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Abstract. The aim of this article is to give a rather extensive, and yet nontechnical, account
of the birth of the regularity theory for generalized minimal surfaces, of its various ramifications
along the decades, of the most recent developments, and of some of the remaining challenges.

1. Introduction

Let U be a bounded open subset of the Euclidean space Rm+n and let Σ ⊂ U be an
m-dimensional surface (e.g. a C1 m-dimensional submanifold, but we will allow more general
concept of surfaces for most of this note). Then Σ is said to be a “critical point of the area
functional”, or more commonly a “minimal surface”, if

d

dt

∣∣∣∣
t=0

Volm(Φt(Σ)) = 0 (1.1)

for every smooth one-parameter family of diffeomorphisms [−δ, δ] 3 t 7→ Φt of U such that:
(a) Φt(x) = x for every x ∈ ∂U and every t;
(b) Φ0(x) = x for every x ∈ U .

Here Volm denotes a suitable concept of m-dimensional volume: in the case of classical
submanifolds we can take the usual one from differential geomery.

A notable example of minimal surfaces are those that minimize the volume in some suitable
class C . It suffices to assume that C is closed under deformations satisfying (a) and (b) above
to conclude that any minimizer in C is necessarily a critical point of the area functional.

We call the attention of the reader to condition (a): the deformations fix the boundary of
the open set U . Thus an example of a class C is that formed by those surfaces Σ’s whose
boundary (in a suitable sense, for instance we can take the usual one of differential topology, if
we are dealing with smooth surfaces) is a fixed one Γ contained in ∂U . Such minimizer is then
a surface of “least area spanning the contour Γ”. However we ultimately have to agree on the
very definition of “admissible surface” (Must it be embedded or do we allow self intersections?
Do we allow any topological type? In fact must it be smooth or do we allow singularities? If
we allow singularities, which type should we allow?), on what it means to span Γ, and how we
define its volume.

Having assumed that we have answered all the above questions, i.e. that we have selected
a suitable class C and a related concept of m-dimensional volume, a minimizer in C can
be regarded as one possible solution to a celebrated problem in the calculus of variations,
which goes under the name of Plateau problem. Indeed the Belgian physicist Joseph Plateau
investigated it in the early XIX century with the intention of finding a good description of
soap films. However the problem had already appeared in the mathematical literature decades
before the investigations of Plateau, and can be found in the works of Lagrange, Meusnier,
Monge and Légendre. In particular Lagrange considered minimizers of the area as early as the
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1760s and he used his newly established method (which leads to what nowadays are called
“Euler-Lagrange” conditions for minima of integral energies (cf. [79])) to describe 2-dimensional
minimal graphs in R3 through a suitable partial differential equation.

As it is well-known, if Σ is of class C2, minimality in the sense of (1.1) is equivalent to
the vanishing of the mean curvature vector. The latter is a condition which can be explained
without any knowledge of differential geometry and it is in fact fairly easy to describe to
anybody with a basic knowledge of multivariable calculus. Having fixed a point p0 ∈ Σ, choose
first an orthonormal system of coordinates so that Σ is the graph of a map ψ : Rm ⊃ Ω→ Rn
with the properties that

• p0 = (0, ψ(0)) (i.e. p0 is the origin of the coordinate system);
• and ∇ψ(0) = 0 (i.e. the tangent to Σ at the origin is horizontal).

Then the mean curvature vector of Σ vanishes at p0 if and only if ∆ψ(0) = 0. One way
to think about minimal surfaces is thus to understand them as solutions to a (somewhat
complicated) nonlinear elliptic system of partial differential equations which linearize to the
Laplace equation, namely ∆ψ = 0, when we rotate the coordinates so that the tangent to the
graph is horizontal.

The Laplace equation is universally considered as the prototypical elliptic partial differential
equation of second order and its solutions, i.e. the harmonic functions, are the prototype
to understand the behavior of solutions to more general second order elliptic PDEs. The
Laplace equation as well has a variational flavor, since it characterizes critical points of the
Dirichlet energy

´
|∇ψ|2. But one could argue that minimal surfaces are even more natural

objects than harmonic functions: indeed a surface is minimal independently of the system
of coordinates used to describe the ambient Euclidean space, while rigid motions of graphs
which “mix domain and target” do not preserve the harmonicity: the latter is a concept which
depends strongly on the selection of the dependent and independent variables used to describe
the surface as a graph.

Critical points of the area functional have fascinated (and have been the object of study
of) generations of mathematicians throughout at least two centuries and a half. One very
interesting aspect of minimal surface theory is that it is relatively easy to produce singular
examples. A particularly simple instance is given by holomorphic subvarieties in Cn: if
we identify Cn with R2n and we understand holomorphic subvarieties of dimension k as
2k-dimensional surfaces (with singularities), then the latter are always minimal. In fact
they are much more than just minimal: they minimize the area among a vast class of
possible deformations. So an object as seemingly innocent as the complex algebraic curve
Σ = {(z, w) ∈ C2 : z2 = w3} is a 2-dimensional minimal surface in R4 and in fact it is minimal
according to one of the most restrictive meanings that we can give. However the origin is a
point where Σ is not a regular submanifold: in particular there is no neighborhood of 0 in
which it can be described as the graph of a function (at least if we understand our functions
“classically” and do not allow them to take more than one value at each fixed point of their
domain).

Another simple example is given by the connected set E of least length which contains three
noncolinear points p1, p2, p3 ∈ R2. Such set is the union of three distinct segments σi’s which:

• have pi as one endpoint,
• have all a common q as the other endpoint,
• meet at q forming angles of 120◦ degrees.
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Again q is a “singular point” in the sense of differential topology: E is not a submanifold of
R2 in any neighborhood of q.

If we accept that a good theory of minimal surfaces must include singular objects, we then
open a Pandora box, in particular the following seemingly innocent questions immediately
come to mind:

• How do we define the admissible surfaces, or otherwise put, which kind of singularities
do we allow?
• Which kind of deformations do we take into account?
• What is the m-dimensional volume of a singular surface?

All these questions can be studied from different points of view and can be given very different
answers depending on which goals one has in mind. For instance answers which deal efficiently
with the problem of minimizing the m-dimensional volume of surfaces in some fixed homology
class of a given Riemannian manifold do not seem to give a satisfactory description of the
complexity of soap films in real life. On the other hand, even though real life soap films
display singularities, it can be proved that any 2-dimensional integral homology class in a
closed smooth Riemannian 3-manifold has a smooth representative which minimizes the area.
At any rate, whichever the goal, a rather large number of answers to these questions can be
given in a subject of modern mathematics called Geometric measure theory.

Geometric measure theory provides powerful tools to study various variational questions
linked to the theory of minimal surfaces and has produced, in more than half a century, several
notions of “singular minimal surfaces”. In what follows I will address several of them and,
for lack of a better term, I will call all of them “generalized minimal surfaces”. A subtopic
of Geometric measure theory, which is commonly called “regularity theory”, studies natural
questions like

• Under which conditions singularities can be ruled out, i.e. the generalized minimal
surfaces of a particular class end up being classical minimal submanifolds?
• How large can the set of singularities be when its existence cannot be completely ruled
out?
• Which structural properties can the singularities have?

The ambition of this article is to give a rather extensive, and yet nontechnical, account
of the birth of this topic, of its various ramifications along the decades, of the most recent
developments, and of some of the remaining challenges. Since the topic is vast and complicated,
I will probably not do a good service to much of the existing literature and I emphasize from
the start that I consider my views quite biased.

1.1. Acknowledgments. I am very grateful to Guido De Philippis and Luca Spolaor for
carefully reading a very preliminary version of this manuscript, suggesting several precious
improvements, and reminding me of a few pertinent results in the literature. This work was
partially supported by the National Science Foundation through the grant FRG-1854147.

2. Plateau’s problem, criticality, and stability

Before coming to a description of the “regularity theory” I will first introduce, in this section,
some of the most common notions of “generalized minimal surfaces” considered in geometric
measure theory.
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2.1. Plateau’s problem: two general approaches. As already mentioned, the Plateau
problem can be loosely described as “looking for the surfaces Σ of least volume spanning a
given contour Γ”. If the surfaces Σ in question are C1 submanifolds, it is commonly understood
that the m-dimensional volume is the usual one from calculus books. If the given contour is
as well a submanifold, a seemingly natural possibility to give a rigorous definition of “Σ spans
Γ” is to say that Γ is the boundary of Σ in the usual sense of differential topology. From this
point of view it is also natural to consider ambient spaces more general than the Euclidean
one, and a common natural choice is to have a general complete and smooth Riemannian
ambient manifold. Practically all the “positive results” which we will discuss in this note have
a generalization to smooth Riemannian ambient manifolds, but in order to be as nontechnical
as possible, I will refrain to state the general theorems and always assume that the ambient is
Euclidean. There are however some counterexamples which have been thus far found only in
ambient Riemannian manifolds, and given their relevance in some of the problems examined
below, I felt that they should be discussed.

If we want to enlarge the class of surfaces (and in particular allow minima with singularities
in our class C ) we then have to specify at the same time what we mean by a surface, its volume,
and the fact that it spans a given contour Γ. First of all we will fix the convention that the
dimension of the surfaces in C is m, the dimension of Γ is m− 1, and the ambient Euclidean
space (or Riemannian manifold, when the general case will be discussed) has dimension
m+ n. Secondly we will restrict our attention to regular contours Γ: even though this can be
relaxed considerably and one can fix certain type of nonsmooth boundaries (depending on the
framework), clearly when dealing with “boundary regularity” theorems it is natural to assume
that Γ itself has some regularity to start with. Once we have defined our generalized class of
surfaces, their generalized volume, and what it means for them to span Γ, we will say that we
have a “variational framework” for the Plateau problem.

It is possible to subdivide the various variational frameworks proposed in geometric measure
theory in two large classes, which follow two rather different philosophical approaches. I will
loosely describe them as

• Set-theoretic. We insist in this case that our generalized surfaces Σ are just merely
closed subsets of the ambient space which include Γ as a subset. The fact that they
“span” Γ will then be encoded in some topological condition which Σ must satisfy,
while the m-dimensional Volume is defined by a suitable “measure” which satisfies the
usual requirements of measure theory and coincides with the classical m-dimensional
volume when Σ is a subset of a C1 surface (or a countable union of subsets of C1

surfaces).
• Functional-analytic. In this case we focus first on some nice, sufficiently regular,
class of surfaces Σ and we prescribe that their boundary is Γ in some suitable convenient
sense coming from algebraic topology: let us denote this privileged class by R. On R
the concept of volume will be also given in terms of classical differential geometry and
algebraic topology, and this will give us a functional A (the area functional) on R. We
then introduce some topology on R, for instance a distance, and the class C will be a
suitable completion of this topological space, while the functional A will be extended
to C in some natural way (for instance we can take its lower semicontinuous envelope).

