˆ
RN

+×RN
+

|u(x)− u(y)|2

|x− y|N+2s
dydx+

ˆ
RN

−×RN
−

|v(x)− v(y)|2

|x− y|N+2s
dydx.

The first two summands are obviously bounded and the third is bounded becauseˆ
RN

+×RN
−

|u(x)− v(y)|2

|x− y|N+2s
dydx ≤

3

ˆ
RN

+×RN
−

|u
∣∣
∂ΩF

(x′)− v
∣∣
∂ΩF

(y′)|2

|x− y|N+2s
dydx(A.6)

+ 3

ˆ
RN

+×RN
−

|u(x)− u
∣∣
∂ΩF

(x′)|2

|x− y|N+2s
dydx+ 3

ˆ
RN

+×RN
−

|v
∣∣
∂ΩF

(y′)− v(y)|2

|x− y|N+2s
dydx.(A.7)

For the first integral, (A.6), we have
ˆ
RN

+×RN
−

|u
∣∣
∂ΩF

(x′)− v
∣∣
∂ΩF

(y′)|2

|x− y|N+2s
dydx

≤ C1

ˆ
RN−1×RN−1

|u
∣∣
∂ΩF

(x′)− v
∣∣
∂ΩF

(y′)|2

|x′ − y′|N−2+2s
dy′dx′ ≤ C#u$2

s,RN
+
,

where we used firstlyˆ
R+×R−

1

|x− y|N+2s
dxNdyN =

ˆ
R+×R+

(1 + (t+ τ)2)−
N
2 −s

|x′ − y′|N−2+2s
dτdt =

C1

|x− y|N−2+2s

by means of the change of variables xN = |x′ − y′|t, yN = −|x′ − y′|τ and then
u
∣∣
∂ΩF

= v
∣∣
∂ΩF

together with the continuity of the trace operator
∣∣
∂ΩF

: W s,2(RN
+ ) →

W s− 1
2 ,2(RN−1), compare [23, lemma 16.1, lemma 16.3].
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For the second and third integral, (A.7), we proceed equivalently. For instance for
the the secondˆ
RN

+×RN
−

|u(x)− u
∣∣
∂RN+

(x′)|2

|x− y|N+2s
dydx ≤ C2

ˆ
RN

+

|u(x′, xN )− u
∣∣
∂ΩF

(x′)|2

|xN |2s dx ≤ C#u$2
s,RN

+

where we used̂

RN
−

1

|x− y|N+2s
dy = x−2s

N

ˆ
RN

+

1

|z + eN |N+2s
dz = x−2s

N C2.

by means of the change of variables (y′, yN ) = (x′ − xNz′,−xNzN ), xN > 0 and
afterwards we apply lemma A.2.
The constants C1, C2 are indeed finite since (t+ τ)2 ≥ t2 + τ2

C1 ≤
ˆ ∞

0

ˆ π
2

0

rdrdθ

(1 + r2)
N
2 +s

=
π

2N − 4 + 4s

C2 ≤
ˆ
RN\B1(−eN )

1

|z + eN |N+2s
dz =

NωN

2s
.

!
A further nice consequence is the following characterisation of W s,2

0 (Ω), defined
as the closure of C∞

c (Ω) in W s,2(RN ). The ”classical” case, s = 1, is considered in
[23, Lemma 13.6].

Corollary A.5. If F is Lipschitz continuous and s > 1
2 then W s,2

0 (ΩF ) is the
subspace of u ∈ W s,2(ΩF ) satisfying u

∣∣
∂ΩF

= 0.

Proof. If u ∈ W s,2
0 (ΩF ) there exists a sequence un ∈ C∞

c (ΩF ) s.t. un → u in
W s,2(ΩF ); as

∣∣
∂ΩF

is a continuous operator on W s,2(ΩF ) we have 0 = un

∣∣
∂ΩF

→
u
∣∣
∂ΩF

in L2(RN−1).

We may extend u by 0 outside of ΩF and denote the extension by U . The corollary
above shows that U ∈ W s,2(RN ). One chooses 0 ≤ θ ≤ 1 ∈ C∞

c (RN ) s.t. θ(x) = 1
for |x| < 1. One approaches U by the sequence un(x′, xN ) = U(x, xN − 1

n )θ(
x
n ) ∈

W s,2(RN ). un converges to U by Lebesgue dominated convergence. The support of
these un is compactly supported within ΩF . Finally regularise un by convolution.

!
Using interpolation theory there is an elegant way to obtain a statement on

compact embeddings:

Lemma A.6. If Ω ⊂ RN and bounded, then the injection of W s,2
0 (Ω) into L2(Ω)

is compact.

Proof. We have to show that for a bounded sequence un ∈ W s,2
0 (Ω), there is a

subsequence converging strongly in L2(Ω). To do so it is sufficient to check that
for every ϵ > 0 there is a compact subset Kϵ of L2(Ω) s.t. we can decompose
un = vn,ϵ + wn,ϵ with ∥wn,ϵ∥L2(Ω) ≤ ϵC and vn,ϵ ∈ Kϵ for all n.
Firstly we may extend each un by 0 outside of Ω. For a special smoothing sequence
ρϵ(x) =

1
ϵN ρ0(

x
ϵ ) with ρ0 radial we can consider the linear operators u $→ u−ρϵ ⋆u.

For them we clearly have

∥u− ρϵ ⋆ u∥L2(RN ) ≤ 2 ∥u∥L2(RN )

∥u− ρϵ ⋆ u∥L2(RN ) ≤
ˆ
RN

ρϵ(y) ∥u(·)− u(·− y)∥L2(RN ) dy

≤ ∥grad(u)∥L2(RN )

ˆ
RN

|y|ρϵ(y)dy ≤ Aϵ ∥grad(u)∥L2(RN ) .
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(1− ρϵ⋆) extends to a continuous linear operator on W s,2(RN ). It therefore satis-
fies ∥u− ρϵ ⋆ u∥L2(RN ) ≤ 21−sAsϵs ∥u∥W s,2(RN ). The choice wn,ϵ = un− ρϵ ⋆un has

∥wn,ϵ∥L2(RN ) ≤ Cϵs for all n and since
∥∥∥∂ρϵ⋆un

∂xj

∥∥∥
L∞(RN )

≤
∥∥∥ ∂ρϵ∂xj

∥∥∥
L2(RN )

∥un∥L2(RN ),

the sequence vn,ϵ stays in a bounded set of Lipschitz functions and keeps their
support in a fixed compact set of RN . The Arzelá-Ascoli theorem provides a sub-
sequence converging strongly in L∞ and hence L2, concluding the statement. !

The existence of a continuous linear extension operator E : W s,2(Ω) → W s,2(RN )
for Lipschitz regular domains extends the result to bounded domains i.e. the injec-
tion of W s,2(Ω) into L2(Ω) is compact for Ω ⊂ RN bounded and Lipschitz regular.

As usual the compact embedding can be used to prove Poincaré inequalities:

Lemma A.7. For a bounded, Lipschitz regular domain Ω ⊂ RN and 0 < s ≤ 1
there is a constant C1 s.t. for each u ∈ W s,2(Ω)

(A.8)

∥∥∥∥u−
 
Ω
u

∥∥∥∥
L2(Ω)

≤ C1#u$s,Ω;

for 1
2 < s ≤ 1 there is a constant C2 s.t. for each u ∈ W s,2(Ω)

(A.9)

∥∥∥∥u−
 
∂Ω

u
∣∣
∂Ω

∥∥∥∥
L2(Ω)

≤ C2#u$s,Ω.

Proof. Both proofs are along the same lines. For the second we need the continuity
of the trace operator

∣∣
∂Ω

and so s > 1
2 . Nonetheless we will only present the second

case and it will be obvious how to argue in the first. We argue by contradiction; so
we assume that there exists a sequence uk ∈ W s,2(Ω) with

∥∥∥∥uk −
 
∂Ω

uk

∣∣
∂Ω

∥∥∥∥
L2(Ω)

> k#uk$s,Ω.

Normalising via

vk =
uk −

ffl
∂Ω uk

∣∣
∂Ω∥∥uk −

ffl
∂Ω uk

∣∣
∂Ω

∥∥
L2(Ω)

for all k

we may assume that ∥vk∥L2(Ω) = 1,
ffl
∂Ω vk

∣∣
∂Ω

= 0 and by assumption #vk$s,Ω < 1
k

for all k. In particular the sequence stays in a fixed bounded set of W s,2(Ω). We
may pass to a subsequence vk′ converging strongly in L2(Ω) to a function v ∈ L2(Ω),
due to the just obtained compact embedding of W s,2(Ω) into L2(Ω). v needs to be
constant since #vk$s,Ω < 1

k . Thus vk′ → v strongly in W s,2(Ω). The continuity of
the trace operator provides 

∂Ω
v
∣∣
∂Ω

= lim
k′→∞

 
∂Ω

vk′
∣∣
∂Ω

= 0.

This contradicts ∥v∥L2(Ω) = 1 because v = const. implies v
∣∣
∂Ω

= const. = 0. !
For our purpose a particular version of corollary A.4 is needed:

Corollary A.8. To any given −1 < a < 1 and 1
2 < s ≤ 1 there is a constant C >

with the property, that if u ∈ W s,2(SN−1 ∩ {xN > a}), v ∈ W s,2(SN−1 ∩ {xN < a})
with u

∣∣
SN−1∩{xN=a}

= v
∣∣
SN−1∩{xN=a}

then

(A.10) U(x) =

{
u(x), if x ∈ SN−1, xN > a

v(x), if x ∈ SN−1, xN < a

defines an element in W s,2(SN−1) satisfying

(A.11) #U$s,SN−1 ≤ C
(
#u$s,SN−1∩{xN>a} + #v$s,SN−1∩{xN<a}

)
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Proof. We can apply corollary A.4 locally using a partition of unity {θi}Li=1 sub-
ordinate to a coordinated atlas (Ui,ϕi)i=1,...,L. More detailed, we may choose a
smooth atlas (Ui,ϕi)i=1,...,L with the additional property that every chart ϕi : Ui ⊂
SN−1 → Vi ⊂ RN−1 satisfies ϕi(Ui ∩ {xN ≥ a}) = Vi ∩ {yN−1 ≥ a}. We may
now apply corollary A.4 to each pair u|Ui ◦ ϕ−1

i , v|Ui ◦ ϕ−1
i and obtain functions

Ui ∈ W s,2(Vi). Using a subordinated partition of unity {θi}Li=1, the function U(x) =∑L
i=1 θi(x)Ui ◦ϕi(x) agrees by construction with u on S+ = SN−1 ∩ {xN > a} and

with v on S− = SN−1 ∩ {xN < a}. Furthermore it satisfies for a constant C > 0

#U$s,SN−1 ≤ ∥U∥W s,2(SN−1) ≤ C
(
∥u∥W s,2(S+) + ∥v∥W s,2(S−)

)
.

because every Ui does. To pass to the desired inequality (A.11) we proceed as
follows: Given u, v satisfying the assumption, we can apply the above construction
to

ũ = u−
 
∂S+

u
∣∣
∂S+ , ṽ = v −

 
∂S−

v
∣∣
∂S− ,

because ũ, ṽ still satisfy the assumptions as a consequence of u
∣∣
∂S+ = v

∣∣
∂S− . We

obtain Ũ and U with Ũ = U−
ffl
∂S+ u

∣∣
∂S+ . We can now conclude (A.11) by applying

the Poincaré inequality (A.9), since

#Ũ$s,SN−1 = #U$s,SN−1

∥ũ∥W s,2(S+) =

∥∥∥∥u−
 
∂S+

u
∣∣
∂S+

∥∥∥∥
L2(S+)

+ #u$s,S+ ≤ C#u$s,S+

∥ṽ∥W s,2(S−) =

∥∥∥∥v −
 
∂S−

v
∣∣
∂S+

∥∥∥∥
L2(S−)

+ #v$s,S− ≤ C#v$s,S− .

!

A.2. Interpolation for fractional Sobolev functions. Commonly one can use
a version of the Luckhaus’ lemma to interpolate between two functions on the
sphere. If an L∞-estimate is not needed it states:

To any 0 < ϵ < 1
2 and u, v ∈ W 1,2(SN−1) there is w ∈ W 1,2(B1 \ B(1−ϵ)) with

w(x) = u(x) and w((1− ϵ)x) = v(x) for all x ∈ SN−1, satisfying

(A.12)

ˆ
B1\B1−ϵ

|Dw|2 ≤ 2ϵ

ˆ
SN−1

|Dτu|2 + |Dτv|2 +
1

ϵ

ˆ
SN−1

|u− v|2

Define a linear interpolation on the cylinder SN−1 × [0, ϵ] by

w̃(y, t) =

(
1− t

ϵ

)
u(y) +

(
t

ϵ

)
v(y) for y ∈ SN−1, t ∈ [0, ϵ]

and then making use of polar coordinates x = ry, r ∈ [1 − ϵ, 1], y ∈ SN−1 the
annulus A1,1−ϵ = B1 \B1−ϵ is close to the cylinder i.e.

w(ry) = w̃(y, 1− r) for r ∈ [1− ϵ, 1], y ∈ SN−1 i.e. ry ∈ A1,1−ϵ.

One checks that w defined in that way satisfies (A.12).
Our extension of this result to ”boundary” functions in a fractional Sobolev space

is:

Lemma A.9. Let 1
2 < s < 1 and ϵ > 0 be given then there exists Rϵ > 0 with the

property: for any Rϵ ≤ R < 1 there is C = C(ϵ, R) s.t. given u, v ∈ W s,2(SN−1)
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one can find w ∈ W 1,2(A1,R) on the annulus A1,R = B1 \BR with w(x) = u(x) and
w(Rx) = v(x) for x ∈ SN−1 that satisfies

(A.13)

ˆ
A1,R

|Dw|2 ≤ ϵ
(
#u$2

s,SN−1 + #v$2
s,SN−1

)
+ C ∥u− v∥2SN−1 .

Our proof uses heavily the theory of homogenous harmonic polynomials. This
is not a surprise since they build, together with their Kelvin transforms, a natural
basis for solving the Dirichlet problem on an annulus. As a reference for classical
results one may consult [3, chapter 5].
We will use the same notation introduced there:

• Pm(RN ) denotes the complex vector space of all homogeneous polynomials
on RN of degree m;

• Hm(RN ) ⊂ Pm(RN ) the subspace of all harmonic homogeneous polynomi-
als of degree m.

We want to emphazise that we do not equip Pm(RN ) and Hm(RN ) with specific
norms or inner products.
Furthermore we need the Kelvin transform for a map u : Ω ⊂ RN \ {0}

(A.14) K[u] = |x|2−Nu

(
x

|x|2

)
for x ∈ Ω∗ =

{
x :

x

|x|2 ∈ Ω

}
.

A key feature of the Kelvin transform is ∆(K[u]) = K[|x|4∆u], compare [3, Propo-
sition 4.6]. Hence the Kelvin transform is a homeomorphism on harmonic func-
tions, [3, Theorem 4.7]. Furthermore for p ∈ Pm(RN ) we have the simple formula

K[p](x) = p(x)
|x|N+2m−2 . K[p] is therefore homogeneous of degree 2−N −m.

The proof of lemma A.9 splits into two parts.
In the first we characterise W s,2(SN−1) using a Fourier decomposition into har-
monic homogeneous polynomials. In the second we use this characterisation to
estimate the solution of the Dirichlet problem on the annulus A1,R = B1 \BR.

Recall the classical theorem, e.g. [3, Theorem 5.7]

Theorem A.10. Every p ∈ Pm(RN ) can be uniquely written in the form

p = pm + |x|2pm−2 + · · ·+ |x|2kpm−2k,

where k = ⌊m
2 ⌋ and each pn ∈ Hn(RN ).

Lemma A.11. If p ∈ Hm(RN ) and q is a polynomial with strictly less degree then

(A.15)

ˆ
SN−1

pq = 0 =

ˆ
SN−1

Dτp ·Dτq

(Dτp ·Dτq = Dp ·Dq − ∂p
∂r

∂q
∂r =

∑N
i=1

∂p
∂xi

∂q
∂xi

− ∂p
∂r

∂q
∂r )

If p, q ∈ Hm(RN ) then

m(N − 2 + 2m)

ˆ
SN−1

pq =

ˆ
SN−1

Dp ·Dq(A.16)

=

ˆ
SN−1

Dτp ·Dτq +m2

ˆ
SN−1

∂p

∂r

∂q

∂r
.

Proof. By linearity and the decomposition of theorem A.10 we may assume that
q ∈ Hn(RN ) for some n < m. Recall that if u ∈ C1 is homogenous of degree λ,
it satisfies the Euler formula |x|∂u∂r (x) = Du(x) · x = λu(x). Furthermore observe
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that ∂p
∂xi

∈ Hm−1(RN ) and ∂q
∂xi

∈ Hn−1(RN ) for any i = 1, . . . , N . Hence

n

ˆ
SN−1

pq =

ˆ
SN−1

p
∂q

∂r
=

ˆ
SN−1

∂p

∂r
q +

ˆ
B1

p∆q −∆p q

= m

ˆ
SN−1

pq;

ˆ
SN−1

Dτp ·Dτq =

ˆ
SN−1

Dτp ·Dτq + nmpq =

ˆ
SN−1

Dτp ·Dτq +
∂p

∂r

∂q

∂r

=
N∑

i=1

ˆ
SN−1

∂p

∂xi

∂q

∂xi
= 0;

where we applied the (just obtained) orthogonality of Hm(RN ) to Hn(RN ) for
m ̸= n.
To show (A.16) observe that pq is homogenous of degree 2m hence

m(N − 2 + 2m)

ˆ
SN−1

pq =
1

2
(N − 2 + 2m)

ˆ
SN−1

∂(pq)

∂r

= (N − 2 + 2m)

ˆ
B1

Dp ·Dq = (N − 2 + 2m)

ˆ 1

0

ˆ
SN−1

(Dp ·Dq)(rx)rN−1dr

= (N − 2 + 2m)

ˆ 1

0
r2m−2+N−1dr

ˆ
SN−1

Dp ·Dq =

ˆ
SN−1

Dp ·Dq

=

ˆ
SN−1

Dτp ·Dτq +
∂p

∂r

∂q

∂r
=

ˆ
SN−1

Dτp ·Dτq +m2

ˆ
SN−1

pq.

!

On the base of some Hilbert space theory we recover the following classical result
and a small extension, compare e.g. [3, Theorem 5.12]:

Theorem A.12.

L2(SN−1) =
∞⊕

m=0

Hm(RN )(A.17)

W 1,2(SN−1) =
∞⊕

m=0

Hm(RN )

We are here a bit imprecise in the chosen notation. As a direct sum of vec-
tor space both direct sums are the same, but we consider them with different
topologies. Furthermore to be precise the equality should be understood restrict-
ing each element of the righthand side to the sphere, SN−1. In the first case we
equip each Hm(RN ), with the L2 inner product on the sphere, ⟨p, q⟩ =

´
SN−1 pq.

Hm(RN ) with this topology is a Hilbert subspace of L2(SN−1). In the second
equality we equip Hm(SN−1 with the inner product of W 1,2(SN−1), ⟨p, q⟩1 =´
SN−1 pq +

´
SN−1 Dτp · Dτq. With this topology Hm(RN ) is a Hilbert subspace

of W 1,2(SN−1).

Proof. The finite dimensional linear subspaces Hm(RN ),Hn(RN ) are orthogonal
with respect to both inner products ⟨·, ·⟩, ⟨·, ·⟩1 for m ̸= n. This is a consequence
of (A.15).
Finally the restriction of polynomials to the sphere are dense in L2(SN−1) ⊃
W 1,2(SN−1) due to the Stone-Weierstrass theorem. This proves the theorem since
the right hand side is dense in the left. !
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Combining (A.16) together with theorem A.12 shows that every u ∈ L2(SN−1)
has a unique decomposition u =

∑∞
m=0 pm with pm ∈ Hm(RN ) and

(A.18) ∥u∥2 =
∞∑

m=0

∥pm∥2 .

Furthermore u is an element of W 1,2(SN−1) if and only if

(A.19) ∞ >

ˆ
SN−1

|Dτu|2 =
∞∑

m=0

ˆ
SN−1

|Dτpm|2 =
∞∑

m=0

m2

(
1 +

N − 1

m

)
∥pm∥2 .

This suggests an extension for defining Sobolev spaces on SN−1 with noninteger
order.

Definition A.1. For a real s ≥ 0

(A.20) Hs(SN−1) =

{
u =

∞∑

m=0

pm ∈ L2(SN−1) :
∞∑

m=0

m2s ∥pm∥2 < ∞
}
.

Now (A.19) reads:

Corollary A.13.

(A.21) H1(SN−1) = W 1,2(SN−1).

As a consequence of corollary A.13 we will see that (A.20) provides an equivalent
characterisation of the fractional Sobolev spaces:

Lemma A.14.

(A.22) Hs(SN−1) = W s,2(SN−1) =
(
W 1,2(SN−1), L2(SN−1)

)
1−s,2

We postpone the proof after the next lemma.
Identifying interpolation spaces between W 1,2(SN−1) and L2(SN−1) is now the
same question as interpolating between some direct sums of Hilbert spaces with
weights. This can be settled easily in a more general setting. Our presentation
follows the L2 equivalent of L. Tartar in [23, chapter 23].
We consider the situation of a direct sum of Hilbert spaces:

(A.23) H =
∞⊕

m=0

Hm

Lemma A.15. For a sequence of positive numbers w = {wm}∞m=0, let
(A.24)

E(w) =

{
a = (am)m ∈ H :

∞∑

m=0

wm ∥am∥2 < ∞
}

with ∥a∥2w =
∞∑

m=0

wm ∥am∥2 .

If w(0) = {wm(0)}m, w(1) = {wm(1)} are two such sequences, then for 0 < θ < 1
one has

(A.25) (E(w(0)), E(w(1)))θ,2 = E(w(θ)) where wm(θ) = wm(0)1−θwm(1)θ.

Proof. We use a variant of the K-functional, namely

K2(t, a) = inf
a=b+c

(
∥b∥2w(0) + t2 ∥c∥2w(1)

) 1
2
;

hence K2(t, a) ≤ K(t, a) ≤
√
2K2(t, a). Now for a =

∑
m am we have K2(t, a)2 =

infam=bm+cm

∑2
m=0 wm(0) ∥bm∥2w(0)+ t2wm(1) ∥cm∥2w(1). We can calculate K2(t, a)

explicitly, because one is led to choose bm = λmam+dm with dm ∈ Hm∩span(am)⊥.
Then cm = (1 − λm)am − dm and so ∥bm∥2 = λ2m ∥am∥2 + ∥dm∥, ∥cm∥2 = (1 −
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λm)2 ∥am∥2 + ∥dm∥. Hence dm = 0 and one is led to choose for bm the value λm
that minimises wm(0)λ2m ∥am∥2 + t2wm(1)(1− λm)2 ∥am∥2. One finds

λm =
t2wm(1)

wm(0) + t2wm(1)
and 1− λm =

wm(0)

wm(0) + t2wm(1)
;

so K2(t, a) is computed explicitly by

K2(t, a)
2 =

∞∑

m=0

∥am∥2 t2 wm(0)wm(1)

wm(0) + t2wm(1)
.

Finally Lebesgue’s monotone convergence theorem provides

∥∥t−θK2(t, a)
∥∥2
L2(R+, dtt )

=
∞∑

m=0

∥am∥2
ˆ ∞

0
t2(1−θ)

wm(0)wm(1)

wm(0) + t2wm(1)

dt

t
,

making the change of variables t =
√

wm(0)
wm(1)s, one finds

ˆ ∞

0
t2(1−θ)

wm(0)wm(1)

wm(0) + t2wm(1)

dt

t
= wm(0)1−θwm(1)θ

ˆ ∞

0

s1−2θ

1 + s2
ds.

Since C =
´∞
0

s1−2θ

1+s2 ds =
π

2 sin(πθ) , this gives

∥∥t−θK2(t, a)
∥∥2
L2(R+, dtt )

= C
∞∑

m=0

wm(θ) ∥am∥2 .

!

Proof of lemma A.14. There is unique decomposition L2(SN−1) →
⊕

m Hm(RN )
with u $→ {pm}m and u =

∑
m pm as seen in theorem A.12. This map is an isome-

try between L2(SN−1) andH0(SN−1) and continuously linear betweenW 1,2(SN−1)
and H1(SN−1). Thus lemma A.15 showed that the decomposition is a linear home-
omorphism between

W s,2(SN−1) =
(
W 1,2(SN−1), L2(SN−1)

)
1−s,2

and (
H1(SN−1), H0(SN−1)

)
1−s,2

= Hs(SN−1);

that is the statement of lemma A.14. !

Now we come to the second part estimating the energy of the solution to the
Dirichlet problem on A1,R = B1 \BR for a fixed 0 < R < 1. We start with estimat-
ing them for polynomials and after that we will use these estimates to conclude it
for general functions.

