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Abstract

In this thesis we will present (following [CDL03]) the proof of the ex-
istence of closed embedded minimal surfaces in a closed 3-dimensional
manifold constructed via min-max arguments and we will prove genus
bounds for the produced surfaces. A stronger estimate was announced
by Pitts and Rubistein but to our knowledge its proof has never been
published. Our proofs follows ideas of Simon and uses an extension
of a famous result of Meeks, Simon and Yau on the convergence of
minimizing sequences of isotopic surfaces.





Contents

Introduction 1
0.1. Min–max construction of surfaces 1
0.2. Genus bounds 5
0.3. Why is the proof of Theorem 0.7 so complicated? 8

Chapter 1. Min-max construction 11
1.1. Stationary varifolds 11
1.2. Limits of suitable min–max sequences are stationary 16
1.3. Almost minimizing min-max sequences 20
1.4. Examples 27
1.5. Schoen–Simon curvature estimates 28

Chapter 2. Minimizing sequences of isotopic surfaces 31
2.1. Part I: Convex hull property 32
2.2. Part II: Squeezing Lemma 38
2.3. Part III: γ–reduction 42
2.4. Part IV: Boundary regularity 46
2.5. Part V: Convergence of connected components 58

Chapter 3. Existence and regularity of min-max surfaces 61
3.1. Overview of the proof of Theorem 3.1 61
3.2. Regularity theory for replacement 62
3.3. Proof of Lemma 2.17 70
3.4. Construction of replacements 70

Chapter 4. Genus bounds 73
4.1. Overview of the proof 73
4.2. Proof of Proposition 4.2 77
4.3. Considerations on (0.5) and (0.4) 87

Table of symbols 89

Bibliography 91

iii





Introduction

In this thesis we will collect and present answers to some long stand-
ing open questions concerning the existence of minimal surfaces in Rie-
mannian 3–Manifolds (we recall that minimal surfaces are regular sur-
faces whose mean curvature vanishes identically, i.e. critical points of
the area functional). We will give a partial answer, in particular, to
the following question:

Do closed 3–dimensional manifolds contain closed embedded mini-
mal surfaces and if yes, of which genus?

Note that, in one dimension less, i.e. on 2-dimensional Riemannian
manifolds, “closed 1-dimensional minimal surfaces” are closed simple
geodesics. Minimizing the length functional in a given nontrivial homo-
topy class shows the existence of nontrivial simple closed geodesics in
any 2-dimensional manifold which is not diffeomorphic to the sphere.
The existence of nontrivial simple closed geodesics on manifolds dif-
feomorphic to the 2-sphere is one of the most classical and celebrated
results of the first half of the 20th century in differential geometry. Its
solution started with the pioneering work of Birkhoff (see [Bir17]) and
culminated in the famous Theorem of Lyusternik and Shnirelman (see
[LS29]).

The first breakthrough on the question above was achieved by J.
Pitts in his monograph [Pit81]. The ideas contained in the latter
reference have influenced much of the subsequent literature and also
this thesis. Further results are due to F. Smith, L. Simon, and Pitts
and H. Rubistein (see [PR86] and [PR87]). All the theorems claimed
by these authors build upon variational approaches which we call min-
max constructions. The first argument of this type was introduced
by Birkhoff to handle the existence of closed geodesics in the work
mentioned above.

0.1. Min–max construction of surfaces

Following [CDL03] we shortly present the general min-max con-
struction which is central for the purposes of this thesis. In the fol-
lowing M denotes a closed Riemannian 3–dimensional manifold, Diff0
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2 INTRODUCTION

is the identity component of the diffeomorphism group of M , and
Is is the set of smooth isotopies. Thus Is is the set of maps ψ ∈
C∞([0, 1] ×M,M) such that ψ(0, ·) is the identity and ψ(t, ·) ∈ Diff0

for every t.
An n–parameter family of surfaces is a collection of sets Σt ⊂M where
the parameter t belongs to [0, 1]n, Σt is an embedded closed surface
except for a small set T of exceptional t’s and the map t 7→ Σt enjoys
some continuity properties. In our case we have n = 1 and T is finite.

Definition 0.1. A generalized family of surfaces is a collection
{Σt}t∈[0,1] of closed subsets of M satisfying the following properties

1. The collection depends continuously on t, in the sense that
(c1) H2(Σt) is a continuous function of t;
(c2) Σt → Σt0 in the Hausdorff topology whenever t→ t0.

2. There is a finite exceptional set T ⊂ [0, 1] such that Σt is an
embedded smooth surface for every t 6∈ T ;

3. There is a finite set of points P such that, for t ∈ T , Σt is a
surface in M \ P .

Here H2 denotes the 2–dimensional Hausdorff measure, which for
smooth surfaces reduces to the usual surface area. Figure 1 gives (in
one dimension less) an example of a generalized 1–parameter family
with T = {0, 1}.

Figure 1. A 1–parameter family of curves on a 2–sphere
which induces a map F : S2 → S2 of degree 1.

With a small abuse of notation, we shall use the word “surface”
even for the sets Σt with t ∈ T . To avoid confusion, families of surfaces
will always be denoted by {Σt}. Thus, when referring to a surface
a subscript will denote a real parameter, whereas a superscript will
denote an integer as in a sequence.

Given a generalized family {Σt} we can generate new generalized
families via the following procedure. Take an arbitrary map ψ ∈
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C∞([0, 1] ×M,M) such that ψ(t, ·) ∈ Diff0 for each t and define {Σ′
t}

by Σ′
t = ψ(t,Σt). We will say that a set Λ of generalized families is

saturated if it is closed under this operation.

Remark 0.2. For technical reasons we require an additional prop-
erty for any saturated set Λ considered in this work: the existence of
some N = N(Λ) < ∞ such that for any {Σt} ⊂ Λ, the set P in Defi-
nition 0.1 consists of at most N points. This additional property will
play an important role later on.

Given a family {Σt} ∈ Λ we denote by F({Σt}) the area of its
maximal slice and by m0(Λ) the infimum of F taken over all families
of Λ; that is,

F({Σt}) = max
t∈[0,1]

H2(Σt) and(0.1)

m0(Λ) = inf
Λ

F = inf
{Σt}∈Λ

[

max
t∈[0,1]

H2(Σt)

]

.(0.2)

If limnF({Σt}n) = m0(Λ), then we say that the sequence of gen-
eralized families of surfaces {{Σt}n} ⊂ Λ is a minimizing sequence.
Assume {{Σt}n} is a minimizing sequence and let {tn} be a sequence
of parameters. If the areas of the slices {Σn

tn} converge to m0, i.e. if
H2(Σn

tn) → m0(Λ), then we say that {Σn
tn} is a min–max sequence.

(note that it is minimal)maximal slice
with area F({Σt}

surface with area m0(Λ)

Figure 2. F({Σt}) and m0(Λ).

It is natural to expect that, when m0(Λ) > 0, there exists at least
a min-max sequence {Σn

tn} which converges to a minimal surface of
area m0(Λ) (here we must take into account multiplicities: in principle
the Σn

tn could converge to an N–fold covering of the limiting surface).
In one dimension less, this intuitive idea was made rigorous in the
pioneering work of Birkhoff (see [Bir17]). The following elementary
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proposition (proved in Section 1.4 following the Appendix of [CDL03])
shows that, for any given M , there are many saturated sets Λ for which
m0(Λ) > 0.

Proposition 0.3. Let M be a closed 3-manifold with a Riemannian
metric and let {Σt} be the level sets of a Morse function. The smallest
saturated set Λ containing the family {Σt} has m0(Λ) > 0.

This proposition shows that the assumptions of Definition 0.1 are
indeed quite natural. When M is diffeomorphic to S3, a key example
of Λ is the smallest saturated set contanining the obvious generalized
family which “sweeps out” M with 2–dimensional spheres (see Remark
1.13).

Figure 3. A sweep–out of the torus by level sets of a
Morse function. In this case there are four degenerate
slices in the 1–parameter family.

The min-max construction used by J. Pitts in his monograph [Pit81]
is rather different than the one above. In [Pit81] he proves that in any
closed Riemannian manifold M of dimension n ≤ 6, there exists at
least one minimal embedded closed (smooth) hypersurface. Later, in
[SS81] Schoen and Simon extend Pitts’ approach to n ≥ 7 (producing
embedded minimal surfaces with singularity) and a much shorter proof
of the Pitts-Schoen-Simon Theorem has been given in [DT09].

However, Pitts min-max construction does not allow to control the
topology of the resulting minimal surface. The min-max construction
used in this thesis was (essentially) introduced in the PhD thesis of F.
Smith [Smi82] (written under the supervision of Simon). Combining
some ideas of Pitts with results of Meeks, Simon and Yau [MSY82] and



0.2. GENUS BOUNDS 5

Almgren and Simon [AS79], Smith showed the following remarkable
theorem (cp. with [SU81] for the “immersed” version, which appeared
few years before).

Theorem 0.4 (Smith). In any Riemannian manifold diffeomorphic
to the 3–dimensional sphere there exists at least one minimal embedded
2–dimensional sphere.

Later on Pitts and Rubinstein [PR86] announced an extension
of the work of Smith to more general min-max constructions in 3–
dimensional manifolds, dealing with multiparameter families, surfaces
of higher genus and bounds on the Morse index. To our knowledge,
Pitts and Rubinstein have never published proofs of their claims. Actu-
ally, not even Smith’s PhD thesis has been published, and it turns out
to be very difficult to follow his arguments. Only recentely T. Colding
and C. De Lellis, following the ideas introduced by Smith, have written
a complete proof of the first portion of the theorems of Smith and Pitts-
Rubinstein, which is the following regularity result (see [CDL03]).

Theorem 0.5. Let M be a closed 3-manifold with a Riemannian
metric. For any saturated Λ, there is a min–max sequence Σn

tn converg-
ing in the sense of varifolds to a smooth embedded minimal surface Σ
with area m0(Λ) (multiplicity is allowed).

We refer to Section 1.1 for the relevant notion of varifolds conver-
gence.

The original part of this thesis is a complete proof of the second
portion of the program, i.e. we give here genus bounds for the surface Σ
produced in the proof of Theorem 3.1 (this proof will appear on Journal
for Pure and Applied Mathematics, see for now [DP09]). However,
since several parts of the two portions are in common, we also present
the proof of Theorem 3.1. Summarizing, Chapters 1 and 3 of this
thesis are widely taken from the paper [CDL03] of T. Colding and C.
De Lellis, while the content of Chapters 2 and 4 is original research
of the author jointly with C. De Lellis (see [DP09]). This thesis is
therefore the first complete reference answering to the question stated
at the beginning of the introduction and it is obviously shorter than
the sum of the two papers [CDL03] and [DP09].

0.2. Genus bounds

In chapter 4 we bound the topology of Σ under the assumption that
the t–dependence of {Σt} is smoother than just the continuity required
in Definition 0.1. This is the content of the next definition.
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Definition 0.6. A generalized family {Σt} as in Definition 0.1 is
said to be smooth if:

(s1) Σt varies smoothly in t on [0, 1] \ T ;
(s2) For t ∈ T , Στ → Σt smoothly in M \ P .

Here P and T are the sets of requirements 2. and 3. of Definition 0.1.
We assume further that Σt is orientable for any t 6∈ T .

Note that, if a set Λ consists of smooth generalized families, then the
elements of its saturation are still smooth generalized families. There-
fore, the saturated set considered in Proposition 0.3 is smooth.

We next introduce some notation which will be consistently used
during the proofs in the next chapters. We decompose the surface Σ of
Theorem 3.1 as

∑N
i=1 niΓ

i, where the Γi’s are the connected components
of Σ, counted without multiplicity, and ni ∈ N \ {0} for every i. We
further divide the components {Γi} into two sets: the orientable ones,
denoted by O, and the non–orientable ones, denoted by N . We are
now ready to state the second main theorem presented in this thesis.

Theorem 0.7. Let Λ be a saturated set of smooth generalized fam-
ilies and Σ and Σn

tn the surfaces produced in the proof of Theorem 3.1
given in Chapter 3. Then

(0.3)
∑

Γi∈O

g(Γi) +
1

2

∑

Γi∈N

(g(Γi) − 1) ≤ g0 := lim inf
j↑∞

lim inf
τ→tj

g(Σj
τ ) .

Remark 0.8. According to our definition, Σj
tj is not necessarily a

smooth submanifold, as tj could be one of the exceptional parameters
of point 3. in Definition 0.1. However, for each fixed j there is an η > 0
such that Σj

t is a smooth submanifold for every t ∈]tj−η, tj[∪]tj , tj+η[.
Hence the right hand side of (0.3) makes sense.

Note that Smith’s Theorem 0.4 is an obvious corollary of Theorem
0.7 applied to the obvious min-max construction on M using 2-spheres
(see Remark 1.13).

In fact the inequality (0.3) holds with g0 = lim infj→∞ jg(Σj) for
every limit Σ of a sequence of surfaces Σj ’s that enjoy certain require-
ments of variational nature, i.e. that are almost minimizing in suffi-
ciently small annuli (see section 1.3). The precise statement will be
given in Theorem 4.1, after introducing the suitable concepts.

As usual, when Γ is an orientable 2–dimensional connected surface,
its genus g(Γ) is defined as the number of handles that one has to
attach to a sphere in order to get a surface homeomorphic to Γ. When
Γ is non–orientable and connected, g(Γ) is defined as the number of
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cross caps that one has to attach to a sphere in order to get a surface
homeomorphic to Γ (therefore, if χ is the Euler characteristic of the
surface, then

g(Γ) =

{
1
2
(2 − χ) if Γ ∈ N

2 − χ if Γ ∈ O
see [Mas91]). For surfaces with more than one connected component,
the genus is simply the sum of the genus of each connected component.

Our genus estimate (0.3) is weaker than the one announced by Pitts
and Rubinstein in [PR86], which reads as follows (cp. wih Theorem 1
and Theorem 2 in [PR86]):

(0.4)
∑

Γi∈O

nig(Γi) +
1

2

∑

Γi∈N

nig(Γi) ≤ g0 .

In Section 4.3 a very elementary example shows that (0.4) is false for
sequences of almost minimizing surfaces (in fact even for sequences
which are locally strictly minimizing). In this case the correct estimate
should be

(0.5)
∑

Γi∈O

nig(Γi) +
1

2

∑

Γi∈N

ni(g(Γi) − 1) ≤ g0 .

Therefore, the improved estimate (0.4) can be proved only by exploiting
an argument of more global nature, using a more detailed analysis of
the min–max construction.

The estimate (0.5) respects the rough intuition that the approxi-
mating surfaces Σj are, after appropriate surgeries, isotopic to coverings
of the surfaces Γi. For instance Γ can consist of a single component
that is a real projective space, and Σj might be the boundary of a
tubular neighborhood of Γ of size εj ↓ 0, i.e. a sphere. In this case Σj

is a double cover of Γ.

Our proof uses the ideas of an unpublished argument of Simon,
reported by Smith in [Smi82] to show the existence of an embedded
minimal 2–sphere when M is a 3–sphere. These ideas do not seem
enough to show (0.4): its proof probably requires a much more careful
analysis. In Section 4.3 we discuss this issue.
The unpublished argument of Simon has been used also by Grüter and
Jost in [GJ86]. The core of Simon’s argument is reported here with
a technical simplification. In Chapter 2 we then give a detailed proof
of an auxiliary proposition which plays a fundamental role in the ar-
gument. We will therein state a suitable modification of a celebrated
result of Meeks, Simon and Yau (see [MSY82]) in which we handle
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minimizing sequences of isotopic surfaces with boundaries (see Propo-
sition 2.2). This part is, to our knowledge, new: neither Smith, nor
Grüter and Jost provide a proof of it. Smith suggests that the proposi-
tion can be proved by suitably modifying the arguments of [MSY82]
and [AS79]. Though this is indeed the case, the strategy suggested by
Smith leads to a difficulty which we overcome with a different approach:
see the discussion in Section 2.3. Moreover, [Smi82] does not discuss
the “convex–hull property” of Section 2.1, which is a basic prerequisite
to apply the boundary regularity theory of Allard in [All75] (in fact we
do not know of any boundary regularity result in the minimal surface
theory which does not pass through some kind of convex hull property).

0.3. Why is the proof of Theorem 0.7 so complicated?

The main reason is the very weak notion of convergence under which
Theorem 3.1 is proved. Under the varifold convergence the genus is
indeed not necessarily lower semicontinuous: we give below a simple
example of this fact. On the other hand, the varifold convergence seems
to be the only one which allows us to build a succesfull variational
theory.

We end this introduction with a brief discussion of how a sequence
of closed surfaces Σj could converge, in the sense of varifolds, to a
smooth surface with higher genus. This example is a model situation
which must be ruled out by any proof of a genus bound.

• First take a sphere in R3 and squeeze it in one direction to-
wards a double copy of a disk (see the first three pictures in
Figure 4). Recall that the convergence in the sense of varifolds
does not take into account the orientation.

• Next take the disk and wrap it to form a torus in the standard
way (see the last five pictures in Figure 4).

With a standard diagonal argument we find a sequence of smooth em-
bedded spheres in R3 which, in the sense of varifolds, converges to a
double copy of an embedded torus.

This example does not occur in min–max sequences for variational
reasons. In particular, it follows from the arguments of our proofs that
such a sequence does not have the almost minimizing property in (suf-
ficiently small) annuli discussed in Section 1.3.
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Figure 4. Failure of genus bounds under varifold con-
vergence. A sequence of embedded spheres converges to
a double copy of a torus.





CHAPTER 1

Min-max construction

In this Chapter we will firstly introduce a more general setting of
min–max surfaces. Section 1.1 will be dedicated to the definition of
the measure theoretic concept of varifolds and their properties. In
sections 1.2 and 1.3 we will prove the existence, under some variational
hypothesis, of converging min–max sequences whose limits are good
candidates for being smooth embedded minimal surfaces (as it will be
proved in Chapter 3). In Section 1.4 we give some concrete examples of
min–max constructions and finally in Section 1.5 we recall an important
Theorem of Schoen and Simon for minimal surfaces which will be used
plenty throughout this work.

1.1. Stationary varifolds

1.1.1. Varifolds. We recall some basic facts from the theory of
varifolds; see for instance chapter 4 and chapter 8 of [Sim83] for further
information. Varifolds are a convenient way of generalizing surfaces to
a category that has good compactness properties. An advantage of
varifolds, over other generalizations (like currents), is that they do not
allow for cancellation of mass. This last property is fundamental for
the min–max construction.

If U is an open subset of M , any finite nonnegative measure on the
Grassmannian of unoriented 2–planes on U is said to be a 2–varifold in
U . The Grassmannian of 2–planes will be denoted by G2(U) and the
vector space of 2–varifolds is denoted by V2(U). Throughout we will
consider only 2–varifolds; thus we drop the 2.

We endow V(U) with the topology of the weak convergence in the
sense of measures, thus we say that a sequence V k of varifolds converge
to a varifold V if for every function ϕ ∈ Cc(G(U))

lim
k→∞

∫

ϕ(x, π) dV k(x, π) =

∫

ϕ(x, π) dV (x, π) .

Here π denotes a 2–plane of TxM . If U ′ ⊂ U and V ∈ V(U), then we
denote by V U ′ the restriction of the measure V to G(U ′). Moreover,

11



12 1. MIN-MAX CONSTRUCTION

‖V ‖ will be the unique measure on U satisfying
∫

U

ϕ(x) d‖V ‖(x) =

∫

G(U)

ϕ(x) dV (x, π) ∀ϕ ∈ Cc(U) .

The support of ‖V ‖, denoted by supp (‖V ‖), is the smallest closed set
outside which ‖V ‖ vanishes identically. The number ‖V ‖(U) will be
called the mass of V in U . When U is clear from the context, we say
briefly the mass of V .

Recall also that a 2–dimensional rectifiable set is a countable union
of closed subsets of C1 surfaces (modulo sets of H2–measure 0). Thus,
if R ⊂ U is a 2–dimensional rectifiable set and h : R → R+ is a Borel
function, then we can define a varifold V by
(1.1)∫

G(U)

ϕ(x, π) dV (x, π) =

∫

R

h(x)ϕ(x, TxR) dH2(x) ∀ϕ ∈ Cc(G(U)) .

Here TxR denotes the tangent plane to R in x. If h is integer–valued,
then we say that V is an integer rectifiable varifold. If Σ =

⋃
niΣi,

then by slight abuse of notation we use Σ for the varifold induced by
Σ via (1.1).

1.1.2. Pushforward, first variation, monotonicity formula.

If V is a varifold induced by a surface Σ ⊂ U and ψ : U → U ′ a
diffeomorphism, then we let ψ#V ∈ V(U ′) be the varifold induced by
the surface ψ(Σ). The definition of ψ#V can be naturally extended to
any V ∈ V(U) by
∫

ϕ(y, σ) d(ψ#V )(y, σ) =

∫

Jψ(x, π)ϕ(ψ(x), dψx(π)) dV (x, π) ;

where Jψ(x, π) denotes the Jacobian determinant (i.e. the area ele-
ment) of the differential dψx restricted to the plane π; cf. equation
(39.1) of [Sim83].

Given a smooth vector field χ, let ψ be the isotopy generated by
χ, i.e. with ∂ψ

∂t
= χ(ψ). The first variation of V with respect to χ is

defined as

[δV ](χ) =
d

dt
(‖ψ(t, ·)#V ‖)

∣
∣
∣
∣
t=0

;

cf. sections 16 and 39 of [Sim83].
When Σ is a smooth surface we recover the classical definition of

first variation of a surface:

[δΣ](χ) =

∫

Σ

divΣχ dH2 =
d

dt
(H2(ψ(t,Σ)))

∣
∣
∣
∣
t=0

.
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If [δV ](χ) = 0 for every χ ∈ C∞
c (U, TU), then V is said to be stationary

in U . Thus stationary varifolds are natural generalizations of minimal
surfaces.

Stationary varifolds in Euclidean spaces satisfy the monotonicity
formula (see sections 17 and 40 of [Sim83]):
(1.2)

For every x the function f(ρ) =
‖V ‖(Bρ(x))

πρ2
is non–decreasing.

When V is a stationary varifold in a Riemannian manifold a similar
formula with an error term holds. Namely, there exists a constant
C(r) ≥ 1 such that

(1.3) f(s) ≤ C(r)f(ρ) whenever 0 < s < ρ < r.

Moreover, the constant C(r) approaches 1 as r ↓ 0. This property
allows us to define the density of a stationary varifold V at x, by

θ(x, V ) = lim
r↓0

‖V ‖(Br(x))

πr2
.

Thus θ(x, V ) corresponds to the upper density θ∗2 of the measure ‖V ‖
as defined in section 3 of [Sim83]. The following theorem gives a useful
condition for rectifiability in terms of density:

Theorem 1.1. (Theorem 42.4 of [Sim83]). If V is a stationary
varifold with θ(V, x) > 0 for ‖V ‖–a.e. x, then V is rectifiable.