Observe that the “classical” parametric approach of Douglas and Rado does not fit in any of
these two broad descriptions. The fact that I am not including it in the scope of these notes
does not reflect any judgment on its mathematical interest: the “classical parametric theory”
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is a beautiful piece of mathematics, but it has a rather different flavor compared to the results
and problems which will be discussed here.

In all the variational frameworks which we will examine, no matter whether they fall in
one class or the other, there is a common and recurrent use of two important objects from
geometric measure theory: the Hausdorff m-dimensional measure and rectifiable sets. The
Hausdorff m-dimensional measure, which we will denote by Hm, is a very natural way of
extending the classical notion of m-dimensional volume to any subset of the Euclidean space
(or more generally of a metric space). In fact it is just one possibility, while a general theory
of such extensions can be given in terms of the so-called “Caratheodory construction” and we
refer the reader to some of the several textbook in the literature which treats it (cf. [59, 62, 85]).
Rectifiable m-dimensional sets are a very natural class of sets which contain C1 surfaces but
is closed under many more operations which are natural from the point of view of measure
theory: they consist of countable unions of closed subsets of C1 m-dimensional submanifold
plus a set of zero Hm measure (some people, for instance Misha Gromov, consider the latter a
somewhat very unpleasant technical addition, and the author agrees that there might be an
efficient theory which works without the annoying technicality of adding null sets; however
most people in analysis grow accustomed to it, as “completing” a σ-algebra by adding sets of
measure zero is a fairly common operation).

It was a major discovery of Besicovitch in the first half of the XXth century that any
set of finite H1 measure can be decomposed into the union of a “rectifiable portion” and
a “purely unrectifiable portion” (cf. [14, 15, 16]). The latter is somewhat “orthogonal” to
any C1 submanifold, in the sense that intersects any C1 curve in a set of H1 measure zero,
even though it might have positive H1 measure. The more general theory of m-dimensional
rectifiable sets was developed later Federer, cf. [61] (and see also [92]). While the rectifiable
part has much of the features of C1 submanifolds, and can be considered as a weak version of
the latter, the purely unrectifiable part behaves in a rather counterintuitive way and in what
follows we will discount it: it is however one of the major early developments of geometric
measure theory that one can, without loss of generality, discard unrectifiable sets pretty much
in all variational theories for the area functional and I am hiding quite deep and beautiful
theorems here.

2.2. Examples of set-theoretic approaches. The first to pioneer what I dubbed “set-
theoretic approach” is Reifenberg in [96]. In his variational framework the definition of “E
spans Γ” is that Γ is trivial in the relative Cech homology of E (cf. [96] for the precise definition).
More recently Harrison (cf. [71, 74]) suggested another, very elegant, possible definition of
“E spans Γ” which for simplicity we describe in the easiest case of m− 1-dimensional Γ’s in
Rm+1: any closed curve γ ⊂ Rm+1 \ Γ which is not contractible in Rm+1 \ Γ must intersect E.

Another point of view is that taken by Almgren in his theory of (M, ε, δ)-minimal sets,
cf. [9]: rather than giving a precise notion of “spanning” we focus on which deformations
are allowed and assume that our class C is closed under the latter deformations. In his
work Almgren gave a far-reaching existence and regularity theory, and the existence part was
recently revisited and extended in [60]. Concerning deformations a very interesting point
raised only recently by David is that, in practically all the works in the literature thus far, the
authors used deformations which completely “fix” the boundary Γ, while it would be much
more natural to impose that they in fact map Γ onto itself in some controlled way (for instance
they are isotopic to the identity within the class of diffeomorphisms of Γ): this idea is at the
base of his recent theory of “sliding minimizers”, cf. [25, 26, 28].
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In all these variational frameworks for any given sequence Ek of compact sets there is a
natural notion of convergence, the one of Hausdorff, for which we can extract a converging
subsequence. However the Hausdorff measure Hm does not behave well in terms of the latter
convergence, in the sense that it is not lower semicontinuous. On the other hand one can
suitably adjust minimizing sequences so to achieve the lower semicontinuity of Hm: it thus
suffices to prove that the limit is in the considered class C to achieve a minimizer. The author,
in a joint work with F. Ghiraldin and F. Maggi in [37], pointed out that there is in fact no need
to adjust the minimizing sequence and that a suitable compactness and lower-semicontinuity
statement is valid for any minimizing sequence in a class C as soon as it allows a rather limited
number of basic competitors. In particular this gives a unified framework which treats all
known examples of set-theoretic approaches put forward thus far, cf. also [36, 57, 58].

From the point of view of differential and algebraic topology, all the set-theoretic approaches
have some very undesirable properties. Typical set-theoretic minimizers of the Plateau problem
will always have singularities: if the boundary Γ is complicated it is energetically convenient
to form “triple junctions” along a singularity of codimension 1. On the other hand one of
the biggest achievements of the functional-analytic approach is that for every smooth closed
embedded curve Γ in R3 there is always a smooth oriented 2-dimensional submanifold with
boundary Γ which minimizes the 2-dimensional area among all smooth oriented 2-dimensional
submanifolds with boundary Γ. Likewise it is possible to show that every 2-dimensional
integral homology class in a closed Riemannian 3-manifold has a smooth representative which
minimizes the area. The set-theoretic approaches are not able to detect these two beautiful
phenomena.

On the other hand, actual soap films do form triple junctions singularities (and even more
complicated ones) in real life, and these phenomena do not seem to be efficiently captured
by functional-analytic frameworks (even though these type of singularities do occur in some
specific situations, see below). Much of the research in the set-theoretic frameworks is thus
motivated by the original intention of Plateau of finding a good variational description of soap
films. In that respect the recent paper [86] by Maggi, Scardicchio, and Stuvard pointed out
that much of the investigations in the mathematical literature have thus far ignored some
very relevant physical attributes of real-life soap films. Combining some of the aspects of the
set-theoretic approaches with other modern techniques, like Γ-convergence, and with more
accurate considerations from mathematical physics, the papers [76, 77, 78] propose a new
variational theory which promises to provide a much more accurate description of real-life
soap films.

2.3. Functional-analytic frameworks. The pioneer of functional-analytic frameworks seems
to be Renato Caccioppoli. In his works [18, 19] Caccioppoli proposed the following definition
of “perimeter” of a general (Lebesgue measurable) set of Rm+1 (I will actually describe a slight
variation of Caccioppoli’s approach, but the actual differences are just of technical nature
and for the purposes of this discussion I will ignore them). First of all, if the set has a C1

boundary, its perimeter is defined to be the usual m-dimensional volume of the boundary.
Next, given a general Lebesgue measurable set E ⊂ Rm+1, we consider all possible sequences
Ek of sets with C1 boundaries with the property that the Lebesgue measure of the symmetric
difference Ek∆E goes to 0. We then consider

lim inf
k→∞

Hm(Ek)
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and we further take the infimum of all such numbers among all approximating sequences {Ek}.
The latter is defined to be the perimeter of E. If it is finite, E is commonly called set of finite
perimeter or (especially if you are Italian!) Caccioppoli set.

Caccioppoli’s approach is very natural in the Calculus of Variations. We start from a class of
“good” objects, the open sets with smooth boundary, over which the energy we are interested
in, i.e. their perimeter, is classically defined. However a sequence of smooth sets with uniform
controlled perimeter might converge to nonsmooth sets (for instance one can easily form
corner, cusps, and other type of singularities) and we therefore would like to enlarge this class.
We then take a much larger class, that of all measurable sets, with a topology in which the
good objects are dense and we extend the energy to be the lower semicontinuous envelope.
Interestingly Caccioppoli’s approach was initially dismissed by his contemporaries (cf. the
reviews by L.C. Young of the aforementioned papers) because he was not able to relate his
abstract definition to any concrete notion of perimeter in a measure-theoretic sense. In the
early fifties De Giorgi took up Caccioppoli’s approach and proved, in his celebrated works on
the isoperimetric property of the sphere (cf. [29, 30, 31]), that:

• the class of sets with finite perimeter in the sense of Caccioppoli is compact, under a
uniform bound on their perimeter;
• the perimeter has a precise measure-theoretic interpretation, i.e. if the set Ω has a
finite perimeter one can introduce a suitable notion of (oriented) measure-theoretic
boundary which turns out to be rectifiable and whose Hausdorff measure is indeed the
perimeter of Ω.

De Giorgi also reformulated the theory of sets of finite perimeters through a useful duality: if
correctly interpreted, the usual divergence theorem holds for them, and the boundary integral
in the formulation is in fact a classical integral, in the sense of measure theory, over the
measure-theoretic boundary. For open sets with smooth boundaries the “measure-theoretic”
one coincides with the topological one. An interesting byproduct (not at all obvious from the
definition) is that the perimeter as defined by Caccioppoli is in fact the classical surface area
of the topological boundary when the latter is smooth.

Thus, the oriented “generalized” boundaries of Caccioppoli and De Giorgi act as linear
functionals on vector fields. In the celebrated theory developed later by Federer and Fleming
(cf. [64]) these are particular instances of “integral currents”, which act on general forms
(and hence can have arbitrary codimension). Like De Giorgi’s theory of Caccioppoli sets, the
theory of integral currents of Federer and Fleming can also be seen as a suitable variational
completion: after introducing an appropriate class of good objects (in this case integral smooth
chains, which are formal linear combinations, with integer coefficients, of smooth oriented
submanifolds with smooth boundaries, the more general objects, namely the integral currents,
can be characterized as the limits, in an appropriate weak topology, of sequences of those
good objects, under uniform bound on their volume and on the volume of their boundaries.
Like in the case of De Giorgi’s theory of Caccioppoli sets, integral currents can be represented,
in a suitable measure theoretic sense, as integration over “oriented” rectifiable sets.

While the duality with differential forms limits the choice of coefficient groups in the formal
linear combinations to integer and real coefficients (or anyway to subgroups of the reals),
the “completion point of view” allows to choose other “coefficient groups” (endowed with an
appropriate norm, so that we can make sense of the notion of “mass”), cf. the foundational
paper of [66] for the case of finite groups. Notable choices are the so called “flat chains mod p”
(which with a slight abuse of terminology we will call currents mod p). In the latter case p
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is a positive integer larger than 1 and the coefficient group is Zp = Z/(pZ) (for an element
[q] ∈ Zp, endowed with the usual norm

|[q]|min{|q − kp| : k ∈ Z} .
In this note the coefficients group will always be either Z, or Zp. Note in particular that in
both cases the norm will always take integer values, a fact which will play a fundamental role
in our discussions.

In all these instances we have a framework where we can apply the direct methods of the
calculus of variations. In particular:

• the concept of boundary comes naturally either from the duality with differential forms,
or from the closure procedure;
• the underlying space of generalized objects is closed;
• the generalized area functional (often called the mass) is lower semicontinuous and its
sublevel sets are compact (if we assume that the boundary of our generalized surfaces
is a fixed given one).

In particular the Plateau problem in the above frameworks has a very elegant existence theory.