Consider the following Dirichlet problem:
Let p, q ∈ Hm(RN ) be given, and let P : A1,R → R be the unique solution of

(A.26)

{
∆P = 0, on A1,R

P (x) = p(x) and P (Rx) = q(x) for all x ∈ SN−1

Lemma A.16. Let p, q be two given constants, i.e. p, q ∈ H0(RN ), then there are
p̃, q̃ ∈ H0(RN ) s.t. the solution P of (A.26) is

(A.27) P (x) =

{
p̃+ q̃ ln(r), if N = 2

p̃+ q̃
|x|N−2 , if N > 2;
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furthermore we have the estimate

(A.28)

ˆ
A1,R

|DP |2 =

{
2π

− ln(R) |p− q|2, if N = 2
N(N−2)ωN

R2−N−1 |p− q|2, if N > 2;

Proof. It is a standard calculation that ln(r) for N = 2 and |x|2−N for N > 2 are
harmonic on RN \{0}, hence the P (x) = P (r) defined by (A.27) are harmonic. The
boundary conditions in (A.26) translate to

P (1) = p hence p̃ = p for N = 2 and p̃+ q̃ = p for N > 2

P (R) = q hence p̃+ q̃ ln(R) = q for N = 2 and p̃+
q̃

R2−N
= q for N > 2.

In the case of N = 2 one solves for q̃ = q−p
ln(R) , in the case of N > 3 for q̃ = q−p

R2−N−1 .
Apply Green’s formula on the annulus and then insert the boundary conditions in
the second to obtain:ˆ

A1,R

|DP |2 =

ˆ
∂A1,R

P
∂P

∂ν
=

ˆ
SN−1

P (x)
∂P

∂r
(x)−

ˆ
∂BR

P (x)
∂P

∂r
(x)(A.29)

=

ˆ
SN−1

p(x)
∂P

∂r
(x)−

ˆ
∂BR

q(R−1x)
∂P

∂r
(x).

For N = 2, ∂P
∂r (r) = q̃

r otherwise ∂P
∂r (r) = (2−N)q̃

rN−1 , hence in two dimensions we
found ˆ

∂A1,R

P
∂P

∂ν
= 2π

(
p
∂P

∂r
(1)− q

∂P

∂r
(R)R

)
=

2π

− lnR
|p− q|2;

in higher dimensionsˆ
∂A1,R

P
∂P

∂ν
= NωN

(
p
∂P

∂r
(1)− q

∂P

∂r
(R)RN−1

)
=

N(N − 2)ωN

R2−N − 1
|p− q|2.

!
For the estimates in the case m ≥ 1 we introduce two functions:

f(t) =
cosh((N − 1)t)− 1

sinh(t)
(A.30)

f̃(t) =
t

t− t−1
.

Lemma A.17. Let p, q ∈ Hm(RN ), m > 0, be given. Then there are p̃, q̃ ∈
Hm(RN ) s.t. that the solution to (A.26) has the form

(A.31) P (x) = p̃(x) +K[q̃](x) = p̃(x) +
q̃(x)

|x|N+2m−2
;

furthermore we can estimate the energy either by

(A.32)

ˆ
A1,R

|DP |2 − 2m+N − 2

R−m−N+2 −Rm
∥p− q∥2 ≤ f(ln(R−m))m

(
∥p∥2 + ∥q∥2

)
;

or by

(A.33)

ˆ
A1,R

|DP |2 ≤ 4Nf̃(R−m)m
(
∥p∥2 + ∥q∥2

)
.

Proof. The Kelvin transform maps harmonic polynomials q̃ ∈ Hm(RN ) to harmonic
functions on RN \{0}, homogeneous of degree 2−N−m. Hence P defined by (A.31)
is harmonic on RN \ {0}. The boundary conditions impose p̃(x) + q̃(x) = p(x) and
Rmp̃(x) +R2−N−mq̃(x) = q(x). Solving this for p̃ and q̃ gives

p̃(x) =
R2−N−mp(x)− q(x)

R2−N−m −Rm
and q̃(x) =

q(x)−Rmp(x)

R2−N−m −Rm
.
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As before we can use the Euler formula for homogenous function u of degree λ,
r ∂u(x)∂r = λu(x), to simplify the integrals and inserting P (x) = p(x), P (Rx) = q(x)
for all x ∈ SN−1 we obtainˆ

∂A1,R

P
∂P

∂ν
=

ˆ
SN−1

p(x)DP (x) · x−RN−2

ˆ
SN−1

q(x)DP (Rx) ·Rx

=

ˆ
SN−1

p(x) (mp̃(x) + (2−N −m)q̃(x))

−RN−2

ˆ
SN−1

q(x)
(
mRmp̃(x) + (2−N −m)R2−N−mq̃(x)

)

=
m

R2−N−m −Rm

([
R2−N−m +

(
1 +

N − 2

m

)
Rm

]
∥p∥2

+

[
Rm+N−2 +

(
1 +

N − 2

m

)
R−m

]
∥q∥2 −

(
2 +

N − 2

m

)
2⟨p, q⟩

)
.

To obtain the first estimate (A.32), subtract 2m+N−2
R−m−N+2−Rm ∥p− q∥2 from the inte-

gral above and use −2⟨p, q⟩ = ∥p− q∥2 − ∥p∥2 − ∥q∥2, which gives

−
(
2 +

N − 2

m

)
2⟨p, q⟩ = 1

m
(2m+N − 2) ∥p− q∥2

− ∥p∥2 − (1 +
N − 2

m
) ∥p∥2 − ∥q∥2 − (1 +

N − 2

m
) ∥q∥2 .

We then concludeˆ
A1,R

|DP |2 − 2m+N − 2

R−m−N+2 −Rm
∥p− q∥2 =

m

R−m−N+2 −Rm

((
R−m−N+2 − 1

)
+

(
1 +

N − 2

m

)
(Rm − 1)

)
∥p∥2

+
m

R−m−N+2 −Rm

((
Rm+N−2 − 1

)
+

(
1 +

N − 2

m

)(
R−m − 1

))
∥q∥2 .

One easily checks that the function g(y) = (ya − 1) − a(y − 1) ( defined for y > 0
and a > 1 ) attains its minimum at y = 1: g(1) = 0 i.e. a(y − 1) ≤ ya − 1. In our
case that gives

(
1 + N−2

m

)
(Rm − 1) ≤

(
Rm+N−2 − 1

)
and

(
1 + N−2

m

)
(R−m − 1) ≤(

R−m−N+2 − 1
)
. Hence we can simplify toˆ

A1,R

|DP |2 − 2m+N − 2

R−m−N+2 −Rm
∥p− q∥2

≤ m
R2−N−m +Rm+N−2 − 2

R2−N−m −Rm

(
∥p∥2 + ∥q∥2

)
≤ mf(ln(R−m))

(
∥p∥2 + ∥q∥2

)
;

where we used

R2−N−m +Rm+N−2 − 2

R2−N−m −Rm
≤

cosh
((
1 + N−2

m

)
ln(R−m)

)
− 1

sinh(ln(R−m))
≤ f(ln(R−m))

with R2−N−m −Rm ≥ R−m −Rm.

To deduce (A.33), we estimate quite brutally −2⟨p, q⟩ ≤ ∥p∥2 + ∥q∥2. As coeffi-
cient in front of ∥p∥2 we get

R2−N−m +
(
1 + N−2

m

)
Rm +

(
2 + N−2

m

)

R2−N−m −Rm

≤
2
(
2 + N−2

m

)
R−m

R−m −Rm+N−2
≤ 4N

R−m

R−m −Rm
.
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In the last inequality we used that R−m −Rm+N−2 ≥ 1
2 (R

−m −Rm). This can be
checked as follows: y ∈]0, 1] $→ (y−1 − ya)− 1

2 (y
−1 − y) for a ≥ 1 is nonincreasing

and vanishes for y = 1; the inequality follows inserting y = Rm and a = 1 + N−2
m .

The coefficient in front of ∥q∥2 is

Rm+N−2 +
(
1 + N−2

m

)
R−m +

(
2 + N−2

m

)

R2−N−m −Rm

≤
2
(
2 + N−2

m

)
R−m

R2−N−m −Rm
≤ 4N

R−m

R−m −Rm
.

This completes the proof. !
To conclude the interpolation theorem we need shortly to analyse the behaviour

of the two functions f and f̃ in (A.30).

Lemma A.18. f is monotone increasing, hence f(ln(R−m)) is increasing in m
and decreasing in R ∈]0, 1]. Furthermore we have limy↘0 f(y) = 0;
f̃ is monotone decreasing, hence for δ > 0, m−2δ f̃(R−m) is decreasing in m and

increasing in R ∈]0, 1]. Furthermore we have m−2δ f̃(em
−δ

) ≤ 2
mδ → 0 as m → ∞.

Proof. f ′ is given by

f ′(y) =
g(N − 1, y)

sinh2(y)
;

where we introduced the function

g(a, y) = a sinh(ay) sinh(y)− cosh(y)(cosh(ay)− 1) for a ≥ 1, y > 0

f ′ is strictly positive because firstly we have g(1, y) = sinh2(y)−cosh2(y)+cosh(y) =
cosh(y)− 1 > 0 for y > 1 and secondly

∂g

∂a
(a, y) = sinh(ay) sinh(y) + ay cosh(ay) sinh(y)− y cosh(y) sinh(ay)

≥ sinh(ay) sinh(y) + y(cosh(ay) sinh(y)− cosh(y) sinh(ay))

= sinh(ay) sinh(y)− y sinh((a− 1)y)

≥ y(sinh(ay)− sinh((a− 1)y)) ≥ 0.

We used the addition theorem and sinh(y) ≥ y for y ≥ 0. Therefore we found
g((N − 1), y) ≥ g(1, y) > 0. Using L’Hospital’s rule we have

lim
y↘0

f(y) =
(N − 1) sinh((N − 1)0)

cosh(0)
= 0.

f̃ ′(y) = −2y−1

(y−y−1)2 < 0, hence f̃ is monotone decreasing and so is m $→ m−2δ. Finally

the conclusions on the behaviour of f(ln(R−m)) and m−2δ f̃(R−m) follow because
for 0 < R ≤ 1 we have m $→ ln(R−m) is monotone increasing and R ∈]0, 1] $→
ln(R−m) monotone decreasing. The last estimate just follows from sinh(y) ≥ y:

m−2δ f̃(em
−δ

) =
em

−δ

2m2δ sinh(m−δ)
≤ 2

mδ
.

!
Now we are able to prove the interpolation lemma A.9:

Proof of Lemma A.9. Recall that ϵ > 0 and 1 > s > 1
2 are given. Fix δ = s− 1

2 > 0.
Lemma A.14 stated that W s,2(SN−1) = Hs(SN−1) and each element of Hs(SN−1),
a subset of the vector space

⊕∞
m=0 Hm(RN ). Therefore it is sufficient to proof

(A.13) under the additional assumption that for some finite large M we have u =
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∑M
m=0 pm, v =

∑M
m=0 qm for pm, qm ∈ Hm(RN ). But we have to ensure that the

constant in (A.13) is independent of M .
Firstly observe, that if Pm, Pn are the solutions to (A.26) corresponding to pairs
pm, qm ∈ Hm(RN ), pn, qn ∈ Hn(RN ) constructed in the preparatory lemmas A.16,
A.17. Hence we deduce (as in the proofs to lemma A.16, A.17, using the Euler
formula)ˆ

∂A1,R

Pn
∂Pm

∂ν
=

ˆ
SN−1

pn(x)DPm(x) · x−RN−2

ˆ
SN−1

qn(x)DPm(Rx) ·Rx

=m⟨pn, p̃m⟩+ (2−N −m)⟨pn, q̃m⟩
−RN−2

(
mRm⟨qn, p̃m⟩+ (2−N −m)R2−N−m⟨qn, q̃m⟩

)

=0

due to the orthogonality (A.15). To every 0 ≤ m ≤ M let Pm be the solu-
tion of (A.26) to the pair pm, qm ∈ Hm(RN ) given by the decompositions u =∑M

m=0 pm, v =
∑M

m=0 qm. For P =
∑M

m=0 Pm we have just shown that

ˆ
A1,R

|DP |2 =

ˆ
∂A1,R

P
∂P

∂ν
=

M∑

m=0

ˆ
∂A1,R

Pm
∂Pm

∂ν
.

Let us define Rϵ = e−m−1−δ
ϵ for some sufficiently large mϵ > 1 with the property

that f(y) < ϵ for 0 < y < (mϵ − 1)−δ and 4N 2
mδ

ϵ
< ϵ. Such an mϵ exists as a

consequence of lemma A.18.

Finally for any Rϵ ≤ R < 1 we may fixmR ≥ mϵ s.t. e−(mR−1)−1−δ

< R ≤ e−m−1−δ
R .

Using the results of lemma A.18 we conclude for m ≥ mR

m−2δ f̃(R−m) ≤ m−2δ
R f̃(R−mR) ≤ m−2δ

R f̃((e−m−1−δ
R )−mR) <

ϵ

4N
.

And for m < mR i.e. m ≤ mR − 1 we deduce

f(ln(R−m)) ≤ f(ln(R−(mR−1)))

≤ f(−(mR − 1) ln(e−(mR−1)−1−δ

)) = f((mR − 1)−δ) < ϵ.

Finally we fix the constant C = C(ϵ, R) to be the maximum of the constants of

lemma A.16 i.e. 2π
ln(R) for N = 2, N(N−2)ωN

R2−N−1 for N > 2 and the one of (A.32) i.e.
2m+N−2

R−m−N+2−Rm for m ≤ mR.
We have shown thatˆ

∂A1,R

Pm
∂Pm

∂ν
≤ ϵm2s

(
∥pm∥2 + ∥qm∥2

)
for m ≥ mR;

and ˆ
∂A1,R

Pm
∂Pm

∂ν
≤ ϵm

(
∥pm∥2 + ∥qm∥2

)
+ C ∥pm − qm∥2 for m < mR.

This proves a first version of the interpolation since we found
ˆ
A1,R

|DP |2 =
mR−1∑

m=0

ˆ
∂A1,R

Pm
∂Pm

∂ν
+

M∑

m=mR

ˆ
∂A1,R

Pm
∂Pm

∂ν

≤ ϵ
M∑

m=0

m2s
(
∥pm∥2 + ∥qm∥2

)
+ C

mR−1∑

m=0

∥pm − qm∥2

≤ ϵ
∞∑

m=0

m2s
(
∥pm∥2 + ∥qm∥2

)
+ C

∞∑

m=0

∥pm − qm∥2 ;
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the right hand side is independent ofM , so that we can pass to the limit asM → ∞.
Although

∑∞
m=1 m

2s ∥pm∥2 does not contain the 0th. order lemma, A.14 provides
only equivalence for complete norms. Choosing ϵ > 0 ( a priory smaller, if necessary,
to absorb the constants) we got, for any admissible W s,2-norm:

ˆ
A1,R

|Dw|2 ≤ ϵ
(
∥u∥2W s,2(SN−1) + ∥v∥2W s,2(SN−1)

)
+ C ∥u− v∥2SN−1 .

To pass actually to (A.13) we can use a small oberservation and the Poincaré
inequality (A.8). Let u, v ∈ W s,2(SN−1) be given, apply the so far obtained inter-
polation to ũ = u− 1

2 (
ffl
SN−1 u+

ffl
SN−1 v) and ṽ = v− 1

2 (
ffl
SN−1 u+

ffl
SN−1 v) providing

w̃ ∈ W 1,2(A1,R). w̃ = w+ 1
2 (
ffl
SN−1 u+

ffl
SN−1 v) has the desired properties because

∥ũ∥2W s,2(SN−1) = ∥ũ∥2L2(SN−1) + #ũ$2
s,SN−1

= ∥ũ∥2L2(SN−1) + #u$2
s,SN−1

and by the Poincaré inequality (A.8) and 2ũ = (u−
ffl
SN−1 u)+(v−

ffl
SN−1 v)+(u−v)

2 ∥ũ∥L2(SN−1) ≤ C
(
#u$s,SN−1 + #v$s,SN−1

)
+ ∥u− v∥L2(SN−1) .

We argue similarly for ṽ. In conclusion we obtained
ˆ
A1,R

|Dw|2 =

ˆ
A1,R

|Dw̃|2 ≤ ϵ
(
∥ũ∥2W s,2(SN−1) + ∥ṽ∥2W s,2(SN−1)

)
+ C ∥ũ− ṽ∥2SN−1

≤ Cϵ
(
#u$2

s,SN−1 + #v$2
s,SN−1

)
+ C ∥u− v∥2SN−1 .

!

Appendix B. Q-valued functions

B.1. Fractional Sobolev spaces for Q-valued functions. As before we restrict
ourself to 0 < s ≤ 1. Since AQ(Rn) fails to be a linear space, L2(Ω,AQ(Rn)) is not
a Banach space. Hence we are not in a setting for classical interpolation methods.
Nonetheless there are two ways to define W s,2(Ω,AQ(Rn)) in a natural way:

(a) using Almgren’s bilipschitz embedding ξ : AQ(Rn) → Rm, theorem 0.2.1,

W s,2(Ω,AQ(Rn)) = {u ∈ L2(Ω,AQ(Rn)) : ξ ◦ u ∈ W s,2(Ω,Rm)};

(b) using the Gagliardo norm

W s,2(Ω) = {u ∈ L2(Ω,AQ(Rn)) : #u$2
s,Ω =

ˆ
Ω×Ω

G(u(x), u(y))2

|x− y|N+2s
dxdy < ∞}.

The equivalence of both definitions follows from the bilipschitz property of ξ i.e
c|ξ ◦ u(x) − ξ ◦ u(y)| ≤ G(u(x), u(y)) ≤ |ξ ◦ u(x) − ξ ◦ u(y)| for some c = c(n,Q).
This implies

(B.1) c#ξ ◦ u$2
s,Ω ≤ #u$2

s,Ω ≤ #ξ ◦ u$2
s,Ω.

We had seen that all definitions of W s,2(Ω,Rm) are equivalent in case of a Lipschitz
regular domain Ω ⊂ RN .
Combining the definition of W s,2(Ω,AQ(Rn)) as suggested in (a) with (B.1) we
obtain nearly all statements for single valued functions as well for multiple valued
functions. For the sake of completeness we state them now for Q-valued functions:
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Corollary B.1. To any given −1 < a < 1 and 1
2 < s ≤ 1 there is a constant C >

with the property, that if u ∈ W s,2(SN−1 ∩ {xN > a},AQ(Rn)), v ∈ W s,2(SN−1 ∩
{xN < a},AQ(Rn)) with u

∣∣
SN−1∩{xN=a}

= v
∣∣
SN−1∩{xN=a}

then

(B.2) U(x) =

{
u(x), if x ∈ SN−1, xN > a

v(x), if x ∈ SN−1, xN < a

defines an element in W s,2(SN−1,AQ(Rn)) satisfying

(B.3) #U$s,SN−1 ≤ C
(
#u$s,SN−1∩{xN>a} + #v$s,SN−1∩{xN<a}

)

Lemma B.2. Let 1
2 < s ≤ 1 and ϵ > 0 be given then there exists Rϵ > 0 with

the property: for any Rϵ ≤ R < 1 there is C = C(ϵ, R, n,Q) s.t. given u, v ∈
W s,2(SN−1,AQ(Rn)) one can find w ∈ W 1,2(A1,R,AQ(Rn)) on the annulus A1,R =
B1 \BR with w(x) = u(x) and w(Rx) = v(x) for x ∈ SN−1 that satisfies

(B.4)

ˆ
A1,R

|Dw|2 ≤ ϵ
(
#u$2

s,SN−1 + #v$2
s,SN−1

)
+ C ∥G(u, v)∥2SN−1 .

Proof. For s = 1 we set Rϵ = 1 − ϵ. We obtain w̃ ∈ W 1,2(A1,R,Rm) applying
observation (A.12) to ξ ◦ u, ξ ◦ v with ϵ′ = 1 − R, Rϵ < R < 1. We obtain
w̃ ∈ W 1,2(A1,R,Rm). The retraction w = ρ ◦ w̃ ∈ W 1,2(A1,R,AQ(Rn)) then has up
to a constant the desired properties.
For 1

2 < s < 1 we proceed similarly. Firstly apply lemma A.9 to ξ◦u, ξ◦v that gives
w̃ ∈ W 1,2(A1,R,Rm). As before the retraction w = ρ ◦ w̃ ∈ W 1,2(A1,R,AQ(Rn))
fulfils up to a constant the desired properties. !

B.2. Dirichlet minimizers on cylinders, Remark 1.5.1. As announced in Re-
mark 1.5.1 we present the proof given in [12] to the following observation.

Lemma B.3. u(x) ∈ W 1,2(Ω,AQ(Rn)) and U(x, t) = u(x) is Dirichlet minimizing
on Ω× R then u itself is minimizing in Ω

Proof. Given an arbitrary competitor v(x) ∈ W 1,2(Ω,AQ(Rn)) to u i.e. u
∣∣
∂Ω

= v
∣∣
∂Ω

on ∂Ω. We fix an interpolation w ∈ W 1,2(Ω × [0, 1],AQ(Rn)) satisfying w(x, 0) =
u(x), w(x, 1) = v(x) for all x ∈ Ω and w(x, t) = u

∣∣
∂Ω
(x) = v

∣∣
∂Ω
(x) on ∂Ω× [0, 1].

V (x, t) =

⎧
⎪⎨

⎪⎩

w(x, L+ 1− t) if L ≤ t ≤ L+ 1

v(x) if − L ≤ t ≤ L

w(x, L+ 1 + t) if − L− 1 ≤ t ≤ −L.

defines an admissible competitor to U . Hence the minimality of U ensures

2(L+ 1)

ˆ
Ω
|Du|2 =

ˆ
Ω×[−L−1,L+1]

|DU |2

≤
ˆ
Ω×[−L−1,L+1]

|DV |2 = 2L

ˆ
Ω
|Dv|2 + 2

ˆ
Ω×[0,1]

|Dw|2.

This is equivalent to
ˆ
Ω
|Du|2 ≤

(
1− 1

L+ 1

)ˆ
Ω
|Dv|2 + 1

L+ 1

ˆ
Ω×[0,1]

|Dw|2.

for all L ≥ 0, proving the minimality of u. !
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B.3. W s,p-selection for s > 1
p . The proof of this lemma is due to Camillo De

Lellis, but has not been published so far.

Lemma B.4. Let s > 1
p , Q ∈ N be given, then for u ∈ W s,p([0, 1],AQ(Rn)) we

can find v = (v1, . . . , vQ) : [0, 1] → (Rn)Q with the property that

(i)

[v(t)] =
Q∑

i=1

!vi(t)" = u(t) for all t ∈ [0, 1];

(ii) v ∈ W s′,p([0, 1], (Rn)Q) for any s′ < s i.e. there is a positive constant C
depending on Q and p, s, s′ s.t.

ˆ
[0,1]×[0,1]

|v(x)− v(y)|p

|x− y|1+ps′
dxdy ≤ C

ˆ
[0,1]×[0,1]

G(u(x), u(y))p

|x− y|1+ps
dxdy

Proof. The lemma is a consequence of the results on regular selections of multival-
ued functions, [11, theorem 1.1], and the following estimate
(B.5)ˆ

0≤x≤y≤1

maxσ,τ∈[x,y]|f(σ)− f(τ)|p

|x− y|1+ps′
dxdy ≤ C

ˆ
0≤σ≤τ≤1

|f(σ)− f(τ)|p

|σ − τ |1+ps
dσdτ

for a constant C depending only on p, s′ < s.

We start with proving (B.5). W s,p([0, 1]) ⊂ C0,s− 1
p ([0, 1]) for ps > 1 i.e. for any

σ, τ ∈ [0, 1]

(B.6) |f(σ)− f(τ)| ≤ C#f$s,p,[0,1]

where we used the abbreviation #f$p
s,p,[a,b] =

´
[a,b]×[a,b]

|f(x)−f(y)|p
|x−y|1+ps dxdy. This holds

by standard theory. Or it may be concluded from lemma 1.4.2. To do so extend f
to f̃ ∈ W s,p([−1, 3],Rn) by

f̃ =

⎧
⎪⎨

⎪⎩

f(−t), if − 1 < t < 0

f(t), if 0 < t < 1

f(1− t), if 1 < t < 2.

The means f̃(x, r) =
ffl x+r
x−r f̃ are well-defined for all x ∈ [0, 1] and r < 1. (B.6) for f̃

in the case of p = 2 agrees with (1.4.3) in lemma 1.4.2 since (1.4.2) is satisfied with
β = 1

2 ; for general p the calculations have to be adapted classically. We conclude:
for all σ, τ ∈ [0, 1]

|f(σ)− f(τ)| = |f̃(σ)− f̃(τ)| ≤ C#f̃$s,p,[−1,2] ≤ C#f$s,p,[0,1].

