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Abstract

In the case of a scalar conservation law with convex flux in space dimension one,

P. D. Lax proved [Comm. Pure and Appl. Math. 7 (1954)] that the semigroup

defining the entropy solution is compact in L1
loc

for each positive time. The

present note gives an estimate of the ε-entropy in L1
loc

of the set of entropy

solutions at time t > 0 whose initial data run through a bounded set in L1.

c© 2005 Wiley Periodicals, Inc.

1 Estimates for Entropy Solutions

Let f : R → R be a C2 function such that

(1.1) f ′′ ≥ a > 0 on R and f (0) = 0.

We consider the Cauchy problem for the conservation law with flux f :

(1.2)

{
ut + f (u)x = 0

u
∣∣
t=0

= uin,
x ∈ R .

Without loss of generality, we can assume that

(1.3) f ′(0) = 0;
otherwise, changing x into x + t f ′(0) and f (u) into f (u) − u f ′(0) reduces the

general case to this one.

For each uin ∈ L1(R), there exists a unique entropy solution u ≡ u(t, x) to

(1.2). This defines a (nonlinear) semigroup S(t) by u(t, ·) = S(t)uin. Let us recall

some well-known properties of the entropy solution to (1.2). First, it satisfies the

Lax-Oleinik bound:

(1.4) for each t > 0, ux(t, · ) ≤ 1

at

in the sense of distributions on R. It also satisfies the following L∞ bound (see

formula (4.9) in chapter 4 of [4]):
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PROPOSITION 1.1 Assume that uin ∈ L1(R) and that f satisfies (1.1). Then, for

each t > 0, one has

(1.5) ‖u(t, · )‖L∞ ≤
√

2‖uin‖L1

at
.

For the convenience of the reader, we recall the short proof of (1.5) below, since

the constants in it differ slightly from those in [4].

PROOF: We recall that for each t > 0, the entropy solution u(t, · ) to (1.2)

belongs to BVloc(R) and is expressed by the Lax-Oleinik variational principle

(1.6) u(t, x ± 0) = ( f ′)−1

(
x − y±(t, x)

t

)
where y−(t, x) (respectively, y+(t, x)) is the smallest (respectively, largest) mini-

mum point y of the action functional

(1.7) Lt,x(y) = t f ∗
(

x − y

t

)
+

∫ y

−∞
uin(z)dz.

As usual, f ∗ designates the Legendre dual of f , defined by

f ∗(p) = sup
u∈R

(pu − f (u))

or equivalently by

f ∗( f ′(u)) = u f ′(u) − f (u)

(because, thanks to the first property in (1.1), f ′ is an increasing, one-to-one map-

ping of R onto itself). Therefore

f ∗( f ′(u(t, x ± 0))) = 1

t

(
inf
y∈R

Lt,x(y) −
∫ y±(t,x)

−∞
uin(z)dz

)

≤ 1

t

(
Lt,x(x) −

∫ y±(t,x)

−∞
uin(z)dz

)

= 1

t

(∫ x

−∞
uin(z)dz −

∫ y±(t,x)

−∞
uin(z)dz

)
,

where the last equality follows from f ∗(0) = f ∗( f ′(0)) = − f (0) = 0 (recall

(1.3) and the second property in (1.1)). Hence

(1.8) f ∗( f ′(u(t, x ± 0))
) ≤ 1

t
‖uin‖L1 .

Finally, since (z f ′(z) − f (z))′ = z f ′′(z), one has

(1.9) f ∗( f ′(z)) = z f ′(z) − f (z) ≥ a

2
z2 .

The inequalities (1.8) and (1.9) imply (1.5). �
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We also recall that the entropy solution satisfies the maximum principle: If

uin ∈ L1 ∩ L∞(R), then

(1.10) ‖S(t)uin‖L∞ ≤ ‖uin‖L∞ for each t > 0.