2.4. Varifolds and the calculus variations “in the large”. One notable drawback of
the functional analytic frameworks outlined above is that the mass is not continuous for the
natural convergence in the underlying spaces. Continuity along a sequence might be lost
because of two mechanisms:

• High frequency oscillations: for instance the graphs of the functions 1
k sin kx in the

two-dimensional plane have locally bounded length and they converge, in the sense of
integral currents, to the straight line. It is however easy to see that the total length
of any segment in the limiting line is strictly less than the limit of the corresponding
approximations.
• Cancellation: a line in R2 can be given two distinct orientations, thereby defining two
different integral currents. However their sum is 0. If we approximate the two different
oriented lines with a sequence of two shifted oriented lines with disjoing supports, then
we get a sequence of integral currents with masses uniformly bounded from below
which converges to the trivial current.

We are concerned mostly with the second, since the approximating sequence is a sequence
of minimal surfaces. Indeed we can reasonably expect that a sequence of critical surfaces
will not exhibit the oscillatory behavior of the first example (this fact was in fact proved
by Allard as a byproduct his famous regularity theory, see below). On the other hand the
criticality assumption does not rule out the second example, which is therefore “particularly
bad” because it shows that in the space of currents we cannot expect any reasonable type of
“Palais-Smale” property.

A way to remedy this loss of continuity is to introduce the notion of varifold, which is just a
positive measure on the Grassman space of m-dimensional unoriented m-planes in the tangent
bundle of the Euclidean space (or more generally of a Riemannian manifold). For a smooth
(not necessarily oriented) surface Σ, the corresponding varifold is given by

δTxΣ ⊗ dVolΣ (2.1)
General varifolds were introduced by L. C. Young (cf. [126]), while in the context of minimal
surfaces Almgren introduced them precisely in order to tackle general existence problems
for critical points of the area functional, cf. [7]. A particularly useful subclass of varifolds
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is that of integral varifolds, which satisfy a structure as in (2.1) where dVolΣ is substituted
by the Hausdorff k-dimensional measure restricted on a general m-dimensional rectifiable set
R (with an integer valued weight), and δTxΣ is substituted by δTxR, where TxR is a natural
measure-theoretic generalization, to rectifiable sets, of the tangent to a smooth surface.

In his notable monograph [95], based on some groundbreaking ideas of Almgren [7], Pitts
developed a quite powerful variational theory for finding generalized critical points of the
area functional. In codimension 1, i.e. in the case of hypersurfaces, the theory of Almgren
and Pitts has found striking geometric applications in the works of A. Neves and F. Coda
Marques, cf. [87, 84, 88]. These results have spurred a number of interesting works in the
area and Pitts’ existence theory has been revisited in several different ways, see for instance
[21, 22, 56, 75, 127].

Varifolds can be naturally deformed using one parameter family of diffeomorphisms and
this allows to introduce a rather natural notion of k-th variation of the varifold along smooth
vector fields. Of particular relevance are then

• stationary varifold, i.e. varifolds for which the first variation vanishes along any vector
field,
• and stable varifolds, i.e. stationary varifolds for which the second variation is nonnega-
tive along any vector field.

Since all the objects encountered above in the existence theories for the Plateau problem
naturally induce corresponding varifolds, all the minimizers in the various senses given above
are in fact stable varifolds.

3. Monotonicity formula and tangent cones

One simple and very powerful tool in the regularity theory for minimal submanifolds is the
monotonicity formula. In order to gain an intuition about it, consider a smooth m-dimensional
surface Σ ⊂ Rm+n which minimizes the volume in some suitable class of comparison surfaces
and fix an “interior” point p ∈ Σ. Considerthen a ball Br(p) which does not intersect ∂Σ. We
wish to compare the volume of Σ∩Br(p) to the volume of the cone Σc with vertex p and base
Σ ∩ ∂Br(p). By Sard’s lemma we can assume that Σ intersects ∂Br(p) transversally. Note
that our comparison surface is somewhat singular, because of the vertex singularity of the
cone and the discontinuity in the tangents that might be introduced by cutting Σ ∩Br(p) out
and replacing it with Γ. On the other hand it is also simple to see that Σc ∪ (Σ \Br(p)) can be
obtained as limit of deformations of Σ by smooth isotopies of the ambient space: in particular
it is a good comparison surface in pretty much all the variational frameworks considered so
far.

The minimizing property of Σ implies then that

Volm(Σ ∩Br(p)) ≤ Volm(Σc) = r

m
Volm−1(Σ ∩ ∂Br(p)) ,

which in turn (considering that Volm−1(Σ ∩ ∂Br(p)) ≤ d
drVol

m(Σ ∩Br(p))) gives
d

dr

Volm(Σ ∩Br(p))
rm

≥ 0 . (3.1)

The latter is the classical monotonicity formula for minimal submanifolds. It is very robust, in
the sense that

(a) It can be derived for critical points by using stationarity with respect to some specific
radial deformations. In particular it holds for stationary varifolds (see [4]).
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(b) Allowing for suitable multiplicating factors like eCr, the formula holds for much more
general objects, in particular for stationary varifolds in smooth Riemannian manifolds
(cf. again [4]).

(c) A suitable version of the formula can be derived at boundary points too, under the
assumption that the boundary ∂Σ is smooth enough (cf. [5]). An intuition for this
can be gained through the following observation: if the boundary ∂Σ were an affine
subspace passing through p, then the competitor surface Σc ∪ (Σ \Br(p)) has the same
boundary, namely ∂Σ.

(d) Perhaps most importantly, a more refined version of the arguments leading to (3.1)
shows that the equality case in holds if and only if Σc coincides with Γ, i.e. if Σ itself
is a cone with vertex p.

For further reference we will call density of Σ at p (denoted by Θ(Σ, p) the limit of the “mass
ratio”

lim
r↓0

Volm(Σ ∩Br(p))
ωmrm

,

where ωm is the volume of the m-dimensional disk. Obviously the density is not particularly
interesting for smooth Σ’s as it will be 1 at every interior point and 1

2 at every boundary point
(or k at every interior point and k

2 at every boundary point, if we entertain the possibility of
allowing for multiplicities in the normed groups Z and Zp, or if we consider integral varifolds).
However, due to (a), the density exists for any “generalized minimal surface” encountered in
the previous section and this is a very nontrivial information, given that the latter might be
singular. Another interesting byproduct of the monotonicity formula is that the density is
nowhere smaller than 1 at interior points, which in turn implies that some suitable definition of
“support” of the generalized minimal surface is a closed rectifiable set of locally finite Hausdorff
measure.

3.1. Tangent cones. Fact (d) above is maybe the most relevant, as it is the starting point for
a fruitful fundamental concept in minimal surface theory. Let us fix a point p in (the support
of) our generalized minimal surface Σ (and, in light of (c) above, we might even fix it at the
boundary as long as the latter is sufficiently smooth). For every radius r consider then the
translated and rescaled surface

Σp,r := Σ− p
r

= {y : p+ ry ∈ Σ} .

The volume of the surface in BR(0) is then uniformly bounded for every fixed R, independently
of the parameter r. Again, while this is not particularly exciting for a smooth Σ, it is a highly
nontrivial amount information for the generalized minimal surfaces, which are potentially
singular at p. Given the uniform bound and the compactness properties available for all the
generalized minimal surfaces introduced thus far, up to subsequences we can assume that Σp,r

converges to a generalized minimal surface in the same class, which for convenience we will
denote by Σc.

Assuming convergence of the volume (which is in fact correct for objects like varifolds
because of their definition, while it is a property shared by minimizers out of variational
arguments, in any of the classes described thus far) the mass ratio R−mVolm(Σc ∩ BR) is
constant in R, and hence by point (d) it is a cone. In the literature Σc is called a tangent cone
to Σ at p. Note that we are speaking about a tangent cone: the uniqueness of this object, i.e.
the independence of it from the subsequence rk ↓ 0, is a widely open problem, even though
several fundamental result have been proved in the past (see Section 15 below).
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At a regular point p, i.e. a point in a neighborhood of which the generalized minimal surface
Σ is smooth, the tangent cone Σc is of course unique and it is given by the tangent space
to Σ at p (counted with the appropriate multiplicity, depending upon the chosen variational
framework), or half of the tangent space if p is a boundary point. A later section will examine
under which assumption the latter conclusion is correct.

At any rate, even in the possible presence of singularities, we have gained a great deal
of new information about Σc compared to Σ: Σc is a “global minimal surface” (it has no
boundary if p is in the interior, or its boundary is affine if p ∈ ∂Σ) and moreover it is conical.
In particular its spherical cross section carries all the information about Σc, even when Σc is
singular: at all effects Σc must be less complex than Σ, i.e. Σc has “lost one dimension”.

4. Invariant spaces and strata

For simplicity in what follows we will focus on tangent cones Σc at interior points p, even
though a variant of the following discussion applies to boundary tangent cones as well. Since
p is not a boundary point, Σc has no boundary. Moreover two simple corollaries of the
monotonicity formula are that:

• Θ(Σc, 0) ≥ Θ(Σc, q) for every q,
• and if the quality holds at some q 6= 0, then Σc “splits off a line”, i.e. it is invariant
under translations in the direction q.

The latter property is the starting point of Federer in his celebrated “dimension reduction
argument” (cf. [62, 63]), which we will illustrate below. Here we want to present Almgren’s
stratification theory, which is a far-reaching generalization of Federer’s original idea.

First of all, it follows from the above consideration that the set

V = {q ∈ Σc : Θ(Σc, q) = Θ(Σc, 0)}

is a linear subspace of Rm+n. If V has the same dimension as Σc, then in fact Σc coincides
with V (counted with the correct multiplicity and, in some cases, given the correct orientation).
Otherwise, assuming that k = dim(V ), Σc is the product of V and a minimal cone Σ0 in the
orthogonal complement of V ⊥, which is not invariant by any translation. This is a great deal
of information and in several cases implies severe restrictions upon k. For instance, for area
minimizing integral currents it can be easily checked that k ≤ m− 2 in general, while in the
particular case of codimension 1 the celebrated paper of Simons on stable minimal hypercones
(cf. [62]) implies that k ≤ m− 7 (again this will be discussed further below)! In [11] Almgren
coined the term building dimension of the cone Σc to identify the nonnegative integer k and
introduced a stratification of the interior points p ∈ Σ according to the maximal building
dimension of its tangent cones. In particular the stratum Sk is the set of (interior) points
p ∈ Σ such that the building dimension of any tangent cone to Σ at p is at most k. Almgren’s
fundamental discovery is the following

Theorem 4.1. For a stationary integral varifold Σ the stratum Sk is a closed set of Hausdorff
dimension at most k.

