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Abstract. We employ min-max methods to construct uncountably many, geometrically
distinct, properly embedded geodesic lines in any asymptotically conical surface of non-
negative scalar curvature, a setting where minimization schemes are doomed to fail. Our
construction provides control of the Morse index of the geodesic lines we produce, which
will be always less or equal than one (with equality under suitable curvature or genericity
assumptions), as well as of their precise asymptotic behaviour. In fact, we can prove that in
any such surface for every couple of opposite half-lines there exists an embedded geodesic
line whose two ends are asymptotic, in a suitable sense, to those half-lines.

1. Introduction

The quest for closed geodesics in compact Riemannian manifolds has been one of the main
themes in the modern history of Differential Geometry. Such problem, dating back at least
to H. Poincaré [Poi05], has been approached by a variety of methods, whose development
turned out to be remarkably useful in the most diverse fields. Among these, special impor-
tance is deserved by the curve-shortening scheme proposed by G. Birkhoff [Bir17] in order
to construct simple closed geodesics on manifolds whose fundamental group is trivial, so
that minimization methods are not successfully applicable. The ideas behind this approach
turned out to be crucial in the development of min-max methods for the area functional,
which allowed Almgren and Pitts [Pit81] to show existence of at least one closed embedded
minimal hypersurface in any compact manifold of dimension less than six (which was later
extended to higher dimensions by Schoen and Simon [SS81]). In turn, these methods proved
to be extremely powerful in tackling a number of fundamental questions in Geometry, like
the Willmore conjecture [MN14], the Freedman conjecture on the energy of links [AMN16],
the Yau conjecture on minimal hypersurfaces in manifolds of positive Ricci curvature [MN16]
and (most recently) the problem of constructing new classes of (higher genus) solitons for
the mean curvature flow [Ket16], just to name a few. We refer the reader to the beautiful
ICM lectures by F. Marques [Mar14] and A. Neves [Nev14] for a broader overview and con-
textualization of these methods.

A somehow analogous question, also of global nature, is that of existence of embedded
geodesic lines: given a (non-compact) Riemannian manifold (M, g) we wonder about the
existence of (proper) geodesic embeddings γ : R → M . In general, the answer to such a
question depends, in a dramatic fashion, on the topology and on the asymptotic structure
of (M, g). Simple existence theorems are only at disposal when the problem is approachable
by minimization methods, that is to say by taking limits of length-minimizing geodesic seg-
ments for endpoints escaping at infinity in some appropriate fashion. This approach does
indeed work, for instance, if (M, g) has suitable convexity properties at infinity. When these
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sorts of assumptions are not made, trying to construct geodesic lines by solving a sequence
of minimization problems will not work as there are in general no geometric reasons for the
sequence of geodesic segments one may construct not to escape from any given compact
subset of the manifold in question. In fact, this is the typical behaviour on positively curved
manifolds for in that case the second variation of the length functional ensures that no stable
geodesic lines can actually exist. An important class of surfaces that exhibit this phenom-
enon is provided by asymptotically conical ones, which arise as asymptotically flat models
in 2 + 1 gravity (see e. g. [BBL86,Bro88,Col88,DJtH84] and [Car98]). In that context non-
negativity of the scalar curvature is just a reflex of the dominant energy condition (DEC)
and the non-existence of embedded, stable geodesic lines is the two-dimensional counterpart
of a well-known obstruction disclosed by Schoen-Yau in their proof of the Positive Mass The-
orem [SY79] and recently widely investigated in its connections to the large-scale structure
of isolated gravitational systems [EM12,EM13,Car14,CCE15,CS14].

In spite of the fact that minimization methods are doomed to fail, we shall prove here
that every asymptotically conical surface does in fact contain lots of (properly) embedded
geodesic lines, whose Morse index equals one under natural curvature conditions.

Theorem 1. An asymptotically conical surface of non-negative scalar curvature contains
infinitely many, geometrically distinct, properly embedded geodesic lines of Morse index less
or equal than one. If the scalar curvature is assumed to be positive equality holds.

We refer the reader to Subsection 2.2 for a precise definition of asymptotically conical sur-
face and for recollection of a few basic facts. A brief discussion of the positive mass theorem
in two spatial dimensions is provided in Subsection 2.3, instead.

In order to avoid dangerous misunderstandings, let us remark here that the geodesic lines
we construct are never length-minimizing (in other terms: they are not straight lines) for
otherwise the ambient manifold (S, g) would of course split as a Riemannian product (by
virtue of the well-known theorem by S. Cohn-Vossen [CV36], later exetended by Cheeger-
Gromoll [CG71]). In fact, our result ensures that complete, embedded geodesics that are
not length-minimizing exist in abundance under very natural assumptions on the asymptotic
behaviour of the ambient manifold.

Remark 2. In the statement of Theorem 1 the assumption that the scalar curvature be non-
negative forces the surface in question to be a complete plane (namely: to have only one end
and genus zero), see Theorem 13. However, this is not restrictive (as far as one is concerned
with the existence problem) for in presence of at least two ends one can just obtain properly
embedded geodesic lines by taking a limit of minimizing segments whose endpoints diverge
on different ends of the surface in question. In fact, a similar strategy allows to deal with
the case when the surface contains a non-separating closed curve and thus solves the problem
when the genus is not zero (see e. g. [Ban81a] pg. 64).

It is important to contextualize our result with respect to the rich history concerning the
quest for escaping rays. For a broad overview, with several remarkable contributions, of the
study of maximal geodesics on complete surfaces we refer the reader to [Shi94, SST03] and
references therein. The question of existence of proper geodesic embeddings γ : R → M
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for M a Riemannian manifold homeomorphic to the plane was explicitly posed by S. Cohn-
Vossen in 1936. After various sorts of partial contributions, it was then finally solved by
V. Bangert in 1981 (see [Ban81a], as well as [Ban81b, Ban81c] and references therein for
related and ancillary results; see also Proposition 6.1 in [BL03] for a refined existence result
for planes of finite positive total curvature). Yet, the arguments employed to answer such
question in full generality are rather indirect and provide little information on the geodesic
line whose existence is proven and in particular do not provide any information at all about
the Morse index of the line itself. The author needs to distinguish various cases, depending
on whether the surface does contain a closed geodesic or not. In this respect, Bangert
states (in [Ban81a], p. 59): We have not been able to find a general method to conctruct
escaping geodesics without self-intersection. In this paper, we present an effective geometric
construction in the category of asymptotically conical surfaces, a category naturally arising
in the physical setting described above. Perhaps more importantly, Bangert concluded his
article with the following question:

Are there infinitely many escaping geodesics on every complete plane S?
While very exhaustive results have been achieved in the case of negatively curved planes
(see [FM01]), the problem is still far from being completely understood for what concerns
positively curved metrics on R2. Our work provides a novel contribution in this direction,
since in fact the argument we describe in Section 5 shows that for every couple of opposite
rays on our surface we can exhibit an embedded geodesic line whose two ends are asymptotic,
in a suitable sense which we shall describe later, to those half-lines.

The proof of Theorem 1 naturally splits into two parts, the full conclusion following at
once by combining Proposition 22 (for the existence part) and Proposition 25 (for the mul-
tiplicity part). In the next two paragraphs we shall briefly outline them.

The geodesic lines we construct are obtained by min-max methods. More precisely, we
exploit the information on the asymptotic behaviour of our ambient surface to set-up a se-
quence of Plateau min-max problems (for geodesics) and then check that the sequence of
geodesics with boundary we obtain cannot drift off to infinity together with their boundary
points. Let us now describe the structure of our proof in more detail. For the first step
(which is done in Section 3), we prove that whenever one can join two points on a surface
by means of two embedded geodesics that bound a disk and the standard mountain-pass
condition holds then there is a third embedded1 geodesic joining the two points in question
(Proposition 14). Of course, such condition is automatically satisfied when the two geodesics
that are given are strictly stable. This result, of independent interest and potentially wide
applicability, relies on the combined use of the one-dimensional H1-gradient flow and, per-
haps more importantly, on the clever resolution of singularities procedure proposed by G.
Chambers and Y. Liokumovich [CL14] in order to effectively convert homotopies into iso-
topies. For the scope of controlling the index, we have found it convenient to work with the
energy functional (rather than the length functional), somehow in the spirit of the parametric
approach to the min-max Plateau problem proposed long time ago by Shiffman [Shi39] and

1The emphasis here is on the word embedded both in the assumption and in the conclusion of our assertion,
for otherwise the result would just be a routine application of one-dimensional min-max schemes.
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Morse-Tompkins [MT39]. The fact that the embedded geodesic segments that we produce do
not escape from any given compact set is proven by using the Gauss-Bonnet theorem and a
blow-down procedure (since all geodesics connecting two antipodal points at the same height
on a cone are known). This no-drift argument, which lies at the core of this construction, is
presented in Section 4.

At that stage, we prove that this method does in fact produce uncountably many distinct
geodesic lines. Roughly speaking, this is achieved as follows. The min-max geodesic seg-
ments we produce connect (by construction) couple of antipodal points in the asymptotic
region, where one has coordinates (r, ϕ) ∈ (0,∞)× S1 and each geodesic line is obtained as
a (subsequential) geometric limit as the first coordinate of such points goes to infinity, with
the second coordinate fixed to values ϕ0 and ϕ0 + π. In principle, one expects that as we
vary ϕ0 we should indeed obtain distinct geodesic lines, but this is not obvious as twisting
phenomena may occur without leading to any contradiction by means of a direct blow-down
procedure. The relevant argument, which proves Proposition 25, is described in Section 5.

When considering our work in the context of min-max techniques, one direction we should
mention is the development of methods for contructing closed (or, more generally, finite
area) minimal hypersurfaces in non-compact Riemannian manifolds, due to Bangert [Ban80]
and Thorbergsson [Tho78] for the special case of finite length geodesics on certain non-
compact surfaces (of finite area) and, much more recently, remarkably extended by Mon-
tezuma [Mon14] (resp. Chambers-Liokumovich [CL16]) to handle closed (resp. finite area)
minimal hypersurfaces in classes of manifolds satisfying various types of asymptotic geomet-
ric conditions. Our scope here is rather different: while our setting is also non-compact,
we aim at constructing variational objects which are themselves non-compact and for which
the relevant functional (in our case: the energy functional) attains infinite value, thereby
providing an obstacle of new and peculiar nature. In fact, the next step in our programme is
precisely the extension of the methods presented here in the special case of geodesics to the
construction of complete (non-compact) minimal hypersurfaces in suitable classes of non-
compact Riemannian manifolds.

