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Abstract. We prove that if Ω ⊂ Rn is a bounded open set and nα > dimb(∂Ω) = d, then the Brouwer

degree deg(v,Ω, ·) of any Hölder function v ∈ C0,α (Ω,Rn) belongs to the Sobolev space Wβ,p(Rn) for every

0 ≤ β < n
p
− d
α

. This extends a summability result of Olbermann and in fact we get, as a byproduct, a more

elementary proof of it. Moreover we show the optimality of the range of exponents in the following sense: for

every β ≥ 0 and p ≥ 1 with β > n
p
− n−1

α
there is a vector field v ∈ C0,α(B1,Rn) with deg (v,Ω, ·) /∈Wβ,p,

where B1 ⊂ Rn is the unit ball.

1. Introduction

We are interested in the regularity and summability properties of the Brouwer degree of a Hölder contin-

uous function v ∈ C0,α (Ω,Rn) defined on an open, bounded set Ω ⊂ Rn with

n− 1 ≤ d := dimb(∂Ω) < n , (1)

where dimb denotes the box counting dimension. In the recent note [4] Olbermann showed that the Brouwer

degree is an Lp function for every 1 ≤ p < nα
d . A different proof of the L1 summability when ∂Ω has a

Lipschitz boundary has been given independently by Züst in [6]: in fact, although Züst’s proof1 does not

yield the range of summability exponents of Olbermann’s proof, it allows to conclude the L1 estimate when

each component vi has different Hölder regularity C0,αi and 1
n−1

∑
i αi > 1. We do not know how to modify

Olbermann’s argument in order to yield the latter conclusion and thus the results in [4] and [6] complement

each other. A natural conjectural generalization of both is that the degree is in Lp under the assumption that

1 ≤ p < 1
d

∑
i αi (a trivial consequence of Olbermann’s theorem is Lp summability for p < n

d mini αi). We

do not know how to prove such statement but we can at least prove L1 summability under the assumptions

that d = dimb(∂Ω) ≥ n− 1 and
∑
i αi > d (cf. Theorem 2.1).

The most important point of this note is that Olbermann’s idea can be improved to show higher (fractional)

Sobolev regularity. In particular the following is our main theorem. As usual [·]C0,α denotes the Hölder and

[·]Wβ,p the Gagliardo seminorm when β > 0 and the Lp norm for β = 0.

Theorem 1.1. Let Ω ⊂ Rn be open and bounded, d be as in (1) and v ∈ C0,α (Ω,Rn), where α ∈] dn , 1].

Then the Brouwer degree deg(v,Ω, ·) satisfies the estimate

[deg (v,Ω, ·)]Wβ,p ≤ C(Ω, n, α, β, p)[v]
n
p−β
C0,α (2)

for any pair (β, p) with p ≥ 1 and 0 ≤ β < n

p
− d

α
. (3)

Observe that the endpoints of (3) form the segment σ = {β = n
p −

d
α} and if we let (β1, p1) = (nα−n+1

α , 1)

be the right extremum of the segment, then W β1,p1 embeds in W β,p for every (β, p) ∈ σ. In particular our

theorem has the following obvious corollary.

1There is a gap in the argument of the main result of [6]: however the proof of the L1 estimate for the Brouwer degree, which

in that note is regarded as a technical tool, is correct.
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Corollary 1.2. Let Ω ⊂ Rn be open and bounded, d be as in (1) and {vk} ⊂ C0,α (Ω,Rn) a bounded sequence

converging uniformly to v, where α ∈] dn , 1]. Then, for every pair (β, p) as in (3), the sequence deg (vk,Ω, ·)
converges to deg (v,Ω, ·) strongly in W β,p.

As already mentioned above, our proof is built upon the ideas of Olbermann in [4]. However we report

also a self-contained and more elementary argument for his result: the key simplification can be found in

the direct elementary proof of Theorem 2.1 below. A part of this theorem is shown in [4] using tools from

interpolation theory. We instead derive it directly and use our approach to extend Züst’s result in the sense

mentioned above. For the reader’s convenience we then show how to recover Olbermann’s higher integrability

in few lines, although the argument is already contained in [4]. From Theorem 2.1 we then derive Theorem

1.1 using heavier machinery from harmonic analysis.

It has already been shown in [4] that, when β = 0 and d > n− 1, the range of exponents in Theorem 1.1

cannot be extended beyond the endpoints: more precisely, [4, Theorem 1.2] proves that, if p > nα
d , then there

is a fixed open set Ω with dimb(∂Ω) = d and a bounded sequence {vk} ⊂ C0,α(Ω) for which ‖deg(vk,Ω, ·)‖Lp ↑
∞ (note however, that the proof in [4] does not yield a v ∈ C0,α(Ω) for which deg(v,Ω, ·) 6∈ Lp, because

the sequence produced by the argument converges to 0, cf. [4, Section 4.2]). In this note we discuss the

optimality of the range in the case d = n − 1: our main conclusion is the following theorem, which, by

Sobolev embedding, has the immediate Corollary 1.4.