Almgren’s approach is very general and can be applied to a variety of different context. For
a framework which is very flexible and covers a white range of applications, see [123]. Almost
four decades after the work of Almgren, groundbreaking ideas allowed Naber and Valtorta to
improve massively upon Almgren’s original theorem, showing that (cf. [93, 94])
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Theorem 4.2. For a stationary integral varifold Σ the stratum Sk is k-rectifiable, i.e. it can
be covered, up to a set of Hk-measure zero, with countably many C1 submanifolds of dimension
k.

Theorem 4.2, which was predated by pioneering works of Simon (cf. [106, 109]) covering
some particular cases (most notably the stratum Sm−7 for area-minimizing integral currents,
see below for more details), builds upon a new sophisticated version of Reifenberg’s topological
disk theorem combined with a clever use of the remainder in the monotonicity formula. The
ideas are quite general and can be applied to other contexts.

5. Interior ε-regularity at multiplicity 1 points

Following the above terminology, two things are obvious: the stratum Sm coincides with
the whole support of the m-dimensional generalized minimal surface and the stratum Sm−1
consists necessarily of singular points. A point p ∈ Sm \Sm−1 is clearly a good candidate
for being a regular point, since we know that at least one tangent cone to Σ at p is in fact a
plane (counted with its multiplicity). However, a famous theorem by Federer shows that the
existence of a “flat tangent” does not guarantee the regularity of the point. Indeed, based on
a classical theorem of Wirtinger in Kähler geometry, Federer proved (cf. [62]) that

Theorem 5.1. Any holomoprhic subvariety Σ of complex dimension k in Cn induces an
area-minimizing integral current of dimension 2k in R2n.

It can be readily checked that the holomorphic curve
Σ = {z2 = w3 : (z, w) ∈ C2} . (5.1)

gives then an example of an area-minimizing integral current of dimension 2 in R4 for which
0 ∈ S 2 \S 1 is a singular point. One crucial fact is however that the flat tangent at 0 is
a 2-dimensional plane (i.e. the complex line {z = 0}) but counted with multiplicity 2. A
celebrated theorem of Allard (cf. [4]), extensively used in the literature, shows that the naive
expectation “flat tangent cone ⇐⇒ regular point” is indeed correct if the flat tangent cone
has multiplicity 1.

Theorem 5.2. If a stationary integral varifold Σ is sufficiently close in B2r(p) to a plane
(counted with multiplicity 1) in the weak topology, then in Br(p) it is a smooth graph over
that plane. Moreover, at any interior point p where the density of Σ is 1, such a plane always
exists for a sufficiently small r.

Among the various objects examined in this note, there are three situations where it is
relatively simple to see apriori that our generalized minimal surface Σ will not “pick higher
multiplicity” at flat points:

(a) Σ is a portion of the boundary of some Caccioppoli set;
(b) Σ is a solution of the Plateau problem in one of the set-theoretic senses described in

Section 2.2;
(c) Σ is an area-minimizing current mod 2 or an area-minimizing current mod 3.

In fact Theorem 5.2 was realized independently by De Giorgi and Reifenberg, in [32] and
[97, 98], respectively in the particular cases of (a) and (b) (this is literally correct for De
Giorgi, while in reality Reifenberg in [97, 98] dealt with the only set-theoretic solutions of
the Plateau problem known at his time, which were the ones he himself introduced in [96];
it must also be noticed that De Giorgi’s monograph appeared 3 years before Reifenberg’s
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paper, but it was probably not yet widely known when Reifenberg wrote his papers [97, 98]).
The two pioneering approaches are rather different, but they both rely on the fact that the
“linearization” of a minimal surface, understood as a graph over his tangent plane, is harmonic
(in fact it would be more correct to say that the linearization of the minimal surface equation
is the Laplace equation, or that, at the level of the energies, the Dirichlet energy is the second
order Taylor expansion of the area functional).

Reifenberg used harmonic competitors to estimate how much an area-minimizing surface
deviates from being conical if it is close to a plane, and derived his famous “epiperimetric
inequality”, which can be thought as a quantitative improvement of the cone-comparison
outlined above to prove the monotonicity formula. De Giorgi used a linearization technique
which has a more PDE flavor, and which was generalized afterwards by Almgren in any
codimension and for much more general energy functionals, cf. [7]. Both approaches exploit
in a substantial way the minimizing property of the surfaces in question. Allard’s proof
of Theorem 5.2, while still based on the intuition that harmonic functions provide a good
approximation for minimal graphs, deviates drastically from both of them, having to deal
with stationary objects. But ultimately it is fair to say that Allard’s approach borrows much
more substantially from the works of De Giorgi and Almgren, than from that of Reifenberg.

It is worth spending some words on why all the approaches mentioned above for the ε-
regularity theory fail at the origin in the example (5.1): no matter how small is the scale
that we look at, it is not possible to approximate efficiently (5.1) around the origin with the
graph of a single-valued function. Of course, before knowing Theorem 5.2 we also do not
know that, under the corresponding assumptions, a generalized surface is graphical over the
approximating plane: however a crucial point in Allard’s proof of Theorem 5.2 is that, before
proving any regularity, he was able to produce a graphical approximation which covers most
of the support of the generalized minimal surface. In contrast, no matter how small the r is, a
single valued graph will cover no more than half of Σ ∩Br(p) when Σ is given by (5.1)

The assumption on the multiplicity of the varifold severely limits the effectiveness of Theorem
5.2 in bounding the size of the singular set for stationary integral varifolds. In fact, it would be
natural to expect that singular points with a flat tangent cone form anyway a set of relatively
modest size: according to the known examples, its dimension is likely m− 2. The latter is less
than the dimension of Sm−1 and so one could reasonably conjecture that the singular set of a
stationary integral varifold has dimension at most m− 1. On the other hand so far the best
that we can conclude is still a corollary of Theorem 5.2 noted by Allard in [4] almost 50 years
ago.

Corollary 5.3. Let Σ be a stationary m-dimensional varifold in U ⊂ Rm+n. Then the singular
set of Σ is a closed subset which has empty (relative) interior.

6. Boundary ε-regularity at multiplicity 1
2 points

In his second groundbreaking work [5] Allard proved a statement parallel to Theorem 5.2 at
boundary points. The following is an informal description of his main “boundary regularity”
theorem.

Theorem 6.1. Assume Σ is an m-dimensional integral varifold in some open set U ⊂ Rm+n,
which is stationary for variations which keep fixed a smooth m− 1-dimensional submanifold Γ.
Then the following conclusions hold:

(a) If p ∈ Γ belongs to the support of the varifold, then Θ(p,Σ) ≥ 1
2 ;
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(b) If in B2r(p) the varifold is sufficiently close, in the weak topology, to a single copy
of half of an m-dimensional plane π, then in Br(p) it is a C1 graph over a suitable
portion of π;

(c) If Θ(p,Σ) = 1
2 , then the assumption of (b) (and hence the corresponding conclusion)

holds for a sufficiently small r.

For this boundary version as well, the overall intuition is that V is, in first approximation,
very well approximated by the graph of a (single-valued) harmonic function.

While in the rest of this note I will touch upon interior regularity results for many different
notions of generalized minimal surfaces, concerning boundary regularity I will only focus on
the case of area minimizing integral currents. This is also due to the fact that there are not
many other cases studied in the literature. Aside from Allard’s general theorem (i.e. Theorem
6.1 stated above), the author is only aware of:

• the work [80] (cf. also [91]), which contains a conjectural list of boundary tangent
cones for set-theoretic 2-dimensional solutions of the Plateau problem;
• the recent work of David [27], which, for 2-dimensional sliding minimizers, generalizes
the conclusion of Theorem 6.1 to the union of two half planes, and possible additional
transverse cones as in the classical theorem of Taylor in the interior (cf. Theorem 8.1);
• an argument by White which shows how to gain curvature estimates for stable minimal
hypercurrents at the boundary, under some convexity assumption (cf. [45, Section
6.4]).

7. Interior regularity theory: minimizing integral hypercurrents

Even though Allard’s Theorem 5.2 needs the multiplicity 1 assumption, the latter might be
dropped in the case of integral area-minimizing currents of codimension 1 (which for simplicity
we will call hypercurrents from now on). The key point is that area-minimizing integral
hypercurrents Σ can be locally decomposed into the sum of area-minimizing boundaries of
Caccioppoli sets (this is a consequence of the Coarea Formula, see for instance [105]). If
in B2r(p) the original current Σ is close to a multiple Q of a hyperplane π, each of these
boundaries is then close to a multiplicity 1 copy of π. We can then apply Allard’s theorem to
prove that each of them is a C1 graph in Br(p), obtaining what can be called (cf. for instance
[102]) a “sheeting theorem” for Σ ∩Br(p). However each of these sheets must be ordered (for
minimizing reasons they cannot cross) and they must touch at the point p: the maximum
principle (each of these graphs is a solution of the minimal surface equation) then implies that
they collapse all into a single smooth surface counted with the appropriate multiplicity, which
must be Q.

This argument rules out that an example like (5.1) could exist for integral area-minimizing
hypercurrents. We are therefore in the luckiest of situations where we can infer that a single
flat tangent cone at p is indeed a necessary and sufficient condition for regularity at p. If we
introduce the notation Singi(Σ) for the interior singularities of Σ, when Σ is an m-dimensional
area-minimizing integral current in Rm+1 (or more generally in a complete smooth Riemannian
manifold of dimension m+1) we infer Singi(Σ) ⊂ Sm−1. Consider, however, that the existence
of a point p ∈ Sm−1 \Sm−2 implies the existence of a singular 1-dimensional area-minimizing
cone in R2, and it is rather elementary to see that the latter cones do not exist, namely that
Singi(Σ) ⊂ Sm−2. Of course we can now wonder whether for some Σ the set Sm−2 \Sm−3
is nonempty, which is equivalent to the existence of an area-minimizing 2-dimensional cone in
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R3 which is not a plane (i.e. it is singular at the origin). In [63] Federer introduced his well
known reduction argument, which could be formalized as follows.

Theorem 7.1. Let m be the smallest integer with the property that there is an m-dimensional
area-minimizing integral current Σ0 in Rm+1 which is a nonplanar cone with vertex at the
origin. Then Σ0 is everywhere regular except at the origin.

It was also realized by De Giorgi in [33] that the well known Bernstein problem, i.e. whether
a complete minimal graph over Rm+1 must be affine, would also be implied by the nonexistence
of nonplanar area-minimizing oriented hypercones in Rm+1. After progress by Fleming, De
Giorgi, and Almgren (cf. [65, 33, 8]), Simons in [112] proved his famous result about stable
minimal hypercones, namely

Theorem 7.2. If m ≤ 6 and Γ0 ⊂ ∂B1 ⊂ Rm+1 is a smooth connected submanifold of
dimension m− 1, such that the cone Σ0 with base Γ0 and vertex 0 is a stable varifold, then Γ0
is a great sphere (i.e. Σ0 is planar). On the other hand

Σs := {x2
1 + x2

2 + x2
3 + x2

4 = x2
5 + x2

6 + x2
7 + x2

8} ⊂ R8 (7.1)

is a nonplanar, oriented, stable singular cone of dimension 7.