Acknowledgments. This project was partly developed while both authors where at Harvard
University as visiting scholars at the Center of Mathematical Sciences and Applications
on invitation by Shing-Tung Yau: the warm hospitality and excellent working conditions
provided by these institutions are gratefully acknowledged. The first-named author would
like to thank Richard Schoen for a number of enlightening conversations on themes related
to min-max constructions in non-compact manifolds. This article was prepared while he
was an ETH-ITS fellow. The second-named author acknowledges the support of the Swiss
National Foundation, through grant SNF 159403.

2. Setting and recollections

2.1. Cones and their geodesics. Let us consider on R2 \ {0} the local parametrizations
obtained by restrictions of the smooth covering map F : (0,∞)× S1 → R2 \ {0} defined by

F (r, ϕ) = (r cosϕ, r sinϕ).
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For α ∈ (0, π/2] we consider on R2 \ {0} the incomplete Riemannian metric

gα = dr ⊗ dr + r2 sin2(α)dϕ⊗ dϕ

and we let Cα denote the corresponding Riemannian manifold (R2 \ {0} , gα). We shall also
consider the (metric) closure Cα, a complete (singular) cone of opening angle2 α. We let d
denote the (path)-distance on Cα and v ∈ Cα \ Cα the vertex of the cone

In order to perform our min-max conctruction, we need to recall a few facts, whose proofs
are straightforward consequences of the characterization of geodesics in flat R2.

Definition 3. We will say that two points p, q ∈ Cα are antipodal if in the coordinate charts
above one has r(p) = r(q) and |ϕ(p)− ϕ(q)| = π.

Lemma 4. In the setting above, when α ∈ (0, π/2) for every couple of antipodal points
p, q (set r := r(p) = r(q)) there are exactly two smooth, distinct geodesics connecting them
(whose length equals 2r sin

(
π
2

sinα
)
) and one singular geodesic (whose length equals 2r). In

particular
d(p, q) = 2d(p, v) sin

(π
2

sinα
)

= 2d(q, v) sin
(π

2
sinα

)
.

We shall also remind the reader of the following important consequence of the Clairaut
equation expressing the conservation of angular momentum for geodesics on surfaces of
revolution.

Lemma 5. A (smooth) geodesic on Cα that intersects every neighborhood of the vertex
v ∈ Cα \ Cα must be radial. In other words, if a geodesic path γ : (0, 1)→ Cα, parametrized
by arc-length, satisfies −1 < gα(γ̇, ∂r) < 1 at some point, then there exists d0 > 0 such that
γ(0, 1), the support of γ, is disjoint from the metric ball Bd0(v) on Cα.

For a fixed couple of antipodal points at unit distance from the vertex (namely: d = 1) we
shall denote by Γ′,Γ′′ the geometric support of the two smooth connecting geodesics and by
Γ′′′ the geometric support of the singular geodesic passing through the vertex of the cone.

Remark 6. Let l be a linear ray in Cα, that is to say a subset of the form {ϕ = ϕ} for
some fixed ϕ ∈ S1. One can then consider on Cα \ {l} the standard planar polar coordinates
(ρ, ϑ) ∈ (0,∞) × (0, 2π sinα) which are obtained by unfolding Cα \ {l} on a (flat) plane.
In particular, the associated map G : (0,∞) × (0, 2π sinα) → Cα is in fact an isometry.
Furthermore, we can identify the whole Cα with the Euclidean wedge (0,∞) × [0, 2π sinα]
after pointwise identifying the two edges.

2.2. Asymptotically Conical Surfaces.

Definition 7. A complete (non-compact) surface (S, g) is called asymptotically conical if
there exists a compact set Z ⊂ S, and a diffeomorphism Φ : S \ Z → R2 \ {0} such that
(endowed R2 \ {0} with coordinates (r, ϕ) as above)

(Φ−1)∗g = (1 + err(r, ϕ)) dr ⊗ dr + (1 + eϕϕ(r, ϕ)) r2 sin2(α)dϕ⊗ dϕ+ 2erϕ(r, ϕ)rdr ⊗ dϕ

2In order to avoid ambiguities, let us remark that α is the angle between the axis and the generatrix of
the cone Cα when this is isometrically embedded in R3 in the standard fashion.
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for a symmetric (0, 2)-tensor e satisfying

err(r, ϕ) = O2(r−µ), eϕϕ(r, ϕ) = O2(r−µ), erϕ(r, ϕ) = O2(r−µ)

as we let r →∞. We call α ∈ (0, π/2] the asymptotic angle and µ > 0 the asymptotic decay
rate of the surface (S, g).

Remark 8. When writing e(r, ϕ) = O2(r−µ) we mean that

∂βe(r, ϕ) = O(r−µ−|β|r), r →∞

for any multi-index β such that 0 ≤ |β| ≤ 2 and for |β|r equal to the number of differentiations
in the variable r.

Definition 9. In the setting of the above definition we will call the couple (r, ϕ) asymptot-
ically conical coordinates for (S, g). Fixed such a structure at infinity, we shall say that two
points p, q ∈ S \ Z are antipodal if there exist (r0, ϕ0) such that

(r, ϕ)(p) = (r0, ϕ0) and (r, ϕ)(q) = (r0, ϕ0 + π).

Remark 10. in Section 5, it will be convenient to work with wedge coordinates for an
asymptotically conical surface (S, g). These are defined in analogy with Remark 6 and are
uniquely determined, once a structure at infinity (r, ϕ) is assigned, by means of the equations
ρ = r, ϑ = ϕ/ sinα.

The following assertion is a straightforward consequence of Definition 7.

Lemma 11. Given an asymptotically conical surface (S, g) of asymptotic angle α and fixed
a structure at infinity (r, ϕ) we consider for a positive parameter λ the rescaled metric

g(λ)(r, ϕ) = λ−2Dil∗λg (r, ϕ)

where Dilλ : R2 \ {0} → R2 \ {0} is the diffeomorphism defined by Dilλ(r, φ) = (λr, φ).
Then: given any sequence {λn} such that λn ↑ ∞ the sequence of Riemannian manifolds(
R2 \ {0} , g(λn)

)
converges (locally uniformly in the C2-topology) to the cone Cα.

This lemma characterizes the blow-down limits of minimizing geodesics connecting an-
tipodal points on asymptotically conical surfaces. The relevant notion of convergence is
presented in Appendix A: note that, although such notion of convergence allows for multi-
plicities higher than one in the limit, in our particular case the latter phenomenon is ruled
out by Lemma 28.

Lemma 12. (Notations as above). Let (S, g) be an asymptotically conical surface of asymp-
totic angle α ∈ (0, π/2).

(1) For any couple of antipodal points p, q ∈ S \ Z there exists a length-minimizing
geodesic Γ connecting them.

(2) Given a sequence of antipodal points p(k), q(k) with rk := r
(
p(k)
)

= r
(
q(k)
)
and de-

noted by Γk the support of a length-minimizing geodesic connecting them, then {Γk}
converges geometrically to either Γ′ or Γ′′ as we rescale by the sequence {rk}. As a
result, the sequence of lengths of rescaled Γk converges to 2 sin

(
π
2

sinα
)
.
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Proof. For what concerns the first part, let us start by observing that there exists a connecting
path of length equal half of the circle of coordinate equation r = r(p) = r(q) as we let the
variable ϕ vary in an interval of size π: thus such path has length bounded from above by
a fixed constant C > 1 (depending on the part e of the metric g) times πr sinα. It follows
that any sequence of paths connecting p to q and minimizing length has to be contained
inside the coordinate ball of radius 2Cπr. Hence direct methods ensure the existence of
such a minimizer. Furthermore, let us explicitly notice that a trivial length comparison
argument ensures that the support of Γ must be disjoint from the coordinate ball of radius
rin =

(
1− δ sin

(
π
2

sinα
))
r, at least for r large enough, for δ > 1 chosen once and for all so

that
(
1− δ sin

(
π
2

sinα
))
> 0.

For the second part: as we rescale and take the limit, thanks to the last remark, a standard
variation3 of Lemma 28 ensures that the sequence {Γk} will geometrically subconverge to
a geodesic on Cα hence (by virtue of Lemma 4) either to Γ′ or to Γ′′, which completes the
proof. �

2.3. Positive Mass Theorem in 2+1 gravity. As anticipated in the Introduction, it is
customary in 2 + 1 gravity to call mass of an asymptotically conical4 surface (S, g) the angle
defect for parallel transport around the limit cone to which (S, g) asymptotes at infinity,
namely we shall set

m = 2π(1− sinα).

if α is the asymptotic angle of (S, g) in the sense of Definition 7. This can be fully justified
in the context of the Hamiltonian formulation of General Relativity in 2 + 1-dimensions,
following the same conceptual scheme described by Arnowitt-Deser-Misner [ADM59] when
dealing with at least three spatial dimensions (see [Bar86] for a mathematical discussion of
the well-posedness of this notion). We refer the reader to chapter 1 of the lectures by P.
Chruściel [Chr10] for a modern, broad treatment of these topics. In that context, we remind
the reader that the assumption that the scalar curvature be non-negative is nothing but the
aforementioned dominant energy condition (see e. g. [Wal84]).

Theorem 13. Let (S, g) be an asymptotically conical surface of non-negative scalar curva-
ture. Then S is diffeomorphic to R2 and, furthermore, m = 0 if and only if (S, g) is isometric
to the Euclidean plane.

We present the (easy) proof of this result both for the sake of completeness and due to
the absence (to our knowledge) of a standard reference. Yet, we shall remark that the first
assertion follows at once from Theorem 1 in [CG72] (such assertion for surfaces being in fact
due to S. Cohn-Vossen).

Proof. For a given, large r0 we let Dr0 be the bounded domain whose boundary is given by
the circle r = r0 in our usual coordinate notation. The Gauss-Bonnet theorem, applied to

3For the sake of clarity, we stated the convergence results in Appendix A with respect to a fixed backrgound
metric, but the same conclusion does hold true if the manifold N is endowed with a sequence {gk} of
Riemannian metrics that are smoothly converging, uniformly on compact sets of the ambient manifold.

