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THE GENERALIZED CAFFARELLI-KOHN-NIRENBERG THEOREM FOR THE
HYPERDISSIPATIVE NAVIER-STOKES SYSTEM

MARIA COLOMBO, CAMILLO DE LELLIS, AND ANNALISA MASSACCESI

Abstract. We introduce a notion of suitable weak solution of the hyperdissipative Navier–Stokes equations
and we achieve a corresponding extension of the regularity theory of Caffarelli–Kohn–Nirenberg.
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1. Introduction

Let α ≥ 0 and consider the operator (−∆)α whose Fourier symbol is |ξ|2α. For a positive integer α = k
the operator reduces, up to a sign, to composing k times the classical Laplacian −∆. In this paper α
ranges between 1 and 2 and we consider the so-called hyperdissipative Navier–Stokes system in R3, which
is the following system of (pseudo) partial differential equations ∂tu+ (u · ∇)u+∇p = −(−∆)αu

divu = 0 .
(1)

The system is usually complemented with the initial condition

u(·, 0) = u0 . (2)

For α ≥ 5
4

and for smooth u0 which decay sufficiently fast at infinity, it is known that the system (1)-(2)
has a classical global in time solution, see in particular [14]. On the periodic torus a simple proof has been
given in [15] when α > 5

4
, whereas the recent papers [20] and [1] improve the case α = 5

4
allowing operators

with symbols −|ξ| 52f(ξ) for suitable logarithmic-like f .

1MSC classification: 35Q30 (76D03)
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In this paper we restrict our considerations to the case

1 < α ≤ 5

4
. (3)

When α < 5
4

the global existence of classical solutions is still an open question which covers one of
the celebrated Millennium Prize problems (see [9]). In his groundbreaking work [13] Leray constructed
some global weak solutions (called nowadays Leray–Hopf weak solutions) when α = 1 and showed several
remarkable facts for them. Two are particularly relevant for our discussion:

(i) the Leray–Hopf weak solutions (u, p) coincide with the classical solutions as long as the latter exist
(weak-strong uniqueness);

(ii) they are regular except for a closed set of exceptional times, from now on denoted by SingT u, which
has 0 Hausdorff H1/2 measure.

Leray’s approach can be carried on to the hyperdissipative Navier–Stokes. Indeed the existence and weak-
strong uniqueness are rather straightforward, whereas a suitable generalization of the estimate on the size
of SingT u has been given recently in [11] (see below for the precise statement).

Following the pioneering work of Scheffer, see [17, 18], Caffarelli, Kohn and Nirenberg in [2] gave a
space-time version of the regularity theorem of Leray: they proved, in particular, the existence of global
Leray–Hopf solutions which are regular outside a bounded relatively closed set of Hausdorff H1 measure
zero in R3×(0,∞). Indeed their theorem yields a stronger information, see below for the precise statement.
Note moreover that, if the initial data is regular enough, Leray’s theory implies the regularity of the solution
in a sufficiently small stripe R3 × [0, ε] and thus the singular set is also compact.

In [12] Katz and Pavlović gave a first version of the Caffarelli–Kohn–Nirenberg theorem in the range (3).
More precisely they proved that, if a classical solution blows up at a finite time T , then it can be extended
smoothly to (R3 \K)× {T} for some closed set K of Hausdorff dimension at most 5− 4α. The theorem
of Katz and Pavlović is not a full extension of the Caffarelli–Kohn–Nirenberg: first of all the latter goes
beyond the first singular time and secondly the proof of Katz and Pavlović does not imply H5−4α(K) = 0.

1.1. The extension of the Caffarelli–Kohn–Nirenberg theory. In the present paper we prove a
stronger version of the Katz–Pavlović result which extends the Caffarelli–Kohn–Nirenberg theorem in its
full power. In order to give a precise statement we introduce the usual space-time cylinders

Qr(x0, t0) = Br(x0)× (t0 − r2α, t0] ,

compatible with the scaling of the equations (we omit the centers of the ball and the centroids of the
cylinder when x0 = 0 and (x0, t0) = (0, 0), respectively). We then define the parabolic Hausdorff measures
with the usual Carathéodory construction (cf. [8, 2.10.1]). Given E ⊂ R3 × R, β ≥ 0 and δ > 0, we set

Pβ
δ (E) := inf

{∑
i

rβi : E ⊂
⋃
i

Qri(xi, ti) and ri < δ ∀ i

}
and we call parabolic Hausdorff measure of the set E the number

Pβ(E) := lim
δ→0

Pβ
δ (E) = sup

δ>0
Pβ

δ (E) .

Moreover, given a Leray–Hopf weak solution (u, p), we call a point (x, t) regular if there is a cylinder Qr(x, t)
where u is continuous and we denote by Sing u the (relatively closed) set of singular points, namely those
points which are not regular.
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Theorem 1.1. Given α ∈ (1, 5
4
] and any divergence-free initial data u0 ∈ L2 there are a Leray–Hopf

weak solution (u, p) of (1) (see Definition 2.1) and a relatively closed set Sing u ⊂ R3 × (0,∞) such that
P5−4α(Sing u) = 0.

For α = 1 the statement above coincides with the one of Caffarelli, Kohn and Nirenberg and for α ∈ (3
4
, 1)

the same result has been shown by Tang and Yu in [19]. Given E ⊂ R3 × R, it is trivial to prove that

H
β
2

({
t : (R3 × {t}) ∩ E 6= ∅

})
≤ CβP

β(E)

and

H β
(
(R3 × {t}) ∩ E

)
≤ CβP

β(E) ∀ t ∈ R .

We thus recover:

• a strengthened version of the theorem of Katz and Pavlović: if a classical solution blows up, the
singular set at the first blow-up time has 0 Hausdorff H5−4α measure (recall that classical solutions
and Leray–Hopf weak solutions coincide as long as the first exist);
• the existence of regular solutions for α = 5

4
, because P0 is the “counting measure” and hence for

α = 5
4

the singular set is empty;

• the generalized Leray’s bound on singular times given in [11], namely H(5−4α)/2(SingT u) = 0
(however the result in [11] is stronger, since it is proved for any Leray–Hopf weak solution).

As it is the case for the Scheffer and Caffarelli–Kohn–Nirenberg regularity theory, our theorem is in
fact more general. In particular we can introduce a suitable notion of weak solution, which generalizes
the one of Caffarelli–Kohn–Nirenberg and which we therefore call as well suitable weak solution. We then
prove their existence and their regularity independently. In particular the bound of Theorem 1.1, and its
consequences, hold for any suitable weak solution.

Theorem 1.2. Let (u, p) be a suitable weak solution of (1) in R3 × (0, T ) as in Definition 2.7. Then

P5−4α(Sing u) = 0. (4)

Our theorem is in part inspired by the paper of Tang and Yu [19], where the authors consider the
hypodissipative range α ∈ (3

4
, 1) (moreover, the endpoint α = 3/4 has been recently tackled by Ren, Wang

and Wu in [16]). As in their case, our notion of suitable weak solution uses the extension idea introduced
by Caffarelli and Silvestre in [3] to deal with the fractional Laplacian, more specifically we take advantage
of a suitable version for exponents α ∈ (1, 2), introduced by Yang in [21]. However there are important
differences between our work and [19].

1.2. ε–regularity theorem and stability of regular points. One part of our argument for Theorem
1.2 has an independent interest. As already mentioned, the paper by Caffarelli, Kohn and Nirenberg built
on previous works of Scheffer [17, 18], where the author proved the very first space-time partial regularity
result for the Navier–Stokes equations. In particular he proved the ε-regularity statement which is still the
starting point of most of the works in the area. We establish here a suitable generalization of Scheffer’s
theorem. In what follows, if f : R3 × (0, T )→ [0,∞), Mf denotes the maximal function

Mf(x, t) = sup
r>0

1

r3

∫
Br(x)

f(y, t) dy .
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Theorem 1.3. There exist positive constants ε > 0 and κ > 0 depending only on α such that, if the pair
(u, p) is a suitable weak solution of (1) in the slab R3 × (−r2α + t0, t0] and satisfies

1

r6−4α

∫
Q2r(x0,t0)

(
M|u|2 + |p|

)3/2
dx dt < ε , (5)

then u ∈ Cκ (Qr(x0, t0)). For r ≤ 1 we have an explicit estimate of the form ‖u‖Cκ ≤ Cr1−2α(κ+1).
Moreover the constants are independent of α ∈ (1, 5

4
] in the following sense: if α ∈ [α0,

5
4
] ⊂ (1, 2], then

there are positive ε0(α0), κ0(α0), C(α0) such that ε(α) > ε0(α0), κ(α) > κ0(α0) and C ≤ C(α0).

With Theorem 1.3 it is possible to estimate the box-counting dimension of the singularity, showing in
particular that the box-counting dimension of the singular set converges to 0 when α→ 5/4.

Corollary 1.4. If (u, p) is a suitable weak solution of (1) in R3 × (0, T ), then for every positive t > 0 the

box-counting dimension of Sing u ∩ (R3 × [t,∞)) is at most 15−2α−8α2

3
.

Moreover, Theorem 1.3 has the interesting consequence that the set of regular points is stable under
perturbations.

Corollary 1.5. Assume that:

• αk → α ∈ (1, 5
4
], (uk, pk) is a suitable weak solution of (1) with α = αk on R3 × (0, T );

• (u, p) is a suitable weak solution on R3 × (0, T ) of (1);
• uk ⇀ u in L2(R3 × (0, T ));
• u is bounded in some Q4r(x0, t0).

Then for k large enough uk is Hölder continuous in Qr(x0, t0).

In turn the latter statement, combined with the Leray weak-strong uniqueness and the existence of
smooth solutions at the threshold α = 5

4
, allows, in a suitable sense, to extend the existence of smooth

global solutions slightly below 5
4
. One possible formulation is the following.

Corollary 1.6. Let X ⊂ L2(R3;R3) be a Banach space of divergence-free vector fields satisfying the
following two requirements:

(LT) For any u0 ∈ X and any α ∈ [9
8
, 5

4
] there is a classical solution of (1)-(2) on a time interval

[0, T (‖u0‖X)] depending only upon ‖u0‖X and not upon α.
(WS) Any Leray–Hopf weak solution has to coincide with the solution of (LT) on the interval of existence

of the latter.

Then, for any bounded set Y ⊂ X there is α0(Y ) < 5
4

with the following property: for any α ∈ [α0,
5
4
] and

u0 ∈ Y there is a unique Leray–Hopf weak solution of (1)-(2) on R3× (0,∞), which in addition is smooth.

Any space X of functions which are regular enough satisfies (LT) and (WS). Indeed the amount of
regularity needed is not much: for instance, with a slight modification of Leray’s original arguments, it is
not difficult to see that H1 fulfills both conditions. We thus conclude that for any H1 initial data there
are global smooth solutions of (1) whenever α is sufficiently close to 5

4
(and this closeness is uniform on

bounded subsets of H1). An analogous result regarding the existence of smooth solutions for the slightly
supercritical surface quasi-geostrophic equation on bounded subsets of a suitably chosen Banach space was
obtained in [7] with different methods.
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1.3. Plan of the paper. In Section 2 we will discuss the various notions of weak solutions used in the
note, their existence and the two main ε-regularity statements, namely Theorem 2.9 and Theorem 2.10,
from which all the results claimed so far will be derived. The Sections 3, 4 and 5 outline the three main
ingredients of the proof of the first ε-regularity Theorem 2.9. In particular:

• Section 3 derives the most important consequence of our definition of suitable weak solution, namely
a local energy estimate (cf. Lemma 3.2), which in turn implies a crucial compactness property of
solutions, proved in Section 4, cf. Lemma 4.2.
• Section 5 discusses the interior Hölder regularity of the solutions of a suitable linearization of (1),

cf. Lemma 5.1.

The compactness lemma and the estimates on the linearized system are then combined in Section 6 to
prove a suitable excess decay property of solutions of (1), cf. Proposition 6.1. The latter proposition is
iterated to prove Theorem 2.9. In Section 7 we show then how to derive the second ε-regularity Theorem
2.10 from Theorem 2.9. Finally in Section 8 we prove the various results claimed above.

1.4. Acknowledgments and final remarks. The first author acknowledges the support of Dr. Max
Rössler, of the Walter Haefner Foundation and of the ETH Zürich Foundation. Part of this work has been
carried on while the second author was spending a semester at the CMSA at Harvard and a one month visit
at the IHES at Bures sur Yvette. This project has received funding from the European Union’s Horizon
2020 research and innovation programme under the grant agreement No.752018 (CuMiN).

The authors wish to thank Joachim Krieger, Wilhelm Schlag and Andrea Nahmod for very useful advices
and conversations at a very early stage of their work and Alice Chang and Vlad Vicol for useful comments
towards the end.

While we were completing this manuscript we learned of a similar independent work in preparation of
Eric Chen, cf. [6], aimed at establishing the main conclusion of our paper, namely the estimate on the
singular set of Theorem 1.2.

2. Suitable weak solutions

2.1. Leray–Hopf weak solutions. We introduce the usual concept of Leray–Hopf weak solutions.

Definition 2.1. Let u0 ∈ L2(R3) be a divergence-free vector field. A pair (u, p) is a Leray–Hopf weak
solution of (1)-(2) on R3 × (0, T ) if:

(a) u ∈ L∞((0, T ), L2(R3)) ∩ L2((0, T ), Hα(R3));
(b) u solves (1)-(2) in the sense of distributions, namely div u = 0 and∫ (

∂tϕ · u+
∑
i,j

uiuj∂jϕ
i − (−∆)αϕ · u

)
dx dt = −

∫
u0(x) · ϕ(0, x) dx

for every divergence-free ϕ ∈ C∞c (R3 × R,R3).
(c) p is the potential-theoretic solution of −∆p = div div (u⊗ u) (here and in the rest of the paper we

use the notation div div (u⊗ u) for
∑

i,j ∂
2
ij(uiuj));

(d) The following inequalities hold:

1

2

∫
|u|2(x, t) dx+

∫ t

0

∫
|(−∆)

α/2u|2(x, τ) dx dτ ≤ 1

2

∫
|u0|2(x) dx ∀t > 0

1

2

∫
|u|2(x, t) dx+

∫ t

s

∫
|(−∆)

α/2u|2(x, τ) dx dτ ≤ 1

2

∫
|u|2(x, s) dx for a.e. s and every t > s.
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As already mentioned, we have the following simple extension of Leray’s theory:

Theorem 2.2. For any divergence-free u0 ∈ L2(R3) there is a Leray–Hopf weak solution of (1)-(2) on
R3 × (0,∞). Moreover, if v is a second Leray–Hopf weak solution such that ‖v(·, t)‖∞ ∈ L2(0, T ) then
u = v on R3 × (0, T ).

The proof follows the idea of Leray’s paper [13] with minor modifications: we refer the reader to the
Appendix for a detailed proof.

2.2. Caffarelli-Silvestre and Yang extension problems. In order to define suitable weak solutions,
we deal with the fractional Laplacian by defining suitable extensions to the half space Rn+1

+ := Rn× [0,∞)
of functions defined on Rn. In what follows we always use the variable x for the factor Rn and the variable
y for the factor [0,∞). Moreover we use the notation ∇, ∆ and so on for differential operators defined on
Rn+1

+ . The following theorem is essentially due to Yang [21] (see also the survey [5]): for our analysis we
need however some adjustments of his statements and some further properties and for this reason we give
a self-contained proof of the theorem and of other related facts in Appendix B.

