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Ill-posedness for Bounded Admissible Solutions of the

2-dimensional p-system

Camillo De Lellis

Abstract. Consider the p–system of isentropic gas dynamics in n space di-
mensions, where n ≥ 2. In a recent joint work with László Székelyhidi we
showed bounded initial data for which this system has infinitely many admis-
sible solutions. Moreover, the solutions and the initial data are bounded away
from the void. Our result builds on an earlier work, where we introduced a
new tool to generate wild solutions to the Euler equations for incompressible
fluids.

1. Introduction

The p–system of isentropic gas dynamics in Eulerian coordinates is perhaps the
oldest hyperbolic system of conservation laws. The unknowns of the system, which
consists of n+ 1 equations, are the density ρ and the velocity v of the gas:

(1.1)















∂tρ+ divx(ρv) = 0
∂t(ρv) + divx(ρv ⊗ v) + ∇[p(ρ)] = 0
ρ(0, ·) = ρ0

v(0, ·) = v0

(cf. (3.3.17) in [2] and Section 1.1 of [9] p7). The pressure p is a function of ρ,
which is determined from the constitutive thermodynamic relations of the gas in
question and satisfies the assumption p′ > 0. A typical example is p(ρ) = kργ , with
constants k > 0 and γ > 1, which gives the constitutive relation for a polytropic
gas (cf. (3.3.19) and (3.3.20) of [2]). Weak solutions of (1.1) are bounded functions
in R

n, which solve it in the sense of distributions. Thus, weak solutions satisfy the
following identities for every test function ψ, ϕ ∈ C∞

c (Rn × [0,∞[):

(1.2)

∫ ∞

0

∫

Rn

[

ρ∂tψ + ρv · ∇xψ
]

dx dt +

∫

Rn

ρ0(x)ψ(x, 0) dx = 0,

(1.3)

∫ ∞

0

∫

Rn

[

ρv · ∂tϕ+ ρ〈v ⊗ v,∇ϕ〉
]

dx dt +

∫

Rn

ρ0(x)v0(x) · ϕ(x, 0) dx = 0.

We also recall that weak solutions can be redefined an a set of measure zero so that
the map t 7→ (ρ(·, t), v(·, t)) ∈ L∞(Rn) is weakly∗ continuous.
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Admissible solutions have to satisfy an additional inequality, coming from the
conservation law for the energy of the system. More precisely, consider the internal
energy ε : R

+ → R given through the law p(r) = r2ε′(r).

Definition 1.1. A weak solution v ∈ C([0,+∞[, L∞
w∗(Rn)) of (1.1) is admis-

sible if the following inequality holds for every nonnegative ψ ∈ C∞
c (Rn × R):

∫ ∞

0

∫

Rn

[(

ρε(ρ) +
ρ|v|2

2

)

∂tψ +

(

ρε(ρ) +
ρ|v|2

2
+ p(ρ)

)

v · ∇xψ

]

+

∫

Rn

(

ρ0ε(ρ0) +
ρ0|v0|2

2

)

ψ(·, 0) ≥ 0 .(1.4)

In the paper [4] we have given a proof of the following result.

Theorem 1.2. Let n ≥ 2. Then, for any given function p, there exist bounded
initial data (ρ0, v0) with ρ0 ≥ c > 0 for which there are infinitely many bounded
admissible solutions (ρ, v) of (1.1) with ρ ≥ c > 0.

Remark 1.3. In fact, all the solutions constructed in our proof of Theorem
1.2 satisfy the energy equality, that is, the equality sign holds in (1.4). They
are therefore also entropy solutions of the full compressible Euler system (see for
instance example (d) of Section 3.3 of [2]) and they show nonuniqueness in this
case as well.

2. Ill–posedness for incompressible Euler

Theorem 1.2 draws on some ideas which we have recently introduced to under-
stand some celebrated examples of wild solutions to the Euler equations of incom-
pressible fluid dynamics. Consider indeed the Cauchy problem

(2.1)







∂tv + div (v ⊗ v) + ∇p = 0,
div v = 0,
v(x, 0) = v0(x),

where the initial data v0 satisfies the compatibility condition

(2.2) div v0 = 0 .