4Notice that we could legitimately call this class of spaces asymptotically flat, coherently with the higher-
dimensional terminology.
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Dr0 reads ∫
Dr0

Kg +

∫
∂Dr0

κg = 2πχ(Dr0)

where χ(Dr0) stands for the Euler characteristic of the domain in question. Now, it is
straightforward to check that our decay assumptions on the metric g imply∫

∂Dr0

κg = 2π sin(α)(1 + o(1))

which is strictly positive for r0 large enough (since by definition α ∈ (0, π/2]). Hence, due
to the fact that of course

∫
Dr0

Kg ≥ 0 we deduce that χ(Dr0) = 1 for all sufficiently large
r0 and thus S is diffeomorphic to a plane. Concerning the second assertion: if m = 0 then
letting r0 → 0 in the equation above implies that for any given (large) r0∫

Dr0

Kg = 0

and thusKg ≥ 0 forces the Gauss curvature of (S, g) to vanish at every point. The conclusion
follows at once. �

The theorem above ensures that, whenever assuming non-negative scalar curvature, the
(a priori restrictive) assumption α < π/2 only rules out Euclidean R2, in which case the
conclusion of our main theorem is trivial. Also, notice that for α 6= π/2 the conclusions of
Lemma 12 apply, which will turn to be extremely relevant for the arguments we are about
to present.

3. Min-max embedded geodesic segments

As anticipated in the Introduction, we shall present here a general existence theorem for
min-max embedded geodesic segments. To state our results, we need to introduce some
notation.

Throughout this section, we let (N, g) be a complete Riemannian manifold of dimension
two, without boundary. Given two points p, q with p 6= q we assume the existence of two
embedded geodesics connecting them: let us denote by γ1 : [0, 1]→ N (resp. γ2 : [0, 1]→ N)
a parametrization of the first (resp. the second) of them by a constant multiple of the
corresponding arc-length paramater. We further assume that the closed domain Ω bounded
by Γ1 := spt(γ1) and Γ2 := spt(γ2) is C1-diffeomorphic to the upper half-disk in R2 ' C:
namely there is a map Φ : D+ → Ω which is a diffeomorphism of class C1 (the regularity of
the map being understood in the sense of restriction of a C1 map on open neighborhoods of
D+ and Ω) for D+ = {z ∈ C||z| ≤ 1, Im(z) ≥ 0}. Let then

X :=
{
γ ∈ W 1,2([0, 1], N) | γ(0) = p, γ(1) = q

}
and

Σ := {H ∈ C([0, 1], X) | H(0) = γ1, H(1) = γ2} .
The previous assumption concerning the region Ω ensures that the class Σ is not empty.
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Thus, we shall introduce the min-max value

Λ := min
H∈Σ

max
s∈[0,1]

E(H(s))

where for an element γ ∈ X

E(γ) =

∫ 1

0

g(γ̇(t), γ̇(t)) dt

is the standard energy functional on curves (see Appendix A for further details and a rec-
ollection of some basic facts). In the setting above, we let Crit(E) ⊂ X denote the set
of critical points for E (geodesics parametrized by a constant multiple of the arc-length).
Throughout this section we set I = [0, 1].

Proposition 14. Let (N, g) be a complete Riemannian manifold of dimension two, without
boundary, and for given distinct points p, q assume that there exist two embedded geodesics
γ1, γ2 : I → N bounding a half-disk-type region (in the sense explained above), and such that
the mountain-pass condition

Λ > max {E(γ1), E(γ2)}
holds. Then there exists a parametrized embedded geodesic γ3 : I → N , whose support does
not coincide with that of γ1 or γ2 and whose energy equals the value Λ. Furthermore, γ3 has
Morse index less or equal than one (as a critical point of the energy functional).

This result would be standard if we removed the word embedded from the conclusion of
our statement. Instead, the requirement that the third geodesic segment that we produce
has no self-intersections imposes some non-trivial work, for which we shall mostly rely on
the methods recently introduced in [CL14]. Proposition 14 will in fact easily follow given
the two ancillary lemmata that we are about to state.

Following standard terminology in min-max theory (see e. g. [CD03]) we shall remind the
reader that a sequence {Hn} ⊂ Seq(Σ) is called minimizing if

sup
s∈[0,1]

E(Hn(s))→ Λ, as n→∞

and that, in such case, a sequence {γn} ⊂ Seq(X) for γn := Hn(sn) is called min-max if

E(γn)→ Λ, as n→∞.
The first result is fairly basic and ensures that given a minimizing sequence one can

always extract an associated min-max sequence converging (in X and hence smoothly) to
a stationary point (in other words: that there exists a stationary element among its limit
points).

Lemma 15. (Setting as above). Given a minimizing sequence {Hn} ⊂ Seq(X), there exist
an associated min-max sequence {Hn(sn)} and γ∞ ∈ Crit(E) ⊂ X such that Hn(sn) → γ∞
in X.

Of course, we remark that the claim that every min-max sequence should converge to
an element in Crit(E) is patently false, as is discussed in [Pit81] and [CD03]. To over-
come such issue, one needs to perform a pull-tight procedure, which is then needed when
discussing the regularity of min-max minimal surfaces. That step is not really necessary here.
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Roughly speaking, we can identify the tangent space of X at γ with the space of W 1,2

sections of the tangent bundle of N restricted to (the support of) γ and vanishing at the
endpoints:

TγX =
{
V ∈ W 1,2([0, 1], TN) | π(V (t)) = γ(t) ∀t ∈ [0, 1], V (0) = V (1) = 0

}
where π : TN → N is the standard projection of the tangent bundle onto its base manifold.
Notice also that we can then naturally endow X with the structure of Riemannian Hilbert
(X, gX) manifold by simply setting

gX : TγX × TγX → R, gX(V1, V2) =

∫ 1

0

(
g(V1, V2) + g(V̇1, V̇2)

)
.

We refer the reader to Chapter 1 of [Kli78] for an ample discussion and contextualization of
these notions5. We can now proceed with the proof of Lemma 15.

Proof. Let us start by describing the basic idea behind the argument we are about to present.
Arguing by contradiction, we shall see that if a minimizing sequence did not have the property
above (namely: if all converging min-max sequences clustered to non-stationary points) then
one could indeed perform an unobstructed deformation of the minimizing sequence {Hn}
thereby obtaining a new sequence

{
Hn

}
⊂ Seq(Σ) for which

lim sup
n→∞

sup
s∈[0,1]

E(Hn(s)) < Λ

that is impossible, by the very definition of Λ as min-max value. In the one-dimensional
setting we are dealing with, the aforementioned deformation is performed by means of the
so-called H1-gradient flow (in fact: steepest descent flow) for the functional E on X.

Let us preliminarily observe that, under the contradiction assumption above, we can as-
sume (without loss of generality) that for any min-max sequence {Hn(sn)} ⊂ Seq(X)

lim inf
n→∞

||∇E(Hn(sn))||X = δ > 0

for, if not, a straightforward application of the Palais-Smale compactness theorem would
yield sub-convergence of such sequence to a stationary critical point of E. That being said,
fix any τ ∗ > 0 and consider for each γ ∈ X the τ ∗-image γ̃ of γ under the gradient flow of E
(with respect to the Riemannian structure defined above), namely we set γ̃ = Φτ∗(γ) where
Φτ is the flow associated to the ODE{

d
dτ
γτ = −∇E(γτ )

γ(0) = γ

and ∇E is defined by the equation gX(∇E(γ), V ) = dE(γ)[V ] to hold for all V ∈ TγX

(it is of course easily checked that dE(γ)[V ] = 2
∫
γ
g(γ̇, V̇ )). In particular, it is convenient

for any n ≥ 1 to set H̃n(s) = Φτ∗(Hn(s)) and thus consider {H̃n} ⊂ Seq(Σ) which is still
(patently) a minimizing sequence due to the monotonicity of the flow in question. Hence,

5While [Kli78] is mostly focused on the case of closed geodesics, modifying the basic definitions and
constructions to deal with the case of curves with fixed endpoints only requires minimal effort.
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for any n ≥ 1 pick s̃n ∈ arg maxE(H̃n(s)) and consider the associated sequence of (pre-flow)
curves {Hn(s̃n)} ⊂ Seq(X). It follows that it must be

lim inf
n→∞

E(Hn(s̃n)) = Λ

for otherwise
Λ = lim inf

n→∞
E(H̃n(s̃n)) ≤ lim inf

n→∞
E(Hn(s̃n)) < Λ

which is impossible. This is to say that {Hn(s̃n)} ⊂ Seq(X) is itself a min-max se-
quence. Also, the preliminary remark specifies to such sequence to ensure that indeed
lim infn→∞ ||∇E(Hn(s̃n))||X = δ for some number δ > 0. Pick then an intermediate threshold
δ′ ∈ (0, δ) and set

τn := inf {τ ∈ (0, τ ∗] | ||∇E(Φτ (Hn(s̃n)))||X < δ′} .

The following dichotomy holds: either we can extract a subsequence of indices {nk} such
that {τnk

} has a positive bound τ∗ ∈ (0, τ ∗) (in which case it is immediately checked that
lim infk→∞E(H̃nk

(s̃nk
)) ≤ Λ − δ′τ∗, which is impossible, as we have already observed) or

instead such condition is violated for all δ′ > 0 and thus we can find
(1) a sequence {δk} with δk ↘ 0;
(2) a sequence {nk} with nk ↗∞;
(3) a sequence {τnk

} with τnk
↘ 0;

such that
‖∇E(Φτnk

(Hnk
(s̃nk

)))||X < δk.

But, if this were the case, again by Palais-Smale the min-max sequence
{

Φτnk
(Hnk

(s̃nk
))
}

would subconverge to a stationary point of E on X, say γ̃∞. Recall next the following
elementary estimate for solutions γs of the gradient flow of E:

dX(γτ , γτ0) ≤
∫ τ

τ0

‖ d
ds
γs‖X ds =

∫ τ

τ0

‖∇E(γs)‖X ds ≤
(∫ τ

τ0

‖∇E(γs)‖2
X ds

)1/2

|τ − τ0|1/2

where dX(·, ·) : X×X → R denotes the (Riemannian) path-distance in the Hilbert manifold
X. We apply it with τ0 = 0 and τ = τnk

to bound the distance between Hnk
(s̃nk

) and
Φτnk

(Hnk
(s̃nk

)). Since∫ τnk

0

‖∇E (Φτ (Hnk
(s̃nk

))) ‖2
X dτ = E(Hnk

(s̃nk
))− E(Φτnk

(Hnk
(s̃nk

))) ≤ E(Hnk
(s̃nk

))

is uniformly bounded in k and τnk
↓ 0, we conclude that {Hnk

(s̃nk
)} and

{
Φτnk

(Hnk
(s̃nk

))
}

have the same limit, namely the stationary point γ̃∞. Once again, this contradicts our initial
assumption and thereby our proof is complete. �

Now, before describing the resolution of singularities procedure we need to reduce to
generic homotopies, in the sense made precise by this statement.