Theorem 2.3 (Yang, 2013). Let u ∈ Hα(Rn), with α ∈ (1, 2) and set b := 3− 2α. Define the differential
operator ∆b as

∆bu
∗ := ∆u∗ +

b

y
∂yu

∗ =
1

yb
div
(
yb∇u∗

)
. (6)

Then there is a unique “extension” u∗ of u in the weighted space L2
loc(R

n+1
+ , yb) which satisfies ∆bu

∗ ∈
L2(Rn+1

+ , yb) and

∆
2

bu
∗(x, y) = 0 (7)

and the boundary conditions

u∗(x, 0) = u(x) (8)

lim
y→0

y1−α∂yu
∗(x, y) = 0 . (9)

Moreover, there exists a constant cn,α, depending only on n and α, with the following properties:

(a) The fractional Laplacian (−∆)αu is given by the formula

(−∆)αu(x) = cn,α lim
y→0

yb∂y∆bu
∗(x, y) . (10)

(b) The following energy identity holds∫
Rn
|(−∆)

α
2 u|2 dx =

∫
Rn
|ξ|2α|û(ξ)|2 dξ = cn,α

∫
Rn+1
+

yb|∆bu
∗|2 dx dy . (11)

(c) The following inequality holds for every extension v ∈ L2
loc(R

n+1
+ , yb) of u with ∆bv ∈ L2(Rn+1

+ , yb) :∫
Rn+1
+

yb|∆bu
∗|2 dx dy ≤

∫
Rn+1
+

yb|∆bv|2 dx dy. (12)

Remark 2.4. The boundary conditions (8) and (9) can be really taken pointwise if u is (sufficiently)
smooth, otherwise they must be understood in the sense of distributions. In particular, we will prove a
suitable representation formula for u∗(x, y) as (P (·, y) ∗ u)(x), where P is the Poisson-type kernel of (72):
corresponding boundary conditions will be derived for P in the distributional sense. When u is less regular,
even though Theorem 2.3 does not apply, we will still use the notation u∗ for its extension P (·, y) ∗ u.
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Remark 2.5. Observe that, since 2− α > 0, (9) implies also the boundary condition appearing in [21]

lim
y→0

yb∂yu
∗(x, y) = 0 . (13)

Yang’s theorem is an extension to higher order operators of a theorem of Caffarelli and Silvestre, cf. [3].
The latter will also turn out useful in our considerations and we therefore recall it here.

Theorem 2.6 (Caffarelli–Silvestre). Let w ∈ Hα−1(Rn), with α ∈ (1, 2) and set b := 3 − 2α. Then there
is a unique “extension” w[ of w in the weighted space H1(Rn+1

+ , yb) which satisfies

∆bw
[(x, y) = 0

and the boundary condition

w[(x, 0) = w(x) .

Moreover, there exists a constant Cn,α, depending only on n and α, with the following properties:

(a) The fractional Laplacian (−∆)α−1w is given by the formula

(−∆)α−1w(x) = Cn,α lim
y→0

yb∂yw
[(x, y) .

(b) The following energy identity holds∫
Rn
|(−∆)

α−1
2 w|2 dx =

∫
Rn
|ξ|2α−2|ŵ(ξ)|2 dξ = Cn,α

∫
Rn+1
+

yb|∇w[|2 dx dy .

(c) The following inequality holds for every extension v ∈ H1(Rn+1
+ , yb) of w:∫

Rn+1
+

yb|∇w[|2 dx dy ≤
∫
Rn+1
+

yb|∇v|2 dx dy .

In the rest of the note we will always use b to denote the exponent 3 − 2α in the operator ∆b, in the
measure yb dx dy and in the corresponding weighted Sobolev spaces. The same exponent appears, however,
in some other instances, more precisely in the scaling of certain integral quantities and in the summability
of u and p: in such cases we will use, instead, 3− 2α.

2.3. Suitable weak solutions. We are now ready to define suitable weak solutions. In the next formula
and in the rest of the paper we use Einstein’s convention for the sum on repeated indices.

Definition 2.7. A Leray–Hopf weak solution (u, p) on R3 × [0, T ] is a suitable weak solution if the
following inequality holds for a.e. t ∈ [0, T ] and all nonnegative test functions1 ϕ ∈ C∞c (R4

+ × (0, T )) with

1That is, the function ϕ vanishes when |x|+ y + |t| is large enough and if t is sufficiently close to 0, but it can be nonzero
on some regions of {(x, y, t) : y = 0}.
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∂yϕ(·, 0, ·) = 0 in R3 × (0, T ):∫
R3

ϕ(x, 0, t)
|u(x, t)|2

2
dx+ cα

∫ t

0

∫
R4
+

yb|∆bu
∗|2ϕdx dy ds

≤
∫ t

0

∫
R3

[
|u|2

2
∂tϕ|y=0 +

( |u|2
2

+ p
)
u · ∇ϕ|y=0

]
dx ds

− cα
∫ t

0

∫
R4
+

yb∆bu
∗
i

(
2∇ϕ · ∇u∗i + u∗i∆bϕ

)
dx dy ds , (14)

where the constant cα depends only on α and comes from Theorem 2.3.

It is not difficult to see that for a smooth solution of (1) the inequality (14) holds indeed with the equality
sign (for the reader’s convenience we have included the proof in the appendix). A minor modification of the
proof that Leray–Hopf weak solutions exist yields the existence of suitable weak solutions as well. Again,
we refer to the appendix for the complete proof:

Theorem 2.8. For any divergence-free u0 ∈ L2(R3) there is a suitable weak solution of (1)-(2) on R3 ×
(0,∞).

2.4. Statements of the ε-regularity Theorems. We are finally ready to state our main ε-regularity
statements. First of all Theorem 1.3 will be derived from a similar one where the smallness assumption is
in fact weaker. In order to state it we need to introduce a suitable “tail functional”:

T (u;x, t, r) := r5α−2

∫ t

t−r2α
sup
R≥ r

4

1

R3α
−
∫
BR(x)

|u(y, t)|2 dy dt . (15)

Theorem 2.9. There exist positive constants ε and κ, depending only on α, such that, if (u, p) is a suitable
weak solution of the hyperdissipative Navier-Stokes equations (1) in the slab R3 × (−22α, 0) and satisfies∫

Q2

(
|u|3 + |p|

3
2

)
dx dt+ T (u; 0, 0, 2) < ε , (16)

then u ∈ C0,κ (Q1;R3). Moreover, the constants are independent of α in the sense of Theorem 1.3.

The second statement uses the Caffarelli-Silvestre extension (∇u)[ of ∇u. Observe that

cα

∫
R4
+

yb|∇(∇u)[|2(x, y, t) dx dy =

∫
R3

∣∣∣(−∆)
α−1
2 ∇u

∣∣∣2 (x, t) dx =

∫
R3

|(−∆)
α
2 u|2(x, t) dx .

In particular we easily conclude that, for a Leray–Hopf weak solution on R3 × (0, T ),

cα

∫ T

0

∫
R4
+

yb|∇(∇u)[|2(x, y, t) dx dy dt ≤ 1

2

∫
R3

|u0|2(x) dx <∞ .

We introduce a suitable localized and rescaled version of the left hand side. In particular, we define first
a suitable counterpart of the parabolic cylinders in the domain R4

+ × R:

Q∗r(x, t) = Br(x)× [0, r)× (t− r2α, t]

and we then consider the quantity

E [(u;x, t, r) :=
1

r5−4α

∫
Q∗r(x,t)

yb|∇(∇u)[|2 dx dτ.
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Theorem 2.10. There exists δ > 0 such that, if (u, p) is a suitable weak solution of (1) in R3 × I and, at
some point (x, t), we have

lim sup
r→0

E [(u;x, t, r) < δ

then (x, t) is a regular point.

3. The energy inequality

In this section we consider the hyperdissipative Navier-Stokes equation with a constant drift termM ∈ R3

and a scalar factor L ∈ R multiplying the quadratic nonlinearity, namely ∂tu+ ((Lu+M) · ∇)u+∇p = −(−∆)αu

divu = 0 .
(17)

The notion of suitable weak solution generalizes trivially to this context in the following way: for a.e.
t ∈ [0, T ] and all nonnegative test functions ϕ ∈ C∞c (R+

4 × (0, T )) with

∂yϕ(·, 0, ·) = 0 on R3 × (0, T ) (18)

we require that a suitable weak solution of (17) satisfies∫
R3

ϕ(·, 0, t) |u(·, t)|2

2
+ cα

∫ t

0

∫
R4
+

yb|∆bu
∗|2ϕ ≤

∫ t

0

∫
R3

[
|u|2

2
∂tϕ(·, 0, ·) +

(L|u|2
2

+ p
)
u · ∇ϕ(·, 0, ·)

]
+

∫ t

0

∫
R3

|u|2

2
M · ∇ϕ(·, 0, ·)− cα

∫ t

0

∫
R4
+

yb
(
2∇ϕ∇u∗∆bu

∗ + u∗∆bϕ∆bu
∗) (19)

(the integrals in space have to be intended in dx when the domain of integration is R3, and in dx dy when the
domain of integration is R4

+; the constant cα depends only on α and comes from Theorem 2.3). The system
arises naturally because we will subtract constants from suitable weak solutions of the hyperdissipative
Navier-Stokes equations and we will rescale them. In particular we have the following

Lemma 3.1. Let (u, p) be a suitable weak solution of the hyperdissipative Navier-Stokes system. Let
M ∈ R3 and L > 0, let p̃ ∈ L1((0, T )). Then v := (u −M)/L and q := (p − p̃)/L solve (17) and satisfy
the modified energy inequality (19).

Proof. We first observe that subtracting a function p̃ of time to the pressure does not change the Navier-
Stokes equations (where the pressure enters only through its spatial gradient) nor it affects the inequality
for suitable weak solution, since it adds a term of the form

−
∫ t

0

p̃(s)

∫
R3

u(x, s) · ∇ϕ(x, 0, s) dx ds

which vanishes because u is divergence-free. Hence, we can assume that p̃ ≡ 0 and that q = p/L.
Given a nonnegative test function ϕ ∈ C∞c (R4

+× (0, T )) with ∂yϕ(·, 0, ·) = 0 in R3× (0, T ), we write the
following simple algebraic identity.∫

R3

ϕ(x, 0, t)
|v(x, t)|2

2
+ cα

∫ t

0

∫
R4
+

yb|∆bv
∗|2ϕ =

1

L2

∫
R3

ϕ(x, 0, t)
|u(x, t)|2

2
+
cα
L2

∫ t

0

∫
R4
+

yb|∆bu
∗|2ϕ

− 1

L2

∫
R3

ϕ(x, 0, t)M · u(x, t) +
1

L2

∫
R3

ϕ(x, 0, t)
|M |2

2
, (20)
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where we have simply observed that v∗ = 1
L

(u∗ −M) and thus

∇v∗ = L−1∇u∗ and ∆bv
∗ = L−1∆bu

∗ . (21)

We apply the energy inequality to the function u to control the two terms in the second line. We then test
the hyperdissipative Navier-Stokes system with ϕ(·, 0, ·)M to control the first term in the third line:∫

R3

ϕ(·, t)u(·, t) ·M dx =

∫ t

0

∫
R3

[
∂tϕM · u+ LM · u∇ϕ · u+M · ∇ϕp− ϕM ·∆αu

]
dx ds .

Notice that the last term of the right hand side can be rewritten in terms of the extension u∗ by using
(10), the divergence theorem and (7); namely for every t ∈ [0, T ]

−
∫
R3

ϕ(·, 0, t)M ·∆αu = −cα lim
y→0

∫
R3

ybϕ(·, 0, t)M · ∂y∆bu
∗ = cα

∫
R4
+

div
(
ybϕMi∇∆bu

∗
i

)
= cα

∫
R4
+

ybMi∇ϕ · ∇∆bu
∗
i = −cα

∫
R4
+

yb∆bϕM ·∆bu
∗ ,

where in the last line we have integrated again by parts taking advantage of (18). To rigorously justify
the formulas, we approximate u with smooth functions u ∗ ρθ, where {ρθ}θ∈(0,1) ⊆ C∞c (R3) is a standard
family of mollifiers. Notice that (u ∗ ρθ)∗ = u∗ ∗ ρθ. For smooth functions the integration by parts can
be justified using Remark 2.4. To take the limit in the identity we observe that all the terms in the right
hand side pass to the limit since u∗ ∗ ρθ → u∗, ∆bu

∗ ∗ ρθ → ∆bu
∗ in L2(R4

+, y
b) while for the left hand side

we employ the distributional convergence of the α-Laplacian.
Finally, we rewrite the last term of (20) as∫

R3

ϕ(x, 0, t)
|M |2

2
dx =

∫
R3

∫ t

0

∂tϕ(x, 0, s)
|M |2

2
dx ds.

Putting together these estimates and since u is divergence-free, we obtain that∫
R3

ϕ(x, 0, t)
|v(x, t)|2

2
dx+ cα

∫ t

0

∫
R4
+

yb|∆bv
∗|2ϕdx dy ds

≤
∫ t

0

∫
R3

[
|v|2

2
∂tϕ(x, 0, s) +

( |v|2
2
u+ qv

)
· ∇ϕ(x, 0, s)

]
dx ds

− cα
L2

∫ t

0

∫
R4
+

yb
(
2∇ϕ∇u∗∆bu

∗ + (u∗ −M)∆bϕ∆bu
∗) dx dy ds ,

We next add and subtract the term ∫ t

0

∫
R3

|v|2

2
M · ∇ϕ(·, 0, ·) dx ds

and use (21) (namely ∇u∗ = L∇v∗ and ∆bu
∗ = L∆bv

∗) to conclude (19). �

In the next key lemma we show that the local energy inequality allows to control a suitably localized
energy in terms of lower order norms of u.
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Lemma 3.2. Let M ∈ Rn, f ∈ L1([0, 1]) and (u, p) be a suitable weak solution of (17) in R3 × [−1, 0].
Then we have that

sup
t∈[−(3/4)2α,0]

∫
B3/4

|u(x, t)|2

2
dx+

∫
Q∗

3/4

yb|∆bu
∗|2 dx dy dt

≤ C(1 + |M |)
∫
Q1

|u|2 dx dt+ C

∫
Q1

|u|
[
|L|u|2 − f(t)|+ |p|

]
dx dt+ C

∫
Q∗1

yb|u∗|2 dx dy dt. (22)

We remark that the lemma will be applied twice: in the proof of Theorem 2.9, to get strong compactness
of the rescaled sequence, with M = (u)Q1 , and f ≡ 0; and in Theorem 2.10, with M = 0, L = 1, and
f = [u]2B1

, where here and in the rest of the note we use the shorthand notation

[u]Ω(t) = −
∫

Ω

u(x, t) dx

(u)Γ = −
∫

Γ

u(x, t) dxdt .

respectively for space and space-time averages.
The subtraction of the function f(t) in the cubic term of the energy is due to the fact that in the Navier-

Stokes equations the nonlinear term has a divergence structure. In order to prove the lemma we need a
suitable interpolation inequality, which in fact will prove crucial in several other occasions. We state it
assuming that u and u∗ are real-valued functions: in fact, the lemma will be applied componentwise to the
velocity field. Since it will be used several times, consistenly with the notation Q∗r(x, t) we introduce also

B∗r (x) := Br(x)× [0, r[⊂ R4
+

Lemma 3.3. Let ψ ∈ C∞c (R4), ε ∈ (0, 1), r ∈ (0,∞), u ∈ Hα(R3) and u∗ be its extension given by
Theorem 2.3. Then the following inequalities hold for a constant C depending only on α:∫

R4
+

yb|∇u∗|2ψ2 dx dy ≤ ε

∫
R4
+

yb|∆bu
∗|2ψ2 dx dy +

C

ε

∫
R4
+

yb|u∗|2
(
ψ2 + |∇ψ|2

)
dx dy , (23)

∫
B∗r

yb|∇u∗|2 dx dy ≤ C

(∫
B∗2r

yb|∆bu
∗|2 dx dy

) 1
2
(∫

B∗2r

yb|u∗|2 dx dy

) 1
2

+
C

r2

∫
B∗2r

yb|u∗|2 dx dy. (24)

Proof. We first assume in addition that u ∈ C∞. Remember that ∆bu
∗ = y−bdiv(yb∇u∗), thus

div (ybu∗ψ2∇u∗) = div (yb∇u∗)u∗ψ2 + yb|∇u∗|2ψ2 + 2ybψu∗∇ψ · ∇u∗

= yb∆bu
∗u∗ψ2 + yb|∇u∗|2ψ2 + 2ybψu∗∇ψ · ∇u∗.