Since area-minimizing currents are automatically stable varifolds, in combination with
Federer’s reduction argument the first part of Theorem 7.2 implies that Singi(Σ) ⊂ Sm−7
for any m-dimensional area-minimizing integral hypercurrents. In particular for m ≤ 6, Σ is
a regular hypersurface (in the interior), while, for m ≥ 7, Singi(Σ) has dimension at most
m− 7. In fact, by Theorem 4.2 we can conclude that Singi(Σ) is m− 7-rectifiable. The latter
conclusion was first reached by Simon in his pioneering work [106]. However, compared to
Simon’s techniques, the approach by Naber and Valtorta (cf. [94]) allows to prove the stronger
conclusion that

Theorem 7.3. Let Σ be an m-dimensional area-minimizing integral current in Rm+1. Then
Singi(Σ) has locally finite Hausdorff m− 7-dimensional measure, and it is m− 7-rectifiable.

In their famous work [17] Bombieri, De Giorgi and Giusti completed the solution of the
Bernstein problem showing that indeed the Simons cone (7.1) is an area minimizing integral
current of dimension 7, and that in addition there is a nonaffine global solution u : R8 → R of
the minimal surface equation.

8. Interior regularity theory: minimal sets

As already mentioned, the phenomenon of “picking higher multiplicity at flat points” is
absent in the solutions of the Plateau problem that fall in the “set-theoretic” approach. This
was pioneered by Reifenberg in [97, 98], who proved that his m-dimensional solutions of the
Plateau problem are always real analytic except for a closed Hm-null set. A much more general
statement, valid in a variety of contexts and also for a vast class of elliptic energies was proved
by Almgren in [9].

Following the Remarks of Section 4 we conclude that the singular set of anm-dimensional set-
theoretic solution of the Plateau’s problem is necessarily contained in Sm−1. While Theorem
4.2 implies that Sm−1 is rectifiable, much more can actually be said in the codimension 1
case. First of all, for 2-dimensional minimizing sets in R3 Taylor in [117] proved the following
complete structure theorem.
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Theorem 8.1. Let Σ be a 2-dimensional set which minimizes the area in the sense of Almgren.
Then:

(a) S1(Σ) \S2(Σ) is the (locally finite) union of C1,α arcs and for each p ∈ S1(Σ) there
is a neighborhood U of p in which Σ is the union of three classical minimal surfaces
meeting in S1(Σ) ∩ U at 120 degrees;

(b) S0(Σ) consists of isolated points and for each p ∈ S0(Σ) there is a neighborhood U in
which Σ is diffeomorphic to the cone over a regular tetrahedron.

The same conclusion as in part (a) of the above remarkable theorem is in fact valid for the
stratum Sm−1 \Sm−2 of m-dimensional area-minimizing sets in Rm+1 and can be inferred
from Simon’s theory on the uniqueness of multiplicity 1 cylindrical cones, cf. [107]. Part
(b) can also be genealized to a similar statement for m-dimensional area-minimizing sets of
Rm+1, implying in particular that S2 \Sm−3 is an m − 2-dimensional submanifold. This
generalization was announced by White in [121] and a proof has been recently published by
Colombo, Edelen, and Spolaor in [23], as a corollary of a more general result. The main
Theorem in [23] also implies that the stratum Sm−3 has finite Hm−3 measure.

9. Interior regularity theory: stable hypersurfaces and stable hypervarifolds

In [103] Schoen, Simon, and Yau realized that Simons’ Theorem on stable minimal hypercones
could be recast in a suitable apriori estimate for the curvature of stable minimal surfaces.
More precisely, combining Simons’ inequality with techniques from elliptic PDEs they were
able to prove the following groundbreaking theorem.
Theorem 9.1. Let Σ be a smooth minimal hypersurface in U ⊂ Rm+1 with m ≤ 5. Then
for every V ⊂⊂ U there is a constant C which depends on U, V , and Hm(Σ) such that the
Hilbert-Schmidt norm of the second fundamental form A of Σ is bounded by C at every point
of Σ ∩ V .

In their subsequent work [102] Schoen and Simon were able to cover the case m = 6
of the above statement and also to give a “GMT regularity theory” counterpart of the
Schoen-Simon-Yau estimates. More precisely they were able to prove
Theorem 9.2. Assume Σ is a stable m-dimensional varifold in U ⊂ Rm+1 with the property
that1 Hm−2(Singi(Σ)) <∞. Then Singi(Σ) ⊂ Sm−7.

It has been recently shown by Simon, see [110, 111], that the subsequent conclusion that
Singi(Σ) is m − 7-rectifiable is optimal, in the sense that there are stable m-dimensional
varifolds in m+1 smooth Riemannian manifolds whose singular sets are closed sets of arbitrary
Hausdorff dimension α ≤ m− 7. On the other hand the assumption Hm−2(Singi(Σ)) = 0 is
not at all optimal. Based on the examples known thus far, one could expect that for a general
stable hypervarifold the top stratum Sm−1 \Sm−2 is a C1,α m− 1-dimensional submanifold
and that if the latter is empty, then Singi(Σ) is contained in Sm−7. A notable theorem in this
direction, in particular covering the second conclusion, has been achieved by Wickramasekera
in his deep regularity theory of stable hypervarifolds. The main conclusion of his paper [124]
is the following
Theorem 9.3. Assume Σ is a stable m-dimensional varifold in a connected set U ⊂ Rm+1.
Then:

1In their paper Schoen and Simon assume the stronger property that Hm−2(Singi(Σ)) = 0, but it is well
known by the experts that their arguments apply if the Hausdorff measure is in fact finite.
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• either Singi(Σ) contains a point p in a neighborhood of which Σ consists of a finite
number of smooth minimal hypersurfaces meeting at a commong C1,α m−1-dimensional
boundary (which in particular is a nonempty subset of Sm−1 \Sm−2),
• or otherwise Singi(Σ) ⊂ Sm−7.

While the latter is a remarkable achievement, for general stable hypervarifolds the best
nonconditional regularity result is still the one that can be concluded from the sole condition
of stationarity through Allard’s work, namely Corollary 5.3.

10. Interior regularity theory: minimizing integral currents in higher
codimension

As already witnessed in Example (5.1) the regularity theory for area-minimizing integral
currents in codimension larger than 1 differs dramatically from the regularity theory for
hypercurrents, since there are singular points which belong to Sm \Sm−1, and which from
now on we will call “flat singular points”. The major problem of how to give a suitable
dimension bound for “flat singular points” was finally conquered by Almgren in a titanic
effort, which resulted in a famous 1728 pages preprint in the early eighties (cf. [10]), published
pusthumously thanks to the editorial work of Scheffer and Taylor in [11]. Almgren’s monograph
achieves the optimal dimension bound for area-minimizing integral currents in any dimension
and codimension.

Theorem 10.1. Let Σ be an area-minizing integral current of dimension m in Rm+n. Then
the Hausdorff dimension of the set of interior flat singular points is at most m− 2, while the
stratum Sm−2 \Sm−1 is empty. In particular dimH(Singi(Σ)) ≤ m− 2.

Almgren invented several tools to prove Theorem 10.1. In particular:
(i) he introduced an entire new concept of “multivalued functions minimizing the Dirichlet

energy” in order to find the “appropriate linearization” of area minimizing integral
currents at flat singular points, and he developed a subsequent existence and regularity
theory for these new objects;

(ii) he introduced several flexible techniques to approximate currents with Lipschitz
multivalued graphs;

(iii) he developed a very intricate regularization technique to find a sufficiently smooth
“central sheet” at possible branching singularities (the so-called “center manifold”);

(iv) he discovered a new monotonicity formula for harmonic function (the monotonicity of
the “frequency”) which has meanwhile been used in a variety of different contexts in
elliptic and parabolic partial differential equations (see e.g. [67, 70, 83]).

Almgren’s theory has been revisited by the author and Emanuele Spadaro in the series of
works [47, 48, 49, 50, 51]. Besides making the proof of Theorem 10.1 shorter, these works
improve upon Almgren’s monograph in several aspects, and moreover they have been the
starting point of several further developments, which will be detailed in the next sections

Shortly after Almgren completed his 3-volumes preprint, White proved that in the case
of 2-dimensional area-minimizing currents the stratum S0 consists in fact of isolated points,
cf. [119] (this is indeed a corollary of a more precise theorem which shows the uniqueness of
tangent cones in that particular case and which will be discussed further in Section 15. The
program of understanding the singularities of 2-dimensional area-minimizing currents was
then completed by Chang in [20].
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Theorem 10.2. Let Σ be a 2-dimensional area minimizing current in R2+m. Then Singi(Σ)
consists of isolated points. Moreover, for each p ∈ Singi(Σ) there is a neighborhood U in which
Σ can be decomposed as the union of a finite number N of branched minimal immersed disks
Di with the following property:

• Each Di is an embedding except for the point p;
• Di ∩Dj is either the empty set or consists only of the point p.

However the proof given in [20] is strictly speaking not complete, as Chang needs the existence
of a suitable generalization of Almgren’s center manifold to a “branched version”. For the latter
he just gives a 4-pages sketch (cf. the appendix of [20]), invoking suitable modifications of
Almgren’s statements (it must be noted that the construction of the center manifold occupies
more than half of Almgren’s monograph [11]). Based on the works [47, 48, 49, 50, 51] the
author, Spadaro, and Luca Spolaor gave a complete independent proof of the existence of
a branched center manifold in [53]. We also developed a suitable more general counterpart
of Chang’s theory in the papers [52, 54, 55], proving in particular the same regularity result
for spherical cross-sections of area-minimizing 3-dimensional cones and for semicalibrated
2-dimensional currents (previous theorems in [12, 13] proved some cases of particular interest,
based on the works of Rivière and Tian, see [99, 100, 101]). Almgren’s dimension bound in
Theorem 10.1 has as well been extended to semicalibrated currents by Spolaor in [113].

11. Interior regularity theory: minimizing currents mod p

The regularity theory for area-minimizing currents mod p started around the same time as
the regularity theory for integral currents. As a consequence of Almgren’s generalization of
De Giorgi’s ε regularity theorem, the cases p = 2, 3 were already rather well-understood in
the sixties. In particular the absence of flat singular points allowed one to infer the following
Theorem (the case p = 2 is due to Federer, cf. his pioneering work on the reduction argument
[63]).

Theorem 11.1. If Σ is an m-dimensional area-minimizing current mod 2 in Rm+n, then
Singi(Σ) ⊂ Sm−2. If Σ is an m-dimensional area-minimizing current mod 3, then Singi(Σ) ⊂
Sm−1.

The case p = 2 in codimension 1 allows even more restrictive results (the same regularity as
for integral area-minimizing currents holds and in fact locally any area-minimizing integral
hypercurrent mod 2 is the boundary of a Caccioppoli set), while in higher codimension there
are indeed area-minimizing 2-dimensional currents mod 2 with point singularities.