Lemma 16. Given ε > 0 the following holds: for every H ∈ Σ there exists H̃ ∈ Σ, in fact
H̃ ∈ C∞([0, 1]× [0, 1];N), such that all of these assertions are true:

(1) ∀ s ∈ [0, 1] one has ‖H(s)− H̃(s)‖X < ε;
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(2) there are finitely many singular times s1 < s2 < . . . < sk−1 < sk and if s ∈ [0, 1] \
∪ki=1 {si} the map H̃(s) is an immersion with only transverse self-intersections and
no triple points;

(3) for s = si the singular events correspond to one of the standard three Reidemeister
moves and, furthermore, singular events do not happen concurrently;

(4) there exist δ > 0 such that ∀s ∈ [0, 1] the curve H̃(s) has no self-intersections in
Bδ(p) tBδ(q).

Proof. First of all, let us see why (4) is indeed a generic condition: in other words, given
ε > 0 and H ∈ Σ as per the statement above, let us show that we can find H̃ ∈ Σ so that
both (1) and (4) are satisfied. This is intuitevely clear, but let us discuss it for the sake of
completeness. For our fixed p ∈ N (the argument will then be applied to the point q as well)
consider

Q(2) = {(t1, t2) ∈ [0, 1]× [0, 1] | t1 6= t2}
as well as the twofold 0-jet bundle

J0
2 ([0, 1], N) = Q(2) ×N2

and its subset Nd = {(t1, t2, p, p)} ⊂ J0
2 ([0, 1], N). Let us observe that Nd is a 2-dimensional

closed submanifold in J0
2 which, in turn, is a smooth (open) manifold of dimension 6. Given

s ∈ [0, 1] one has the induced map j0
2H(s) : Q(2) → J0

2 ([0, 1], N) defined by the equation

j0
2H(s)(t1, t2) = (t1, t2, H(s)(t1), H(s)(t2))

so that clearly
H(s)(t1) = H(s)(t2) = p ⇐⇒ j0

2H(s)(t1, t2) ∈ Nd.

Hence, one can observe that for a generic homotopy H the map

f : [0, 1]×Q(2) → J0
2 ([0, 1], N), f(s, t1, t2) = j0

2H(s)(t1, t2)

will intersect the submanifold Nd transversely which implies (by dimensional counting) that
the intersection f t Nd in question will in fact be empty. Thus, we can find H̃ ∈ Σ which
is ε-close to H and in a way that self-intersections do not happen at p or q so that, by
compactness we can indeed find δ > 0 (depending on H and ε) so that all self-intersections
of H̃(s) as s varies in [0, 1] happen outside of the balls of center p (resp. q) and radius 3δ.
At that stage, one can follow verbatim the (analogous) transversality arguments presented
in [CL14], pg. 1083-1084 to ensure that by further perturbing H̃ the other conditions (2)
and (3) can be accomodated as well. �

At this stage, we are ready to use the machinery of [CL14] to obtain the following.

Lemma 17. Given ε > 0 the following holds: for every H̃ ∈ Σ generic homotopy (in the
sense specified by Lemma 16) there exists H ∈ Σ, in fact H ∈ C∞([0, 1] × [0, 1], N), such
that these assertions are true:

(1) ∀ s ∈ [0, 1] one has E(H(s)) ≤ E(H̃(s)) + ε;
(2) the map H is an isotopy, namely ∀ s ∈ [0, 1] the map H(s) is an embedding.

Proof. Given condition (4) of Lemma 16, we know that for a generic homotopy all self-
intersections (and singularities) happen away from Bδ(p) t Bδ(q). Hence, one can perform
a finite chain of Reidemeister moves according to the general algorithm described in [CL14],
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pg. 1088-89, with the only constraint that (while resolving the singularities) no modifications
should be made to the support of the homotopy inside Bδ/2(p) tBδ/2(q). �

We shall then proceed with the proof of Proposition 14.

Proof. Let {Hn} ⊂ Seq(Σ) be a minimizing sequence for the min-max problem defined
above. By applying, one after the other, Lemma 16 and Lemma 17 (taking in both cases
ε = 1/2n when dealing with Hn) we can produce a new sequence

{
Hn

}
⊂ Seq(Σ) which is

also minimizing (for indeed E(Hn(s)) ≤ E(Hn(s)) + 1/n) and consists of isotopies. Now,
Lemma 15 ensures the existence of an associated min-max sequence

{
Hn(sn)

}
⊂ Seq(X)

converging in X to a geodesic γ∞ : I → N attaining energy Λ. Of course, γ∞ may a priori
not be an embedding, but if it had self-intersections those would be transverse (by virtue of
a standard ODE uniqueness argument). However, since in particular the sequence Hn(sn)
does converge to γ∞ uniformly (namely: in C0) if γ∞ had a transverse self-intersection, then
Hn(sn) would not be an embedding for n large enough, and this contradiction completes the
proof for what concerns the existence statement. Lastly, the fact that the geodesic γ3 ∈ X,
regarded as a critical point of the energy functional E(·), has Morse index less or equal than
one is a general fact about one-dimensional mountain-pass schemes. In particular, denote
by A∞ the subset of X consisting of the cluster points of any min-max sequence {Hn(sn)}
and let KΛ be the set of critical points γ of E with E(γ) = Λ. Observe that the argument
above implies that any element of A∞ ∩ KΛ is embedeed. We can then apply Theorem 4
of page 53 in [Gho91] to conclude the existence of at least one element in A∞ ∩KΛ whose
Morse index is at most 1 (with reference to the notation of [Gho91], note that such theorem
can be applied because the group G is in our case the trivial group and the G-invariant set
F is the whole space X; in particular KΛ ∩ F = KΛ is trivially an “isolated critical set in
itself” in the sense of [Gho91]). �

4. The construction of embedded geodesic lines

Given the above preliminaries, we shall prove here a multiplicity theorem for geodesics
with fixed endpoints: given two antipodal points p, q on an asymptotically conical surface
we want to show the existence of (at least) three geometrically distinct embedded geodesics
connecting them. Let us start by reminding the reader that, by virtue of Lemma 12 we
already know the existence of one such geodesic (namely: the absolute length-minimizer)
and the next step we are about to present is the construction of a second one by means of a
localized minimization argument.

Lemma 18. Let (S, g) be an asymptotically conical surface of non-negative scalar curvature
and (in asymptotic coordinates (r, ϕ)) let p, q be a couple of antipodal points. Let us denote
the value of their first coordinate by r0. Then there exists a constant r0 (only depending on
(S, g)) such that for every r0 ≥ r0 there are two distinct, simple geodesics Γ1,Γ2 connecting
p, q, they are disjoint and geometrically converge, under rescaling by a factor r−1

0 respectively
to Γ′,Γ′′ (modulo renaming of the latter ones).

Proof. Let us denote by Γ1 the length-minimizing (hence necessarily simple) geodesic between
p and q, whose existence is guaranteed by Lemma 12. Possibly by renaming, the same result
implies that Γ1 will converge, upon rescaling, to Γ′. In order to construct the second geodesic,
it is convenient to identify the domain covered by our (r, ϕ) charts with (a suitable subset
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of) a planar wedge of angle 2π sinα, namely with the wedge described in polar coordinates
(ρ, ϑ) by the equations 0 < ρ, 0 ≤ ϑ ≤ 2π sinα, with pointwise identification of the two edges
at ϑ = 0, ϑ = 2π sinα (see also Remark 10). In this model, we can then assume that the
points p, q have coordinates given by

ρ(p) = ρ(q) = r0, ϑ(p) =
π

2
sinα, ϑ(q) =

3π

2
sinα

and in turn we let Γ̃2 be identified with the straight segment connecting them (assuming
that Γ′′ is the straight segment gotten from Γ̃2 by rescaling via a factor r0). For δ > 0 small,
to be fixed later, let us consider the ellipse centered at the midpoint m of p, q (that is to say
ρ(m) = r0 cos

(
π
2

sinα
)
, ϑ(m) = π sinα) and axes of length (1 + δ)r0 sin

(
π
2

sinα
)
(parallel

to Γ̃2) and (1 − δ)r0 cos
(
π
2

sinα
)
(orthogonal to Γ̃2 ): such ellipse has positive geodesic

curvature in the flat metric the wedge is endowed with and, since this model is isometric to
the (limit) cone Cα, we can just pick D ⊂ S to be the image of the interior of this ellipse
under the identification map above. The decay assumptions on e (the error terms of the
metric g) ensure that this domain will indeed be mean-convex for r ≥ r0 sufficiently large
and of course we can pick δ > 0 small enough that D does not cover the whole Γ1, but just
small neighborhoods of the common vertices of Γ1 and Γ̃2, cf. Figure 1.
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Γ̃1

Γ1

Γ̃1

Γ1

Γ̃2

Figure 1. The shadowed region is D in the coordinates (ρ, ϑ). The lines Γ̃1

and Γ̃2 rescaled by a factor r0 coincide with Γ′ and Γ′′, respectively.

That being said, standard direct methods ensure the existence of a smooth geodesic Γ2

connecting p to q and having shortest length among those contained in D. Being locally
length-minimizing, Γ2 cannot have self-intersections which means it has to be a simple geo-
desic. By construction (specifically: by the choice of δ) the rescalings of those Γ2 (as we let
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r0 →∞ and rescale by r0) must locally converge to a geodesic of Cα which cannot be either
Γ′ or Γ′′′ and hence must be Γ′′, as we had claimed. Lastly: Γ1 and Γ2 cannot intersect for,
if they did, we could shorten the length of either of them by means of local cut-and-paste
operations, thereby violating their minimizing properties. This completes the proof. �

We can now employ the result obtained in Section 3 to produce a third geodesic segment
connecting any two fixed antipodal points p, q on (S, g). From now onwards, due to the
limit arguments we will have to perform, it is useful to make the dependence on (r0, ϕ0)
explicit for all objects we deal with: in particular we shall write p(r0,ϕ0), q(r0,ϕ0) and denote
by Γ

(r0,ϕ0)
1 , Γ

(r0,ϕ0)
2 the (supports of the) geodesic segments constructed above. Let us further

denote by γ(r0,ϕ0)
1 : [0, 1] → S (resp. γ(r0,ϕ0)

2 : [0, 1] → S) a parametrization of Γ
(r0,ϕ0)
1 (resp.

