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Abstract

In the case of a scalar conservation law with convex flux in space dimension one,
P. D. Lax proved [Comm. Pure and Appl. Math. 7 (1954)] that the semigroup
defining the entropy solution is compact in LllOC for each positive time. The
present note gives an estimate of the e-entropy in Lll0 . of the set of entropy
solutions at time ¢ > O whose initial data run through a bounded set in L!.
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1 Estimates for Entropy Solutions

Let f : R — R be a C? function such that

(1.D) f">a>0o0onR and f(0)=0.

We consider the Cauchy problem for the conservation law with flux f:
x = 0

(1.2) us +.f () x eR.

u|t=0 =u",

Without loss of generality, we can assume that

(1.3) 1'(0) = 0;

otherwise, changing x into x + 7f’(0) and f (1) into f(u) — uf’(0) reduces the
general case to this one.

For each u™ e L'(R), there exists a unique entropy solution ¥ = u(t, x) to
(1.2). This defines a (nonlinear) semigroup S(¢) by u(¢,-) = S (t)u™™. Let us recall
some well-known properties of the entropy solution to (1.2). First, it satisfies the
Lax-Oleinik bound:

1
(1.4) foreachr > 0, u,(t,-) < p”
a

in the sense of distributions on R. It also satisfies the following L°° bound (see
formula (4.9) in chapter 4 of [4]):
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PROPOSITION 1.1 Assume that u™ € L'(R) and that f satisfies (1.1). Then, for
eacht > 0, one has

[2][uin]
(1.5) lu(t, e < ) L
at

For the convenience of the reader, we recall the short proof of (1.5) below, since
the constants in it differ slightly from those in [4].

PROOF: We recall that for each ¢+ > 0, the entropy solution u(¢, -) to (1.2)

belongs to BVj,.(R) and is expressed by the Lax-Oleinik variational principle
— t,
(1.6) u(t,x £0) = (f)" <x—yf( x)>

where y_(¢, x) (respectively, y; (¢, x)) is the smallest (respectively, largest) mini-
mum point y of the action functional

(1.7) Lo (y) = tf* <¥) +/ ™ (2)dz.

e¢]

As usual, f* designates the Legendre dual of f, defined by
J*(p) = sup(pu — f(u))

ueR
or equivalently by
[ @) =uf' () — f@w)
(because, thanks to the first property in (1.1), f’ is an increasing, one-to-one map-
ping of R onto itself). Therefore

1 y£(,x)
Fr(f (u(t, x £0)) = " <yII€lH1; Lix(y) — / um(Z)dZ)

e¢]

1 y£(t,x)
A (Lt,x(x) —/ u‘“(z)dz)
1 X . y;{:(t»x) .
= p </ u"(z)dz — / um(z)dz> ,

where the last equality follows from f*(0) = f*(f'(0)) = —f(0) = 0 (recall
(1.3) and the second property in (1.1)). Hence

IA

1 .
(1.8) F(f u@,x £0)) < ;llumllu-
Finally, since (zf'(z) — f(z)) = zf”(z), one has
(1.9) f (f@)=zf'(z) = fz) > %Zz-

The inequalities (1.8) and (1.9) imply (1.5). [l
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We also recall that the entropy solution satisfies the maximum principle: If
u™ e L' N L°®°(R), then
(1.10) IS u™| 1 < u™|| foreacht > 0.
Moreover, the semigroup S(¢) is an L'-contraction (see [2, 7]), that is,
IS@u — SOVl < llu—vllpw Vt>0 and Yu,v e L'(R).
Thus, since S(¢)0 = 0, we have

(1.11) ISOu™ 1wy < 4™ 11 @)

2 Compactness of the Semigroup S(¢)

P. D. Lax proved in [3] that, for each ¢ > 0, the map S(¢) is compact from
L'(R) to L! (R). In [6], he asked whether it is possible to give a quantitative

loc

estimate of the compactness of S(¢) and suggested using the notion of e-entropy to
do so. We first recall this notion, introduced by A. Kolmogorov (see [1]).