Integrating by parts the boundary term vanishes thanks to limy→0 y
b∂yu

∗(x, y) = 0, thus∫
R4
+

yb|∇u∗|2ψ2 = −
∫
R4
+

ybu∗∆bu
∗ψ2 − 2

∫
R4
+

ybψu∗∇u∗ · ∇ψ. (25)

More precisely, to obtain the previous estimate we integrate in {y ≥ ε} and then we let ε → 0; the
boundary term satisfies

lim inf
y→0

∣∣∣∣∫
R3

ybu∗ψ2∂yu
∗ dx

∣∣∣∣2 ≤ lim inf
y→0

(∫
R3

yb|u∗|2ψ2 dx

)
·
(∫

R3

ybψ2|∂yu∗|2 dx
)

= 0
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where the last equality follows from the L2 estimate on u∗ of Lemma 3.4, which shows that the first factor
is bounded for a sequence of y going to 0, and to the fact that limy→0 y

b∂yu
∗(x, y) = 0 uniformly, thanks to

the smoothness of u and to (13). By Hölder inequality, we estimate the first summand in the right hand
side of (25)

−
∫
R4
+

ybu∗∆bu
∗ψ2 ≤

(∫
R4
+

yb|∆bu
∗|2ψ2

) 1
2
(∫

R4
+

yb|u∗|2ψ2

) 1
2

.

We use Young’s inequality to the second summand of (25), thus∫
R4
+

ybψu∗∇u∗∇ψ ≤ C

∫
R4
+

yb|u∗|2|∇ψ|2 +
1

4

∫
R4
+

ybψ2|∇u∗|2.

The second summand of the latter inequality an be reabsorbed in the left hand side of (25). Putting
together the last three displayed inequalities and using Young’s inequality a second time, we obtain (23).
Applying the same arguments with a cutoff function ψ between B∗r and B∗2r, we obtain (24).

This concludes the proof in the case that u is smooth; if u ∈ Hα(R3) is not assumed to be smooth, we
proceed by approximating u with u ∗ ρθ, where {ρθ}θ∈(0,1) ⊆ C∞c (R3) is a standard family of mollifiers, and
we notice that (u ∗ ρθ)∗ = u∗ ∗ ρθ. To take the limit in (23) (and similarly in (24)) we observe that all the
terms in the right hand side pass to the limit because u∗ ∗ ρθ → u∗, ∆bu

∗ ∗ ρθ → ∆bu
∗ in L2(R4

+, y
b), while

for the left hand side we employ a lower-semicontinuity argument. �

Proof of Lemma 3.2. Let r, s ∈ (3/4, 1), r < s, r′ = (2r+ s)/3, s′ = (r+ 2s)/3 and let us consider a cutoff
ϕ supported in Q∗s′ , which is identically 1 on Q∗r′ and such that

|∂tϕ|+ |∂yϕ|+ |∇ϕ| ≤
C

r − s
, |∇2

ϕ| ≤ C

(r − s)2

for some universal constant C. Moreover, we assume that ϕ is constant in the variable y, namely ∂yϕ = 0,
on the domain {y < 1

2
}. In particular we conclude that |∆bϕ| ≤ C(r − s)−2. Let us consider

h(r) := sup
t∈[−r2α,0]

∫
Br

|u(x, t)|2

2
dx+ cα

∫
Q∗r

yb|∆bu
∗|2 dx dy dt′.

By the energy inequality (19) we have that for every t ∈ [−r2α, 0]∫
Br

|u(·, t)|2 dx+ 2cα

∫ t

−r2α

∫
B∗r

yb|∆bu
∗|2 dx dy dt′

≤
∫
Bs

ϕ(·, 0, t)|u(·, t)|2 dx+ 2cα

∫ t

−s2α

∫
R4
+

yb|∆bu
∗|2ϕdx dy dt′

≤
∫ t

−s2α

∫
R3

[
|u|2∂tϕ+ (L|u|2 + 2p)u · ∇ϕ

]
dx dt′ +

∫ t

−s2α

∫
Bs

M · ∇ϕ|u|2 dx dt′

− cα
∫ t

−s2α

∫
R4
+

yb
(
2∇ϕ∇u∗∆bu

∗ + u∗∆bϕ∆bu
∗) dx dy dt′ . (26)

Regarding the non-quadratic term in the right hand side, we notice that, since u is divergence-free, for any
f ∈ L1([−1, 0]),∫ t

−s2α

∫
R3

[
(L|u|2 + 2p)u · ∇ϕ

]
dx dt′ =

∫ t

−s2α

∫
R3

[
(L|u|2 − f(t) + 2p)u · ∇ϕ

]
dx dt′.
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Taking the supremum as t varies in [−r2α, 0] in (26) and using the bounds on the derivatives of ϕ, together
with the fact that they vanish inside Qr′ and outside Qs′ , we deduce that

h(r) ≤ C

∫
Qs′\Qr′

(1 + |M |) |u|
2

s− r
+
|L|u|2 − f(t) + 2p||u|

s− r
dx dt

+ C

∫
Q∗
s′\Q

∗
r′

yb|∆bu
∗||u∗|

(s− r)2
+
yb|∇u∗||∆bu

∗|
s− r

dx dy dt′. (27)

We estimate each term in the right hand side of (27). For the first term, we notice that∫
Qs′\Qr′

(1 + |M |) |u|
2

s− r
dx dt′ ≤ (1 + |M |)

s− r

∫
Q1

|u|2 dx dt′ .

For the third term, we apply Young inequality to deduce that∫
Q∗
s′\Q

∗
r′

yb|∆bu
∗||u∗|

(s− r)2
dx dy dt′ ≤

∫
Q∗
s′\Q

∗
r′

yb|∆bu
∗|2 dx dy dt′ + 1

(s− r)4

∫
Q∗
s′\Q

∗
r′

yb|u∗|2 dx dy dt′

≤ (h(s)− h(r)) +
1

(s− r)4

∫
Q∗1

yb|u∗|2 dx dy dt′.

Finally, for the last term we first use Young inequality to infer∫
Q∗
s′\Q

∗
r′

yb∇ϕ∇u∗∆bu
∗ dx dy dt′ ≤

∫
Q∗
s′\Q

∗
r′

yb|∆bu
∗|2 dx dy dt′ + C

(s− r)2

∫
Q∗
s′\Q

∗
r′

yb|∇u∗|2 dx dy dt′

≤ (h(s)− h(r)) +
C

(s− r)2

∫
Q∗
s′\Q

∗
r′

yb|∇u∗|2 dx dy dt′.

In order to estimate the last integral, we decompose the domain of integration as

Q∗s′ \Q∗r′ =
(
(B∗s′ \B∗r′)× (−(r′)2α, 0]

)
∪
(
B∗s′ × (−(s′)2α,−(r′)2α]

)
. (28)

Next, we apply Lemma 3.3 twice: consider at first the case t ∈ (−(r′)2α, 0] and a cutoff function ψ ∈ C∞c (R4)
in the variables x and y, with the following properties: suppψ ∩ R4

+ ⊂ B∗s \ B∗r , ψ ≡ 1 in B∗s′ \ B∗r′ and

|∇ψ| ≤ C
r−s . Thus, for each time t ∈ (−r2α, 0] we have

1

(s− r)2

∫
B∗
s′\B

∗
r′

yb|∇u∗|2 dx dy ≤
∫
B∗s\B∗r

yb|∆bu
∗|2 dx dy +

C

(s− r)4

∫
B∗1

yb|u∗|2 dx dy. (29)

Next, at each fixed time t ∈ (−(s′)2α,−(r′)2α) apply Lemma 3.3 with ε = (s − r)−2 and a new cutoff
function ψ ∈ C∞c (R4) in the variables x and y, with the following properties: suppψ ∩R4

+ ⊂ B∗s , ψ ≡ 1 in

B∗s′ and |∇ψ| ≤ C
r−s . Thus, for each time t ∈ (−(s′)2α,−(r′)2α) we have

1

(s− r)2

∫
B∗
s′

yb|∇u∗|2 dx dy ≤
∫
B∗s

yb|∆bu
∗|2 dx dy +

C

(s− r)4

∫
B∗1

yb|u∗|2 dx dy. (30)

We integrate in time (29) for t ∈ (−(r′)2α, 0] and (30) for t ∈ (−(s′)2α,−(r′)2α) and we sum the two
inequalities. We then use (28) and the inclusion(

(B∗s \B∗r )× (−(r′)2α, 0]
)
∪
(
B∗s × (−(s′)2α,−(r′)2α]

)
⊆ Q∗s \Q∗r.
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Summing the corresponding contributions we get

1

(s− r)2

∫
Q∗
s′\Q

∗
r′

yb|∇u∗|2 dx dy dt′ ≤
∫
Q∗s\Q∗r

yb|∇u∗|2 dx dy dt′ + C

(s− r)4

∫
Q∗1

yb|u∗|2 dx dy dt′

≤ (h(s)− h(r)) +
C

(s− r)4

∫
Q∗1

yb|u∗|2 dx dy dt′.

Putting together the previous estimates in (27), we obtain that for every 3/4 < r < s < 1

h(r) ≤ C∗(h(s)− h(r)) + C(1 + |M |) 1

s− r

∫
Q1

|u|2 dx dt′ + 1

s− r

∫
Q1

∣∣L|u|2 − f(t) + 2p
∣∣|u| dx dt′

+
C

(s− r)4

∫
Q∗1

yb|u∗|2 dx dy dt′

for universal constants C∗ and C. Hence, we apply Lemma 6.1 of [10] to conclude that

h(3/4) ≤ C(1 + |M |)
∫
Q1

|u|2 dx dt′ + C

∫
Q1

|L|u|2 − f(t) + 2p||u| dx dt′ + C

∫
Q∗1

yb|u∗|2 dx dy dt′,

which proves (22). �

We close the section with the following lemma where we estimate the nonlocal term in the right hand
side of (22) in terms of the L2-norm of u and of its “tail”.

Lemma 3.4. Let α ∈ (1, 3/2] and u ∈ L2(B1) ∩ L1
loc(R3) and assume that

sup
R≥1

R−3α

(
−
∫
BR

|u| dx
)2

< +∞ .

Consider the kernel P of Proposition B.1. Then the associated extension u∗(x, y) = (P (·, y)∗u)(x) belongs
to L2

loc(R4
+, y

b) and satisfies the estimate∫
B∗1

|u∗|2yb dx dy ≤ C

(∫
B2

|u|2 + sup
R≥1

R−3α

(
−
∫
BR

|u| dx
)2
)
, (31)

for a geometric constant C (which is, in particular, independent of α).

Proof. We set u1 := 1B2u and ui :=
(
1B2i+1

− 1B2i

)
u for i > 1. Thanks to the computation of the Poisson

kernel P (x, y) of ∆
2

b in Proposition B.1 and to (79) we can write

u∗(x, y) = u ∗ P (·, y) =
∞∑
i=1

ui ∗ P (·, y) =
∞∑
i=1

u∗i ,

where P (x, y) = y2α(|x|2 + y2)−
3+2α

2 . Thus∫
B∗1

|u∗|2yb dx dy ≤ 2

∫
B∗1

|u∗1|2yb dx dy +

∫ 1

0

yb

(∑
i>1

‖u∗i (·, y)‖L∞(B1)

)2

dy

 . (32)

To estimate the first term in the right hand side of (32), we observe that P (x, y) = y−3P (y−1x, 1), thus

P̂ (ξ, y) = y−3 ̂P (y−1·, 1)(ξ) = P̂ (·, 1)(ξy) ≤ ‖P̂ (·, 1)‖L∞ <∞ .
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Combining the latter with Plancherel’s identity we achieve∫
B∗1

|u∗1|2yb dx dy ≤
∫
R3×[0,1]

|u∗1|2yb dx dy =

∫
R3×[0,1]

|û∗1|2yb dξ dy =

∫
R3×[0,1]

|û1(ξ)P̂ (ξ, y)|2y−1−2α dξ dy

≤ ‖P̂ (·, 1)‖2
L∞

∫
R3

|û1(ξ)|2 dξ
∫ 1

0

yb dy ≤ C

∫
R3

|u1|2 dx = C

∫
B2

|u1|2 .

Moreover, for i > 1,

u∗i (x, y) = (ui ∗ P (·, y))(x) =

∫
R3

ui(z)P (x− z, y) dz =

∫
B2i+1\B2i

u(z)P (x− z, y) dz .

When z ∈ B2i+1 \B2i we have that |x− z| > 2i−1 and P (x− z, y) ≤ P (2i−1, y), thus

‖u∗i (·, y)‖L∞(B1) ≤ P (2i−1, y)

∫
B2i+1\B2i

|u| ≤
∫
B2i+1\B2i

|u|y2α

2(3+2α)(i−1)
.

Adding over i, we obtain∑
i>1

‖u∗i (·, y)‖L∞(B1) ≤
∑
i>1

∫
B2i+1\B2i

|u|y2α

2(3+2α)(i−1)
≤
∑
i>1

1

2
α
2

(i−1)

∫
B2i+1\B2i

|u|y2α

2(3+ 3
2
α)(i−1)

≤

(∑
i>1

y2α

2
α
2

(i−1)

)
sup
R≥1

∫
BR

|u|
R3+ 3

2
α
≤ Cy2α sup

R≥1

∫
BR

|u|
R3+ 3

2
α
.

Replacing the right hand side of (32) with the latter estimates, we conclude (31). �

4. Compactness of suitable weak solutions

We now use the energy estimates of the previous section to prove a compactness statement for suitable
rescalings and normalizations of solutions. A crucial assumption of such compactness lemma is that we
have an appropriate control of some local quantities. For this reason we introduce a notion of “excess”
(for which in the next section we will prove a suitable decay property).

Definition 4.1. We define the excess as E(u, p;x, t, r) = EV (u;x, t, r)+EP (p;x, t, r)+Enl(u;x, t, r) where

EV (u;x, t, r) :=

(
−
∫
Qr(x,t)

|u− (u)Qr(x,t)|3
) 1

3

EP (p;x, t, r) := r2α−1

(
−
∫
Qr(x,t)

|p− [p]Br(x)|
3
2

) 2
3

Enl(u;x, t, r) :=

(
−
∫ 0

−r2α
sup
R≥ 1

4
r

( r
R

)3α

−
∫
BR(x)

|u− (u)Qr(x,t)|2
) 1

2

.

We observe that, if u is a solution of (1), then

ur(x, t) := r2α−1u(rx, r2αt), pr(x, t) := r4α−2p(rx, r2αt) (33)

is a solution, too. The rescaling of the excess is given by

E(ur, pr; 0, 0, 1) = r2α−1E(u, p; 0, 0, r). (34)

We are now ready to state our compactness property.



16 MARIA COLOMBO, CAMILLO DE LELLIS, AND ANNALISA MASSACCESI

Lemma 4.2. Let (uk, pk) be a sequence of suitable weak solutions of the Navier-Stokes system (1) in
R3 × [−1, 0], with (uk)Q1 →M0 and E(uk, pk; 0, 0, 1)→ 0. Define the rescalings

vk :=
uk − (uk)Q1

E(uk, pk; 0, 0, 1)
qk :=

pk − [pk]B1

E(uk, pk; 0, 0, 1)
.

Up to subsequences (uk, pk) converges (in the sense of distributions) to a pair (v, q) defined on R3× [−1, 0]
which solves the following system in Q 1

2 ∂tv +∇q +M0 · ∇v = −(−∆)αv

div v = 0
(35)

and satisfies
E(v; 0, 0, 1) ≤ 1 . (36)

Moreover, vk → v strongly in L3
(
Q 1

2
,R3
)

and qk → q strongly in L
3
2

(
Q 1

2

)
.