1.1.3. Tangent cones, Constancy Theorem. Tangent varifolds
are the natural generalization of tangent planes for smooth surfaces. In
order to define tangent varifolds in a 3–dimensional manifold we need
to recall what a dilation in a manifold is. If x ∈ M and ρ < Inj (M),
then the dilation around x with factor ρ is the map T xρ : Bρ(x) → B1

given by T xρ (z) = (exp−1
x (z))/ρ; thus if M = R3, then T xρ is the usual

dilation y → (y − x)/ρ.

Definition 1.2. If V ∈ V(M), then we denote by V x
ρ the dilated

varifold in V(B1) given by V x
ρ = (T xρ )♯V . Any limit V ′ ∈ V(B1) of a

sequence V x
sn

of dilated varifolds, with sn ↓ 0, is said to be a tangent
varifold at x. The set of all tangent varifolds to V at x is denoted by
T (x, V ).

It is well known that if the varifold V is stationary, then any tangent
varifold to V is a stationary Euclidean cone (see section 42 of [Sim83]);
that is a stationary varifold in R3 which is invariant under the dilations
y → y/ρ. If V is also integer rectifiable and the support of V is
contained in the union of a finite number of disjoint connected surfaces
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Σi, i.e. supp (‖V ‖) ⊂ ⋃ Σi, then the Constancy Theorem (see theorem
41.1 of [Sim83]) gives that V =

⋃
miΣ

i for some natural numbers mi.

1.1.4. Two lemmas about varifolds. We state and prove in
this subsection two technical lemmas on varifolds which will be useful
later. The first lemma is a weak version (in the varifolds setting) of the
classical maximum principle for minimal surfaces.

Lemma 1.3. Let U be an open subset of a 3–manifold M and W a
stationary 2–varifold in V(U). If K ⊂⊂ U is a smooth strictly convex
set and x ∈ (supp (‖W‖)) ∩ ∂K, then

(Br(x) \K) ∩ supp (‖W‖) 6= ∅ for every r > 0.

Proof. For simplicity assume that M = R3. The proof can be
easily adapted to the general case. Let us argue by contradiction; so
assume that there are x ∈ supp (‖W‖) and Br(x) such that (Br(x) \
K) ∩ supp (‖W‖) = ∅. Given a vector field χ ∈ C∞

c (U,R3) and a
2–plane π we set

Tr (Dχ(x), π) = Dv1χ(x) · v1 +Dv2χ(x) · v2

where {v1, v2} is an orthonormal base for π. Recall that the first vari-
ation of W is given by

δW (χ) =

∫

G(U)

Tr (Dχ(x), π) dW (x, π) .

Take an increasing function η ∈ C∞([0, 1]) which vanishes on [3/4, 1]
and is identically 1 on [0, 1/4]. Denote by ϕ the function given by
ϕ(x) = η(|y − x|/r) for y ∈ Br(x). Take the interior unit normal ν to
∂K in x, and let zt be the point x + tν. If we define vector fields ψt
and χt by

ψt(y) = − y − zt
|y − zt|

and χt = ϕψt ,

then χt is supported in Br(x) and Dχt = ϕDψt + ∇ϕ⊗ ψt. Moreover,
by the strict convexity of the subset K,

∇ϕ(y) · ν > 0 if y ∈ K ∩ Br(x) and ∇ϕ(y) 6= 0.

Note that ψt converges to ν uniformly in Br(x), as t ↑ ∞. Thus,
ψT (y) · ∇ϕ(y) ≥ 0 for every y ∈ K ∩ Br(x), provided T is sufficiently
large. This yields that

(1.4) Tr (∇ϕ(y) ⊗ ψT (y), π) ≥ 0 for all (y, π) ∈ G(Br(x) ∩K) .
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Note that Tr (Dψt(y), π) > 0 for all (y, π) ∈ G(Br(x)) and all t > 0.
Thus

δW (χT ) =

∫

G(Br(x)∩K)

Tr (DχT (y), π) dW (y, π)

(1.4)

≥
∫

G(Br(x)∩K)

Tr (ϕ(y)DψT (y), π) dW (y, π)

≥
∫

G(Br/4(x)∩K)

Tr (DψT (y), π) dW (y, π) > 0.

This contradicts that W is stationary and completes the proof. �

Lemma 1.4. Let x ∈ M and V be a stationary integer rectifiable
varifold in M . Assume T is the subset of the support of ‖V ‖ given by

T = {T (y, V ) consists of a plane transversal to ∂Bd(x,y)(x)} .

If ρ < Inj (M), then T is dense in (supp (‖V ‖)) ∩Bρ(x).

Proof. Since V is integer rectifiable, then V is supported on a
rectifiable 2–dimensional set R and there exists a Borel function h :
R → N such that V = hR. Assume the lemma is false; then there
exists y ∈ Bρ(x) ∩ supp (‖V ‖) and t > 0 such that

• the tangent plane to R in z is tangent to ∂Bd(z,x)(x), for any
z ∈ Bt(y).

We choose t so that Bt(y) ⊂ Bρ(x). Take polar coordinates (r, θ, ϕ) in
Bρ(x) and let f be a smooth nonnegative function in C∞

c (Bt(y)) with
f = 1 on Bt/2(y). Denote by χ the vector field χ(θ, ϕ, r) = f(θ, ϕ, r) ∂

∂r
.

We use the notation of the proof of Lemma 1.3. For every z ∈ R∩Bt(x),
the plane π tangent to R in z is also tangent to the sphere ∂Bd(z,x)(x).
Hence, an easy computation yields that Tr (χ, π)(z) = 2ψ(z)/d(z, x).
This gives

[δV ](χ) =

∫

R∩Bt(y)

2h(z)ψ(z)

d (z, x)
dH2(z) > C‖V ‖(Bt/2(y)) ,

for some positive constant C. Since y ∈ supp (‖V ‖), we have

‖V ‖(Bt/2(y)) > 0 .

This contradicts that V is stationary. �
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1.2. Limits of suitable min–max sequences are stationary

In the following we fix a saturated set Λ of generalized 1-parameter
families of surfaces and denote by m0 = m0(Λ) the infimum of the
areas of the maximal slices in Λ; cf. (0.1). If {{Σt}k} ⊂ Λ is a min-
imizing sequence, then it is easy to show the existence of a min–max
sequence which converge (after possibly passing to subsequences) to a
stationary varifold. However, as Fig. 1 illustrate, a general minimizing
sequence {{Σt}k} can have slices Σk

tk
with area converging to m0 but

not “clustering” towards stationary varifolds.

bad slicesgood slices

Figure 1. Slices with area close to m0. The good ones
are very near to a minimal surface of area m0, whereas
the bad ones are far from any stationary varifold.

In the language introduced above, this means that a given mini-
mizing sequence {{Σt}k} can have min–max sequences which are not
clustering to stationary varifolds. This is a source of some technical
problems and forces us to show how to choose a “good” minimizing
sequence {{Σt}k}. This is the content of the following proposition:

Proposition 1.5. There exists a minimizing sequence {{Σt}n} ⊂
Λ such that every min–max sequence {Σn

tn} clusters to stationary var-
ifolds.

A result similar to Proposition 1.5 appeared in [Pit81] (see theorem
4.3 of [P]). The proof follows from ideas of [AJ65] (cf. 12.5 there). For
simplicity we metrize the weak topology on the space of varifolds and
restate Proposition 1.5 using this metric.

Denote by X the set of varifolds V ∈ V(M) with mass bounded by
4m0, i.e., with ‖V ‖(M) ≤ 4m0. Endow X with the weak∗ topology and
let V∞ be the set of stationary varifolds contained inX. Clearly, V∞ is a
closed subset of X. Moreover, by standard general topology theorems,
X is compact and metrizable. Fix one such metric and denote it by
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d . The ball of radius r and center V in this metric will be denoted by
Ur(V ).

Proposition 1.6. There exists a minimizing sequence {{Σt}n} ⊂
Λ such that, if {Σn

tn} is a min–max sequence, then d (Σn
tn ,V∞) → 0.

Proof. The key idea of the proof is building a continuous map
Ψ : X → Is such that :

• If V is stationary, then ΨV is the trivial isotopy;
• If V is not stationary, then ΨV decreases the mass of V .

Since each ΨV is an isotopy, and thus is itself a map from [0, 1]×M →
M , to avoid confusion we use the subscript V to denote the dependence
on the varifold V . The map Ψ will be used to deform a minimizing
sequence {{Σt}n} ⊂ Λ into another minimizing sequence {{Γt}n} such
that :

For every ε > 0, there exist δ > 0 and N ∈ N such that

(1.5) if

{
n > N

and H2(Γntn) > m0 − δ

}

, then d (Γntn ,V∞) < ε.

Such a {{Γt}n} would satisfy the requirement of the proposition.
The map ΨV should be thought of as a natural “shortening process”

of varifolds which are not stationary. If the mass (considered as a
functional on the space of varifolds) were smoother, then a gradient
flow would provide a natural shortening process like ΨV . However, this
is not the case; even if we start with smooth initial datum, in very
short time the motion by mean curvature, i.e. the gradient flow of the
area functional on smooth submanifolds, gives surfaces which are not
isotopic to the initial one.

Step 1: A map from X to the space of vector fields.

The isotopies ΨV will be generated as 1–parameter families of dif-
feomorphisms satisfying certain ODE’s. In this step we associate to
any V a suitable vector field, which in Step 2 will be used to construct
ΨV .

For k ∈ Z define the annular neighborhood of V∞

Vk =
{
V ∈ X|2−k+1 ≥ d (V,V∞) ≥ 2−k−1

}
.

There exists a positive constant c(k) depending on k such that to every
V ∈ Vk we can associate a smooth vector field χV with

‖χV ‖∞ ≤ 1 and δV (χV ) ≤ −c(k).
Our next task is choosing χV with continuous dependence on V . Note
that for every V there is some radius r such that δW (χV ) ≤ −c(k)/2
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for every W ∈ Ur(V ). Hence, for any k we can find balls {Uk
i }i=1,...,N(k)

and vector fields χki such that :

The balls Ũk
i concentric to Uk

i with half the radii cover Vk;(1.6)

If W ∈ Uk
i , then δW (χ) ≤ −c(k)/2;(1.7)

The balls Uk
i are disjoint from Vj if |j − k| ≥ 2.(1.8)

Hence, {Uk
i }k,i is a locally finite covering of X \ V∞. To this family

we can subordinate a continuous partition of unit ϕki . Thus we set
HV =

∑

i,k ϕ
k
i (V )χki . The map H : X → C∞(M,TM) which to every

V associates HV is continuous. Moreover, ‖HV ‖∞ ≤ 1 for every V .

Step 2: A map from X to the space of isotopies.

For V ∈ Vk we let r(V ) be the radius of the smaller ball Ũ j
i which

contains it. We find that r(V ) > r(k) > 0, where r(k) only depends
on k. Moreover, by (1.7) and (1.8), for every W contained in the ball
Ur(V )(V ) we have that

δW (HV ) ≤ −1

2
min{c(k − 1), c(k), c(k + 1)}.

Summarizing there are two continuous functions g : R+ → R+ and
r : R+ → R+ such that

(1.9) δW (HV ) ≤ −g(d (V,V∞)) if d (W,V ) ≤ r(d (V,V∞)).

Now for every V construct the 1–parameter family of diffeomorphisms

ΦV : [0,+∞) ×M →M with
∂ΦV (t, x)

∂t
= HV (ΦV (t, x)).

For each t and V , we denote by ΦV (t, ·) the corresponding diffeomor-
phism of M . We claim that there are continuous functions T : R+ →
[0, 1] and G : R+ → R+ such that

- If γ = d (V,V∞) > 0 and we transform V into V ′ via the
diffeomorphism ΦV (T (γ), ·), then ‖V ′‖(M) ≤ ‖V ‖(M)−G(δ);

- G(s) and T (s) both converge to 0 as s ↓ 0.

Indeed fix V . For every r > 0 there is a T > 0 such that the curve of
varifolds

{V (t) = (ΦV (t, ·))♯V , t ∈ [0, T ]}
stays in Ur(V ). Thus

‖V (T )‖(M) − ‖V ‖(M) = ‖V (T )‖(M) − ‖V (0)‖(M)

≤
∫ T

0

[δV (t)](HV ) dt ,
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and therefore if we choose r = r(d (V,V∞)) as in (1.9), then we get the
bound

‖V (T )‖(M) − ‖V ‖(M) ≤ −Tg(d (V,V∞)).

Using a procedure similar to that of Step 1 we can choose T depending
continuously on V . It is then trivial to see that we can in fact choose T
so that at the same time it is continuous and depends only on d (V,V∞).

Step 3: Constructing the competitor and the conclusion.

For each V , set γ = d (V,V∞) and

ΨV (t, ·) = ΦV ([T (γ)] t, ·) for t ∈ [0, 1].

ΨV is a “normalization” of ΦV . From Step 2 we know that there is a
continuous function L : R → R such that

- L is strictly increasing and L(0) = 0;
- ΨV (1, ·) deforms V into a varifold V ′ with ‖V ′‖ ≤ ‖V ‖−L(γ).

Choose a sequence of families {{Σt}n} ⊂ Λ with F({Σt}n) ≤ m0 +1/n
and define {Γt}n by

(1.10) Γnt = ΨΣn
t
(1,Σn

t ) for all t ∈ [0, 1] and all n ∈ N

Thus

(1.11) H2(Γnt ) ≤ H2(Σn
t ) − L(d (Σn

t ,V∞)).

Note that {Γt}n does not necessarily belong to Λ, since the families
of diffeomorphisms ψt(·) = ΨΣn

t
(1, ·) may not depend smoothly on t.

In order to overcome this technical obstruction fix n and note that
Ψt = ΨΣn

t
is the 1–parameter family of isotopies generated by the 1–

parameter family of vector fields ht = T (Σn
t )HΣn

t
. Think of h as a

continuous map

h : [0, 1] → C∞(M,TM) with the topology of Ck seminorms.

Thus h can be approximated by a smooth map h̃ : [0, 1] → C∞(M,TM).

Consider the smooth 1–parameter family of isotopies Ψ̃t generated by
the vector fields h̃t and the family of surfaces {Γt}n given by Γnt =

Ψ̃t(1,Σ
n
t ). If supt ‖ht − h̃t‖C1 is sufficiently small, then we easily get

(by the same calculations of the previous steps)

(1.12) H2(Γnt ) ≤ H2(Σn
t ) − L(d (Σn

t ,V∞))/2.

Moreover, since Ψ̃t(1, ·) is a smooth map, this new family belongs to
Λ.
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Clearly {{Γt}n} is a minimizing sequence. We next show that
{{Γt}n} satisfies (1.5). Note first that the construction yields a contin-
uous and increasing function λ : R+ → R+ such that

(1.13) λ(0) = 0 and d (Σn
t ,V∞) ≥ λ(d (Γnt ,V∞)) .

Fix ε > 0 and choose δ > 0, N ∈ N such that L(λ(ε))/2 − δ > 1/N .
We claim that (1.5) is satisfied with this choice. Suppose not; then
there are n > N and t such that H2(Γnt ) > m0 − δ and d (Γnt ,V∞) > ε.
Hence, from (1.12) and (1.13) we get

H2(Σn
t ) ≥ H2(Γnt ) +

L(λ(ε))

2
− δ > m0 +

1

N
≥ m0 +

1

n
.

This contradicts the assumption that F({Σt}n) ≤ m0 + 1/n. Thus
(1.5) holds and the proof is completed. �

1.3. Almost minimizing min-max sequences

A stationary varifold can be quite far from an embedded minimal
surface. The key point for getting regularity for varifolds produced
by min–max sequences is the concept of “almost minimizing surfaces”
or a.m. surfaces. Roughly speaking a surface Σ is almost minimizing
if any path of surfaces {Σt}t∈[0,1] starting at Σ and such that Σ1 has
small area (compared to Σ) must necessarily pass through a surface
with large area. That is, there must exist a τ ∈]0, 1[ such that Στ has
large area compared with Σ; see Fig. 2.

γ

Figure 2. Curves near γ are ε–a.m.: It is impossible
to deform any such curve isotopically to a much smaller
curve without passing through a large curve.

The precise definition of a.m. surfaces is the following:

Definition 1.7. Given ε > 0, an open set U ⊂ M3, and a surface
Σ, we say that Σ is ε–a.m. in U if there does not exist any isotopy
ψ supported in U such that

H2(ψ(t,Σ)) ≤ H2(Σ) + ε/8 for all t;(1.14)

H2(ψ(1,Σ)) ≤ H2(Σ) − ε.(1.15)
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A sequence {Σn} is said to be a.m. in U if each Σn is εn–a.m. in U for
some εn ↓ 0.

This definition first appeared in Smith’s dissertation, [Smi82], and
was inspired by a similar one of Pitts (see the definition of almost min-
imizing varifolds in 3.1 of [Pit81]). In section 4 of his book, Pitts used
combinatorial arguments (some of which were based on ideas of Alm-
gren, [AJ65]) to prove a general existence theorem for almost min-
imizing varifolds. The situation we deal with here is much simpler,
due to the fact that we only consider 1–parameter families of surfaces
and not general multi–parameter families. In the previous section we
showed that there exists a family {Σt} such that every min–max se-
quence is clustering towards stationary varifolds. Using a version of
the combinatorial arguments of Pitts, we will prove in the following
proposition that one of these min–max sequences is almost minimizing
in sufficiently many annuli:

Proposition 1.8. There exists a function r : M → R+ and a
min–max sequence {Σj} such that:

{Σj} is a.m. in every An ∈ AN r(x)(x), for all x ∈M ;(1.16)

In every such An, Σj is a smooth surface

when j is sufficiently large ;(1.17)

Σj converges to a stationary varifold V in M as j ↑ ∞.(1.18)

The reason why we work with annuli is two fold. The first is that
we allow the generalized families to have slices with point–singularities.
The second is that even if any family of Λ were made of smooth surfaces,
then the combinatorial proof of Proposition 1.8 would give a point
x ∈ M in which we are forced to work with annuli as the reader will
later see. For a better understanding of this point consider the following
example, due to Almgren ([AJ65], p. 15–18; see also [Pit81], p. 20–
21). The surface M in Fig. 3 is diffeomorphic to S2 and metrized as a
“three–legged starfish”. The picture shows a sweep–out with a unique
maximal slice, which is a geodesic figure–eight (cf. Fig. 5 of [Pit81]).
The slices close to the figure–eight are not almost minimizing in balls
centered at its singular point P . But they are almost minimizing in
every sufficiently small annulus centered at P .

If Λ is the saturated set generated by the sweep–out of Fig. 3, then
no min–max sequence generated by Λ converges to a simple closed
geodesic. However, there are no similar examples of sweep–outs of 3–
dimensional manifolds by 2–dimensional objects: The reason for this
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is that point–singularities of (2–dimensional) minimal surfaces are re-
movable.

Maximal slice

M

Figure 3. A sweep–out of the three–legged starfish,
which can be realized as level–sets of a Morse function.

It’s useful to introduce the following notation.

Definition 1.9. Given a pair of open sets (U1, U2) we say that a
surface Σ is ε–a.m. in (U1, U2) if it is ε–a.m. in at least one of the two
open sets. Let A and B be open sets and we consider the following
distance d:

d(A,B) = inf
x∈A,y∈B

d(x, y).

We denote by CO the set of pairs (U1, U2) of open sets with

d (U1, U2) ≥ 2 min{diam(U1), diam(U2)} .
Proposition 1.8 will be an easy corollary of the following:

Proposition 1.10. There is a min–max sequence {ΣL} = {Σn(L)
tn(L)

}
which converges to a stationary varifold and such that

(1.19) each ΣL is 1/L–a.m. in every (U1, U2) ∈ CO .

Note that the ΣL’s in the previous proposition may be degenerate
slices (that is, they may have a finite number of singular points). The
key point for proving Proposition 1.10 is the following easy lemma:

Lemma 1.11. If (U1, U2) and (V 1, V 2) ∈ CO , then there are i, j ∈
{1, 2} with d (U i, V j) > 0.

Proof. W.l.o.g., assume that U1 is, among U1, U2, V1, V2, the set
with smallest diameter. We claim that either d(U1, V1) > 0 or d(U1, V2) >
0. If this were false, then there is a point x ∈ U1 ∩ V 1 and a point
y ∈ U1∩V 2. But then d(x, y) ≤ diam(U1) ≤ min{diam(V1), diam(V2)},
and hence

d(V1, V2) ≤ d(x, y) ≤ min{diam(V1), diam(V2)},
contradicting the assumption (V1, V2) ∈ CO. �
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Before giving a rigorous proof of Proposition 1.10 we will explain
the ideas behind it.

1.3.1. Outline of the proof of Proposition 1.10. First of all
note that if a slice Σn

t0
is not ε–a.m. in a given open set U , then we

can decrease its area by an isotopy ψ satisfying (1.14) and (1.15). Now
fix an open interval I around t0 and choose a smooth bump function
ϕ ∈ C∞

c (I, [0, 1]) with ϕ(t0) = 1. Define {Γt}n by

Γnt = ψ(ϕ(t),Σn
t ) .

If the interval I is sufficiently small, then by (1.14), for any t ∈ I, the
area of Γnt will not be much larger than the area of Σn

t . Moreover, for
t very close to t0 (say, in a smaller interval J ⊂ I) the area of Γnt will
be much less than the area of Σn

t .
We will show Proposition 1.10 by arguing by contradiction. So

suppose that the proposition fails; we will construct a better competitor
{{Γt}n}. Here the pairs CO will play a crucial role. Indeed when
the area of Σn

t is sufficiently large (i.e. close to m0), we can find two
disjoint open sets U1 and U2 in which Σn

t is not almost minimizing.
Consider the set Kn ⊂ [0, 1] of slices with sufficiently large area. Using
Lemma 1.11 (and some elementary considerations), we find a finite
family of intervals Ij, open sets Uj , and isotopies ψj : Ij ×M → M
satisfying the following conditions; see Fig. 4:

ψj is supported in Uj and is the identity at the ends of Ij.(1.20)

If Ij ∩ Ik 6= ∅, then Uj ∩ Uk = ∅.(1.21)

No point of [0, 1] belong to more than two Ij ’s.(1.22)

H2(ψj(t,Σ
n
t )) is never much larger than H2(Σn

t ).(1.23)

For every t ∈ Kn, there is j s.t. H2(ψj(t,Σ
n
t )) is much

smaller than H2(Σn
t ).(1.24)

Conditions (1.20) and (1.21) allow us to “glue” the ψj ’s in a unique
ψ ∈ Is such that ψ = ψj on Ij × Uj . The family {Γt}n given by
Γnt = ψ(t,Σn

t ) is our competitor. Indeed for every t, there are at most
two ψj ’s which change Σn

t . If t 6∈ Kn, then none of them increases
the area of Σn

t too much. Whereas, if t ∈ Kn, then one ψj decreases
the area of Σn

t a definite amount, and the other increases the area of
Σn
t a small amount. Thus, the area of the “small–area” slices are not

increased much and the area of “large–area” slices are decreased. This
yields that F({Γt}n) − F({Σt}n) < 0. We will now give a rigorous
bound for this (negative) difference.
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I1
I2
I3
I4
I5 I

. . . . . .

slices Σn
t

U5

U4U1

U3

U2

M

Figure 4. The covering Ij and the sets Uj. No point
of I is contained in more than two Ij ’s. The intersection
Uj ∩ Uk = ∅ if Ij and Ik overlap.