DEFINITION 2.1 Let (X, d) be a metric space and E a precompact subset of X. Let
N, (E) be the minimal number of sets in an e-covering of E—i.e., a covering of £
by subsets of X with diameter no greater than 2¢. The e-entropy of E is defined as

H.(E | X) =log, N.(E).
In the rest of this note, given A C L'(R), we denote by S(¢) A the set {S Ou™ |

u™ € A}. By using the Lax-Oleinik bound (1.4) and the L™ bound (1.5), we arrive
at the following quantitative variant of the Lax compactness theorem:

THEOREM 2.2 Assume that f satisfies (1.1) and (1.3). For L > 0 and M > 0, set
cm = Supy, <y | f"(2)| and define

CL,m,M =
{u" € L*®) | supp(u™) C [~L, L1, [lu®lpr < m, and |u™|= < M}.
Then, for ¢ sufficiently small, the e-entropy of S(t)Cp m.m in L' (R) satisfies

2
Ho(SMCmu | L'(R)) < & (4“’) +4L<z),/2—m) ,
& at at

with L(t) = L + 2cy+/2mt/a for every t > Q.

The theorem below is a localized version of Theorem 2.2. If R > 0 and A C
L'(R), we denote by H.(A | L'([—R, R])) the e-entropy of A" = { f|;_r.z) When
f runs through A} as a subset of L' ([—R, R]).

THEOREM 2.3 Under the same assumptions as in Theorem 2.2,

Ci(0) +2log, <C2(I)
€ €

Ho(S)Crmm | L'([—R, R]) < + Ca(t)) :
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In the estimate above, one can take

16R? 2m 4RL(1) 2m
Ci(t) = + 16R,/ —, Cr(t) = + 4R, —,
at at at at

Cs(0) = L(t) + ~/2mat Py

R + A/ 2mat '

with L(t) = L 4 2cy+/2mt/a.

These bounds show that in the g-entropy of S(¢#)C(L, m, M) localized in any seg-
ment, the leading-order term vanishes as ¢ tends to +o0.

We end this section with a few remarks on Theorems 2.2 and 2.3 and variants
thereof.

Remark 2.4. Define
Co = {u™ | lu™]| 11y < m},
Conmt = (™ | |u™| 11y < m and [u™| =~ < M}.

From (1.5), (1.10), and (1.11), it follows that

4
SHCn C S (5) Cn.muy Wwhere M(t) = 1/—m_
2 at

As a result of the finite speed of propagation of equation (1.2), we know that for
any u™ € C, y the values of S()u™ on [—L, L] depend only on the values of
u™in [—L — 2cppr/2mt Ja, L + 2cypr+/2mt /a]. Hence, if we define L'(t) = R +
2cp@~/mt [a, we conclude that

1 ! 1
H.(S@#)Cn | L'([-R, R])) < H, (S(E)CL’(t),m,M(t) | L ([—R, R]))-

Applying then Theorem 2.3, we eventually arrive at an upper bound of the form

C“e(” +2log, (CSS(” + Cs(l‘)>,

(2.1) H.(S®)Cyn | L'([-R, R])) <

32R?
Cat) = +3r "
at at
8R mt m
Cs(t) = — | R+ 2cmpy, ) — ) + 8RR,/ —,
at a at

1 mt
Ce(t) = — | R+ 2c — + mat>+2.
6(1) R '—mat( M)/ T

Remark 2.5. In view of potential applications to the notion of “resolution” of a
numerical method, as suggested in [5], it would be interesting to know whether
the e-entropy estimates above are optimal—or to derive lower bounds for those
g-entropies.

where
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Let 4™ € L'(R); under assumptions (1.1) through (1.3) the entropic solution of
(1.2) converges to the N-wave

N, (tx) = YiOn if —./pt <x<./qt
pg\ls .
0 otherwise,

where
y

p = —2f"(0) ir;f / u™(z)dz,

—00

_ . +00 o
qg = 2f"(0) sup u"(z)dz,
y Jy

in the sense that [|u(z,-) — N, ,(t,-)|lp1ry — 0 ast — +oo. This result was
proven by Lax (see [4], theorem 4.1 on p. 19). Since the family of N-waves is
completely determined by the two independent parameters p and g, one has

lim (resp. lim
t—+00

) Ho(S()CLmm | L'(R)) ~ 2[log, €

t—+00

ase — 0.