In his pioneering work [8] V. Scheffer showed that weak solutions to (2.1) are
not unique. In particular Scheffer constructed a nontrivial weak solution which is
compactly supported in space and time, thus disproving uniqueness for (2.1) even
when v0 = 0. A simpler construction was later proposed by A. Shnirelman in [10].

In a recent paper [3], we have shown how the general framework of convex
integration [1, 7, 5] combined with Tartar’s programme on oscillation phenomena
in conservation laws [12] (see also [6] for an overview) can be applied to (2.1). In
this way, one can easily recover Scheffer’s and Shnirelman’s counterexamples in all
dimensions and with bounded velocity and pressure. Moreover, the construction
yields as a simple corollary the existence of energy–decreasing solutions, thus recov-
ering another groundbreaking result of Shnirelman [11], again with the additional
features that our examples have bounded velocity and pressures and can be shown
to exist in any dimension.

These results left open the question of whether one might achieve the unique-
ness of weak solutions by imposing a form of the energy inequality. In the work
[4] we answered this question in the negative for several known criteria. Though
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the motivation for (1.4) comes from the theory of shock waves, which are obvi-
ously absent in incompressible Euler, these admissibility criteria are formally very
similar to that of Definition 1.1, Therefore, the ideas introduced in [4] can be suc-
cessfully exported to admissible solutions of the p–system, yielding Theorem 1.2 as
a corollary.

3. Plane wave analysis of Euler’s equations

We start by briefly explaining Tartar’s framework [12]. One considers nonlinear
PDEs that can be expressed as a system of linear PDEs (conservation laws)

(3.1)

m
∑

i=1

Ai∂iz = 0

coupled with a pointwise nonlinear constraint (constitutive relations)

(3.2) z(x) ∈ K ⊂ R
d a.e.,

where z : Ω ⊂ R
m → R

d is the unknown state variable. The idea is then to consider
plane wave solutions to (3.1), that is, solutions of the form

(3.3) z(x) = ah(x · ξ),

where h : R → R. The wave cone Λ is given by the states a ∈ R
d such that for any

choice of the profile h the function (3.3) solves (3.1), that is,

(3.4) Λ :=

{

a ∈ R
d : ∃ξ ∈ R

m \ {0} with
m

∑

i=1

ξiAia = 0

}

.

The oscillatory behavior of solutions to the nonlinear problem is then determined
by the compatibility of the set K with the cone Λ.

The incompressible Euler equations can be naturally rewritten in this frame-
work. The domain is R

m = R
n+1, and the state variable z is defined as z = (v, u, q),

where

q = p+
1

n
|v|2, and u = v ⊗ v −

1

n
|v|2In,

so that u is a symmetric n×n matrix with vanishing trace and In denotes the n×n
identity matrix. From now on the linear space of symmetric n × n matrices will
be denoted by Sn and the subspace of trace–free symmetric matrices by Sn

0 . The
following lemma is straightforward.

Lemma 3.1. Suppose v ∈ L∞(Rn
x × Rt; R

n), u ∈ L∞(Rn
x × Rt;S

n
0 ), and q ∈

L∞(Rn
x × Rt) solve

∂tv + div u+ ∇q = 0,

div v = 0,
(3.5)

in the sense of distributions. If in addition

(3.6) u = v ⊗ v −
1

n
|v|2In a.e. in R

n
x × Rt,

then v and p := q − 1
n
|v|2 are a solution to (2.1) with f ≡ 0. Conversely, if v and

p solve (2.1) distributionally, then v, u := v ⊗ v − 1
n
|v|2In and q := p+ 1

n
|v|2 solve

(3.5) and (3.6).
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Consider the (n+ 1) × (n+ 1) symmetric matrix in block form

(3.7) U =

(

u+ qIn v
v 0

)

,

where In is the n× n identity matrix. Notice that by introducing new coordinates
y = (x, t) ∈ R

n+1 the equation (3.5) becomes simply

divyU = 0.