1.3.2. Proofs of Propositions 1.10 and 1.8.

Proof of Proposition 1.10. We choose {{Σt}n} ⊂ Λ such that
F({Σt}n) < m0 + 1/n and satisfying the requirements of Proposi-
tion 1.6. Fix L ∈ N. To prove the proposition we claim there ex-
ist n > L and tn ∈ [0, 1] such that Σn = Σn

tn satisfies (1.19) and
H2(Σn) ≥ m0 − 1/L. We define the sets

Kn =

{

t ∈ [0, 1] : H2(Σn
t ) ≥ m0 −

1

L

}

and argue by contradiction. Suppose not; then for every t ∈ Kn there
exists a pair of open subsets (U1

t , U
2
t ) such that Σn

t is not 1/L–a.m. in
either of them. So for every t ∈ Kn there exists isotopies ψit such that

(1) ψit is supported on U i
t ;

(2) H2(ψit(1,Σ
n
t )) ≤ H2(Σn

t ) − 1/L;
(3) H2(ψit(τ,Σ

n
t )) ≤ H2(Σn

t ) + 1/(8L) for every τ ∈ [0, 1].

In the following we fix n and drop the subscript from Kn. Since {Σn
t }

is continuous in t, if t ∈ K and |s− t| is sufficiently small, then

(2’) H2(ψit(1,Σ
n
s )) ≤ H2(Σn

s ) − 1/(2L);
(3’) H2(ψit(τ,Σ

n
s )) ≤ H2(Σn

s ) + 1/(4L) for every τ ∈ [0, 1].

By compactness we can cover K with a finite number of intervals satis-
fying (2’) and (3’). This covering {Ik} can be chosen so that Ik overlaps
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only with Ik−1 and Ik−2. Summarizing we can find

closed intervals I1, . . . Ir

pairs of open sets (U1
1 , U

2
1 ), . . . , (U1

r , U
2
r ) ∈ CO

and pairs of isotopies (ψ1
1, ψ

2
1), . . . , (ψ

1
r , ψ

2
r)

such that

(A) the interiors of Ij cover K and Ij ∩ Ik = ∅ if |k − j| ≥ 2;
(B) ψij is supported in U i

j ;

(C) H2(ψij(1,Σ
n
s )) ≤ H2(Σn

s ) − 1/(2L) ∀s ∈ Ij;

(D) H2(ψij(τ,Σ
n
s )) ≤ H2(Σn

s ) + 1/(4L) ∀s ∈ Ij and τ ∈ [0, 1].

In Step 1 we refine this covering. In Step 2 we use the refined covering
to construct a competitor {Γt}n ∈ Λ with

(1.25) F({Γt}n) ≤ F({Σt}n) − 1/(2L) .

The arbitrariness of n will give that lim infnF({Γt}n) < m0. This is
the desired contradiction which yields the proposition.

Step 1: Refinement of the covering.

First we want to find

a covering {J1, . . . , JR} which is a refinement of {I1, . . . Ir} ,
open sets V1, . . . VR among {U i

j} ,
and isotopies ϕ1, . . . , ϕR among {ψij} ,

such that:

(A1) The interiors of Ji cover K and Ji ∩ Jk = ∅ for |k − i| ≥ 2;
(A2) If Ji ∩ Jk 6= ∅, then d(Vi, Vk) > 0;
(B’) ϕi is supported in Vi;
(C’) H2(ϕi(1,Σ

n
s )) ≤ H2(Σn

s ) − 1/(2L) ∀s ∈ Ji;
(D’) H2(ϕi(τ,Σ

n
s )) ≤ H2(Σn

s ) + 1/(4L) ∀s ∈ Ji and τ ∈ [0, 1].

We start by setting J1 = I1 and we distinguish two cases.

- Case a1: I1 ∩ I2 = ∅; we set V1 = U1
1 , and ϕ1 = ψ1

1.
- Case a2: I1 ∩ I2 6= ∅; by Lemma 1.11 we can choose i, k ∈
{1, 2} such that d (U i

1, U
k
2 ) > 0 and we set V1 = U i

1, ϕ1 = ψi1.

We now come to the choice of J3. If we come from case a1 then:

- Case b1: We make our choice as above replacing I1 and I2
with I2 and I3;

If we come from case a2, then we let i and k be as above and we further
distinguish two cases.

- Case b21: I2 ∩ I3 = ∅; we define J2 = I2, V2 = Uk
2 , ϕ2 = ψk2 .
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- Case b22: I2∩I3 6= ∅; by Lemma 1.11 there exist l,m ∈ {1, 2}
such that d(U l

2, U
m
3 ) > 0. If l = k, then we define J2 = I2,

V2 = Uk
2 , ϕ2 = ψk2 . Otherwise we choose two closed intervals

J2, J3 ⊂ I2 such that
– their interiors cover the interior of I2,
– J2 does not overlap with any Ih for h 6= 1, 2,
– J3 does not overlap with any Ih for h 6= 2, 3.

Thus we set V2 = Uk
2 , ϕ2 = ψk2 , and V3 = U l

2, ϕ3 = ψl2.

An inductive argument using this procedure gives the desired covering.
Note that the cardinality of {J1, . . . , JR} is at most 2r − 1.

Step 2: Construction.

Choose C∞ functions ηi on R taking values in [0, 1], supported in
Ji, and such that for every s ∈ K, there exists ηi with ηi(s) = 1. Fix
t ∈ [0, 1] and consider the set Ind t ⊂ N of all i containing t; thus Ind t

consists of at most two elements. Define subsets of M by

(1.26) Γnt =

{
ϕi(ηi(t),Σ

n
t ) in the open sets V i, i ∈ Ind t ,

Σn
t outside.

In view of (A1), (A2) and (B’), then {Γt}n is well defined and belongs
to Λ.

Step 3: The contradiction.

We now want to bound the energy F({Γt}n) and hence we have to
estimate H2(Γnt ). Note that by (A1) every Ind t consists of at most two
integers. Assume for the sake of argument that Ind t consists of exactly
two integers. From the construction, there exist si, sk ∈ [0, 1] such
that Γnt is obtained from Σn

t via the diffeomorphisms ϕi(si, ·), ϕk(sk, ·).
By (A2) these diffeomorphisms are supported on disjoint sets. Thus if
t 6∈ K, then (D’) gives

H2(Γnt ) ≤ H2(Σn
t ) +

2

4L
≤ m0 −

1

2L
.

If t ∈ K, then at least one of si, sk is equal to 1. Hence (C) and (D)
give

H2(Γnt ) ≤ H2(Σn
t ) −

1

L
+

1

4L
≤ F({Σn

t }) −
3

4L
.

Therefore F({Γt}n) ≤ F({Σt}n) − 1/(2L). This is the desired bound
(1.25). �

We now come to Proposition 1.8.

Proof of Proposition 1.8. We claim that a subsequence of the
Σk’s of Proposition 1.10 satisfies the requirements of Proposition 1.8.
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Indeed fix k ∈ N and r such that Inj (M) > 4r > 0. Since (Br(x),M \
B4r(x)) ∈ CO . Thus we have that

either Σk is 1/k–a.m. on Br(y) for every y(1.27)

or there is xkr ∈M s.t. Σk is 1/k–a.m. on M \B4r(x
k
r).(1.28)

If for some r > 0 there exists a subsequence {Σk(n)} satisfying (1.27),
then we are done. Otherwise we may assume that there are two se-
quences of natural numbers n ↑ ∞, j ↑ ∞ and points xnj such that

• For every j, and for n large enough, Σn is 1/n–a.m. in M \
B1/j(x

n
j ).

• xnj → xj for n ↑ ∞ and xj → x for j ↑ ∞.

Thus for every j, the sequence {Σn} is a.m. in M \B2/j(x). Of course
if U ⊂ V and N is ε–a.m. in V , then N is ε–a.m. in U . This proves
that there exists a subsequence {Σj} which satisfies conditions (1.16)
and (1.18) for some positive function r : M → R+.

It remains to show that an appropriate further subsequence satisfies
(1.17). Each Σj is smooth except at finitely many points. We denote
by Pj the set of singular points of Σj . After extracting another subse-
quence we can assume that Pj is converging, in the Hausdorff topology,
to a finite set P . If x ∈ P and An is any annulus centered at x, then
Pj∩An = ∅ for j large enough. If x 6∈ P and An is any (small) annulus
centered at x with outer radius less than d (x, P ), then Pj ∩An = ∅ for
j large enough. Thus, after possibly modifying the function r above,
the sequence {Σj} satisfies (1.16), (1.17), and (1.18). �

From now on, in order to simplify our notation, a sequence {Σj}
satisfying the conclusions of Proposition 1.8 will be simply called almost
minimizing in sufficiently small annuli.

1.4. Examples

A key example of saturated sets Λ with m0(Λ) > 0 has already been
given in the introduction by Proposition 0.3, which we recall here for
the reader’s convenience.

Proposition 1.12. Let M be a closed 3-manifold with a Riemann-
ian metric and let {Σt} be the level sets of a Morse function. The
smallest saturated set Λ containing the family {Σt} has m0(Λ) > 0.

Proof. Let M3 be a closed Riemannian 3–manifold with a Morse
function f : M → [0, 1]. Denote by Σt the level set f−1({t}) and let Λ
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be the saturated set of families
{

{Γt}
∣
∣
∣ Γt = ψ(t,Σt) for some ψ ∈ C∞([0, 1] ×M,M)

with ψt ∈ Diff0 for every t
}

.

To prove Proposition 0.3 we need to show that m0(Λ) > 0. To do
that set Ut = f−1([0, t[) and Vt = ψ(t, Ut). Clearly Γt = ∂Vt and if we
let Vol denote the volume on M , then Vol(Ut) is a continuous function
of t. Since V0 is a finite set of points and V1 = M , then there exists an
s such that Vol(Vs) = Vol(M)/2. By the isoperimetric inequality there
exists a constant c(M) such that

Vol(M)

2
= Vol(Vs) ≤ c(M)H2(Γs)

3/2 .

Hence,

(1.29) F({Γt}) = max
t∈[0,1]

H2(Γt) ≥
(

Vol(M)

2c(M)

) 2
3

> 0 ,

and the proposition follows. �

Remark 1.13. Assume M is diffeomorphic to S3 := {x ∈ R4 : |x| =
1} and fix a diffeomorphism Φ : S3 →M . Then the map

1
2
(x1(Φ

−1) + 1) : M 7→ [0, 1]

is obviously a Morse function. Moreover, f−1({t}) is diffeomorphic to
S2 for every t ∈ [0, 1].

1.5. Schoen–Simon curvature estimates

We end this Chapter recalling some fundamental results due to
Schoen and Simon. Consider an orientable U ⊂ M . We look here at
closed sets Γ ⊂ M of codimension 1 satisfying the following regularity
assumption:

(SS) Γ∩U is a smooth embedded hypersurface outside a closed set
S with Hn−2(S) = 0.

Γ induces an integer rectifiable varifold V . Thus Γ is said to be minimal
(resp. stable) in U with respect to the metric g of U if V is stationary
(resp. stable). The following compactness theorem, a consequence of
the Schoen–Simon curvature estimates (cp. with Theorem 2 of Section
6 in [SS81]), is going to be very helpful in many proofs of the following
chapters.
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Theorem 1.14. Let U be an orientable open subset of a manifold
and {gk} and {Γk}, respectively, sequences of smooth metrics on U
and of hypersurfaces {Γk} satisfying (SS). Assume that the metrics gk

converge smoothly to a metric g, that each Γk is stable and minimal
relative to the metric gk and that supHn(Γk) < ∞. Then there are a
subsequence of {Γk} (not relabeled), a stable stationary varifold V in
U (relative to the metric g) and a closed set S of Hausdorff dimension
at most n− 7 such that

(a) V is a smooth embedded hypersurface in U \ S;
(b) Γk → V in the sense of varifolds in U ;
(c) Γk converges smoothly to V on every U ′ ⊂⊂ U \ S.

Remark 1.15. Since in our work we will always have n = 3 parts
(a) and (b) of Theorem 1.14 can be rephrased as follows:

If {Σn} is a sequence of stable minimal surfaces in U ,

then there exists a subsequence converging to

a stable minimal surface Σ∞ .(1.30)





CHAPTER 2

Minimizing sequences of isotopic surfaces

In this chapter we will study the regularity of the following problem:

Definition 2.1. Let I be a class of isotopies of M and Σ ⊂ M a
smooth embedded surface. If {ϕk} ⊂ I and

lim
k→∞

H2(ϕk(1,Σ)) = inf
ψ∈I

H2(ψ(1,Σ)) ,

then we say that ϕk(1,Σ) is a minimizing sequence for Problem (Σ, I).
If U is an open set of M , Σ a surface with ∂Σ ⊂ ∂U and j ∈ N an

integer, then we define
(2.1)
Isj(U,Σ) :=

{
ψ ∈ Is(U)

∣
∣ H2(ψ(τ,Σ)) ≤ H2(Σ) + 1/(8j) ∀τ ∈ [0, 1]

}
.

We state our main regularity result in the next theorem.

Theorem 2.2 (Regularity). Let U ⊂M be an open set and consider
a smooth embedded surface Σ. Let ∆k := ϕk(1,Σ) be a minimizing
sequence for Problem (Σ, Isj(U,Σ)), converging to a stationary varifold
V .

(a) (Interior regularity) There exists a smooth minimal surface ∆
with ∆ \ ∆ ⊂ ∂U and V = ∆ in U ;

(b) (Boundary regularity) If U is an open ball with sufficiently
small radius and Σ is such that ∂Σ ⊂ ∂U is also smooth. Then
there exists a smooth minimal surface ∆ with ∆ \ ∆ ⊂ ∂U ,
V = ∆ in U and with smooth boundary ∂∆ = ∂Σ;

(c) (Connected components) Let U and Σ as in (b). If we form
a new sequence ∆̃k by taking an arbitrary union of connected
components of ∆k, it converges, up to subsequences, to the
union of some connected components of ∆.

This theorem has been proved in [MSY82] for U = M for sur-
faces without boundary. Our proof for the case of surfaces with fixed
boundary relies on the techniques introduced by Almgren and Simon
in [AS79] and Meeks, Simon and Yau in [MSY82]. Our proof is quite
technical and will require deep results from geometric measure theory
due to Allard, Almgren and Simon. We are going to split its proof in 5

31
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parts: Section 2.1 discusses the convex–hull properties needed for the
boundary regularity. In Section 2.2 we introduce and prove the “squeez-
ing lemmas” which allow to pass from almost–minimizing sequences to
minimizing sequences. Section 2.3 discusses the γ–reduction (see sec-
tion 3 of [MSY82])and how one applies it to get the interior regularity.
We also point out why the γ–reduction cannot be applied directly to
the surfaces of Proposition 2.2. Section 2.4 proves the boundary regu-
larity. Finally, section 2.5 handles the part of Proposition 2.2 involving
limits of connected components.

Before we concentrate on the proof of the Theorem, we collect some
elementary remarks on minimizing sequences of isotopic surfaces which
will be used later in this work.

Remark 2.3. If Σ is 1/j–a.m. in an open set U and Ũ is an open

set contained in U , then Σ is 1/j–a.m. in Ũ .

Remark 2.4. If Σ is 1/j–a.m. in U and ψ ∈ Isj(Σ, U) is such that
H2(ψ(1,Σ)) ≤ H2(Σ), then ψ(1,Σ) is 1/j–a.m. in U .

2.1. Part I: Convex hull property

2.1.1. Preliminary definitions. Consider an open geodesic ball
U = Bρ(ξ) with sufficiently small radius ρ and a subset γ ⊂ ∂U con-
sisting of finitely many disjoint smooth Jordan curves.

Definition 2.5. We say that an open subset A ⊂ U meets ∂U in
γ transversally if there exists a positive angle θ0 such that:

(a) ∂A ∩ ∂U ⊂ γ.
(b) For every p ∈ ∂A ∩ ∂U we choose coordinates (x, y, z) in such

a way that the tangent plane Tp of ∂U at p is the xy-plane
and γ′(p) = (1, 0, 0). Then in this setting every point q =
(q1, q2, q3) ∈ A satisfies q3

q2
≥ tan(1

2
− θ0).

Remark 2.6. Condition (b) of the above definition can be stated
in the following geometric way: there exixt two halfplanes π1 and π2

meeting at the line through p in direction γ′(p) such that

• they form an angle θ0 with Tp;
• the set A is all contained in the wedge formed by π1 and π2;

see Figure 1.

In this subsection we will show the following lemma.

Lemma 2.7 (Convex hull property). Let V and Σ be as in Proposi-
tion 2.2. Then, there exists a convex open set A ⊂ U which intersects
U in ∂Σ transversally and such that supp (‖V ‖) ⊂ A.
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γ

π2

p

θ0

π1Tp

Figure 1. For any p ∈ A∩∂U , A is contained in a wedge
delimited by two halfplanes meeting at p transversally to
the plane Tp.

Our starting point is the following elementary fact about convex
hulls of smooth curves lying in the euclidean two–sphere.

Proposition 2.8. If β ⊂ ∂B1 ⊂ R3 is the union of finitely many
C2−Jordan curves, then its convex hull meets B1 transversally in β.

The proof of this proposition follows from the regularity and the
compactness of β and from the fact that β is not self-intersecting. We
leave its details to the reader.

2.1.2. Proof of Lemma 2.7. From now on, we consider γ =
∂Σ: this is the union of finitely many disjoint smooth Jordan curves
contained in ∂U . Recall that U is a geodesic ball Bρ(ξ). Without loss
of generality we assume that ρ is smaller than the injectivity radius.

Step 1 Consider the rescaled exponential coordinates induced by
the chart f : Bρ(ξ) → B1 given by f(z) = (exp−1

ξ (z))/ρ. These coor-
dinates will be denoted by (x1, x2, x3). We apply Proposition 2.8 and
consider the convex hull B of β = f(∂Σ) in B1. According to our
definition, f−1(B) meets U transversally in γ.

We now let θ0 be a positive angle such that condition (b) in Defi-
nition 2.5 is fulfilled for B. Next we fix a point x ∈ f(γ) and consider
consider the halfplanes π1 and π2 delimiting the wedge of condition
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(b). Without loss of generality, we can assume that the coordinates
are chosen so that π1 is given by

π1 = {(z1, z2, z3) : z3 ≤ a}
for some positive constant a. Condition (b) ensures that a ≤ a0 < 1
for some constant a0 inpendent of the point x ∈ f(γ).

For t ∈]0,∞[ denote by Ct the points Ct := {(0, 0,−t)} and by r(t)
the positive real numbers

r(t) :=
√

1 + t2 + 2at

We finally denote by Rt the closed balls

Rt := Br(t)(Ct) .
The centers Ct and the radii r(t) are chosen in such a way that the
intersection of the sphere ∂Rt and ∂B1 is always the circle π1 ∩ ∂B1.

the foliation

St

x

π1

z3

a

r(t)

Ct

Figure 2. A planar cross-section of the foliation {St :
t ∈]0,∞[}.

Note, moreover, that for t coverging to +∞, the ball Rt converges
towards the region {z3 ≤ a}. Therefore, the region {z3 > a} ∩ B1 is
foliated with the caps

St := ∂Rt ∩ B1 for t ∈]0,∞[.
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In Figure 2, we see a section of this foliation with the plane z2z3.

We claim that, for some constant t0 > 0 independent of the choice
of the point x ∈ f(γ), the varifold V is supported in f−1(Rt0). A
symmetric procedure can be followed starting from the plane π2. In
this way we find two off-centered balls and hence a corresponding wedge
Wx satisfying condition (b) of Definition 2.5 and containing the support
of V ; see Picture 3. Our claim that the constant t0 can be chosen
independently of x and the bound a ≤ a0 < 1 imply that the the planes
delimiting the wedge Wx form an angle larger than some fixed constant
with the plane Tx tangent to ∂B1 at x. Therefore, the intersections of
all the wedges Wx, for x varying among the points of γ, yield the desired
set A.

π1

The wedge Wxx

π2

Figure 3. A planar cross-section of the wedge Wx.

Step 2 We next want to show that the varifold V is supported in
the closed ball f−1(Rt0). For any t ∈ [0, t0[, denote by πt : U → f−1(Rt)
the nearest point projection. If the radius ρ0 of U and the parameter
t0 are both sufficiently small, then πt is a well defined Lipschitz map
(because there exists a unique nearest point). Moreover, the Lipschitz
constant of πt is equal to 1 and, for t > 0, |∇πt| < 1 on U \ f−1(Rt).
In fact the following lemma holds.

Lemma 2.9. Consider in the euclidean ball B1 a set U that is uni-
formly convex, with constant c0. Then there is a ρ(c0) > 0 such that, if
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ρ0 ≤ ρ(c0), then the nearest point projection π on f(U) is a Lipschitz

map with constant 1. Moreover, at every point P 6∈ f(U), |∇π(P )| < 1.

Proof. Let de(y) be the euclidean distance of y to U and d(y) the

geodesic distance of y to f(U). The function de is C2 and uniformly
convex on the closure of B1\U . Therefore, if ε0 is sufficiently small, the
function d is uniformly convex on the closure of Bε(x) \ f(U). Let now

y0 ∈ Bε(x) \ f(U). In order to find π(x) it suffices to follow the flow
line of the ODE ẏ = −∇d(y)/|∇d(y)|2, with initial condition y(0) = y0,

until the line hits f(U). Thus, the inequality |∇π(x)| < 1 follows from

Lemma 1 of [Ban79]. On the other hand, π(x) = x on f(U), and
therefore the map is Lipschitz with constant 1. �

Next, it is obvious that π0 is the identity map and that the map
(t, x) 7→ πt(x) is smooth.

Assume now for a contradiction that V is not supported in f−1(Rt0).
By Lemma 2.9, the varifold (πt0)#V has, therefore, strictly less mass
than the varifold V .

Next, consider a minimizing sequence ∆k as in the statement of
theorem 2.2. Since ∂∆k = ∂Σ, the intersection of ∆k with ∂U is
given by ∂Σ. On the other hand, by construction ∂Σ ⊂ f−1(Rt) and
therefore, if we consider ∆k

t := (πt)#∆k we obtain a (continuous) one-
parameter family of currents with the properties that

(i) ∂∆k
t = ∂Σ;

(ii) ∆k
0 = ∆0;

(iii) The mass of ∆k
t is less or equal than H2(∆k);

(iv) The mass of ∆k
t0 converges towards the mass of (πt0)#V and

hence, for k large enough, it is strictly smaller than the mass
of V .