Γ
(r0,ϕ0)
2 ) by a constant multiple of the corresponding arc-length paramater. Let then the

spaces X(r0, ϕ0),Σ(r0, ϕ0) and the min-max value Λ(r0, ϕ0) be defined as above.
A crucial remark is that, due to the fact that S is diffeomorphic to R2 (by virtue of

Theorem 13) the class Σ(r0, ϕ0) is not empty.

Proposition 19. In the setting described above, we have

lim inf
r0→∞

Λ(r0, ϕ0)

r2
0

≥ 4.

As a result, for every r0 ≥ r0 there exists a third simple geodesic Γ
(r0,ϕ0)
3 connecting p(r0,ϕ0)

to q(r0,ϕ0) whose parametrization γ3 : [0, 1]→ S has constant speed (a constant multiple of the
arc-length parameter) and attains the min-max value Λ(r0, ϕ0), namely γ(r0,ϕ0)

3 ∈ X(r0, ϕ0)
and

E(γ
(r0,ϕ0)
3 ) = Λ(r0, ϕ0).

Furthermore γ(r0,ϕ0)
3 has Morse index less or equal than one for the functional E.

Proof. We need to start by checking that the mountain-pass condition holds, at least when
the antipodal points serving as boundary are far away in the asymptotic region.

Given ε > 0, it follows from Lemma 18 that one can find a possibly larger r0 such that

E
(
γ

(r0,ϕ0)
i

)
r2

0

≤ 4(1 + ε) sin2
(π

2
sinα

)
, i = 1, 2.

for every r0 ≥ r0. On the other hand, we claim that necessarily

Λ(r0, ϕ0)

r2
0

≥ 4(1− ε).

To see this, let us start by observing that due to the embeddingW 1,2([0, 1], S) ↪→ C([0, 1], S)

the set Σ(r0, ϕ0) is included in the class of (continuous) homotopies connecting γ(r0,ϕ0)
1 with

γ
(r0,ϕ0)
2 : given H ∈ Σ we can simply set H̃ : [0, 1] × [0, 1] → S, H̃(s, t) = H(s)(t). Thus,

considered for any fixed large r0 the region Ω = Ω(r0, ϕ0) bounded by Γ1 and Γ2 (which, let
us recall, is homeomorphic to a topological disk), and fixed o ∈ ∩r0≥r0Ω(r0, ϕ0) for anyH ∈ Σ
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one can find a couple (s0, t0) ∈ (0, 1)×(0, 1) such that H(s0, t0) = o. Said γ(r0,ϕ0)
s0 : [0, 1]→ S

the corresponding path (namely: γ(r0,ϕ0)
s0 = H(s0)) we claim that

E(γ
(r0,ϕ0)
s0 )

r2
0

≥ 4(1− ε)

which would of course imply the claim given the fact that H is an arbitrary element in the
class Σ. This is shown as follows: said γ̃(r0,ϕ0) : [0, 1] → S the broken geodesic gotten by
taking a length-minimizing curve connecting p to o concatenated to a length-minimizing
curve connecting o to q we have (by Cauchy-Schwarz)

E(γ
(r0,ϕ0)
s0 )

r2
0

≥ L2(γ
(r0,ϕ0)
s0 )

r2
0

≥ L2(γ̃(r0,ϕ0))

r2
0

≥ 4(1− ε)

where the last inequality follows from the observation that as we rescale by a factor r0 the
support Γ̃ (which must locally converge to a geodesic) can only converge to Γ′′′ by Lemma
5 together with the fact that the choice of o is independent of r0. That being gained, let
us choose once and for all ε > 0 (depending only on (S, g), in fact just on the asymptotic
opening angle α) such that

1− ε
1 + ε

> sin2
(π

2
sinα

)
.

This ensures that the mountain-pass gap condition required by Proposition 14 is satisfied
and so we immediately derive the existence of a critical point γ(r0,ϕ0)

3 ∈ X attaining the
min-max value Λ(r0, ϕ0). Lastly, we notice that γ(r0,ϕ0)

3 being a critical-point of E(·) is also
a critical point of L(·), parametrized by constant speed. It follows from our argument above
that

lim inf
r0→∞

Λ(r0, ϕ0)

r2
0

≥ 4(1− ε)

but of course this applies to any ε as small as we wish, so the last assertion follows at
once. �

In order to rule out concentration phenomena when taking limits of min-max geodesic
segments (as the endpoints drift off to infinity), we need the following lemma, which concerns
the explicit description of effective sweepouts and thereby provides an upper bound on the
min-max value.

Lemma 20. (Setting as above.) For every ϕ0 ∈ S1 one has that the min-max values satisfy

lim sup
r0→+∞

Λ(r0, ϕ0)

r2
0

≤ 4.

Remark 21. For the following proof, it turns out to be more convenient to work with the
coordinates {ρ, ϑ} defined in Remark 10 and to treat (S, g) (minus a compact set) as an
Euclidean wedge of angle 2π sinα with pointwise identification of the two sides.

Proof. Given ε > 0 fix (once and for all) a large scale ρ− such that the metrics g and δ differ
on the domain of (S, g) defined in coordinates by ρ ≥ ρ−/2 for an amount less than ε2 in C2

norm. Consider the two linear segments joining p− to q− (where ρ(p−) = ρ(q−) = ρ− and
ϑ(p−) = π sinα while ϑ(q−) ∈ {0, 2π sinα} since the latter is represented by two points that
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are geometrically identified): such paths can be parametrized by means of the coordinate
equations given by

γ−1 (t) =

(
ρ−

sin
{
π
2

(1− sinα)
}

sin
{
π
2

(1 + (1− 2t) sinα)
} , (1 + t)π sinα

)
and

γ−2 (t) =

(
ρ−

sin
{
π
2

(1− sinα)
}

sin
{
π
2

(1 + (1− 2t) sinα)
} , (1− t)π sinα

)
as can be checked by means of some elementary trigonometry. Furthermore, let H− ∈ Σ
be an homotopy connecting γ−1 to γ−2 (whose existence is a consequence of Theorem 13).
We shall now define an homotopy H connecting γ+

1 to γ+
2 , (parametrizations of) the two

stable geodesics constructed above (see Lemma 18) for endpoints p+, q+ having coordinates
ρ(p+) = ρ(q+) = ρ+ and ϑ(p+) = π sinα while ϑ(q+) ∈ {0, 2π sinα} where ρ+ is a free large
scale, much larger than ρ− (so that we will then take ρ+ → ∞). To that aim, let us recall
that Γ1,Γ2 converge geometrically, when rescaled as explained above, respectively to Γ′,Γ′′

so that (for large ρ+ but uniformly in ϑ) we can find constsnt speed parametrizations of
Γ1,Γ2 (which we shall indeed call γ+

1 , γ
+
2 ) such that

∥∥γ+
i − γ̌+

i

∥∥
X
< ρ+ε

2 for i = 1, 2 where

γ̌+
1 (t) =

(
ρ+

sin
{
π
2

(1− sinα)
}

sin
{
π
2

(1 + (1− 2t) sinα)
} , (1 + t)π sinα

)
and

γ̌+
2 (t) =

(
ρ+

sin
{
π
2

(1− sinα)
}

sin
{
π
2

(1 + (1− 2t) sinα)
} , (1− t)π sinα

)
.

The homotopy H will not belong to the class Σ (due to corner points) but will be then
be approximated by suitable smoothings while keeping length (and energy) under control.
Precisely, we let H : [0, 1]× [0, 1]→ S be defined by

H(s, t) =



(1− 8s)γ+
1 (t) + 8sγ̌+

1 (t) for 0 ≤ s ≤ 1
8

γ
8(s−1/8),down
1 ∗ γ8(s−1/8),tan

1 ∗ γ8(s−1/8),up
1 (t) for 1

8
≤ s ≤ 1

4

γ1,down
1 ∗H−

(
2
(
s− 1

4

)
, t
)
∗ γ1,up

1 (t) for 1
4
≤ s ≤ 3

4

γ
8(s−3/4),down
2 ∗ γ8(s−3/4),tan

2 ∗ γ8(s−3/4),up
2 (t) for 3

4
≤ s ≤ 7

8

8(1− s)γ̌−2 (t) + 8
(
s− 7

8

)
γ+

2 (t) for 7
8
≤ s ≤ 1

where ∗ denotes the standard concatenation of paths, and we have set (once again in coor-
dinates {ρ, ϑ})

γs,down1 (t) = (t((1− s)ρ+ + sρ−) + (1− t)ρ+, π sinα) ,

γs,down2 (t) = (t((1− s)ρ+ + sρ−) + (1− t)ρ+, π sinα) ,

γs,up1 (t) = ((1− t) ((1− s) ρ+ + sρ−) + tρ+, 2π sinα) ,
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γs,up2 (t) = ((1− t) ((1− s) ρ+ + sρ−) + tρ+, 0)

and

γs,tan1 (t) =

(
((1− s)ρ+ + sρ−)

sin
{
π
2

(1− sinα)
}

sin
{
π
2

(1 + (1− 2t) sinα)
} , (1 + t)π sinα

)

γs,tan2 (t) =

(
((1− s)ρ+ + sρ−)

sin
{
π
2

(1− sinα)
}

sin
{
π
2

(1 + (1− 2t) sinα)
} , (1− t)π sinα

)
.

For the reader’s convenience Figure 2 gives a brief description of the five stages of the
homotopy in the (ρ, ϑ) coordinates.

q

q

p

γ+1

ρ = ρ+

γ̌+1

q

γ−1

γs,up1

γs,tan1

q

p
γs,down1γ−2

Figure 2. On the left, for 0 ≤ s ≤ 1
8
the homotopy H is a linear interpolation

of the two curves γ+
1 and γ̌+

1 . On the right, the thick piecewise linear line is
H(s, ·) for some (intermediate) s ∈ [1

8
, 1

4
]. At s = 1

4
γ1,tan

1 coincides with γ−1 .
For s ∈ [1

4
, 3

4
] the homotopy keeps γ1,down

1 and γ1,up
1 fixed and “swaps” gradually

γ−1 with γ−2 . The fourth and fifth phases of the homotopy are then analogous,
respectively, to the second and first.