Here, as usual, a divergence–free matrix field is a matrix of functions with rows
that are divergence–free vectors. Therefore the wave cone corresponding to (3.5) is
given by

Λ =

{

(v, u, q) ∈ R
n × Sn

0 × R : det

(

u+ qIn v
v 0

)

= 0

}

.

Remark 3.2. A simple linear algebra computation shows that for every v ∈ R
n

and u ∈ Sn
0 there exists q ∈ R such that (v, u, q) ∈ Λ, revealing that the wave cone

is very large. Indeed, let V ⊥ ⊂ R
n be the linear space orthogonal to v 6= 0 and

consider on V ⊥ the quadratic form ξ 7→ ξ · uξ. Then, detU = 0 if and only if −q is
an eigenvalue of this quadratic form.

In order to exploit this fact for constructing irregular solutions to the nonlinear
system, one needs plane wave–like solutions to (3.5) which are localized in space.
Clearly an exact plane–wave as in (3.3) has compact support only if it is identically
zero. Therefore this can only be done by introducing an error in the range of the
wave, deviating from the line spanned by the wave state a ∈ R

d. A crucial point
is, therefore, to control this error.

4. The generalized energy and subsolutions

Next, for every r ≥ 0, we consider the set of Euler states of speed r

(4.1) Kr :=

{

(v, u) ∈ R
n × Sn

0 : u = v ⊗ v −
r2

n
In, |v| = r

}

(cp. with [3] and [4]). Lemma 3.1 says simply that solutions to the incompressible
Euler equations can be viewed as evolutions on the manifold of Euler states subject
to the linear conservation laws (3.5).

Next, we denote by Kco
r the convex hull in R

n ×Sn
0 of Kr. This convex set has

been computed in [4].

Lemma 4.1. For any w ∈ Sn let λmax(w) denote the largest eigenvalue of w.
For (v, u) ∈ R

n × Sn
0 let

(4.2) e(v, u) :=
n

2
λmax(v ⊗ v − u).

Then

(i) e : R
n × Sn

0 → R is convex;

(ii) 1
2 |v|

2 ≤ e(v, u), with equality if and only if u = v ⊗ v − |v|2

n
In;

(iii) |u|∞ ≤ 2n−1
n
e(v, u), where |u|∞ denotes the operator norm of the matrix;

(iv) The 1
2r

2–sublevel set of e is the convex hull of Kr, i.e.

(4.3) Kco
r =

{

(v, u) ∈ R
n × Sn

0 : e(v, u) ≤
r2

2

}

.
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(v) If (u, v) ∈ R
n ×Sn

0 , then
√

2e(v, u) gives the smallest ρ for which (u, v) ∈
Kco

ρ .

In view of (ii), if a triple (v, u, q) solving (3.5) corresponds a solution of the
incompressible Euler equations via the correspondence in Lemma 3.1, then e(v, u)
is simply the energy density of the solution. In view of this remark, if (v, u, q)
is a solution of (3.5), e(v, u) will be called the generalized energy density, and
E(t) =

∫

Rn
e(v(x, t), u(x, t))dx will be called the generalized energy.

The key proposition of [4] states, roughly speaking, that, given an energy profile
ē satisfying certain technical assumptions, the existence of some suitable “subso-
lution” for the Cauchy problem (2.1)–(2.2) implies the existence of weak solutions
having energy density ē.

Proposition 4.2. Let Ω ⊂ R
n be an open set (not necessarily bounded) and

let
ē ∈ C

(

Ω×]0, T [
)

∩C
(

[0, T ];L1(Ω)
)

.

Assume there exists (v0, u0, q0) smooth solution of (3.5) on R
n×]0, T [ with the

following properties:

(4.4) v0 ∈ C
(

[0, T ];L2
w

)

,

(4.5) supp (v0(·, t), u0(·, t)) ⊂⊂ Ω for all t ∈]0, T [,

(4.6) e
(

v0(x, t), u0(x, t)
)

< ē(x, t) for all (x, t) ∈ Ω× ]0, T [ .