Moreover, the semigroup S(t) is an L1-contraction (see [2, 7]), that is,

‖S(t)u − S(t)v‖L1(R) ≤ ‖u − v‖L1(R) ∀t > 0 and ∀u, v ∈ L1(R).

Thus, since S(t)0 = 0, we have

(1.11) ‖S(t)uin‖L1(R) ≤ ‖uin‖L1(R).

2 Compactness of the Semigroup S(t)

P. D. Lax proved in [3] that, for each t > 0, the map S(t) is compact from

L1(R) to L1
loc(R). In [6], he asked whether it is possible to give a quantitative

estimate of the compactness of S(t) and suggested using the notion of ε-entropy to

do so. We first recall this notion, introduced by A. Kolmogorov (see [1]).

DEFINITION 2.1 Let (X, d) be a metric space and E a precompact subset of X . Let

Nε(E) be the minimal number of sets in an ε-covering of E—i.e., a covering of E

by subsets of X with diameter no greater than 2ε. The ε-entropy of E is defined as

Hε(E | X) = log2 Nε(E).

In the rest of this note, given A ⊂ L1(R), we denote by S(t)A the set {S(t)uin |
uin ∈ A}. By using the Lax-Oleinik bound (1.4) and the L∞ bound (1.5), we arrive

at the following quantitative variant of the Lax compactness theorem:

THEOREM 2.2 Assume that f satisfies (1.1) and (1.3). For L > 0 and M > 0, set

cM = sup|z|≤M | f ′′(z)| and define

CL ,m,M ={
uin ∈ L∞(R) | supp(uin) ⊂ [−L , L], ‖uin‖L1 ≤ m, and ‖uin‖L∞ ≤ M

}
.

Then, for ε sufficiently small, the ε-entropy of S(t)CL ,m,M in L1(R) satisfies

Hε(S(t)CL ,m,M | L1(R)) ≤ 4

ε

(
4L(t)2

at
+ 4L(t)

√
2m

at

)
,

with L(t) = L + 2cM

√
2mt/a for every t > 0.

The theorem below is a localized version of Theorem 2.2. If R > 0 and A ⊂
L1(R), we denote by Hε(A | L1([−R, R])) the ε-entropy of A′ = { f |[−R,R] when

f runs through A} as a subset of L1([−R, R]).
THEOREM 2.3 Under the same assumptions as in Theorem 2.2,

Hε(S(t)CL ,m,M | L1([−R, R])) ≤ C1(t)

ε
+ 2 log2

(
C2(t)

ε
+ C3(t)

)
.
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In the estimate above, one can take

C1(t) = 16R2

at
+ 16R

√
2m

at
, C2(t) = 4RL(t)

at
+ 4R

√
2m

at
,

C3(t) = L(t) +
√

2mat

R +
√

2mat
+ 2,

with L(t) = L + 2cM

√
2mt/a.

These bounds show that in the ε-entropy of S(t)C(L , m, M) localized in any seg-

ment, the leading-order term vanishes as t tends to +∞.

We end this section with a few remarks on Theorems 2.2 and 2.3 and variants

thereof.

Remark 2.4. Define

Cm = {uin | ‖uin‖L1(R) ≤ m},
Cm,M = {uin | ‖uin‖L1(R) ≤ m and ‖uin‖L∞ ≤ M}.

From (1.5), (1.10), and (1.11), it follows that

S(t)Cm ⊂ S

(
t

2

)
Cm,M(t) where M(t) =

√
4m

at
.

As a result of the finite speed of propagation of equation (1.2), we know that for

any uin ∈ Cm,M ′ the values of S(t)uin on [−L , L] depend only on the values of

uin in [−L − 2cM ′
√

2mt/a, L + 2cM ′
√

2mt/a]. Hence, if we define L ′(t) = R +
2cM(t)

√
mt/a, we conclude that

Hε(S(t)Cm | L1([−R, R])) ≤ Hε

(
S

(
t

2

)
CL ′(t),m,M(t) | L1([−R, R])

)
.