Now, straight from the definitions one has, for ε small enough, the trivial length estimates6

L(H(s, ·)) ≤


2(1 + ε)ρ+ sin

(
π
2

sinα
)

for s ∈
[
0, 1

8

]
t
[

7
8
, 1
]

2(1 + ε)
(
(ρ+ − ρs) + ρs sin

(
π
2

sinα
))

for s ∈
[

1
8
, 1

4

]
t
[

3
4
, 7

8

]
2(1 + ε)(ρ+ − ρ−) + C for s ∈

[
1
4
, 3

4

]
where ρs stands for (1 − s)ρ+ + sρ− evaluated at 8(s − 1/8) (respectively at 8(s − 3/4)) if
1/8 ≤ s ≤ 1/4 (respectively 3/4 ≤ s ≤ 7/8), and C is a constant which does not depend
on ρ+. It follows that similar length estimates hold true for a suitable smoothing H̃ of H
possibly with a marginally worse multiplicative constant (say with 1 + 2ε in lieu of 1 + ε)

6While the curves H(s, ·) are not always C1 we still have a natural notion of length, gotten by means of
piecewise linear approximations, which coincides with the usual one presented for C1 curves.
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and hence (by assuming, without loss of generality, constant speed parametrizations for the
curves H̃(s, ·), s ∈ [0, 1]) one can conclude

ρ−2
+ max

s∈[0,1]
E (H (s, ·)) ≤ 4(1 + ε)2 + ρ−2

+ C

so that letting ρ+ →∞ one obtains (getting back to the notation of the statement)

lim sup
r0→∞

Λ(r0, ϕ0)

r2
0

≤ 4(1 + ε)2

and the arbitrariness of ε allows to complete the proof.
�

We can now proceed with the proof of the following statement, ensuring the convergence
of the sequences of solutions to the fixed-endpoints min-max problem studied above.

Proposition 22. Let (S, g) be an asymptotically conical surface of non-negative scalar cur-
vature and, given a sequence {rk} with rk ↗ +∞, let p(rk,ϕ0), q(rk,ϕ0) be a couple of antipodal
points such that

p(rk,ϕ0) = q(rk,ϕ0) = rk, ϕ(p(rk,ϕ0)) = ϕ(q(rk,ϕ0))− π = ϕ0.

Then, possibly extracting a subsequence, the geodesic segments Γ
(rk,ϕ0)
3 connecting p(rk,ϕ0) to

q(rk,ϕ0) converge to a properly embedded geodesic line Γ
(ϕ0)
∞ of Morse index less or equal than

one. If (S, g) has positive scalar curvature, then equality holds.

Proof. Said (S, g) the asymptotically conical surface in question, let Cα be the corresponding
asymptotic cone: by Theorem 13 we can assume, without loss of generality, that α < π/2
(otherwise the surface is flat R2 and the conclusion is trivial). Hence, let us fix a chart at
infinity and let (r, ϕ) be the corresponding asymptotic coordinates, as described in Subsection
2.2. For antipodal points p(rk,ϕ0), q(rk,ϕ0) as in the statement above, let γ(rk,ϕ0)

i : [0, 1] → S
be constant speed parametrizations of the three gedesic constructed above (as per Lemma
18 and Proposition 19).

Key claim 1: there exists an open, bounded set U ⊂ S such that U ∩ Γ
(rk,ϕ0)
3 6= ∅ for a

sequence of sufficiently large values of k.

Once this is proven the first conclusion of Proposition 22 is straightforward, for the fam-
ily of geodsics Γ

(rk,ϕ0)
3 for rk ≥ r0, having (patently) local curvature estimates and length

estimates (for the latter see the argument below, Key Claim 2), will converge to some
embedded geodesic line Γ

(ϕ0)
∞ by Lemma 27.

Therefore, we need to prove Key Claim 1. Arguing by contradiction, suppose it were false.
That is to say, set for rk ≥ r0

r̃k = sup
{
r > 0| Br(o) ∩ Γ

(rk,ϕ0)
i = ∅ for i = 1, 2, 3

}
and assume that

sup
k≥1

r̃k = +∞.
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(Here o is the reference point defined in the previous proof). It follows that given any value r̃
for k large enough either the closed region bounded by Γ

(rk,ϕ0)
1 ,Γ

(rk,ϕ0)
3 is disjoint from Br̃(o)

or the closed region bounded by Γ
(rk,ϕ0)
2 ,Γ

(rk,ϕ0)
3 is disjoint from Br̃(o). The argument is in

fact identical in the two cases, so let us assume for the sake of definiteness to have to deal
with the first one. Notice that we are not claiming that Γ

(rk,ϕ0)
1 and Γ

(rk,ϕ0)
3 only intersect

at the endpoints, so that in particular the interior Ḋk of the region Dk in question could
consist of multiple connected components: in order to introduce a convenient notation let
us set Ḋk = tdi=0Ḋ

k
i for some d ≥ 0 (this is well-defined for ODE uniqueness ensures that

two distinct geodesics can only meet transversely, and at finitely many points). Let us first
consider the case d = 0: applying the Gauss-Bonnet theorem to the domain Dk gives∫

Dk

Kg + νext
p(rk,ϕ0)

+ νext
q(rk,ϕ0)

= 2π

where νext
p(rk,ϕ0)

(resp. νext
q(rk,ϕ0)

) is the exterior angle between γ̇1 and γ̇3 at p(rk,ϕ0) (resp. at
q(rk,ϕ0)). The decay assumption on the metric implies that |Kg|(r, ϕ) ≤ Cr−2−γ (where γ > 0
is the asymptotic decay rate of (S, g) as per Definition 7) and thus necessarily

lim
k→∞

∫
Dk

Kg = 0

because ∫
Dk

|Kg| ≤ C

∫ rk

r̃k

r−2−γr dr ≤ C

∫ +∞

r̃k

r−2−γr dr = (1 + γ)Cr̃−1−γ
k

and thanks to the fact that r̃k → +∞ as one lets k →∞, as remarked above.
Hence we deduce that

lim
r0→∞

νext
p(rk,ϕ0)

+ νext
q(rk,ϕ0)

= 2π

and since patently νext
p(rk,ϕ0)

, νext
q(rk,ϕ0)

∈ [0, π] we conclude that in fact

lim
k→∞

νext
p(rk,ϕ0)

= lim
k→∞

νext
q(rk,ϕ0)

= π.

This equation implies that when we rescale by a factor rk (and let k → ∞), the geodesic
Γ

(rk,ϕ0)
3 must subsequentially converge to Γ′ (recall that this operation is conformal). On

the other hand, we know (from the proof of Proposition 19 where we constructed γ(rk,ϕ0)
3 as

geodesic attaining the min-max value) that

lim inf
k→∞

L(γ
(rk,ϕ0)
3 )

rk
≥ 2

which is only possible if Γ
(rk,ϕ0)
3 converged locally to the radial geodesic Γ′′′. These two facts

determine the contradiction which completes the proof.

The general case d ≥ 1 follows along similar lines: if we let mk
1,m

k
2, . . . ,m

k
d be the points

of (transverse) interior intersection of Γ
(rk,ϕ0)
1 and Γ

(rk,ϕ0)
3 , as we move from p(rk,ϕ0) to q(rk,ϕ0),
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applying Gauss-Bonnet to the domain Dk
i gives

∫
Di

Kg =


2π − νext

p(rk,ϕ0)
− νext

mk
1

if i = 0

2π − νext
mk

i
− νext

mk
i+1

if i = 1, . . . , d− 1

2π − νext
mk

d
− νext

q(rk,ϕ0)
if i = d.

so that, adding these equation we get to∫
D

Kg = 2π(d+ 1)− 2
d∑
i=1

νextmk
i
− νext

p(rk,ϕ0)
− νext

q(rk,ϕ0)
.

Arguing as above, we know that the integral on the left-hand side must converge to zero
as we let r0 → ∞ and hence, once again each of the angles on the right-hand side must
converge to π as we let k →∞. In particular, this will force Γ

(rk,ϕ0)
3 to subconverge to Γ′ as

we rescale by rk, which violates the gap condition above.

Such claim being proven, we need to gain local length estimates for the sequence of
geodesics Γ

(rk,ϕ0)
3 .

Key claim 2: for every v ∈ S there exists a metric ball Bδ(v) and a constant C > 0 such
that H 1(Γ

(rk,ϕ0)
3 ∩Bδ(v)) ≤ C for all k ≥ 1.

If the claim were false, we would have concentration of length in some bounded region of
S. In particular, we could find (without loss of generality):

(1) a geodesic segment Γ and a tubular neighborhood thereof having the form Γ×(−δ, δ);
(2) a set of Fermi coordinates {x} on such tubular neighborhood (so that Γ is defined by
−η < x1 < η, x2 = 0);

(3) for a subsequence of large radii rk (at least) two smooth functions fk1 , fk2 : (−η, η)→
(−δ, δ) such that fk1 < fk2 and graph(fk1 )∪ graph(fk2 ) ⊂ Γ

(rk,ϕ0)
3 , furthermore both fk1

and fk2 converge smoothly to zero as we let k →∞.
In such case consider the compact region Ωk bounded by a short geodesic segment connecting
(almost orthogonally) fk1 (0) with fk2 (0) together with a segment of Γ

(rk,ϕ0)
3 , see Figure 3. By

the Gauss-Bonnet Theorem we then must have

lim
k→∞

∫
Ωk

Kg = π .

Next, since the rescalings of Γ
(rk,ϕ0)
3 by a factor rk are converging to Γ′′′ (the convergence

being smooth and uniform in the coordinate annulus of radii 1/3 and 1), we conclude that
Γ

(rk,ϕ0)
3 meets the circle {r = 1

2
rk} at two almost antipodal points at almost square (exterior)

angles ν ′k, ν
′′

k , cf. again Figure 3. Let Σ+
k ,Σ

−
k be the two resulting connected components of

{r = rk/2} we easily conclude that

lim
k→∞

∫
Σ+

k

κg = lim
k→∞

∫
Σ−k

κg = π sinα
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as well as

lim
k→∞

ν
′

k = lim
k→∞

ν
′′

k =
π

2
.

Thus, applying the Gauss-Bonnet theorem to the two regions Ω+
k ,Ω

−
k bounded by Σ+ (resp.

Σ−k ) together with Γ
(rk,ϕ0)
3 we get at once

lim
k→∞

∫
Ω+

k

Kg = lim
k→∞

∫
Ω−k

Kg = π(1− sinα).

Ω+
k

Ω−k
Ωk

Σ+
k

Figure 3. The regions Ω±k and Ωk. The thick line represents the geodesic Γ
(rk,ϕ0)
3 .