Therefore, if we fix a sufficiently large number k, we can assume
that (iv) holds with a gain in mass of a positive amount ε = 1/j. We
can, moreover, assume that H2(∆k) ≤ H2(Σ) + 1/(8j). By an approx-
imation procedure, it is possible to replace the family of projections
{πt}t∈[0,t0] with a smooth isotopy {ψt}t∈[0,1] with the following proper-
ties:

(v) ψ0 is the identity map and ψt|∂U is the identity map for every
t ∈ [0, 1];

(vi) H2(∆k) ≤ H2(ψt(Σ)) + 1/(8j);
(vii) H2(ψ1(∆

k)) ≤ M((πt0)#V ) − 1/j.

This contradicts the 1/j–almost minimizing property of Σ.
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In showing the existence of the family of isotopies ψt, a detail must
be taken into account: the map πt is smooth everywhere on U but on
the circle f−1(Rt)∩∂U (which is the same circle for every t!). We briefly
indicate here a procedure to construct ψt, skipping the cumbersome
details.

We replace the sets {Rt} with a new family Rt which have the
following properties:

• R0 = B1;
• Rt0 = Rt0 ;
• For t ∈ [0, t0] the boundaries ∂Rt are uniformly convex;
• ∂Rt ∩ ∂B1 = Rt ∩ ∂B1;
• The boundaries of ∂Rt are smooth for t ∈ [0, t0[ and form a

smooth foliation of B1(0) \Rt0 .

The properties of the new sets are illustrated in Figure 4

π1

∂Rt

∂Rt0

Figure 4. A planar cross-section of the new foliation.

Since ∆k touches ∂U in ∂Σ transversally and ∂Σ ⊂ f−1(Rt) for
every t, we conclude the existence of a small δ such that ∆k ⊂ f−1(R2δ).
Moreover, for δ sufficiently small, the nearest point projection π̃t0−δ on
f−1(Rt0−δ) is so close to πt0 that

M((π̃t0−δ)#∆k) ≤ M((πt0)#∆k) + ε/4 .

We then construct ψt in the following way. We fix a smooth in-
creasing bijective function τ : [0, 1] → [δ, t0 − δ],
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• ψt is the identity on U \ Rδ and on Rτ(t);
• On Rδ \ Rτ(t) it is very close to the projection π̃τ(t) on Rτ(t).

In particular, for this last step, we fix for a smoooth function σ :
[0, 1]× [0, 1] such that, for each t, σ(t, ·) is a smooth bijection between
[0, 1] and [δ, τ(t)] very close to the function which is identically τ(t) on
[0, 1]. Then, for s ∈ [0, 1], we define ψt on the surface ∂R(1−s)δ+sτ(t)

to be the nearest point projection on the surface ∂Rσ(t,s). So, ψt fixes
the leave ∂Rδ but moves most of the leaves between ∂Rδ and ∂Rτ(t)

towards ∂Rτ(t). This completes the proof of Lemma 2.7.

2.2. Part II: Squeezing Lemma

In this section we prove the following Lemma.

Lemma 2.10 (Squeezing Lemma). Let {∆k} be as in Theorem 2.2,
x ∈ U and β > 0 be given. Then there exists an ε0 > 0 and a K ∈ N

with the following property. If k ≥ K and ϕ ∈ Is(Bε0(x) ∩ U) is such
that H2(ϕ(1,∆k)) ≤ H2(∆k), then there exists a Φ ∈ Is(Bε0(x) ∩ U)
such that

(2.2) Φ(1, ·) = ϕ(1, ·)

(2.3) H2(Φ(t,∆k)) ≤ H2(∆k) + β for every t ∈ [0, 1].

If x is an interior point of U , this lemma reduces to Lemma 7.6 of
[CDL03]. When x is on the boundary of U , one can argue in a similar
way (cp. with Section 7.4 of [CDL03]). Indeed, the proof of Lemma
7.6 of [CDL03] relies on the fact that, when ε is sufficiently small, the
varifold V is close to a cone. For interior points, this follows from the
stationarity of the varifold V . For points at the boundary this, thanks
to a result of Allard (see [All75]), is a consequence of the stationarity
of V and of the convex hull property of Lemma 2.7.

2.2.1. Tangent cones. Consider the varifold V of Theorem 2.2.
Given a point x ∈ U and a radius ρ > 0, consider the chart fx,ρ :
Bρ(x) → B1 given by fx,ρ(y) = exp−1

x (y)/ρ. We then consider the
varifolds Vx,ρ := (fx,ρ)#V . Moreover, if λ > 0, we will denote by
Oλ : R3 → R3 the rescaling Oλ(x) = x/λ.

If x ∈ U , the monotonicity formula and a compactness result
(see Theorem 19.3 of [Sim83]) imply that, for any ρj ↓ 0, there ex-
ists a subsequence, not relabeled, such that Vx,ρj

converges to an in-
teger rectifiable varifold W supported in B1 with the property that
(Oλ)#W B1(0) = W for any λ < 1. The varifolds W which are limit
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of subsequences Vx,ρj
are called tangent cones to V at x. The mono-

tonicity formula implies that the mass of each W is a positive constant
θ(x, V ) independent of W (see again Theorem 19.3 of [Sim83]).

If x ∈ ∂U , we fix coordinates y1, y2, y3 in R3 in such a way that
fx,ρ(U ∩ Bρ(x)) converges to the half-ball B+

1 = B1 ∩ {y1 > 0}.
Recalling Lemma 2.7, we can infer with the monotonicity formula

of Allard for points at the boundary (see 3.4 of [All75]) that Vx,ρ =
(fx,ρ)#V have equibounded mass. Therefore, if ρj ↓ 0, a subsequence
of Vx,ρj

, not relabeled, converges to a varifold W .
By Lemma 2.7, there is a positive angle θ0 such that, after a suitable

change of coordinates, W is supported in the set

{|y2| ≤ y1 tan θ0} .
Therefore supp (W )∩{y1 = 0} = {(0, 0, t) : t ∈ [−1, 1]} =: ℓ. Applying
the monotonocity formula of 3.4 of [All75], we conclude that

(2.4) ‖W‖(ℓ) = 0

and

(2.5) ‖W‖(Bρ(0)) = πθ(‖V ‖, x)ρ2 ,

where

θ(‖V ‖, x) = lim
r↓0

‖V ‖(Bρ(x))

πρ2

is independent of W . Being W the limit of a sequence Vx,ρj
with ρj ↓ 0,

we conclude that W is a stationary varifold.
Now, define the reflection map r : R3 → R3 given by r(z1, z2, z3) =

(−z1,−z2, z3). By (2.4), using the reflection principle of 3.2 of [All75],
the varifold W ′ := W + r#W is a stationary varifold. By (2.5) and
Corollary 2 of 5.1 in [All72], we conclude that (Oλ)#W

′ B+
1 = W ′

for every λ < 1. On the other hand, this implies (Oλ)#W B+
1 = W .

Therefore W is a cone and we will call it tangent cone to V at x.

2.2.2. A squeezing homotopy. Since for points in the interior
the proof is already given in [CDL03], we assume that x ∈ ∂U . More-
over, the proof given here in this case can easily be modified for x ∈ U .
Therefore we next fix a small radius ε > 0 and consider an isotopy ϕ
of U ∩ Bε(x) keeping the boundary fixed.

We start by fixing a small parameter δ > 0 which will be chosen at
the end of the proof. Next, we consider a diffeomorphism Gε between
B+
ε = Bε ∩ {y1 > 0} and Bε(x) ∩ U . Consider on B+

ε the standard Eu-
clidean metric and denote the corresponding 2-dimensional Hausdorff
measure with H2

e. If ε is sufficiently small, then Gε can be chosen so
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that the Lipschitz constants of Gε and G−1
ε are both smaller than 1+ε.

Then, for any surface ∆ ⊂ Bε(x) ∩ U ,

(2.6) (1 − Cδ)H2(∆) ≤ H2
e(Gε(∆)) ≤ (1 + Cδ)H2(∆) ,

where C is a universal constant.
We want to construct an isotopy Λ ∈ Is(B+

ε ) such that Λ(1, ·) =
Gε ◦ ϕ(1, G−1

ε (·)) and (for k large enough)
(2.7)
H2
e(Λ(t, Gε(∆

k))) ≤ H2
e(Gε(∆

k))(1+Cδ)+Cδ for every t ∈ [0, 1].

After finding Λ, Φ(t, ·) = G−1
ε ◦ Λ(t, Gε(·)) will be the desired map.

Indeed Φ is an isotopy of Bε(x) ∩ U which keeps a neighborhood of
Bε(x) ∩ U fixed. It is easily checked that Φ(1, ·) = ϕ(1, ·). Moreover,
by (2.6) and (2.7), for k sufficiently large we have

(2.8) H2(Φ(t,∆k)) ≤ (1 + Cδ)H2(∆k) + Cδ ∀t ∈ [0, 1] ,

for some constant C inpendent of δ and k. Since H2(∆k) is bounded
by a constant independent of δ and k, by choosing δ sufficiently small,
we reach the claim of the Lemma.

Next, we consider on B+
ε a one-parameter family of diffeomor-

phisms. First of all we consider the continuous piecewise linear map
α : [0, 1[→ [0, 1] defined in the following way:

• α(t, s) = s for (t+ 1)/2 ≤ s ≤ 1;
• α(t, s) = (1 − t)s for 0 ≤ s ≤ t;
• α(t, s) is linear on t ≤ s ≤ (t+ 1)/2.

So, each α(t, ·) is a biLipschitz homeomorphism of [0, 1] keeping a neigh-
borhood of 1 fixed, shrinking a portion of [0, 1] and uniformly stretching
the rest. For t very close to 1, a large portion of [0, 1] is shrinked into
a very small neighborhood of 0, whereas a small portion lying close to
1 is stretched to almost the whole interval.

Next, for any given t ∈ [0, 1[, let yt := ((1 − t)ηε, 0, 0) where η is a
small parameter which will be fixed later. For any z ∈ B+

ε we consider
the point πt(z) ∈ ∂B+

ε such that the segment [yt, πt(z)] containing z.
We then define Ψ(t, z) to be the point on the segment [yt, πt(z)] such
that

|yt − Ψ(t, z)| = α

(

t,
|yt − z|

|xt − πt(x)|

)

|yt − πt(z)| .

It turns out that Ψ(0, ·) is the identity map and, for fixed t, Ψ(t, ·) is
a biLipschitz homeomorphism of B+

ε keeping a neighborhood of ∂B+
ε

fixed. Moreover, for t close to 1, Ψ(t, ·) shrinks a large portion of B+
ε

in a neighborhood of yt and stretches uniformly a layer close to ∂Bε.
See Figure 5.
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We next consider the isotopy Ξ(t, ·) := G−1
ε ◦ Ψ(t, Gε(·)). It is

easy to check that, if we fix a ∆k and we let t ↑ 1, then the surfaces
Ψ(1, Gε(∆

k)) converge to the cone with center 0 and base Gε(∆
k)∩∂Bε.

πt(z)

xt

z

x

boundary of V

boundary of Ψ(t, V )

Figure 5. For t close to 1 the map Ψ(t, ·) shrinks ho-
motethically a large portion of B+

ε .

2.2.3. Fixing a tangent cone. By Subsection 2.2.1, we can find
a sequence ρl ↓ 0 such that Vx,ρl

converges to a tangent cone W . Our
choice of the diffeomorphism Gρl

implies that (Oρl
◦ Gρl

)#V has the
same varifold limit as Vx,ρl

.
Since ∆k converges to V in the sense of varifolds, by a standard

diagonal argument, we can find an increasing sequence of integers Kl

such that:

(C) (Oρl
(Gρl

(∆kl)) converges in the varifold sense to W , whenever
kl ≥ Kl.

(C), the conical property of W and the coarea formula imply the fol-
lowing fact. For ρl sufficiently small, and for k sufficiently large, there
is an ε ∈]ρl/2, ρl[ such that:
(2.9)
H2
e

(
Ψ(t, Gε(∆

k)∩L)
)

≤ H2
e

(
Gε(∆

k)∩L
)
+δ ∀t and all open L ⊂ B+

ε ,

where Ψ is the map constructed in the previous subsection. This esti-
mate holds independently of the small parameter η. Moreover, it fixes
the choice of ε0 and K as in the statement of the Lemma. K depends
only on the parameter δ, which will be fixed later. ε might depend on
k ≥ K, but it is always larger than some fixed ρl, which will then be
the ε0 of the statement of the Lemma.
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2.2.4. Construction of Λ. Consider next the isotopy ψ = Gε◦ϕ◦
G−1
ε . By definition, there exists a compact set K such that ψ(t, z) = z

for z ∈ B+
ε \K and every t. We now choose η so small that K ⊂ {x :

x1 > ηε}. Finally, consider T ∈]0, 1[ with T sufficiently close to 1. We
build the isotopy Λ in the following way:

• for t ∈ [0, 1/3] we set Λ(t, ·) = Ψ(3tT, ·);
• for t ∈ [1/3, 2/3] we set Λ(t, ·) = Ψ(3tT, ψ(3t− 1, ·));
• for t ∈ [2/3, 1] we set Λ(t, ·) = Ψ(3(1 − t)T, ψ(1, ·)).

If T is sufficiently large, then Λ satisfies (2.7). Indeed, for t ∈ [0, 1/3],
(2.7) follows from (2.9). Next, consider t ∈ [1/3, 2/3]. Since ψ(t, ·)
moves only points of K, Λ(t, x) coincides with Ψ(T, x) except for x
in Ψ(T,K). However, Ψ(T, x) is homotethic to K with a very small
shrinking factor. Therefore, if T is chosen sufficiently large, H2

e(Λ(t, Gε(∆
k)))

is arbitrarily close to H2
e(Λ(1/3, Gε(∆

k))). Finally, for t ∈ [2/3, 1],
Λ(t, x) = Ψ(3(1 − t)T, x) for x 6∈ Ψ(3(1 − t)T,K) and it is Ψ(3(1 −
t)T, ψ(1, x)) otherwise. Therefore, Λ(t, Gε(∆

k)) differs from Ψ(3(1 −
t)T,Gε(∆

k)) for a portion which is a rescaled version of Gε(ϕ(1,∆k) \
Gε(∆

k). Since by hypothesis H2(ϕ(1,∆k)) ≤ H2(∆k), we actually get

H2
e

(
Gε(ϕ(1,∆k)) \Gε(∆

k)
)

≤ (1 + Cδ)H2
e

(
Gε(∆

k) \Gε(ϕ(1,∆k))
)

and by the scaling properties of the euclidean Hausdorff measure we
conclude (2.7) for t ∈ [2/3, 1] as well.

Though Λ is only a path of biLipschitz homeomorphisms, it is easy
to approximate it with a smooth isotopy: it suffices indeed to smooth
α|[0,T ]×[0,1], for instance mollifying it with a standard kernel.

2.3. Part III: γ–reduction

In this section we prove the following

Proposition 2.11. Let U be an open set. If Λ is an embedded
surface with smooth boundary ∂Λ ⊂ ∂U and {Λk} is a minimizing
sequence for Problem (Λ, Is(U)) converging to a varifold W , then there
exists a stable minimal surface Γ with Γ \ Γ ⊂ ∂Λ and W = Γ in U .

Note that this proposition is in fact part (a) of Theorem 2.2. This
Proposition has been claimed in [CDL03] (cp. with Theorem 7.3
therein) and since nothing on the behavior of W at the boundary is
claimed, it follows from a straightforward modification of the theory of
γ-reduction of [MSY82] (as asserted in [CDL03]). This simple modi-
fication of the γ−reduction is, as the original γ-reduction, a procedure
to reduce through simple surgeries the minimizing sequence Λk into a
more suitable sequence.
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In this section we also wish to explain why this argument cannot
be directly applied neither to the surfaces ∆k of Theorem 2.2 (b) on
the whole domain U (see Remark 2.16), nor to their intersections with
a smaller set U ′ (see Remark 2.18). In the first case, the obstruction
comes from the 1/j-a.m. property, which is not powerful enough to
perform certain surgeries. In the second case this obstruction could be
removed by using the squeezing lemma, but an extra difficulty pops
out: the intersection ∆k ∩ ∂U ′ is, this time, not fixed and the topology
of ∆k ∩ U ′ is not controlled. These technical problems are responsible
for most of the complications in our proof.
Firstly we define here the surgeries permitted in this work and used to
perform the γ–reduction.

2.3.1. Surgery. The surjeries that we will use are of two kind: we
are allowed to

• remove a small cylinder and replace it by two disks (as in Fig.
6);

• discard a connected component.

We give below the precise definition.

removing a
cylinder

adding two
disks

Figure 6. Cutting away a neck

Definition 2.12. Let Σ and Σ̃ be two closed smooth embedded
surfaces. We say that Σ̃ is obtained from Σ by cutting away a neck if:

• Σ \ Σ̃ is homeomorphic to S1×]0, 1[;
• Σ̃\Σ is homeomorphic to the disjoint union of two open disks;

• Σ̃∆Σ is a contractible sphere.
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We say that Σ̃ is obtained from Σ through surgery if there is a finite
number of surfaces Σ0 = Σ,Σ1, . . . ,ΣN = Σ̃ such that each Σk is

• either isotopic to the union of some connected components of
Σk−1;

• or obtained from Σk−1 by cutting away a neck.

2.3.2. Definition of the γ–reduction. In what follows, we as-
sume that an open set U ⊂M and a surface Λ in M with ∂Λ ⊂ ∂U are
fixed. Moreover, we let C denote the collection of all compact smooth
2-dimensional surfaces embedded in U with boundary equal to ∂Λ.

We next fix a positive number δ such that the conclusion of Lemma
1 in [MSY82] holds and consider γ < δ2/9. Following [MSY82] we
define the γ-reduction and the strong γ-reduction.

Definition 2.13. For Σ1,Σ2 ∈ C we write

Σ2

(γ,U)
≪ Σ1

and we say that Σ2 is a (γ, U)−reduction of Σ1, if the following condi-
tions are satisfied:

(γ1) Σ2 is obtained from Σ1 through a surgery as described in Def-
inition 2.12. Therefore:

– Σ1 \ Σ2 = A ⊂ U is diffeomorphic to the standard closed

annulus An(x, 1/2, 1);

– Σ2 \ Σ1 = D1 ∪D2 ⊂ U with each Di diffeomorphic to D;
– There exists a set Y embedded in U , homeomorphic to
B1 with ∂Y = A∪D1 ∪D2 and (Y \∂Y )∩ (Σ1 ∪Σ2) = ∅.
(See Picture 6).

(γ2) H2(A) + H2(D1) + H2(D2) < 2γ;
(γ3) If Γ is the connected component of Σ1 ∪U containing A, then

for each component of Γ \ A we have one of the following
possibilities:

– either it is a disc of area ≥ δ2/2;
– or it is not simply connected.

Remark 2.14. The previous definition has another interesting con-
sequence that the reader could easily check: Σ ∈ C is (γ, U)−irreducible
if and only if whenever ∆ is a disc with ∂∆ = ∆ ∩ Σ and H2(∆) < γ,
then there is a disc D ⊂ Σ with ∂D = ∂∆ and H2(D) < δ2/2.

A slightly weaker relation than
(γ,U)
≪ can be defined as follows. We

consider Σ1,Σ2 ∈ C and we say that Σ2 is a strong (γ, U)−reduction of

Σ1, written Σ2

(γ,U)
< Σ1, if there exists an isotopy ψ ∈ Is(U) such that
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(s1) Σ2

(γ,U)
≪ ψ(Σ1);

(s2) Σ2 ∩ (M \ U) = Σ1 ∩ (M \ U);
(s3) H2(ψ(Σ1)△Σ1) < γ.

We say that Σ ∈ C is strongly (γ, U)−irreducible if there is no Σ̃ ∈ C
such that Σ̃

(γ,U)
< Σ.

Remark 2.15. Arguing as in [MSY82] one can prove that, for
every Λ′ ∈ C, there exist a constant c ≥ 1 (depending on δ, g(Λ′) and
H2(Λ′)) and a sequence of surfaces Σj , j = 1, ..., k, such that

(2.10) k ≤ c;

(2.11) Σj ∈ C; j = 1, ..., k;

(2.12) Σk

(γ,U)
< Σk−1

(γ,U)
< ...

(γ,U)
< Σ1 = Λ′ ;

(2.13) H2(Σk∆Λ′) ≤ 3cγ ;

(2.14) Σk is strongly (γ, U)−irreducible.

Compare with Section 3 of [MSY82] and in particular with (3.3), (3.4),
(3.8) and (3.9) therein.

2.3.3. Proof of Proposition 2.11. Applying Lemma 2.7, we con-
clude that a susbsequence, not relabeled, of Λk converges to a station-
ary varifold V in U such that U ∩ supp (V ) ⊂ ∂Λ. Next, arguing
as in Subsection 2.2.1, we conclude that ‖V ‖(∂Λ) = 0, and hence
that ‖V ‖(∂U) = 0. Proceeding as in pages 364-365 of [MSY82] (see
(3.22)–(3.26) therein), we find a γ0 > 0 and a sequence of γ0–strongly
irreducible surfaces Σk with the following properties:

• Σk is obtained from Λk through a number of surgeries which
can be bounded independently of k;

• Σk converges, in the sense of varifolds, to V .

This allows to apply Theorem 2 and Section 5 of [MSY82] to the
surfaces Σk to conclude that supp (V ) \ ∂U is a smooth embedded
stable minimal surface.

Remark 2.16. This procedure cannot be applied if the minimality
of the sequence Λk in Is(U) were replaced by the minimality in Isj(U).
In fact, the proof of Theorem 2 in [MSY82] uses heavily the minimality
in Is(U) and we do not know how to overcome this issue.
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2.3.4. Interior regularity. As a consequence of Proposition 2.11
we have:

Lemma 2.17 (Interior regularity). Let V be as in Theorem 2.2.
Then ‖V ‖ = H2 ∆ where ∆ is a smooth stable minimal surface in U
(multiplicity is allowed).

The proof of this Lemma follows with the help of the squeezing
Lemma and the regularity theory of replacements as described in [CDL03]
(cp. with Section 7 therein). We will recall this regularity technique for
varifolds in Chapter 3, therefore we withhold the proof of the Lemma
until then (see Section 3.3).

Remark 2.18. Note that the arguments of Section 3 of [MSY82]
cannot be applied directly to the sequence ∆k. It is indeed possible
to modify ∆k in Bε(x) =: U ′ to a strongly γ-irreducible ∆̃k. However,
the number of surgeries needed is controlled by H2(∆k ∩ Bε(x)) and
g(∆k ∩ U ′). Though the first quantity can be bounded independently
of k, on the second quantity (i.e. g(∆k ∩ U ′)) we do not have any a
priori uniform bound.

2.4. Part IV: Boundary regularity

In this section we conclude the proof of part (b) of Theorem 2.2.
More precisely, we show that the surface ∆ of Lemma 2.17 is regular
up to the boundary and its boundary coincides with ∂Σ.