Applying then Theorem 2.3, we eventually arrive at an upper bound of the form

(2.1) Hε

(
S(t)Cm | L1([−R, R])) ≤ C4(t)

ε
+ 2 log2

(
C5(t)

ε
+ C6(t)

)
,

where

C4(t) = 32R2

at
+ 32R

√
m

at
,

C5(t) = 8R

at

(
R + 2cM(t)

√
mt

a

)
+ 8R

√
m

at
,

C6(t) = 1

R + √
mat

(
R + 2cM(t)

√
mt

a
+

√
mat

)
+ 2.

Remark 2.5. In view of potential applications to the notion of “resolution” of a

numerical method, as suggested in [5], it would be interesting to know whether

the ε-entropy estimates above are optimal—or to derive lower bounds for those

ε-entropies.
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Let uin ∈ L1(R); under assumptions (1.1) through (1.3) the entropic solution of

(1.2) converges to the N -wave

Np,q(t, x) =
{

x
f ′′(0)t

if − √
pt < x <

√
qt

0 otherwise,

where

p = −2 f ′′(0) inf
y

∫ y

−∞
uin(z)dz,

q = 2 f ′′(0) sup
y

∫ +∞

y

uin(z)dz ,

in the sense that ‖u(t, · ) − Np,q(t, · )‖L1(R) → 0 as t → +∞. This result was

proven by Lax (see [4], theorem 4.1 on p. 19). Since the family of N -waves is

completely determined by the two independent parameters p and q, one has

lim
t→+∞

(resp. limt→+∞) Hε(S(t)CL ,m,M | L1(R)) ∼ 2|log2 ε|

as ε → 0.

The upper bounds in Theorems 2.2 and 2.3 and in (2.1) do not capture the above

asymptotic behavior; however, applying (2.1) with R = o(
√

t) shows that

lim
t→+∞

Hε(S(t)Cm | L1([−R, R])) = O(1)

as ε → 0. This is compatible with the convergence to the N -wave; indeed, the

dependence of the N -wave in the parameters p and q appears on centered intervals

with length O(
√

t) only.

Remark 2.6. We conclude this section with a few words on the periodic case. Con-

sider the Cauchy problem (1.2) with f as in (1.1) and where uin ∈ L1
loc(R) satisfies

uin is periodic with period L and

∫ L

0

uin(z)dz = 0;

call Cper this class of functions. For each uin ∈ Cper and each t > 0,

‖S(t)uin‖L∞ ≤ 2L

at
and TV(S(t)uin | [0, L]) ≤ 2L

at
.

With the methods described below, one can show that

Hε(S(t)Cper | L1([0, L])) ≤ 8
L2

atε
+ 4 log2

(
2L2

atε
+ 4

)
.
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3 ε-Entropy in L
1 for the Class of Nondecreasing Functions

with Prescribed Total Variation

For L > 0 and V > 0, set

IL ,V = {w : [0, L] → [0, V ] | w is nondecreasing}.
In what follows we use the notation [x] = max{z ∈ Z | z ≤ x}.
LEMMA 3.1 For 0 < ε ≤ LV

6
the following holds:

Hε(IL ,V | L1([0, L])) ≤ 4

[
LV

ε

]
.

PROOF: Let N be a positive integer and set �x = L
N

and �y = V
N

. To each

w ∈ IL ,V we associate the pair of functions (χ+[w], χ−[w]) defined by

(3.1) χ±[w] =
N−1∑
k=0

χ±
k �y1[k�x,(k+1)�x[

where the notation 1S designates the indicator function of the set S, and where

χ−
k =

[
w(k�x + 0)

�y

]
, χ+

k =
[
w((k + 1)�x − 0)

�y

]
+ 1.

Notice that, since w is nondecreasing,

(3.2) χ+
k − χ−

k+1 ≤ 1, k = 0, 1, . . . , N − 2.