For any f ∈ W s,p([a, b],Rn) we may applying (B.6) to the rescaled function
fa,ρ(t) = f(a+ ρt) with ρ = b− a:

max
x,y∈[a,b]

|f(x)− f(y)| = max
σ,τ∈[0,1]

|fa,ρ(σ)− fa,ρ(τ)| ≤ C#fa,ρ$s,p,[0,1]

= Cρs−
1
p #f$s,p,[a,b] = C(b− a)s−

1
p #f$s,p,[a,b].
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Inserting this in the left hand side of (B.5) gives
ˆ
0≤x≤y≤1

maxσ,τ∈[x,y]|f(σ)− f(τ)|p

|x− y|1+ps′
dxdy

≤ C

ˆ
0≤x≤y≤1

(y − x)ps−1

(y − x)1+ps

ˆ
x≤σ≤τ≤1

|f(σ)− f(τ)|p

(τ − σ)1+ps
dτdσ dxdy

≤ C

ˆ
0≤σ≤τ≤1

(ˆ σ

0

ˆ 1

τ
(y − x)p(s−s′)−2dydx

)
|f(σ)− f(τ)|p

(τ − σ)1+ps
dτdσ

≤ C

ˆ
0≤σ≤τ≤1

|f(σ)− f(τ)|p

(τ − σ)1+ps
dτdσ.

The constant C is determined by

ˆ σ

0

ˆ 1

τ
(y−x)δ−2dydx ≤

ˆ σ

0

ˆ 1

σ
(y−x)δ−2dydx ≤

{
1−21−δ

δ(δ−1) , if δ = p(s− s′) ̸= 1

ln(2), if δ = p(s− s′) = 1
.

Making use of Almgren’s bilipschtiz embedding ξ we deduce that (B.5) holds as
well for multivalued functions i.e. for any u ∈ W s,p([0, 1],AQ(Rn))
(B.7)ˆ

0≤x≤y≤1

maxσ,τ∈[x,y] G(u(σ), u(τ))p

|x− y|1+ps′
dxdy ≤ C

ˆ
0≤σ≤τ≤1

G(u(σ), u(τ))p

|σ − τ |1+ps
dσdτ.

We observed W s,p([0, 1],AQ(Rn)) ⊂ C0,s− 1
p ([0, 1],AQ(Rn)), so that we may ap-

ply the theory of regular selections developed in [11]. Especially we use the proof of
[11, theorem 1.1]. For a given u ∈ W s,p([0, 1],AQ(Rn) we can find v = (v1, . . . , vQ) :

[0, 1] → (Rn)Q continuous with the property that [v(t)] =
∑Q

i=1!vi(t)" = u(t) on
[0, 1] and there is a constant CQ > 0 s.t. for any 0 ≤ x ≤ y ≤ 1

|v(x)− v(y)| ≤ CQ max
σ,τ∈[x,y]

G(u(σ), u(τ)).

Combining this with (B.7) gives the remaining part (ii) of the lemma. !

Appendix C. Construction of bilipschitz maps between B1+ and
ΩF ∩B1

Before showing the general situation, ΩF ∩B1 with ΩF = {(x′, xN ) ∈ RN : xN >
F (x′)}, F ∈ C1(RN−1), we consider the similar case of a bilipschitz map between
B1 and the upper half ball B1+ = B1 ∩ {xN > 0} that preserves ”radial” homo-
geneity.

It is of interest for us to preserve ”radial” homogeneity in the context of con-
structing competitors. We want to make use of the interpolation lemma on annuli,
lemma A.9. We cannot use a generic bilipschitz map between B1 and B1+, be-
cause in general it is not true that if G : U → V is bilipschitz and ψk : U → U
a sequence of diffeomorphisms that satisfy ψk → id then G ◦ ψk ◦ G−1 → 1 with
Lip(G ◦ ψk ◦G−1) → 1 as k → ∞.

Lemma C.1. There is a bilipschitz map G : B1 → B1+ that preserves ”radial”
homogeneity in the sense that

G ◦ 1

R
◦G−1(y) =

(
1− 1

R

)
c+

1

R
y;

where c = eN
2 =

(
0, . . . , 0, 1

2

)
and 0 < R.
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Proof. Wemake the ansatzG(x) = c+s(x̂)x for a piecewise C1 function s : SN−1 →
∂B1+ with bounded derivative, where x̂ = x

|x| . The constrains |c+ s(x)x|2 = 1 for

x ∈ SN−1 ∩ {xN ≥ a} and ⟨eN , c+ s(x)x⟩ = 0 for x ∈ SN−1 ∩ {xN ≤ a} for some
−1 < a < 0 determine s and a uniquely to a = − 1√

5
and

s(x) = s(xN ) =

⎧
⎨

⎩

1
2

(
−xN +

√
x2
N + 3

)
, if xN ≥ − 1√

5

− 1
2xN

, if xN ≤ − 1√
5
.

The derivative is

s′(xN ) =

⎧
⎪⎨

⎪⎩

− 1
2

(
1− xN√

x2
N+3

)
, if xN > − 1√

5

1
2x2

N
, if xN < − 1√

5
;

So we may check the bounds |s′| < 3 and 1
2 ≤ s(xN ) ≤

√
5
2 . Furthermore we got

grad s(x) = gradSN−1 s(x) = s′(xN )(1− x⊗ x)eN .
The inverse is explicitly given by G−1(y) = 1

s(ŷ−c)
(y− c). We got that G and G−1

are almost everywhere C1 with derivatives

DG(x) = s(x̂)1+ x̂⊗ grad s(x̂)

DG−1(y) =
1

s(ŷ − c)
1− ŷ − c⊗ grad s(ŷ − c)

s2(ŷ − c)
.

The ”radial” homogeneity follows i.e. G◦ 1
R ◦G−1(y) = G( 1

s(ŷ−c)

y−c
R ) =

(
1− 1

R

)
c+

1
Ry. Therefore DG ◦ 1

R ◦G−1 = 1
R 1 converging to 1 as R → 1. !

Lemma C.2. For any F ∈ C1(RN−1) that satisfies F (0) = 0, gradF (0) = 0 and
∥gradF∥∞ < 1

4 there exists a C1-diffeomorphism

GF : B1+ → ΩF ∩B1

with bounds ∥DGF − 1∥∞ ,
∥∥DG−1

F − 1
∥∥
∞ < 10 ∥gradF∥∞.

Furthermore if Fk is a sequence of admissible maps with Fk → F in C1 then
GFk → GF in C1.

Proof. Let F be fixed, then ψ : (x′, xN ) $→ (x′, xN +F (x′)) is a C1-diffeomorphism
between RN

+ and ΩF . Its inverse is ψ−1(x′, xN ) = (x′, xN − F (x′)). We make
again an ansatz for G = GF . Set G(x) = ψ(s(x̂)x) where s : SN−1 → R+

satisfies ψ(s(y) y) ∈ ΩF ∩ SN−1 for all y ∈ SN−1
+ . The inverse for such a G is

G−1(x) = 1

s(ψ̂−1(x))
ψ−1(x).

As a consequence of the implicit function theorem applied to the level set at 1 of
the auxiliary function

h(y, s) = |ψ(s y)|2,

s ∈ C1(SN−1
+ ,R+) has the desired properties. Note that s(eN ) = 1 because

h(eN , 1) = 1.
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Existence: to every y ∈ SN−1
+ there exists s(y) ∈ R+ s.t. h(y, s(y)) = 1 and

1− ∥gradF∥∞ ≤ 1
s ≤ 1 + ∥gradF∥∞, because

h(y, s) = s2 |y + F (s y′)

s
eN |2

≤ s2 (1 + ∥gradF∥∞)2 < 1 if s <
1

1 + ∥gradF∥∞

≥ s2 (1− ∥gradF∥∞)2 > 1 if s >
1

1− ∥gradF∥∞
.

C1
loc homeomorphism: every tuple (y0, s0) with h(y0, s0) = 1 has a neighbour-

hood U × I in SN−1
+ × R+ and a C1 map s : U → I, C1 with h(y, s(y)) = 1 on U .

This follows from the implicit function theorem, because at x0 = s0 y0

1

2
s
∂h

∂s
= 1− ⟨ψ(x0),ψ(x0)− dψ(x0)x0⟩

= 1− ψN (x0) (F (x′
0)− ⟨gradF (x′

0), x
′
0⟩) ≥ 1− 2 ∥gradF∥∞ ≥ 1

2
.

Uniqueness/ well-definition: this is a consequence of ∂h∂s > 0 for each such tuple
(y0, s0), so there cannot be two s1 < s2 with h(y0, s1) = 1 = h(y0, s2).

Bounds on grad s = gradSN−1 s: Fix any generic τ ∈ TySN−1 and so 0 =(
Dτh+ ∂h

∂s Dτs
)
(y, s(y)). Furthermore writing x = s(y)y we have

1

2s
Dτh(y, s) =

1

s
⟨ψ(x), dψ(x)sτ⟩ = τNF (x′) + ψN (x′)⟨gradF (x′), τ ′⟩,

that gives

| 1
2s

Dτh(y, s)| ≤
√
2 ∥gradF∥∞ .

We conclude

|Dτs(y)| = s2
| 1
2sDτh|
| 12s

∂h
∂s |

≤ 3s2 ∥gradF∥∞ ≤ 16 ∥gradF∥∞ .

Bounds on DG,DG−1: One calculates explicitly that

DG(x) = dψ(s(x̂)x) (s(x̂)1+ x̂⊗ grad s(x̂))

= s(x̂)1+ x̂⊗ grad s(x̂) + (eN ⊗ gradF ) (s(x̂)1+ x̂⊗ grad s(x̂)) .

As we have seen |s(x̂)− 1| ≤ ∥gradF∥∞
1−∥gradF∥∞

. Combining all obtained bounds one can

conclude ∥DG(x)− 1∥∞ ≤ 10 ∥gradF∥∞. DG−1 is given explicitly by

DG−1(x) =
1

s(ψ̂−1(x))
dψ−1(x)− ψ̂−1(x)⊗ grad s(ψ̂−1(x))

s2(ψ̂−1(x))

=
1

s(ψ̂−1(x))
1− 1

s(ψ̂−1(x))
eN ⊗ gradF − ψ̂−1(x)⊗ grad s(ψ̂−1(x))

s2(ψ̂−1(x))
.

Combing as before all obtained bounds especially | 1

s(ψ̂−1(x))
− 1| ≤ ∥gradF∥∞ one

can get
∥∥DG−1(x)− 1

∥∥
∞ ≤ 6 ∥gradF∥∞.
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The convergence statement follows as a consequence of the implicit function
theorem, because Fk → F in C1 then implies sFk → sFk in C1. !
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Part 2. Examples of holomorphic functions vanishing to infinite order
at the boundary

2.4. Introduction

In general branching phenomena are of interest in geometric measure theory and
geometry, and are strongly related to vanishing phenomena in the context of PDE’s.
There is some literature on branching in the interior and one has unique continu-
ation results for PDE’s in the interior of their domains of definition. Little seems
to be known towards the boundary. This part presents examples of holomorphic
functions that vanish to infinite order at points at the boundary of their domain of
definition. Thereafter we discuss some implication in the context of minimal sur-
faces, Q-valued functions and unique continuation. These might be an invitation
and motivation to the study on boundary behaviour.
Let me shortly explain how I got motivated to this approach, looking for holomor-
phic functions vanishing to infinite order with a ”large” zero set.
My own attempts trying to understand the boundary regularity of Q-valued Dirich-
let minimizing imposed the question: ”Can one say something about the structure
of the singular set towards the boundary?”
Almgren’s frequency function is a key tool to study the singular set in the inte-
rior. It is monotone quantity that enables a stratification procedure, compare for
example [12, section 3.4 - 3.6] or the work of N. Wickramasekera et al. Such a strat-
ification procedure built on a monotone quantity had been successfully applied as
well in other context. (In some sense they can be considered refinements of the ”di-
mension reducing” argument of Federer [6].) Unfortunately Almgren’s frequency
function is only monotone in the interior, so a direct extension to the boundary is
not possible.
An inspiring discussion with N. Wickramasekera about possible expectations about
the structure of the singular set towards the boundary made it apparent that a
first impression could be obtained by looking at harmonic or holomorphic functions
with zeros accumulating towards the boundary. This link was motivated by the fact
that Almgren’s frequency functions has been successfully applied in the context of
unique continuation (e.g. [7]) where the vanishing order is measured with the fre-
quency function. The example of this part are perhaps of interest in other context
such as minimal surfaces and unique continuation. This is discussed in more detail
in section 2.7.
To give a first impression we state here an implication to Q-valued Dirichlet mini-
mizers heuristically. We avoid introducing some terminology and the precise state-
ment is corollary 2.7.5.

Corollary*:
Given 0 < s ≤ 1, an integer Q ≥ 2 there is a Q-valued function u, Dirichlet mini-
mizing with respect to compact perturbations satisfying the additional properties:

(i) the trace u
∣∣
∂R2+

is ”smooth”;

(ii) if s < 1 then Hs(sing(u)) = 1 and if s = 1 then dimH(sing(u)) = 1.

But now let us state the underlying properties of the holomorphic functions. We
present examples of holomorphic functions on the half plane C+ = {z ∈ C : ℜ(z) >
0} that admit C∞-extension to C+ and vanish to infinite order at boundary points.
Their properties are:

Lemma 2.4.1. Let 0 < s ≤ 1 be given. There exist
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(i) a nowhere dense compact Cantor type subset Es ⊂ [0, 1] with Hs(Es) = 1
if 0 < s < 1 and dimH(E1) = 1;

(ii) holomorphic functions F (z), G(z) on C+ with the property that f(z) =
e−F (z), g(z) = G(z)e−F (z) admit C∞-extensions to C+. Moreover, f, g
vanish to infinite order at any z ∈ −iEs and for every z ∈ −iEs there is a
sequence zk ∈ C+ with zk → z and g(zk) = 0 for all k.

The functions are constructed similar to the Weierstrass’ function, an example
of a non-differentiable function. Instead of an infinite series we use infinite products
of the following holomophic building blocks:

a(z) = e−z−α

for 0 < α < 1(2.4.1)

b(z) = cos(ln(z))e−z−α

for 0 < α < 1.

The results of sections 2.5 and 2.6 combined prove lemma 2.4.1. The section 2.7
presents some first implications to branching of minimal surfaces, Q-valued func-
tions and unique continuation.

2.5. Construction and properties of the set Es

The construction is a classical Cantor type construction. Nonetheless for the
sake of completeness and to fix certain parameters we present the construction in
detail. We follow closely an approach of Falconer in [5, Theorem 1.15].

Lemma 2.5.1. Let 0 < s ≤ 1 be given. Then there is a nowhere dense compact
subset Es ⊂ [0, 1] s.t. Hs(Es) = 1 if 0 < s < 1 and dim(E1) = 1.

Proof. The set Es is obtained classically as the intersection of a decreasing family
of compact sets

Es =
∞⋂

k=1

2k⋃

l=1

Ek,l.

The compact subintervals Ek,l are defined inductively.
We fix a sequence of parameters by

1

σk
=

{
1
s , if 0 < s < 1

1 + k
2
3 − (k − 1)

2
3 , if s = 1

In both cases we have σk ≤ σk+1 for all k. If s = 1 we have 1
σk+1

− 1
σk

= (k+1)
2
3 +

(k − 1)
2
3 − 2k

2
3 < 0 due to concavity of t $→ t

2
3 .

We choose E0,1 = [0, 1] and proceed inductively. Suppose Ek−1,l, l = 1, . . . , 2k−1

defined, then Ek,2l−1, Ek,2l are the closed subintervals obtained by removing an
open interval in the middle of Ek−1,l with

(2.5.1) |Ek,2l−1|σk = |Ek,2l|σk =
1

2
|Ek−1,l|σk .

We obtained 2k closed intervals Ek,l of equal length

(2.5.2) |Ek,l| = 2−
1

σk |Ek−1,l′ | =
{
2−

k
s , if 0 < s < 1

2−k−k
2
3 , if s = 1

where we used that
∑k

l=1 σ
−1
k = k

s if 0 < s < 1 and
∑k

l=1 σ
−1
k = k + k

2
3 if s = 1.

In a first step we will check that Hs(Es) ≤ 1 (H1(E1) = 0). To do so, let δ > 0

be given. Due to (2.5.2) there is k0 > 0 with |Ek0,l| < δ. Hence {Ek,l}2
k

l=1 is an
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admissible δ-cover for Es for any k ≥ k0. With (2.5.2) in mind we have

(2.5.3) Hs
δ(Es) ≤

2k∑

l=1

|Ek,l|s =

⎧
⎨

⎩
2k
(
2−

k
s

)s
= 1, if 0 < s < 1

2k2−k−k
2
3 → 0, if s = 1, k → ∞.

Now in the second step we check that Hs(Es) ≥ 1 if s < 1 and Hσ(E1) = +∞
for all σ < 1 if s = 1. Equivalently we have to show that for any ϵ > 0 there is a
δ > 0 with the property that for any δ−cover U of Es we have

∑

C∈U
diam(C)s ≥ Hs

δ(Es) > 1− ϵ, if 0 < s < 1(2.5.4)

∑

C∈U
diam(C)σ ≥ Hσ

δ (E1) >
1

ϵ
. if s = 1 i.e. σ < 1

Let ϵ > 0, σ < 1 be given. We fix k0 > 0 large, determined later s.t. at least
σk0 > σ and 0 < δ < |Ek0,l|.

Fix an admissible δ−cover U by intervals Ek,l. Hence k > k0 for any of these
intervals. The compact intervals Ek,l are relative open to the compact set Es, so
that the cover can assumed to be finite. Removing all intervals that are contained
in some other of the collection we can even assume that they are mutually disjoint.
Let Ek,2l−1 (or Ek,2l) be one of the shortest intervals in U . Its companion Ek,2l

(respectively Ek,2l−1) has to be in U as well because all intervals are disjoined and
they are one of shortest. The sums in (2.5.4) do not increase if we replace these
two intervals by its precessor Ek−1,l ⊃ Ek,2l−1 ∪ Ek,2l because

|Ek,2l−1|s + |Ek,2l|2 = |Ek−1,l|s, if 0 < s < 1

|Ek,2l−1|σ + |Ek,2l|σ = 21−
σ
σk |Ek−1,l|σ ≥ |Ek−1,l|σ, if s = 1 i.e. σ < 1

where we used (2.5.1) and σk ≥ σk0 > σ. We may proceed in this way, replacing
the shortest intervals by larger ones without increasing the value of the sums, until
we reach that all intervals are of same size i.e. U → {Ek1,l}2

k1

l=1 for some k1 > k0.
We conclude

∑

C∈U
diam(C)s ≥

2k1∑

l=1

|Ek1,l|s = 1, if 0 < s < 1

∑

C∈U
diam(C)σ ≥

2k1∑

l=1

|Ek1,l|σ = 2(1−σ)k1−σk
2
3
1 >

1

ϵ
. if s = 1 i.e. σ < 1

where we used (2.5.3) and k1 > k0 with k0 > 0 sufficient large s.t. 2(1−σ)k0−σk
2
3
0 > 1

ϵ .

It remains to argue that the assumption that the δ−cover is made out of inter-
vals Ek,l is no real restriction. Fix any δ-cover V . We can assume that it consists
of open intervals without changing the value in (2.5.4) significantly. Since Es is
compact the cover can assumed to be finite.

Firstly let us argue for E1. Any interval I ∈ V intersects at most three intervals
EkI ,l with |EkI ,l| ≤ |I| < |EkI−1,l|. Otherwise I would need to contain an interval
of length at least |EkI−1,l| due to the Cantor type construction. This is impossible
by the choice of kI . Replacing I by these at most three intervals EkI ,· and the same
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for any other interval in I we obtain an open cover U by intervals Ek,l. Furthermore
∑

Ek,l∈U
|Ek,l|σ ≤ 3

∑

I∈V
|I|σ.

We had just shown that the left hand side is larger then 1
ϵ , so (2.5.4) holds for

s = 1.
If 0 < s < 1 we transform the δ-cover V iteratively without increasing the sum in
(2.5.4) to a δ-cover U by sets in Ek,l. At first contracting each interval I ∈ V we
pass to a cover V1 by closed intervals J with endpoints that are the endpoints of
some Ek,l. This process ensures

∑
I∈V |I|s ≥

∑
J∈V1

|J |s. Let J be any such closed
interval in the cover and J ⊂ Ek−1,l for some k, l. Then

(2.5.5) |J ∩ Ek,2l−1|s + |J ∩ Ek,2l|s ≤ |J ∩ Ek−1,l|s

because |Ek,2l−1|s + |Ek,2l|s = |Ek−1,l|s and the left-hand side of (2.5.5) increases
faster then the right-hand side. If either J ∩Ek,2l−1 ̸= Ek,2l−1 or J ∩Ek,2l ̸= Ek,2l,
we repeat the process, replacing J ∩Ek,2l−1 and J ∩Ek,2l by smaller intervals. This
process terminates after finitely many steps till we reach the desired cover U . By
construction we ensured

∑
J∈V1

|J |s ≥
∑

Ek,l∈U |Ek,l|s = 1. This proves (2.5.4) if
0 < s < 1.

!

2.6. construction of the holomorphic functions

The Cantor set Es was obtained as

Es =
∞⋂

k=1

2k⋃

l=1

Ek,l.

Based on this construction, we define the index set:

I =
{
(k, l) : k = 1, . . . ,∞, l = 1, . . . , 2k

}
with τ = (k, l) ∈ I.

Recall that the enumeration had been chosen s.t. Ek,2l−1 ∪ Ek,2l ⊂ Ek−1,l∀(k, l).
The Cantor set Es constructed in lemma 2.5.1, i.e. (2.5.2), had the property that

|Eτ | = |Ek,l| =
{
2−

k
s , if 0 < s < 1

2−k−k
2
3 , if s = 1

∀τ ∈ I.

We denote with yτ the left boundary point of the compact interval Eτ . Furthermore
it is useful to fix some terminology. R− = {z = x+ i0: x < 0} denotes the negative
real axis. We will use z + iyτ = rτeiθτ for any τ ∈ I. And for any y ∈ R let R−iy
be the by −iy translated negative real axis i.e. the set {x − iy : x < 0}. And we
will use

R− − iEs =
⋃

y∈Es

(R− − iy) = {x− iy : x ∈ R−, y ∈ Es}.

The proof to lemma 2.4.1 is split into two parts. In the next paragraph we
construct holomorphic functions F,G based on the Cantor set Es and then in the
subsequent paragraph the C∞ extension is proven.

2.6.1. Holomorphy. On the slit plane C \R− the principal value of the logarith-
mic function ln : C \R− → C∩ {−π < ℑ(z) < π} is single valued and holomorphic.
So will be all roots for α ∈ R defined as zα = eα ln(z).
As composition of holomorphic functions on C \ R− the building blocks, a(z) =

e−z−α

, b(z) = cosh(ln(z))e−z−α

are clearly holomorphic on C \ R−
(z + iyτ )−αk = rτe−iαθτ is single valued and holomorphic on C \ (R− − iyτ ) ⊂
C \ (R− − iEs) for every τ ∈ I, αk ∈ R.
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Lemma 2.6.1. Given a sequence of complex numbers ak ∈ C with
∑∞

k=0 2
k|ak| <

∞ and a sequence of real numbers 0 < αk ≤ 1 then

F (z) =
∑

τ∈I
ak(z + iyτ )

−αk

is holomorphic on C \ {R− − iEs} and so is e−F (z).

Proof. For a fixed 0 < d < 1 we have for any z ∈ {z ∈ C : dist(z,−iEs) > d}
satisfies |(z + iyτ )−αk | = r−αk

τ ≤ d−1. So that the sum
∑
τ∈I |ak(z + iyτ )−αk | ≤

d−1
∑∞

k=1 2
k|ak| < ∞ converges absolutely. F is therefore the uniform limit of

holomorphic functions on {z ∈ C : dist(z,−iEs) > d} and so itself holomorphic. d
has been arbitrary and therefore F is holomorphic on C \ (R−− iEs). e−F (z) is the
composition of two holomorphic functions and so itself holomorphic on the same
set. !

Lemma 2.6.2. Given a sequence of non-negative real numbers bk ∈ R+ that satis-
fies

∑∞
k=0 2

kbk < ∞, then for any subset J ⊂ I

(2.6.1) GJ (z) =
∏

τ∈J
cos(bk ln(z + iyτ ))

is holomorphic on C \ (R− − iEs) and uniformly bounded by

|GJ (z)| ≤ e
∑

τ∈J bk|θτ | ≤ eπ
∑∞

k=0 2kbk .

Proof. As a composition of holomorphic functions cos(bk ln(z+iyτ )) is holomorphic
on C\(R−−iEs) for every τ ∈ I. Since cos(x+iy) = cos(x) cosh(y)−i sin(x) sinh(y)
we have cos(bk ln(z+ iyτ )) = cos(bk ln(rτ )) cosh(bkθτ )+ i sin(−bk ln(rτ )) sinh(bkθτ ).
So we got that for every τ ∈ I

|cos(bk ln(rτ )) cosh(bkθτ )| ≤ |cos(bk ln(z + iyτ ))| ≤ cosh(bkθτ )(2.6.2)

ℑ(cos(bk ln(z + iyτ )))

ℜ(cos(bk ln(z + iyτ )))
= tan(−bk ln(rτ )) tanh(bkθτ ).(2.6.3)

To show that (2.6.1) is well defined and holomorphic, fix 0 < d < 1 and k0 ∈ N
sufficient large s.t. 0 ≤ −bk ln(d) ≤ π

4 for all k ≥ k0. This ensures that for any
z ∈ {d < dist(z,−iEs) <

1
d} and τ ∈ I ∩ {k ≥ k0} we have −π

4 < bk ln(rτ ) <
π
4 .