Then there exist infinitely many weak solutions v of the Euler equations (2.1) with
pressure

(4.7) p = q0 −
1

n
|v|2

such that

(4.8) v ∈ C
(

[0, T ];L2
w

)

,

(4.9) v(·, t) = v0(·, t) for t = 0, T,

(4.10)
1

2
|v(·, t)|2 = ē(·, t)1Ω for every t ∈]0, T [.

Proposition 4.2 is proved in [4] combining Tartar’s plane wave analysis with
the so called Baire category argument. A different approach is instead given by the
Lipschitz convex integration (see for instance [3] and [13]).

In order to give an idea of this second mechanism, consider the particular case
ē ≡ 1 and v0 ≡ 0. Moreover, let us neglect the technical condition (4.8). Our goal
would then be to construct a weak bounded solution of Euler which

• is supported in Ω × [0, T ];
• takes the values 0 at the times 0 and T ;
• has energy identically equal to 1 on Ω×]0, T [.

Note that such solution can be extended to 0 for times t 6∈ [0, T ], thus achieving
the celebrated example of Scheffer. In fact, this is the solution constructed in [3].

The idea of the Lipschitz convex integration would be to construct (v, u) as an
infinite sum

(v, u) =

∞
∑

i=1

(vi, ui)
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with the properties that

(a) the partial sums Sk =
∑k

i=0(vi, ui) are smooth solutions of (3.5), com-
pactly supported in Ω;

(b) Sk takes its values in the interior of the set Kco
1 ;

(c) (v, u) takes its values in the extremal points K1 a.e. in Ω.

Now, (a) is achieved because in fact each summand (vi, ui) is a smooth solution of
(3.5), compactly supported in Ω. As for (c) the key is that:

• Sk converges strongly in L1
loc;

• the summand (vi, ui) is chosen inductively so to let ‖dist (Sk,K1)‖L1 tend
to 0.

Each (vk+1, uk+1) is in fact the sum of finitely many localized waves with disjoint
supports, which “move” Sk closer to the set K1. Note the existence of these waves
require (b). The strong convergence is triggered by the choice of the frequencies λk

of the localized waves, which grow very fast.
The Baire category method, instead, achieves the sequence Sk using a “stability

argument”. As a byproduct we obtain that, if one looks at the weak∗ closure of
smooth maps Sk’s satisfying (a) and (b), a “typical” element of this set takes its
values in K1. One advantage of the Baire category method is therefore that it
produces automatically infinitely many solutions.

5. Construction of suitable initial data

Another main discovery of [4] is the existence of “interesting” subsolutions.
Consider for instance the example discussed in the previous section: ē ≡ 1 and
v0 ≡ 0. It is then obvious that, for any v exhibited by Proposition 4.2, we have

• v(0, ·) ≡ 0;
•

∫

|v(x, t)|2 dx = |Ω| for t ∈]0, T [.

Therefore, the initial data is taken in a “weak sense”, that is, for t ↓ 0, v(·, t)
converges only weakly to 0, but not strongly. Thus, v violates any reasonable
generalization of the classical energy identity.

In order to achieve solutions v which fulfill an energy inequality we then need a
subsolution v0 which satisfies |v0(0, x)|

2 = 2ē(0, x) for a.e x ∈ Ω. On the other hand,
the existence of such subsolutions is not obvious. For instance, the typical “weak–
strong uniqueness” of admissible solutions (valid both for incompressible Euler and
for hyperbolic systems of conservation laws; see, for instance, the appendix of [4]
and [2]) implies that such v0 is necessarily nonsmooth at t = 0.