But on the other hand, the region Ωk is contained in either Ω+
k or Ω−k , which leads to a

contradiction because Kg is non-negative. Thus we conclude that the local concentration of
min-max geodesics cannot occur.

Lastly, let us discuss the index of the properly embedded geodesic Γ∞. Now, it is a
direct, straightforward check that in fact γ(r0,ϕ0)

3 has also index less or equal than one as
a critical point of the length functional L(·) (for if not we could reparametrize two W 1,2-
orthogonal variations that decrease the length into variations by constant speed in which
category E = L2 and so those would be two orthogonal variatons that decrease the energy,
contradiction). Hence, Γ

(ϕ0)
∞ does also have Morse index less or equal than one due to locally

graphical, smooth (geometric) convergence of Γ
(r0,ϕ0)
3 to Γ

(ϕ0)
∞ with multiplicity one.

Let us finally concern ourselves with the rigidity part of our theorem. If γ(ϕ0)
∞ : R→ S, an

arclength parametrization for Γ
(ϕ0)
∞ , had index zero then the stability inequality for geodesics∫ +∞

−∞
|u̇(t)|2 dt ≥

∫ +∞

−∞
K(γ∞(t))u2(t) dt
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applied to a cutoff function

u(σ)(t) =

{
1 if |t| ≤ σ

0 if |t| ≥ 2σ

and satisfying |u̇(σ)| ≤ 2/σ, implies∫ +σ

−σ
K(γ(ϕ0)

∞ (t)) dt ≤ 16

σ

so that letting σ → +∞ we conclude that the Gauss curvature must vanish identically along
Γ

(ϕ0)
∞ . In particular, this is certainly not possible if the scalar curvature of (S, g) is assumed

to be positive and hence we can assert that (under such assumption), the Morse index of
γ

(ϕ0)
∞ is in fact equal to one.

�

5. Back to the question of Bangert

In this section, we shall complete the proof of Theorem 1 by showing that indeed the map
[ϕ0]→ Γ

(ϕ0)
∞ is injective (for [ϕ] ∈ RP1 the equivalence class of ϕ0 ∈ S1 modulo antipodality),

so that we will in fact obtain uncountably many embedded geodesic lines. Such conclusion
follows at once from a non-twisting statement we are about to present. To that aim we need
a definition and a simple lemma.

Definition 23. Given a properly embedded line Γ ⊂ S, we call ray a closed, unbounded
connected component of Γ.

In particular, it follows that a ray can be parametrized by means of a map γ : [0,∞)→ S.

Lemma 24. Let (S, g) be an asymptotically conical surface (in the sense of Definition 7) and
let γ : [0,∞)→ S be a properly embedded geodesic ray. Then, one can find an identification
of S minus a suitable compact set with the outer portion of a Euclidean wedge of angle
2π sinα (with pointwise identification of the sides, see Remark 10), a large constant ρ0 > 0
and a defining function f ∈ C2([ρ0,+∞);R) whose Cartesian graph7 coincides with the image
γ([t0,+∞) ∩ {ρ ≥ ρ0} and such that |f(ρ)| + ρ|f ′(ρ)| ≤ Cρ1−µ (for µ > 0 the asymptotic
decay rate of the surface in question).

This assertion can be proved by observing that the geometric assumption of vanishing
geodesic curvature, namely κg = 0, implies κδ = O(ρ−1−µ) and hence noticing that such
decay rate (by integrability of ρ 7→ ρ−1−µ when µ > 0) ensures uniqueness of the tangent
cone at infinity of spt(γ) and hence the indefinite extension of a local graphical description
of such support, with the claimed expansion. This is a (simpler) variation of well-known
arguments for complete minimal surfaces, cf. [Car14], so we omit the details.

In case the conclusion of Lemma 24 holds we shall say that the curve γ is asymptotic to
the coordinate half-line ϑ = 0 (obviously, this is to be understood in a suitably weak sense
if 0 < γ ≤ 1). Now, the claimed non-twisting phenomenon can be phrased as follows:

7The wedge W in question has natural Euclidean coordinates (x1, x2), where of course x1 =
ρ cosϑ, x2 = ρ sinϑ, and so the Cartesian graph of a function f : I → R is meant to be the set{
(x1, x2) ∈W,x2 = f(x1) for x1 ∈ I

}
.
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Proposition 25. Let (S, g) be an asymptotically conical surface (in the sense of Definition
7) and let γ : [0,∞) → S be a properly embedded geodesic ray, asymptotic to the half-line
ϑ = 0. For any fixed 0 < ϑ < π sinα one cannot find two diverging sequences of radii {ρk}
and {ρ′k} with ρ′k < ρk for all k ≥ 1 and a sequence of solutions {Γk} to the min-max Plateau
problems with endpoints pk, qk with ρ(pk) = ρ(qk) = ρk, ϑ(qk) = ϑ, ϑ(pk) = ϑ− π sin(α) such
that Γk ⊃ graph(fk) with supρ′k/2≤ρ≤2ρ′k

(|fk(ρ)|+ ρ′k|f ′k(ρ)|) < ρ′kk
−1.

Proof. Let us argue by contradiction, assuming the existences of scales and min-max geodesics
as in the statement above. For each k ≥ 1 consider an arc-length parametrization γk : [s−k , s

+
k ]

of Γk such that mk := γk(0) ∈ graph(fk) ∩ {ρ = ρ′k} and
dρ(γk)
ds s=0

> 0. Basic Morse-theory
(which amounts, in the special case of curves, to a direct curvature comparison using large
coordinate circles) ensures that in fact

dρ(γk)

ds
≥ 0 ∀ s ∈ [0, s+

k ]

which means that the radius function (when restricted to Γk) is monotone non-decreasing
from mk to qk. Set Γωk = γk[0, s

+
k ] and Γλk = Γ ∩ {ρ′k ≤ ρ ≤ ρk}. Notice that (possibly

neglecting finitely many terms in the sequence and renaming indices) we can assume that
Γλk is the (Cartesian) graph of a defining function f restricted to [ρ′k, ρk] and satisfying the
bounds described in Lemma 24.

Let us then consider the (possibly multiply-connected) domain D whose piecewise smooth
boundary consists of of Γωk ,Γ

λ
k and the arcs of coordinate circles at radii ρ′k and ρk, which

we shall call ∆′k and ∆k, respectively. Set Ḋk = tdi=0Ḋ
k
i where mk ∈ D0 and qk ∈ Dk

d (as
shown in Figure 4).

At this stage, let us simply apply the Gauss-Bonnet theorem to each domain Dk
i for

i = 0, 1, . . . , d. Let νk1 , . . . , νkd the exterior angles at the intersection points of Γωk and Γλk (if
there is no such intersection point the proof is identical and in fact simpler). One has that∫

Dk
i

Kg = o(1) ∀ i = 0, 1, . . . , d as one lets k →∞

by virtue of the integrability of the Gauss-curvature function Kg (which, in turn, is implied
by the bound |Kg| ≤ Cρ−2−µ). Furthermore, for what concerns the integral of the geodesic
curvature along the boundary

∫
∂Dk

i

κg


≤ C((ρ′k)

−µ + k−1) if i = 0

= 0 if 0 < i < d

= ϑ(1 + o(1)) if i = d.

Lastly, the exterior angles at the four intersection points Γλk ∩∆′k,Γ
ω
k ∩∆′k,Γ

λ
k ∩∆k,Γ

ω
k ∩∆k

are all π/2 + o(1) as we let k → ∞. (Notice that, in the case of the angle at Γωk ∩∆k this
is a consequence of the blow-down characterization of the min-max segments we construct,
which in turn is directly implied by Proposition 19. Thus, possibly at the cost of extracting
a subsequence we can always ensure that this angle converges to π/2 as well). As a result,
proceeding inductively for i = 0, 1, . . . , d− 1 the Gauss-Bonnet theorem provides νki → π for
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∆κ

∆κ

Γωκ

Γλκ
•

•mκ

• qκ

• • • • • •

Figure 4. The twisting phenomenon: we rule out the existence of min-max
geodesic segments that behave like the orange line (by courtesy of Mario B.
Schulz).

i = 1, 2, . . . , d as k → 0 and hence for i = d

2π =

∫
Dk

d

Kg +

∫
∂Dd

k

κg + exterior angles = o(1) + 2π +

∫
∆k

κg

so that one should conclude ϑ(1+o(1)) =
∫

∆k
κg = o(1) which gives the desired contradiction

as soon as the index k is chosen large enough. �

Appendix A. Geodesics, 1-currents and convergence results

A.1. Geodesics. Let (N, g) be a complete, Riemannian manifold of dimension greater or
equal than two. We will say that a C2-curve γ : I → N is a parametrized geodesic if
Dγ̇ γ̇ = 0 where D denotes the Levi-Civita connection on (N, g), the apex ˙ denotes ordinary
differentiation with respect to the parameter and I ⊂ R is an interval. If I = [a, b], a compact
interval, it is well-known that γ (as above) is a geodesic if and only if it is a critical point of
the length functional

L(γ) =

∫
I

√
g(γ̇(t), γ̇(t)) dt.

The same characterization also holds true in general (hence, for instance, when I = R) for
variations that are supported on relatively compact subdomains of I. A posteriori, a geodesic
is in fact a smooth curve, namely γ ∈ C∞(I,N).
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It is often convenient to work with the energy functional

E(γ) =

∫
I

g(γ̇(t), γ̇(t)) dt

for which the Cauchy-Schwarz inequality gives L2 ≤ E|I|. In particular, if I = [0, 1] and γ is
parametrized by a constant multiple of the arc-length then L2 = E. Hence it is easily seen
that a critical point of E is also a critical point of L and, viceversa, a critical point of L can
be re-parametrized so to become a critical point of E.

If we set Γ := γ(I) then one can canonically associate to Γ an integral 1-current T
(with unit multiplicity and orientation induced by the parametrization itself) and of course
spt(T ) = Γ while spt(∂T ) consist of the endpoints of Γ. Notice that (assuming, say, com-
pactness of I) one has L(γ) = H 1(Γ). If γ : I → N is a parametrized geodesic, we shall
say (with slight abuse of terminology) that Γ is a geodesic (rather than the support of a
geodesic). This choice, which we adopt for the sake of brevity, is justified by the basic fact
that for every diffeomorphism λ : I1 → I one has that γ : I → N is a geodesic if and only if
γ · λ : I1 → N is.