Hence ln(cos(bk ln(z + iyτ ))) is a holomorphic function on {d < dist(z,−iEs) <
1
d}

if τ ∈ I ∩ {k ≥ k0}.
(2.6.4)

ln(cosh(bkθτ )) + ln(cos(bk ln(rτ ))) ≤ ln(|cos(bk ln(z + iyτ ))|) ≤ ln(cosh(bkθτ ))

where we used (2.6.2). This is the real part of ln(cos(bk ln(z+ iyτ ))). Its imaginary
part, the argument of cos(bk ln(z+ iyτ )) can be estimated by |bk ln(rτ )| taking into
account that |tanh| < 1 and −π

4 < bk ln(rτ ) <
π
4 . Combining both we deduce

|ln(|cos(bk ln(z + iyτ ))|)| ≤ ln(cosh(bkθτ ))− ln(cos(bk ln(rτ ))) + |bk ln(rτ )|.

One checks that h(x) = − ln(cos(x))
x is monotone increasing on ]0, π2 [, hence for

|x| ≤ π
4 we have − ln(cos(x)) ≤ C|x| with C = h(π4 ). Consequently we have

|ln(|cos(bk ln(z + iyτ ))|)| ≤ bk|θτ |+ (C + 1)|bk ln(rτ )| ≤ (π − ln(d)(C + 1))bk;
∑
τ∈I∩{k≥k0}|ln(cos(bk ln(z + iyτ )))| < (π − ln(d)(C + 1))

∑∞
k=k0

2kbk converges

uniformly on {d < dist(z,−iEs) <
1
d} so that

G1(z) = e
∑

τ∈J ,k≥k0
ln(cos(bk ln(z+iyτ )))



62 J.HIRSCH

is holomorphic on {d < dist(z,−iEs) <
1
d}. (2.6.4) showed that ℜ(ln(cos(bk ln(z +

iyτ )))) ≤ ln(cosh(bkθτ )) ≤ bk|θτ | and therefore

|G1(z)| = e
∑

τ∈J ,k≥k0
ℜ(ln(cos(bk ln(z+iyτ )))) ≤ e

∑
τ∈J ,k≥k0

bk|θτ |.

G2(z) =
∏

τ∈J
k<k0

cos(bk ln(z + iyτ ))

is the product of finitely many holomorphic functions on C \ (R− − iEs) and so
itself holomorphic with

|G2(z)| ≤
∏

τ∈J
k<k0

|cos(bk ln(z + iyτ ))| ≤
∏

τ∈J
k<k0

cosh(bkθτ ) ≤ e
∑

τ∈J ,k<k0
bk|θτ |

where we used (2.6.2). Multiplication of G1 and G2 closes the argument. !

cos(bk ln(z+ iyτ )) = 0 for z = −iyτ + e−
mπ−π

2
bk for any τ = (k, l) ∈ I and m ∈ N,

so that

G(z) = GI(z) = 0 for all z = −iyτ + e−
mπ−π

2
bk , τ = (k, l) ∈ I,m ∈ N.

Consequently we got the following:

Corollary 2.6.3. Let αk, ak, bk be sequences of non-negative real numbers, that
satisfies 0 ≤ αk ≤ 1 and

∑∞
k=1 2

kak,
∑∞

k=1 2
kbk < ∞ then

f(z) = e−F (z), g(z) = G(z)e−F (z)

are holomorphic on C \ (R− − iEs). Furthermore

g(z) = 0 for z = −iyτ + e−
mπ−π

2
bk , τ = (k, l) ∈ I,m ∈ N.

2.6.2. C∞-extension. In this section we will show that one can choose sequences
ak, bk,αk appropriately (satisfying the conditions of corollary 2.6.3) such that f, g
are holomorphic on C+ and admit a C∞-extension to C+ = {z ∈ C : ℜ(z) > 0}).

Firstly we check that the building blocks, a, b, introduced in (2.4.1), admit such
a C∞-extension to C+ and are vanishing to infinite order in 0 i.e.

(2.6.5) lim
|z|↘0

z∈C+

∣∣∣∣
dm

dzm
a(z)

∣∣∣∣ ,
∣∣∣∣
dm

dzm
b(z)

∣∣∣∣ = 0.

By induction one shows that there are constants C = C(m), D = D(m) > 0
and µ = µ(m), ν = ν(m) ∈ R (depending only on m) s.t. for any 0 < α < 1,
z = reiθ ∈ C \ R−, r < 1

∣∣∣∣
dm

dzm
e−z−α

∣∣∣∣ ≤ C
∣∣z−2m

∣∣ |e−z−α

| = Cr−2me−ℜ(z−α)

and ∣∣∣∣
dm

dzm
cos(ln(z))

∣∣∣∣ =
∣∣∣∣µ

cos(ln(z))

zm
+ ν

sin(ln(z))

zm

∣∣∣∣ ≤ D r−m cosh(θ).

Hence (2.6.5) holds if r−me−ℜ(z−α) → 0 as r → 0 for everym ∈ N. This is equivalent
to ℜ(z−α) +m ln(r) → +∞ as r → 0. For z ∈ C+ \ {0} we have −π

2 ≤ θ ≤ π
2 and

so

ℜ(z−α) +m ln(r) = r−α cos(αθ) +m ln(r) ≥ r−α cos(α
π

2
) +m ln(r) → ∞(r → 0).

Similarly we can conclude the extension for f, g:
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Lemma 2.6.4. Let the sequences be ak = bk = 2−k

k2 and

αk =

{
α, if 0 < s < 1 for some s < α < 1.

1− 1
2k

− 1
3

Then the function f, g of corollary 2.6.3 are holomorphic on C \ (R− − iEs) and
admit C∞ extensions to C+ with

lim
dist(z,−iEs)→0

z∈C+

∣∣∣∣
dm

dzm
f(z)

∣∣∣∣ ,
∣∣∣∣
dm

dzm
g(z)

∣∣∣∣ = 0.

Proof. That f, g are well-defined and holomorphic is the content of corollary 2.6.3.It
remains to check the C∞-extension.
Due to the general Leibnitz rule dm

dzm f(z) =
∑m

n=0

(m
n

)
G(m−n)(z)(e−F (z))(n) it is

sufficient to check that for any m,n ∈ N,

lim
dist(z,−iEs)→0

z∈C+

|G(m)(z)(e−F (z))(n)| = 0.

Firstly we note that F is holomorphic on C+, (e−F (z))′ = −F ′(z)e−F (z) and

|F (m)(z)| ≤
∑

τ∈I
ak|

dm

dzm
(z + iyτ )

−αk | ≤ m!d−m−1
∞∑

k=1

ak2
k

for z ∈ C+, dist(z,−iEs) ≥ d, so that by induction we deduce

(2.6.6)

∣∣∣∣
dm

dzm
e−F (z)

∣∣∣∣ ≤ Cd−m−1|e−F (z)| for z ∈ {dist(z,−iEs) ≥ d}.

for a constant C > 0 that depends only on m and
∑∞

k=1 ak2
k = π2

6 . Secondly,
Cauchy’s integral formula

G(m)(z) =
m!

2πi

˛
∂Bd(z)

ψ ◦G(w)

(w − z)m+1
dw

applies since G is holomorphic on Bd(z). Combining it with the uniform bound on
|G| (lemma 2.6.2) gives

(2.6.7) |G(m)(z)| ≤ m!

dm
sup

w∈Bd(z)
|G(w)| ≤ Cm!

dm
.

Considering (2.6.6), (2.6.7) and the general Leibniz rule the C∞ lemma follows if
for every m ∈ N

d−m|e−F (z)| = e−(ℜ(F (z))+m ln(d)) → 0 for d = dist(z,−iEs) → 0.

This is equivalent to

(2.6.8) ℜ(F (z)) +m ln(d) → +∞ as d → 0.

To check it, let z ∈ C+ with d = dist(z,−iEs) > 0 be given. Fix y ∈ Es with
d = |z − iy| and τk = (k, l) ∈ I with y ∈ Eτk for each k ∈ N. Take k0 ∈ N with

(2.6.9) |Ek0+1,·| < d ≤ |Ek0,·|
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Hence for k ≤ k0 we have rτk ≤ d+ |Eτk | ≤ 2|Eτk | and so

ℜ(F (z)) =
∑

τ∈I
ak cos(αkθτ )r

−αk
τ ≥

k0∑

k=1

ak cos(αk
π

2
)r−αk
τk

≥ 1

2

k0∑

k=1

ak cos(αk
π

2
)|Eτk |−αk .

We will consider 0 < s < 1 and s = 1 separately.
If 0 < s < 1 we have ak cos(αk

π
2 )|Eτk |

−αk = k−2 cos(απ2 )ζ
k where ζ = 2

α
s −1 > 1.

We combine this with

(ζ − 1)
k0∑

k=1

k−2ζk = k−2
0 ζk0+1 − ζ +

k0−1∑

k=1

(k−2 − (k + 1)−2)ζk+1 ≥ k−2
0 ζk0+1 − ζ

to conclude that

ℜ(F (z)) +m ln(d) ≥ ck−2
0 ζk0+1 +m ln(d)− cζ

≥ ck−2
0 ζk0+1 − m ln(2)

s
(k0 + 1)− cζ → +∞ (k0 → ∞)

where c =
cos(απ

2 )
2(ζ−1) . This is equivalent to (2.6.8) since due to (2.6.9), − ln(2)

s (k0+1) <

ln(d) ≤ − ln(2)
s k0.

If s = 1, we have

(2.6.10) ak cos(αk
π

2
)|Eτk |−αk ≥ 1

2

2
1
4k

2
3

k
7
3

for k ≥ 9.

(2.6.10) holds because firstly |Eτk | = 2−k−k2/3

, αk = 1− 1
2k

− 1
3 and therefore

ln(2k|Eτk |−αk)

ln(2)
= (1− 1

2
k−

1
3 )(k + k

2
3 )− k ≥ k

2
3

4
for k ≥ 9.

Secondly, cos(αk
π
2 ) ≥ (1 − αk) = k− 1

3

2 because cos((1 − t)π2 ) ≥ t for 0 ≤ t ≤ 1.
Similar as before we have

(2.6.11) (2
1
6−1)

k0∑

k=9

2
k

2
3
4

k
7
3

=
2

k
2
3
0 + 2

3
4

k
7
3
0

−2
9
2
3
4

9
7
3

+
k0−1∑

k=9

2
k

2
3 + 2

3
4

k
7
3

− 2
(k+1)

2
3

4

(k + 1)
7
3

≥ 2
(k0+1)

2
3

4

k
7
3
0

−1,

where we used that k
2
3 + 2

3 ≥ (k + 1)
2
3 to conclude that the sum in the middle is

non-negative. We combine (2.6.10) and (2.6.11) to conclude

ℜ(F (z)) +m ln(d) ≥
k0∑

k=9

ak cos(αk
π

2
)|Eτk |−αk +m ln(d)

≥ c
2

(k0+1)
2
3

4

k
7
3
0

− c−m ln(2)(k0 + 1 + (k0 + 1)
2
3 ) → +∞ (k0 → ∞)

where c = 1

4(2
1
6 −1)

. As before it is equivalent to (2.6.8) because of (2.6.9), which is

equivalent to − ln(2)(k0 + 1 + (k0 + 1)
2
3 ) < ln(d) ≤ − ln(2)(k0 + k

2
3
0 ). !
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2.7. Applications

2.7.1. Minimal surfaces. Given a holomorphic function h on Ω ⊂ C open, Q ∈ N
one defines the irreducible holomorphic variety V ⊂ Ω× C by

(2.7.1) V = {(z, u) ∈ Ω× C : uQ = h(z)}.
Following Federer we associate to V an integer rectifiable current of real dimension
two denoted by !V". It is given by integration over the manifold part of V, Vreg.

i.e. Vreg. = {(z, u) : uQ = h(z), h(z) ̸= 0}.
Federer observed that !V" is a mass-minimizing cycle, since V , as a complex sub-
manifold of C2 is calibrated by the Kähler form (Wirtinger’s form).
If we take h = g, Ω = C+ in (2.7.1) we get the following example:

Example 2.7.1. Given 0 < s ≤ 1 and an integer Q ≥ 2 there is a mass-minimizing
cycle V ⊂ C+×C with the additional property that if s < 1 then Hs(V \ Vreg.) = 1

and if s = 1 then dimH(V \ Vreg.) = 1.

The additional property holds since V \Vreg. = {(z, 0) ∈ C+×C : G(z) = 0} and

therefore V \ Vreg. = {(z, 0) ∈ C+×C : G(z) = 0}∪−iEs. {(z, 0) ∈ C+×C : G(z) =
0} is countable so that the claim follows by the properties of Es.

Remark 2.7.2. For two dimensional minimal surfaces in R3 R. Ossermann had
shown in [18] that true branching points can be ruled out in the interior. If the
boundary curve is real analytic the existence branching points at the boundary can
be ruled out as well. This was shown by R. Gulliver and F. Leslie in [9] for two
dimensional surfaces in R3.
R. Gulliver presents in [8, Theorem 1.6] the following example:

Theorem 2.7.1. There is a smooth minimal immersion X(Ω) ⊂ R3, Ω ⊂ C+

simply connected with the following property: X maps ∂Ω diffeomorphically onto a
regular C∞ Jordan curve Γ ⊂ R3 and has a true branch point at z = 0 ∈ Γ. The
set of self intersections of X consists of the union of an infinite sequence of disjoint
real analytic arcs, each which joints two points of Γ lying on opposite sides of the
branch point.

His construction uses the Weierstrass representation with a holomorphic vector-
field that comes from a perturbation of the building block a(z) = e−zα

, (2.4.1),
with α = 1

7 . It could be of interest to see if one can follow his analysis using one of
the holomorphic functions f or g (lemma 2.4.1) to construct a minimal immersion
X in R3 with C∞ boundary curve and a large set of true branching points on the
boundary.

2.7.2. Dirichlet minimizing Q-valued functions. One of the implications of
lemma 2.4.1 in the context of Q-valued functions had been stated heuristically in
the introduction. The holomorphic functions f, g generate examples of Q-valued
functions that are Dirichlet minimizing with respect to compact perturbations. Fur-
thermore these examples are defined on R2

+ = {(x, y) ∈ R2 : x > 0} ≃ C+ and have
”large” singular set towards the boundary. As we mentioned before the classical
theory of Dirichlet minimizing Q-valued functions had been developed in [1] and
revisited with modern methods in [12].
Before we are going to state the precise properties of the examples we recall the
the definition of the singular set and related results thereafter the definition of
Ck(Ω,AQ(Rm) for a domain Ω ⊂ Rn.

Definition of the singular set:
Given a Dirichlet minimizer u ∈ W 1,2(Ω,AQ(Rm)), Ω ⊂ RN open, a point y ∈ Ω
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is called a regular point of u if ∃U ⊂ Ω open neighborhood of y, ui ∈ C∞(U,Rm)
harmonic with

u(x) =
Q∑

i=1

!ui(x)" for a.e. x ∈ U

and ui(x) ̸= uj(x), ∀x ∈ U or ui ≡ uj . The open set (by definition) of all regular
points is denoted by reg(u). sing(u) then denotes the relative closed complement
Ω \ reg(u).

An outcome of Almgrens original work is an estimate on the size of the singular
set in the interior, compare [12, Theorem 0.11].

Theorem 2.7.2. u ∈ W 1,2(Ω,AQ(Rm)) Dirichlet minimizing has dimH(sing(u)) ≤
N − 2. In the case of N = 2, sing(u) is countable.

This estimate had been improved by C. De Lellis and E. Spadaro, [12, Theorem
0.12].

Theorem 2.7.3. u as above and N = 2 then sing(u) consists of isolated points.

That the upper bound on the Hausdorff dimension is sharp is a consequence of
the following:

Theorem 2.7.4. Let V ⊂ CN × Cm ≃ R2N × R2m be an irreducible holomoprhic
variety with the property that ∃Ω ⊂ CN open, C1−regular, V is is a Q : 1 cover
of Ω under the orthogonal projection and M(V ∩ (Ω × Cm)) < ∞. Then ∃u ∈
W 1,2(Ω,AQ(R2m) Dirichlet minimizing with graph(u) = V ∩ (Ω× Cm).

This was original be proven by Almgren, [1, Theorem 2.20]. E. Spadaro found a
very elegant more elementary proof, [22, Theorem 0.1].

Hence the holomoprhic varieties V = Vh defined in (2.7.1) generate examples of
Dirichlet minimizers:

(2.7.2) uh(z) =
∑

v∈C
vQ=h(z)

!v" for z ∈ Ω.

Definition of Ck(Ω,AQ(Rm):
Let Ω be a domain in Rn and let

∧m(RN ,Rm) denote the space of m-linear maps
from RN to Rm. u ∈ C0(Ω,AQ(Rm)) is said to be in Ck(Ω,AQ(Rm) if: ∃Uk : Ω →
AQ(Rm ×

∧1(RN ,Rm)× · · ·×
∧k(RN ,Rm)) continuous,

x $→ Ux =
Q∑

i=1

!(ui(x), U
1
i (x), . . . , U

k
i (x))"

with Um
i (x) = Um

j (x) whenever ui(x) = uj(x). Uk defines the k-jet JUk : Ω×RN →
AQ(Rm) by

JUk
x (y) =

Q∑

i=1

!ui(x) + U1(x)(y − x) + . . .+
1

k!
Uk(x)((y − x) ∧ · · · ∧ (y − x))"

and it satisfies

G(u(y), JUk
x (y)) = o(|x− y|k) ∀x ∈ Ω.

It is straightforward to check that if ui ∈ Ck(Ω,Rm) with ui(x) ̸= uj(x) ∀x ∈ Ω or



REGULARITY QUESTIONS 67

ui ≡ uj ,

(2.7.3) u(x) =
Q∑

i=1

!ui(x)"

is in Ck(Ω,AQ(Rm)) with Uk =
∑Q

i=1!(ui(x), Dui(x), . . . , Dkui(x))".

Now we are able to state properly the properties of the examples:

Corollary 2.7.5. Let 0 < s ≤ 1 and an integer Q ≥ 2 be given, then there is
u ∈ W 1,2

loc.(R+,AQ(R2)), Dirichlet minimizing with respect to compact perturbations

of R2 and the additional properties

(i) u
∣∣
∂R2+

∈ Ck(∂R2
+,AQ(R2) for all k ∈ N;

(ii) if s < 1 then Hs(sing(u)) = 1 and if s = 1 then dimH(sing(u)) = 1.

Proof of lemma 2.7.5. Let 0 < s ≤ 1 be fixed and g(z) = G(z)e−F (z) be the holo-
morphic function on C+ constructed in lemma 2.4.1.

u(z) =
∑

v∈C
vQ=g(z)

!v" z ∈ C+

is Dirichlet minimizing and an element of W 1,2(Ω,AQ(R2)) for any C1-regular
bounded subset Ω ⊂ C+ as a consequence of theorem 2.7.4.
It remains to check the C∞-regularity at the boundary and the property of the
singular set.
We start with the regularity of the trace. By construction we had g(z) = G(z)e−F (z)

is holomorphic on C\(R−−iEs) and g
∣∣
C+

has an C∞ extension to C+. Furthermore

G(z) ̸= 0 for all z ∈ C\ (R− iEs), |G(z)| < C uniformly on C\ (R−− iEs). So that
for any Br(z0) ⊂ C\(R−iEs) there exists a holomorphic branch ψ : G(Br(z0)) → C
of the Q-th. root. u is then explicitly given by

u(z) =
Q−1∑

l=0

!ξl (ψ ◦G)(z) e−
1
QF (z)" ∀z ∈ Br(z0), ξ = ei

2π
Q .

Hence we are in the situation of (2.7.3) on Br(z0). The k-jet of u is

Uk
z =

Q∑

l=0

!(ξl (ψ ◦ g)(z), ξl (ψ ◦ g)(1)(z), . . . , ξl (ψ ◦ g)(k)(z))"

where we write ψ ◦ g(z) for (ψ ◦G)(z) e−
1
QF (z). The C∞-regularity will follow from

(2.7.4) |(ψ ◦ g)(m)(−iy)| = O(dist(y, Es)) for all m ∈ N.
The same arguments used in the proof to lemma 2.6.4 show that

|F (m)(z)e−
1
QF (z)| ≤ C d−m−1|e−

1
QF (z)| = C

(
d−Q(m+1)e−ℜ(F (z))

) 1
Q

for all z ∈ {dist(z,−iEs) ≥ d} and a constant C = C(m) > 0. Let z ∈ {dist(z,R−
iEs) > d} be given, then ψ ◦ G is holomorphic on Bd(z). So Cauchy’s integral
formula gives

(ψ ◦G)(m) =
m!

2πi

˛
∂Bd(z)

ψ ◦G(w)

(w − z)m+1
dw

and therefore

|(ψ ◦G)(m)(z)| ≤ m!

dm
sup

w∈Bd(z
|G(w)|

1
Q ≤ Cm!d−m.
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We used the uniform bound on |G|. Hence we deduce

|(ψ ◦G)(m)(z)e−
1
QF (z)| ≤ C

(
d−Qme−ℜ(F (z))

) 1
Q ∀z ∈ {dist(z,R− iEs) > d}.

So (2.7.4) follows from (2.6.8) where we showed that for any m ∈ N
ℜ(F (z)) +m ln(d) → +∞ as d → 0.

It remains to check the properties of the singular set. By construction of u we have

sing(u) = {z ∈ C+ : g(z) = 0} ∪ −iES

because g has the property that to any z ∈ −iEs there exists zk ∈ C+, zk → 0 and
g(zk) = 0. Set Ak = {z ∈ C+ : g(z) = 0, 2k ≤ ℜ(z) < 2k+1} for any k ∈ Z. Ak

consists of isolated points since g is holomorphic on C+ and therefore Hs(Ak) = 0
for all k ∈ Z and s > 0. Hence we deduce

Hs(−iEs) ≤ Hs(sing(u)) ≤ Hs(−iEs) +
∑

k∈Z
Hs(Ak) = Hs(−iEs).

!
This example, corollary 2.7.5, shows that the singular set can behave very badly

towards the boundary. In the interior a blow-up analysis together with a Federer
reduction argument is used to study the singular set, compare [12, section 3]. With
the following calculation we want to show that this procedure cannot directly trans-
ferred to the boundary.
Almgren’s celebrated frequency function is the major tool to carry out the blow-up
analysis. For u ∈ W 1,2(Ω,AQ(Rm)) with Ω ⊂ RN open it is defined as

(2.7.5) I(u, y, r) =
D(u, y, r)

H(u, y, r)
=

r2−N
´
Br(y)∩Ω|Du|2

r1−N
´
∂Br(y)

|u|2
.

Its essential property is, compare [12, Theorem 3.15]

Theorem 2.7.6. Let u ∈ W 1,2(Ω,AQ(Rm)) be Dirichlet minimizing, then for any
y ∈ Ω either ∃0 < R < dist(y, ∂Ω) s.t. u

∣∣
BR(y)

≡ 0 or r ∈]0, dist(y, ∂Ω)[$→ I(u, y, r)

is absolutely continuous, nondecreasing and positive.

Consequently the following limit is well-defined in the interior of Ω

(2.7.6) I(u, y) = lim
r→0

I(u, y, r)

In the planar case C. De Lellis and E. Spadaro determined the spectrum of y $→
I(u, y) to be {P

Q : P ∈ N} ∪ {0}, [12, Proposition 5.1].
The following examples show that this may fail at boundary points.

Corollary 2.7.7. Let Q ≥ 2, P > 0 be two divisor free integers then there exists a
Dirichlet minimizer u ∈ W 1,2

loc.(R2
+,AQ(R2)) with

(i) u
∣∣
∂R2+

∈ Ck(∂R2
+,AQ(R2));

(ii) for all k ∈ N, zk = (e−kπ+π
2 , 0) is a branch point of ”order” P

Q i.e.

I(u, zk) =
P
Q ;

(iii) limr→0 I(u, 0, r) = +∞.

Corollary 2.7.8. Let Q > 2 be an integer, 0 < s < 1 be given there is a Dirichlet
minimizer u ∈ W 1,2

loc.(R2
+,AQ(R2) with

(i) u
∣∣
∂R2+

∈ Ck(∂R2
+,AQ(R2));

(ii) sing(u) = ∅, but u(z) = Q!0" ∀z ∈ −iEs with Hs(Es) = 1 ;
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(iii) limn→∞ I(u,−iyk, Rn) = +∞ for a countable subset {yk}k∈N ⊂ Es and a
sequence Rn → 0.