The upper bounds in Theorems 2.2 and 2.3 and in (2.1) do not capture the above
asymptotic behavior; however, applying (2.1) with R = o(+/t) shows that

lim H.(S®)Cy | L'([-R, R])) = O(1)
t—>+00
as ¢ — 0. This is compatible with the convergence to the N-wave; indeed, the

dependence of the N-wave in the parameters p and ¢ appears on centered intervals
with length O (/1) only.

Remark 2.6. We conclude this section with a few words on the periodic case. Con-
sider the Cauchy problem (1.2) with f asin (1.1) and where u™ € L! (R) satisfies

loc
. L .
u™ is periodic with period L and / u(z)dz = 0;
0
call Cy, this class of functions. For each u e Cper and each t > 0,
. 2L . 2L
[S@Ou™|t~ < — and TV(S@®u™ | [0, L]) < —.
at at
With the methods described below, one can show that

| L? 2L*
Ho(S()Cper | L' ([0, L)) < 8— +4log, | — +4).
ate ate
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3 e-Entropy in L! for the Class of Nondecreasing Functions
with Prescribed Total Variation

For L > 0and V > 0, set
Zrv ={w:[0,L] — [0, V]| wis nondecreasing}.
In what follows we use the notation [x] = max{z € Z | z < x}.

LEMMA 3.1 For(0 < ¢ < % the following holds:

LV
H.(Zpv | L'(0, L]) < 4 [?] .

PROOF: Let N be a positive integer and set Ax = % and Ay = % To each
w € I, y we associate the pair of functions (x *[w], x ~[w]) defined by
N-1
3.1) Xl =) X Ay gar anas
k=0

where the notation 15 designates the indicator function of the set S, and where

Xk_:|:w(kAx+0)]’ +:|:w((k+1)Ax—0)}+1.

Ay Xk Ay

Notice that, since w is nondecreasing,

(3.2) X=X <1 k=01,...,N-2.
Hence
N-—1
I T Twl = x " wlll = D6 — xe)AyAx
k=0
N-2
= (1 = X)) AYAX + Y (G = X)) AyAx
k=0
3.3) < NAyAx + (N — 1)AyAx = 2N — 1)AyAx.

For ¢* € I} v, define
UG . ¢H=veliv|¢ sv=¢')
Foreachw € Z; v, w € U(x " [w], x "[w]), so that the set
U={UG ], x v [ v ey}
is a covering of Z; y. On the other hand, by (3.3)
(3.4) diam U (x " [w], x "[w]) = llx " [w] — x “[wlll,1 <2NAyAx.
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Notice that {x, } and { X,:r —1} are nondecreasing sequences of nonnegative integers
smaller than N + 1. Thus

(3.5) #U<#{0<ay<a1 < <ay_1 <N |a € N})*.
Define
(N, k) :=#{(p1, ..., pn) €NV | pi+--- + py =k}
We recall the elementary method for computing 7w (N, k): by definition of (N, k),
1 dN—l

k _ -N _ _ -1
gn(N,k)X === F— e =%

1
=— ) k+1)---(k+N—-DXF
(N—l)!;

and therefore

N-—-1+k
JT(N,k):( + )
k
Clearly
#0<ap<a  <---<ay_1 <N |a €N}
(3.6) =#{(p1,---, pve) €NV pr 4o 4 Py = N}

2N
=n(N+1,N)=(N).

Therefore, if N > 6 we have

N hein: 2
12 2i (21 — 1) 2(N—6) 2 AN—4
#u§<<6)1_[i72> = (924 . 22(N=0)" < 24V,

i=7

For ¢ > 0, set

LV
N = [—:|+1;
€

the set U is a covering of Z; y with at most 2*(1V/¢ gets of diameter not exceeding
LV
2NAxAy = 27 < 2e.

Hence

H.(Zoy | L'[0, L]) < 4 [%} .