Remark 4.3. Note that v belongs to L2
loc because of (36), whereas q is, a priori, just a distribution. Note

that, although the behavior of q outside Q1 does not affect the equation (35), the global behavior of v enters
in (35) since it affects the nonlocal operator (−∆)α.

An important ingredient of the proof is the following interpolation lemma.

Lemma 4.4. If v ∈ L2(R3;R3) then for every r ∈ (0, 1) there exists C := C(r) > 0 such that

‖v‖2

L
6

3−2α (Br)
≤ C

(∫
B∗1

yb|∆bv
∗|2 + sup

R≥ 1
4

R−3α −
∫
BR

|v|2
)
. (37)

Proof. Fix r ∈ (0, 1) and ϕ be a smooth cutoff function between B∗r and B∗1 . We assume that the cutoff
function ϕ|{y< 1

2
} is independent from the variable y, so that ∇ϕ = ∇ϕ in the set {y < 1

2
}. We can estimate∫

R3

|(−∆)
α
2 (vϕ)|2 (11)

= cα

∫
R4
+

yb|∆b(vϕ)∗|2
(12)

≤ cα

∫
R4
+

yb|∆b(v
∗ϕ)|2

≤ C

∫
B∗1

yb
(
|∆bv

∗|2ϕ2 + |∇v∗|2|∇ϕ|2 + |∆bϕ|2|v∗|2
)
.

The second summand of the right hand side can be estimated by Lemma 3.3 with ε = 1/2, ψ = |∇ϕ|∫
R4
+

yb|∆b(v
∗ϕ)|2 ≤ C

∫
B∗1

yb
(
|∆bv

∗|2 + |v∗|2
)
,

which in turn can be estimated with the right hand side of (37) thanks to Lemma 3.4. Next, by Sobolev’s
embedding

‖v‖2

L
6

3−2α (Br)
≤ ‖vϕ‖2

L
6

3−2α (R3)
≤ C

∫
R3

|(−∆)
α
2 (vϕ)|2 ≤ C

(∫
B∗1

yb|∆bv
∗|2 + sup

R≥ 1
4

R−3α −
∫
BR

|v|2
)
. �

Proof of Lemma 4.2. By Lemma 3.1, the pair (vk, qk) is a suitable weak solution of the modified Navier-
Stokes equation (17) with L = E(uk, pk; 0, 0, 1) and M = (uk)Q1 . By Lemma 3.2, we obtain

sup
t∈

[
−( 3

4)
2α
,0
]
∫
B 3

4

|vk(·, t)|2

2
dx+

∫
Q∗3

4

yb|∆bv
∗
k|2 dx dy dt ≤ C , (38)
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where C does not depend on k. From (38) and Lemma 4.4 we obtain that the sequence (vk) is bounded in

L∞
(
[−
(

5
8

)2α
, 0], L2(B 5

8
)
)

and in L2
(
[−
(

5
8

)2α
, 0], L

6
3−2α (B 5

8
)
)
. By interpolation, vk is uniformly bounded

in L
10
3

(
Q 5

8

)
.

Without loss of generality we can extract a subsequence (not relabeled) converging weakly to some v
in L2

loc(R3 × (−1, 0]), notice in fact that the nonlocal part of the excess controls uniformly the L2-norm
in Br × (−1, 0] for any r > 0. Similarly, using the equation ∆pk = div div (vk ⊗ vk), we can assume
that the sequence {pk} is suitably bounded in the space of tempered distributions and converges to some
distribution q. Note moreover that (36) follows from the lower semicontinuity of E.

We claim that the sequence vk is a Cauchy sequence in L1
(
Q 1

2

)
. Indeed let ε > 0 be a fixed positive

number and ϕθ be a smooth family of mollifiers in space supported in B1. As shown in the proof of Lemma
4.4, the sequence (vk) is bounded in L2((−1, 0], Hα(B5/8)). In particular, by the compact embedding of

Hα(B5/8) in L2(B5/8) and the uniform bound in L
10
3

(
Q 5

8

)
, we easily conclude

‖vk − vk ∗ ϕθ‖L3(Q1/2) ≤ f(θ)

for some function f of θ which is independent of k and which converges to 0 as θ ↓ 0. Therefore there
exists θ > 0 such that

‖vk − vk ∗ ϕθ‖L3(Q1/2) ≤
ε

3
∀ k ≥ 1. (39)

We analyze the equation for vk ∗ ϕδ:
∂t(vk ∗ ϕθ) = −∇pk ∗ ϕθ − [(vk · ∇)vk] ∗ ϕθ − vk ∗ (−∆α)ϕθ .

Observe that, using ∇pk ∗ ϕθ = pk ∗ ∇ϕθ and the uniform bound in L
3
2 for pk, we have

‖∇pk ∗ ϕθ‖L 3
2 (]−(1/2)2α,0];W 1,∞(B1/2))

≤ C(θ) ,

where C(θ) is a constant which possibly blows up when θ → 0, but otherwise does not depend on k. Using
[(vk · ∇)vk] ∗ ϕθ = div (vk ⊗ vk) ∗ ϕθ we obtain

‖(vk · ∇)vk ∗ ϕθ‖L 3
2 (]−(1/2)2α,0],W 1,∞(B1/2))

≤ C(θ).

We observe that (−∆)αϕθ(x) ≤ C(θ)
1+|x|3+2α and a similar estimate holds for the gradient of (−∆)αϕθ; indeed,

since ϕθ is smooth, for |x| < 1 we can use the representation formula for the fractional Laplacian and an
integrating by parts to compute

(−∆)αϕθ(x) = (−∆)α−1∆ϕθ(x) = −C
∫
R3

∆ϕθ(y)

|x− y|3+2(α−1)
dy = C

∫
R3

ϕθ(y)

|x− y|3+2α
dy ≤ C(θ)

1 + |x|3+2α
.

Recalling also that Enl(vk; 1) ≤ 1 and estimating the convolution on each dyadic annulus, we obtain

‖vk ∗ (−∆)αϕθ‖L2(]−(1/2)2α,0],W 1,∞(B1/2)) ≤ C(θ).

The sequence of maps t 7→ vk ∗ ϕθ(·, t) is therefore a sequence of equicontinuous maps taking values in
a closed bounded subset X ⊂ W 1,∞(B1/2). Endowing X with the uniform metric we have a compact
metric space. From Ascoli-Arzelà theorem the sequence is precompact. On the other hand we know it is
converging weakly in L

10
3 (Q1/2) to v ∗ϕθ, thus vk ∗ϕθ is converging uniformly to v ∗ϕθ. Hence there exists

a K ∈ N such that for every j, k ≥ K we have

‖vk ∗ ϕθ − vj ∗ ϕθ‖L1(Q1/2) <
ε

3
.
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This, together with (39), completes the proof that vk is a Cauchy sequence in L1(Q1/2). The strong
convergence of pk can be inferred from Calderón-Zygmund estimates. �

5. Estimates on the linearized equation

This section is entirely devoted to prove the following linear estimate.

Lemma 5.1. Let α ∈ (1, 2), δ ≥ 0 and let u ∈ L2
loc(R3 × [0, 1];R3) and p ∈ L3/2(Q1,R) be solutions in Q1

of the linearized system (35) with M0 ∈ R3, |M0| ≤M , (u)Q1 = 0, [p]B1 = 0 and Enl(u; 0, 0, 1) <∞.
Then there exists a constant C = C(M,α) such that

[u]
C

1
3 (Q1/2)

+ [p]
L

3
2 ((− 1

2
,0);C1/2(B1/2))

≤ C

(∫
Q1

|u|3
) 1

3

+ C

(∫
Q1

|p|
3
2

) 2
3

+ C

(∫ 0

−1

sup
R≥ 1

4

R−3α −
∫
BR(x)

|u|2
) 1

2

.

(40)
Moreover the constant C is independent of α, when the latter varies in (6/5, 5/4].

Proof. By a standard regularization argument (which can be used because (35) is a linear system with
constant coefficients) we assume u, p ∈ C∞. In this proof we denote by C a generic constant possibly
depending on α and M0, and by u∗ the map P (·, y) ∗ u with P as in Proposition B.1. In the proof we
use several cut-off functions on R4

+. We follow the convention that a “cut-off function between A and B”
denotes a smooth function equal to 1 on A and compactly supported in B. Such cut-offs might be nonzero
on {y = 0} and are assumed to be constant in the variable y over a suitable strip R3 × [0, y0].

We derive a first energy estimate multiplying the equation by ϕ2
1u, where ϕ1 is a cutoff between B∗7/8

and B∗1
d

dt

∫
B1

|u|2ϕ2
1 = 2

∫
B1

(
p∇ϕ1 · uϕ1 +M0 · ∇ϕ1|u|2ϕ1 − (−∆)αu · uϕ2

1

)
.

Arguing as in the proof of Lemma 3.2, with the obvious adjustments, we conclude that

sup
t∈(−( 3

4
)2α,0]

1

2

∫
B3/4

|u|2 +

∫ 0

−( 3
4)

2α

∫
B∗

3/4

|y|b|∆bu
∗|2

≤C
(∫

Q1

|p|
3
2

) 2
3
(∫

Q1

|u|3
) 1

3

(1 +M) + CM

∫
Q1

|u|2 + C

∫
Q∗1

yb|u∗|2.

Consider now a new cutoff function ϕ3/4 between B∗1/2 and B∗3/4. Thanks to fractional Sobolev embeddings,

the properties of the extension u∗ (11) and (12) and the interpolation result of Lemma 3.3, we have:∫
Q 3

4

|∇u|2 ≤
∫ 0

−( 3
4)

2α

∫
R3

|∇(uϕ3/4)|2 ≤ C

∫ 0

−( 3
4)

2α

∫
R3

|(−∆)
α
2 (uϕ3/4)|2 =

∫ 0

−( 3
4)

2α

∫
R4
+

yb|∆b(uϕ3/4)∗|2

≤
∫ 0

−( 3
4)

2α

∫
R4
+

yb|∆b(u
∗ϕ3/4)|2

≤
∫ 0

−( 3
4)

2α

∫
R4
+

ybϕ2
3/4|∆bu

∗|2 + C

∫ 0

−( 3
4)

2α

∫
R4
+

yb|∇ϕ3/4|2|∇u∗|2 + C

∫
Q∗1

yb|u∗|2

≤ C

∫ 0

−( 3
4)

2α

∫
B∗1

yb|∆bu
∗|2ϕ2

3/4 + C

∫
Q∗1

yb|u∗|2.
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Concerning the pressure, let ψ ∈ C∞c (B3/4) be a further cutoff function, identically 1 on B23/32. Let p̂ be
the potential theoretic solution of

∆p̂ = div(M0 · ∇(ψu)).

By Calderón-Zygmund estimates

‖∇p̂‖
L

3
2
t L

2
x(Q11/16)

≤ ‖M0 · ∇(ψu)‖
L

3
2
t L

2
x(Q11/16)

≤ C‖∇u‖
L

3
2
t L

2
x(Q3/4)

+ C‖u‖
L

3
2
t L

2
x(Q3/4)

.

Since p̂− p is harmonic in B23/32 we can control

‖∇(p̂− p)‖
L

3
2
t L

2
x(B11/16)

≤ C‖p̂− p‖
L

3
2
x,t(B23/32)

≤ C
(
‖p‖

L
3
2
x,t(B3/4)

+ ‖u‖L2
x,t(B3/4)

)
.

Therefore

‖∇p‖
L

3
2
t L

2
x(Q11/16)

≤ ‖∇u‖L2(Q3/4) + C‖u‖L2(Q1) + C‖p‖
L

3
2 (Q1)

. (41)

Observe that, by linearity again, any derivative ∂iu is a solution of (35), in particular

∂t∂iu+∇∂ip+M0 · ∇∂iu = −(−∆)α∂iu.

Let ϕ11/16 be a cutoff function between B∗5/8 and B∗11/16. Multiplying the equation by ϕ11/16∂iu and
integrating in space, we obtain

d

dt

∫
B1

|∂iu|2ϕ2
11/16 = 2

∫
B1

∂ip∇ϕ11/16 · ∂iuϕ11/16 +M0 · ∇ϕ11/16|∂iu|2ϕ11/16 − (−∆)α∂iu · ∂iuϕ2
11/16.

Integrating in time and performing tricks as above,

sup
t∈(−( 11

16
)2α,0]

∫
B1

|∂iu|2ϕ2
11/16 +

∫ 0

−( 11
16)

2α

∫
yb|∆b∂iu

∗|2ϕ2
11/16

≤ 2

∫
Q11/16

∂ip∇ϕ11/16 · ∂iuϕ11/16 + C

∫
Q11/16

|∂iu|2ϕ11/16 + C

∫
Q∗

11/16

yb|∂iu∗|2. (42)

The third term in the right hand side can be estimated via Lemma 3.3. Regarding the first term, we have:∫
Q11/16

∂ip∇ϕ11/16 · ∂iuϕ11/16 ≤ C‖∇p‖2
L1((−(11/16)2α,0];L2(B11/16)) +

1

4
‖∂iuϕ11/16‖2

L∞((−(11/16)2α,0];L2(B11/16)).

The first term in the right hand side is estimated by (41) and the second term is absorbed in the left hand
side of (42). We conclude that

‖u‖L∞((−( 5
8

)2α,0];H1(B5/8)) +

∫
Q5/8

yb|∆b∂iu
∗|2 ≤ C‖u‖2

L3(Q1) + C‖p‖
L

3
2 (Q1)

+ C

∫
Q∗1

yb|u∗|2.

Iterating k times the above estimates (possibly introducing a suitable number of intermediate radii
depending on k)

‖u‖L∞((−(9/16)2α,0],Hk(B9/16)) ≤ C‖u‖L3(Q1) + C‖p‖
L

3
2 (Q1)

+ C

∫
Q1
∗
yb|u∗|2,

where the constant C depends also on k. Similarly, with the same argument for (41) we achieve

‖p‖
L

3
2 ((−(9/16)2α,0],Hk(B9/16))

≤ C‖u‖L3(Q1) + C‖p‖
L

3
2 (Q1)

+ C

∫
Q∗1

yb|u∗|2. (43)
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Using k = 6 and Morrey’s embedding theorem, from (43) we deduce the following spatial estimate for
u:

‖u‖L∞((−(9/16)2α,0],C3(B9/16)) ≤ ‖u‖L∞((−(9/16)2α,0],H6(B9/16)) ≤ C‖u‖L3(Q1) + C‖p‖
L

3
2 (Q1)

+ C

∫
Q∗1

yb|u∗|2.

Thanks to Lemma 3.4, the right hand side in the previous equation is estimated by the right hand side in
the estimate for the pressure in (40). From the equation (35), we estimate the time derivative of u with

‖∂tu‖L 3
2 ((−(1/2)2α,0],L∞(B1/2))

≤ ‖∇p‖
L

3
2 ((−(1/2)2α,0],L∞(B1/2))

+ (1 +M)‖Du‖L∞(Q1) + ‖(−∆)αu‖L∞(Q1/2).

For the last term, we consider a cutoff ϕ9/16 between Q1/2 and Q9/16 to deduce

‖(−∆)αu‖L∞(Q1/2) ≤ ‖(−∆)α(uϕ9/16)‖L∞(Q1/2) + ‖(−∆)α(u(1− ϕ9/16))‖L∞(Q1/2).

The term ‖(−∆)α(uϕ9/16)‖L∞(Q1/2) is estimated by ‖u‖L∞((−(1/2)2α,0],C3(B1/2)). For the other term we observe

that, for any z ∈ suppϕ9/16

(−∆)α(u(1− ϕ9/16))(x) =

∫ −∆(u(1− ϕ9/16))(z)

|x− z|3+2α−2
dz = cα

∫
(1− ϕ9/16(z))u(z)

|x− z|3+2α
dz .