Lemma 2.19 (Boundary regularity). Let ∆ be as in Lemma 2.17.
Then ∆ has a smooth boundary and ∂∆ = ∂Σ.

As a corollary, we conclude that the multiplicity of ∆ is everywhere
1.

Corollary 2.20. There exist finitely many stable embedded con-
nected disjoint minimal surfaces Γ1, . . . ,ΓN ⊂ U with disjoint smooth
boundaries and with multiplicity 1 such that

(2.15) ∆ = Γ1 ∪ . . . ∪ ΓN and ∂∆ = ∂Γ1 ∪ . . . ∪ ∂ΓN .
Proof. Lemmas 2.17 and 2.19 imply that ∆ is the union of finitely

many disjoint connected components Γ1 ∪ . . .∪ ΓN contained in U and
that either ∂Γi = 0 or ∂Γi is the union of some connected components
of ∂Σ. In this last case, the multiplicity of Γi is necessarily 1. On the
other hand, ∂Γi = 0 cannot occur, otherwise Γi would be a smooth
embedded minimal surface without boundary contained in a convex
ball of a Riemannian manifold, contradicting the classical maximum
principle. �
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2.4.1. Tangent cones at the boundary. Consider now x ∈
supp ‖V ‖ ∩ ∂U . We follow Subsection 2.2.1 and consider the chart
fx,ρ : Bρ(x) → B1 given by fx,ρ(y) = exp−1

x (y)/ρ. We then denote
by Vx,ρ the varifolds (fx,ρ)#V . Moreover, if λ > 0, we will denote by
Oλ : R3 → R3 the rescaling Oλ(x) = x/λ.

Let next W be the limit of a subsequence Vx,ρj
. Again following the

discussion of Subsection 2.2.1, we can choose a system of coordinates
(y1, y2, y3) such that:

• W is integer rectifiable and supp (W ) is contained in the wedge

Wed := {(y1, y2, y3) : |y2| ≤ y1 tan θ0} ∩ B1(0) .

• supp (W ) containes the line ℓ = {(0, 0, t) : t ∈ [−1, 1]}, (which
is the limit of the curves fx,ρ(∂Σ ∩ Bρ(x))).

• If we denote by r : R3 → R3 the reflection given by r(z1, z2, z3) =
(−z1,−z2, z3), then r#W +W is a stationary cone.

By the Boundary regularity Theorem of Allard (see Section 4 of
[All75]), in order to show regularity it suffices to prove that

(TC) Any W as above (i.e. any varifold limit of a subsequence
(fx,ρn)#V with ρn ↓ 0) is a half–disk of the form

(2.16) Pθ := {(y1, y2, y3) : y1 > 0, y3 = y1 tan θ} ∩ B1(0)

for some angle θ ∈] − π/2, π/2[.

In the rest of this section we aim, therefore, at proving (TC). As a
first step we now show that

(2.17) W =

N∑

i=1

kiPθi

where ki ≥ 1 are integers and θi are angles in [−θ0, θ0]. There are two
possible ways of seeing this. One way is to use the Classification of
stationary integral varifolds proved by Allard and Almgren in [AA76].

The second, which is perhaps simpler, is to observe that, on B+ the
varifold W is actually smooth. Indeed, by the interior regularity, V
is a smooth minimal surface in Bρ(x) ∩ V and it is stable, therefore,
by Schoen’s curvature estimates (see Remark 1.15), a subsequence of
Vx,ρn converges smoothly in compact subsets of B+. It follows that
W r := W + r#W coincides with a smooth minimal surface outside on
B1(0) \ ℓ. On the other hand W r is a cone and therefore we conclude
that ∂B1/2(0)∩W r \{(0, 0, 1/2), (0, 0,−1/2)} is a smooth 1-d manifold
consisting of arcs of great circles. Since supp (W ) ⊂ Wed , we conclude
that in fact ∂B1/2(0)∩W r \{(0, 0, 1/2), (0, 0,−1/2)} consists of finitely
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many planes (mupltiplicity is allowed) passing through ℓ. This proves
(2.17).

2.4.2. Diagonal sequence. We are now left with the task of
showing that N = 1 and k1 = 1. We will, indeed, assume the contrary
and derive a contradiction. In order to do so, we consider a suitable
diagonal sequence fx,ρn(∆kn) converging, in the sense of varifolds, to
W . We can select ∆kn in such a way that the following minimality
property holds:

(F) If Λ is any surface isotopic to ∆kn with an isotopy fixing ∂(U ∩
Bρn(x)), then H2(Λ) ≥ H2(∆kn) − ρ3

n.

Indeed, we appply the Squeezing Lemma 2.10 with β = 1/(16j) and
let n be so large that ρn is smaller than the constant ε0 given by the
Lemma. Since ∆k is 1/j–a.m. in U , we conclude therefore that, if we
set

Mk,n := inf{Φ(1,∆k) : Φ ∈ Is(U ∩ Bρn(x))} ,
then

lim
k↑∞

H2(∆k ∩ Bρn(x)) −Mn,k = 0 .

Therefore, having fixed ρn < ε0, we can choose kn so large that Mn,k ≥
H2(∆kn) − ρ3

n.
Next, it is convenient to introduce a slightly perturbed chart gρn

x

which maps ∂U ∩ Bρn(x) onto B1 ∩ {y1 = 0} and ∂Σ ∩ Bρn(x) onto
ℓ. This can be done in such a way that fx,ρn ◦ g−1

x,ρn
and gx,ρn ◦ f−1

x,ρn

converge smoothly to the identity map as ρn ↓ 0.
Having set Γn = gx,ρn(∆kn), we have that Γn converges to W in

the sense of varifolds. Moreover, our discussion implies that H2(∆kn ∩
Bρn(x)) = ρ2

nH2
e(Γn) +O(ρ3

n). Therefore we conclude from (F) that

(F’) Letmn be the minimum of H2
e(Λ) over all surfaces Λ isotopic to

Γn with an isotopy which fixes ∂(U ∩B1). Then H2
e(Γn)−mn ↓

0.

We next claim that

(2.18) lim inf
n↓0

H1
e(Γn ∩ ∂Bσ) ≥ πσ

N∑

i=1

ki for every σ ∈]0, 1[.

Indeed, using the squeezing homotopies of Section 2.2.2 it is easy to
see that

H2
e(Γn) −mn ≥ H2

e(Γn ∩ Bσ) − σH1
e(Γn ∩ ∂Bσ)
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Letting n ↑ 0 and using (2.17) with the convergence of Γn to the varifold
W we conclude

lim inf
n↑∞

(H2
e(Γn) −mn) ≥ σ

(

σπ
∑

i

ki − lim inf
n↓0

H1
e(Γn ∩ ∂Bσ)

)

.

Therefore, from (F’) we conclude (2.18).
We next claim the existence of a σ ∈ [1/2, 1[ and a subsequence

n(j) such that Γn(j) ∩ ∂Bσ is a smooth 1-dimensional manifold with
boundary (0, 0, σ) − (0, 0,−σ) and, at the same time,

(2.19) lim
j↑∞

H1
e(Γn(j) ∩ ∂Bσ) = πσ

N∑

i=1

ki

and
(2.20)
lim
j↑∞

H1
e(Γn(j) ∩ ∂Bσ \K) = 0 for every compact K ⊂ B1 \

⋃

i Pθi
.

In fact, let {Kl}l be an exhaustion of B1 \
⋃

i Pθi
by compact sets.

Observe that, by the convergence of Γn to W , we get
(2.21)

lim
n↑∞

(

H2
e(Γn ∩ B1 \ B1/2) +

∞∑

l=0

2−lH2
e(Γn \Kl ∩ (B1 \ B1/2))

)

=
π

8

∑

i

ki .

Using the coarea formula, we conclude

∫ 1

1/2

σπ
∑

i

ki dσ ≥ lim
n↑∞

∫ 1

1/2

(

H1
e(Γn ∩ ∂Bσ) +

∑

l

2−lH1
e(Γn ∩ ∂Bσ \Kl)

)

dσ .

Therefore, by Fatou’s Lemma, for a.e. σ ∈ [1/2, 1[ there is a subse-
quence n(j) such that
(2.22)

lim
j↑∞

(

H1
e(Γn ∩ ∂Bσ) +

∑

l

2−lH1
e(Γn ∩ ∂Bσ \Kl)

)

= πσ
∑

i

ki .

Clearly, (2.18) and (2.22) imply (2.19) and (2.20). On the other hand,
by Sard’s Theorem, for a.e. σ ∈ [1/2, 1[ every surface ∂Bσ ∩ Γn is a
smooth 1-dimensional submanifold with boundary (0, 0, σ)−(0, 0,−σ).

2.4.3. Disks. From now on we fix the radius σ found above and
we use Γn in place of Γn(i) (i.e. we do not relabel the subsequence).
Consider now the Jordan curves γn1 , . . . , γ

n
M(n) forming Γn ∩ ∂B+

σ (by

B+
σ we understand the half ball Bσ ∩ {y1 ≥ 0}).
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Since ∂Γn ∩ {y1 = 0} is given by the segment ℓ, there is one curve,
say γn1 , which contains the segment ℓ. All the others, i.e. the curves
γni with i ≥ 2 lie in ∂Bσ ∩ {y1 > 0}.

γni wth i ≥ 2

γn1
ℓ

Figure 7. The curves γni .

Next, for every γnl consider the number
(2.23)
κnl := inf{H2

e(D) : D is an embedded smooth disk bounding γnl } .
We will split our proof into several steps.

(a) In the first step, we combine a simple desingularization proce-
dure with the fundamental result of Almgren and Simon (see
[AS79]), to show that

there are disjoint embedded smooth disks Dn
1 , . . .D

n
M(n) s.t.

(2.24)

M(n)
∑

i=1

H2
e(D

n
i ) ≤

M(n)
∑

i=1

κni +
1

n
.

A simple topological observation (see Lemma 2.22 in subsec-
tion 2.4.7) shows that, for each fixed n, there exist isotopies Φl

keeping ∂B+
σ fixed and such that Φl(Γn∩Bσ) converges, in the

sense of varifolds, to the union of the disks Dn
i . Combining

(F’), (2.24) and the convergence of Γn to the varifold W we
then conclude

(2.25) lim sup
n↑∞

M(n)
∑

i=1

κni = πσ2
∑

j

kj .
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(b) In the second step we will show the existence of a δ > 0 (in-
dependent of n) such that

(2.26) κni ≤ σ

(
1

2
− δ

)

H1
e(γ

n
i ) for every i ≥ 2 and every n.

A simple cone construction shows that

(2.27) κn1 ≤ σ

2
H1
e(γ

n
1 ) .

So, (2.19), (2.26) and (2.27) imply

(2.28) lim
n↑∞

M(n)
∑

i=2

H1
e(γ

n
i ) = 0 and lim

n↑∞
H1
e(γ

n
1 ) = σ

∑

j

kj ,

which in turn give

(2.29) lim
n↑∞

κn1 =
πσ2

2

∑

j

kj .

(c) We next fix a parameterization βn1 : S1 → ∂B+
σ of γn1 with a

multiple of the arc-length and extract a further subsequence,
not relabeled such that βn1 converges to a β∞. By (2.20),
the image of β∞ is then contained in the union of the curves
Pθl

∩ ∂B+
σ . We will then show that

(2.30) lim sup
n↓∞

κn1 =
πσ2

2
.

(2.29) and (2.30) finally show that W consists of a single half-
disk Pθ ∩ B+

1 , counted once. This will therefore complete the
proof.

2.4.4. Proof of (2.24). In this step we fix n and prove the claim
(2.24). First of all, note that each γni with i ≥ 2 is a smooth Jordan
curve lying in ∂Bσ ∩ {y1 > 0}.

We recall the following result of Almgren and Simon (see [AS79]).

Theorem 2.21. For every curve γni with i ≥ 2 consider a sequence
of smooth disks Dj with H2

e(D
j) converging to κni . Then a subse-

quence, not relabeled, converges, in the sense of varifolds, to an em-
bedded smooth disk Dn

i ⊂ B+
σ bounding γni and such that H2

e(D
n
i ) = κni .

(The disk is smooth also at the boundary).

For each γni select therefore a disk Dn
i as in Theorem 2.21. We next

claim that these disks are all pairwise disjoint. Fix in fact two such
disks. To simplify the notation we call them D1 and D2 and assume
they bound, respectively, the curves γ1 and γ2. Clearly, D1 divides B+

σ
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into two connected components A and B and γ2 lies in one of them,
say A. We will show that D2 lies in A.

Assume by contradiction thatD2 intersects D1. By perturbing D2 a
little we modify it to a new disk Ej such that H2

e(E
j) ≤ H2

e(D
2) + 1/j

and Ej intersects D1 transversally in finitely many smooth Jordan
curves αm.

Each αm bounds a disk Fm in Ej . We call αm maximal if it is not
contained in any F l. Each maximal αm bounds also a disk Gm in D1.
By the minimality of D1, clearly H2

e(G
m) ≤ H2

e(F
m). We therefore

consider the new disk Hj given by

D2 \
(

⋃

αm maximal

Fm

)

∪
⋃

αm maximal

Gm .

Clearly H2
e(H

j) ≤ H2
e(E

j) + 1/j. With a small perturbation we find a
nearby smooth embedded disk Kj which lies in A and has H2

e(K
j) ≤

H2
e(E

j) + 1/(2j). By letting j ↑ ∞ and applying Theorem 2.21, a
subsequence of Kj converges to a smooth embedded minimal disk D3

in the sense of varifolds. On the other hand, by choosing Kj sufficiently
close to Hj, we conclude that Hj converges as well to the same varifold.
But then,

D2 \
(

⋃

αm maximal

Fm

)

⊂ D3

and hence D2 ∩D3 6= ∅. Since D3 lies on one side of D2 (i.e. in A) this
violates the maximum principle for minimal surfaces.

Having chosen Dn
2 , . . .D

n
M(n) as above, we now choose a smooth disk

En
1 bounding γn1 and with

H2
e(E

n
1 ) ≤ κn1 +

1

3n
.

In fact we cannot apply directly Theorem 2.21 since in this case the
curve γn1 is not smooth but has, in fact, two corners at the points
(0, 0, σ) and (0, 0,−σ).

γn1 lies in one connected component A of B+
σ . We now find a new

smooth embedded disk Dn
1 with

H2
e(D

n
1 ) ≤ κn1 +

1

n

and lying in the interior of A This suffices to prove (2.24).
Consider the disks D′

1, . . .D
′
l which, among the Dn

j with j ≥ 2,
bound A. We first perturb En

1 to a smooth embedded F n
1 which inter-

sects all the D′
j . We then inductively modify En

1 to a new disk which
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does not intersect D′
j and looses at most 1/(3ln) in area. This is done

exactly with the procedure outlined above and since the distance be-
tween different D′

j’s is always positive, it is clear that while removing
the intersections with D′

j we can do it in such a way that we do not
add intersections with D′

i for i < j.

2.4.5. Proof of (2.26). In this step we show the existence of a
positive δ, independent of n and j, such that

(2.31) κnj ≤ σ

(
1

2
− δ

)

H1
e(γ

n
j ) ∀j ≥ 2, ∀n .

Observe that for each γnj we can construct the cone with vertex the

origin, which is topologically a disk and achieves area equal to σ
2
H1
e(γ

n
j ).

On the other hand, this cone is clearly not stationary, because γnj is not
a circle, and therefore there is a disk diffeomorphic to the cone with
area strictly smaller than σ

2
H1
e(γ

n
j ). A small perturbation of this disk

yields a smooth embedded disk D bounding γnj such that

(2.32) H2
e(D) <

σ

2
H1
e(γ

n
j ) .

Therefore, it is clear that it suffices to prove (2.31) when n is large
enough.

Next, by the isoperimetric inequality, there is a constant C such
that, any curve γ in ∂Bσ bounds, in Bσ, a disk D such that

(2.33) H2
e(D) ≤ C

(
H1
e(γ)

)2
.

Therefore, (2.31) is clear for every γnj with H1
e(γ

n
j ) ≤ σ/4C.

We conclude that the only way of violating (2.31) is to have a
subsequence, not relabeled, of curves γn := γnj(n) such that

• H1
e(γ

n) converges to some constant c0 > 0;
• κn := κnj(n) converges to c0/2.

Consider next the wedge Wed = {|y2| ≤ y1 tan θ0} containing the
support of the varifold V . If we enlarge this wedge slightly to

Wed ′ := {|y2| ≤ y1(tan θ0 + 1)} ,
we conclude, by (2.20), that

(2.34) lim
n↑∞

H1
e(γ

n \ Wed ′) = 0 .

Perturbing γn slightly we find a nearby smooth Jordan curve βn

contained in ∂Bσ ∩ Wed ′. Consider next
(2.35)

µn := min{H2
e(D) : smooth embedded disk D bounding βn} .
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Given a D bounding βn, it is possible to construct a D′ bounding γn

with

H2
e(D

′) ≤ H2
e(D) + o(1).

Therefore, we conclude that

• H1
e(β

n) converges to c0 > 0;
• µn converges to σc0/2;
• βn is contained in Wed ′.

Consider next the projection of the curve α = Wed ′ ∩ Bσ on the
plane π = y1y3. This projection is an ellypse bounding a domain Ω in
π. Clearly α is the graph of a function over this ellypse. The function
is Lipschitz (actually it is analytic except for the two points (0, σ)
and (0,−σ)) and we can therefore find a function f : Ω → R which
minimizes the area of its graph. This function is smooth up to the
boundary except in the points (0, σ) and (0,−σ) where, however, it is
continuous. Therefore, the graph of f is an embedded disk.

We denote by Λ the graph of f . Λ is in fact the unique area-
minimizing current spanning α, by a well-known property of area–
minimizing graphs. By the classical maximum principle, Λ is contained
in the wedge Wed ′ and does not contain the origin. Consider next the
cone Cn having vertex in 0 and βn as base. Clearly, this cone intersects
Λ in a smooth Jordan curve β̃n and hence there is a disk Dn in Λ
bounding this curve. Moreover, we call En the cone constructed on β̃n

with vertex 0 (see Figure 8).

Λ

Dn

Cn

En

β̃n

βn

Figure 8. The minimal surface Λ, the cones Cn and En

and the domain Dn.
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Clearly,

(2.36) lim inf
n↑∞

H1
e(β

n) > 0 .

Consider next the current given by Dn ∪ (Cn \ En). These coverge,
up to subsequences, to some integer rectifiable current. Therefore, the
disks Dn converge, in the sense of currents, to a 2–dimensional current
D supported in Λ. It is easy to check that D must be the current
represented by a domain of Λ, counted with multiplicity 1. Therefore

(2.37) lim
n↑∞

H2
e(D

n) = H2
e(D) .

Similarly, En converges, up to subsequences, to a current E. By the
minimizing property of Λ, H2

e(D) < M(E), unless H2
e(D) = M(E) = 0,

where M(E) denotes the mass of E.
So, if M(E) > 0, we then have

lim inf
n↑∞

H2
e(E

n) ≥ M(E) > H2
e(D) = lim

n↑∞
H2
e(D

n) .

If M(E) = 0, by (2.36), we conclude

lim inf
n↑∞

H2
e(E

n) > 0 = lim
n↑∞

H2
e(D

n) .

In both cases we conclude that the embedded disk Hn = (Cn\En)∪Dn

bounds βn and satisfies

(2.38) lim
n↑∞

H2
e(H

n) < lim
n↑∞

H2
e(C

n) =
σc0
2

= lim
n↑∞

µn .

Therefore, there exists an n such that µn > H2
e(H

n). A small pertur-
bation of Hn gives a smooth embedded disk bounding βn with area
strictly smaller than µn. This contradicts the minimality of µn (see
(2.35)) and hence proves our claim.

2.4.6. Proof of (2.30). In this final step we show (2.30). Our
arguments are inspired by those of Section 7 in [AS79].

Consider the curve γn1 . Again applying (2.20) we conclude that, for
every compact set

K ⊂ B+

σ \
⋃

i

Pθi

we have

(2.39) lim
n↑∞

H1
e(γ

n
1 \K) = 0 .

Consider next the solid sector S := Wed ′ ∩ Bσ. Clearly H2
e(∂S) =

(3π − η)σ2, where η is a positive constant. Clearly a curve contained
in ∂S bounds always a disk with area at most π(3

2
− η

2
)σ2. For large
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γn1 we can modify it to a new curve γ̃n contained in ∂S, and hence find
a smooth embedded disk bounding γ̃n with area at most π(3

2
− η

4
)σ2.

This and (2.29) implies that

πσ2

2

∑

i

ki = lim
n↑∞

κn1 <
3π

2
σ2 .

Therefore we conclude that
∑

i ki ≤ 2.

Extracting a subsequence, not relabeled, we can assume that γn1
converges to an integer rectifiable current γ. The intersection of the
support of γ with ∂Bσ\{(0, 0, σ), (0, 0,−σ) is then contained in the arcs
αi := Pθi

∩ ∂Bσ . Therefore if we denote by [[αi]] the current induced
by αi then we have

γ ∂Bσ =
∑

i

hi[[αi]]

where the hi are integers.
On the other hand, γn1 Bσ is given by the segment ℓ. Therefore we

conclude that
γ Bσ = [[ℓ]] .

It turns out that
γ = [[ℓ]] +

∑

i

hi[[αi]]

and of course
∑

i |hi| ≤
∑

i ki.
Since ∂γ = 0, we conclude that

0 = ∂[[l]] +
∑

i

hi∂[[αi]] = δP − δN +
∑

i

hi(δN − δP )

where N = (σ, 0, 0), P = (−σ, 0, 0) and δX denotes the Dirac measure
in the point X. Hence we conclude

(

1 −
∑

i

hi

)

δP −
(

1 −
∑

i

hi

)

δN = 0

and therefore
∑

i hi = 1. This implies that
∑

i |hi| is odd. Since
∑

i |hi| ≤
∑

i ki ≤ 2, we conclude
∑

i |hi| = 1.
Therefore, γ consists of the segment ℓ and an arc, say, α1. Clearly,

γ bounds Pθ1, which has area πσ2/2. Consider next the closed curve
βn made by joining γn1 ∩ ∂Bσ and −α1. These curves might have self–
intersections, but they are close. Moreover, they have bounded length
and they converge, in the sense of currents, to the tivial current α1 −
α1 = 0.

There are therefore domains Dn ⊂ B+
σ such that ∂Dn = βn and

H2
e(D

n) ↓ 0. It is not difficult to see that the union of the domains
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Dn and of Pθ1 gives embedded disks En bounding γn1 and with area
converging to πσ2/2 (see Figure 9). Approximating these disks En

with smooth embedded ones, we conclude that

lim
n↑∞

µn ≤ π

2
σ2 .

This shows that
∑

i ki ≤ 1. Hence the varifold W is either trivial
or it consists of at most one half-disk. Since it cannot be trivial by
the considerations of Subsections 2.2.1 and 2.4.1, we conclude that W
consists in fact of exactly one half-disk.

γn1

Pθ1

α1

Figure 9. The curves γn1 and α1.