Next, consider the class of functions

Zimy ={w ey | wl —0)—w0) <V}
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COROLLARY 3.2 For 0 < & < £¥ the following holds:

1 LV ML M
Ho(Zpmv|L ([0, L])) <4 e + 2log, P + v +2].
PROOF: Using the same notation as in the proof of Lemma 3.1—and especially
with the same definitions of Ax and Ay—we introduce

U ={U(x ], xTv]) lveTLuv}

LV
=[]
)

Let

As before, U’ is a covering of Z; j v by sets of diameter at most
LV
2NAxAy = 27 <2e.

On the other hand #{' < (#A)?, where A is the set
{Ofd()f e <ay-1 < [%N]—Fl | ax € Nand ay_; —a()EN}.

To any such sequence ay, ..., ay—; we associate (ag, pi, ..., py—1) defined by
pr=ay —ag_ fork=1,..., N — 1. Define

B={aeN|0=<ay<[¥N]+1}

C={p.....onc) eN""1 | pi+ -+ pyy < NJ.
By using the estimate (3.6) for #C, we obtain

#A <#B -#C < ([UN] +2)2*V2,
which implies
4N-1)([M 2
#U < 2N D([UN] +2)°.

Hence

Ho(Zewy | L'(10, L) < 4(N — 1) + 2log, [¥N +2] .
With N = [LV/e] + 1, this leads to the desired estimate. Il

4 Proofs of Theorem 2.2 and 2.3

PROOF OF THEOREM 2.2: First, we use the finite speed of propagation for the
hyperbolic equation (1.2). Let ¢y = supy, -y | f"(2)|. For every u™ € Cp .y and
t > 0 we have (see [4], p. 19)

4.1) supp(S(H)u™) € [—L(t), L(t)] where L(t) = L+ 2cy,/ ?.

(Indeed, by the maximum principle, ||u (¢, - )|z~ < M, and the maximum speed of
propagation at each time r > 0 is

/ 2m
sup | f(u(t, 2)| < emllu(t, Y= < cmyf o

zeR
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by Proposition 1.1).
Next, for each r > 0, u(t,-) = S(t)u™ is a function of bounded variation.
Specifically, by the Lax-Oleinik bound (1.4),

1
Mo = — —ux(t,-)
at

is a nonnegative distribution—and therefore a nonnegative Radon measure—for
each t > 0. Thus, u(t, - ) is decomposed into the difference of two nondecreasing
functions in the following way:

x dZ x+ 0
“4.2) u(@,x=x0) :/ — —/ du;(z) = u(t, x) —ux(t,x £0).
—L@) at —L(t)—0

Below, we use the notation
S,(Hu™ = uy(t,-) foreacht > 0.

Notice that the function u; in the decomposition (4.2) is independent of u™™. Hence,
foreacht > 0 and ¢ € ]0, 1[, we have

4.3) H (S Cromm | L'®R)) = He(S2(t) Coop | L'(I—L(2), L(D)])) .
Next we discuss the properties of u;(¢, - ). Clearly, u,(t, - ) is a nondecreasing
function on [—L(¢), L(¢)] that satisfies u,(—L(t) — 0) = 0 and

L(t)+0

us(L (1) +0) = / e

L(t)—0

= % — (u(t, L) +0) — u(t, —L(r) — 0))

2L(1) 2m
< +2,/—
at at

with L(t) = L 4 2cp+/2mt/a. Thus, for each ¢t > 0, the set of functions
X > Sy(t)u™(x + L(t))

is included in the class 7}y with

, , 2L(1) 2m
L'=2L(t) and V' = ——+2,/—.
at at

Theorem 2.2 follows from this observation after applying Lemma 3.1 and (4.3).
O

PROOF OF THEOREM 2.3: Observe that S,(t)u'™ is a nondecreasing function
such that
2m

. 2R
S (Hu™(R — 0) — Sy(Hu™(—R +0) < — + 2 pm
a

: 2L(t)
0<S@)u" < +2 e on[—R, R].
a

and
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In other words, the set of functions defined on [0, 2R] by

x > S@Ou(x + R)

belongs to the class Zpg, v,y With

2L(t 2 2R 2
o= 2EO 2 vi="" 40
at at at at

Then we conclude as in the proof of Theorem 2.2 by applying this time Corollary

3.2.

g
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