Hence, the term ‖(−∆)α(u(1 − ϕ9/16))‖L∞(Q1/2) can be estimated with the third summand in the right

hand side of (40). Summarizing, we can bound ‖∂tu‖L 3
2 ((−(1/2)2α,0],L∞(B1/2))

with the right hand side of

(40). Since ‖u‖
C

1
3 ([−(1/2)2α,0];L∞(B1/2))

is bounded by ‖∂tu‖L 3
2 ((−(1/2)2α,0],L∞(B1/2))

, we conclude the Hölder

continuity estimate in time, which completes the proof. �

6. Excess decay and proof of the ε-regularity Theorem 2.9

We now come to the core of the proof of Theorem 2.9, which is the following “excess decay estimate”.
After proving it we will show how to set up an iteration which leads to Theorem 2.9.

Proposition 6.1. Let (u, p) be a suitable weak solution of the hyperdissipative Navier-Stokes equation,
α ∈ (1, 5

4
] and M ≥ 0. Then there exist ϑ := ϑ(α,M) ∈ (0, 1

2
) and ε := ε(α,M) ∈ (0, 1

2
) with the following

property. If r ≤ 1, Qr(x, t) ⊆ R3 × [0, T ] for some (x, t) ∈ R3 × [0, T ] and

|(u)Qr(x,t)| ≤M and E(u, p;x, t, r) ≤ ε ,

then

E(u, p;x, t, ϑr) ≤ 1

2
E(u, p;x, t, r).

Moreover ϑ and ε are uniformly bounded away from 0 if the pair (α,M) ranges in a compact subset of
(1, 5

4
]× [0,∞).

Proof. Without loss of generality we can assume that (x, t) = (0, 0) and we omit to specify it in the excess
(and its variants). It suffices to prove

E(u, p;ϑ) ≤ 1

2
E(u, p; 1).

Indeed, using (33) and (34),

E(u, p; rϑ) = r1−2αE(ur, pr, ϑ) ≤ r1−2α

2
E(ur, pr; 1) = E(u, p; r)
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and, if E(u, p; r) ≤ ε, then in particular E(ur, pr; 1) ≤ r2α−1ε ≤ ε. Let us assume by contradiction that
there exists a sequence (uk, pk) such that

E(uk, pk;ϑ) ≥ 1

2
E(uk, pk; 1)

lim
k→∞

E(uk, pk; 1) = 0

|(uk)Q1| ≤M,

in particular, without loss of generality, we can assume (uk)Q1 →M0 with |M0| ≤M . We set

vk :=
uk − (uk)Q1

E(uk, pk; 1)
and qk :=

pk − [pk]B1

E(uk, pk; 1)
.

Thus E(vk, qk; 1) = 1 and

E(vk, qk;ϑ) ≥ 1

2
. (44)

We can estimate

Enl(vk;ϑ) =

(
−
∫ 0

−ϑ2α
sup
R≥ 1

4
ϑ

(
ϑ

R

)3α

−
∫
BR

|vk − (vk)ϑ|2
) 1

2

≤

(
−
∫ 0

−ϑ2α

(
sup

1
4
ϑ≤R< 1

4

(
ϑ

R

)3α

−
∫
BR

|vk − (vk)ϑ|2 + sup
R≥ 1

4

(
ϑ

R

)3α

−
∫
BR

|vk − (vk)ϑ|2
)) 1

2

.

We estimate the second term by adding and subtracting the average on Q1 and(
−
∫ 0

−ϑ2α
sup
R≥ 1

4

(
ϑ

R

)3α

−
∫
BR

|vk − (vk)ϑ|2
) 1

2

≤ ϑ
α
2E(vk, qk; 1) + (4ϑ)

3α
2 |(vk)Qϑ − (vk)Q1|

≤ ϑ
α
2 + (4ϑ)

3α
2

(
|(vk)Qϑ − (vk)Q1/2

|+ |(vk)Q1/2
− (vk)Q1|

)
and we notice that |(vk)Q1/2

− (vk)Q1 | ≤ cEV (vk; 1) ≤ c, so that we get

Enl(vk;ϑ) ≤

(
−
∫ 0

−ϑ2α
sup

1
4
ϑ≤R< 1

4

(
ϑ

R

)3α
1

R3

∫
BR

|vk − (vk)θ|2
) 1

2

+ ϑ
α
2 + c (4ϑ)

3α
2

(
1 + |(vk)Qϑ − (vk)Q 1

2

|
)
.(45)

We take the limit in (44): Lemma 4.2 gives a pair (v, q) solution of (35). Taking into account (45), we get

1

2
≤ EV (v;ϑ) + EP (q;ϑ) +

(
−
∫ 0

−ϑ2α
sup

1
4
ϑ≤R< 1

4

(
ϑ

R

)3α
1

R3

∫
BR

|v − (v)Qϑ |2
) 1

2

+ ϑ
α
2 + c (4ϑ)

3α
2

(
1 + |(v)Qϑ − (v)Q 1

2

|
)
.

By semicontinuity E(v, q; 1) ≤ lim inf E(vk, qk; 1) = 1. Thus, thanks to Lemma 5.1 we obtain the bounds:

EV (v;ϑ) ≤ cϑ
1
3 , EP (p;ϑ) ≤ cϑ

1
2 , |(v)Qϑ − (v)Q 1

2

| ≤ c .
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Moreover, for every (x, t) ∈ QR, |v − (v)Qϑ | ≤ CR
1
3 , hence(

−
∫ 0

−ϑ2α
sup

1
4
ϑ≤R< 1

4

(
ϑ

R

)3α
1

R3

∫
BR

|v − (v)Qϑ|2
) 1

2

≤ C

(
−
∫ 0

−ϑ2α
sup

1
4
ϑ≤R< 1

4

(
ϑ

R

)3α

R
2
3

) 1
2

≤ Cϑ
1
3 .

Putting everything together
1

2
≤ c

(
ϑ

1
3 + ϑ

1
2 + ϑ

1
3 + (4ϑ)

3α
2

)
.

Since c is independent of ϑ, if the latter is small enough we obtain the desired contradiction. �

6.1. Proof Theorem 2.9.

Proof of Theorem 2.9. Step 1. Let ε0 be a constant (to be chosen later) which is smaller than the one
given in Proposition 6.1 for M = 1, allowing the decay of the excess. There exists ε > 0 such that, if (16)
holds, then

E(u, p;x0, t0, 1) ≤ ε0 for every (x0, t0) ∈ Q1. (46)

To show the claim, we observe that the quantity in (16) controls EV (u;x0, t0, 1) + EP (p;x0, t0, 1):

EV (u;x0, t0, 1) ≤
(
−
∫
Q1(x0,t0)

|u|3
) 1

3

+ C|(u)Q1(x0,t0)| ≤ C

(
−
∫
Q2(x0,t0)

|u|3
) 1

3

≤ CV ε
1
3 (47)

and similarly

EP (p;x0, t0, 1) ≤ CP ε
2
3 . (48)

For the nonlocal part, we notice that for every R ≥ 1
4

we have that BR(x) ⊆ BR+1 and

sup
R≥ 1

4

R−
3α
2

(
−
∫
BR(x0)

|u|2
) 1

2

≤ sup
R≥ 1

4

(
R + 1

R

)3− 3α
2 1

(R + 1)
3α
2

(
−
∫
BR+1

|u|2
) 1

2

.

Integrating in [t− 1, t] and recalling that |(u)Q1(x0,t0)| ≤ C‖u‖L3(Q1(x0,t0)),(∫ t

t−1

sup
R≥ 1

4

R−3α −
∫
BR(x0)

|u− (u)Q1(x0,t0)|2
) 1

2

≤ C

(
−
∫ 0

−22α
sup
R≥ 1

4

R−3α −
∫
BR(x0)

|u|2
) 1

2

+ C|(u)Q1(x0,t0)|,

Provided that we choose ε small enough to satisfy Cnlε
1
3 + CV ε

1
3 + CP ε

2
3 ≤ ε0, we have shown (46).

Step 2. We claim that there exist an exponent γ > 0 and a constant C > 0 such that, if ε0 in (46) is
small enough, then

E(u, p;x0, t0, r) ≤ Crγ for every (x0, t0) ∈ Q1, r ≤ 1. (49)

This proves u ∈ C0,α (Q1) thanks to Morrey’s theorem (see, for instance, [4]). To show the claim, we prove
by induction that, provided ε0 is chosen smaller than a geometric constant (which will be specified later
in terms of the constant ϑ given by Proposition 6.1 with M = 1),

E(u, p;x0, t0, ϑ
k) ≤ E(u, p;x0, t0, 1)

2k
≤ ε0

2k
and |(u)Q

ϑk
| ≤ Cε0

k∑
i=0

1

2i−1
(50)

(here and in the rest of Step 2, all excesses of (u, p) and all cylinders are centered at any arbitrary point
(x0, t0), and the estimates are uniform as (x0, t0) vary in Q1). For k = 0 the first inequality follows from

Step 1 and the second comes from the fact that |(u)Q1| ≤ C‖u‖L3(Q1) ≤ Cε
1
3 , so the choice of ε above

already fulfills the requirement. For the inductive step from k to k+1 we first wish to apply Proposition 6.1
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with M = 1 and r = ϑk. The condition on the excess follows from the inductive assumption. Concerning
the average, we observe

|(u)Q
ϑk
| ≤ 4Cε0,

thus we simply need ε0 ≤ 1
4C

. The Proposition 6.1 gives

E(u, p;x0, t0, ϑ
k+1) ≤ 1

2
E(u, p;x0, t0, ϑ

k) ≤ E(u, p;x0, t0, 1)

2k+1
.

As for the average, we observe the simple inequality

|(u)Q
ϑk
− (u)Q

ϑk+1
| ≤ C

ϑ3+2α

(
−
∫
Q
ϑk

|u− (u)Q
ϑk
|3
) 1

3

≤ CE(u, p;x0, t0, ϑ
k) ≤ Cε02−k,

so that |(u)Q
ϑk+1
| ≤ |(u)Q

ϑk
|+Cε02−k ≤ Cε0

∑k+1
i=0

1
2i−1 . Finally (49) is implied by (50): indeed for r = ϑk

(49) corresponds to the first claim in (50) choosing γ = − logϑ(2), and for r ∈ (ϑk+1, ϑk) we compare
E(u, p;x0, t0, r) ≤ C(ϑ)E(u, p;x0, t0, ϑ

k) ≤ Cε02−k ≤ Cθγ(k+1) ≤ Crγ. �

7. Proof of the Caffarelli–Kohn–Nirenberg type theorem

To prove Theorem 2.10, by translation invariance of the equation we can assume, without loss of gener-
ality, that (x0, t0) = (0, 0) and therefore, for every quantity as E [ we omit the dependence on the function
(u, p) (which we consider fixed) and the point (x, t) (which we assume to be the origin). We introduce
moreover the following scaling invariant quantities (according to the natural rescaling (33)):

B(r) :=
1

r3−2α

∫
Qr

|∇u(x, t)|2 dx dt

F(r) :=
1

r5−2α

∫
Qr

|u(x, t)|2 dx dt

T (r) := r5α−2

∫ 0

−r2α
sup
R≥ r

4

1

R3α
−
∫
BR

|u|2 dt

(in particular, the tail functional T has been already defined in (15)). The following lemma can be regarded
as a Poincaré-type estimate which is not really using the Navier-Stokes equation.

Lemma 7.1. Let α ∈ (1, 3/2), then there exists a constant C = C(α) such that, for any function u ∈
L2([0, T ];Hα(R3)),

lim sup
r→0

(B(r) + F(r) + T (r)) < C lim sup
r→0

E [(r) .

Proof. Estimate on B. We claim that there exist θ ∈ (0, 1/4) and C := C(θ) > 0 such that

B(θr) ≤ 1

2
B(r) + CE [(r) ∀r > 0 . (51)

This obviously implies

lim sup
r→0

B(r) ≤ C lim sup
r→0

E [(r) .

Moreover, without loss of generality we prove (51) for r = 1.



24 MARIA COLOMBO, CAMILLO DE LELLIS, AND ANNALISA MASSACCESI

In order to simplify our notation we set v := ∇u and v[ := (∇u)[. We first show the following two
inequalities ∫

Q∗1

|v[|2 ≤ C(B(1) + E [(1)) (52)

B(θ) ≤ C

θ4−2α

∫ 0

−θ2α

∫
Bθ×[θ,2θ]

|v[|2 +
C

θ4−2α
E [(1) . (53)

For every (x, y, t) ∈ Q∗1 we estimate

|v[|2(x, y, t) ≤ 2|v|2(x, t) + 2

(∫ y

0

|∂yv[|(x, z, t) dz
)2

≤ 2|v|2(x, t) + 2

∫ y

0

zb|∇v[|2(x, z, t) dz

∫ y

0

z2α−3 dz

≤ 2|v|2(x, t) +
2

2α− 3

∫ y

0

zb|∇v[|2(x, z, t) dz . (54)

Similarly

|v|2(x, t) ≤ 2|v[|2(x, y, t) +
2

2α− 3

∫ y

0

zb|∇v[|2(x, z, t) dz . (55)

Integrating (54) on Q∗1 we easily conclude (52). Integrating (55) in (x, y, t) on Bθ × [θ, 2θ]× (−θ2α, 0] and
dividing by θ4−2α we reach (53). Next we compute∫ 0

−θ2α

∫
Bθ×[θ,2θ]

|v[|2 ≤ C

∫ 0

−θ2α

∫
Bθ×[θ,2θ]

∣∣∣∣v[(x, y, t)− −∫
B1×[θ,1]

v[(·, t)
∣∣∣∣2 + Cθ4

∫ 0

−θ2α

∣∣∣∣−∫
B1×[θ,1]

v[(·, t)
∣∣∣∣2

≤ C

∫ 0

−θ2α

∫
B1×[θ,1]

∣∣∣∣v[ − −∫
B1×[θ,1]

v[
∣∣∣∣2 + Cθ4

∫
Q∗1

|v[|2

≤ C

∫ 0

−θ2α

∫
B1×[θ,1]

|∇v[|2 + Cθ4

∫
Q∗1

|v[|2

≤ C

θ3−2α

∫
Q∗1

yb|∇v[|2 + Cθ4

∫
Q∗1

|v[|2 = Cθ4

∫
Q∗1

|v[|2 +
C

θ3−2α
E [(1) . (56)

Using (53), (56) and (52), we have that

B(θ) ≤ Cθ2α

∫
Q∗1

|v[|2 + C
(
θ2α−4 + θ4α−7

)
E [(1) ≤ Cθ2αB(1) + C

(
θ2α + θ2α−4 + θ4α−7

)
E [(1) .

Choosing θ appropriately small, we conclude (51).

Estimate on F . We proceed similarly as above and claim that there exists θ ∈ (0, 1/4) such that

F(θr) ≤ 1

2
F(r) + CB(r) .
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Again we prove the claim, without loss of generality, for r = 1. Indeed

F(θ) ≤ 2

θ5−2α

∫
Qθ

∣∣∣∣u− −∫
B1

u

∣∣∣∣2 + 2θ2α−2

∫ 0

−θ2α

∣∣∣∣−∫
B1

u

∣∣∣∣2 ≤ 2

θ5−2α

∫
Q1

∣∣∣∣u− −∫
B1

u

∣∣∣∣2 + 2θ2α−2

∫
Q1

|u|2

≤ C

θ5−2α

∫
Q1

|∇u|2 + Cθ2α−2F(1) =
C

θ5−2α
B(1) + Cθ2α−2F(1) ,

and choosing θ appropriately we reach the desired conclusion.

Estimate on T . As above we claim that there exists θ ∈ (0, 1/4) such that

T (θr) ≤ 1

2
T (r) + CB(r)

and we assume, without loss of generality, that for r = 1.
Let S(t) be the function S(t) := supR≥ 1

4

1
R3α −

∫
BR
|u|2. Let ρ ∈ [ θ

4
, 1

4
). We simply compute

−
∫
Bρ

|u|2 ≤ 2 −
∫
Bρ

|u− [u]B1|
2 + 2

∣∣∣∣−∫
B1

u

∣∣∣∣2 ≤ C

ρ3

∫
B1

|u− [u]B1|
2 + CS(t) ≤ C

θ3

∫
B1

|Du|2 + CS(t) .