Before we are give the proofs, we collect two observations to calculate energy and
L2-norm for multivalued functions arising from the holomorphic varieties defined
in (2.7.4).
AQ(C) ≃ AQ(R2) enables us to define a Q-root ”globally”, i.e. an ”inverse” to the
holomorphic function z $→ zQ by

(2.7.7) Π(w) =
∑

vQ=w

!v" =
Q∑

l=0

!ξlv0"

for ξ = ei
2π
Q and an arbitrary choice of v0 ∈ C with vQ0 = w. Furthermore we

observed already before that for y ∈ Ω with h(y) ̸= 0 there is an open neighborhood
U with |h(z)− h(y)| < |h(y)|, ∀z ∈ U . There is an holomorphic branch ψ of the Q-

root on |w−h(y)| < |h(y)| so that Π(w) =
∑Q−1

l=0 !ξlψ(w)" on B|h(y)|(h(y)) showing
that Π is continuous on all of C. Furthermore

(2.7.8) u(z) = Π ◦ h(z) =
Q−1∑

l=0

!ξl(ψ ◦ h)(z)" ∀z ∈ U.

Hence u ∈ Ck(U,AQ(R2)) for all k since we are in the situation mentioned in (2.7.3)
with

(2.7.9) Uk
z =

Q−1∑

l=0

!(ξl(ψ ◦ h)(z), ξl(ψ ◦ h)(1)(z), . . . , ξl(ψ ◦ h)(k)(z))" ∀z ∈ U.

We note that Uk does not depend on the particular choice of the branch.
As an immediate consequence of (2.7.8) the L2 norm of u is given by

(2.7.10)

ˆ
V ∩Ω

|u|2 = Q

ˆ
V ∩Ω

|h|
2
Q

for any V ⊂ C. The energy of u on V ∩ Ω due to (2.7.9) is then

(2.7.11)

ˆ
V ∩Ω

|Du|2 = 2Q

ˆ
V ∩Ω\{h ̸=0}

|(ψ ◦ h)′|2 =
2

Q

ˆ
V ∩Ω\{h ̸=0}

|h|
2
Q−2|h′|2

where ψ is any local choice of a branch ψ to the Q-root.
For instance we can use it to calculate the value of the frequency at interior

branch points.

Example 2.7.3. Let h be holomorphic on Ω ⊂ C and u the related Dirchlet
minimizer (see (2.7.2)). Let z0 ∈ Ω be a zero of order P ≥ 1 then

I(u, z0) =
P

Q
.

z0 is a zero of order P , hence there is k holomorphic on {z : |z| < δ}, k0 = k(0) ̸=
0 s.t. h(z0 + z) = zP k(z). We may assume that |k(z)| > 1

2 |k0|
2 for all |z| < δ.

h′(z0 + z) = PzP−1k(z)(1 + zk′(z)
Pk(z) ) = P

z h(z0 + z)(1 + o(z)) and so we may use

|h|
1
Q−1|h′|(z0 + z) = P |z|

P
Q−1|k0|

1
Q (1 + o(z)) in (2.7.11) to deduceˆ

Br(z0)
|Du|2 =

2P 2

Q

ˆ
Br(0)

|z|
2P
Q −2|k0|

2
Q (1 + o(z)) = 2πP |k0|

2
Q r

2P
Q (1 + o(r))

for any 0 < r < δ. Similarly, using (2.7.10) we have

1

r

ˆ
∂Br(z0)

|u|2 =
Q

r

ˆ
∂Br

|z|
2P
Q |k0|

2
Q (1 + o(z)) = 2πQ|k0|

2
Q r

2P
Q (1 + o(r)).
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We conclude the claim:

I(u, z0, r) =
P

Q
(1 + o(r)).

For boundary points z0 ∈ ∂Ω we are facing two problems to estimate I(u, z0, r)
and possible limits. Firstly r $→ I(u, z0, r) is a priory not a monotone quantity as
it is in the interior. Secondly, even restricting ourselves to minimizers of the the
type (2.7.2), h(z) does not necessarily have a convergent Taylor series at z0.
The strategy will be to use the mean value theorem for integration in the ra-
dial variable to estimate D(u, z0, r) =

´
Br(z0)∩Ω|Du|2 from below by a multiple of

H(u, z0, r) =
1
r

´
∂Br(z0)∩Ω|u|

2. The strategy is motivated by the following observa-

tion. Given a function k holomorphic in a neighbourhood of z ∈ C and k(z) ̸= 0,
γ > 0, for any ξ = eiθ one has

Dξ|k|2 = 2ℜ
(
kk′ξ

)
= 2|k|2ℜ

(
k′

k
ξ

)

and so Dξ|k|γ = γ
2 |k|

γ−2Dξ|k|2 = γ|k|Γℜ
(

k′

k ξ
)
. This gives

(2.7.12) γ|k|γ−2|k′|2 = γ|k|γ
∣∣∣∣
k′

k

∣∣∣∣
2

≥ γ|k|γℜ
(
k′

k
ξ

)2

= ℜ
(
k′

k
ξ

)
Dξ|k|γ .

The strategy is illustrated in the following example:

Example 2.7.4. Let h(z) = e−z−α

, 0 < α < 1 (h(z) = a(z) of (2.4.1)) in (2.7.2),
i.e. u(z) =

∑
v∈C

vQ=h(z)

!v" with z ∈ Ω = C+, then u satisfies

lim
R→0

I(u, 0, R) = +∞.

We will use the classic radial notation z = reiθ. We define

ϕ(z) = rℜ
(
h′(z)

h(z)
eiθ
)

= αℜ(z−α) = αr−α cos(αθ).

Combining (2.7.11) with (2.7.12) (h(z) ̸= 0∀z ∈ C+) givesˆ
BR∩C+

|Du|2 =

ˆ
BR∩C+

2

Q
|h(z)|

2
Q−2|h′|2 ≥

ˆ
BR∩C+

ϕ(z)

r

∂

∂r
|h|

2
Q

=

ˆ π
2

−π
2

ˆ R

0
ϕ(reiθ)

(
∂

∂r
|h|

2
Q

)
(reiθ)drdθ

Since ϕ(z) ≥ αr−θ cos(απ2 ) > 0, (2.7.12) implies that ∂
∂r |h|

2
Q ≥ 0. Thus we apply

the 1−dimensional mean value theorem to deduce that to every |θ| ≤ π
2 there is

0 < rθ ≤ R withˆ π
2

−π
2

ˆ R

0
ϕ(reiθ)

(
∂

∂r
|h|

2
Q

)
(reiθ)drdθ =

ˆ π
2

−π
2

ϕ(rθe
iθ)

ˆ R

0

(
∂

∂r
|h|

2
Q

)
(reiθ)drdθ

≥ αR−α cos(α
π

2
)

ˆ π
2

−π
2

|h|
2
Q (Reiθ)dθ.

(Although it is not needed for the argument that the map θ $→ ϕ(rθeiθ) is measur-
able, since it is sufficient that it is point wise bounded, we included a short remark
below on the measurability.) We conclude using (2.7.10) thatˆ

BR∩C+

|Du|2 ≥ α

Q
R−α cos(α

π

2
)
1

R

ˆ
∂BR∩C+

|u|2

i.e. I(u, 0, R) ≥ α
QR−α cos(απ2 ) → +∞(R → 0).
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As we mentioned in the proof we give a short comment concerning the measur-
ability.

Remark 2.7.5. We will prove the following claim:
Let µ be a Borel regular measure on a path-connected space X, ν a measure on some
space Y and µ × ν the product measure on X × Y . Given f, g with the properties
that

(i) f , g, fg are µ× ν summable, i.e. f, g, fg ∈ L1(X × Y, µ× ν) ;
(ii) x $→ f(x, y) is continuous for a.e. y.

Then there exists a map χ : Y → X s.t.

y $→ f(χ(y), y)

ˆ
X
g(x, y) dµ(x) =

ˆ
X
fg(x, y) dµ(x) is ν-integrable and(2.7.13)

f(χ(y), y)

ˆ
X
g(x, y) dµ(x) =

ˆ
X
fg(x, y) dµ(x) for a.e. y(2.7.14)

Indeed, let A ⊂ Y be the set of y ∈ Y s.t.

(a) x $→ f(x, y) is continuous and |f | is finite;
(b) x $→ g(x, y), fg(x, y) are µ-summable (g(·, y), fg(·, y) ∈ L1(X,µ)).

We have ν(Y \A) = 0 since (a) holds for a.e. y by assumption and (b) holds for a.e. y
by general measure theory. The 1-dimensional mean value theorem tells that for y ∈
A there exists χ(y) ∈ X s.t. the identity (2.7.14) holds. Indeed let y ∈ A be fixed,
then z $→ f(z, y)

´
X g(x, y) dµ(x) is continuous and since

∣∣´
X f(x, y)g(x, y) dµ(x)

∣∣ <
∞ we can find x0, x1 ∈ X s.t.

inf
z∈X

f(z, y)

ˆ
X
g(x, y) dµ(x) ≤ f(x0, y)

ˆ
X
g(x, y) dµ(x)

≤
ˆ
X
f(x, y)g(x, y) dµ(x)

≤ f(x1, y)

ˆ
X
g(x, y) dµ(x) ≤ sup

z∈X
f(z, y)

ˆ
X
g(x, y) dµ(x).

By assumption there is a continuous path γ connecting x0 with x1. Now we may
apply the 1-dimensional mean value theorem to t $→ f(γ(t), y)

´
X g(x, y) dµ(x) to

find a point χ(y). Since
´
X(fg)(x, y) dµ(x) is ν-integrable and for all y ∈ A (2.7.14)

is satisfied (2.7.13) holds. If in addition
´
X g(x, y) dµ(x) ̸= 0 for a.e. y then

y $→ f(χ(y), y) is ν-measurable.

Proof of corollary 2.7.7. We claim that the minimizer u(z) =
∑

v∈C
vQ=bP (z)

!v" with

b(z) = cos(ln(z))e−z−α

( compare (2.4.1)) has the desired properties.
(i) follows from the same arguments presented in the proof of corollary 2.7.5 so we
omit the details here.
(ii) corresponds to example 2.7.3. Since {z ∈ C+ : b(z) = 0} = {e

π(2k+1)
2 : k ∈ Z},

b′(e
π(2k+1)

2 ) = (−1)k+1e−e−απ+2k
2 ̸= 0 and so e−

π(2k+1)
2 is a zero of order P to b(z)P .

(iii) remains to be proven. We want to do it similarly to the example 2.7.4. As
before we define

ϕ(z) = ℜ
(
b′(z)

b(z)
z

)
= ℜ

(
αz−α − sin(ln(z))

cos(ln(z))

)
.

ℜ(tan(ln(reiθ))) is not uniformly bounded as |θ| → 0, hence we can not conclude
directly ϕ(reiθ) ≥ 0 for r > 0 sufficient small. But |tan(ln(reiθ))|2 ≤ 1

tanh(θ)2 is
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bounded on π
4 ≤ |θ| ≤ π

2 and so

(2.7.15) ϕ(reiθ) ≥ αr−α cos(α
π

2
)− 1

tanh(π4 )
≥ 0

for π
4 ≤ |θ| ≤ π

2 and 0 < r ≤ R, R > 0 sufficient small.

λ $→ |b(reiλθ)|2 = |cos(ln(reiλθ))|2e−2r−α cos(αλθ)

is monotone increasing. λ $→ e−r−α cos(αλθ) is monotone increasing for |λαθ| ≤ π
2

and λ $→ |cos(ln(reiλθ))|2 because ∂
∂λ |cos(ln(re

iλθ))|2 = sinh(2λθ)θ ≥ 0. Combine
it with (2.7.10) ( |h|2 = |b|2PQ ) givse

1

R

ˆ
∂BR∩C+

|u|2 = Q

ˆ pi
2

−π
2

|b(Reiθ)|
2Q
P dθ ≤ Q

ˆ
π
4 <|θ|<π

2

|b(Reiθ)|
2P
Q dθ(2.7.16)

+Q

ˆ
|θ|<π

4

|b(Rei2θ)|
2P
Q dθ =

3Q

2

ˆ
π
4 <|θ|<π

2

|b(Reiθ)|
2P
Q dθ.

(2.7.11) together with (2.7.12) gives with h = bP , h′ = PbP−1b′, |h|
2P
Q −2|h′|2 =

P 2|b|
2P
Q −2|b′|2ˆ
BR∩C+

|Du|2 ≥
ˆ
BR∩{π

4 ≤|θ|<π
2 }
|Du|2 = P

ˆ
BR∩{π

4 ≤|θ|<π
2 }

2P

Q
|b|

2P
Q −2|b′|2

≥ P

ˆ
BR∩{π

4 ≤|θ|<π
2 }

ϕ(z)

r

∂

∂r
|b|

2P
Q .

(2.7.12) (i.e. ∂
∂r |b|

2P
Q = 2P

Q
ϕ(z)
r |b|

2P
Q ) and (2.7.16) show that ∂

∂r |b|
2P
Q (reiθ) ≥ 0

for π
4 ≤ |θ| ≤ π

2 , 0 < r < R, and R > 0 sufficient small. Hence we apply the
1−dimensional mean value theorem to deduce that to every π

4 ≤ |θ| ≤ π
2 there is

0 < rθ ≤ R withˆ
BR∩{π

4 ≤|θ|<π
2 }

ϕ(z)

r

∂

∂r
|b|

2P
Q =

ˆ
π
4 ≤|θ|≤π

2

ϕ(rθe
iθ)

ˆ R

0

∂

∂r
|b|

2P
Q (reiθ drdθ

≥
(
αR−α cos(α

π

2
)− 1

tanh(π4 )

)ˆ
π
4 ≤|θ|≤π

2

|b|
2P
Q (Reiθ) dθ.

(Again we can avoid measurability questions using the bound (2.7.15), nonetheless
compare the previous remark 2.7.5.) Recall (2.7.16) to deduce (iii) in total since
for R > 0 sufficient small

I(u, 0, R) ≥ P

Q

(
αR−α cos(α

π

2
)− 1

tanh(π4 )

)
→ ∞ (R → 0).

!

Proof of corollary 2.7.8. We claim that for the choice f(z) = e−F (z) of lemma 2.4.1
with a fixed 0 < s < 1 the minimizer u(z) =

∑
v∈C

vQ=f(z)

!v" has the desired properties.

(i) follows as before by similar arguments presented in the proof to corollary 2.7.5
and so we omit the details.
(ii) corresponds with f(z) ̸= 0 for all z ∈ C+.
(iii) remains to be proven. We define

Rn = |En,·|+
2

3
(|En−1,·|− 2|En,·|) =

2

3
|En−1,·|−

1

3
|En,·| =

1

3
(21+

1
s − 1)2−

n
s

Rn = |En,·|+
1

3
(|En−1,·|− 2|En,·|) =

1

3
|En−1,·|+

1

3
|En,·| =

1

3
(2

1
s + 1)2−

n
s
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and set δ = 1
3 (2

1
s − 2) > 0. We will show that (iii) holds for the countable set

{yτ}τ∈I and the sequence Rn.
Let yτ0 be given and fixed from now on. Set

I0 = {τ ∈ I : yτ = yτ0};
hence for any !∃k0 ∈ N s.t. ∀τ = (k, l) with k < k0, yτ ̸= yτ0 and ∀k > k0
!∃τ = (k, l) ∈ I0. We may assume that τ0 = (k0, l0). We partition I \ I0 as follows:

I1 = {τ ∈ I : yτ /∈ Eτ0}
and for any τ = (k, l) ∈ I0 \ {τ0} (i.e. l is odd and k > k0) set

Iτ = {τ ′ ∈ I : yτ ′ ∈ Ek,l+1 ∩ Eτ0}.

Observe that then for each such τ = (k, l) ∈ I0, k̃ ≥ k > k0 one has

|{τ ′ = (k′, l′) ∈ Iτ : k
′ = k̃}| = 2k̃−k.

Define
ϕ(z + iyτ0) = ℜ(−F ′(z) (z + iyτ0)).

To simplify notation we will set r = rτ0 , θ = θθ0 i.e. z+ iyτ0 = reiθ. (2.7.12) in our
case corresponds to

(2.7.17)
∂

∂r
|f |

2
Q =

2

Q

ϕ(reiθ)

r
|f |

2
Q .

Recall from lemma 2.4.1 that −1
α F ′(z)(z + iyτ0) =

∑
τ∈I ak(z + iyτ )−α−1(z + iyτ0)

converging absolutely and ℜ((z + iyτ )−α−1(z + iyτ0)) = r−α−1
τ r cos((α+ 1)θτ − θ).

For τ ∈ I0 we have z + iyτ = z + iyτ0 = reiθ and so

ℜ
(
∑

τ∈I0

ak(z + iyτ )
−α−1(z + iyτ0)

)
= r−α cos(αθ)

∑

τ∈I0

ak ≥ c0r
−α

with c0 = cos(απ2 )
∑∞

k=k0
ak > 0.

For τ ∈ I1, 0 < r < R, R > 0 sufficient small we have rτ ≥ δ|Ek0,·| because
rτ ≥ |Ek0−1,·|− 2|Ek0,·|− r. Therefore we found

ℜ
(
∑

τ∈I1

ak(z + iyτ )
−α−1(z + iyτ0)

)
≥ −(δ|Ek0,·|)−α−1r

∑

τ∈I1

ak ≥ −c1r

In the rest of the argument we restrict us to Rn ≤ r ≤ Rn and n > N for some large
N ∈ N. If τ = (k, l) ∈ I0 with k0 < k ≤ n and τ ′ ∈ Iτ then rτ ≥ |yτ ′ − yτ | − r ≥
|Ek−1,·|− |Ek,·|−Rn ≥ δ|Ek,·|, so that

∑

τ=(k,l)∈I0
k0<k≤n

∑

τ ′∈Iτ

ak′r−α−1
τ ′ r cos((α+ 1)θτ ′ − θ) ≥ −

∑

k0<k≤n

(δ|Ek,·|)−α−1r
∞∑

k′=k

2−k

(k′)2

≥ − r

δα+1

∑

k0<k≤n

Mk

k − 1
≥ −r

Mn+1 −Mk0+1

δα+1k0(M − 1)
≥ − c′2

k0
rMn

where M = (2
α+1
s −1) > 1. If τ = (k, l) ∈ I0 with n < k and τ ′ ∈ Iτ then

rτ ≥ r − |yτ ′ − yτ | ≥ Rn − |Ek−1,·| ≥ Rn − |En,·| = δ|En,·| hence
∑

τ=(k,l)∈I0
n<k

∑

τ ′∈Iτ

ak′r−α−1
τ ′ r cos((α+ 1)θτ ′ − θ) ≥ −(δ|En,·|)−α−1r

∞∑

k=n+1

∞∑

k′=k

2−k

(k′)2

≥ −(δ|En,·|)−α−1r
∞∑

k=n+1

2−k

k − 1
≥ −r

1

δα+1n
Mn = −c′′2

n
rMn.
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Summarizing for Rn ≤ r ≤ Rn and n ≥ N = N(k0), we have

(2.7.18)
1

α
ϕ(re−iθ) ≥ r−α

(
c0 − c1r

1+α −
(
c′2
k0

+
c′′2
n

)
Mnr1+α,

)
≥ c0

2
r−α

because Mnr1+α ≤ MnR1+α
n =

(
1
3 (2

1+ 1
s − 1)2−

n
s

)1+α
2−n → 0 (as n → ∞).

(2.7.17) and (2.7.18) gives for Rn ≤ r ≤ Rn

∂

∂r
ln(|f |

2
Q (−iyτ0 + riθ)) =

2α

Q
ϕ(reiθ) ≥ c0α

Q
r−α

or integrated

(2.7.19) ln

(
|f |

2
Q (Rneiθ)

|f |
2
Q (Rne

iθ)

)
≥ cR−α

n

with c = c0
Q

((
Rn
Rn

)α
− 1
)
> 0 (independent of n).

Now we combine the just established with (2.7.11)ˆ
BRn (−iyτ0 )∩C+

|Du|2 ≥
ˆ
{Rn≤|z+iyτ0 |≤Rn})∩C+

|Du|2

=
2

Q

ˆ
{Rn≤r≤Rn})∩C+

|−F ′|2|f |
2
Q ≥

ˆ
{Rn≤r≤Rn})∩C+

2

Q

ϕ(reiθ)

r

∂

∂r
|f |

2
Q .

(2.7.17) and (2.7.18) show that ∂
∂r |f |

2
Q > 0 for Rn ≤ r ≤ Rn. We apply as before

the 1−dimensional mean value theorem to deduce that to every |θ| ≤ π
2 there is

0 < rθ ≤ R withˆ
{Rn≤r≤Rn})∩C+

2

Q

ϕ(reiθ)

r

∂

∂r
|f |

2
Q =

ˆ π
2

−π
2

ϕ(rθe
iθ)

ˆ Rn

Rn

∂

∂r
|f |

2
Q drdθ

=

ˆ π
2

−π
2

ϕ(rθe
iθ)
(
|f |

2
Q (−iyτ0 +Rne

iθ)− |f |
2
Q (−iyτ0 +Rne

iθ)
)
dθ

≥ αc0
2

R−α
n

(
1− e−cR−α

n

) ˆ π
2

−π
2

|f |
2
Q (−iyτ0 +Rne

iθ) dθ

(With the same observations as before, we can avoid measurability questions by
(2.7.18).) We used in the last line (2.7.18) and (2.7.19). Finally remembering
(2.7.10) we conclude (iii) since we found

I(u,−iyτ0 , Rn) ≥
αc0
2Q

R−α
n

(
1− e−cR−α

n

)
→ ∞ (as n → ∞).

!
2.7.3. Unique continuation. Consider an elliptic operator L in divergence form

(2.7.20) Lu = Di(a
ij(x)Dju) + bi(x)Diu+ c(x)u.

A function u ∈ L2
loc.(Ω) is said to vanish of infinite order at a point x0 ∈ Ω if

(2.7.21)

ˆ
BR(x0)∪Ω

|u|2 = O(Rk) for every k ∈ N.

An elliptic operator L as in (2.7.20) is said to have the strong unique continuation
property in Ω if the only H1,2

loc.(Ω) solution of Lu = 0 on Ω which vanishes of infinite
order at a point x0 ∈ Ω is u ≡ 0.
N. Garofalo, F. Lin showed in [7, Theorem 1.1] that L has the unique continuation
property under certain assumptions on the regularity and ellipticity of the coeffi-
cients aij(x), bi(x), c(x). They are able to deduce their result proving a doubling
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theorem like the following, which the prove using the frequency function. (The
quoted version can be found in [4, Theorem 6.1])

Theorem 2.7.9. Let L as in (2.7.20) with aij(x) symmetric, uniformly elliptic and
Lipschitz, bi(x), c(x) continuous, then if u ∈ H1,2

loc.(B2R0(x0)) nonconstant solves
Lu = 0 on B2R0(x0) then there exists 0 < R = R(aij , bi, c, x0) < R0 and d =
d(aij , bi, c, x0, u) > 0 s.t.ˆ

B2r(x0)
u2 ≤ 22d

ˆ
Br(x0)

u2 ∀0 < r < R

A consequence of lemma 2.4.1 is that a strong unique continuation theorem fails
for boundary points.

Example 2.7.6. Given 0 < s ≤ 1 there exists u ∈ C∞(R2
+), u ̸= 0 with

∆u = 0 on R2
+ (i.e. harmonic)

and a set Es ⊂ ∂R2
+ with Hs(Es) = 1 (0 < s < 1), dimH(Es) = 1 (s = 1) such

that u vanishes to infinite order for all z ∈ −iEs.

Observe that ∆ satisfies the conditions of theorem 2.7.9 and therefore has the
strong unique continuation property in the interior of R2

+.

Proof of example 2.7.6. Let 0 < s ≤ 1 be given and f the related holomorphic
function of lemma 2.4.1. Since f is C∞ on C+ (2.6.4) and C+ convex we have by
1-dimensional analysis
(2.7.22)

f(z) =
k−1∑

l=1

1

l!
f (l)(z0)(z−z0)

l+
1

(k − 1)!

ˆ 1

0
(1−s)k−1f (k)(z0+s(z−z0))(z−z0)

k ds.

The function
u(z) = ℜ(f(z))

is harmonic and non-constant on R2
+, C∞ on R2 and has the desired property since

for z0 ∈ −iEs, f (l)(z0) = 0∀l and therefore by (2.7.22)

|u(z)| ≤ 1

k!
sup

w∈C+∩B1(z0)

|f (k)(w)| |z − z0|k forall z ∈ C+ ∩B1(z0).

This implies that u satisfies (2.7.21). !
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Part 3. Partial Hölder continuity for Q-valued energy minimizing maps

3.8. Introduction

This part addresses an interior partial regularity result for Q-valued maps be-
tween Ω ⊂ RN open (N ≥ 2) and a smooth, compact Riemannian manifold N .