2.4.7. A simple topological fact. We summarize the topological
fact used in (a) of Section 2.4.3 in the following lemma.

Lemma 2.22. Condider a smooth 2–dimensional surface Σ ⊂ B1

with smooth boundary ∂Σ ⊂ ∂B1. Let Γ ⊂ B1 is a smooth surface with
∂Γ = ∂Σ consisting of disjoint embedded disks. Then there exists a
smooth map Φ : [0, 1[×B1 → B1 such that

(i) Φ(0, ·) is the identity and Φ(t, ·) is a diffeomorphism for every
t;

(ii) For every t there exists a neighborhood Ut of ∂B1 such that
Φ(t, x) = x for every x ∈ Ut;

(iii) Φ(t,Σ) converges to Γ in the sense of varifolds as t→ 1.

Proof. The proof consists of two steps. In the first one we show
the existence of a surface Γ′ and of a map Ψ : [0, 1[×B1 → B1 such that

• ∂Γ′ = ∂Σ,



58 2. MINIMIZING SEQUENCES OF ISOTOPIC SURFACES

• Γ′ consists of disjoint embedded disks,
• Ψ satisfies (i) and (ii),
• Ψ(t,Σ) → Γ′ as t→ 1.

In the second we show the existence of a Ψ̃ : [0, 1[×B1 → B1 such that

(i) and (ii) hold and Ψ̃(t,Γ′) → Γ as t→ 1.
In order to complete the proof from these two steps, consider the

map Φ̃(s, t, x) = Ψ̃(t,Ψ(s, x)). Then, for every smooth g : [0, 1[→ [0, 1[

with g(0) = 0, the map Φ(t, x) = Φ̃(g(t), t, x) satisfies (i) and (ii) of
the Lemma. Next, for any fixed t, if s is sufficiently close to 1, then
Φ̃(s, t,Σ) is close, in the sense of varifolds, to Ψ̃(t,Γ′). This allows to
find a piecewise constant function h : [0, 1[→ [0, 1[ such that

lim
t→1

Φ̃(g(t), t,Σ) = Γ (in the sense of varifolds)

whenever g ≥ h in a neighborhood of 1. If we choose, therefore, a
smooth g : [0, 1[→ [0, 1[ with g(0) = 0 and g ≥ h on [1/2, 1[, the map

Φ(t, x) = Φ̃(g(t), t, x) satisfies all the requirements of the lemma.
We now come to the existence of the maps Ψ and Ψ̃.

Existence of Ψ. Let G be the set of all surfaces Γ′ which can
be obtained as limt→1 Ψ(t,Σ) for maps Ψ satisfying (i) and (ii). It is
easy to see that any Γ′ which is obtained from Σ through surgery as
in Definition 2.12 is contained in G. Let g0 be the smallest genus of a
surface contained in G. It is then a standard fact that g(Γ′) = g0 if
and only if the surface is incompressible. However, if this holds, then
the first homotopy group of Γ′ is mapped injectively in the homotopy
group of B1 (see for instance [Jac80]). Therefore there is a Γ′ ∈ G
which consists of disjoint embedded disks and spheres. The embedded
spheres can be further removed, yielding a Γ′ ∈ G consisting only of
disjoint embedded disks.

Existence of Ψ̃. Note that each connected component of B1 \ Γ′

(and of B1 \Γ) is a, piecewise smooth, embedded sphere. Therefore the
claim can be easily proved by induction from the case in which Γ and
Γ′ consist both of a single embedded disk. This is, however, a standard
fact (see once again [Jac80]). �

2.5. Part V: Convergence of connected components

In this section we complete the proof of Theorem 2.2 and we show
part (c) of it. In particular, building on Corollary 2.20, we show the
following.

Lemma 2.23. Let Σ and ∆k be as in Theorem 2.2 and consider their
varifold limit V . According to Lemma 2.17, Lemma 2.19 and Corollary
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2.20, V is a smooth stable minimal surface with boundary ∂∆ = ∂Σ
and with multiplicity 1. Let Γ1, . . . ,ΓN be the connected components of
∆.

If ∆̃k is an arbitrary union of connected components of ∆k which
converges, in the sense of varifolds, to a W , then W is given by Γi1 ∪
. . . ∪ Γil for some 1 ≤ i1 < i2 < . . . < il ≤ N .

Proof. This lemma is indeed a simple consequence of some known
facts in geometric measure theory. Fix a sequence ∆̃k and a W as in
the statement of the lemma. Note that ∂∆̃k ⊂ ∂∆k = ∂Σ.

We can therefore apply the compactness of integer rectifiable cur-
rents and, after a further extraction of subsequence, assume that the
∆̃k are converging, as currents, to an integer rectifiable current T with
boundary ∂T which is the limit of the boundaries ∂∆̃k. Since these
boundaries are all contained in ∂U , we conclude that ∂T is also con-
tained in ∂U . It is a known fact in geometric measure theory that

(2.40) ‖T‖ ≤ ‖W‖ .
On the other hand,

(2.41) ‖W‖ ≤ ‖V ‖ ≤
∑

i

H2 Γi .

So T is actually supported in the current given by the union of the
currents induced by the Γi’s, which we denote by [[Γi]]. Since ∂T and
∂Γi lie both on ∂U , a second standard fact in geometric measure theory
imply the existence of integers h1, . . . , hN such that

T =
N∑

i=1

hi[[Γi]]

Therefore,

(2.42) ‖T‖ =
∑

i

|hi|H2 Γi .

Hence, (2.40), (2.41) and (2.42) give hi ∈ {−1, 0, 1}. On the other

hand, since each ∂∆̃k is the union of connected components of ∂Σ
(with positive orientation), it turns out that ∂T is the union of the
currents induced by some connected components of ∂Σ, with positive
orientation. Moreover, since U is a sufficiently small ball, by the max-
imum principle each surface Γi must have nontrivial boundary. Hence,
we conclude that hi ∈ {0, 1}.

Arguing in the same way, we conclude that ∆k \ ∆̃k converge, as
currents, to a current T ′, and, as varifolds, to a varifold W ′ with the
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properties that

(2.43) T ′ =
N∑

i=1

h′i[[Γi]]

(2.44) ‖T ′‖ ≤ ‖W ′‖
and h′i ∈ {0, 1}. Since W + W ′ = V , (and hence ‖W‖ + ‖W‖′ =
‖V ‖), we conclude that h′′i = h′i + hi ∈ {0, 1}. On the other hand, ∆k

converges, in the sense of currents, to T + T ′, which is given by

(2.45) T + T ′ =
∑

i

(hi + h′i)[[Γi]] .

Moreover, since ∂∆k = ∂Σ,

(2.46) [[∂Σ]] = ∂(T + T ′) =
∑

i

(hi + h′i)[[∂Γi]] .

Since the ∂Γi are all nonzero, disjoint and contained in ∂Σ, we conclude
that hi + h′i = 1 for every i.

Summarizing, we conclude that ‖V ‖ = ‖W‖+‖W ′‖ ≥ ‖T‖+‖T ′‖ ≥
‖T + T ′‖ = ‖V ‖. This implies that ‖W‖ + ‖W ′‖ = ‖T‖ + ‖T ′‖ and
hence that ‖W‖ = ‖T‖. Therefore

‖W‖ =
∑

i

hiH2 Γi

and since hi ∈ {0, 1}, this last claim concludes the proof. �



CHAPTER 3

Existence and regularity of min-max surfaces

In this Chapter we will recall the proof of the existence and regu-
larity result for min–max surfaces announced by Pitts and Rubistein
in [PR86] and proved by T. Colding and C. De Lellis in their paper
[CDL03]. Thereby the authors gave a complete proof of the follow-
ing Theorem due to Simon and Smith. Its proof will use the material
covered in Chapter 1 and Chapter 2.

Theorem 3.1. [Simon–Smith] Let M be a closed 3-manifold with a
Riemannian metric. For any saturated Λ, there is a min–max sequence
Σn
tn converging in the sense of varifolds to a smooth embedded minimal

surface Σ with area m0(Λ) (multiplicity is allowed).

3.1. Overview of the proof of Theorem 3.1

In the following we fix a saturated set Λ of generalized 1-parameter
families of surfaces and denote by m0 = m0(Λ) the infimum of the areas
of the maximal slices in Λ.

What we need to prove is that the stationary varifold V of Propo-
sition 1.8 is a smooth surface.

In Section 3.2 we will see that if An is an annulus in which {Σj}
is a.m., then there exists a stationary varifold V ′, referred to as a
replacement, such that

V and V ′ have the same mass and V = V ′ on M \ An.(3.1)

V ′ is a stable minimal surface inside An.(3.2)

The stragegy of the proof will be twofold: in Section 3.2 (Lemma 3.5),
following [Smi82], we will show that this “replacement property” and
(1.30) will imply that the stationary varifold V of Proposition 1.8 is
integer rectifiable and hence regular. Section 3.4 will be devoted to the
construction of such replacements and will follow ideas of Pitts (see
[Pit81]). More precisely we can split the proof of theorem 3.1 in two
steps:

Step 1: Fix an annulus An in M in which Σk is εk–a.m. In this
annulus we deform Σk into a further sequence of surfaces {Σk,l}l with
the following properties:

61
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• Σk,l is the image of Σk under some isotopy ψ which satisfies
(1.14) (with ε = εk and U = An);

• If we denote by Sk the family of all such isotopies, then

(3.3) lim
l→∞

H2(Σk,l) = inf
ψ∈Sk

H2(ψ(1,Σk)) .

After possibly passing to a subsequence, then Σk,l → V k and V k → V ′,
where V k is a varifold which is stationary in An. By the a.m. property
of V , it follows that V ′ is stationary in all of M and satisfies (3.1).

The second step is to prove that V k is a (smooth) stable minimal
surface in An. Thus, (1.30) will give that also V ′ is a stable minimal
surface in An. After checking some details we will show that V meets
the technical requirements of Proposition 3.4.

Step 2: It remains to prove that V k is a stable minimal surface.
Stability is a trivial consequence of (3.3). For the regularity we use
again Proposition 3.4. Key is going to be the following property which
is an immediate consequence of the squeezing Lemma proved in Chap-
ter 2 (see Lemma 2.10):

(P) If B ⊂ An is a sufficiently small ball and l is a sufficiently large
number, then any ψ ∈ Is(B) with H2(ψ(1,Σk,l)) ≤ H2(1,Σk)
can be replaced by a Ψ ∈ Is(An) with

(3.4) Ψ(1, ·) = ψ(1, ·) and H2(Ψ(t,Σk,l)) ≤ H2(Σk,l) + εk/8

for all t ∈ [0, 1] and all given εk.

We will now discuss how (P) gives the regularity of V k.
Fix a sufficiently small ball B and a large number l so that the

property (P) above holds. Take a sequence of surfaces Γj = Σk,l,j

which are isotopic to Σk,l in B and such that H2(Γj) converges to

inf
ψ∈Is(B)

H2(1, ψ(Σk,l)) .

By Theorem 2.2 of Chapter 2, Γj converges to a varifold V k,l which is a
stable minimal surface in B. Thus, by (1.30), the sequence of varifolds
{V k,l}l converges to a varifold W k which is a stable minimal surface in
B. The property (P) is used to show that, for j and l sufficiently large,
Σk,l,j is a good competitor with respect to the εk–a.m. property of Σk.
This is then used to show that W k is a replacement for V k in B. Again
it is only a technical step to check that we can apply Proposition 3.4,
and hence get that V k is a stable minimal surface in An.

3.2. Regularity theory for replacement

We should start defining what we intended as ”good replacement”
for stationary varifolds.
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Definition 3.2. Let V ∈ V(M) be stationary and U ⊂ M be
an open subset. A stationary varifold V ′ ∈ V(M) is said to be a
replacement for V in U if (3.5) and (3.6) below hold.

V ′ = V on G(M \ U) and ‖V ′‖(M) = ‖V ‖(M).(3.5)

V U is a stable minimal surface Σ with Σ \ Σ ⊂ ∂U .(3.6)

Definition 3.3. Let V be a stationary varifold and U ⊂M be an
open subset. We say that V has the good replacement property in U if
the following conditions hold.

(a) There is a positive function r : U → R such that for every
annulus An ∈ AN r(x)(x) there is a replacement V ′ for V in
An.

(b) The replacement V ′ has a replacement V ′′ in any An ∈ AN r(x)(x)
and in any An ∈ AN r′(y)(y) (where r′ is positive).

(c) V ′′ has a replacement V ′′′ in any An ∈ AN r′′(y)(y) (where
r′′ > 0).

If V and V ′ are as above, then we will say that V ′ is a good replacement
and V ′′ a good further replacement.

We are now able to state the proposition which will give us regu-
larity.

Proposition 3.4. Let G be an open subset of M . If V has the
good replacement property in G, then V is a (smooth) minimal surface
in G.

The two lemmas in subsection 1.1.4 are useful for the proof of this
proposition. We will also need the following lemma:

Lemma 3.5. Let U be an open subset of M and V a stationary
varifold in U . If there exists a positive function r on M such that V
has a replacement in any annulus An ∈ AN r(x)(x), then V is integer
rectifiable. Moreover, θ(x, V ) ≥ 1 for any x ∈ U and any tangent cone
to V in x is an integer multiple of a plane.

Proof. Since V is stationary, the monotonicity formula (1.3) gives
a constant CM such that
(3.7)
‖V ‖(Bσ(x))

σ2
≤ CM

‖V ‖(Bρ(x))

ρ2
∀σ < ρ < Inj (M) and ∀x ∈M .

Fix x ∈ supp (‖V ‖) and r < r(x) so that 4r is smaller than the
convexity radius. Replace V with V ′ in An(x, r, 2r). We claim that
‖V ′‖ cannot be identically 0 on AN (x, r, 2r). Assume it was; since
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x ∈ supp (‖V ′‖), there would be a ρ ≤ r such that V ′ “touches”
∂Bρ from the interior. More precisely, there would exist ρ and ε
such that supp ‖V ′‖ ∩ ∂Bρ(x) 6= ∅ and supp ‖V ′‖ ∩ AN (x, ρ, ρ + ε) =
∅. Since Bρ(x) is convex this would contradict Lemma 1.3. Thus
V ′ An(x, r, 2r) is a non–empty smooth surface and so there is y ∈
An(x, r, 2r) with θ(V ′, y) ≥ 1. Using (3.7) we get
(3.8)

‖V ‖(B4r(x))

16r2
=

‖V ′‖(B4r(x))

16r2
≥ CM‖V ′‖(B2r(y))

16r2

(3.7)

≥ πCM
4

.

Hence, θ(x, V ) is bounded uniformly from below on supp (‖V ‖) and
applying Theorem 1.1 we conclude that V is rectifiable.

We next prove that V is integer rectifiable. We use the notation of
Definition 1.2. Fix x ∈ supp (‖V ‖), a stationary cone C ∈ TV (x, V ),
and a sequence ρn ↓ 0 such that V x

ρn
→ C. Replace V by V ′

n in
An(x, ρn/4, 3ρn/4) and set W ′

n = (T xρn
)#V

′
n. After possibly passing

to a subsequence, we can assume that W ′
n → C ′, where C ′ is a station-

ary varifold. The following properties of C ′ are trivial consequences of
the definition of replacements:

C ′ = C in B1/4(x) ∪ An(x, 3/4, 1),(3.9)

‖C ′‖(Bρ) = ‖C‖(Bρ) if ρ ∈]0, 1/4[∪]3/4, 1[.(3.10)

Since C is a cone, in view of (3.10) we have

(3.11)
‖C ′‖(Bσ)

σ2
=

‖C ′‖(Bρ)
ρ2

∀σ, ρ ∈]0, 1/4[∪]3/4, 1[.

Hence, the stationarity of C ′ and the monotonicity formula imply that
C ′ is a cone. By (1.30), W ′

n converge to a stable embedded minimal
surface in An(x, 1/4, 3/4). This means that C ′ An(x, 1/4, 3/4) is an
embedded minimal cone in the classical sense and hence it is supported
on a disk containing the origin. This forces C ′ and C to coincide and
be an integer multiple of the same plane. �

We are now able to prove the proposition.

Proof of Proposition 3.4. The strategy of the proof is as fol-
lows. Fix x ∈M , a good replacement V ′ for V in An(x, ρ, 2ρ), and let
Σ′ be the stable minimal surface given by V ′ in An(x, ρ, 2ρ). Consider
t ∈]ρ, 2ρ[, s < ρ and the replacement V ′′ of V ′ in An(x, s, t), which in
this annulus coincides with a smooth minimal surface Σ′′. In step 2 we
will prove that, for ρ sufficiently small and for an appropriate choice
of t, then Σ′′ ∪ Σ′ is a smooth surface. Letting s ↓ 0 we get a minimal
surface Σ ⊂ Bρ(x) \ {x} such that every Σ′′ constructed as above is
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a subset of Σ. Loosely speaking, any replacement of V ′ will coincide
with Σ in the annular region where it is smooth.

Now, fix a z which belongs to supp (‖V ‖) and such that V inter-
sects ∂Bs(x) “transversally” in z. If we consider a replacement V ′′

of V ′ in An(x, s, ρ), then z will belong to the closure of the minimal
surface Σ′′ = V ′′ An(x, s, ρ). The discussion above gives that z ∈ Σ.
Lemma 1.4 implies that “transversality” to the spheres centered at x
is a dense subset of (supp (‖V ‖)) ∩Bρ(x). Thus in step 3 we conclude
that

(supp (‖V ‖)) ∩ Bρ(x) \ {x} ⊂ Σ.

Since H2(Σ ∩ Bρ(x)) = ‖V ‖(Bρ(x)), then V = Σ in Bρ(x). Step 4
concludes the proof by showing that x is a removable singularity for Σ.

The key fact that Σ′′ and Σ′ can be “glued” smoothly together
is a consequence of the curvature estimates for stable minimal sur-
faces combined with the characterization of the tangent cones given in
Lemma 3.5. These two ingredients will be used to prove that Σ′′ is
(locally) a Lipschitz graph nearby ∂Bt(x); thus allowing us to apply
standard theory of Elliptic PDE.

Step 1: The set up.

Fix x, V , V ′, V ′′, Σ′, Σ′′, ρ, s, and t as above. We require that 2ρ
is less than the convexity radius of M and that Σ′ intersects ∂Bt(x)
transversally. Fix a point y ∈ Σ′∩∂Bt(x) and a sufficiently small radius
r, so that Σ′ ∩Br(y) is a disk and γ = Σ′ ∩ ∂Bt(x)∩Br(y) is a smooth
arc.

Let ζ : Br(y) → B1 be a diffeomorphism such that

ζ(∂Bt(x)) ⊂ {z1 = 0} and ζ(Σ′′) ⊂ {z1 > 0} ,
where z1, z2, z3 are orthonormal coordinates on B1; see Fig. 1. We will
also assume that ζ(γ) = {(0, z2, g′(0, z2))} and ζ(Σ′) ∩ {z1 ≤ 0} =
{(z1, z2, g′(z1, z2))} where g′ is smooth.

Note the following elementary facts:

• Any kind of estimates (like curvature or area bounds or mono-
tonicity) for a minimal surface Σ ⊂ Br(y) translates into sim-
ilar estimates for the surface ζ(Σ).

• Varifolds in Br(y) are push–forwarded to varifolds in B1 and
there is a natural correspondence between tangent cones to V
in ξ and tangent cones to ζ#V in ζ(ξ).

By slight abuse of notation, we use the same symbols (e.g. γ, V ′, Σ′)
for both the objects of Br(y) and their images under ζ .

Step 2: Graphicality; gluing Σ′ and Σ′′ smoothly together.
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B1

Σ′

z3 = 0

z1 = 0

Σ′′

γ

Figure 1. The surfaces Σ′ and Σ′′ and the curve γ in B1.

The varifold V ′′ consists of Σ′′ ∪Σ′ in Br(y). Moreover, Lemma 3.5
applied to V ′′ gives that TV (z, V ′′) is a family of (multiples of) 2–
planes. Fix z ∈ γ. Since Σ′ is regular and transversal to {z1 = 0}
in z, each plane P ∈ TV (z, V ′′) coincides with the half plane TzΣ

′ in
{z1 < 0}. Hence TV (z, V ′′) = {TzΣ′}. Let τ(z) be the unit normal to
the graph of g′

τ(z) =
(−∂1g

′(0, z2),−∂2g
′(0, z2), 1)

√

1 + |∇g′0, z2)|2

and let Rz
r : R3 → R3 be the dilatation of 3-space defined by

Rz
r(z) =

z − z

r
.

Since TV (z, V ′′) = {TzΣ′}, the surfaces Σr = Rz
r(Σ

′′) converge to the
half planeHP = {τ(z)·v = 0, v1 > 0} — half of the plane {τ(z)·v = 0}.
This convergence implies that

(3.12) lim
z→z,z∈Σ′′

|(z − z) · τ(z)|
|z − z| = 0 .

Indeed assume that (3.12) fails; then there is a sequence {zn} ⊂ Σ′′

such that zn → z and |(zn − z) · τ(z)| ≥ k|zn − z| for some k > 0. Set
rn = |zn−z|. There exists a constant k2 such that B2k2rn(zn)∩HP = ∅.
Thus dist(HP,Bk2rn(zn)) ≥ k2rn. Since Σ′′ is regular in zn we get by
the monotonicity formula that

‖V ′′‖(Bk2rn(zn)) ≥ Ck2
2r

2
n where C depends on ζ .

This contradicts the fact that HP is the only element of TV (z, V ′′).
Note also that the convergence of (3.12) is uniform for z in compact
subsets of γ. The argument is explained in Fig. 2.
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HPz

Bk2rn(zn)

2k2rn
rn

Figure 2. If zn ∈ Σ′′ is far from the plane HP , the
monotonicity formula gives a “good amount” of the var-
ifold V ′′ which lives far from HP .

Let ν denote the smooth unit vector field to Σ′′ such that ν ·
(0, 0, 1) ≥ 0. We next use the stability of Σ′′ to show that

(3.13) lim
z→z,z∈Σ′′

ν(z) = τ(z) .

Indeed let σ be the plane {(0, α, β), α, β ∈ R}, assume that zn → z
and set rn = dist(zn, σ). Define the rescaled surfaces Σn = Rzn

rn(Σ′′ ∩
Brn(zn)). Each Σn is a stable minimal surface in B1, and hence, after
possibly passing to a subsequence, Σn converges smoothly in B1/2 to a
minimal surface Σ∞ (by (1.30)). By (3.12), we have that Σ∞ is the disk
TzΣ

′ ∩ B1/2. Thus the normals to Σn in 0, which are given by ν(zn),
converge to τ(z); see Fig. 3. It is easy to see that the convergence in
(3.13) is uniform on compact subsets of γ.

HP

z

Brn(zn)
Σ′′

σ

Figure 3. If we rescale Brn(zn), then we find a sequence
of stable minimal surfaces Σn which converge to the half–
plane HP .
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Hence, for each z ∈ γ, there exists r > 0 and a function g′′ ∈
C1({z1 ≥ 0}) such that

Σ′′ ∩Br(z) = {(z1, z2, g′′(z1, z2)), z1 > 0} ,
g′′(0, z2) = g′(0, z2) , and ∇g′′(0, z2) = ∇g′(0, z2) .