In particular

sup
θ
4
≤R

1

R3α
−
∫
BR

|u|2 ≤ C

θ3α
S(t) +

C

θ3+3α

∫
B1

|Du|2 .

Integrating in time and multiplying by θ5α−2 we obtain

T (θ) ≤ Cθ2α−2T (1) +
C

θ5−2α
B(1) ,

from which the desired conclusion follows choosing θ sufficiently small. �

In order to prove Theorem 2.10 we introduce the following further quantities:

A(r) := sup
−r2α≤t≤0

1

r

∫
Br

|u|2(x, t) dx

C(r) :=
1

r6−4α

∫
Qr

|u|3 dx dt

D(r) :=
1

r6−4α

∫
Qr

|p|
3
2 dx dt .

We will need the following interpolation inequality.

Lemma 7.2. Let u : L∞((0, T ), L2(R3;R3)) ∩ L2((0, T ), Hα(R3;R3)). Then the following inequality holds
for every ρ, r ∈ R+ with ρ ≤ r:

C(ρ) ≤ C
(ρ
r

)6α−3

A(r)
3
2 + C

(r
ρ

)6−4α

A(r)
3
4B(r)

3
4 ≤ C

(ρ
r

)6α−3

A(r)
3
2 + C

(r
ρ

)9−2α

B(r)
3
2 . (57)

Proof. Since all the quantities are scaling-invariant, it is enough to prove the inequality for r = 1. By the
triangular inequality, we split C(ρ) in two terms, namely

C(ρ) =
C

ρ6−4α

∫
Qρ

|u|3 dx dt ≤ Cρ4α−3

∫ 0

−ρ2α
|[u]1(τ)|3 dτ +

C

ρ6−4α

∫
Qρ

|u(x, τ)− [u]1(τ)|3 dx dτ.
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We estimate the first summand in the right hand side

ρ4α−3

∫ 0

−ρ2α

∣∣∣∣−∫
B1

u(x, τ) dx

∣∣∣∣3 dτ ≤ Cρ6α−3 sup
−ρ2α≤t≤0

(∫
B1

|u|2(x, t) dx

) 3
2

≤ Cρ6α−3A(1)
3
2 .

For the second summand, we firstly notice that, by Hölder’s and Sobolev’s inequalities,∫
Qρ

|u(x, τ)− [u]1(τ)|3 dx ≤
∫
Q1

|u(x, τ)− [u]1(τ)|3 dx (58)

≤
∫ 0

−1

(∫
B1

|u(x, τ)− [u]1(τ)|2 dx
) 3

4
(∫

B1

|u(x, τ)− [u]1(τ)|6 dx
) 1

4

dt

≤ CA(1)
3
4

∫ 0

−1

(∫
B1

|Du|2(x, τ) dx

) 3
4

dt ≤ CA(1)
3
4B(1)

3
4 .

Putting together the last three estimates, we reach the first inequality in (57); the second inequality follows
by Young inequality. �

Proof of Theorem 2.10. The key point is that there are constants θ > 0, C > 0 and ω0 such that, if

B(r) + F(r) + T (r) = ω < ω0 , (59)

then

A(θr)
3
2 +D(θr)2 ≤ 1

2
(A(r)

3
2 +D(r)2) + Cω

3
2 . (60)

Once this claim is proved, we combine it with the estimate of Lemma 7.2 with ρ = r, namely

C(r) ≤ CA(r)
3
4B(r)

3
4 + CA(r)

3
2 .

We can then apply Lemma 7.1 and we easily conclude that, if ε is as in Theorem 2.9, for a suitably small
δ, the condition

lim sup
r↓0

E [(r) < δ

implies

lim sup
r↓0

(
C(r) +D(r) + T (r)

1
2

)
< ε .

In particular, if 2r is a radius at which

C(2r) +D(2r) + T (2r)
1
2 < ε ,

with an obvious scaling argument, we can apply Theorem 2.9 to ur and pr, hence concluding that the latter
are Hölder continuous in Q1. This, however, implies that u and p are Hölder continuous in Qr, i.e., (0, 0)
is a regular point. We are thus left with proving (60).

Step 1: energy inequality. Without loss of generality we show (60) with r = 1 assuming (59) with r = 1.
From the energy inequality in Lemma 3.2 applied with M = 0 and f(t) = |[u]1|2 we conclude

A(θ) ≤ C

θ2

∫
Q2θ

(|u− [u]1||u+ [u]1|+ |p||u|) + c(θ)

∫
Q2θ

|u|2 + c(θ)

∫
Q∗2θ

yb|u∗|2 . (61)

For the term involving the pressure, we use the inequality

1

θ2

∫
Q2θ

|p||u| ≤ C

θ2

(∫
Q2θ

|p|
3
2

) 2
3
(∫

Q2θ

|u|3
) 1

3

= Cθ4α−4C(2θ)
1
3D(2θ)

2
3 ≤ Cθ8−8αC(2θ)

2
3 + CD(2θ)

4
3 .
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Using this inequality and Lemma 3.2 and (59) to control the last two terms in (61), we conclude

A(θ) ≤ C

θ2

∫
Q2θ

|u− [u]1||u+ [u]1||u|+ Cθ8−8αC(2θ)
2
3 + CD(2θ)

4
3 + c(θ)ω . (62)

Step 2: estimate of the nonlinear term in (62). By Hölder and Sobolev inequality we have∫
Q2θ

|u− [u]1||u+ [u]1||u| dx dt ≤
(∫

Q2θ

|u|3 dx dt
) 1

3
(∫

Q1

|u− [u]1|
3
2 |u+ [u]1|

3
2 dx dt

) 2
3

≤ Cθ2− 2
3
αC(2θ)

1
3

(∫ 0

−1

(∫
B1

|u− [u]1|6 dx
) 1

4
(∫

B1

|u+ [u]1|2 dx
) 3

4

dt

) 2
3

≤ Cθ2− 2
3
αC(2θ)

1
3

(∫ 0

−1

(∫
B1

|Du|2 dx
) 3

4
(∫

B1

|u|2 dx
) 3

4

dt

) 2
3

≤ Cθ2− 2
3
αC(2θ)

1
3

(∫ 0

−1

(∫
B1

|Du|2 dx
) 3

4

A(1)
3
4 dt

) 2
3

≤ Cθ2− 2
3
αC(2θ)

1
3A(1)

1
2B(1)

1
2 .

Step 3: estimate on the pressure in (62). We claim the following estimate for D(2θ):

D(2θ) ≤ C
1

θ6−4α
A(1)

3
4B(1)

3
4 + Cθ4α−3D(1) . (63)

The proof uses the usual elliptic equation for the pressure. Indeed, recalling that u is divergence-free, we
see that the pressure p solves

∆p = div div (u⊗ u) =
∑
i,j

∂i∂j(uiuj) =
∑
i,j

∂i∂j ((ui − [ui]1)(uj − [uj]1)) .

Let χB1 being the characteristic function of the ball B1 and consider the potential theoretic solution p of

∆p =
∑
i,j

∂i∂j ((ui − [ui]1)(uj − [uj]1)χB1) .

The difference p− p is harmonic in B1. Therefore∫
B2θ

|p(x, τ)− p(x, τ)|
3
2dx ≤ θ3‖p(x, τ)− p(x, τ)‖

3
2

L∞(B1/2) ≤ cθ3

∫
B1

|p(x, τ)− p(x, τ)|
3
2dx

≤ cθ3

∫
B1

|p|
3
2 (x, τ) dx+ cθ3

∫
B1

|p|
3
2 (x, τ) dx.

Hence, by the previous inequality and the Calderón-Zygmund estimates on p, we conclude

1

θ6−4α

∫
Q2θ

|p|
3
2 (x, τ) dx dτ ≤ cθ4α−3D(1) +

c

θ6−4α

∫
Q1

|p|
3
2 (x, τ) dx dτ

≤ cθ4α−3D(1) +
c

θ6−4α

∫
Q1

|u(x, τ)− [u]1|3 dx dτ.

Using again (58), (63) follows.
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Step 4: conclusion. Taking the power 3/2 of (62) and noticing that D(θ) ≤ CD(2θ), we obtain

A(θ)
3
2 +D(θ)2 ≤ C

θ3

(∫
Q2θ

|u− [u]1||u+ [u]1||u|
) 3

2
+ Cθ12−12αC(2θ) + CD(2θ)2 + c(θ)ω

3
2 .

Applying Step 2 and Step 3

A(θ)
3
2 +D(θ)2 ≤ C

θα
C(2θ)

1
2A(1)

1
2B(1)

1
2 + Cθ12−12αC(2θ) + CD(2θ)2 + c(θ)ω

3
2

≤ C

θα
C(2θ)

1
2A(1)

3
4B(1)

3
4 + Cθ12−12αC(2θ) +

C

θ6−4α
A(1)

3
4B(1)

3
4 + Cθ4α−3D(1) + c(θ)ω

3
2 .

We can easily bound
C

θ6−4α
A(1)

3
4B(1)

3
4 ≤ 1

8
A(1)

3
2 + c(θ)ω

3
2

and
C

θα
C(2θ)

1
2A(1)

1
2B(1)

1
2 ≤ Cθ12−12αC(2θ) +

1

8
A(1)

3
2 ,

(since we can assume without loss of generality that B(1) ≤ ω0 ≤ 1). We therefore achieve

A(θ)
3
2 +D(θ)2 ≤ Cθ12−12αC(2θ) +

1

4
A(1)

3
2 + c(θ)ω

3
2 .

We now use Lemma 7.2 to derive

C(2θ) ≤ Cθ6α−3A(1)
3
2 + Cθ4α−3D(1)2 + c(θ)ω

3
2 .

In particular we conclude

A(θ)
3
2 +D(θ)2 ≤

(
1

4
+ Cθ9−6α

)
A(1) + Cθ4α−3D(1)2 + c(θ)ω

3
2 .

Since 9−6α and 4α−3 are both positive, we just need to choose θ sufficiently small to conclude (60). �

8. Proofs of Theorems 1.2, 1.3 and Corollaries 1.4,1.5, 1.6

8.1. Dimension of the singular set.

Definition 8.1. Given a parabolic cylinder

Qr(x, t) = Br(x)×]t0 − r2α, t0] = Br(x)×
](
t− r2α

2

)
− r2α

2
,

(
t− r2α

2

)
+
r2α

2

]
and λ > 0, we define its dilation (computed with respect to its centroid)

λQr(x, t) := Bλr(x)×
](
t− r2α

2

)
− (λr)2α

2
,

(
t− r2α

2

)
+

(λr)2α

2

]
.

Notice that these parabolic cylinders have the “Vitali property” with λ = 5, namely

Qr(x1, t1) ∩Q2r(x2, t2) 6= ∅ =⇒ Q2r(x2, t2) ⊂ 5Qr(x1, t1) .

In particular we recover the classical 5r-covering lemma.
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Lemma 8.2 (Vitali’s covering theorem for cylinders). Let F ⊂]0,+∞[×R3×R be a family of parameters

for the closed parabolic cylinders in Q = {Qr(x, t) : (r, x, t) ∈ F} and assume supF r < ∞. Then there
exists a countable family G ⊂ F which consists of disjoint cylinders and such that⋃

(r,x,t)∈F

Qr(x, t) ⊂
⋃

(r,x,t)∈G

5Qr(x, t) .

Proof of Theorem 1.2. Let ε > 0 be the threshold given by Theorem 2.10. Fix δ > 0 and let

Qδ :=

{
Qr(x, t) : r < δ and

∫
Q∗r(x,t)

yb|∇(∇u)[|2 ≥ εr5−4α

}
.

Observe that, by Theorem 2.10, the set of points (x, t) ∈ R3 × R such that Qr(x, t) ∈ Qδ for some r
contains Sing u. Then, by Lemma 8.2, there exists a countable family {(rk, xk, tk)}k≥1 ⊂ Qδ such that

Sing u ⊂
⋃
k≥1

5Qrk(xk, tk) .

Thus, since the Q∗rk(xk, tk) are pairwise disjoint, if we set Rδ :=
⋃
k≥1Q

∗
rk

(xk, tk), then we can estimate

P5−4α
δ (Sing u) ≤

∑
k≥1

r5−4α
k ≤

∑
k≥1

1

ε

∫
Q∗rk

(xk,tk)

yb|∇(∇u)[|2 ≤ 1

ε

∫
Rδ

yb|∇(∇u)[|2 . (64)

Moreover Rδ ⊂ R3 × [0, δ]× [0,+∞); therefore, by absolute continuity of the integral (with respect to the
finite measure yb|∇(∇u)[|2 dx dy dt),

lim
δ→0

∫
Rδ

yb|∇(∇u)[|2 = 0.

Thus we conclude (4) from (64). �

Proof of Corollary 1.4. Let α ∈ (1, 5
4
) and let u be a suitable weak solution of (1). Fix t > 0 and set

S := Sing u ∩ (R3 × [t,∞)). We recall the definition of the box-counting dimension Dimb (S): for every
fixed δ ∈ (0, 1) we consider the minimal number N(δ) of sets of diameter δ which are needed to cover S
and we set

Dimb (S) = lim sup
δ↓0

(− logδ(N(δ))) .

Fix therefore δ ∈ (0,min(t1/2α, 1)). We will indeed estimate the minimal number N ′(δ) of Qδ(xi, ti) which
are needed to cover S, because it is easy to see that

Dimb (S) ≤ lim sup
δ↓0

(− logδ(N
′(δ))) .

Recall that u ∈ L∞((0,∞), L2(R3)) ∩ L2((0,∞), Hα(R3)). In particular, by Sobolev’s embedding u ∈
L2((0,∞), L

6
3−2α (R3)) and, by interpolation, u ∈ L 6+4α

3 (R3 × (0,∞)). Using the Calderón–Zygmund esti-
mates and the usual maximal function estimates we then get

M :=

∫
R3×(0,∞)

(
M|u|2 + p

) 3+2α
3 <∞ .

Next, by Hölder’s inequality,

1

r6−4α

∫
Qr(y,s)

(
M|u|2 + p

) 3
2 ≤

(
1

r
15−2α−8α2

3

∫
Qr(y,s)

(
M|u|2 + p

) 3+2α
3

) 9
6+4α

.
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In particular, by Theorem 1.3, if (y, s) ∈ S, then∫
Qr(y,s)

(
M|u|2 + p

) 3+2α
3 ≥ ε

6+4α
9 r

15−2α−8α2

3 ∀r ∈ (0, s
1
2α ) .

Assume, therefore, that {Qδ/5(xi, ti)}i is a (at most) countable cover of S with (xi, ti) ∈ S. Using Lemma
8.2, there is a subset A ⊂ N such that {5Qδ/5(xi, ti)}i∈A covers S and {Qδ/5(xi, ti)}i∈A consists of disjoint
cylinders. We thus conclude that

N ′(δ) ≤ ]A ≤ M

ε
6+4α

9 r
15−2α−8α2

3

,

which in turn implies

− logδ(N
′(δ)) ≤ − logδ

(
M

ε
6+4α

9

)
+

15− 2α− 8α2

3
.

In particular, letting δ ↓ 0 we reach

Dimb (S) ≤ lim sup
δ↓0

(− logδ(N
′(δ))) ≤ 15− 2α− 8α2

3
. �

8.2. ε-regularity with the maximal function.

Proof of Theorem 1.3. We claim that for every ε0 there exists ε > 0 such that, if (5) holds, then

E(u, p;x0, t0, 1) ≤ ε0 for every (x0, t0) ∈ Q1. (65)

Once this claim is proved, we use the argument of Step 2 in the proof of Theorem 2.9 and we choose ε0

sufficiently small to deduce the decay of the excess (49) and that u ∈ C0,α (Q1) from Morrey’s theorem.
To show (65), we observe that two o the three terms in the definition of the excess have been estimated

in (47) and (48): thanks to (5) we achieve

EV (u;x0, t0, 1) + EP (p;x0, t0, 1) ≤ C

(
−
∫
Q2(x0,t0)

|u|3
) 1

3

+ ≤ C

(
−
∫
Q2(x0,t0)

|p|3/2
) 2

3

≤ CV ε
1
3 + CP ε

2
3 .