Theorem 1.3. For any n ≥ 2, p ≥ 1 and α < p(n−1)
n there is v ∈ C0,α (B1,Rn) such that deg (v,B1, ·) /∈ Lp,

where B1 ⊂ Rn is the unit ball.

Corollary 1.4. For any n ≥ 2, p ≥ 1, α ≥ 0 and β > n
p −

n−1
α there is v ∈ C0,α (B1,Rn) with deg(v,B1, ·) /∈

W β,p.

The case of the endpoints is certainly more subtle. Indeed, if v ∈ C0,1 and Ω is a bounded Lipschitz

domain, then the area formula and elementary considerations in degree theory imply that deg v ∈ BV (the

space of functions of bounded variation). In fact, with a little help from the theory of BV functions and

Caccioppoli sets, the latter statement can be shown even under the more technical assumption that the

n− 1-dimensional Hausdorff measure of ∂Ω is finite. Therefore:

• deg(v,Ω, ·) ∈ Ln/(n−1), by the Sobolev embedding of BV (Rn), hence showing that the endpoint

(β, p) = (0, n
n−1 ) could be included if we assume that ∂Ω has finite n− 1-dimensional measure;

• since the degree takes integer values and vanishes on Rn \ v(Ω), it belongs to W 1,1 only if it vanishes

identically: hence, even assuming that ∂Ω has finite n−1-dimensional measure, the endpoint (β, p) =

(1, 1) can be included only if we replace W 1,1 with BV .

1.1. Acknowledgments. The research of both authors has been supported by the grant 200021 159403 of

the Swiss National Foundation.

2. First estimate and change of variables

The starting point of Olbermann’s proof is the classical change of variable formulaˆ
Rn
ϕ(y) deg(v,Ω, y) dy =

ˆ
Ω

ϕ(v(x)) detDv(x) dx , (4)

which is valid if v is regular enough (compare e.g. [1]). By representing the integrand ϕ(v(x))detDv(x) as

a sum of weakly defined Jacobian determinants, using Stokes theorem and tools from interpolation theory
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Olbermann manages to bound the right hand side of (4) by a (suitable power of the) C0,α norm of v and

the Lp
′

norm of ϕ, where α is as above and p′ is conjugate to p. In fact, implicit in his proof is the estimate

(6) below, which will play a crucial role for us as well. On the other hand our elementary argument yields

immediately, as a byproduct, that the degree is an L1 function and thus we do not have to resort to any

weak notion of Jacobian determinant. In passing we also get a simple proof of Züst’s result, together with

an appropriate generalization.

Theorem 2.1. Let Ω ⊂ Rn, n and d be as in Theorem 1.1. Assume that v = (v1, . . . , vn) is a continuous

map v : Ω→ Rn for which vi ∈ C0,αi . If
∑
i αi > d, then deg (v,Ω, ·) ∈ L1 and

‖deg (v,Ω, ·)‖L1 ≤ C(Ω, n, α1, . . . , αn)

n∏
i=1

[vi]C0,αi . (5)

If in addition α = mini αi >
d
n , then for any ψ ∈ C1 (Rn,Rn) we have∣∣∣∣ˆ

Rn
deg (v,Ω, y) divψ(y) dy

∣∣∣∣ ≤ C(Ω, n, α, γ)[v]n−1+γ
C0,α(Ω)[ψ]C0,γ(BR) , (6)

where γ ∈ (0, 1) is such that (n− 1 + γ)α > d and R > 0 such that v (Ω) ⊂ BR(0).

2.1. Two technical lemmas. We record here two simple facts related to the dimension of ∂Ω.

Lemma 2.2. Let Ω ⊂ Rn be a bounded open set with d := dimb (∂Ω) < n. Then for any ε > 0 the function

dist (x, ∂Ω)d+ε−n is integrable.

Proof. Fix 0 < ε < n − d and let W be the Whitney decomposition of Ω and let Wk := {Q ∈ W :

Q cube of sidelength 2−k}. Then

(1) dist(Q, ∂Ω) ≥ 2−k
√
n for any Q ∈Wk and

(2) there exists C ≡ C(ε) > 0 such that #Wk ≤ C2k(d+ε/2) for any k ∈ N (cf. Theorem 3.12 in [3]).