Multivalued maps with focus on Dirichlet integral minimizing maps have been
introduced by F. Almgren in his fundamental work [1]. C. De Lellis and E. Spadaro
gave a modern revision of it in [12]. They considered maps valued in some Rm.
Hölder continuity in the interior for minimizers is an outcome of Almgren’s original
work. Furthermore a minimizer u ∈ W 1,2(Ω,AQ(Rm)) is the ”superposition” of
”classical”, single valued harmonic functions outside a singular set sing(u), with
Hausdorff dimension not exceeding N − 2 in the following sense:
y /∈ sing(u), Uy ⊂ Ω open neighborhood of y, ui : Uy → Rm(i = 1, . . . , Q) harmonic

with u(x) =
∑Q

i=1!ui(x)"∀x ∈ Uy.

The aim of this note is to extend the theory of harmonic maps from the single
valued to the multivalued equivalent i.e. Q-valued maps into a smooth, compact
Riemannian manifold locally minimizing the the Dirichlet integral. The interior
Hölder regularity for single valued minimizing harmonic maps has been known
since the work of R. Schoen and K. Uhlenbeck, [19]. In this note we give an interior
partial Hölder-regular result for multivalued maps minimizing locally the Dirichlet
energy. Our strategy is inspired by the methods of S. Luckhaus, see [16]. We are
able to show:

Theorem 3.8.1. There is a constant α = α(N,Q) > 0 with the property that, if
Ω ⊂ RN (N ≥ 2) is open, N ⊂ Rm is a smooth compact n-dimensional Riemannian
sub-manifold and u ∈ W 1,2

loc.(Ω,AQ(N )) is locally minimizing the Dirichlet energy,
then there exists Ω′ ⊂ Ω open, such that u ∈ C0,α(Ω′) and Ω \ Ω′ has at most
Hausdorff dimension N − 3.

For single valued harmonic maps one has the following sharper result: if Ω,N
as above and v ∈ W 1,2

loc.(Ω,N ) is locally Dirichlet minimizing, then ∃Ω′ ⊂ Ω with
dimH(Ω \ Ω′) ≤ N − 3 and v ∈ C∞(Ω′). The main difference is that the C∞ reg-
ularity for single valued maps is replaced by Hölder-regularity in the multivalued
setting. Furthermore we want to mention that in the single valued case the result
above can be sharpened when the target manifold satisfies some special structural
assumptions.
A pressing open question in the Q-valued case is to give a more detailed description
of the singular set in the interior of the Hölder regular set Ω′ of theorem 3.8.1: How
small is the set sing(u) ∩ Ω′ s.t. u can be written as a ”superposition” of ”clas-
sical”, single valued harmonic maps. One should compare it to the corresponding
result of a minimizers u mapping into AQ(Rm) mentioned above. Another possible
extension is to consider maps minimizing the p-Dirichlet integral in the spirit of
S. Luckhaus [16].

This part is organized as follows: after fixing some notation and definitions in
section 3.9, we extend the ”classical” variational equations and monotonicity for-
mula to the multivalued setting in section 3.10. Section 3.11 collects some tools to
derive a compactness result for minimizers in section 3.12 and the interior partial
Hölder-continuity result in section 3.13. Section 3.14 uses the obtained to conclude
the estimate on the size of the Hölder-singular-set following classical lines. The
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appendix, A, contains an intrinsic proof to the ”classical” Luckhaus’ lemma con-
cerning the extension of a map Sobolev map defined on the boundary of an annulus
∂(B1 \B1−λ) into the interior.

3.9. Definition of energy minimizing maps

Suppose Ω ⊂ RN open, N ≥ 2 and N is a smooth compact n−dimensional
Riemannian manifold isometrically embedded in some Rm.

AQ(N ) denotes corresponding to AQ(Rm) classical metric space of unordered
Q−tuples taking values in N instead of the whole Rm.

Definition 3.9.1. (i) W 1,2
loc (Ω,AQ(N )) is the set of u ∈ W 1,2

loc (Ω,AQ(Rm)) s.t.
u(x) ∈ AQ(N ) for a.e. x ∈ Ω. Since N is assumed to be compact we have
W 1,2

loc (Ω,AQ(N )) ⊂ L∞(Ω,AQ(Rm)).

(ii) For any BR(y) ⊂ Ω we define the energy E(u,BR(y)) as

(3.9.1) E(u,BR(y)) = R2−N

ˆ
BR(y)

|Du|2.

(iii) We call u ∈ W 1,2
loc (Ω,AQ(N )) a local minimizer, or just a minimizer, if for

any BR(y) ⊂ Ω and v ∈ W 1,2
loc (Ω,AQ(N )) satisfying u = v in a neighbour-

hood of ∂BR(y) we have

E(u,BR(y)) ≤ E(v,BR(y)).

We want to study the regularity of such energy minimizing maps. For this
purpose we define the regular and singular set.

Definition 3.9.2. A Q-valued map u ∈ W 1,2
loc (Ω,AQ(Rm)) is called regular at a

point y ∈ Ω if there exists a neighborhood U of y and Q smooth maps ui : U → Rm

s.t.

u(x) =
Q∑

i=1

!ui(x)" for a.e. x ∈ U

and either ui(x) ̸= uj(x) for all x ∈ U or ui ≡ uj .
We define the open set

(3.9.2) reg u = {y ∈ Ω : y is a regular point of u } .
The singular set of u is the relative closed set sing u = Ω \ reg u.

Remark 3.9.3. If y ∈ reg u and u(x) =
∑Q

i=1!ui(x)" on a neighborhood U each
ui : U → N has to be a smooth energy minimizing i.e. a harmonic map in the
classical sense.

For our purpose it is helpful to define a certain subset of the singular set.

Definition 3.9.4. If u ∈ W 1,2
loc (Ω,AQ(Rm)) then the Hölder regular set of u is

(3.9.3) regH u = {y ∈ Ω : u is Hölder continuous in a neighborhood of y},
and the Hölder singular set is singH u = Ω \ regH u.

Just by definition we have

reg u ⊂ regH u and singH u ⊂ sing u.

Remark 3.9.5. If N = Rn then singH u = ∅ or regH u = Ω for any minimizing
u ∈ W 1,2(Ω,AQ(Rn)) as a consequence of the internal Hölder regularity result on
Rn, e.g. [12, Theorem 0.9]. singH u is not empty in general, since singH u is already
known to be non-empty in certain cases of classical single-valued energy minimizing
maps.
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3.10. The variational equations and monotonicity formulas

Suppose u ∈ W 1,2
loc (Ω,AQ(N )) is a energy minimizing map and BR(y) ⊂ Ω.

Suppose {ut}t∈]−δ,δ[ is a C1 family of maps in W 1,2(BR(y),AQ(N )) s.t. us = u
in a neighborhood of ∂BR(y) for all t and u0 = u then due to minimality of u we
must have

(3.10.1)
d

dt

∣∣∣
t=0

E(ut, BR(y)) = 0.

There two natural classes of variations, inner and outer once.

3.10.0.1. inner variations. Let Φt(x) = x+tX(x)+o(t) be the flow generated by an
arbitrary vector field X = (X1, . . . , XN ) ∈ C1

c (BR(y),RN ). Since Φt(x) = x close
to ∂BR(y) vt(x) = u ◦ Φ−1

t (x) defines a C1-family of competitors to u. Standard
calculations give

DΦ−1
t ◦ Φt = (DΦt)

−1 = 1− tDX + o(t)

det (DΦt) = 1 + tdiv(X) + o(t)

( 1 denotes the identity map on RN ) so that

|Dvt|2 ◦ Φt =
Q∑

l=1

|DulDΦ−1
t ◦ Φt|2 =

Q∑

l=1

|Dul (1− tDX + o(t))|2

=
Q∑

l=1

|Dul|2 − 2t
Q∑

l=1

⟨Dul : DulDX⟩+ o(t).

Integrating we getˆ
BR(y)

|Dvt|2 =

ˆ
BR(y)

|Dvt|2 =

ˆ
BR(y)

|Dvt|2 ◦ Φt |detDΦt|

=

ˆ
BR(y)

|Du|2 + t

ˆ
BR(y)

|Du|2 div(X)− 2
Q∑

l=1

⟨Dul : DulDX⟩+ o(t).

Because of (3.10.1) we necessarily have

(3.10.2) 0 =

ˆ
BR(y)

(
|Du|2δij − 2

Q∑

l=1

⟨Diul : Djul⟩
)
DiX

j .

Before we consider the second class, the outer variations, it is useful to set up
some terminology and recall some facts about the nearest point projection.

Nd = {x : dist(x,N ) < d} defines a tubular neighbourhood around N for any
d > 0. Given p ∈ N and a vector X ∈ Rm, X⊤ denotes the orthogonal projection
of X onto TpN ; hence X⊥ = X −X⊤ is the orthogonal projection onto the normal
space (TpN )⊥ at p. Ap(X⊤

1 , X⊤
2 ) = (DX⊤

1
X⊤

2 )⊥ is the second fundamental form of

N at p and any vector fields X1, X2 ∈ C(Bϵ(p),Rm).

Remark 3.10.1. Since N is assumed to be a smooth compact manifold it has a
nearest point projection Π. Π is defined on some tubular neighbourhood Nd, (d >
0). Beside being a smooth map i.e. Π ∈ C∞(Nd;N ) it has the following properties:

(i) |x−Π(x)| = dist(x,N ) < |x− p| for all x ∈ Nd and p ∈ N \ {Π(x)};

(ii) DΠ(p)X = X⊤ for p ∈ N and any vector X ∈ Rm;
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(iii) for p ∈ N and any vectors Xi ∈ RN (i = 1, 2, 3)

Ap(X
⊤
1 , X⊤

2 ) = D2Π(p)(X⊤
1 , X⊤

2 )(3.10.3)

X1D
2Π(p)(X2, X3) =

∑

σ∈P3

X⊥
σ(1)D

2Π(p)(X⊤
σ(2), X

⊤
σ(3))(3.10.4)

(iv) for any x ∈ Nd and any vector X ∈ Rm we have

(
1− 2 dist(x,N )

∥∥AΠ(x)

∥∥) |DΠ(x)X|2 ≤ |X|2.

Although all of these are classical, we give their proofs expect for showing exis-
tence and smoothness of Π, that can be found for example in [21, 2.12.3 Theorem
1].

(i) is the defining property of Π as nearest point projection.

(ii) For X ∈ Rm given, we may write X = X⊤+X⊥. Take a curve γ :]−δ, δ[→
N with γ(0) = p and γ′(0) = X⊤. Since Π(γ(t)) = γ(t) we have

|Π(p+ tX⊤)−γ(t)| ≤ |p+ tX⊤−Π(p+ tX⊤)|+ |p+ tX⊤−γ(t)| ≤ 2|p+ tX⊤−γ(t)|

that is of order o(t) and so DΠpX⊤ = X⊤. Since Π(p+ tX⊥) = p for all t
we conclude

DΠ(p)(X) =
d

dt

∣∣∣
0
Π(p+ tX⊤ + tX⊥) =

d

dt

∣∣∣
0
Π(p+ tX⊤) +

d

dt

∣∣∣
0
Π(p+ tX⊥) = X⊤;

(iii) LetX2 ∈ C∞(Nd,Rm) and let γ be a curve inN with γ(0) = p, γ′(0) = X⊤
1 .

Differentiating X⊤
2 ◦ γ(t) = DΠ(γ(t))X2(γ(t)) we deduce

DX⊤
1
(X⊤

2 ) = (DX⊤
1
X2)

⊤ +D2Π(p)(X⊤
1 , X2)

with the particular choices X2 = X⊤
2 , X2 = X⊥

2 we reach

D2Π(p)(X⊤
1 , X⊤

2 ) = DX⊤
1
(X⊤

2 )− (DX⊤
1
X⊤

2 )⊤ = (DX⊤
1
X⊤

2 )⊥ = Ap(X
⊤
1 , X⊤

2 ),

D2Π(p)(X⊤
1 , X⊥

2 ) = −(DX⊤
1
X⊥

2 )⊤.

Recall that ⟨X⊤
2 , X⊥

3 ⟩ = 0 implies 0 = ⟨DX⊤
1
X⊤

2 , X⊥
3 ⟩ + ⟨X⊤

2 , DX⊤
1
X⊥

3 ⟩.
Additionally one has D2Π(p)(X⊥

2 , X⊥
3 ) = 0 since p = Π(p) = Π(p+ sX⊥

2 +
tX⊥

3 ) for all s, t. A short calculation give the desired conclusion (3.10.4).
(iv) Let γ :] − δ, δ[→ Nd be any C2 curve in the tubular neighborhood of N

with γ(0) = x and γ′(0) = X e.g. γ(t) = x+ tX. Define γ̃(t) = Π(γ(t)) the
corresponding C2 curve on N . Hence γ̃′(0) = DΠ(x)X. Set ν(t) = γ(t) −
γ̃(t) i.e. |ν(t)| = dist(γ(t),N ) and hence 0 = ⟨γ̃′(t), ν(t)⟩. Differentiating
we obtain

⟨γ̃′(t), ν′(t)⟩ = −⟨γ̃′′(t), ν(t)⟩ = −⟨Aγ̃(t)(γ̃′(t), γ̃′(t)), ν(t)⟩.

Furthermore we find

|X|2 = |γ̃′(0)|2 + 2⟨γ̃′(0), ν′(0)⟩+ |ν′(0)|2

≥ |γ̃′(0)|2 − 2⟨Aγ̃(0)(γ̃′(0), γ̃′(0)), ν(0)⟩
≥ |γ̃′(0)|2 − 2 dist(x,N )

∥∥AΠ(x)

∥∥ |γ̃′(0)|2.

Now we are ready to consider outer variations.
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3.10.0.2. Outer variations. Let Y = (Y 1, . . . , Y n) ∈ C1(BR(y) × Rn,Rn) be an
arbitrary vector field with Y (x, z) = 0 for x close to ∂BR(y). Set Ψt(x, z) =
z + tY (x, z). For sufficiently small t we obtain a C1 family of competitors setting

vt(x) = Π(Ψt(x, u(x))).

Π(p+ tY (x, p)) = p+ t

ˆ 1

0
DiΠ(p+ stY (x, p))Y i(x, p) ds ∀p ∈ N and small t

and apply the chain rule ([12, Proposition 1.12]) for the 1−jet of vt to conclude

JVt,x(y) =
Q∑

l=1

!ul(x) + o(t)+

t
(
DΠ(ul(x))DiY (x, ul(x)) +D2Π(ul(x))(Diu(x), Y (x, ul(x)))

)
(yi − xi)".

⟨Diul, D2Π(ul)(Diul, Y )⟩ = ⟨Y,Aul(Diul, Diul)⟩ as seen in remark 3.10.1 (iii), since
Diul(x) ∈ Tul(x)N for a.e. x. (3.10.1) necessarily implies that

(3.10.5) 0 =

ˆ
BR(y)

(
N∑

i=1

Q∑

l=1

⟨Diul, DiY (x, ul)⟩+ ⟨Aul(Diul, Diul), Y (x, ul)⟩
)
.

3.10.0.3. Monotonicity formulas: Let u ∈ W 1,2
loc (Ω,AQ(N )) be an energy minimiz-

ing map and BR(y) ⊂ Ω. For a.e. 0 < r ≤ R we have
(3.10.6)ˆ

Br(y)

(
N∑

i=1

Q∑

l=1

⟨Diul, Diul⟩+ ⟨Aul(Diul, Diul), ul⟩
)

=

ˆ
∂Br(y)

Q∑

l=1

⟨ul,
∂ul

∂r
⟩,

and

(3.10.7) (2−N)

ˆ
Br(y)

|Du|2 = 2r

ˆ
∂Br(y)

∣∣∣∣
∂u

∂r

∣∣∣∣
2

− r

ˆ
∂Br(y)

|Du|2.

To conclude these two identities recall the following general fact from analysis:
if a = (a1, . . . , aN ) ∈ L1(BR(y),RN ), f ∈ L1(BR(y),R) satisfiesˆ

BR(y)
aiDiϕ =

ˆ
BR(y)

fϕ ∀ϕ ∈ C∞
c (BR(y))

then

(3.10.8)

ˆ
Br(y)

aiDiφ− fφ =

ˆ
∂Br(y)

φ⟨a, ν⟩ ∀φ ∈ C1(BR(y)), a.e.0 < r < R.

(This may be checked approximating the function 1Br(y) with smooth functions.)
To deduce (3.10.6) choose the vector field Y (x, z) = ϕ(x)z,ϕ ∈ C∞

c (BR(y),R)
in the outer variation, hence 0 =

´
BR(y) a

iDiϕ− fϕ with ai =
∑Q

l=1⟨Diul, ul⟩ and

−f =
(∑Q

l=1|Dul|2 +
∑N

j=1⟨Aul(Djul, Djul), ul⟩
)
. Hence (3.10.6) follows from

(3.10.8) with φ = 1.
(3.10.7) can be checked similarly. Apply (3.10.8) for every j separately with the
choice φj(x) = (xj − yj) (Diφj = δij). Take then sum in j and conclude (3.10.7).
(3.10.7) can be considered as a differential identity. If one fix some 0 < s < R, then
(3.10.7) implies that for a.e. s ≤ r ≤ R

d

dr
r2−N

ˆ
Br(y)

|Du|2 = r1−N (2−N)

ˆ
Br(y)

|Du|2 + r2−N

ˆ
∂Br(y)

|Du|2

= 2r2−N

ˆ
∂Br(y)

∣∣∣∣
∂u

∂r

∣∣∣∣
2

= 2
d

dr

ˆ
Br(y)\Br(y)

|x− y|2−N

∣∣∣∣
∂u

∂r

∣∣∣∣
2

.
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r $→
´
Br(y)

f is an absolutely continuous function for any f ∈ L1. So we can inte-
grate the differential identity above and conclude the classical monotonicity formula
for 0 < s ≤ r ≤ R:

(3.10.9) r2−N

ˆ
Br(y)

|Du|2 − s2−N

ˆ
Bs(y)

|Du|2 = 2

ˆ
Br(y)\Bs(y)

|x− y|2−N

∣∣∣∣
∂u

∂r

∣∣∣∣
2

.

Notice that, due to the positivity of the right side in (3.10.9) r $→ E(u,Br(y)),
is non decreasing and its limit exists.

Definition 3.10.2. We define the density function Θu of u on Ω by

(3.10.10) Θu(y) = lim
r→0

E(u,Br(y)).

Just note that (3.10.9) reduces in the limit s → 0 to

(3.10.11) E(u,Br(y))−Θu(y) = 2

ˆ
Br(y)

|x− y|2−N

∣∣∣∣
∂u

∂r

∣∣∣∣
2

.

3.11. The Luckhaus lemma extended to Q-valued functions

In this section we recall a result of S. Luckhaus, [16, Lemma 1] and extend it to
Q-valued functions. As for single valued maps it is an essential tool in the proof of
theorem 3.8.1. We state it in a formulation due to R. Moser in [17].

Lemma 3.11.1. There is a constant C = C(N,m,Q) such that: given 0 < λ < 1
2

and u, v ∈ W 1,2(SN−1,AQ(Rm)) with
ˆ
SN−1

|Dτu|2 + |Dτv|2 +
G(u, v)2

ϵ2
= K2

for some 0 < ϵ < λ, then there exists ϕ ∈ W 1,2(B1\B1−λ,AQRm) with the following
properties

ϕ(x) =

{
u(x), if |x| = 1

v( x
1−λ ), if |x| = 1− λ

(3.11.1)

ˆ
B1\B1−λ

|Dϕ|2 ≤ Cλ

(ˆ
SN−1

|Dτu|2 + |Dτv|2 +
G(u, v)2

λ2

)
≤ C λK2

(3.11.2)

ϕ(x) ∈ {y ∈ Rm : dist(y, u(SN−1) ∪ v(SN−1)) < a} for some a > 0 with

(3.11.3)

a2 ≤ C

λN−2

(ˆ
SN−1

|Dτu|2 + |Dτv|2
) 1

2
(ˆ

SN−1

G(u, v)2
) 1

2

+
C

λN−1

ˆ
SN−1

G(u, v)2

≤ C∞ Q2 λ2−N ϵK2.

Proof. The lemma can be concluded directly from Moser’s argument, see [17,
Lemma 4.4] using Almgren’s bilipschitz embedding ξ.
Before we deduce it from Moser’s result for Q-valued function, we shortly describe
how to get the estimates with K from the Moser’s result. The first is just

ˆ
SN−1

|Dτu|2 + |Dτv|2 +
G(u, v)2

λ2
≤
ˆ
SN−1

|Dτu|2 + |Dτv|2 +
G(u, v)2

ϵ2
.
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The second follows by Cauchy’s inequality:

2ϵ

(ˆ
SN−1

|Dτu|2 + |Dτv|2
) 1

2
(ˆ

SN−1

G(u, v)2

ϵ2

) 1
2

≤ ϵ

(ˆ
SN−1

|Dτu|2 + |Dτv|2 +
ˆ
SN−1

G(u, v)2
)
.

To derive the result for Q-valued functions one can argue as follows: Given u, v
as stated, ξ ◦ u, ξ ◦ v ∈ W 1,2(SN−1,Rm̃) are admissible, and all integral quantities
are comparable up to a constant C(N,m,Q) > 0. By [17, Lemma 4.4] there exists
a single valued function ϕ̃ ∈ W 1,2(B1 \ B1−λ,Rm̃) that has the stated properties,
replacing u by ξ ◦u and v by ξ ◦v. Set ϕ = ρ◦ ϕ̃ ∈ W 1,2(B1 \B1−λ,AQ(Rm)) using
Almgren’s retraction ρ. ϕ then has the desired properties, since again all integral
quantities are comparable up to a constant C(N,m,Q) > 0. !

For the sake of completeness we presented here the ”simple” argument based on
Almgren’s bilipschitz embedding ξ. The appendix A discusses this result in more
detail and contains an intrinsic proof.

3.12. Compactness of energy minimizing maps

We can follow the classical argument to get as a consequence of lemma 3.11.1 a
compactness result for energy minimizing maps (compare [21, section 2.9 Lemma
1]).

Lemma 3.12.1. If {u(k)} ⊂ W 1,2(Ω,AQ(N )) is a sequence of energy minimizing

with lim supk→∞ E(u(k), Bρ(y)) < ∞ for each ball BR(y) ⊂ Ω, then there is a
subsequence {u(k′)} and a energy minimizer u ∈ W 1,2(Ω,AQ(N )) s.t.

(i) G(u(k′), u) → 0 in L2(Ω)

(ii) limk′→∞ E(u(k′), BR(y)) = E(u,BR(y)) for every ball BR(y) ⊂ Ω.

Proof. ∥u(k)∥L∞(Ω) < C for all k because N is compact by assumption. So that

lim sup
k→∞

ˆ
Ω′
|u(k)|2 + |Du(k)|2 < ∞

for every Ω′ ⊂⊂ Ω. By Rellich’s compactness theorem for bounded sequences in
W 1,2 there is a subsequence not relabeled u(k) and a u ∈ W 1,2(Ω,AQ(Rm)) s.t.
G(u(k), u)(x) → 0 in L2 and a.e. x ∈ Ω. Hence u(x) ∈ AQ(N ) for a.e. x ∈ Ω. It
remains to prove that

lim
k→∞

E(u(k), BR(y)) = E(u,BR(y)) ∀BR(y) ⊂ Ω.

Let be BR(y) be given, not changing notation we write u(k)(x) for u(k)(y + Rx),
so we can assume that BR(y) is the unite ball B1. So G(u(k), u) → 0 in L1(B1)
and there is K > 0 with lim infk→∞

´
B1

|Du(k)|2 ≤ K2.

Let 1
2 < r1 < 1 and 0 < δ < 1−r1 arbitray small but fixed. Then fix 0 < ϵ < λ < δ

3
s.t. if C is the constant of 3.11.1, d the size of the tubular neighborhood, then

C
2N+2

1− r1
K2λ < δ and C

2N+3

λN−2(1− r1)
ϵ < d2
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For u(k)r(x) = u(k)(rx), ur(x) = u(rx), Fatou’s lemma statesˆ 1

r1

lim inf
k→∞

ˆ
SN−1

|Du(k)r|2 + |Dur|2 +
G(u(k)r, ur)2

ϵ2

≤ lim inf
k→∞

ˆ 1

r1

r−N

ˆ
∂Br

r2(|Du(k)|2 + |Du|2) + G(u(k), u)2

ϵ2

≤ 2N lim inf
k→∞

ˆ
B1\B1−λ

|Du(k)|2 + |Du|2 + G(u(k), u)2

ϵ2
≤ 2N+1K2

Hence there is a radius ρ, 0 < r1 < ρ < 1 and a subsequence u(k) not relabelled
with ˆ

SN−1

|Du(k)ρ|2 + |Duρ|2 +
G(u(k)ρ, uρ)2

ϵ2
<

2N+2

1− r1
K2.