Concerning the nonlocal part, we have(∫ t0

t0−1

sup
R≥ 1

4

R−3α −
∫
BR(x0)

|u− (u)Q1(x0,t0)|2
) 1

2

≤

(∫ t0

t0−1

sup
R≥ 1

4

R−3α −
∫
BR(x0)

|u|2
) 1

2

+ C|(u)Q1(x0,t0)| .

The second summand in the right hand side is estimated by |(u)Q1(x0,t0)| ≤ C‖u‖L3(Q1(x0,t0)). Concerning
the first summand, for every R ≥ 1

4
and t ∈ [t0 − 1, t0], we have that

−
∫
BR(x0)

|u|2 ≤ C

∫
B 1

4
(x0)

−
∫
B
R+1

4
(x)

|u|2 dx′ dx ≤ C

∫
B 1

4
(x0)

M|u|2(x) dx.

Hence the nonlocal excess can be controlled by suitable norm of the maximal function of |u|2 and by (5)

Enl(u;x0, t0, 1) ≤ C

∫ t0

t0−1

∫
B 1

4
(0)

M|u|2
 1

2

+ C

(∫
Q1

|u|3
) 1

3

≤ C

(∫
Q2

(
M|u|2

) 3
2

) 1
3

≤ Cnlε
1
3 .

Provided we choose ε small enough to satisfy Cnlε
1
3 + CV ε

1
3 + CP ε

2
3 ≤ ε0, we obtain (65). �
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8.3. Stability of the regular set.

Proof of Corollary 1.5. Following the proof of Lemma 4.2 we conclude easily that {uk} is strongly pre-
compact in L3(R3 × [0, T ]) and {pk} is strongly precompact in L3/2(R3 × [0, T ]). In particular, by clas-
sical estimates on the maximal function, M|uk|2 converges strongly in L3/2 to M|u|2. On the other
hand, M|u|2 ∈ L∞(Q2r(x0, t0)). In particular, there is a ρ > 0 sufficiently small such that, for any
(x, t) ∈ Qr(x0, t0),

1

ρ6−4α

∫
Qρ(x,t)

(
M|u|2 + |p|

)3/2 ≤ ε

2
,

where ε is the constant of Theorem 1.3. Thus, for k large enough, we have

1

ρ6−4α

∫
Qρ(x,t)

(
M|uk|2 + |pk|

)3/2 ≤ ε for every (x, t) ∈ Qρ(x0, t0).

In particular Theorem 1.3 implies that for every such k every point (x, t) ∈ Qρ(x0, t0) is regular. �

Proof of Corollary 1.6. We first show the regularity of the solution. We argue by contradiction and assume
therefore that the statement is false: we conclude that there is a sequence of initial data {uk0}k ⊂ Y , a
sequence αk ↑ 5

4
and a corresponding sequence of suitable weak solutions (uk, pk) of (1) with α = αk and

uk(·, 0) = uk0 such that none of the uk is regular. First of all, arguing as above, we can assume that, up to
subsequences (uk, pk) converge to a solution (u, p) of (1) with α = 5

4
and initial data u(·, 0) ∈ Y . Moreover

we conclude the strong convergence of {uk} and {pk} respectively in L3(R3 × [0, T ]) and L3/2(R3 × [0, T ])
for every T . Note in particular that, by standard arguments, if |x|+ |t| is larger than some fixed constant
M , ∫

Q2(x,t)

(
M|uk|2 + |pk|

)3/2 ≤ ε .

Thus, any singular point for any solution (uk, pk) is contained in BM × [0,M ] and uk is uniformly bounded
in L∞((R3 × (0,∞)) \ (BM × [0,M ]). On the other hand, we also know that, for a universal T0 > 0, the
solutions (uk, pk) are classical, and hence regular, on R3 × [0, T0]. Thus, if (xk, tk) is a singular point for
(uk, pk) we can assume, up to subsequences, that (xk, tk) converges to (x, t) ∈ BM × [T0,M ]. Since (u, p)
is regular, Corollary 1.5 gives a contradiction.

Observe that, as a corollary of the above argument, we can bound the L∞-norm of uk for k sufficiently
large. Thus, the weak-strong uniqueness statement of Theorem 2.2 implies that, for k sufficiently large, uk
is also the unique Leray–Hopf weak solution with initial data uk0. �

Appendix A. Existence and weak-strong uniqueness

A.1. Existence of Leray–Hopf weak solutions. In this section we prove the existence part of Theorem
2.2. Consider a family of standard mollifiers φε in space and define the following approximation of the
hyperdissipative system:  ∂tu+ (u ∗ φε · ∇)u+∇p = −(−∆)αu

divu = 0
(66)

with the initial condition u(·, 0) = u0 ∗ φε. Very standard arguments show the local in time existence of a
smooth solution of (66), cf. for instance [19]. Denote by (uε, pε) the corresponding pair and let T be the
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maximal time of existence. Recall also that, by possibly subtracting a suitable function of time from pε,
we can assume that pε is the potential theoretic solution of

−∆pε = div div (uε ⊗ uε) .

We first show that T =∞. First of all note that, by a simple computation,

d

dt

∫
|uε|2(x, t) dx = −2

∫
|(−∆)

α/2uε|2(x, t) dx .

In particular, if T were finite, the L2-norm of uε would remain bounded up to time T . In turn, this ensures
that all Ck-norms of uε ∗ φε stay bounded. From linear theory and bootstrap arguments it follows then
easily that all Ck-norms of u stay bounded as well and it is then easy to see that the solution can be
continued after the time T .

Take a sequence εk ↓ 0 and extract a subsequence, not relabeled, which converges weakly to u ∈
L2(R3 × [0, T ]). Observe that uε enjoy uniform estimates in L∞([0,∞), L2(R3)) and (−∆)α/2uε enjoy
uniform estimates in L2(R3 × [0,∞)). In particular, for every fixed time T , uε enjoy uniform estimates
in L2([0, T ], H1(R3)) and thus, by interpolation, uε is bounded uniformly in L10/3(R3 × [0, T ]) for every
T <∞. In turn, using Calderón–Zygmund estimates for the pressure pε we conclude uniform estimates in
L5/3(R3 × [0, T ]). We can thus extract a subsequence so that pεk ⇀ p locally in L5/3(R3 × [0, T ]). We next
show that uεk converges strongly in L2

loc(R3 × [0, T ]), which in turn will imply that it converges locally
strongly in Lp(R3 × [0, T ]) for every p < 10

3
. Such strong convergence implies that

• pεk converge strongly in any Lqloc(R3 × [0, T ]) for q < 5
3

(Calderón–Zygmund estimates);
• (u, p) is a weak solution of the hyperdissipative Navier–Stokes.

Finally, the energy inequality follows from the lower semicontinuity of the dissipative right hand side∫
|(−∆)

α/2uεk |2(x, t) dx

because for a.e. t we can find a further subsequence so that uεk(·, t) converges strongly in L2 to u(·, t).
The strong convergence in L2(R3× [0, T ]) follows from a classical Aubin–Lions type argument, which we

include for the reader’s convenience. In order to simplify the notation we denote uεk by wk and without
loss of generality we fix a time T <∞. First of all, by Sobolev embeddings, ‖wk‖L2([0,T ],L6(R3)) ≤ C.

Let ε > 0 be given. We want to show that ∃N ∈ N such that ‖wk−wj‖L2(R3×[0,T ]) < ε for every k, j ≥ N .
Fix a standard mollifier ϕδ in the variable x and observe that for any t ∈ [0,∞)

‖wk(·, t)− wk ∗ ϕδ(·, t)‖L2(R3) ≤ Cδα‖(−∆)
α/2wk(·, t)‖L2(R3) .

In particular, for a fixed, sufficiently small δ we achieve

‖wk ∗ ϕδ − wk‖L2(R3×[0,T ]) <
ε

3
∀k . (67)

Next, mollifying the equation for wk, for ` = 1, 2, 3, we find

∂t(wk ∗ ϕδ)` = −
3∑
i=1

fi,`,k ∗ ∂xiϕδ − wk ∗ (−∆)αϕδ ,

where the functions fi,`,k are given by

fi,`,k := (wk)i ∗ φεk(wk)` + pδi`
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and thus enjoy uniform L5/3(R3 × [0, T ]) bounds. Using the estimate ‖ζ ∗ ϕδ‖W 1,∞(R3) ≤ C(δ)‖ζ‖L1(R3) for
each time slice, we conclude a bound∫ T

0

‖∂twk ∗ ϕδ(·, t)‖
5/3

W 1,∞(R3) dt ≤ C(δ) ,

where C(δ) is a constant depending upon δ but independent of k.
So we can regard [0, T ] 3 t 7→ wk ∗ ϕδ(·, t) as a sequence of equicontinuous and equibounded curves

taking values in W 1,∞(R3). Let BR be a (closed) ball of W 1,∞(R3) so that the images of wk ∗ ϕδ are all
contained inside it. If we endow BR with the ‖ · ‖∞-norm, then we have a compact metric space X. Hence
we can regard [0, T ] 3 t 7→ wk ∗ ϕδ(·, t) as an equicontinuous and equibounded sequence in the compact
metric space X. By the Ascoli–Arzelà theorem the sequence is then precompact. Since the limit is unique
(namely u ∗ ϕδ), we can conclude that the sequence wk ∗ ϕδ converges uniformly on R3 × [0, T ].

Thus there exists N large enough such that

‖wk ∗ ϕδ − wj ∗ ϕδ‖L2(R3×[0,T ]) <
ε

3
for all k, j ≥ N .

Therefore, combining the latter inequality with (67), for j, k ≥ N we have

‖wk − wj‖L2(R3×[0,T ]) ≤ ‖wk − wk ∗ ϕδ‖L2(R3×[0,T ]) + ‖wk ∗ ϕδ − wj ∗ ϕδ‖L2(R3×[0,T ])

+ ‖wj − wj ∗ ϕδ‖L2(R3×[0,T ]) < ε .

This completes the proof of the strong convergence of wk and hence the proof of the existence part of
Theorem 2.2.

A.2. The energy equality for smooth solutions. We give a formal justification of the definition of
suitable weak solutions by showing that (14) holds with equality for smooth solutions of the hyperdissipative
Navier-Stokes equations. We multiply the NS equation by uϕ and integrate to get∫

R3

ϕ(x, t)|u(x, t)|2 dx−
∫ t

0

∫
R3

[
|u|2∂tϕ+ (|u|2 + 2p)u · ∇ϕ

]
dx ds = −

∫ t

0

∫
R3

ϕu · (−∆)αu dx ds . (68)

We manipulate the right hand side with t fixed. Recalling (6), we notice that

div
(
∇(ϕu∗i )y

b∆bu
∗
i

)
= ∆b(ϕu

∗
i )y

b∆bu
∗
i +∇(ϕu∗i )y

b∇∆bu
∗
i . (69)

Integrating the left hand side, using the divergence theorem and recalling that ∂yϕ = 0 when y = 0, we
obtain∫

R4
+

div
(
∇(ϕu∗i )y

b∆bu
∗
i

)
= −

∫
R3

∂y(ϕu
∗
i )y

b∆bu
∗
i = −

∫
R3

∂yϕu
∗
i y
b∆bu

∗
i −

∫
R3

ϕ∂yu
∗
i y
b∆bu

∗
i = 0 .

We integrate by parts the right hand side of (68), by means of the divergence theorem∫
R3

ϕu · (−∆)αu dx
(10)
= cα lim

y→0

∫
R3

ϕu∗i (·, 0)yb∂y∆bu
∗
i (·, 0) dx = −cα

∫
R4
+

div
(
ϕu∗i y

b∇∆bu
∗
i

)
= −cα

∫
R4
+

ϕu∗i y
b∆

2

bu
∗
i − cα

∫
R4
+

yb∇(ϕu∗i ) · ∇∆bu
∗
i

(7)&(69)
= cα

∫
R4
+

yb∆bu
∗
i∆b(u

∗
iϕ).(70)

Observe that the commutator gives, for every i = 1, 2, 3,

[ϕ,∆b]u
∗
i := ∆b(ϕu

∗
i )− ϕ∆bu

∗
i = 2∇ϕ∇u∗i + ∆bϕu

∗
i .
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Replacing the last line in (70) with the commutator [ϕ,∆b], we obtain∫
R3

ϕu · (−∆)αu dx =

∫
R4
+

yb|∆bu
∗|2ϕ+

∫
R4
+

[ϕ,∆b]u
∗
i y
b∆u∗i

= cα

∫
R4
+

ϕyb|∆bu
∗|2 + cα

∫
R4
+

2yb∇ϕ∇u∗i∆bu
∗
i + ybu∗i∆bϕ∆bu

∗
i .

(71)

A.3. Existence of suitable weak solutions. In order to prove Theorem 2.8 we proceed as in Section A.1.
Upon multiplying the mollified hyperdissipative Navier–Stokes equations, we derive an identity analogous
to (71) for the pair (uε, pε). In particular, having fixed a test function ϕ, we have∫

R3

ϕ(·, 0, t)|uε(·, t)|2 dx+ cα

∫ t

0

∫
R4
+

yb|∆bu
∗
ε|2ϕdx dy ds

=

∫ t

0

∫
R3

[
|uε|2∂tϕ|y=0 + (|uε|2uε ∗ φε + 2pεuε) · ∇ϕ|y=0

]
︸ ︷︷ ︸

=:C(ε)

−cα
∫ t

0

∫
R4
+

yb
(
2∇ϕ∇u∗ε∆bu

∗
ε + u∗ε∆bϕ∆bu

∗
ε

)
︸ ︷︷ ︸

=:D(ε)

.

Consider the subsequence (uεk , pεk) of the previous section, converging to the Leray–Hopf weak solution
(u, p). By the strong convergence proved in the previous section, for a.e. t ∈ (0,∞) we conclude

lim
k→∞

∫
R3

ϕ(·, 0, t)|uεk(·, t)|2 dx =

∫
R3

ϕ(·, 0, t)|u(·, t)|2 dx

lim
k→∞

C(εk) =

∫ t

0

∫
R3

[
|u|2∂tϕ(·, 0, ·) + (|u|2u+ 2pu) · ∇ϕ(·, 0, ·)

]
dx ds .

Next observe that, by Theorem 2.3 and the energy estimate of the previous section we know that∫ t

0

∫
R4
+

yb|∆bu
∗
ε|2 dx dy ds

is uniformly bounded. Using the Poisson-type formula of Proposition B.1 we see that u∗εk → u∗ strongly

in L2(R4
+ × [0, t], yb). Moreover, ∆bu

∗
εk

converges weakly in L2(R4
+ × [0, t], yb) to ∆bu

∗. Therefore, since
ϕ ≥ 0, by lower semicontinuity we have that

lim inf
k→∞

∫ t

0

∫
R4
+

yb|∆bu
∗
εk
|2ϕdx dy ds ≥

∫ t

0

∫
R4
+

yb|∆bu
∗|2ϕdx dy ds .

Using the inequality (24) for u∗εk − u
∗ = (uεk − u)∗ we infer

lim
k→∞

∫ t

0

∫ R

0

∫
BR

yb|∇u∗εk −∇u
∗|2 dx dy ds = 0 .

With these estimates we conclude

lim
k→∞

D(εk) =

∫ t

0

∫
R4
+

yb
(
2∇ϕ∇u∗∆bu

∗ + u∗∆bϕ∆bu
∗) dx dy ds.