Since Q̊ ∩ Q̊′ = ∅ for any Q 6= Q′ we haveˆ
Ω

dist(x, ∂Ω)d+ε−n dx =
∑
k≥1

∑
Q∈Wk

ˆ
Q

dist(x, ∂Ω)d+ε−n dx ≤ C(n)
∑
k≥1

∑
Q∈Wk

Ln (Q) 2−k(d+ε−n)

≤ C(n, ε)
∑
k≥1

2k(d+ε/2)2−k(d+ε) ≤ C(n, ε) < +∞ . �

Lemma 2.3. If v and Ω are as in Theorem 2.1 then v(∂Ω) is a Lebesgue-null set.

Proof. Fix a positive δ ≤
∑n
i=1 αi − d. For any ε > 0 there is a covering of ∂Ω with balls Bri(xi) such

that
∑
i r
d+δ
i ≤ (Hd+δ(∂Ω)) + ε = ε and ri ≤ 1, where Hω denotes the ω-dimensional Hausdorff measure.

Observe that v(Bri(xi)) is contained in a box Qi = Ii1 × . . .× Iin, where each interval Iij has length at most

(2ri)
αj [vj ]C0,αj . Thus

|v(∂Ω)| ≤
∑
i

|Qi| ≤ C
n∏
j=1

[vj ]C0,αj

∑
i

rα1+...+αn
i ≤ C(v)ε sup

i
rα1+...+αn−d−δ
i ≤ Cε .

Letting ε→ 0 we conclude the proof. �

2.2. Proof of Theorem 2.1. First of all recall that the degree depends only upon the values of v at the

boundary. We wish therefore to find a suitable extension ṽ of v which is smooth in the interior and satisfies

suitable estimates on the derivatives. For k = 0, 1, . . . set

Ak := {x ∈ Ω : dist(x, ∂Ω) > 2−k} (7)
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and define D0 := A1, Dk := Ak+1 \ Āk−1 for k = 1, 2, . . .. Fix a partition of unity {χk}k≥1 subordinate to

the cover {Dk}k≥0, i.e.

0 ≤ χk ≤ 1, suppχk ⊂ Dk,

+∞∑
k=0

χk = 1 on Ω .

Observe that each point x ∈ Ω has an open neighbourhood U ⊂ Ω on which at most three χk are non zero.

Next fix a standard symmetric mollifier ϕ with support contained in the ball of radius 1 and define the

functions vk : Dk → Rn by the convolution vk(x) := ϕ2−(k+1) ∗ v(x). Finally, set

ṽ :=

+∞∑
k=0

χkvk .

We have ṽ ∈ C∞ (Ω,Rn) and we claim that for every x ∈ Ω

|∇ṽi(x)| ≤ Cdist(x, ∂Ω)αi−1[vi]C0,αi (Ω) for all i . (8)

By standard estimates

|∇vik(y)| ≤ C
(

2−(k+1)
)αi−1

[vi]C0,αi , whenever y ∈ Dk .

Moreover, since
∑
∇χk = 0 and |∇χk| ≤ C2k we get

|∇ṽi(x)| ≤
k3∑
k=k1

|∇χk||vik(x)− vi(x)|+ C
(

2−(k3+1)
)αi−1

[vi]C0,αi ≤ C
(

2−(k3+1)
)αi−1

[vi]C0,αi .

Next, notice that |deg (v,Ω, y)| = |deg(ṽ,Ω, y)| is bounded by the number of preimages N(y) in Ω through

ṽ whenever y /∈ v(∂Ω). Since v(∂Ω) is a null set, by the area formula, (8) and Lemma 2.2 we have

ˆ
Rn
N(y)dy =

ˆ
Ω

|detDṽ(x)| dx ≤ C
n∏
i=1

[vi]C0,αi

ˆ
Ω

dist(x, ∂Ω)
∑
i αi−n dx ≤ C

n∏
i=1

[vi]C0,αi .

Next, fix a C1 test field ψ as in the second part of the statement and let α = mini αi. Define the maps

Ṽj = (ṽ1, . . . , ṽj−1, ψj ◦ ṽ, ṽj+1, . . . , ṽn) and the corresponding Vj = (v1, . . . , vj−1, ψj ◦ v, vj+1, . . . , vn) for

j = 1, . . . , n. In particular it follows
∑n
j=1 detDṼj = (divψ) ◦ ṽ detDṽ.

Let Ωk be smooth domains compactly contained in Ω so that2 Ωk ↑ Ω. By the smoothness of ṽ and ψ, we

can apply the area formula and conclude
ˆ
Rn

deg (ṽ,Ωk, y) divψ(y) dy =

ˆ
Ωk

divψ(ṽ(x)) detDṽ(x) dx =

n∑
j=1

ˆ
Ωk

detDṼj(x) dx

=

n∑
j=1

ˆ
Rn

deg (Ṽj ,Ωk, y) dy .