In the coordinates z1, z2, z3, the minimal surface equation yields a sec-
ond order uniformly elliptic equation for g′ and g′′. Thus the classical
theory of elliptic PDE gives that g′ and g′′ are restrictions of a unique
smooth function g.

Step 3: Regularity of V in the punctured ball.

Let Σ′ and Σ′′ be as in the previous step. We will now show that :
(3.14)

If Γ is a connected component of Σ′′, then Γ ∩ Σ′ ∩ ∂Bt(y) 6= ∅.
Indeed assume that for some Γ equation (3.14) fails. Since t is assumed
to be less than the convexity radius we have by the maximum principle
that Γ ∩ ∂Bt(x) 6= ∅. Fix z in Γ ∩ ∂Bt(x). If (3.14) were false, then
the varifold V ′′ would “touch” ∂Bt(x) in z from the interior. More
precisely, there would be an r > 0 such that

z ∈ supp (‖V ′′‖) and (Br(y) ∩ supp (‖V ′′‖)) ⊂ Bt(x) .

This contradicts Lemma 1.3; thus (3.14) holds.
Let t, ρ be as in the first paragraph of Step 1. Step 2 and (3.14)

imply the following:

if s < ρ, then Σ′ can be extended to

a surface Σs in An(x, s, 2ρ)(3.15)

if s1 < s2 < ρ, then Σs1 = Σs2 in An(x, s2, 2ρ).(3.16)

Thus Σ =
⋃

s Σs is a stable minimal surface Σ with Σ\Σ ⊂ (∂B2ρ(x)∪
{x}), i.e. Σ′ can be continued up to x (which, in principle, could be a
singular point).

We will next show that V coincides with Σ in Bρ(x) \ {x}. Recall
that V = V ′ in Bρ(x). Fix

y ∈ (supp (‖V ‖)) ∩Bρ(x) \ {x} and set s = d(y, x).

We first prove that if TV (y, V ) consists of a (multiple of a) plane π
transversal to ∂Bs(x), then y belongs to Σ. Consider the replacement
V ′′ of V ′ in An(x, s, t) and split V ′′ into the three varifolds

V1 = V ′′ Bs(x) = V Bs(x) ,
V2 = V ′′ An(x, s, 2ρ) = Σ ∩ An(x, s, 2ρ) ,
V3 = V ′′ − V1 − V2 .
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By Lemma 3.5, the set TV (y, V ′′) consists of planes and since V1 =
V Bs(x), all these planes have to be multiples of π. Thus y is in the
closure of (supp (‖V ′′‖)) \Bs(x), which implies y ∈ Σt ⊂ Σ.

Let T be the set of points y ∈ Bρ(x) such that TV (y, V ) consists
of a (multiple of) a plane transversal to ∂Bd(y,x)(x). Lemma 1.4 gives
that T is dense in supp (‖V ‖). Thus

(supp (‖V ‖)) ∩ Bρ(x) \ {x} ⊂ Σ .

Property (3.5) of replacements implies H2(Σ ∩ Bρ(x)) = ‖V ‖(Bρ(x)).
Hence V = Σ on Bρ(x) \ {x}.
Step 4: Regularity in x.

We will next show that Σ is smooth also in x, i.e. that x is a
removable singularity for Σ. If x 6∈ supp (‖V ‖), then we are done. So
assume that x ∈ supp (‖V ‖). In the following we will use that, by
Lemma 3.5, every C ∈ TV (x, V ) is a multiple of a plane.

Map Bt(x) into Bt(0) by the exponential map, use the notation of
Step 1, and set Σr = Rx

r (Σ). Every convergent subsequence {Σrn}
converges to a plane in the sense of varifolds. The curvature estimates
for stable minimal surfaces (see (1.30)) gives that this convergence is
actually smooth in B1 \ B1/2. Thus, for r sufficiently small, there exist
natural numbers N(ρ) and mi(ρ) such that

Σ ∩ An(x, ρ/2, ρ) =

N(ρ)
⋃

i=1

mi(ρ)Σ
i
ρ ,

where each Σi
ρ is a Lipschitz graph over a (planar) annulus. Note also

that the Lipschitz constants are uniformly bounded, independently of
ρ.

By continuity, the numbers N(r) and mi(r) do not depend on
r. Moreover, if s ∈]ρ/2, ρ[, then each Σi

ρ can be continued through

An(s, ρ/2, x) by a Σi
s. Repeating this argument a countable number of

times, we get N minimal punctured disks Σi with

Σ ∩ Bρ(x) \ {x} =

N⋃

i=1

miΣ
i .

Note that x is a removable singularity for each Σi. Indeed, Σi is a
stationary varifold in Bρ(x) and TV (x,Σi) consists of planes with mul-
tiplicity one. This means that

lim
r↓0

‖V ‖(Br(x))

πr2
= 1 .
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Hence we can apply Allard’s regularity theorem (see section 8 of [All72])
to conclude that Σi is a graph in a sufficiently small ball around x.
Standard elliptic PDE theory gives that x is a removable singularity.

Finally, the maximum principle for minimal surfaces implies that
N must be 1. This completes the proof. �

3.3. Proof of Lemma 2.17

With the help of the replacements theory developed in the previous
Section we are now able to prove the Lemma on interior regularity
stated in Subsection 2.3.4.

Proof of Lemma 2.17. Let ∆k and V be as in Theorem 2.2 and
in Lemma 2.17. Let x ∈ U and consider a U ′ = Bε(x) ⊂ U as in Lemma
2.10. Applying Lemma 2.10 we can modify ∆k in Bε(x) getting a min-
imizing sequence {∆k,j}j for Is(Bε(x)). Applying Proposition 2.11, we
can assume that ∆k,j converges, as j ↑ ∞ to a varifold V ′

k which in
Bε(x) is a stable minimal surface Σk. By the curvature estimates for
minimal surfaces (cp. also with the Choi-Schoen compactness Theo-
rem), we can assume that Σk converges to a stable smooth minimal

surface Σ∞. Extracting a diagonal subsequence ∆̃k := ∆k,j(k), we can
assume that ∆̃k is still minimizing for problem Isj(U) and hence that
it converges to a varifold V ′. V ′ coincides with Σ in Bε(x) and with
V outside Bε(x) and hence it is a replacement according to Defini-
tion 3.3. By Proposition 3.4, V coincides with a smooth embedded
minimal surface in U . �

3.4. Construction of replacements

In this section we conclude the proof of Theorem 3.1 by showing
that the varifold V of Proposition 1.8 is a smooth minimal surface. We
need to show that V satisfies the requirements of Proposition 3.4. As
outlined is the fist section we will construct the required good replace-
ments and therefore prove the follwing theorem.

Theorem 3.6. Let {Σj} be a sequence of compact surfaces in M
which converge to a stationary varifold V . If there exists a function
r : M → R+ such that

• in every annulus of AN r(x)(x) and for j large enough Σj is a
1/j–a.m. smooth surface in An,

then V is a smooth minimal surface.

Key for the proof of Theorem 3.6 is the next Proposition. The first
part implies that that we can deform Σj into a sequence Σj,k which is
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minimizing for Problem (Σj , Isj(An)) (cp. with notation in Chapter 2)
and converges, as k → ∞, to a stable minimal surface in An. The
second part will give us the desired replacements.

Proposition 3.7. Let {Σj,k}k be a minimizing sequence for Prob-
lem (Σj , Isj(An)) and converging to a varifold V j. Then

(i) V j is a stable minimal surface in An;
(ii) any V ∗ which is the limit of a subsequence of {V j} is a re-

placement for V .

Proof. (i) is a corollary of Lemma 2.17 and remarks 2.3 and 2.4.
(ii) will follow from (i): Without loss of generality, we can assume that
the sequence {V j} converges to V . Note that every V j coincides with
V in M \ An; thus the same is true for V ∗. Moreover, ‖V j‖(M) ≥
H2(Σj) − 1/j since Σj is a.m. This gives that ‖V ∗‖(M) = ‖V ‖(M).
By (i) and (1.30) we have that V ∗ is a stable minimal surface in An.

To complete the proof we need to show that V ∗ is stationary. Since
V = V ∗ in M \ An, then V ∗ is stationary in this open set. Hence
it suffices to prove that V ∗ is stationary in an open annulus An′ ∈
AN r containing An. Choose such an An′ and suppose that V ∗ is not
stationary in An′; we will show that this contradict that {Σj} is a.m.
in An′. Namely, suppose that for some vector field χ supported in
An′ we have δV ∗(χ) ≤ −C < 0. Let ψ be the isotopy given by that
∂ψ(t,x)
∂t

= χ(ψ(t, x)) and set

V ∗(t) = ψ(t)♯V
∗ ,

V j(t) = ψ(t)♯V
j ,

Σj,k(t) = ψ(t,Σj,k) .

For ε sufficiently small, we have that

[δV ∗(t)](χ) ≤ −C
2

for all t < ε.

Since V j(t) → V ∗(t), there exists J such that

[δV j(t)](χ) ≤ −C
4

for every j > J and every t < ε.

Moreover, since Σj,k(t) → V j(t), for each j > J there exists K(j) with

(3.17) [δΣj,k(t)](χ) ≤ −C
8

for all t < ε and all k > K(j).

Integrating both sides of (3.17) we get

(3.18) H2(ψ(t,Σj,k)) −H2(Σj,k) ≤ −tC
8
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Choose j and k sufficiently large so that εC/8 > 1/j and (3.18) holds.
Each Σj,k is isotopic to Σj via an isotopy ϕj,k ∈ Isj(An). By gluing ϕj,k

and ψ smoothly together, we find a smooth isotopy Φ : [0, 1+ε]×M →
M supported on An′. In view of (3.18), Φ satisfies

H2(Φ(t,Σj)) ≤ H2(Σj) + 1/(8j) ∀t ∈ [0, 1 + ε] ,

H2(Φ(1 + ε,Σj) < H2(Σj) − 1/j ,

which give the desired contradiction and prove the proposition. �

We are now able to prove the main theorem of this section.

Proof of Theorem 3.6. We will apply Proposition 3.4. From
Proposition 3.7 we know that in every annulus An ∈ AN r(x)(x) there
is a replacement V ∗ for V . We still need to show that V satisfies (a),
(b), and (c) in Definition 3.3. Consider the family of surfaces Σj,k as in
Proposition 3.7. By a diagonal argument we can extract a subsequence
Σj,k(j) converging to V ∗. Note the following consequence of the way we
constructed {Σj,k(j)}j. If U is open and

- either U ∪ An is contained in some annulus AN r(x)(x)
- or U∩An = ∅ and U is contained in some annulus of AN r(y)(y)

with y 6= x,

then Σj,k(j) is a.m. in U . Thus {Σj,k(j)} is still a.m. in

- every annulus of AN r(x)(x);
- every annulus of AN ρ(y)(y) for y 6= x, provided ρ(y) is suffi-

ciently small.

This shows that (b) in Definition 3.3 holds for V . Similarly, we can show
that also condition (c) of that Definition holds. Hence Proposition 3.4
applies and we conclude that V is a smooth surface. �



CHAPTER 4

Genus bounds

In this chapter we will prove a slightly different version of Theo-
rem 0.7. Our genus estimate is valid, in general, for limits of min–max
sequences of surfaces which are almost minimizing in sufficiently small
annuli.

Theorem 4.1. Let Σj = Σj
tj be a sequence which is a.m. in suf-

ficiently small annuli. Let V =
∑

i niΓ
i be the varifold limit of {Σj},

where Γi are as in Theorem 0.7. Then

(4.1)
∑

Γi∈O

g(Γi) +
1

2

∑

Γi∈N

(g(Γi) − 1) ≤ lim inf
j↑∞

lim inf
τ→tj

g(Σj
τ ) .

4.1. Overview of the proof

In this section we give an overview of the proof of Theorem 4.1. The
contents of Chapter 2 will have a prominent role proving the theorem.
We fix a min–max sequence Σj = Σj

tj as in Theorem 4.1 and we let
∑

i niΓ
i be its varifold limit. Consider the smooth surface Γ = ∪iΓi

and let ε0 > 0 be so small that there exists a smooth retraction of
the tubular neighborhood T2ε0Γ onto Γ. This means that, for every
δ < 2ε0,

• TδΓi are smooth open sets with pairwise disjoint closures;
• if Γi is orientable, then TδΓ

i is diffeomorphic to Γi×] − 1, 1[;
• if Γi is non–orientable, then the boundary of TδΓ

i is an ori-
entable double cover of Γi.

4.1.1. Simon’s Lifting Lemma. The following Proposition is
the core of the genus bounds. Similar statements have been already
used in the literature (see for instance [GJ86] and [FH89]). We recall
that the surface Σj might not be everywhere regular (see discussion in
Introduction), and we denote by Pj its set of singular points (possibly
empty).

Proposition 4.2 (Simon’s Lifting Lemma). Let γ be a closed sim-
ple curve on Γi and let ε ≤ ε0 be positive. Then, for j large enough,

73
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there is a positive n ≤ ni and a closed curve γ̃j on Σj ∩TεΓi \Pj which
is homotopic to nγ in TεΓ

i.

Simon’s lifting Lemma implies directly the genus bounds if we use
the characterization of homology groups through integer rectifiable cur-
rents and some more geometric measure theory. However, we choose
to conclude the proof in a more elementary way, using Proposition 4.3
below.

4.1.2. Surgery. The idea is that, for j large enough, one can mod-
ify any {Σj

t} sufficiently close to Σj = Σj
tj through surgery to a new

surface Σ̃j
t such that

• the new surface lies in a tubular neighborhood of Γ;
• it coincides with the old surface in a yet smaller tubular neigh-

borhood.

In this chapter we will use surgeries of the type defined in Defini-
tion 2.12. It is important to note that, if Σ̃ is obtained from Σ through
surgery, then g(Σ̃) ≤ g(Σ).

We are now ready to state our next Proposition.

Proposition 4.3. Let ε ≤ ε0 be positive. For each j sufficiently
large and for t sufficiently close to tj, we can find a surface Σ̃j

t obtained

from Σj
t through surgery and satisfying the following properties:

• Σ̃j
t is contained in T2εΓ;

• Σ̃j
t ∩ TεΓ = Σj

t ∩ TεΓ.

4.1.3. Proof of Proposition 4.3. Consider the set Ω = T2εΓ \
TεΓ. Since Σj converges, in the sense of varifolds, to Γ, we have

(4.2) lim
j↑∞

lim sup
t→tj

H2(Σj
t ∩ Ω) = 0 .

Let η > 0 be a positive number to be fixed later and consider N such
that

(4.3) lim sup
t→tj

H2(Σj
t ∩ Ω) < η/2 for each j ≥ N .

Fix j ≥ N and let δj > 0 be such that

(4.4) H2(Σj
t ∩ Ω) < η if |tj − t| < δj .

For each σ ∈]ε, 2ε[ consider ∆σ := ∂ (TσΓ), i.e. the boundary of the
tubular neighborhood TσΓ. The surfaces ∆σ are a smooth foliation of
Ω \ Γ and therefore, by the coarea formula

(4.5)

∫ 2ε

ε

Length(Σj
t ∩ ∆σ) dσ ≤ CH2(Σj

t ∩ Ω) < Cη
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where C is a constant independent of t and j. Therefore,

(4.6) Length(Σj
t ∩ ∆σ) <

2Cη

ε

holds for a set of σ’s with measure at least ε/2.
By Sard’s Lemma we can fix a σ such that (4.5) holds and Σj

t

intersects ∆t transversally.
For positive constants λ and C, independent of j and t, the following

holds:

(B) For any s ∈]0, 2ε[, any simple closed curve γ lying on ∆s

with Length(γ) ≤ λ bounds an embedded disk D ⊂ ∆s with
diam(D) ≤ CLength(γ).

Assume that 2Cη/ε < λ. By construction, Σj
t ∩∆σ is a finite collec-

tion of simple curves. Consider Ω̃ := Tσ+δΓ \ Tσ−δΓ. For δ sufficiently

small, Ω̃ ∩ Σj
t is a finite collection of cylinders, with upper bases lying

on ∆σ+δ and lower bases lying on ∆σ−δ. We “cut away” this finite
number of necks by removing Ω̃∩Σj

t and replacing them with the two
disks lying on ∆σ−δ ∪∆σ+δ and enjoying the bound (B). For a suitable
choice of η, the union of each neck and of the corresponding two disks
has sufficiently small diameter. This surface is therefore a compress-
ible sphere, which implies that the new surface Σ̂j

t is obtained from Σj
t

through surgery.
We can smooth it a little: the smoothed surface will still be obtained

from Σj
t through surgery and will not intersect ∆σ. Therefore Σ̃j

t :=

Σ̂j
t ∩ TσΓ is a closed surface and is obtained from Σ̂j

t by dropping a
finite number of connected components. �

4.1.4. Proof of Theorem 4.1. Proposition 4.3 and Proposition
4.2 allow us to conclude the proof of Theorem 4.1. We only need
the following standard fact for the first integral homology group of a
smooth closed connected surface (see Sections 4.2 and 4.5 of [Mas91]).

Lemma 4.4. Let Γ be a connected closed 2–dimensional surface with
genus g. If Γ is orientable, then H1(Γ) = Z

2g. If Γ is non–orientable,
then H1(Γ) = Z

g−1 × Z2.

We now come to the proof of Theorem 4.1 then the rest of the
Chapter will be dedicated to prove Simon’s Lifting Lemma.

Proof of Theorem 4.1. Define mi = g(Γi) if i is orientable and
(g(Γi) − 1)/2 if not. Our aim is to show that

(4.7)
∑

i

mi ≤ lim inf
j↑∞

lim inf
t→tj

g(Σj
t) .
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By Lemma 4.4, for each Γi there are 2mi curves γi,1, . . . , γi,2mi with the
following property:

(Hom) If k1, . . . , k2mi
are integers such that k1γ

i,1 + . . .+ k2mi
γi,2mi is

homologically trivial in Γi, then kl = 0 for every l.

Since ε < ε0/2, T2εΓ
i can be retracted smoothly on Γi. Hence:

(Hom’) If k1, . . . , k2mi
are integers such that k1γ

i,1 + . . .+ k2mi
γi,2mi is

homologically trivial in T2εΓ
i, then kl = 0 for every l.

Next, fix ε < ε0 and let N be sufficiently large so that, for each
j ≥ N , Simon’s Lifting Lemma applies to each curve γi,l. We require,
moreover, that N is large enough so that Proposition 4.3 applies to
every j > N .

Choose next any j > N and consider the curves γ̃i,l lying in TεΓ∩Σj

given by Simon’s Lifting Lemma. Such surfaces are therefore homotopic
to ni,lγ

i,l in TεΓ
i, where each ni,l is a positive integer. Moreover, for each

t sufficiently close to tj consider the surface Σ̃j
t given by Proposition

4.3. The surface Σ̃j
t decomposes into the finite number of components

(not necessarily connected) Σ̃j
t ∩ T2εΓ

i. Each such surface is orientable
and

(4.8)
∑

i

g(Σ̃j
t ∩ T2εΓ

i) = g(Σ̃j
t) ≤ g(Σj

t) .

We claim that

(4.9) mi ≤ lim inf
t→tj

g(Σ̃j
t ∩ T2εΓ

i) ,

which clearly would conclude the proof.
Since Σj

t converges smoothly to Σj outside Pj, we conclude that

Σ̃j
t ∩ TεΓi converges smoothly to Σj ∩ TεΓi outside Pj . Since each γi,l

does not intersect Pj, it follows that, for t large enough, there exist

curves γ̂i,l contained in Σ̃j
t ∩ TεΓi and homotopic to γ̃i,l in TεΓ

i.

Summarizing:

(i) Each γ̃i,l is homotopic to ni,lγ
i,l in T2εΓ

i for some positive
integer ni,l;

(ii) Each γ̃i,l is contained in Σ̃j
t ∩ T2εΓ

i;

(iii) Σ̃j
t ∩ T2εΓ

i is a closed surface;
(iv) If c1γ

i,1 + . . .+ c2mi
γi,2mi is homologically trivial in T2εΓ

i and
the cl’s are integers, then they are all 0.

These statements imply that:

(Hom”) If c1γ̃
i,1 + . . .+ c2mi

γ̃i,2mi is homologically trivial in Σ̃j
t ∩ T2εΓ

i

and the cl’s are integers, then they are all 0.
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From Lemma 4.4, we conclude again that g(Σ̃j
t ∩ T2εΓ

i) ≥ mi. �

4.2. Proof of Proposition 4.2

4.2.1. Two lemmas. We state and prove two useful lemmas. We
will use the notation of Definition 2.1.

Lemma 4.5. Let Σj be 1/j–a.m. in annuli and r : M → R+ be
the function of Theorem 3.6. Assume U is an open set with closure
contained in An(x, τ, σ), where σ < r(x). Let ψj ∈ Isj(Σj , U) be such
that H2(ψj(1,Σj)) ≤ H2(Σ). Then ψj(1,Σj) is 1/j–a.m. in sufficiently
small annuli.

Proof. Recall the definition of 1/j–a.m. in sufficiently small an-
nuli. This means that there is a function r : M → R+ such that
Σ is 1/j–a.m. on every annulus centered at y and with outer radius
smaller than r(y). Let An(x, τ, σ) be an annulus on which Σ is 1/j–
a.m. and U ⊂⊂ An(x, τ, σ). If y 6∈ Bσ(x), then dist(y, U) > 0. Set
r1(y) := min{r(y), dist(y, U)}. Then ψ(1,Σ) = Σ on every annulus
with center y and radius smaller than r1(y), and therefore it is 1/j–
a.m. in it. If y = x, then the statement is obvious because of Re-
mark 2.4. If y ∈ Bσ(x) \ {x}, then there exists ρ(y), τ(y) such that
U ∪ Bρ(y)(y) ⊂ An(x, τ(y), σ). By Remarks 2.4 and 2.3, ψ(1,Σ) is
1/j–a.m. on every annulus centered at y and outer radius smaller than
ρ(y). �

Lemma 4.6. Let {Σj} be a sequence as in Theorem 3.6 and U and
ψj be as in Lemma 4.5. Assume moreover that U is contained in a
convex set W . If Σj converges to a varifold V , then ψj(1,Σ

j) converges
as well to V .