THE GENERALIZED CAFFARELLI-KOHN-NIRENBERG THEOREM 35

A.4. Weak-strong uniqueness. In this section we complete the proof of Theorem 2.2. The proof is very
similar to the same statement for the classical Navier–Stokes equations and we give it for the reader’s
convenience. Fix u and v Leray–Hopf weak solutions as in the statement. Observe that, by simple
interpolation, v ∈ L4(R3 × [0, T ]). Hence, multiplying the equation by v and integrating in space (note
that (v · ∇)v ∈ L4/3 and thus ∇p ∈ L4/3 from Calderón-Zygmund estimates) the global energy inequality is
indeed an identity. Simple computations show then that (in the distributional sense) for a.e. t ∈ (0,∞)

d

dt

∫
R3

|u− v|2

2
dx+

∫
R3

|(−∆)
α/2(u− v)|2 dx ≤

∫
R3

|v||u− v||∇(u− v)| dx

≤ 1

2ε

∫
R3

|v|2|u− v|2 dx+
ε

2

∫
R3

|∇(u− v)|2 dx

≤ 1

2ε

∫
R3

|v|2|u− v|2 dx+ Cε

∫
R3

|(−∆)
α/2(u− v)|2 dx ,

where the last inequalities follow from Young inequality and Sobolev embeddings, respectively. Fixing ε
small enough to reabsorb the second summand on the left hand side we conclude

d

dt

∫
R3

|u− v|2

2
dx ≤ C

∫
R3

|v|2|u− v|2 dx ≤ ‖v(·, t)‖L∞
∫
R3

|u− v|2 dx .

By Gronwall inequality, since u and v agree at the initial time, they are identically equal in [0, T ].

Appendix B. The extension problem and a Poisson formula

Proposition B.1. Let ∆b be the differential operator in (6) with α ∈ (1, 2) and b = 3− 2α. The Poisson-
type kernel

P (x, y) :=
y2α

(|x|2 + y2)
n+2α

2

, (72)

satisfies then the following properties:

• ∆b∆bP = 0;
• If Cn,α := ‖P (·, 1)‖L1(Rn), then

lim
y→0

P (x, y) = Cn,αδ0 weakly∗ as measures (73)

lim
y→0

y1−α∂yP (·, y) = 0 as distributions . (74)

Remark B.2. Let us notice the following properties of P (x, y):

(i)
∫
Rn P (x, y) dx is constant and therefore

∫
Rn ∂yP (x, y) dx = 0;

(ii) P (x, y) is rotation invariant and therefore
∫
Rn P (x, y)x dx = 0;

(iii) we have
∫
Rn P (x, y)xixj dx = y2

∫
Rn

zizj

(|z|2+1)
n+2α

2
dz = c̃n,αy

2δij;

(iv) by the radial symmetry of x 7→ P (x, y), we have that
∫
B1
P (x, y)xixjx` dx = 0.

Proof. First of all, we use the notation X = (x, y) ∈ Rn+1 and observe that

∆|X|−γ = (γ2 − (n− 1)γ)|X|−(γ+2), ∂y|X|−γ = −γy|X|−(γ+2) .
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We can compute

∆b

(
yβ

|X|γ

)
=∆

(
yβ

|X|γ

)
+
b

y
∂y

(
yβ

|X|γ

)
=β(β − 1)

yβ−2

|X|γ
− 2γβ

yβ

|X|γ+2
+ (γ2 − (n− 1)γ)

yβ

|X|γ+2
+ bβ

yβ−2

|X|γ
− bγ yβ

|X|γ+2

=β(β − 1 + b)
yβ−2

|X|γ
+ γ(γ − 2β − (n− 1)− b) yβ

|X|γ+2
. (75)

When γ = n+ 2α and β = 2α we see that

∆b

(
y2α

|X|n+2α

)
= 4α

y2α−2

|X|n+2α
− 2(n+ 2α)

y2α

|X|n+2α+2
.

Taking ∆b and applying again (75) to each summand of the right hand side, we obtain

∆b∆b

(
y2α

|X|n+2α

)
= 8α(n+ 2α)

y2α−2

|X|n+2α+2
− 2(n+ 2α)4α

y2α−2

|X|n+2α+2
= 0 .

Let us notice that, by a change of variable, ‖P (·, y)‖L1(Rn) is independent from y. Moreover, for every
ε > 0, ‖P (·, y)‖L1(Rn\Bε) → 0 as y → 0, which therefore shows (73). We next claim that, for any test
function φ ∈ C2(Rn), ∣∣∣∣∫

Rn
∂yP (x, y)φ(x) dx

∣∣∣∣ ≤ Cy‖φ‖C2(Rn) ∀ y > 0 . (76)

Multiplying by y1−α the latter inequality and using 2− α > 0, we easily that

lim
y↓0

y1−α
∫
Rn
∂yP (x, y)φ(x) dx = 0 ,

which, by the arbitrariness of the test function, implies (74).
In order to show (76), we use the properties (i) and (ii) of Remark B.2 to compute

J(y) :=

∫
Rn
∂yP (x, y)φ(x) dx =

∫
Rn
∂yP (x, y)(φ(x)− φ(0)−∇φ(0) · x) dx ,

By means of a Taylor expansion, we obtain

|J(y)| ≤ C‖φ‖C2(Rn)

∫
Rn
|∂yP (x, y)| |x|2 dx (77)

In order to bound the latter integral, but also for later purposes, we remark the following simple bounds:

|∂kyP (x, y)| ≤ C(k)
k∑
i=0

y2α−k+2i

(|x|2 + y2)
n+2α

2
+i
≤ C(k)

y2α−k

(|x|2 + y2)
n+2α

2

for k ∈ N. (78)

Combining the latter estimate with (77) we obtain

|J(y)| ≤ C‖φ‖C2(Rn)

∫
Rn

|x|2y2α−1

(|x|2 + y2)
n+2α

2

dx = C‖φ‖C2(Rn)y

∫
Rn

|z|2

(1 + |z|2)
n+2α

2

dz ,

which implies (76). �

For the sake of completeness, we add here a proof of Yang’s theorem 2.3 by means of the Poisson kernel
computed above.
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Proof of Theorem 2.3. We define the extension u∗ ∈ L2
loc(R

n+1
+ , yb) as

u∗(x, y) := P (·, y) ∗ u(x) =

∫
Rn

y2αu(ξ)

(|x− ξ|2 + y2)
n+2α

2

dξ . (79)

Observe that ∆bu
∗ ∈ L2(Rn+1

+ , yb). (7) is an obvious consequence of ∆
2

bP = 0. The boundary conditions
(8) and (9) follow instead from (73) and (74), respectively. Since the proof is entirely analogous, we just
show the one for (9). Fix a smooth test function ϕ ∈ C∞c (Rn) and observe that∫

Rn×{y}
y1−α∂yu

∗f =

∫
Rn×{y}

(
y1−α∂yP (·, y)

)
∗ uf =

∫
Rn×{y}

u
(
y1−α∂yP (·, y)

)
∗ f .

In particular, from (74) and the smoothness of f , it follows that, as y ↓ 0, (y1−α∂yP (·, y)) ∗ f converges to
0 in the Schwartz space S . Since u ∈ L2, we easily conclude that

lim
y↓0

∫
Rn×{y}

y1−α∂yu
∗f = 0 .

Since the functional v 7→
∫
Rn+1
+

yb|∆bu
∗|2 is strictly convex, from the fulfillment of the Euler-Lagrange

conditions (7) and (9), we obtain that u∗ is the unique minimizer for the functional, hence (12).

We next come to (11). We first observe that û∗(ξ, y) = P̂ (ξ, y)û(ξ). Since P (hence P̂ ) is radially

symmetric, with a change of variables we have that P̂ (ξ, y) = P̂ (·, 1)(ξy) = P̂ (·, 1)(|ξ|y). For the sake of

brevity, we call φ(z) := P̂ (·, 1)(z). By Parseval’s identity we can compute∫
Rn+1
+

yb|∆bu
∗|2 =

∫
Rn+1
+

yb
∣∣∣∣|ξ|2û∗ + ∂yyû∗ +

b

y
∂yû∗

∣∣∣∣2 dξ dy
=

∫
Rn+1
+

yb|ξ|4
∣∣∣∣φ(|ξ|y)û(ξ) +

b

|ξ|y
φ′(|ξ|y)û(ξ) + φ′′(|ξ|y)û(ξ)

∣∣∣∣2 dξ dy
=

∫
Rn+1
+

zb|ξ|2α
∣∣∣∣φ(z)û(ξ) +

b

z
φ′(z)û(ξ) + φ′′(z)û(ξ)

∣∣∣∣2 dξ dz
=

∫
Rn
|ξ|2α|û(ξ)|2 dξ

∫
R+

zb
∣∣∣∣φ(z) +

b

z
φ′(z) + φ′′(z)

∣∣∣∣2 dz = c−1
n,α

∫
Rn
|ξ|2α|û(ξ)|2 dξ .

This easily shows (11), but observe indeed that, by the very same argument, we can conclude∫
Rn+1
+

yb∆bv
∗∆bu

∗ = c−1
n,α

∫
Rn
v(−∆)αu (80)

for every pair u, v ∈ Hα.

In order to complete the proof of the theorem, we wish to show (10). First of all we claim that the
family of distributions {yb∂y∆bP (·, y)}y∈(0,1) is equibounded in the space S ′. In particular we will show
the existence of a constant C such that∣∣∣∣∫

Rn
ybφ(x)∂y∆bP (x, y) dx

∣∣∣∣ ≤ C‖φ‖C4(Rn) ∀y ∈ (0, 1) and ∀φ ∈ S . (81)
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To prove the latter bound we first compute

yb∂y∆bP = yb∆∂yP + yb∂3
yP + yb∂y

(
b

y
∂yP

)
.

We thus need to bound the three distributions yb∆∂yP (·, y), yb∂3
yP (·, y) and yb∂y(y

−1∂yP ). Recalling the
estimate (76) of the previous proposition, we easily see that∣∣∣∣∫

Rn
yb∂y∆P (x, y)φ(x) dx

∣∣∣∣ =

∣∣∣∣∫
Rn
yb∂yP (x, y)∆φ(x) dx

∣∣∣∣ ≤ Cy4−2α‖∆φ‖C2(Rn) .

Thus, we just need to bound the remaining two terms yb∂3
yP (·, y) and yb∂y(y

−1∂yP ).
By Remark B.2 we achieve that, for every y > 0,∫

Rn
∂3
yP dx =

∫
Rn
∂3
yPxi dx =

∫
Rn
∂3
yPxixj dx =

∫
B1

∂3
yPxixjx` dx = 0

and∫
Rn
∂y(y

−1P ) dx =

∫
Rn
∂y(y

−1∂yP )xi dx =

∫
Rn
∂y(y

−1∂yP )xixj dx =

∫
B1

∂y(y
−1∂yP )xixjx` dx = 0 .

Thus we can compute∫
Rn
∂3
yP (x, y)φ(x) dx

=

∫
Rn
∂3
yP (x, y)

(
φ(x)− φ(0)−∇φ(0) · x− 1

2

∑
i,j

∂2
ijφ(0)xixj −

1

6

∑
i,j,`

∂3
i,j,`φ(0)xixjx`1B1(x)

)
dx .

From the Taylor expansion for φ we conclude∣∣∣∣∣φ(x)− φ(0)−∇φ(0) · x− 1

2

∑
i,j

∂2
ijφ(0)xixj −

1

6

∑
i,j,`

∂3
i,j,`φ(0)xixjx`1B1(x)

∣∣∣∣∣ ≤ C‖φ‖C4(Rn) min{|x|4, |x|2} .

From (78) we then get∣∣∣∣∫
Rn
yb∂3

yP (x, y)φ(x) dx

∣∣∣∣ ≤ C‖φ‖C4(Rn)

∫
B1

|x|4

(|x|2 + y2)
n+2α

2

dx+ C‖φ‖C4(Rn)

∫
{|x|>1}

|x|2

(|x|2 + y2)
n+2α

2

≤ C‖φ‖C4(Rn)

∫
B1

|x|−n+(4−2α) dx+ C‖φ‖C4(Rn)

∫
{|x|>1}

|x|−n−(2−2α) dx

≤ C‖φ‖C4(Rn) .

The same bound with yb∂y(y
−1∂yP (·, y)) replacing yb∂3

yP (·, y) is entirely analogous and we have thus
shown (81).

Fix now ϕ and u both in S . We will show below that

lim
y→0

∫
Rn×{y}

ϕ∗(x, y)yb∂y∆bu
∗(x, y) dx = c

∫
Rn
ϕ(x)(−∆)αu(x) dx , (82)

for some geometric constant c = c(n, α).
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Since ϕ is smooth, ϕ∗(·, y)→ ϕ in S and, in particular, thanks to the bound (81), (82) implies

lim
y→0

∫
Rn×{y}

ϕ(x)yb∂y∆bu
∗(x, y) dx = c

∫
Rn
ϕ(x)(−∆)αu(x) dx .

Since ϕ ∈ S is arbitrary, the latter implies that yb∂y∆bu
∗(·, y) → c(−∆)αu in the sense of distributions.

In turn, since u ∈ S is also arbitrary and yb∂y∆bu
∗(·, y) = (yb∂y∆bP (·, y)) ∗ u, we conclude that

lim
y↓0

yb∂y∆bP (·, y) = c(−∆)αδ0

in the sense of distributions. Finally, the latter identity implies (10) for a general tempered distribution u
(and thus also for u ∈ Hα).

We are thus left to show (82). Observe first that∫
Rn×{y=h}

ybϕ∗∂y∆bu
∗ =

∫
Rn+1∩{y>h}

div
(
ybϕ∗i∇∆bu

∗
i

) (7)
=

∫
Rn+1∩{y>h}

yb∇ϕ∗i∇∆bu
∗
i

=

∫
Rn×{y=h}

yb∂yϕ
∗ ·∆bu

∗

︸ ︷︷ ︸
=:I(h)

+

∫
Rn+1∩{y>h}

div(yb∇ϕ∗)∆bu
∗ .

The key point is that I(h)→ 0 as h ↓ 0. The latter claim implies then

lim
y→0

∫
Rn
ϕ∗(x, y)yb∂y∆bu

∗(x, y) dx =

∫
Rn+1
+

yb∆bϕ
∗∆bu

∗ ,

which by (80) gives (82).
In order to show that I(h) → 0, observe that we have already argued that y1−α∂yϕ

∗ converges to zero
in the Schwartz space S (because ϕ ∈ S ). We thus need to show that {y2−α∆bu

∗(·, y)}y∈(0,1) is bounded
in the space S ′. Using again the representation through the Poisson’s kernel, it suffices to show the
boundedness of {y2−α∆bP (·, y)}y∈(0,1). We compute

y2−α∆bP (·, y) = y2−α∆P (·, y) + y2−α∂2
yP (·, y) + by1−α∂yP (·, y) .

Since 2 − α > 0 and P (·, y) → cδ0, the boundedness of the first summand is obvious. In the previous
proposition we have already shown that y1−α∂yP (·, y)→ 0. We thus need to handle the second summand.
We proceed as in the above arguments and use the momentum conditions (see Remark B.2)∫

Rn
∂2
yP (x, y) dx =

∫
Rn
∂2
yP (x, y)xi dx = 0

to write ∫
Rn
∂2
yP (x, y)φ(x) dx =

∫
Rn
∂2
yP (x, y)(φ(x)− φ(0)−∇φ(0) · x) dx .

In particular, by the Taylor expansion and the estimates (78),∣∣∣∣∫
Rn
y2−α∂2

yP (x, y)φ(x) dx

∣∣∣∣ ≤ C‖φ‖C2(Rn)y
2−α
∫
Rn

∣∣∂2
yP
∣∣ |x|2 dx ≤ C‖φ‖C2(Rn)y

α

∫
Rn

|x|2

(|x|2 + y2)
n+2α

2

dx

≤ C‖φ‖C2(Rn)y
2−α
∫
Rn

|z|2

(|z|2 + 1)
n+2α

2

dz ≤ C‖φ‖C2(Rn) . �
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