In [4] we showed the existence of some “interesting subsolutions”. Having fixed
a bounded open set Ω ⊂ R

n we indeed have

Proposition 5.1. There exist triples (v̄, ū, q̄) solving (3.5) in R
n × R and

enjoying the following properties:

(5.1) q̄ = 0, (v̄, ū) is smooth in R
n × (R \ {0}) and v̄ ∈ C

(

R;L2
w

)

,

(5.2) supp (v̄, ū) ⊂ Ω× ] − T, T [ ,

(5.3) supp (v̄(·, t), ū(·, t)) ⊂⊂ Ω for all t 6= 0 ,

(5.4) e
(

v̄(x, t), ū(x, t)
)

< 1 for all (x, t) ∈ R
n × (R \ {0}) .
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Moreover
1

2
|v̄(x, 0)|2 = 1 a.e. in Ω.

It is interesting to note that the proof of this Proposition is just an adaptation
of the same ideas of the proof of Proposition 4.2.

6. Proof of Theorem 1.2

In this section we show how the setting described so far, though centered on
the incompressible Euler equations, yields in fact a short proof of Theorem 1.2.

We let Ω be the unit ball, T = 1/2 and (v̄, ū) be as in Proposition 5.1. Define
ē := 1, q0 := 0,

(6.1) v0(x, t) :=

{

v̄(x, t) for t ∈ [0, 1/2]
v̄(x, t− 1/2) for t ∈ [1/2, 1],

(6.2) u0(x, t) :=

{

ū(x, t) for t ∈ [0, 1/2]
ū(x, t− 1/2) for t ∈ [1/2, 1].

It is easy to see that the triple (v0, u0, q0) satisfies the assumptions of Proposition
4.2 with ē ≡ 1. Therefore, there exists infinitely many solutions v ∈ C([0, 1], L2

w)
of (2.1) in R

n × [0, 1] with

v(x, 0) = v̄(x, 0) = v(x, 1) for a.e. x ∈ Ω,

and such that

(6.3)
1

2
|v(·, t)|2 = 1Ω for every t ∈]0, 1[ .

Since 1
2 |v0(·, 0)|2 = 1Ω as well, it turns out that the map t 7→ v(·, t) is continuous

in the strong topology of L2.
Each such v can be extended to R

n × [0,∞[ 1-periodically in time, by setting
v(x, t) = v(x, t− k) for t ∈ [k, k + 1]. Summarizing, we have found infinitely many
solutions (v, p) of (2.1) with the following properties:

• v ∈ C([0,∞[, L2) and |v|2 = 2 1Ω×[0,∞[;

• p = −|v|2/n = −2n−1 1Ω×[0,∞[.

Consider now the isentropic Euler system (1.1) and let p(ρ) be the pressure as
a function of the density. Let α := p(1), β := p(2) and γ = β − α. Recalling that
p′ > 0, we conclude γ > 0. Since now p denotes the function ρ 7→ p(ρ), the pairs
(v, p) constructed in the paragraphs above will be instead denoted by (v, p̃).

Next, note that the incompressible Euler equations are invariant under the
rescalings v(x, t) 7→ λv(λt, x), p̃(t, x) 7→ λ2p̃(λt, x). Thus, we can rescale the solu-
tions considered above so to achieve p̃ = −γ 1Ω×[0,∞[ (and thus |v|2 = nγ 1Ω×[0,∞[).
We are also free of adding an arbitrary constant to p̃. Adding the constant γ we
then achieve

p̃ = (β − γ)1Ω×[0,∞[ + β 1Rn\Ω×[0,∞[ = α1Ω×[0,∞[ + β 1Rn\Ω×[0,∞[ .

Therefore, we conclude that

(6.4) ∂tv + div v ⊗ v + ∇
(

α1Ω×[0,∞[ + β 1Rn\Ω×[0,∞[

)

= 0

and

(6.5) div v = 0 .
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Fix any such v and set

ρ = 1Ω×[0,∞[ + 2 1Rn\Ω×[0,∞[ .

Since v = 0 outside of Ω, obviously

(6.6) ρv = v and ρv ⊗ v = v ⊗ v .

Moreover,

(6.7) p(ρ) = α1Ω×[0,∞[ + β 1Rn\Ω×[0,∞[ .

So,

∂t(ρv) + div [ρv ⊗ v]
(6.6)
= ∂tv + div v ⊗ v

(6.4)
= −∇[α1Ω×[0,∞[ + β 1Rn\Ω×[0,∞[]

(6.7)
= −∇[p(ρ)] .(6.8)

Moreover, notice further that

(6.9) ∂tρ = 0 .