Next, observe that the number N(y) bounds |deg (ṽ,Ωk, y)| for every y and k and thus, by the dominated

convergence theorem,

lim
k→∞

ˆ
Rn

deg (ṽ,Ωk, y)divψ(y) dy =

ˆ
Rn

deg (ṽ,Ω, y)divψ(y) dy .

2Let Ak be the sets in (7) and 1Ak their indicator functions, consider the mollifications ηk := 1Ak ∗ ϕ2−k−1 and set Ωk =

{ηk > tk} for a suitably chosen 0 < tk < 1. The regularity of ∂Ωk follows from Sard’s Lemma.
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The same argument can be applied to Ṽj , since |detDṼj | ≤ |Dψ||Dṽ|n also belongs to L1(Ω). Hence, passing

into the limit in k and using the fact that ṽ agrees with v on ∂Ω we can concludeˆ
Rn

deg (v,Ω, y)divψ(y) dy =
∑
j

ˆ
deg (Vj ,Ω, y) dy .

On the other hand for each Vj we have [V ij ]C0,α ≤ [v]C0,α when i 6= j and [V jj ]C0,αγ ≤ [ψ]C0,γ [v]γC0,α . Since

by our choice of γ we have (n− 1 + γ)α > d, we can apply (5) to conclude

‖deg (Vj ,Ω, ·)‖L1 ≤ C(n,Ω, α, γ, d)[v]n−1+γ
C0,α [ψ]C0,γ .

3. Proofs of Theorem 1.1 and of Corollary 1.2

3.1. Direct proof of Theorem 1.1 for β = 0. This section follows essentially Olbermann’s argument and

is only added for the reader’s convenience in order to show that the harmonic analysis of the next section is

only needed for β > 0. The key is the following proposition.

Proposition 3.1. Let Ω ⊂ Rn, n, d, α and v be as in Theorem 1.1 with ‖v‖C0 ≤ 1 and fix 1 < p < nα
d .

Then, if we denote by p′ the dual exponent of p, we have the estimate∣∣∣∣ˆ deg (v,Ω, y)ϕ(y) dy

∣∣∣∣ ≤ C(Ω, n, d, α, p.β)[v]
n
p

C0,α‖ϕ‖Lp′ ∀ϕ ∈ C∞c (Rn) . (9)

The case β = 0 of Theorem 1.1 then follows easily when ‖v‖C0 ≤ 1: just take the supremum over

ϕ ∈ C∞c ∩{‖ϕ‖Lp′ ≤ 1} in (9) and use the density of C∞c in Lp
′

together with the usual duality (Lp)∗ = Lp
′
.

To remove the assumption that ‖v‖C0 ≤ 1 it suffices, for a general nonzero v, to consider the normalization

v/‖v‖C0 and compare its degree to that of v with an obvious scaling argument (cf. Section 3.2 below where

this argument is repeated with more details). The extension to p = 1 follows because deg(v,Ω, ·) is supported

in the bounded set v(Ω), whose diameter can be estimated using the Hölder norm of the function v. We are

thus left to show (9). Fix ϕ and consider the potential theoretic solution ζ of

−∆ζ = ϕ .

By classical Calderon-Zygmund estimates we have ‖ζ‖W 2,p′ (B2) ≤ C‖ϕ‖Lp′ . So, if we set ψ = −∇ζ, we

conclude divψ = ϕ on B2 and, from the Sobolev embedding, [ψ]C0,γ(B2) ≤ C‖v‖Lp′ , where γ = 1 − n
p′ =

1− n+ n
p > 1− n+ d

α . Since deg(v,Ω, ·) is supported in B2, we can apply Theorem 2.1 to conclude (9).

3.2. Bessel potential spaces when β > 0. Rather than showing estimate (2) we will show, for the

exponents in the ranges 1 < p < nα
d and 0 ≤ β < n

p −
d
α , the slightly different estimate

‖deg(v,Ω, ·)‖Hβ,p ≤ C‖v‖
n
p−β
C0,α when ‖v‖C0 ≤ 1, (10)

where Hβ,p (Rn) is the Bessel potential space (see below for the relevant definition). Recall (see e.g. the

classical textbook of Triebel [5]) that the spaces W β,p and Hβ,p correspond, respectively, to the Triebel-

Lizorkin spaces F p,pβ and F p,2β . Since we have the continuous embedding F p,qβ ⊂ F p,q
′

β−ε for every q, q′ and

every ε > 0, we get as a corollary of (10) the estimate

‖deg(v,Ω, ·)‖Wβ,p ≤ C‖v‖
n
p−β
C0,α when ‖v‖0 ≤ 1. (11)

From (11) it follows by scaling that for any nonzero v as in Theorem 1.1 we have

[deg(v,Ω, ·)]Wβ,p = ‖v‖
n
p−β
C0

[
deg

(
v

‖v‖C0

,Ω, ·
)]

Wβ,p

≤ C‖v‖
n
p−β
C0,α . (12)
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Apply the latter estimate to ṽ := v − v(x0) for some x0 ∈ Ω. Since deg (ṽ,Ω, y) = deg (v,Ω, y + v(x0)) and

‖ṽ‖C0 ≤ C(Ω, α)[v]C0,α we recover (2).