For p = 3 the union of three half-planes in R3 meeting at a common line at 120 degrees gives
an obvious example for which Sm−1 6= ∅. The beautiful result of Taylor [116] gave a complete
description of the interior singular set for area-minimizing 2-dimensional currents mod 3 in
R3: locally the singular set is always diffeomorphic to the above example. The subsequent
work of Simon [107] on the uniqueness of cylindrical tangent cones allowed to give a suitable
generalization of Taylor’s result in any dimension and codimension. The final outcome is the
following

Theorem 11.2. If Σ is an m-dimensional area-minimizing current mod 3 in Rm+n, then
Sm−1 \Sm−2 is an m− 1-dimensional submanifold and at every p ∈ Sm−1 \Sm−2 there is a
neighborhhod U in which Σ consists of 3 smooth minimal surfaces meeting at Sm−1 ∩U at 120
degrees. If Σ is in addition an hypercurrent (i.e. n = 1), then Sm−2 \Sm−3 is an empty set.
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In particular, if m = 2 and n = 1, then Singi(Σ) consists of pairwise disjoint closed simple
curves and pairwise disjoint simple arcs with endpoints lying in the support of the boundary of
Σ.

In order to progress beyond Corollary 5.3 for higher moduli it is necessary to either rule
out flat singular points or bound their dimension. In the special case of mod 4 hypercurrents
White in [118] discovered a beautiful fact which allowed him to derive the following structural
result

Theorem 11.3. If Σ is an m-dimensional area-minimizing current mod 4 in Rm+1, then
it can be locally decomposed, away from its boundary, in the union of two m-dimensional
area-minimizing current mod 2.

He also showed a converse to Theorem 11.3. In particular his results imply the existence
of flat singular points even for hypercurrents mod 2k. More precisely, consider a function
u : R2 ⊃ B1 → R which solves the minimal surface equation and, after applying a suitable
translation and rotation, assume that u(0) = 0, ∇u(0) = 0 and D2u(0) 6= 0. Since ∆u(0) = 0,
it follows that the zero set of u in a neighborhood of 0 consists of 2 arcs crossing orthogonally
in 0. We can thus assume that the disk Br(0) ⊂ R2 is subdivided by {u = 0} into 4 sectors
S1, S2, S3, S4. We then consider in Cr := Br(0)×R ⊂ R3 the union of the four sectors Si×{0}
and of the four portions Gi of the graph of u lying over the respective sector Si. We give to
Si opposite alternating orientations and sum them to construct an integral current S in Cr(0).
Clearly ∂S is formed by the four arcs which describe {u = 0} × {0}, suitably oriented and
counted with multiplicity 2. In particular S is a cycle mod 2. We then perform an analogous
operation with the 4 portions Gi of the graph of u and construct a corresponding integral
current T . By choosing the orientations correctly we can achieve that ∂T = ∂S. Therefore the
current Σ = T +S is a cycle mod 4 and, according to the results in [118], it is area-minimizing
(as a cycle mod 4). In particular 0 is a flat singular point for Σ.

This phenomenon is typical of even moduli and indeed in his subsequent work [120] White
proved that area minimizing hypercurrents mod 2k + 1 cannot have singular flat points.

Theorem 11.4. If Σ is an m-dimensional area minimizing current mod p in Rm+1 and p is
odd, then Singi(Σ) ⊂ Sm−1.

In the papers [41, 42] the author, Jonas Hirsch, Andrea Marchese, and Salvatore Stuvard
developed a theory to bound the dimension of flat singular points of a general area-minimizing
current Σ mod p (i.e. in any dimension and codimension), which implies that the Hausdorff
dimension of the set of flat singular points of Σ is at most m− 1.

Theorem 11.5. If Σ is an m-dimensional area minimizing current mod p in Rm+n, then
dimH(Singi(Σ)) ≤ m− 1.

While the latter theorem is a considerable improvement compared to what known before
(aside from the cases covered by Theorems 11.1, 11.3, and 11.4, in all others the best known
result was that the singular set is meager, thanks to Corollary 5.3). Indeed the known examples
would suggest that the set of flat singular points of any area minimizing current mod p is at
most m− 2. The work [38] and the forthcoming one [39], by the author, Hirsch, Marchese,
Spolaor, and Stuvard give a first step towards the latter picture in codimension 1.

Theorem 11.6. Let Σ be an m-dimensional area minimizing current mod p in Rm+1. Then:
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(a) Sm−1 \ Sm−2 is a C1,α submanifold and for every q ∈ Sm−1 \ Sm−2 there is a
neighborhood U in which Σ consists of p minimal hypersurface meeting at Sm−1 ∩ U ;

(b) At every flat singular point there is a unique tangent cone, which is a flat plane with
multiplicity p

2 (in particular p must be even).

In fact, after the appearance of [38] Minder and Wickramasekera (cf. [90]) pointed out
to the authors that it is possible to derive Theorem 11.6 directly from the theory developed
in [124], starting from one observation in [38] concerning tangent cones in the top stratum
Sm−1 \Sm−2 and the verification of Simon’s no hole condition. In [40] Theorem 11.6 will be
further used to confirm the conjectural picture in codimension 1, namely to prove

Theorem 11.7. Let Σ be an m-dimensional area minimizing current mod p in Rm+1. Then
Singi(Σ) ∩Sm is empty for p odd (as implied by Theorem 11.4), while Singi(Σ) ∩Sm has
dimension at most m− 2 for even p.

12. Boundary regularity theory: minimizing integral hypercurrents

The first boundary regularity theorem for area-minimizing integral currents Σ was proved
by Allard in his PhD thesis [3] in codimension 1. More precisely

Theorem 12.1. Assume Σ is an area-minimizing integral current of dimension m in Rm+1

and assume that
(a) ∂Σ is a smooth (more precisely C2) m− 1-dimensional surface Γ with multiplicity 1;
(b) there is a uniformly convex smooth (more precisely C2) bounded open set U such that

Γ ⊂ ∂U .
Then Σ is smooth in a neighborhood of Γ, more precisely there is an open set V ⊃ Γ such that
V ∩ Σ is a smooth minimal hypersurface (with boundary) and its boundary (in V ) is precisely
Γ (in the classical sense of differential topology).

In fact the proof in [3] contains an ε-regularity result which is the precursor of Theorem
6.1, while the Assumption (a) is combined with a suitable classification of boundary tangent
cones to prove that any point p ∈ Γ has density 1

2 . In order to remove the “convex barrier”
of assumption (a) one needs to handle situations in which p might be a “2-sided” boundary
point.

To illustrate the latter point, consider a 2-dimensional plane V in R3 and the two circles
γ1 = ∂B1(0)∩V and γ2 = ∂B2(0)∩V . Give to γ1 and γ2 the “same orientation”, so that they
bound the disks D1 = B1(0) ∩ V and D2 = B2(0) ∩ V , taken with the same orientation where
they overlap. It can be easily shown that, if Γ = γ1 + γ2, then Σ = D1 + D2 is the unique
area-minimizing integral current bounded by Γ. Σ can be described as the sum of the corona
D2 \D1, counted with multiplicity 1, and the disk D1, counted with multiplicity 2. A point
p ∈ γ1 is what can be naturally called a “2-sided” boundary point and note that its density is
3
2 (for a more rigorous definition, cf [34]). The regularity theory at such points is rather subtle
and (in codimension 1) it was handled in the famous work [69] by Hardt and Simon.

Theorem 12.2. Let Γ be a smooth oriented closed m− 1-dimensional submanifold of Rm+1

and let Σ be an area-minimizing integral current whose boundary (in the sense of currents) is
given by Γ counted with multiplicity 1. Then every point p ∈ Σ is regular, namely one of the
following two mutually exclusive possibilities holds:

(i) Either the density of Σ at p is 1
2 and hence the conclusion of Theorem 6.1 applies in a

neighborhood U of p;
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(ii) or the density of Σ at p is k + 1
2 for some positive integer k; in this case there is a

neighborhood U of p and a minimal hypersurface Λ of U without boundary such that:
– Λ contains Γ;
– Γ subdivides Λ in two regions Λ+ and Λ−;
– Σ in U is given by Λ+ counted with multiplicity k + 1 and Λ− counted with
multiplicity k.

Among the many ideas introduced in [69], one has been highly influential in several other
problems in minimal surface theory, and it is the so called Hardt-Simon inequality. In a nutshell
the Hardt-Simon inequality makes a clever use of the remainder in the monotonicity formula
(namely the precise expression for the quantity d

dr
Volm(Σ∩Br)

rm ) in order to infer nontrivial
information on the graphical approximation of Σ at small scales.

While we have stated Theorems 12.1 and 12.2 as “global theorems”, suitable local versions
of them are also valid, and in fact the very nature of the main arguments is completely local.

13. Boundary regularity theory: minimizing integral currents with smooth
boundaries of multiplicity 1

In his fundamental boundary regularity paper [5] Allard noticed that Theorem 6.1 can be
used to generalize the conclusion of Theorem 12.1 to all codimensions.

Theorem 13.1. Let Γ be a smooth m−1-dimensional closed oriented submanifold of Rm+n and
let U be a bounded smooth uniformly convex set such that Γ ⊂ ∂U . Then any area-minimizing
integral current Σ whose boundary is given by Γ (counted with multiplicity 1) is smooth in a
neighborhood of Γ, in the sense of the conclusion of Theorem 12.1.

Again, a local version of the above theorem holds as well and in fact,in order to conclude
that a boundary point p is regular and one-sided in the sense of Theorem 12.2(i), it suffices to
find a uniformly convex “barrier” which touches Γ at p and so that Σ lies (locally) on one
side of it, cf. [68]. A simple argument furnishes such a barrier for any smooth Γ ⊂ Rm+n: for
instance one could consider the smallest closed ball containing Γ. It then follows that under
the mere assumption that Γ is sufficiently smooth, an area-minimizing current bounding Γ
(taken with multiplicity 1) has always at least one boundary regular point.

Up until recently nothing more was known, except that in codimension higher than 1
singular boundary points are certainly possible. A simple example is given by the union
of a smooth simple curve γ1 ⊂ {x1 = x2 = 0} ⊂ R4 containing the origin and a smooth
simple curve γ2 ⊂ {x3 = x4 = 0} ⊂ R4 which does not contain the origin. This union
bounds an area-minimizing 2-dimensional integral current for which 0 is a boundary singular
point. Moreover, since in a general Riemannian manifold the barrier argument outlined in the
previous paragraph is not available, even in the simplest case of a smooth simple closed curve
in a closed smooth Riemannian 4-manifold M , the results outlined so far could not exclude
the possibility that all boundary points of an area-minimizing current Σ ⊂M bounding Γ are
singular.