Hence

‖χ+[w] − χ−[w]‖L1 =
N−1∑
k=0

(χ+
k − χ−

k )�y�x

= (χ+
N−1 − χ−

0 )�y�x +
N−2∑
k=0

(χ+
k − χ−

k+1)�y�x

≤ N�y�x + (N − 1)�y�x = (2N − 1)�y�x .(3.3)

For ζ± ∈ IL ,V , define

U (ζ−, ζ+) = {v ∈ IL ,V | ζ− ≤ v ≤ ζ+}.
For each w ∈ IL ,V , w ∈ U (χ−[w], χ+[w]), so that the set

U = {U (χ−[v], χ+[v]) | v ∈ IL ,V }
is a covering of IL ,V . On the other hand, by (3.3)

(3.4) diam U (χ−[w], χ+[w]) = ‖χ+[w] − χ−[w]‖L1 ≤ 2N�y�x .
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Notice that {χ−
k } and {χ+

k −1} are nondecreasing sequences of nonnegative integers

smaller than N + 1. Thus

(3.5) #U ≤ (# {0 ≤ a0 ≤ a1 ≤ · · · ≤ aN−1 ≤ N | ak ∈ N})2.

Define

π(N , k) := # {(p1, . . . , pN ) ∈ N
N | p1 + · · · + pN = k}.

We recall the elementary method for computing π(N , k): by definition of π(N , k),

∑
k≥0

π(N , k)Xk = (1 − X)−N = 1

(N − 1)!
d N−1

dx N−1
(1 − X)−1

= 1

(N − 1)!
∑
k≥0

(k + 1) · · · (k + N − 1)Xk

and therefore

π(N , k) =
(

N − 1 + k

k

)
.

Clearly

(3.6)

# {0 ≤ a0 ≤ a1 ≤ · · · ≤ aN−1 ≤ N | ak ∈ N}
= # {(p1, . . . , pN+1) ∈ N

N+1 | p1 + · · · + pN+1 = N }

= π(N + 1, N ) =
(

2N

N

)
.

Therefore, if N ≥ 6 we have

#U ≤
((

12

6

) N∏
i=7

2i(2i − 1)

i2

)2

= (
924 · 22(N−6)

)2 ≤ 24N−4.

For ε > 0, set

N =
[

LV

ε

]
+ 1;

the set U is a covering of IL ,V with at most 24[LV/ε] sets of diameter not exceeding

2N�x�y = 2
LV

N
≤ 2ε.

Hence

Hε(IL ,V | L1[0, L])) ≤ 4

[
LV

ε

]
.

�

Next, consider the class of functions

IL ,M,V = {w ∈ IL ,M | w(L − 0) − w(0+) ≤ V }.
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COROLLARY 3.2 For 0 < ε ≤ LV
6

the following holds:

Hε(IL ,M,V | L1
([0, L])) ≤ 4

[
LV

ε

]
+ 2 log2

[
M L

ε
+ M

V
+ 2

]
.

PROOF: Using the same notation as in the proof of Lemma 3.1—and especially

with the same definitions of �x and �y—we introduce

U
′ = {U(

χ−[v], χ+[v]) | v ∈ IL ,M,V } .

Let

N =
[

LV

ε

]
+ 1 .

As before, U ′ is a covering of IL ,M,V by sets of diameter at most

2N�x�y = 2
LV

N
≤ 2ε .

On the other hand #U ′ ≤ (#A)2, where A is the set{
0 ≤ a0 ≤ · · · ≤ aN−1 ≤ [

M
V

N
] + 1 | ak ∈ N and aN−1 − a0 ≤ N

}
.

To any such sequence a0, . . . , aN−1 we associate (a0, p1, . . . , pN−1) defined by

pk = ak − ak−1 for k = 1, . . . , N − 1. Define

B = {
a0 ∈ N | 0 ≤ a0 ≤ [

M
V

N
] + 1

}
C = {

(p1, . . . , pN−1) ∈ N
N−1 | p1 + · · · + pN−1 ≤ N

}
.