Hence,

(6.10) ∂tρ+ div (ρv)
(6.9)
= div (ρv)

(6.6)
= div v

(6.5)
= 0 .

Thus, the pair (ρ, v) is a weak solution of (1.1) with initial data (ρ0, v0), where
ρ0 = 1Ω + 2 1Rn\Ω.

Each such solution is admissible. Indeed, since ε depends only on ρ and |v|2 =
nγ in Ω and vanishes outside, we obviously have

(6.11) ∂t

[

ρε(ρ) +
ρ|v|2

2

]

= 0 .

For the same reason, we have

(6.12) divx

[(

ρε(ρ) +
ρ|v|2

2
+ p(ρ)

)

v

]

=
(

ε(1) + p(1) +
nγ

2

)

div v = 0 .

Therefore, (ρ, v) solves

(6.13) ∂t

[

ρε(ρ) +
ρ|v|2

2

]

+ divx

[(

ρε(ρ) +
ρ|v|2

2
+ p(ρ)

)

v

]

= 0

in the sense of distributions inside R
n×]0,∞[.

That is, (1.4) holds (with the equality sign!) for every ψ ∈ C∞
c (Rn×]0,∞[).

However, since (ρ(·, t), v(·, t)) → (ρ0, v0) strongly in L2
loc, the same equality holds

even for test functions ψ which do not vanish at t = 0.

7. Final comments

Clearly, the solutions constructed in the previous section are discontinuous
along the interface ∂Ω × [0,∞[. However this discontinuity is not at all a shock
wave.

Let us indeed analyse closer the mathematical concept of shock wave. Even in
the most general mathematical framework, a shock wave is an (at least) rectifiable
set S of codimension 1 along which the solution undergoes a “generalized jump
discontinuity”. By this we mean that the solution has, in the strong L1 sense,
one-sided traces on S.

Consider now S := ∂Ω × [0,∞[. Along this interace, v does not have a gen-
eralized jump discontinuity. Indeed v has strong trace approaching ∂Ω from the
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exterior. But from the interior v does not have a trace in the strong L1 sense. This
is not at all surprising. Consider the construction outlined in Section 4, where v
is build as a series

∑

vi of compactly supported oscillatory solutions. It is quite
obvious that these oscillations become extremely fast as we let k ↑ ∞ and approach
the boundary of Ω, since we have to use very steep cut-off functions to keep the vi

supported in Ω.
In particular, though the normal trace of v at ∂Ω × [0,∞[ is zero in a “weak

sense” (for divergence–free fields, left and right normal traces coincide), the normal
trace of v⊗v is not related to the trace of v by the obvious algebraic formula which
would be a consequence of a strong trace. In particular we cannot infer that the
(weak) normal trace of v ⊗ v vanishes. This implies, for instance, that we cannot
write the usual Rankine–Hugoniot condition for the solution (v, ρ) on the interface
∂Ω × [0,∞[.

Our discussion should bring yet an important point to the attention of the
reader. The ill–posedness proved in our works do not seem to bear any relation
to the formation of shock waves. One might instead conjecture that it is an effect
of accumulation of vorticity. This explains loosely why our arguments fit both the
incompressible and the compressible equations.

However, the reader should be extremely cautious in interpreting our solutions
in terms of classical concepts of fluid dynamics. As an example, let us come back
to the solutions v produced by Proposition 4.2 when ē ≡ 1 and v0 ≡ 0. If any such
solution described the motion of an incompressible physical fluid, we would have a
number of paradoxes:

• The fluid would be totally at rest at time 0, move at positive time and go
back at rest at time T , in spite of the total absence of external forces;

• the fluid would in fact remain at rest outside Ω and move any particle in
Ω at speed 1, but the interface would not resemble at all that of a classical
shear flow;

• the pressure would be constant inside Ω, displaying a total absence of
interaction for the particles staying in Ω.
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