As in the case of Theorem 12.2 the main difficulty in removing the convex barrier assumption
is the possibility that boundary points have density larger than 1

2 . And as in the case of
Theorem 10.1 the most problematic issue is that unfortunately the existence of a flat tangent
cone at the boundary does not guarantee regularity: flat boundary singular points exist as
soon as the codimension is larger than 1, cf. [34]. In [34] the author, Guido De Philippis,
Hirsch, and Annalisa Massaccesi were able to develop a suitable “Almgren-type” regularity
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theory for boundary points, building on a previous important step of Hirsch [72]. In particular
we proved the following

Theorem 13.2. Let Γ be a smooth closed oriented m− 1-dimensional submanifold of Rm+n

and let Σ be an area minimizing integral current whose boundary is given by Γ taken with
multiplicity 1. Then the set of boundary regular points, understood as points where one of the
two alternatives (i) and (ii) of Theorem 12.2 hold, is a dense relatively open subset of Γ.

While Theorem 13.2 might look very far from optimal, it turns out that a naive counterpart
of the bound of the dimension of the interior singular set is in fact false. In [34] we prove also
the following.

Theorem 13.3. There is a smooth 1-dimensional embedded submanifold of R4 which bounds
an area-minimizing current Σ of R4 whose boundary singular set has Hausdorff dimension 1.

Theorem 13.3 leaves open the possibility that at least the set of boundary singular points
has zero m−1-dimensional Hausdorff measure and that it has dimension m−2 if the boundary
is real analytic. We also caution the reader that a less restrictive definition of boundary
regular point might restrict the size of boundary singularities even in the C∞ case. For a more
detailed discussion of all these possibilities we refer the reader to Section 16. However, that
boundary regularity is subtle is also witnessed by the following example of the author, De
Philippis, and Hirsch (cf. [35]).

Theorem 13.4. There is a smooth closed 4-dimensional Riemannian manifold M and a
smooth simple closed curve Γ ⊂ M which bounds a unique area-minimizing 2-dimensional
current Σ which is smooth in M \ Γ and whose first homology group is infinite-dimensional.
In fact Σ is smooth except at a single point p ∈ Γ.

14. Boundary regularity theory: minimizing integral currents with smooth
boundaries of higher multiplicity

In the previous sections we examined the boundary regularity of area-minimizing integral
currents under the assumption that the multiplicity of the boundary is 1. A rather intriguing
and widely open question, already raised by Allard in his PhD thesis [3], is what happens
when the multiplicity is an integer larger than 1 (the fact that it must be an integer is of
course a consequence of the integrality assumption, but we also remind the reader that when
T is integer rectifiable and ∂T has finite mass, ∂T is necessarily integer rectifiable, cf. [62]).

The problem raised by Allard in [3] is highlighted again by White in [1]. In the same
reference White observes also that, thanks to the decomposition theorem for area-minimizing
hypercurrents, if Σ is an m-dimensional area-minimizing integral current in Rm+1 whose
boundary is a smooth submanifold Γ counted with multiplicity Q > 1, then Σ can be
decomposed into the sum of Q area-minimizing integral currents whose boundary is Γ counted
with multiplicity 1 also . In particular we are in the position of applying the Hardt-Simon
Theorem 12.2 to each element of the decomposition. While this is the same “codimension 1
phenomenon” that rules out flat singular points in the interior for area-minimizing integral
hypercurrents, we pause a moment to make one important remark. It is well known that there
are smooth m− 1-dimensional oriented closed submanifolds of Rm+1 that bound more than
one area-minimizing integral current. This is already the case for smooth simple closed curves
Γ in ∂B1 ⊂ R3. Consider in particular one such Γ and let Σ1 and Σ2 be two area-minimizing
integral 2-dimensional currents which bound Γ (with multiplicity 1). Thanks to the above
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decomposition theorem Σ = Σ1 + Σ2 is an area-minimizing current which bounds a double
copy of Γ2. By the interior regularity theory Σ1 and Σ2 have no interior point in common.
Therefore, by the Hopf boundary lemma, there is no boundary point at Γ in which Σ1 and Σ2
have the same tangent: Σ1 and Σ2 meet at every point of Γ transversally.

In light of the above example, it seems sensible to give the following definition of boundary
regular point.

Definition 14.1. Assume that Γ ⊂ Rm+n is a smooth oriented m−1-dimensional submanifold
and that Q is a positive integer. Let Σ be an area-minimizing integral current in Rm+n whose
boundary is given by Q copies of Γ. p ∈ Γ is a regular boundary point if one of the following
two alternatives occur in some neighborhood U of p:

(i) There are N positive integers ki with
∑
i ki = Q and N smooth minimal surfaces Λi

in U with boundary Γ such that Σ ∩ U =
∑
i kiΛi, and each distinct pair Λi and Λj

meet transversally at p;
(ii) There is a minimal surface Λ in U without boundary, which contains Γ: the latter

subdivides Λ in two regions Λ+ and Λ− and Σ ∩ U = (Q + k)Λ+ + QΛ− for some
positive integer k.

In particular the discussion above reduces the following statement to a mere corollary of
Theorem 12.2:

Corollary 14.2. Let Γ be a smooth oriented closed m− 1-dimensional submanifold of Rm+1,
Q be a positive integer, and Σ an area-minimizing integral current with ∂Σ = QΓ. Then every
boundary point p ∈ Γ is regular in the sense of Definition 14.1.

The boundary regularity theory for Q > 1 and in codimension larger than 1 is widely open.
A very first preliminary result, which is a counterpart of Theorem 12.1 for 2-dimensional
area-minimizing currents, has been proved very recently by the author, Stefano Nardulli, and
Simone Steinbrüchel in [43, 44], building in part upon the theory developed in [34] and the
paper [73].

Theorem 14.3. Consider a smooth 1-dimensional closed submanifold Γ of R2+n and assume
that there is a bounded smooth uniformly convex open set U such that Γ ⊂ ∂U . Let Σ be an
area-minimizing 2-dimensional integral current such that ∂Σ = QΓ for some integer Q. Then
every point p ∈ Γ is a boundary regular point and moreover alternative (i) in Definition 14.1
holds at every such point.

15. Uniqueness of tangent cones

One major open question in the regularity theory of minimal submanifolds, which has
attracted the attention of a large number of researchers since the dawn of geometric measure
theory, is the uniqueness of tangent cones. This amounts to the question of whether there is
at every point p a unique limit for the rescalings Σ−p

r of the minimal submanifold Σ. In some
situations the question is intimately connected to the understanding of the regularity properties
of the various strata Sk \Sk−1. For instance the pioneering works of Taylor [116, 117] leading

2It is one of the most beautiful discoveries of geometric measure theory that this conclusion is in general
false in higher codimension. In particular, following the pioneering work of L. C. Young [125], there are several
constructions of smooth simple curves Γ in R4 with the following remarkable property. If we let m(Γ) be the
mass of an area-minimizing 2-dimensional current which bounds one copy of Γ and m(2Γ) the mass of an
area-minimizing integral current which bounds two copies of Γ, then m(2Γ) < 2m(Γ).
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to the Theorems 8.1 and 11.2 can be reduced to suitable uniqueness statements for the relevant
tangent cones.

The most striking result in the area is the celebrated theorem of Simon in [104].

Theorem 15.1. Let Σ be a stationary integral varifold and assume that the spherical cross
section of one tangent cone Σ0 at an interior point p of Σ is a regular submanifold of ∂B1
with multiplicity 1. Then Σ0 is the unique tangent cone to Σ at p.

Once again a similar uniqueness theorem is widely open when the multiplicity of the cross
section is allowed to take multiplicity higher than 1, except for some lucky situations in which
the case of higher multiplicity can be reduced to that of multiplicity 1. Two notable examples
are that of area-minimizing hypercurrents and that of area-minimizing currents mod 2

Corollary 15.2. Let Σ be an area-minimizing m-dimensional integral current in Rm+1 or
an area-minimizing m-dimensional current mod 2 in Rm+n and assume that p is an interior
point at which one tangent cone Σ0 has smooth spherical cross section. Then Σ0 is the unique
tangent cone at p.

Even in the case of multiplicity 1, the uniqueness of tangent cones whose spherical cross
section is not smooth is a much more subtle issue. Before discussing it, we wish to introduce a
suitable concept which has played a pivotal role in many contexts. Let Σ0 be a stationary
varifold which is a cone with smooth cross section Γ0, taken with multiplicity 1. It is then
well-known that Γ0 is a minimal submanifold of the sphere ∂B1. If Σk is a sequence of cones
converging to Σ0, with cross section Γk, up to extraction of a subsequence Γk is the graph of a
solution of a suitable linear elliptic PDE over Γ0 plus higher order terms. Such solutions are
called Jacobi fields in the literature, and they are the higher-dimensional counterpart of the
classical Jacobi fields on geodesics. A Jacobi field u is called “integrable” if there is a sequence
Γk of minimal submanifolds of ∂B1 covering to Γ0 which generates u as outlined above. Prior
to Theorem 15.1 Allard and Almgren in [6] proved the following important result

Theorem 15.3. Let Σ be a stationary integral varifold, let p be an interior point and assume
that a tangent cone Σ0 to Σ at p satisfies the following two properties:

(i) The spherical cross section Γ0 of Σ0 is smooth and is taken with multiplicity 1;
(ii) Every Jacobi field of Γ0 is integrable.

Then Σ0 is the unique tangent cone to Σ at p and moreover the rescalings Σ−p
r converge to Σ0

with a polynomial rate.

The integrability condition (ii) of Theorem 15.3 has several drawbacks. In order to verify
it one must know rather explicitly the cross section Γ0. But even in the cases in which Γ0
is known and has a rather simple formula, verifying the condition is in general quite hard
(in particular it requires a classification result for all the solutions of some particular elliptic
PDE). Last but not least, there are examples in which it does not hold, see [2], and in which
the convergence rate of Σ−p

r to Σ0 is just logarithmic. The powerful approach of Simon to
Theorem 15.1 avoids any discussion of the integrability of the Jacobi vector fields thanks to his
realization that the convergence of Σ−p

r to Σ0 can be reduced to an infinite-dimensional version
of a classical result of Lojasiewicz for finite-dimensional gradient flows. The corresponding
“Lojasiewicz-Simon inequality” has been widely used to study the convergence of parabolic
PDEs to a unique steady state and the uniqueness of model singularities in other geometric
variational problems.
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Coming back to cones whose spherical cross-sections are not smooth, a particularly simple
subclass are called “cylindrical tangent cones”. In his notable investigation [107] Simon has
been able to prove a useful generalization of the Allard-Almgren Theorem 15.3.

Theorem 15.4. Let Σ be a stationary integral varifold, let p be an interior point and assume
that a tangent cone Σ0 to Σ at p satisfies the following structural properties:

(i) Σ0 = V × Λ0 for some minimal cone Λ0 and some linear subspace V ;
(ii) The spherical cross section Γ0 of Λ0 is smooth and is taken with multiplicity 1;
(iii) Every Jacobi field of Γ0 is integrable;
(iv) The following “no hole condition” holds for a sufficiently small δ(Γ0): provided Σ−p

r
is sufficiently close to Σ0, every Bδ(q) with q ∈ B1 ∩ V contains a point x of density
Θ(Σ, x) larger than Θ(Σ, p)− δ.