By using the estimate (3.6) for #C , we obtain

#A ≤ #B · #C ≤ ([
M
V

N
] + 2

)
22N−2,

which implies

#U ′ ≤ 24(N−1)
([

M
V

N
] + 2

)2
.

Hence

Hε

(
IL ,M,V | L1([0, L])) ≤ 4(N − 1) + 2 log2

[
M
V

N + 2
]

.

With N = [LV/ε] + 1, this leads to the desired estimate. �

4 Proofs of Theorem 2.2 and 2.3

PROOF OF THEOREM 2.2: First, we use the finite speed of propagation for the

hyperbolic equation (1.2). Let cM = sup|z|≤M | f ′′(z)|. For every uin ∈ CL ,m,M and

t > 0 we have (see [4], p. 19)

(4.1) supp(S(t)uin) ⊂ [−L(t), L(t)] where L(t) = L + 2cM

√
2mt

a
.

(Indeed, by the maximum principle, ‖u(t, · )‖L∞ ≤ M , and the maximum speed of

propagation at each time t > 0 is

sup
z∈R

| f ′(u(t, z))| ≤ cM‖u(t, ·)‖L∞ ≤ cM

√
2m

at
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by Proposition 1.1).

Next, for each t > 0, u(t, · ) = S(t)uin is a function of bounded variation.

Specifically, by the Lax-Oleinik bound (1.4),

µt = 1

at
− ux(t, · )

is a nonnegative distribution—and therefore a nonnegative Radon measure—for

each t > 0. Thus, u(t, · ) is decomposed into the difference of two nondecreasing

functions in the following way:

(4.2) u(t, x ± 0) =
∫ x

−L(t)

dz

at
−

∫ x ± 0

−L(t)−0

dµt(z) = u1(t, x) − u2(t, x ± 0) .

Below, we use the notation

S2(t)u
in = u2(t, · ) for each t > 0.

Notice that the function u1 in the decomposition (4.2) is independent of uin. Hence,

for each t > 0 and ε ∈ ]0, 1[, we have

(4.3) Hε

(
S(t) CL ,m,M | L1(R)

) = Hε

(
S2(t) CL ,m,M | L1([−L(t), L(t)])) .

Next we discuss the properties of u2(t, · ). Clearly, u2(t, · ) is a nondecreasing

function on [−L(t), L(t)] that satisfies u2(−L(t) − 0) = 0 and

u2(L(t) + 0) =
∫ L(t)+0

−L(t)−0

dµt(z)

= 2L(t)

at
− (

u(t, L(t) + 0) − u(t,−L(t) − 0)
)

≤ 2L(t)

at
+ 2

√
2m

at

with L(t) = L + 2cM

√
2mt/a. Thus, for each t > 0, the set of functions

x �→ S2(t)u
in(x + L(t))

is included in the class IL ′,V ′ with

L ′ = 2L(t) and V ′ = 2L(t)

at
+ 2

√
2m

at
.

Theorem 2.2 follows from this observation after applying Lemma 3.1 and (4.3).

�

PROOF OF THEOREM 2.3: Observe that S2(t)u
in is a nondecreasing function

such that

S2(t)u
in(R − 0) − S2(t)u

in(−R + 0) ≤ 2R

at
+ 2

√
2m

at
and

0 ≤ S2(t)u
in ≤ 2L(t)

at
+ 2

√
2m

at
on [−R, R].
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In other words, the set of functions defined on [0, 2R] by

x �→ S2(t)u
in(x + R)

belongs to the class I2R,M ′,V ′ with

M ′ = 2L(t)

at
+ 2

√
2m

at
and V ′ = 2R

at
+ 2

√
2m

at
.

Then we conclude as in the proof of Theorem 2.2 by applying this time Corollary

3.2. �
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