Recall that the Bessel potential of degree β > 0 is the L1 function Jβ such that Ĵβ(ξ) =
(
1 + 4π2|ξ|2

)−β/2
(where ĥ denotes the Fourier transform of h). The convolution with Jβ defines a continuous linear map

Jβ : Lp → Lp and can be regarded as the pseudodifferential operator (Id−∆)−β/2. In particular

(Id−∆)J2ϕ = ϕ ∀ϕ ∈ C∞c (Rn) . (13)

Concerning the Bessel potential space Hβ,p we will need the following facts (cf. again [5]):

(F1) f ∈ Hβ,p if and only if there is g ∈ Lp with f = Jβ(g); such g is unique and ‖f‖Hβ,p = ‖g‖Lp ;

(F2) (Hβ,p, ‖ · ‖Hβ,p) is a separable reflexive Banach space for any p ∈]1,∞[ and C∞c (Rn) is dense in it;

(F3) if βp > n and p ≥ 2 we have the continuous inclusion Hβ,p ⊂ W β,p and hence, by Morrey’s

embedding, Hβ,p ⊂ C0,γ with γ = (βp− n)/p.

The idea of the proof of Theorem 1.1 is to show that deg(v,Ω, ·) is an element of the dual of (Hβ,p)∗ and to use

the reflexivity property in (F2). As usual, (Hβ,p)∗ denotes the Banach space of bounded linear functionals

L : Hβ,p → R endowed with the dual norm ‖ · ‖(Hβ,p)∗ . Moreover, since C∞c (Rn) is dense in Hβ,p, we clearly

have

‖L‖(Hβ,p)∗ := sup {L(u) : u ∈ C∞c (Rn) and ‖u‖Hβ,p ≤ 1} . (14)

Of course
(
Hβ,p

)∗
is a subspace of the space of tempered distributions and we can consider C∞c as a subset

of
(
Hβ,p

)∗
via the identification of any element ϕ ∈ C∞c with the linear functional u 7→

´
ϕu. We then have

the following standard consequence of distribution theory

Lemma 3.2. C∞c is strongly dense in (Hβ,p)∗ if p ∈]1,∞[.

Proof. Let H be the closure of C∞c in the norm ‖ · ‖(Hβ,p)∗ . If H were a strict subset of Hβ,p, then by Hahn-

Banach there would be a nontrivial linear functional L′ : (Hβ,p)∗ → R wich vanishes on H. By reflexivity

L′ is given by an element u ∈ Hβ,p, which must therefore be nonzero. Since however L′ vanishes on H, we

conclude ˆ
uϕ = 0 ∀ϕ ∈ C∞c .

Since u ∈ Lp, the latter implies that u ≡ 0, which is a contradiction. �

(10) is then a consequence of the following natural generalization of Proposition 3.1.

Proposition 3.3. Let Ω ⊂ Rn, n, d, α and v be as in Theorem 1.1 with the additional assumption ‖v‖0 ≤ 1

and fix 1 < p < nα
d and 0 < β < n

p −
d
α . Then we have the estimate∣∣∣∣ˆ

Rn
deg (v,Ω, y)ϕ(y) dy

∣∣∣∣ ≤ C(Ω, n, d, α, p.β)[v]
n
p−β
C0,α ‖ϕ‖(Hβ,p)∗ ∀ϕ ∈ C∞c (Rn) . (15)

We will prove Proposition 3.3 in the next section. Assuming it, we now show (10). Consider the linear

functional L′′ : C∞c → R given by

L′′(ϕ) :=

ˆ
Rn

deg(v,Ω, y)ϕ(y) dy .

By Lemma 3.2 and (15), L′ extends to a unique bounded linear functional L : (Hβ,p)∗ → R and moreover

‖L‖(Hβ,p)∗∗ ≤ C‖v‖
n
p−β
C0,α .
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By reflexivity L is represented by an element u ∈ Hβ,p such that ‖u‖Hβ,p = ‖L‖(Hβ,p)∗∗ . This means
ˆ
Rn
u(y)ϕ(y) dy = L′′(ϕ) =

ˆ
Rn

deg(v,Ω, y)ϕ(y) dy

for every ϕ ∈ C∞c . Since however both deg(v,Ω, ·) and u are Lp functions, they must coincide. Hence

‖deg(v,Ω, ·)‖Hβ,p = ‖u‖Hβ,p = ‖L‖(Hβ,p)∗∗ ≤ C‖v‖
n
p−β
C0,α .