Then Σ0 is the unique tangent cone to Σ at p and moreover the rescalings Σ−p
r converge to Σ0

with a polynomial rate.

Quite a few of the structural results for singular strata mentioned in the previous sections
depend heavily on the above result (or can be deduced from it). A notable exception is the
uniqueness theorem of Taylor which underlines the second conclusion of Theorem 8.1 (and
the higher-dimensional counterpart in [23]). The latter is in fact derived through a direct
epiperimetric inequality à la Reifenberg.

One major drawback of the approaches to Theorems 15.1, 15.3, and 15.4 is that the
underlying PDE arguments relie on heavily on the ε-regularity result of Allard, namely Theorem
5.2 (or on some other analogous results). For instance in Theorem 15.1 the multiplicity 1
assumption and the regularity of Γ0 allow to conclude that ∂B1 ∩ Σ−p

r is a smooth graph over
Γ0. On the contrary, the epiperimetric inequality, which is based on exhibiting a suitable
competitor, can be applied in situations where the cross section is irregular or taken with
higher multiplicity. On the other hand its applicability is limited to minimizers. Up until
recently, another obvious objection to a wider plausibility of an epiperimetric inequality à
la Reifenberg is that it immediately implies a polynomial decay rate, which is known to be
false in general cf. [2]. However the recent paper of Colombo, Spolaor, and Velichkov [24]
shows that Theorem 15.1 can be recovered (and in fact generalized to suitable “quasi-minima”)
through a suitable generalization of Reifenberg’s epiperimetric (it must be noted that the
proof of the latter is nonetheless achieved using the Lojasiewicz-Simon inequality).

An important case in which an epiperimetric inequality can be proved and used effectively
to prove uniqueness of tangent cones (while a “PDE-approach” has not yet been given) is
that of 2-dimensional area-minimizing currents at interior points. In particular White in [119]
proved

Theorem 15.5. Let Σ be a 2-dimensional area minimizing integral current in R2+n. Then
the tangent cone to Σ is unique at every interior point p.

A counterpart to Theorem 15.5 has been shown by Hirsch and Marini in [73] at smooth
boundaries taken with multiplicity 1. However, as noticed in [43], the proof of Hirsch and
Marini can easily be adapated to the case of smooth boundaries with arbitrary multiplicities,
thus giving a complete result for 2-dimensional area-minimizing integral currents in any
dimension and codimension.
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16. Open problems

In this section we will collect some open questions. I wish to emphasize that the selection
given here by no means exhaust the interesting open problems in the area, but it rather reflects
a personal choice of the author.

16.1. Stationary and stable varifolds. Perhaps the most intriguing question is whether it is
possible to improve Corollary 5.3 in any situation which is not the trivial one of 1-dimensional
stationary varifolds. The most modest goal would be to show that the singular set of stationary
2-dimensional integral varifolds in R3 has zero 2-dimensional Hausdorff measure. In general
there is no example of singular stationary m-dimensional varifolds (in any codimension) for
which the singular set has dimension larger than m− 1.

In the case of stable varifolds of codimension 1 the deep theory of Wickramasekera developed
in [124] (see also [89] for some further progress) makes one hope that in the future some final
unconditional structural result might be at hand. A coronation of the efforts in the area would
be a theorem which proves that Sm−1 \Sm−2 is a C1,α m− 1-dimensional submanifold, while
the set of flat singularities is m− 2-rectifiable. The latter statement seems to be reachable in
the very particular case of area-minimizing hypercurrents mod p.

A widely open problem is whether stability allows one to go beyond Allard’s conclusion
in codimension higher than 1. It is quite baffling that no further regularity information has
been concluded thus far for stable varifolds as soon as the codimension is larger than 1. A
particularly intriguing case would be that of 2-dimensional stable varifolds, already in R4. A
first question in that direction is whether some counterpart of the Schoen-Simon-Yau estimates
and hence a corresponding compactness theorem holds for classical (possibly branched) minimal
2-dimensional surfaces in, say, R4. In other words, assume that Σk is such a sequence in some
bounded open set U ⊂ R4, that the area of Σk is uniformly bounded, and that each Σk is
stable. Is it possible to extract a subsequence which is converging (in the varifold sense) to a
classical stable (possibly branched) immersed minimal surface? What if we restrict further Σk

and ask that they are embedded except for a finite number of branching singularities? Note
that Theorem 10.2 does imply the desired conclusion if each Σk can be oriented so to give an
area-minimizing integral 2-dimensional current.

16.2. Singularities of area-minimizing integral hypercurrents. Area-minimizing integral
currents of dimension m in Rm+1 are the objects for which we have the strongest regularity
theory. Is it possible to prove more about the structure of the singular set? In particular, is it
true that Sm−7 \Sm−8 is a C1,α submanifold, or rather are there examples (as the recent
stable minimal hypersurfaces in some Riemannian manifolds given by Simon in [111]) for
which Sm−7 has a fractal Hausdorff dimension m− 8 < α < m− 7? Does it make a difference
if the ambient is a smooth Riemannian manifold rather than Euclidean space?

A closely related question is whether the no-hole condition of (iv) in Theorem 15.4 can
be violated at some point p of an area-minimizing hypercurrent (in the Euclidean space or
in a general smooth Riemannian ambient). This is indeed the case for some points in the
examples of stable minimal hypersurfaces constructed in [111], while in the Euclidean space a
completely different example has been given by Gabor Székelyhidi in [115].

16.3. Singularities of area-minimizing integral currents in codimension higher than
1. It is very tempting to conjecture that for m ≥ 3 Almgren’s partial regularity theorem can
improved to say that the singular set of any area-minimizing integral m-dimensional current
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in Rm+n is m− 2-rectifiable. This problem seems intimately linked to the “simplest” open
case of uniqueness of tangent cones for area-minimizing currents in codimension n ≥ 2:

• Consider an area-minimizing integral current Σ of dimension m in Rm+n and let
p ∈ Singi(Σ) be a point where one tangent cone is flat. Is the latter the unique tangent
cone to Σ at p?

The forthcoming work [46] seems to suggest that a positive answer to the latter question,
together with the additional information that the convergence rate is polynomial, would imply
m− 2 rectifiability of Singi(Σ).

On the other hand the works [81, 82] suggest that further structural results cannot be
expected, at least not in general smooth ambient manifolds, and instead there are 3-dimensional
area-minimizing integral currents in closed smooth Riemannian manifolds whose singular sets
have any preassigned Hausdorff dimension α ∈ (0, 1).

16.4. Singularities of area-minimizing currents mod p. As already mentioned, in the
works [38, 39, 40] (see also [90, 124]) we plan to show that, for an m-dimensional area-
minimizing current mod p in Rm+1, the stratum Sm−1 \Sm−2 is a C1,α m− 1-dimensional
submanifold, while the set of flat singular points has dimension at most m− 2. In fact it is
expected that the latter is m− 2-rectifiable. The same properties could be expected in higher
codimension, but the problem poses considerable difficulties. Moreover, the author does not
know examples in which the stratum Sm−2 \Sm−3 is nonempty. In that respect the most
basic question is whether there is any counterpart of Taylor’s theorem for the case p = 3: is
there any 2-dimensional area-minimizing cone mod p in R3 which is not invariant under some
translation? [116] and [118] imply that the answer is no for p = 3 and 4 (while it is a simple
exercise to see that it is no for p = 2 as well, since it reduces to the case of integral currents).

16.5. Boundary regularity of area-minimizing integral currents at multiplicity 1
boundaries. Is it possible to improve Theorem 13.2 and show that for general smooth Γ the
set of boundary singular points has zero Hausdorff m− 1-dimensional measure? It must also
be noted that, in the examples of Theorem 13.3 given by the argument of [34], most of the
boundary singular points p’s are of “crossing types”, i.e. in some neighborhood U of such p’s
the area-minimizing current can be decomposed in one area-minimizing current which takes
the boundary Γ smoothly and a second one which is area-minimizing and has no boundary
(but includes p in its support). In particular the following two conjectures seem likely:

• Boundary singularities of non-crossing type have a much lower dimension (according
to the examples the best we can hope is m− 2).
• Since crossing type singularities have necessarily dimension m− 2 when Γ (and the
ambient Riemannian manifold) is real analytic, the whole boundary singular set has
dimension at most m− 2 under the latter assumption.

In fact the following elegant conjecture is due to White in [122].

Conjecture 16.1. Let Γ ⊂ R2+n be a simple closed real-analytic curve and Σ an area-
minimizing integral current such that ∂Σ = Γ. Then the union of the boundary and interior
singular points of Σ is discrete. In particular:

• The “overall singular set” is finite,
• Σ has finite genus g
• and it is a classical Douglas-Rado solution of the Plateau problem among surfaces of
genus g.
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16.6. Boundary regularity of area-minimizing integral currents at boundaries with
higher multiplicity. It is tempting to conjecture that Theorem 14.3 holds for m-dimensional
integral currents for m ≥ 2, but in reality the situation might be more complicated. Otherwise
a more modest expectation is that for general m, under the assumptions of Theorem 14.3, the
boundary singular set has dimension at most m− 3. Nothing is known in the case of a general
integral multiplicity Q and a general boundary Γ, i.e. without the assumption that there is a
“convex barrier” at (a portion of) Γ. One might expect that the counterpart of Theorem 13.2
holds for general multiplicities Q ≥ 1.

16.7. Uniqueness of tangent cones. The uniqueness of interior tangent cones when the
multiplicity of the cross section is larger than 1 is widely open. As already mentioned, the
most striking case is that of flat singular points, i.e. points at which at least one tangent cone
is a plane with higher multiplicity, but the generalized minimal surface is not regular. This
problem is open for integral area-minimizing currents of dimension m ≥ 3 in codimension
larger than n ≥ 2, but it is also open for stationary and stable varifolds in dimension m ≥ 2
and codimension 1.

It is also widely open whether Simon’s Theorem 15.4 can be improved. In particular, can
one drop the “no-hole condition” (iv) or the integrability condition (iii), at least for some
suitable subclass of stationary varifolds? Some situations in which the “no-hole condition”
can be dropped are given in [108], while the recent work [114] is the first, to the author
knowledge, in which the uniqueness of the cylindrical cone is proved for one example in which
both conditions (iii) and (iv) in Theorem 15.4 can be dropped.

We finish this survey by mentioning that the following very innocent question is still open
(even in the case m = 3 and n+ 2 = 5):

• Consider an m-dimensional area-minimizing integral current Σ in Rm+n with m ≥ 3
and n ≥ 2. Assume that one tangent cone Σ0 at some point p ∈ Singi(Σ) is the union
of two distinct linear planes counted both with multiplicity 1. Is Σ0 the unique tangent
cone to Σ at p?
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