We apply the Luckhaus’ lemma 3.11.1 to each tuple u(k)ρ, uρ and obtain ϕ̃(k) ∈
W 1,2(B1 \B1−λ,AQ(Rm)) with ϕ̃(k)(x) = u(k)ρ(x) for |x| = 1, ϕ̃(k)(x) = uρ(

x
1−λ )

for |x| = 1− λ,
´
B1\B1−λ

|Dϕ̃(k)|2 ≤ C 2N+2

1−r1
K2λ < δ and

ϕ̃(k)(x) ∈ {z : dist(z, u(k)(∂Bρ) ∪ u(∂Bρ)) < a}

with a2 ≤ C 2N+3

λN−2(1−r1)
ϵ < d2.

Therefore ϕ(k)(x) = Π(ϕ̃(k)(xρ )) is well defined and satisfies ϕ(k)(x) = u(k)(x) for

|x| = ρ, ϕ(k)(x) = u( x
1−λ ) for |x| = (1− λ)ρ andˆ

Bρ\B(1−λ)ρ

|Dϕ(k)|2 ≤ CρN−2

ˆ
Bρ\B(1−λ)ρ

|Dϕ̃(k)|2(x
ρ
)
dx

ρN
≤ CδρN−2.

Given a competitor v ∈ W 1,2(Bρ,AQ(N )) to u, the map

v(k) =

⎧
⎪⎨

⎪⎩

u(k), for ρ ≤ |x| ≤ 1

ϕ(k), for (1− λ)ρ ≤ |x| ≤ ρ

v( x
1−λ ), for |x| ≤ (1− λ)ρ

defines a competitor to u(k). Hence by minimality of each u(k) we gotˆ
B1

|Du(k)|2 ≤
ˆ
B1

|Dv(k)|2 ≤
ˆ
B1\Bρ

+CρN−2δ + (1− λ)N−2

ˆ
Bρ

|Dv|2

or ˆ
Bρ

|Du(k)|2 ≤ Cδ +

ˆ
Bρ

|Du|2.

This implies thatˆ
Bρ

|Du|2 ≤ lim inf
k→∞

ˆ
Bρ

|Du(k)|2 ≤ Cδ +

ˆ
Bρ

|Dv|2.

δ > 0 had been arbitrary small, so u is minimizing on each Br1 ⊂ Bρ ⊂ B1. Choose
u = v to deduce the strong convergence of energy, (ii). !

3.13. ϵ-Hölder regularity lemma

In this section we are going to prove an ϵ-regularity lemma for the Hölder con-
tinuity of energy minimizing maps in the spirit of the Schoen-Uhlenbeck regularity
theorem.

Lemma 3.13.1. Let u(k) ∈ W 1,2(B1,AQ(N ) be a sequence of energy minimizers
with

lim
k→∞

E(u(k), B1) = 0.
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For a subsequence, not relabled we can find al ∈ W 1,2(B1,AQl(Rm)),
∑L

l=1 Ql = Q,
a sequence of points pl(k) ∈ N s.t.

(i) al is Dirichlet minimizing,

(ii) G(σ−1
k u(k), a(k)) → 0 in L1(B1) for σ2

k = E(u(k), B1), a(k) =
∑L

l=1 al ⊕
σ−1
k pl(k)

(iii) limk→∞ σ−2
k E(u(k), BR) =

∑L
l=1

´
BR

|Dal|2 for any 0 < R < 1.

Proof. To every u(k) fix a ”mean” T (k) ∈ AQ(Rm). We may assume that T (k) ∈
AQ(N ), if not replace it by T ∈ AQ(N ) with G(T (k), T ) = minS∈AQ(N ) G(T (k), S).
T has still the property of a ”mean”, as one may check:ˆ

B1

G(u(k), T )2 ≤ 2

ˆ
B1

G(u(k), T (k))2 + 2

ˆ
B1

G(T (k), T )2

≤ 4

ˆ
B1

G(u(k), T (k))2 ≤ 4C

ˆ
B1

|Du(k)|2.

Next we apply the concentration compactness lemma, A.1, to the sequence of
tuples σ−1

k u(k),σ−1
k T (k). For a subsequence not relabeled, we get maps al ∈

W 1,2(AQl(B1),Rm), a related sequence tl(k) = σ−1
k pl(k) ∈ spt(σ−1

k T (k)). (ii)
is a consequence of the concentration compactness lemma. It remains to prove
that the al’s are Dirichlet minimizing and that the strong convergence of en-
ergy (iii) holds. The concentration compactness lemma implies

∑L
l=1

´
BR

|Dal|2 ≤
lim infk→∞ σ−1

k E(u(k), BR) for all 0 < R < 1 as a consequence of the lower semi-
continuity of energy.
ψk denotes the 1−Lipschitz retraction map onto B

σ
− 1

2
k

⊂ Rm defined as

ψk(z) =

{
z, for |z| < σ

− 1
2

k

σ
− 1

2
k

z
|z| , for |z| ≥ σ

− 1
2

k

Furthermore we set

(3.13.1) a(k) =
L∑

l=1

al ⊕ σ−1
k pl(k) and ã(k) =

L∑

l=1

ψk(al)⊕ σ−1
k pl(k).

We still have G(ã(k),σ−1
k u(k)) → 0 in L2(B1) becauseˆ

B1

G(ã(k),σ−1
k u(k))2 ≤ 2

ˆ
B1

G(a(k),σ−1
k u(k))2 + 2

ˆ
B1

G(a(k), ã(k))2

≤ 2

ˆ
B1

G(a(k),σ−1
k u(k))2 + 2

L∑

l=1

ˆ
B1∩{x : |al|(x)≥σ

− 1
2

k }
|al|2.

´
B1

G(a(k),σ−1
k u(k))2 → 0 in L2(B1) due to the concentration compactness lemma,

the second integral tends to 0 as k → ∞ (since σk → 0) and |al| ∈ L2(B1).
Let 1

2 < R < 1 be fixed and 0 < δ < 1 − R be arbitrary small but fixed as well.
Choose 0 < ϵ < λ < δ

3 s.t.

C
2N+2

1−R
λ < δ and C

2N+3

λN−2(1−R)
ϵ <

1

2
d2,

where C is the constant of the Luckhaus’ lemma 3.11.1 and d > 0 the size of the
tubular neighbourhood to N .
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Using the classical notation for rescalling a function fr(x) = f(rx), Fatou’s lemma
statesˆ 1

1−R
lim inf
k→∞

ˆ
SN−1

(
|Du(k)r|2

σ2
k

+ |Da(k)r|2 +
G(ã(k)r,σ−1

k u(k)r)2

ϵ2

)

≤ lim inf
k→∞

ˆ 1

1−R
r−N

ˆ
∂Br

(
r2
(
|Du(k)r|2

σ2
k

+ |Da(k)r|2
)
+

G(ã(k)r,σ−1
k u(k)r)2

ϵ2

)

≤ 2N lim inf
k→∞

ˆ
B1\B1−R

(
|Du(k)r|2

σ2
k

+ |Da(k)r|2 +
G(ã(k)r,σ−1

k u(k)r)2

ϵ2

)
≤ 2N−1.

Hence there must be a radius R < ρ < 1 and a subsequence not relabelled withˆ
SN−1

(
|Du(k)ρ|2

σ2
k

+ |Da(k)ρ|2 +
G(ã(k)ρ,σ−1

k u(k)ρ)2

ϵ2

)
<

2N+2

1−R
.

As in the proof of the compactness of minimizers, lemma 3.12.1, apply Luckhaus’
lemma 3.11.1 to each tuple σ−1

k u(k)ρ, ã(k)ρ to get ϕ̃(k) ∈ W 1,2(B1\B1−λ,AQ(Rm))
with the properties that

(i) ϕ̃(k)(x) = σ−1
k u(k)ρ(x) for |x| = 1 and ϕ̃(k)(x) = ã(k)ρ(

x
1−λ ) for |x| = 1−λ;

(ii)
´
B1\B1−λ

|Dϕ̃(k)|2 ≤ C 2N+2

1−R λ < δ;

(iii) for some a2 ≤ C 2N+3

λN−2(1−R)ϵ <
1
2d

2

ϕ̃(k)(x) ∈ {z ∈ Rm : dist(z,σ−1
k u(k)(∂Bρ) ∪ ã(k)(∂Bρ)) < a}.

Due to (3.13.1) we have dist(σ−1
k ã(k)(x),AQ(N ))2 ≤

∑L
l=1 σ

2
k|ψk(a(k))(x)|2 ≤

Lσk, so that dist(σkϕ̃(k)(x),AQ(N )) < a +
√
Lσk. Hence it is in the tubular

neigborhood and

ϕ(k)(x) = σ−1
k Π

(
σkϕ̃(k)

(x
ρ

))

is well-defined. Furthermore it satisfies

(i) ϕ(k)(x) = σ−1
k u(k)(x) for |x| = ρ, ϕ(k)(x) = σ−1

k Π(σkã(k)(
x

1−λ )) for
|x| = (1− λ)ρ;

(ii)
´
Bρ\B(1−λ)ρ

|Dϕ(k)|2 ≤ CρN−2δ.

Given competitors cl ∈ W 1,2(Bρ,AQ(Rm)) to each al. As in (3.13.1) set

c(k) =
L∑

l=1

cl ⊕ σ−1
k pl(k) and c̃(k) =

L∑

l=1

ψk(al)⊕ σ−1
k pl(k).

As for ã(k) we have dist(σk c̃(k)(x),AQ(N )) ≤ Lσk. Remark 3.10.1 (iv) states

(1− 2
√
LσkA)|D(Π(σk c̃(k))|2 ≤ σ2

k|Dc̃(k)|2 ≤ σ2
k|Dc(k)|2

with A = supp∈N ∥Ap∥∞ and |D ˜c(k)|2 =
∑L

l=1|Dψk(ul)|2 ≤
∑L

l=1|Dul|2 because
ψk is a 1−Lipschitz retraction. We can define a competitor to u(k) by

v(k)(x) =

⎧
⎪⎨

⎪⎩

u(k)(x), for ρ < |x| ≤ 1

σkϕ(k)(x), for (1− λ)ρ < |x| ≤ ρ

Π(σk c̃(k)(
x

1−λ )), for |x| ≤ (1− λ)ρ.

Hence by minimality of each u(k) we getˆ
B1

|Du(k)|2 ≤
ˆ
B1

|Dv(k)|2 ≤
ˆ
B1\Bρ

|Du(k)|2+Cσ2
kδ+

σ2
k(1− λ)N−2

1− 2
√
LσkA

ˆ
Bρ

|Dc(k)|2
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or

σ−2
k

ˆ
Bρ

|Du(k)|2 ≤ Cδ +
1

1− 2
√
LσkA

L∑

l=1

ˆ
Bρ

|Dcl|2.

This implies that, by lower semicontinuity of the energy,

(3.13.2)
L∑

l=1

ˆ
Bρ

|Dal|2 ≤ lim inf
k→∞

σ−2
k

ˆ
Bρ

|Du(k)|2 ≤ Cδ +
L∑

l=1

ˆ
Bρ

|Dcl|2.

δ > 0 can be taken arbitrary small, so each al must be minimizing on BR ⊂ Bρ ⊂
B1. Choose cl = al for each l in (3.13.2) to deduce the strong convergence of energy,
i.e. (iii). !

Lemma 3.13.2. There exists ϵ0 > 0 and α > 0, C > 1 depending on N,Q,N with
the property that, if u ∈ W 1,2(Ω,AQ(N )) is energy minimizing with

(3.13.3) E(u,BR0(y0)) ≤ ϵ0 for some BR0(y0) ⊂ Ω,

then |Du| is an element of the Morrey space L2,N−2+2α(BR0
2
(y0)). More precisely

we have the estimate

(3.13.4) E(u,Br(y)) ≤ C
( r

R

)2α
E(u,BR(y))∀y ∈ BR0

2
(y0), 0 < r ≤ R ≤ R0

2
.

Furthermore u ∈ C0,α(BR0
2
(y0)).

Proof. First we will prove the following statement and show thereafter how it im-
plies (3.13.4).

∃ϵ1 > 0, 0 < γ < 1 depending on N,Q,N s.t. if u ∈ W 1,2(BR(y),AQ(N )) is
energy minimizing and E(u,BR(y)) < ϵ1 then

(3.13.5) E(u,BR
2
(y)) < γE(u,BR(y)).

Indeed, fix γ < 2−2α0 , where α0 = α0(N,Q) > 0 is the Hölder exponent for Dirich-
let minimizers into Rm, compare [12, Theorem 0.9]. Suppose such an ϵ1 > 0 does
not exists, hence there are v(k) ∈ W 1,2(BRk(yk),AQ(N )) energy minimizing failing
(3.13.5), i.e. E(v(k), BRk

2
(yk)) ≥ γE(v(k), BRk(yk)) and σ

2
k = E(v(k), BRk(yk) →

0 as k → ∞. Consider the rescaled sequence

u(k)(x) = v(k)(yk +Rkx) i.e. E(u(k), B1) = E(v(k), BRk(yk)) = σ2
k.

So we can apply the previous lemma 3.13.2: for a subsequence u(k), not relabeled,

there are Dirichlet minimizing al ∈ W 1,2(B1,AQl(Rm)) (
∑L

l=1 Ql = Q) and a

sequence of points pl(k) ∈ N such that for a(k) =
∑L

l=1 al ⊕ σ−1
k pl(k) one has

(i) G(σ−1
k u(k), a(k)) → 0 in L2(B1);

(ii) limk→∞ σ−2
k E(u(k), BR) =

∑L
l=1 E(al, BR) for all 0 < R < 1.

We firstly observe that this implies
∑L

l=1 E(al, B 1
2
) ≥ γ because

σ−2
k E(u(k), B 1

2
) = σ−2

k E(v(k), BRk
2
(yk)) ≥ γ.

Secondly

L∑

l=1

E(al, B 1
2
) = lim

k→∞
σ−2
k E(u(k), B 1

2
) ≥ lim inf

k→∞
γσ−2

k E(u(k), B1) ≥
L∑

l=1

E(al, B1).
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So there must be a nontrivial al, with E(al, B 1
2
) ≥ γE(al, B1). But al is Dirichlet

minimizing and therefore E(al, B 1
2
) ≤ 2−2α0E(al, B1). This is a contradiction.

Set ϵ0 = 2−N ϵ1 > 0, then (3.13.4) holds because, if E(u,BR0(y0)) < ϵ0, then

E(u,BR(y)) ≤ E(u,BR0
2
(y)) ≤ 2NE(u,BR0(y0)) ∀y ∈ BR0

2
(y0), 0 < R <

R0

2
,

as a consequence of the monotonicity formula (3.10.9).
Induction on (3.13.5) gives E(u,B2−kR(y)) ≤ γkE(u,BR(y)) for all k ∈ N and any
y ∈ BR0

2
(y0), 0 < R < R0

2 . Choose k ∈ N s.t. 2−k−1R < r ≤ 2−k for r < R. Then

by monotonicity (3.10.9) and the estimates above we have

E(u,Br(y)) ≤ E(u,B2−kR(y)) ≤
1

γ
γk+1E(u,BR(y)) ≤

1

γ

( r

R

)2α
E(u,BR(y))

for 2α = − ln(γ)
ln(2) .

(3.13.5) implies that |Du| is an element of the Morrey space L2,N−2+2α(BR0
2
(y0)).

The Hölder continuity then follows classically. !

3.14. Properties of the singular set singH u

In this section let u ∈ W 1,2(Ω,AQ(N )) be a fixed energy minimizing map. For
any BR0(y) ⊂ Ω, the monotonicity formula, (3.10.9), gives

Θu(y) = inf
0<R≤R0

E(u,BR(y)) ≤ E(u,BR(y)) ≤ E(u,BR0(y)) ∀0 < R ≤ R0.

For any sequence Rk → 0 and y ∈ Ω we may consider the rescaled sequence
v(k)(x) = uy,Rk(x) = u(y + Rkx) and observe that for any r > 0, sufficient large
k ∈ N, i.e. Rk ≤ R0

r

E(v(k), Br) = E(u,BrRk(y)) ≤ E(u,BR0(y)).

The compactness result, lemma 3.12.1, asserts for a subsequence v(k′) there is
ϕ ∈ W 1,2(RN ,AQ(N )) energy minimizing with G(v(k),ϕ) → 0 in L2

loc(RN ) and

(3.14.1) E(ϕ, Br) = lim
k→∞

E(v(k), Br) = lim
k→∞

E(u,BrRk(y)) = Θu(y) ∀R > 0.

Furthermore the monotonicity formula, (3.10.9) gives

0 =

ˆ
BR\Br

|x|2−N |∂ϕ
∂r

|2 ∀0 < r < R.

So, 0 = |∂ϕ∂r |
2 =

∑Q
l=1|

∂ϕl

∂r |2 = 0 a.e.. Integrating this in r gives ϕ(λx) = ϕ(x) for
all λ > 0 and x ∈ RN . This homogeneous degree zero property is characteristic for
tangent maps, hence we define classically:

Definition 3.14.1. A zero homogenous function ϕ ∈ W 1,2(RN ,AQ(N )) is called
tangent map to u at y ∈ Ω if

∃Rk → 0 with G(uy,Rk ,ϕ) → 0 in L2
loc.(RN ).

3.14.1. Properties of homogeneous degree zero minimizers. Let us consider
ϕ ∈ W 1,2(RN ,AQ(N )) be energy minimizing and zero homogeneous, i.e. ϕ(λx) = ϕ
for all x ∈ RN ,λ > 0. Every tangent map, definition 3.14.1, has this property. In
this section we state some consequences. First of all one observe that the multival-
ued case does not differ from the single valued, ”classical” case. Our presentation
follows very closely L.Simon’s in [21, section 3]. The analysis of tangent maps en-
ables a stratification procedure, section 3.14.2. It is a direct modification of a result
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by F. Almgren, [2]. As a consequence we will be able to get an estimate on the
singular set singH u.

(3.14.2) Θϕ(y) takes its maximum in y = 0.

Indeed, fix y ∈ RN , for any 0 < R combining the monotonicity (3.10.11) with
E(ϕ, Br(0)) = Θϕ(0) ∀r > 0 gives

2

ˆ
BR(y)

|x− y|2−N | ∂ϕ
∂ry

|2 +Θϕ(y) = E(ϕ, BR(y))

≤
(
1 +

|y|
R

)N−2

E(ϕ, BR+|y|(0)) =

(
1 +

|y|
R

)N−2

Θu(0);

with ∂
∂ry

we want to emphasize the center y i.e. it is the directional derivative in

the radial direction x−y
|x−y| . Taking the limit R → ∞ we get

(3.14.3) 2

ˆ
RN

|x− y|2−N | ∂ϕ
∂ry

|2 +Θϕ(y) ≤ Θu(0) = Θϕ(0).

Definition 3.14.2. Let ϕ ∈ W 1,2(Rm,AQ(N)) be a homogeneous degree 0 energy
minimizer. Then we define

S(ϕ) = {y ∈ RN : Θϕ(y) = Θϕ(0)}.

We next claim that

S(ϕ) is a linear subspace of RN(3.14.4)

and ϕ(x+ y) = ϕ(x) for all x ∈ RN , y ∈ S(ϕ)(3.14.5)

To show (3.14.4) and (3.14.5) observe that for y ∈ S(ϕ), equality in (3.14.3) implies
∂ϕ
∂ry

= 0 i.e.

ϕ(y + λx) = ϕ(y + x) ∀x ∈ RNλ > 0

Combing this with, ϕ(λ̃x) = ϕ(x) ∀x ∈ RN , λ̃ > 0 gives

ϕ(x) = ϕ(λx)

= ϕ(y + (λx− y)) = ϕ(y + λ−2(λx− y)) = ϕ(λ−1x+ (y − λ−2y))

= ϕ(x+ (λ− λ−1)y) = ϕ(x+ µy)

where µ = λ−λ−1 is an arbitrary real number. This implies naturallyE(u,BR(0)) =
E(u,BR(µy)) and Θϕ(0) = Θϕ(µ y) for all µ ∈ R and y ∈ S(ϕ).

3.14.2. Consequences for singH u. The obtained results gives us equivalent iden-
tifications of the Hölder regular set.

Lemma 3.14.1. Let u ∈ W 1,2(Ω,AQ(N )) be energy minimizing, then the following
are equivalent

(i) y ∈ regH u;
(ii) Θu(y) = 0;
(iii) u has a constant tangent map ϕ at y;
(iv) dimS(ϕ) = N for some tangent map ϕ of u at y.

Proof. (i) ⇒ (iii): Let ϕ be any tangent map of u at y. Passing to a subsequence
we have uy,Rk(x) = u(y + Rkx) converging locally a.e. to ϕ. Hence for a.e. x, x′

we have

G(ϕ(x),ϕ(x′)) = lim
k→∞

G(u(y +Rkx), u(y +Rkx
′)) ≤ lim inf

k→∞
CRαk |x− x′| = 0.
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Thus ϕ ≡ const..
(ii) ⇔ (iii) : This equivalence is obvious.
(iii) ⇔ (iv) : This equivalence just follows by definition and the last observation
in the previous section.
(ii) ⇒ (i) : If Θu(y) = 0 there is a R > 0 s.t. E(u,BR(y)) < ϵ0, where ϵ0 > 0
is the constant of lemma 3.13.1. Then this lemma states u ∈ C0,α(BR

2
(y)) and so

y ∈ regH u. !

Remark 3.14.3. For single valued, ”classical” harmonic functions, lemma 3.14.1
implies

reg u = regH u and so sing u = singH u

.

Furthermore lemma 3.14.1 has the following simple consequences as in the single
valued setting.

Lemma 3.14.2. HN−2(singH u) = 0

Proof. This is a classical consequence of |Du|2 being in L1 and singH u = {y :
Θu(y) > ϵ0}. !

One defines

(3.14.6) Sj = {y ∈ singH u : dimS(ϕ) ≤ j for all tangent maps ϕ at y}.

We first observe that

(3.14.7) singH u = SN−1 = SN−2 = SN−3.

Indeed, suppose not. Then there would be a tangent map ϕ, which is a non constant
homogenous degree zero minimizer withN−1 ≥ dimS(ϕ) ≥ N−2. This contradicts
lemma 3.14.2 because S(ϕ) ⊂ singH ϕ and

+∞ = HN−2(S(ϕ)) = HN−2(singH u).

As L. Simon mentions in [21, section 3.4] one notice:

”The subsets Sj are mainly important because of the following
lemma, which is a direct modification of the corresponding result
for minimal surfaces by F. Almgren [2]; the lemma can be thought
of as a refinement of the ”dimension reducing” argument of Federer
[6] (for this see also the discussion in the appendix of [20]). ”3

Classically a characterization of Sj implies a δ- approximation property which
then itself implies the following two results. Their classical proofs can be found in
[21, section 3.4, Lemma 1 & Corollary 1]

Lemma 3.14.3. For each j = 0, . . . , N − 3, dimSj ≤ j, and for each t > 0,
S0 ∩ {y : Θu(y) = t} is a discrete set.

Corollary 3.14.4. dim singH u ≤ N − 3. More generally, if all tangent maps ϕ of
u satisfy dimS(ϕ) ≤ j0 ≤ N − 3 then dim singH u ≤ j0.

This corollary clearly shows theorem 3.8.1.

3L. Simon, [21], page 54
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Appendix A. The Luckhaus lemma

A classical result due to S. Luckhaus is concerned with the extension of a map
that is defined on the boundary of an annulus ∂ (B1 \B1−λ) into the interior. Its
proof for single valued functions is nowadays classical and can be found for instance
in [17]. We mentioned the result already in section 3.11. We want to give now
a complete intrinsic proof for Q-valued functions. Our formulation is based on
S. Luckhaus’ original, [16, Lemma 1] and the one of R. Mosers, [17, Lemma 4.4].

Lemma A.1. There is a constants C,C∞ > 0 depending only on the dimension N
such that the following holds:
Suppose λ = 1

L , ϵ = 1
lL ≤ λ, l, L ∈ N,L > 2 given, furthermore let u, v ∈

W 1,2(SN−1,AQ(Rm)) with

(A.1)

ˆ
SN−1

|Dτu|2 + |Dτv|2 +
G(u, v)2

ϵ2
= K2;

then there exists ϕ ∈ W 1,2(B1 \B1−λ,AQ(Rm)) with the following properties

ϕ(x) =

{
u(x), if |x| = 1

v( x
1−λ ), if |x| = 1− λ

(A.2)

ˆ
B1\B1−λ

|Dϕ|2 ≤ C QλK2(A.3)

ϕ(x) ∈ {y ∈ Rm : dist(y, u(SN−1) ∪ v(SN−1)) < a}(A.4)

for some a > 0 with a2 ≤ C∞ Q2 λ2−N ϵK2.

Remark A.1. The L∞-bound, (A.4), is a little bit weaker then tho stated in Lemma
3.11.1. The dependence of the constants on N,m and Q is more precise.