3.3. Proof of Proposition 3.3. In order to prove the estimate (15), we will invoke property (6) after

representing ϕ as the divergence of a suitable vector field, which is the purpose of the following lemma.

Lemma 3.4. Let ϕ ∈ C∞c (Rn) and assume 1 < p < n
n−1 and β ∈]0, 1[ with (1 − β)p′ > n (where p′ is the

dual exponent of p). Then there exists ψ ∈ C∞ (Rn,Rn) such that

divψ = ϕ on B2

and, setting γ = 1− β − n/p′,
‖ψ‖C0,γ(B2) ≤ C(n, γ, β, p)‖ϕ‖(Hβ,p)∗ .

Proof. First of all observe that the condition 1 < p < n
n−1 implies p′ > n so that the condition on β makes

sense. Set ζ = J2ϕ. Then ζ ∈ C∞ (Rn) satisfies

−∆ζ + ζ = ϕ on Rn (16)

and we claim that

‖ζ‖C1,γ(Rn) ≤ C‖ϕ‖(Hβ,p)∗ . (17)

Indeed, set f = Jβϕ ∈ Lp
′
(Rn) with ‖f‖Lp′ ≤ C‖ϕ‖Lp′ < +∞, and J2−βf = J2ϕ = ζ. Observe that for

any g ∈ C∞c (Rn) with ‖g‖Lp ≤ 1 we haveˆ
Rn
fg dx =

ˆ
Rn
ϕJβg dx ≤ ‖ϕ‖(Hβ,p)∗‖Jβg‖Hβ,p ≤ ‖ϕ‖(Hβ,p)∗ .

Taking the supremum over such functions g yields ‖ζ‖H2−β,p′ ≤ ‖ϕ‖(Hβ,p)∗ . Claim (17) then follows by the

continuous embedding (F3).

Now fix a cutoff function η ∈ C∞c (Rn) with η ≡ 1 on B2 and spt η ⊂ B3 and denote by ζ̄ the classical

potential theoretic solution of −∆ζ̄ = ζη. By classical estimates (cf. [2, Chapter 4]) we get

‖∇ζ̄‖C0,γ(B2) ≤ C‖ζη‖C0,γ(B4) ≤ C‖ζ‖C1,γ(Rn) ≤ C‖ϕ‖(Hβ,p)∗ . (18)

Finally we set ψ := −∇(ζ̄ + ζ). Then by (16)

divψ = ζ −∆ζ = ϕ on B2 ,

and by (17) and (18)

‖ψ‖C0,γ(B2) ≤ C‖ϕ‖(Hβ,p)∗ . �

The proof of (15) is now an immediate corollary of Theorem 2.1 and Lemma 3.4.

3.4. Proof of Corollary 1.2. Note that:

• deg (vk,Ω, ·) converges pointwise to deg (v,Ω, ·) on Rn \ v(∂Ω);

• v(∂Ω) is a Lebesgue null set;

• For any pair (β′, p) as in (3) with β′ > β we have a uniform bound on ‖deg (vk,Ω, ·)‖Wβ′,p ;

• There is R > 0 such that ‖v‖C0 , supk ‖vk‖C0 < R and thus the functions deg (vk,Ω, ·) and deg (v,Ω, ·)
all vanish outside BR(0).
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Thus the strong convergence claimed in Corollary 1.2 follows from the compact embedding of W β′,p(BR(0))

into W β,p(BR(0)).

4. Proof of Theorem 1.3

To prove Theorem 1.3 we construct, for p ∈ [1, n
n−1 [ and α < p(n−1)

n , a map v ∈ C0,α (B1,Rn) with

deg(v,B1, ·) /∈ Lp (Rn) by explicitly defining it on the boundary ∂B1. Since the support of degree is bounded,

clearly our map cannot belong to Lp
∗

for any p∗ larger than such p. Any C0,α extension of v to the whole

B1 then does the job, since the degree only depends on the values on the boundary of the domain. The

image v(∂B1) will be the union of countably many spheres Sk with decreasing radii rk. Each sphere Sk will

be circled a certain ck times in each direction. The goal is to choose the radii rk and the number of circlings

ck in such a way that v is Hölder continuous with exponent α < p(n−1)
n , but deg(v,B1, ·) /∈ Lp (Rn).

Given p ∈ [1, n
n−1 [ we define a partition {Ik}k≥1 of the interval [−π, π[ as follows.