A.2. Convergence. Geodesics are usually regarded as the one-dimensional, degenerate
counterpart of minimal surfaces and this analogy suggests the effectiveness of dealing with
convergence of supports, rather than parametrizations. Notice that, in fact, geodesics are the
one-dimensional counterpart of totally geodesic surfaces so that the corresponding curvature
estimates come (tautologically) for free.

Definition 26. Let (N, g) be a Riemannian manifold of dimension two and let {Γk}k≥1 be
a sequence of smooth, connected 1-dimensional submanifolds (possibly with boundary). We
shall say that such sequence converges geometrically with multiplicity m ≥ 1 if there exists
a smooth 1-dimensional submanifold Γ such that:

• for every point p of Γ \ ∂Γ one can find an open tubular neighborhood U and local
Fermi coordinates {x} such that Γ ∩ U is described by the equation x2 = 0 and
for k ≥ k0 the support Γk, when restricted to U , consists of exactly m smooth
graphs, namely if U = (−δ1, δ1) × (−δ2, δ2) there exist fi ∈ C∞((−δ1, δ1),R) with
f1 < f2 < . . . < fm so that

Γk = {(x1, x2) ∈ (−δ1, δ1)× (−δ2, δ2) | x2 = fi(x1), i = 1, 2, . . . ,m}
and each function fi converges to zero in C∞ as we let k →∞;
• if ∂Γ is not empty, then ∂Γk = ∂Γ (at least for k ≥ k0) and the above condition holds
with m = 1 both for interior and, with straightforward modifications, for boundary
points.

We mention here two simple compactness results that are frequently used in this paper.

Lemma 27. Let (N, g) be a Riemannian manifold of dimension two and let {Γk}k≥1 be a
sequence of smooth, simple geodesics with locally uniform length bounds, namely assume that
for every p ∈ N there exists a bounded regular neighborhood U such that H 1(Γk∩U) ≤ C for
a constant C > 0 that is independent of k. If {Γk} does not escape from every bounded domain
of N , then there exists a smooth geodesic Γ such that, possibly extracting a subsequence (which
we will not rename), {Γk} converges geometrically to Γ.
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In presence of a non-empty boundary, one can gain sub-convergence with unit multiplicity.

Lemma 28. Let (N, g) be a Riemannian manifold of dimension two and let {Γk}k≥1 be a
sequence of smooth geodesic segments all sharing one endpoint and with uniformly bounded
length. Then there exists a smooth geodesic Γ such that, possibly extracting a subsequence
(which we will not rename), {Γk} converges geometrically to a geodesic segment Γ with
multiplicity one.

References

[AMN16] I. Agol, F. Marques, A. Neves, Min-max theory and the energy of links, J. Amer. Math. Soc.
29 (2016), 561-578.

[ADM59] R. Arnowitt, S. Deser, C. W. Misner, Dynamical structure and definition of energy in general
relativity, Phys. Rev. (2) 116 (1959), 1322-1330.

[Ban80] V. Bangert, Closed geodesics on complete surfaces, Math. Ann. 251 (1980), no. 1, 83-96.
[Ban81a] V. Bangert, On the existence of escaping geodesics, Comment. Math. Helv. 56 (1981), no. 1,

59-65.
[Ban81b] V. Bangert, Geodesics and totally convex sets on surfaces, Invent. Math. 63 (1981), no. 3, 507-

517.
[Ban81c] V. Bangert, Totally convex sets in complete Riemannian manifolds, J. Differential Geom. 16

(1981), no. 2, 333-345.
[BBL86] J. D. Barrow, A. B. Burd, D. Lancaster, Three-dimensional classical space-times, Classical

Quantum Gravity 3 (1986), no. 4, 551-567.
[Bar86] R. Bartnik, The mass of an asymptotically flat manifold, Comm. Pure Appl. Math. 39 (1986), no.

5, 661-693.
[Bir17] G. Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917),

199-300.
[BL03] M. Bonk, U. Lang, Bi-Lipschitz parameterization of surfaces, Math. Ann. 327 (2003), no. 1,

135-169.
[Bro88] J. D. Brown, Lower dimensional gravity, World Sci. Publishing, 1988.
[Car98] S. Carlip, Quantum gravity in 2 + 1 dimensions, Cambridge Monographs on Mathematical Physics,

Cambridge University Press, Cambridge, 1998.
[Car14] A. Carlotto, Rigidity of stable minimal hypersurfaces in asymptotically flat spaces, Calc. Var.

Partial Differential Equations 55 (2016), no. 3, pages 1-20.
[CCE15] A. Carlotto, O. Chodosh, M. Eichmair, Effective versions of the positive mass theorem,

Invent. Math. (to appear).
[CS14] A. Carlotto, R. Schoen, Localizing solutions of the Einstein constraint equations, Invent. Math.

205 (2016), no. 3, pages 559-615.
[CL14] G. Chambers, Y. Liokumovich, Converting homotopies to isotopies and dividing homotopies in

half in an effective way, Geom. Funct. Anal. 24 (2014), 1080-1100.
[CL16] G. Chambers, Y. Liokumovich, Existence of minimal hypersurfaces in complete manifolds of

finite volume, preprint (arXiv:1609.04058).
[CG71] J. Cheeger, D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J.

Differential Geometry 6 (1971/72), 119-128.
[CG72] J. Cheeger, D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann.

of Math. (2) 96 (1972), 413-443.
[Chr10] P. Chruściel, Lectures on energy in General Relativity, preprint. [manuscipt available on

http://homepage.univie.ac.at/piotr.chrusciel/teaching/Energy/Energy.pdf ]
[CV36] S. Cohn-Vossen, Totalkruümmung und geodätische Linien auf einfachzusammenhängenden offenen

vollständigen Flac̈henstücken, Rec. Math. [Mat. Sbornik] N.S., 1 (43), no.2, (1936), 139-164.
[CD03] T. Colding, C. De Lellis, The min-max construction of minimal surfaces, Surveys in differential

geometry, Vol. VIII (Boston, MA, 2002), 75-107, Int. Press, Somerville, MA, 2003.



28 ALESSANDRO CARLOTTO AND CAMILLO DE LELLIS

[Col88] P. Collas, General relativity in two- and three-dimensional space-times, Amer. Jour. Physics 45
(1977), no. 9, 833.

[DJtH84] S. Deser, R. Jackiw and G. ’t Hooft, Three-dimensional Einstein gravity: dynamics of flat
space, Ann. Physics 152 (1984), no. 1, 220-235.

[EM12] M. Eichmair, J. Metzger, On large volume preserving stable CMC surfaces in initial data sets,
J. Differential Geom. 91 (2012), no. 1, 81-102.

[EM13] M. Eichmair, J. Metzger, Large isoperimetric surfaces in initial data sets, J. Differential Geom.
94 (2013), no. 1, 159-186.

[FM01] J. L. Fernández, M. V. Melián, Escaping geodesics of Riemannian surfaces, Acta Math. 187
(2001), no. 2, 213-236.

[Gho91] N. Ghoussoub, Location, multiplicity and Morse indices of min-max critical points, J. Reine
Angew. Math. 417 (1991), 27-76.

[Ket16] D. Ketover, Self-shrinking Platonic solids, preprint (arXiv:1602.07271).
[Kli78] W. Klingenberg, Lectures on closed geodesics, Grundlehren der Mathematischen Wissenschaften,

Vol. 230. Springer-Verlag, Berlin-New York, 1978.
[Lan95] S. Lang, Differential and Riemannian manifolds. Third edition., Graduate Texts in Mathematics,

160. Springer-Verlag, New York, 1995.
[Mar14] F. Marques, Minimal surfaces - variational theory and applications, Proceedings of the Interna-

tional Congress of Mathematicians, Seoul 2014.
[MN14] F. Marques and A. Neves, Min-max theory and the Willmore conjecture, Ann. of Math. (2) 179

(2014), no. 2, 683-782.
[MN16] F. Marques and A. Neves, Existence of infinitely many minimal hypersurfaces in positive Ricci

curvature, preprint (arXiv:1311.6501).
[MN15] F. Marques and A. Neves, Morse index and multiplicity of min-max minimal hypersurfaces,

preprint (arXiv: 1512.06460).
[Mon14] R. Montezuma, Min-max minimal hypersurfaces in non-compact Riemannian manifolds, J. Dif-

ferential Geom. (to appear).
[MT39] M. Morse, C. Tompkins, The existence of minimal surfaces of general critical types, Ann. of

Math. (2) 40 (1939), no. 2, 443-472.
[Nev14] A. Neves, New applications of Min-max Theory, Proceedings of the International Congress of

Mathematicians, Seoul 2014.
[Pit81] J. T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Mathematical

Notes, 27. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981.
[Poi05] H. Poincaré, Sur les lignes geodesiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905),

237-274.
[SY79] R. Schoen, S. T. Yau, On the proof of the positive mass conjecture in general relativity, Comm.

Math. Phys. 65 (1979), no. 1, 45-76.
[SS81] R. Schoen, L. Simon, Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math. 34

(1981), no. 6, 741-797.
[Shi39] M. Shiffman, The Plateau problem for non-relative minima, Ann. of Math. (2) 40, (1939). 834-854.
[SST03] K. Shiohama, T. Shioya, M. Tanaka, The geometry of total curvature on complete open surfaces.

Cambridge Tracts in Mathematics, 159. Cambridge University Press, Cambridge, 2003. x+284 pp.
[Shi94] T. Shioya, Behavior of distant maximal geodesics in finitely connected complete 2-dimensional

Riemannian manifolds, Mem. Amer. Math. Soc. 108 (1994), no. 517, x+73 pp.
[Tho78] G. Thorbergsson, Closed geodesics on non-compact Riemannian manifolds, Math.Z. 159 (1978),

249-258.
[Wal84] R. M. Wald, General Relativity, University of Chicago Press, Chicago, 1984.

ETH - Department of Mathematics, ETH, Zürich, Switzerland
E-mail address: alessandro.carlotto@math.ethz.ch

Institut für Mathematik, Universität Zürich, Zürich, Switzerland
E-mail address: camillo.delellis@math.uzh.ch


	1. Introduction
	2. Setting and recollections
	2.1. Cones and their geodesics
	2.2. Asymptotically Conical Surfaces
	2.3. Positive Mass Theorem in 2+1 gravity

	3. Min-max embedded geodesic segments
	4. The construction of embedded geodesic lines
	5. Back to the question of Bangert
	Appendix A. Geodesics, 1-currents and convergence results
	A.1. Geodesics
	A.2. Convergence

	References