The proof of Lemma A.1 is very close to S. Luckhaus orginial one, nicely pre-
sented by R. Moser, [17, Lemma 4.4]. It splits in 3 parts:

(1) a decomposition G of the sphere SN−1 that is bilipschitz to cubical decom-
position of ∂[−1, 1]N into parallel disjoint cubes of side length λ. This is a
measure theoretic argument;

(2) two types of extensions on cubes;
(3) a recursive definition of φ on cubical subsets F × [0,λ] where F is a k-

dimensional face int the cubical decomposition. It always takes advantage
that φ had already be defind on all F ′ × [0,λ] for lower dimensional faces
F ′.

Studying S. Luckhaus’ original proof one notice that only for the extensions
on F × [0,λ], F being a 1-dimensional face, the linear structure of W 1,2(F,Rm) is
needed. C. De Lellis presented a possible replacementW 1,2(F,AQ(Rm)) in [13]. His
version does not preserve the L∞-bound, (A.4), compare remark below. Nonethe-
less following his ideas one can recover the bound, lemma. Our proof does not
contain essentially new ideas. It boils down to replacing lemma E.2 in the proof
proposed by C. De Lellis, [13] or the linear extension in S. Luckhaus original one
by lemma. Nonetheless we decided to give a complete detailed proof.

As mentioned, in part 1 one uses the bilipschitz equivalence between B1 and
[−1, 1]N and their boundaries SN−1 and ∂[−1, 1]N . Therefore we list in the fol-
lowing remark some terminology and constants appearing in this context. Since
only the extensions, part 2, differ slightly from the already existing proofs they are
presented first thereafter. Finally we will proceed with part 1 and 3.
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Remark A.2. |x|2 = |x|22 = (x1)2 + · · · + (xn)2 denotes the Euclidean norm on Rn

and |x|∞ = max{|x1|, . . . , |xn|2} the supremum norm. Let B1 = {|x|2 < 1} be the

unite ball and [−1, 1]n = {|x|∞ < 1} the standard cube in Rn. Set H(x) = |x|∞
|x|2 x

and G(x) = |x|2
|x|∞x, then H = G−1 and H : [−1, 1]n → B1 so their boundaries

H : ∂[−1, 1]n → Sn. δij denote the Euclidean metric on Rn or the pullback metric
for a submanifold in Rn. Furthermore let g = G♯δ and h = H♯δ be the pullback
metrics on B1, [−1, 1]n respectively. One calculates

det(g) =

(
|x|2
|x|∞

)2n

= det(g
∣∣
Sn−1).

Furthermore the spectrum of g−1 is contained in [1−
(

|x|∞
|x|2

)2
, 1 +

(
|x|∞
|x|2

)2
]. The

eigenvalues of g
∣∣
Sn−1 are

(
|x|2
|x|∞

)4
and n−2 times

(
|x|2
|x|∞

)2
. For h we therefore have

det(h) =

(
|x|∞
|x|2

)2n

= det(h
∣∣
∂[−1,1]n

).

The spectrum of h−1 is contained in [
(

|x|2
|x|∞

)4
−
(

|x|2
|x|∞

)2
,
(

|x|2
|x|∞

)4
+
(

|x|2
|x|∞

)2
]. The

eigenvalues of h
∣∣
∂[−1,1]n

are
(

|x|∞
|x|2

)4
and n−2 times

(
|x|∞
|x|2

)2
. This has for instance

the following implications:

ˆ
B1

|Dϕ|2 =

ˆ
[−1,1]n

hij ∂φ

∂xi

∂φ

∂xj

√
det(h) ≤ 3

ˆ
[−1,1]n

|Dφ|2 for ϕ = φ ◦G

(A.5)

ˆ
Sn−1

|Dτϕ|2 =

ˆ
∂[−1,1]n

h
∣∣ij
∂[−1,1]n

∂φ

∂xi

∂φ

∂xj

√
det(h

∣∣
∂[−1,1]n

) ≤ cn

ˆ
∂[−1,1]n

|Dτφ|2,

since

{(
|x|2
|x|∞

)4
+
(

|x|2
|x|∞

)2}( |x|∞
|x|2

)n
≤ 3 ∀n and

(
|x|2
|x|∞

)4−n
≤ cn for c2 = 2, c3 =

√
3 and cn = 1 for n ≥ 4. Similarly one calculates for φ = ϕ ◦Hˆ

[−1,1]n
|Dφ|2 =

ˆ
B1

gij
∂ϕ

∂xi

∂ϕ

∂xj

√
det(g) ≤ n

n
2 (1 + n−1)

ˆ
B1

|Dϕ|2(A.6)

ˆ
∂[−1,1]n

|Dτφ|2 =

ˆ
Sn−1

g
∣∣ij
Sn−1

∂ϕ

∂xi

∂ϕ

∂xj

√
det(g

∣∣
Sn−1) ≤ n

n−2
2

ˆ
Sn−1

|Dτφ|2.

The extension lemma for faces of dimension k ≥ 3 is the classical following one:

Lemma A.2. Given F = z + [0,λ]n, n ≥ 3, a n-dimensional cube of side length λ

and φ ∈ W 1,2(∂F,AQ(Rm)) then there is an extension φ̂ ∈ W 1,2(F,AQ(Rm)) with
the property that ˆ

F
|Dφ̂|2 ≤ n

2(n− 2)
λ

ˆ
∂F

|Dτφ|2(A.7)

φ̂(x) ∈ φ(∂F ) ∀x ∈ F(A.8)

Proof. By a simple scaling argument it is sufficient to prove the lemma for F =

[−1, 1]n. Since n ≥ 3 the 0-homogeneous extension φ̂(x) = φ
(

x
|x|∞

)
belongs to

W 1,2(F,AQ(Rm)). Direct computations provide the bound (A.5). (A.6) is clearly
satisfied. !

The crucial point is to find a ”version” of Lemma A.2 for n = 2. The first step
is the replacement suggested by C. De Lellis.
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Lemma A.3. Given F = z + [0,λ]2, a 2-dimensional cube of side length λ and

φ ∈ W 1,2(∂F,AQ(Rm)) then there is an extension φ̂ ∈ W 1,2(F,AQ(Rm)) with the
property that ˆ

F
|Dφ̂|2 ≤ 3Qλ

ˆ
∂F

|Dτφ|2(A.9)

G(φ̂(x), φ̂(y))2 ≤ πQ2 λ

ˆ
∂F

|Dτφ|2.(A.10)

Proof. By scaling it is sufficient to prove it for F = [−1, 1]2. Furthermore using

ϕ = φ ◦ G, φ̂ = ϕ̂ ◦ H and the estimates (A.5), (A.6) for n = 2 we can show the
existence of an extension ϕ̂ from S1 to the disk B1, that satisfiesˆ

B1

|Dϕ̂|2 ≤ Q

ˆ
S1

|Dτϕ|2(A.11)

G(ϕ̂(x), ϕ̂(y))2 ≤ πQ2

ˆ
S1

|Dτϕ|2.(A.12)

The energy bound (A.11) is derived in Proposition 3.10 in [12] as the crucial es-
timate to establish the optimal Hölder continuity for Dirichlet minimizers in the
interior. Although the competitor constructed there satisfies the L∞-bound it is
not stated. Therefore we present the complete construction. Recall that for a
given f̃ ∈ W 1,2(S1,Rm), single valued, there exists a unique harmonic extension
f ∈ W 1,2(B1,Rm) ( ∆f = 0) with f = f̃ on S1 and it satisfies

(A.13)

ˆ
B1

|Df |2 ≤
ˆ
S1

|Dτ f̃ |2

and due to the maximum principle for subharmonic functions and 1-dimensional
calculus

(A.14) |f(x)− f(y)|2 ≤ sup
x,y∈S1

|f̃(x)− f̃(y)|2 ≤ π

ˆ
S1

|Dτ f̃ |2.

Now let be ϕ ∈ W 1,2(S1,AQ(Rm)) given, as shown in [12, Proposition 1.5] there is

an irreducible decomposition ϕ(x) =
∑J

j=1

∑
z∈C

zQj=x

!g̃j(z)" for all x ∈ S1, functions

g̃j ∈ W 1,2(S1,Rm) and
∑J

j=1 Qj = Q. To every g̃j let gj ∈ W 1,2(B1,Rm) be the
harmonic extension, then set

ϕ̂(x) =
J∑

j=1

∑

z∈C
zQj=x

!gj(z)" for x ∈ B1.

Direct computations, compare [12, Lemma 3.12] and (A.13) gives (A.11):

ˆ
B1

|Dϕ̂|2 =

ˆ
B1

J∑

j=1

|Dgj |2 ≤
J∑

j=1

ˆ
S1

|Dτ g̃j |2

≤ Q
J∑

j=1

1

Qj

ˆ
S1

|Dτ g̃j |2 = Q

ˆ
S1

|Dτϕ|2.

Furthermore let x = r exp(iα) then

ϕ̂(x) =
J∑

j=1

Qj−1∑

l=0

!gj
(
r

1
Qj e

i α
Qj

+il 2π
Qj

)
"
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similar for y = s exp(iβ), hence applying (A.14) gives (A.12)

G(ϕ̂(x), ϕ̂(y))2 ≤
J∑

j=1

Qj−1∑

l=0

∣∣∣∣gj
(
r

1
Qj e

i α
Qj

+il 2π
Qj

)
− gj

(
s

1
Qj e

i β
Qj

+il 2π
Qj

)∣∣∣∣
2

≤ π
J∑

j=1

Qj−1∑

l=0

ˆ
S1

|Dτ g̃j |2 ≤ πQ2

ˆ
S1

|Dτϕ|2.

!

Although AQ(Rm) is not a linear space we will use the following terminology. A
map φ : [a, b] → AQ(Rm) is said to be linear, a linear interpolation, between two

points S =
∑Q

l=1!sl", T =
∑Q

l=1!tl" ∈ AQ(Rm) on the interval [a, b] if there exists
σ ∈ PQ such that

G(S, T )2 =
Q∑

l=1

|sl − tσ(l)|2

φ(t) =
Q∑

l=1

! b− t

b− a
sl +

t− a

b− a
tσ(l)".

Furthermore one has
´ b
a |Dφ|

2 = G(S,T )2

b−a and to any two points S, T ∈ AQ(Rm) and
an interval [a, b] given there exists at least one linear interpolation. (It may not be
unique.)

Lemma A.4. Suppose φ ∈ W 1,2(∂(F×[0,λ]),AQ(Rm)), F = [a, b] a 1-dimensional
face of length λ = b − a is given and ϵ = λ

l , l ∈ N. Furthermore φ satisfies the
following:

t $→ φ(a, t),φ(b, t) are linear between U(a), V (a) and U(b), V (b);ˆ
F
|DτU |2 + |DτV |2 + G(U, V )2

ϵ2
= K2.

where U(x) = φ(x, 0), V (x) = φ(x,λ) ∈ W 1,2(F,AQ(Rn) Then there exists an

extension φ̂ ∈ W 1,2(F × [0,λ],AQ(Rm)) satisfyingˆ
F×[0,λ]

|Dφ̂|2 ≤ 15QλK2;(A.15)

dist(φ̂(x, t), U(F ) ∪ V (F ))2 ≤ 5πQ2 ϵK2 ∀(x, t) ∈ F × [0,λ].(A.16)

Proof. We construct φ̂ applying the previous extension lemma A.3 several times.
Set ak = a + kϵ for k = 0, . . . , l, i.e. a0 = a, al = b and for every k = 1, . . . , l − 1
define t $→ φ(ak, t) to be a linear interpolation between U(ak), V (ak).
Pick any k ∈ {0, . . . , l − 1} then φ is now already defined on ∂([ak, ak+1] × [0,λ]).
We may apply lemma A.3 to

(x, t) ∈ [0,λ]2 $→ φ(ak +
x

l
, t)

and obtain an extension φk ∈ W 1,2([0,λ]2,AQ(Rm)). By 1-dimensional calculus

one has for f ∈ W 1,2([c, d],R) ⊂ C0, 12 ([c, d]), that

sup
c≤x≤d

f(x)2 ≤ 2|d− c|
ˆ d

c
|f ′|2 + 2

|d− c|

ˆ d

c
f2
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and therefore
k+1∑

j=k

G(U(aj), V (aj))
2 ≤ 4ϵ

ˆ ak+1

ak

|DτU |2 + |DτV |2 + 4

ϵ

ˆ ak+1

ak

G(U, V )2 = 4ϵK2

. This gives ( ϵλ = 1
l )ˆ

∂[0,λ]2
|Dτφk|2 =

1

l

(ˆ ak+1

ak

|DτU |2 + |DτV |2
)
+

k+1∑

j=k

G(U(aj), V (aj))2

λ

≤ 5

l
K2.

Finally we define

φ̂(x, t) = φk(l(x− ak), t) for (x, t) ∈ [ak, ak+1]× [0,λ].

Due to lemma A.3 we foundˆ
[ak,ak+1]×[0,λ]

|Dφ̂|2 ≤ l

ˆ
[0,λ]2

|Dφk|2 ≤ 3Q lλ

ˆ
∂[0,λ]2

|Dτφk|2 ≤ 15QλK2(A.17)

G(φ̂(x, t), U(x))2 = G(φk(y, t),φk(y, 0))2 ≤ 5πQ2 ϵK2 ∀x = ak +
y

l
, y ∈ [0,λ].

Since all sets [ak, ak+1[×[0,λ] are disjoint we obtain a well defined extension φ̂
applying the above procedure for every k = 0, . . . , l − 1. Furthermore adding the
estimate (A.17) for k = 0, . . . , l − 1 we obtain (A.16) proving the lemma. !

The choice l = 1 in lemma A.4 reduces it back to lemma A.3. This corresponds to
C. De Lellis proposal in [13] to choose the ”harmonic” extension. This is in general
not a good idea for the L∞-bound. This can be seen in the following example.

Example A.3. Let F = [0, 1], (λ = 1), M ∈ N and φM (x, 0) = φ(x,λ) =

M
(
cos(2πMx), sin(2πMx)

)
∈ W 1,2(F,R2), φ(0, t) = φ(λ, t) ≡

(
0, 1
)
. S. Luck-

haus suggests the extension φ̂L(x, t) = φ(x, 0) for all t ∈ [0,λ] that satisfies

dist(φ̂L(x, t),φ(F, 0))2 = 0 for all (x, t) ∈ F × [0,λ]. The harmonic extension
would be

φ̂H(x, t) =
cosh(2πM(t− 1

2 ))

cosh(πM)
φ(x, 0);

that satisfies now

inf
x∈F

|φH(x,
1

2
)− φ(x, 0)| ≥ |φ(x, 0)|− |φH(x,

1

2
| = M

(
1− 1

cosh(πM)

)
;

converging to +∞ as M → ∞.

Proof of Lemma A.1 . (Our presentation is close to the proof presented by R. Moser
in [17].)

Part 1: decomposition G of the sphere using a Fubini-type argument
It is useful to set up some terminology. 1

LZ
N is a square lattice in RN decomposing

the cube [−1, 1]N and ist boundary ∂[−1, 1]N into congruent cubes of side length 1
L

of dimension N and N−1. Let Fk denote the collection of all k-dimensional faces in
the decomposition ∂[−1, 1]N ∩ 1

LZ
N . We set Gk = {H(F ) : F ∈ Fk}, a collection of

k-dimensional faces on the sphere SN−1. The number of k-dimensional faces ♯Fk =
♯Gk is less then 2N -times the number of k-dimensional faces in [−1, 1]N−1∩ 1

LZ
N−1,

that is less than (2L)N−1
(N−1

k

)
, in total

(A.18) ♯Fk = ♯Gk ≤ N2NLN−1
(N−1

k

)
.



REGULARITY QUESTIONS 95

claim: Let f ∈ L1(SN−1,R+) be given. Then there is a partition of SO(N) into
the set Ogood of ”good” and the set Obad of ”bad” matrices, defined as follows:
O ∈ Ogood if we have

(A.19)
N−2∑

k=1

LN−1−k

(N−1
k

)
∑

G∈Gk

ˆ
G
f(Ox) dHk(x) ≤ (N − 2)2N

θwN

ˆ
SN−1

f dHN−1

and O ∈ Obad if instead

(A.20)
N−2∑

k=1

LN−1−k

(N−1
k

)
∑

G∈Gk

ˆ
G
f(Ox) dHk(x) >

(N − 2)2N

θwN

ˆ
SN−1

f dHN−1.

Furthermore one has µ(Obad) < θ, where µ is the Haar measure on SO(N).

This can be seen as follows: To any x, x0 ∈ SN−1 there exists O0 ∈ SO(N) with
O0x0 = x and by the invariance of the Haar measure under group action we haveˆ

O∈SO(N)
f(Ox) dµ(O) =

ˆ
SO(N)

f(OO0x0) dµ(O) =

ˆ
SO(N)

f(Ox0) dµ(O).

The invariance of the Haussdorff measure under orthogonal transformations givesˆ
SN−1

f(Ox) dHN−1(x) =

ˆ
SN−1

f(x) dHN−1(x).

Fubini’s theorem with µ(SO(N)) = 1 givesˆ
SN−1

f dHN−1 =

ˆ
SN−1

f(Ox) dHN−1(x) =

ˆ
SO(N)

ˆ
SN−1

f(Ox) dHN−1(x) dµ(O)

= NwN

ˆ
SO(N)

f(Ox0) dµ(O).

We deduceˆ
SO(N)

∑

G∈Gk

ˆ
G
f(Ox) dHk(x) dµ(O) =

∑

G∈Gk

ˆ
SO(N)

f(Ox0) dµ(O)Hk(G)

≤ 2NN
(N−1

k

)
LN−1−k

ˆ
SO(N)

f(Ox0) dµ(O) =
2N

wN

(N−1
k

)
LN−1−k

ˆ
SN−1

f dHN−1.

(A.21)

We used (A.18) and Hk(G) = Hk(H(F )) ≤ Hk(F ) = L−k. This implies the claim
µ(Obad) < θ because apply (A.21) for every k and (A.20) for every O ∈ Obad to
deduce

µ(O)

θ

(N − 2)2N

wN

ˆ
SN−1

f dHN−1

<

ˆ
O∈O

N−2∑

k=1

LN−1−k

(N−1
k

)
∑

G∈Gk

ˆ
G
f(Ox) dHk(x) dµ(O) ≤ (N − 2)2N

wN

ˆ
SN−1

f dHN−1;

i.e. µ(Obad) < θ.

Given u, v as assumed, set θ = 1
2 and f1 = |Du|2+|Dv|2+ G(u,v)2

ϵ2 , f2 = |u|2+|v|2.
The the claim states that if Ogood

i ∪Obad
i = SO(N) are the related partition, there

exists O ∈ Ogood
1 ∩ Ogood

2 since µ(Obad
1 ∪ Obad

2 ) < 1. Hence we have for any
k = 1, . . . , N − 2, G ∈ Gk

u ◦O
∣∣
G
, v ◦O

∣∣
G
∈ W 1,2(G,AQ(Rm))

(u ◦O
∣∣
G
)
∣∣
G′ = u ◦O

∣∣
G′ , (v ◦O

∣∣
G
)
∣∣
G′ = v ◦O

∣∣
G′ ∀G′ ∈ Gk−1, G

′ ⊂ ∂G.
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We define U(x) = u(OH(x)), V (x) = v(OH(x)). Due to the choice of O we have
that for any k = 1, . . . , N − 2, F ∈ Fk

U
∣∣
F
, V
∣∣
F
∈ W 1,2(F,AQ(Rm))

(U
∣∣
F
)
∣∣
F ′ = U

∣∣
F ′ , (V

∣∣
F
)
∣∣
F ′ = V

∣∣
F ′ ∀F ′ ∈ Fk−1, F

′ ⊂ ∂F.

Set f̃1 = |DU |2 + |DV |2 + G(U,V )2

ϵ2 and using remark A.2 we have for any F ∈ Fkˆ
F
f̃1 dHk ≤

ˆ
G=H(F )

(
|x|2
|x|∞

)k−1

f1(Ox) dHk(x) ≤ N
k−1
2

ˆ
G
f1(Ox) dHk(x).

so that

(A.22)
N−2∑

k=1

LN−1−k

N
k−1
2

(N−1
k

)
∑

F∈Fk

ˆ
F
f̃1 dHk ≤ (N − 2)2N+1

wN
K2.

Part 2: extensions of maps that are defined on the boundary of a k-dimensional
cube ∂F to its interior
This is covered in the results of lemma A.2 and A.4.

Part 3: recursive construction of φ
We define φ on F × [0,λ] ∀F ∈ F1 using lemma A.4, then recursively on {F ×
[0,λ] : F ∈ F2}, {F × [0,λ] : F ∈ F3}, . . . , {F × [0,λ] : F ∈ FN−1} by lemma A.2.
In each step taking advantage of the fact that φ had already be defined on the
boundary of F × [0,λ], with

(A.23) φ(x, 0) = U(x), φ(x,λ) = V (x) ∀x ∈ F, F ∈ Fk.

Now we describe the construction in detail. (Dτ denotes the tangential differential
with respect to the domain of integration, i.e. |Dτφ|2 will be the Dirichlet energy
with respect to F × [0,λ], |DτU |2 + |DτV |2 the Dirichlet energy with respect to a
face F .): Pick z ∈ F0, the set of all vertices, define

(A.24) φ(z, t) ∈ W 1,2({z}×[0,λ],AQ(Rm)) t $→ φ(z, t) linear between U(z), V (z).

We proceed this way for all z ∈ F0: since z ∈ ∂F ′ for some F ′ ∈ F1 and
W 1,2(F ′,AQ(Rm)) ⊂ C0, 12 (F ′,AQ(Rm)) , U(z), V (z) are defined. Furthermore
all {z}× [0,λ] are disjoint so φ is welldefined on

⋃
z∈F0

{z}× [0,λ].
Pick F ∈ F1 then φ is already defined on ∂ (F × [0,λ]) = F ×{0,λ}∪∂F × [0,λ]

taking into account (A.23) and (A.24). We apply lemma A.2 to extend φ to F ×
[0,λ] with the estimates:

´
F×[0,λ]|Dτφ|2 ≤ 15QλK2

F , dist(φ(x, t), U(F )∪V (F ))2 ≤

15Q2 ϵK2
F with K2

F =
(´

F |DτU |2 + |DτV |2 + G(U,V )2

ϵ2 dH1
)
. We can define φ for

all F ∈ F1 since the interior of the sets F × [0,λ] are disjoint. Taking into account

(A.22) we found (with C1 ≤ 2N+5(N−1)2

wN
)

∑

F∈F1

ˆ
F×[0,λ]

|Dτφ|2 ≤ 15Qλ
∑

F∈F1

K2
F ≤ C1Qλ3−NK2(A.25)

dist(φ(x, t), U(F ) ∪ V (F ))2 ≤ C1Q
2 ϵλ2−NK2 (x, t) ∈

⋃

F∈F1

F × [0,λ].(A.26)

Pick F ∈ F2, then φ is defined on ∂ (F × [0,λ]) = F × {0,λ} ∪ ∂F × [0,λ], taking
into account (A.23) and the previous step (∂F =

⋃4
i=1 Fi, Fi ∈ F1). Hence φ can be

extended to F × [0,λ] using lemma A.2 s.t. φ(x, t) ∈ {φ(y, s) : (y, s) ∈ ∂(F × [0,λ])}
and ˆ

F×[0,λ]
|Dτφ|2 ≤ 3

2
λ

(ˆ
F
|DτU |2 + |DτV |2 dH2 +

4∑

i=1

ˆ
Fi×[0,λ]

|Dτφ|2
)
.
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As before the interior of the sets F × [0,λ], F ∈ F2 are disjoint, so we can proceed
this way for all of them and obtain a welldefined φ on

⋃
F∈F2

F × [0,λ]. Summing
the above estimate for all F ∈ F2, taking into account (A.22) and (A.25) we get
for some constant C2:

∑

F∈F2

ˆ
F×[0,λ]

|Dτφ|2 ≤ C2Qλ4−NK2.

(For a given F ∈ Fk we have ♯{F ′ ∈ Fk+1 : F ⊂ ∂F} ≤ 2(N − 1− k).)
We use the same method to define φ on {F × [0,λ] : F ∈ F3}, . . . , {F × [0,λ] : F ∈
FN−1}. Each time we obtain the inequality

∑

F∈Fk

ˆ
F×[0,λ]

|Dτφ|2 ≤ CkQλk+2−NK2.

For k = N − 1 this is

(A.27)

ˆ
∂[−1,1]N×[0,λ]

|Dτφ|2 ≤ CN−1QλK2.

Applying lemma A.2 does not affect the L∞ bound, (A.26).
Define ϕ(x) = ϕ(ry) = φ(G ◦ Ot(y), 1 − r) ∈ W 1,2(B1 \ B1−λ,AQ(Rm)), with
r = |x|, y = x

|x| . One checks that φ satisfies (A.2). (A.27) combined with remark

A.2 gives the energy bound (A.3):ˆ
B1\B1−λ

|Dϕ|2 ≤ 4

ˆ
∂[−1,1]N×[0,λ]

|Dφ|2 ≤ CQλK2.

Finally the preserved L∞ bound (A.26) corresponds with (A.4). !
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