For k ≥ 1 define the numbers

|Ik| = c(n, p)k−(n−1
n + 1

p(n−1) ) , (19)

where the constant c(n, p) is determined by the condition
∑
k≥1

|Ik| = 2π. The sets Ik are then defined by

I1 =

[
−|I1|

2
,
|I1|
2

[
, and (20)

Ik =

[
−
∑k
i=1 |Ii|
2

,
−
∑k−1
i=1 |Ii|
2

[
∪

[∑k−1
i=1 |Ii|

2
,

∑k
i=1 |Ii|

2

[
, for k ≥ 2 . (21)

Note that in this way the length of the set Ik coincides with the number |Ik|.
For brevity (and clarity) we introduce the following map Φ : [−π, π[×[0, π]n−2 → Rn which is the usual

(almost) parametrization of the sphere:

Φ(θ1, . . . , θn−1) = (cos θ1, sin θ1 cos θ2, . . . , sin θ1 · . . . · sin θn−2 cos θn−1, sin θ1 · . . . · sin θn−2 sin θn−1)

The sets Ik naturally give a decomposition of the sphere ∂B1 into

Jk := Φ(Ik × [0, π]n−2) .

In the rest of the proof by a slight abuse of notation we identify Jk with Ik × [0, π]n−2 and define v over the

latter domains: the map Φ is a parametrization on [−π, π[×]0, π[n−2, however v will be constant on the set

[−π, π[×∂([0, π]n−2) and hence it will induce a well-defined map over the sphere.

For a given α < p(n−1)
n we then choose a number

q >
αp(n− 1)2

n(p(n− 1)− αn)
(22)

and define the radii

rk = k−q for k ≥ 1 . (23)

We then set the number of circlings to be

ck = k
qn−1
p(n−1) , (24)
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which with an appropriate choice of q in (22) is a natural number for all k. For notational convenience we

introduce the reparametrization

Θ(θ) =

 2π
|I1|θ + π when θ ∈ I1
4π(ck+ 1

2 )

|Ik| θ + φk(θ) when θ ∈ Ik, k ≥ 2 ,

where φk are phases defined by

φk(θ) = π + π(2ck + 1)

(
1− sgn(θ)

∑k
i=1 |Ii|
|Ik|

)
, (25)

which will ensure the continuity of the map.

We then introduce the centerpoints of the spheres

xk =

(r1, 0, . . . , 0) for k = 1 ,(
rk + 2

∑k−1
i=1 ri, 0, . . . , 0

)
for k ≥ 2 .

Finally we define

v(θ1, . . . , θn−1) = xk + rkΦ (Θ(θ1), ckθ2, . . . , ckθn−1) when θ1 ∈ Ik . (26)

The image v(∂B1) decomposes into the union of countably many spheres Sk = v(Jk) of radius rk and centers

xk. The intersection of any Sk with Sk+1 only contains the northpole of Sk (respectively the southpole of

Sk+1), see Figure 1.

Figure 1. The map v for n = 2: it goes around S1 once and traverses every Sk 2ck + 1
times (ck + 1/2 times on each component of Ik)

We claim that v ∈ C0,α (∂B1,Rn). First observe that the choice of q in (22) implies

rk ≤
(
|Ik|
ck

)α
. (27)

Indeed, this equation is equivalent to

k−q ≤ k−α(n−1
n + qn

p(n−1) ) ,

which is satisfied whenever

q

(
1− αn

p(n− 1)

)
>
α(n− 1)

n
,

i.e.

q >
αp(n− 1)2

n(p(n− 1)− αn)
.



10 DE LELLIS AND INAUEN

But inequality (27) guarantees the desired Hölder regularity. To see this, we first fix the angles θ2, . . . , θn−1

and consider variations only in the first variable. To this end we let

u(θ) = v(θ, θ2, . . . , θn−1) for θ ∈ [−π, π[ ,

fix θ, θ̃ ∈ [−π, π[ and consider the following cases.

(1) θ, θ̃ ∈ Ik for some k ≥ 1. If |θ − θ̃| ≥ |Ik|
2(ck+1/2) = |Ik|

2ck+1 , then

|u(θ)− u(θ̃)|
|θ − θ̃|α

≤ 2rk

(
|Ik|

2ck + 1

)−α
≤ C ,

by (27). If however |θ − θ̃| < |Ik|
2ck+1 , then

|u(θ)− u(θ̃)| ≤
4πrk(ck + 1

2 )

|Ik|
|θ − θ̃| ≤

4πrk(ck + 1
2 )

|Ik|

(
|Ik|

2ck + 1

)1−α

|θ − θ̃|α ≤ C|θ − θ̃|α .

(2) θ ∈ Ik+1, θ̃ ∈ Ik for some k ≥ 1. If |θ − θ̃| ≥ |Ik|, then

|u(θ)− u(θ̃)|
|θ − θ̃|α

≤ 4rk
|Ik|α

≤ C .

If however |θ − θ̃| < |Ik| then they lie in adjacent intervals and we can compare with the endpoint

θ∗ =
sgn(θ)

∑k
i=1 |Ii|

2 to get

|u(θ)− u(θ̃)|
|θ − θ̃|α

≤ |u(θ)− u(θ∗)|
|θ − θ∗|α

+
|u(θ̃)− u(θ∗)|
|θ̃ − θ∗|α

≤ C .

(3) θ ∈ Ik+j , θ̃ ∈ Ik for some k ≥ 1 and j ≥ 2. Clearly |θ − θ̃| ≥ 1
2

∑j−1
i=1 |Ik+i| so

|u(θ)− u(θ̃)|
|θ − θ̃|α

≤ 2α
∑k+j
i=k 2ri(∑j−1

i=1 |Ik+i|
)α ≤ 21+α

(
rk + rk+j

|Ik+1|α
+

j−1∑
i=1

ri
|Ik+i|α

)

≤ C

(
rk
|Ik|α

+

∞∑
i=1

c−αi

)
≤ C(p, α) ,

if q is chosen large enough.

The proof of the Hölder regularity is now complete in the case n = 2. In the more general case some extra

care is needed: a similar computation yields the Hölder regularity in the variable θi for every i = 2, . . . , n−1

but one must take into account that the map Φ is not really a parametrization of the sphere. We leave the

details to the reader.

To compute the degree we introduce the natural extension ṽ : [0, 1]× [−π, π[×[0, π]n−2 → Rn with

ṽ(r, θ1, . . . , θn−1) = xk + r · rkΦ (Θ(θ1), ckθ2, . . . , ckθn−1) when θ1 ∈ Ik , (28)

Then ṽ ([0, 1]× Jk) is a ball Bk with boundary ∂Bk = Sk. Fix a y ∈ Im(ṽ) \ ṽ(∂B1). Then there exists a

unique k ∈ N such that y ∈ Bk. We can therefore parametrize y by

y = xk + r · rkΦ(φ1, . . . , φn−1),

for some r ∈ [0, 1], φi ∈ [0, π] for i = 1, . . . , n− 2 and φn−1 ∈ [0, 2π[. By definition the degree is then given

by

deg(ṽ, B1, y) =
∑

x∈ṽ−1(y)

sgn detDṽ(x) .
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By the chain rule and the usual expression for the spherical volume element we get for a point x =

(r̃, θ1, . . . , θn−1) with ṽ(x) = y

detDṽ(x) = rnk (r · ck)n−1 4π(ck + 1
2 )

|Ik|
sinn−2(Θ1(θ1)) sinn−3 (ckθ2) · . . . · sin (ckθn−2) ,

hence we have to investigate the sign of the sines. To this end we observe that ṽ(r̃, θ1, . . . , θn−1) = y if and

only if 

r̃ = r

Θ(θ1) = φ1 + 2πm1 for m1 ∈ N ∩ [ 1
2 −

φ1

2π , 2ck + 3
2 −

φ1

2π ]

ckθ2 = φ2 + 2πm2 for m2 = 1, . . . , ck
...

...

ckθn−1 = φn−1 + 2πmn−1 for mn−1 = 1, . . . , ck .

(29)

Since for i = 1, . . . , n − 2 the angles φi satisfy 0 ≤ φi ≤ π this implies that sgn detDv(x) = 1 for any

x ∈ ṽ−1(y). Consequently, with the help of (29) we conclude

deg(ṽ, B1, y) = #v−1(y) ≥ 2cn−1
k .

From this in turn we deduceˆ
Rn
|deg(ṽ, B1, y)|p dy ≥ C

∑
k≥1

rnk c
p(n−1)
k = C

∑
k≥1

k−1 = +∞ ,

by the choice of rk and ck in (23) and (24) respectively. To conclude the proof we extend v by keeping its C0,α

norm to the whole B1, and are left with a map v ∈ C0,α (B1,Rn) such that deg(v,B1, ·) = deg(ṽ, B1, ·) /∈
Lp (Rn).

References

[1] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-

Verlag New York Inc., New York, 1969.

[2] David Gilbarg and Neil S. Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer-

Verlag, Berlin, 2001. Reprint of the 1998 edition.

[3] O. Martio and M. Vuorinen. Whitney cubes, p-capacity, and Minkowski content. Exposition. Math., 5(1):17–40, 1987.

[4] Heiner Olbermann. Integrability of the brouwer degree for irregular arguments. ArXiv e-prints. To appear in Annales IHP,

Analyse nonlinéaire, 2016.
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[6] R. Züst. A solution of Gromov’s Hölder equivalence problem for the Heisenberg group. ArXiv e-prints, January 2016.

Institut für Mathematik, Universität Zürich, CH-8057 Zürich
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