Proof. By Theorem 3.6 V is a smooth minimal surface (multi-
plicity allowed). By Lemma 4.5, ψj(1,Σ

j) is also 1/j–a.m. and again
by Theorem 3.6 a subsequence (not relabeled) converges to a varifold
V ′ which is a smooth minimal surface. Since Σj = ψj(1,Σ

j) outside
W , V = V ′ outside W . Being W convex, it cannot contain any closed
minimal surface, and hence by standard unique continuation, V = V ′

in W as well. �

4.2.2. Step 1. Preliminaries. Let {Σj} be a sequence as in The-
orem 4.1. We keep the convention that Γ denotes the union of disjoint
closed connected embedded minimal surfaces Γi (with multiplicity 1)
and that Σj converges, in the sense of varifolds, to V =

∑

i niΓ
i. Fi-

nally, we fix a curve γ contained in Γ.
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Let r : Γ → R+ be such that the three conclusions of Proposition
1.8 hold. Consider a finite covering {Bρl

(xl)} of M with ρl < r(xl)
and denote by C the set of the centers {xl}. Next, up to extraction
of subsequences, we assume that the set of singular points Pj ⊂ Σj

converges in the sense of Hausdorff to a finite set P (recall Remark
0.2) and we denote by E the union of C and P . Recalling Remark 2.3,
for each x ∈M \ E there exists a ball B centered at x such that:

• Σj ∩ B is a smooth surface for j large enough;
• Σj is 1/j–a.m. in B for j large enough.

Deform γ to a smooth curve contained in Γ \ E and homotopic to
γ in Γ. It suffices to prove the claim of the Proposition for the new
curve. By abuse of notation we continue to denote it by γ. In what
follows, we let ρ0 be any given positive number so small that:

• Tρ0(Γ) can be retracted on Γ;
• For every x ∈ Γ, Bρ0(x) ∩ Γ is a disk with diameter smaller

than the injectivity radius of Γ.

For any positive ρ ≤ 2ρ0 sufficiently small, we can find a finite set of
points x1, . . . , xN on γ with the following properties (to avoid cumber-
some notation we will use the convention xN+1 = x1):

(C1) If we let [xk, xk+1] be the geodesic segment on Γ connecting xk
and xk+1, then γ is homotopic to

∑

k[xk, xk+1].
(C2) Bρ(xk+1) ∩Bρ(xk) = ∅;
(C3) Bρ(xk) ∪ Bρ(xk+1) is contained in a ball Bk,k+1 of radius 3ρ;
(C4) In any ball Bk,k+1, Σj is 1/j–a.m. and smooth provided j is

large enough;

see Figure 1. From now on we will consider j so large that (C4) holds
for every k. The constant ρ will be chosen (very small, but independent
of j) only at the end of the proof. The existence of the points xk is
guaranteed by a simple compactness argument if ρ0 is a sufficiently
small number.

4.2.3. Step 2. Leaves. In every Bρ(xk) consider a minimizing
sequence Σj,l := ψl(1,Σ

j) for Problem (Σj , Isj(Bρ(xk),Σ
j)). Using

Proposition 2.2, extract a subsequence converging (in Bρ(xk)) to a
smooth minimal surface Γj,k with boundary ∂Γj,k = Σj ∩Bρ(xk). This
is a stable minimal surface, and we claim that, as j ↑ ∞, Γj,k converges
smoothly on every ball B(1−θ)ρ(xk) (with θ < 1) to V . Indeed, this is a
consequence of Schoen’s curvature estimates, see Section 1.5.
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x1

x2

x3

x4

Bρ(x2)

B1,2
γ

Bρ(x1)

Figure 1. The points xl of (C1)-(C4).

By a diagonal argument, if {lj} grows sufficiently fast, Σj,lj ∩Bρ(xk)
has the same limit as Γj,k. On the other hand, for {lj} growing suffi-
ciently fast, Lemmas 4.5 and 4.6 apply, giving that Σj,lj converges to
V .

Therefore, Γj,k converges smoothly to niΓ
i∩B(1−θ)ρ(xk) inB(1−θ)ρ(xk)

for every positive θ < 1. Therefore any connected component of
Γj,k ∩ B(1−θ)ρ(xk) is eventually (for large j’s) a disk (multiplicity al-
lowed). The area of such a disk is, by the monotonicty formula for
minimal surfaces, at least c(1− θ)2ρ2, where c is a constant depending
only on M . From now on we consider θ fixed, though its choice will be
specified later.

Up to extraction of subsequences, we can assume that for each
connected component Σ̂j of Σj , ψl(1, Σ̂

j) converges to a finite union of
connected components of Γj,k. However, in B(1−θ)ρ(xk),

• either their limit is zero;
• or the area of ψl(1, Σ̂

j) in B(1−θ)ρ(xk) is larger than c(1−2θ)2ρ2

for l large enough.

We repeat this argument for every k. Therefore, for any j suffi-
ciently large, we define the set L(j, k) whose elements are those con-

nected components Σ̂j of Σj ∩ Bρ(xk) such that ψl(1, Σ̂
j) intersected

with B(1−θ)ρ(xk) has area at least c(1 − 2θ)2ρ2.
Recall that Σj is converging to niΓ

i ∩Bρ(xk) in Bρ(xk) in the sense
of varifolds. Therefore, the area of Σj is very close to niH2(Γi∩Bρ(xk)).
On the other hand, by definition H2(ψl(1,Σ

j) ∩ Bρ(xk)) is not larger.
This gives a bound to the cardinality of L(j, k), independent of j and
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k. Moreover, if ρ and θ are sufficiently small. the constants c and ε get
so close, respectively, to 1 and 0 that the cardinality of L(j, k) can be
at most ni.

4.2.4. Step 3. Continuation of the leaves. We claim the fol-
lowing

Lemma 4.7 (Continuation of the leaves). If ρ is sufficiently small,
then for every j sufficiently large and for every element Λ of L(j, k)

there is an element Λ̃ of L(j, k + 1) such that Λ and Λ̃ are contained
in the same connected component of Σj ∩ Bk,k+1.

The lemma is sufficient to conclude the proof of the Theorem. In-
deed let {Λ1,Λ2, . . . ,Λk} be the elements of L(j, 1). Choose a point y1

on Λ1 and then a point y2 lying on an element Λ̃ of L(j, 2) such that
Λ1∪ Λ̃ is contained in a connected component of Σj ∩B1,2. We proceed
by induction and after N steps we get a point yN+1 in some Λk. After
repeating at most ni+1 times this procedure, we find two points ylN+1

and yrN+1 belonging to the same Λs. Without loss of generality we
discard the first lN points and renumber the remaining ones so that
we start with y1 and end with ynN+1 = y1. Note that n ≤ ni. Each pair
yk, yk+1 can be joined with a path γk,k+1 lying on Σj and contained
in a ball of radius 3ρ, and the same can be done with a path γnN+1,1

joining ynN+1 and y1. Thus, if we let

γ̃ =
∑

k

γk,k+1 + γnN+1,1

we get a closed curve contained in Σj .
It is easy to show that the curve γ̃ is homotopic to nγ in ∪kBk,k+1.

Indeed, for each sN + r fix a path ηsN+r : [0, 1] → Bρ(xr) with
ηsN+r(0) = ysN+r and ηsN+r(1) = xr. Next fix an homotopy ζsN+r :
[0, 1] × [0, 1] → Bk,k+1 with

• ζsN+r(0, ·) = γsN+r,sN+r+1,
• ζsN+r(1, ·) = [xr, xr+1],
• ζsN+r(·, 0) = ηiN+r(·)
• and ζsN+r(·, 1) = ηsN+r+1(·).

Joyning the ζk’s we easily achieve an homotopy between γ and γ̃. See
Figure 2. If ρ is chosen sufficiently small, then ∪kBk,k+1 is contained
in a retractible tubular neighborhood of Γ and does not intersect E.

4.2.5. Step 4. Proof of the Continuation of the Leaves. Let
us fix a ρ for which Lemma 4.7 does not hold. Our goal is to show that
for ρ sufficiently small, this leads to a contradiction. Clearly, there is
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y1

ζ1 ”fills in”
here

η1

x1

Bρ(x1) Bρ(x2)

x2

η2

y2
γ̃

B1,2

γ

Figure 2. The homotopies ζ iN+r.

an integer k and a subsequence jl ↑ ∞ such that the statement of the
Lemma fails. Without loss of generality we can assume k = 1 and we
set x = x1, y = x2 and B1,2 = B. Moreover, by a slight abuse of
notation we keep labeling Σjl as Σj .

Consider the minimizing sequence of isotopies {ψl} for Problem
(Σj , Isj(Bρ(x),Σ

j)) and {φl} for Problem (Σj , Isj(Bρ(y),Σ
j)) fixed in

Step 3. Since Bρ(x) ∩ Bρ(y) = ∅ and ψl and φl leave, respectively,
M \Bρ(y) and M \Bρ(x) fixed, we can combine the two isotopies in

Φl(t, z) :=

{
ψl(2t, z) for t ∈ [0, 1/2]
φl(2t− 1, z) for t ∈ [1/2, 1].

If we consider Σj,l = Φl(1,Σ
j), then Σj,l ∩ Bρ(x) = ψl(1,Σ

j) ∩ Bρ(x)
and Σj,l ∩ Bρ(y) = φl(1,Σ

j) ∩ Bρ(y). Moreover for a sufficiently large
l, the surface Σj,l by Lemma 4.5 is 1/j–a.m. in B and in sufficiently
small annuli.

Arguing as in Step 2 (i.e. applying Theorem 3.6, Lemma 4.5 and
Lemma 4.6), without loss of generality we can assume that:

(i) Σj,l converges, as l ↑ ∞, to smooth minimal surfaces ∆j and
Λj respectively in Bρ(x) and Bρ(y);

(ii) ∆j and Λj converge, respectively, to niΓ
i ∩ Bρ(x) and niΓ

i ∩
Bρ(y);

(iii) For lj growing sufficiently fast, Σj,lj converges to the varifold
V =

∑

i niΓ
i.
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Let Σ̂j be the connected component of Σj ∩ Bρ(x) which contradicts

Lemma 4.7. Denote by Σ̃j the connected component of B ∩ Σj con-
taining Σ̂j .

Now, by Proposition 2.2, Φl(1, Σ̃
j) ∩ Bρ(x) converges to a stable

minimal surface ∆̃j ⊂ ∆j and Φl(1, Σ̂
j) converges to a stable minimal

surface ∆̂j ⊂ ∆̃j . Because of (ii) and of curvature estimates (see Section

1.5), ∆̂j converges necessarily to rΓi ∩ Bρ(x) for some integer r ≥ 0.

Since Σ̂j ∈ L(j, 1), it follows that r ≥ 1. Similarly, Φl(1, Σ̃
j) ∩ Bρ(y)

converges to a smooth minimal surface Λ̃j and Λ̃j converges to sΓi ∩
Bρ(y) for some integer s ≥ 0. Since Σ̃j does not contain any element
of L(j, 2), it follows necessarily s = 0.

Consider now the varifold W which is the limit in B of Σ̃j,lj =
Φlj (1, Σ̃

j). Arguing again as in Step 2 we choose {lj} growing so fast

that W , which is the limit of Σ̃j,lj , coincides with the limit of ∆̃j in
Bρ(x) and with the limit of Λ̃j in Bρ(y). According to the discussion
above, V coincides then with rΓi ∩ Bρ(x) in Bρ(x) and vanishes in
Bρ(y). Moreover

(4.10) ‖W‖ ≤ ‖V ‖ B = nH2 Γi ∩ B

in the sense of varifolds. We recall here that ‖W‖ and ‖V ‖ B are
nonnegative measures defined in the following way:

(4.11)

∫

ϕ(x)d‖W‖(x) = lim
j↑∞

∫

Σ̃j,lj

ϕ

and

(4.12)

∫

ϕ(x)d‖V ‖(x) = lim
j↑∞

∫

Σj,lj

ϕ

for every ϕ ∈ Cc(B). Therefore (4.10) must be understood as a stan-
dard inequality between measures, which is an effect of (4.11), (4.12)

and the inclusion Σ̃j,lj ⊂ Σj,lj ∩B. An important consequence of (4.10)
is that

(4.13) ‖W‖(∂Bτ (w)) = 0 for every ball Bτ (w) ⊂ B.

Next, consider the geodesic segment [x, y] joining x and y in Γi. For
z ∈ [x, y], Bρ/2(z) ⊂ B. Moreover,

(4.14) the map z 7→ ‖W‖(Bρ/2(z)) is continuous in z,

because of (4.10) and (4.13).



4.2. PROOF OF PROPOSITION 4.2 83

Since ‖W‖(Bρ/2(x)) ≥ H2(Γi ∩Bρ/2(x)) and ‖W‖(Bρ/2(y)) = 0, by
the continuity of the map in (4.14), there exists z ∈ [x, y] such that

‖W‖(Bρ/2(z)) =
1

2
H2(Γi ∩ Bρ/2(z)) .

Since ‖W‖(∂Bρ/2(z)) = 0, we conclude (see Proposition 1.62(b) of
[AFP00]) that

(4.15) lim
j↑∞

H2(Σ̃j,lj ∩ Bρ/2(z)) =
1

2
H2(Γi ∩ Bρ/2(z))

(see Figure 3).

Γi

the segment [x, y]

‖W‖ ≥ Γi here

‖W‖ = 0 here

‖W‖ ≤ ‖V ‖ = niΓ
i everywhere

Figure 3. The varifold W .

On the other hand, since Σj,lj converges to V in the sense of varifolds
and V = niΓ

i ∩Bρ/2(z) in Bρ/2(z), we conclude that

(4.16) lim
j↑∞

H2((Σj,lj \ Σ̃j,lj)∩Bρ/2(z)) =

(

ni −
1

2

)

H2(Γi ∩Bρ/2(z)) .

If ρ is sufficiently small, Γi ∩Bρ/2(z) is close to a flat disk and Bρ/2(z)
is close to a flat ball.

Using the coarea formula and Sard’s lemma, we can find a σ ∈
]0, ρ/2[ and a subsequence of {Σj,lj} (not relabeled) with the following
properties:

(a) Σj,lj intersects ∂Bσ(z) transversally;

(b) Length(Σ̃j,lj ∩ ∂Bσ(z)) ≤ 2(1/2 + ε)πσ;
(c) Length((Σj,lj \ Σ̃j,lj) ∩ ∂Bσ(z)) ≤ 2((ni − 1/2) + ε)πσ;
(d) H2(Γi ∩Bσ(z)) ≥ (1 − ε)πσ2.
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Note that the geometric constant ε can be made as close to 0 as we
want by choosing ρ sufficiently small.

In order to simplify the notation, set Ωj = Σj,lj . Consider a mini-
mizing sequence Ωj,s = ϕs(1,Ω

j) for Problem (Ωj , Isj(Bσ(z),Ω
j)). By

Proposition 2.2, Ωj,s ∩Bσ(z) converges, up to subsequences, to a min-
imal surface Ξj with boundary Ωj ∩ ∂Bσ(z). Moreover, using Lemma
4.6 and arguing as in the previous steps, we conclude that Ξj converges
to niΓ

i ∩Bσ(z).
Next, set:

• Ω̃j = Σ̃j,lj ∩Bσ(z), Ω̃j,s = ϕs(1, Ω̃
j);

• Ω̂j = (Σj,lj \ Σ̃j,lj ) ∩Bσ(z), Ω̂j,s = ϕs(1, Ω̂
j).

By Proposition 2.2, since Ω̃j and Ω̂j are unions of connected compo-
nents of Ωj ∩Bσ(z), we can assume that Ω̃j,s and Ω̂j,s converge respec-

tively to stable minimal surfaces Ξ̃j and Ξ̂j with

∂Ξ̃j = Σ̃j,lj ∩ ∂Bσ(z) ∂Ξ̂j = (Σj,lj \ Σ̃j,lj) ∩ ∂Bσ(z) .

Hence, by (b) and (c), we have
(4.17)

Length(∂Ξ̃j) ≤ 2

(
1

2
+ ε

)

πσ Length(∂Ξ̂j) ≤ 2

(

ni −
1

2
+ ε

)

πσ .

On the other hand, using the standard monotonicity estimate of Lemma
4.8 below, we conclude that

(4.18) H2(Ξ̂j) ≤
(

ni −
1

2
+ η

)

πσ2

(4.19) H2(Ξ̃j) ≤
(

1

2
+ η

)

πσ2 .

As the constant ε in (d), η as well can be made arbitrarily small by
choosing ρ suitably small. We therefore choose ρ so small that

(4.20) H2(Ξ̂j) ≤
(

ni −
3

8

)

πσ2 ,

(4.21) H2(Ξ̃j) ≤ 5

8
πσ2

and

(4.22) H2(Γi ∩ Bσ(z)) ≥
(

1 − 1

8ni

)

πσ2 .

Now, by curvature estimates (see Section 1.5), we can assume that

the stable minimal surfaces Ξ̃j and Ξ̂j, are converging smoothly (on
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compact subsets of Bσ(z)) to stable minimal surfaces Ξ̃ and Ξ̂. Since

Ξj = Ξ̃j+Ξ̂j converges to niΓ
i∩Bσ(z), we conclude that Ξ̃ = ñΓi∩Bσ(z)

and Ξ̂ = n̂Γi ∩ Bσ(z), where ñ and n̂ are nonnegative integers with
ñ + n̂ = ni. On the other hand, by (4.20), (4.21) and (4.22), we
conclude

(4.23) ñ

(

1 − 1

8ni

)

πσ2 = H2(Ξ̃) ≤ lim inf
j

H2(Ξ̃j) ≤ 5

8
πσ2

(4.24)

n̂

(

1 − 1

8ni

)

πσ2 = H2(Ξ̂) ≤ lim inf
j

H2(Ξ̂j) ≤
(

ni −
3

8

)

πσ2 .

From (4.23) and (4.24) we conclude, respectively, ñ = 0 and n̂ ≤ ni−1,
which contradicts ñ+ n̂ = ni.

4.2.6. A simple estimate. The following lemma is a standard
fact in the theory of minimal surfaces.

Lemma 4.8. There exist constants C and r0 > 0 (depending only
on M) such that

(4.25) H2(Σ) ≤
(

1

2
+ Cσ

)

σLength (∂Σ)

for any σ < r0 and for any smooth minimal surface Σ with boundary
∂Σ ⊂ ∂Bσ(z).

Indeed, (4.25) follows from the usual computations leading to the
monotonicty formula. However, since we have not found a reference for
(4.25) in the literature, we will give a proof of it.

Proof. Let Σ be a smooth minimal surface with ∂Σ ⊂ ∂Bσ(x),
where σ < r0 and r0 is a positive constant to be chosen later. We recall
that, for every vector field X ∈ C1

c (Bσ(x)), we have

(4.26)

∫

Bσ(x)

divΣX = 0 .

We assume r0 < Inj (M) (the injectivity radius of M) and we use
geodesic coordinates centered at x. For every y ∈ Bσ(x) we denote by
r(y) the geodesic distance between y and x. Recall that r is Lipschitz
on Bσ(x) and C∞ in Bσ(x) \ {x}, and that |∇r| = 1, where |∇r| =
√

g(∇r,∇r).
We let γ ∈ C1([0, 1]) be a cut-off function, i.e. γ = 0 in a neighbor-

hood of 1 and γ = 1 in a neighborhood of 0. We set X = γ(r)r∇r =
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γ(r)∇ |r|2

2
. Thus, X ∈ C∞

c (Bσ(x)) and from (4.26) we compute

(4.27) 0 =

∫

Σ

γ(r) divΣ (r∇r) +

∫

Σ

r γ′(r)
∑

i

∂ei
r g(∇r, ei) ,

where {e1, e2} is an orthonormal frame on TΣ. Clearly
(4.28)
∑

i

∂ei
r g(∇r, ei) =

∑

i

(∂ei
r)2 = |∇Σr|2 = |∇r|2−|∇⊥r|2 = 1−|∇⊥r|2 ,

where ∇⊥r denotes the projection of ∇r on the normal bundle to Σ.
Moreover, let ∇e be the euclidean connection in the geodesic coordi-
nates and consider a 2-d plane π in TyM , for y ∈ Bσ(x). Then

divπ (r(y)∇r(y))− diveπ (|y| ∇e|y|) = O(|y|) = O(σ) .

Since diveπ (|y| ∇e|y|) = 2, we conclude the existence of a constant C
such that

(4.29)

∣
∣
∣
∣

∫

Σ

γ(r)divΣ(r∇r) − 2

∫

Σ

γ(r)

∣
∣
∣
∣
≤ C‖γ‖∞σH2(Σ ∩ Bσ(x)) .

Inserting (4.28) and (4.29) in (4.27), we conclude

(4.30)

∫

Σ

2 γ(r) +

∫

Σ

r γ′(r) =

∫

Σ

r γ′(r) |∇⊥r|2 + Err

where, if we test with functions γ taking values in [0, 1], we have

(4.31) |Err| ≤ CσH2(Σ ∩ Bσ(x)) .

We test now (4.30) with functions taking values in [0, 1] and approxi-
mating the characteristic functions of the interval [0, σ]. Following the
computations of pages 83-84 of [Sim83], we conclude
(4.32)

d

dρ

(
ρ−2H2(Σ ∩ Bρ(x))

)
∣
∣
∣
∣
ρ=σ

=
d

dρ

(
∫

Σ∩Bρ(x)

|∇⊥r|2
r2

)∣
∣
∣
∣
∣
ρ=σ

+ σ−3Err .

Straightforward computations lead to
(4.33)

H2(Σ∩Bσ(x)) =
σ

2

d

dρ

(
H2(Σ ∩ Bρ(x))

)
∣
∣
∣
∣
ρ=σ

− σ3

2

d

dρ

(
∫

Σ∩Bρ(x)

|∇⊥r|2
r2

)∣
∣
∣
∣
∣
ρ=σ

︸ ︷︷ ︸

=(A)

+Err .
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Moreover, by the coarea formula, we have

(A) =
σ

2

∫

∂Bσ(x)∩Σ

1

|∇Σr|
− σ3

2

∫

∂Bσ(x)∩Σ

|∇⊥r|2
σ2|∇Σr|

=
σ

2

∫

∂Σ

1 − |∇⊥r|2
|∇Σr|

=
σ

2

∫

∂Σ

|∇Σr| ≤ σ

2
Length (∂Σ) .(4.34)

Inserting (4.34) into (4.33), we conclude that

(4.35) H2(Σ ∩ Bσ(x)) ≤ σ

2
Length (∂Σ) + |Err| ,

which, taking into account (4.31), becomes

(4.36) (1 − Cσ)H2(Σ ∩ Bσ(x)) ≤ σ

2
Length (∂Σ) .

So, for r0 < min{Inj (M), (2C)−1} we get (4.25). �

4.3. Considerations on (0.5) and (0.4)

4.3.1. Coverings. In this subsection we discuss why (0.5) seems
ultimately the correct estimate. Fix a sequence {Σj

tj} which is 1/j–a.m.
in suffciently small annuli and assume for simplicity that each element
is a smooth embedded surface and that the varifold limit is given by

Γ =
∑

Γi∈O

niΓ
i +

∑

Γi∈N

niΓ
i .

Then, one expects that, after appropriate surgeries (which can only
bring the genus down) Σj

tj split into three groups.

• The first group consists of

m1 =
∑

Γi∈O

ni

surfaces, each isotopic to a Γi ∈ O;
• The second group consists of

m2 =
1

2

∑

Γi∈N

ni

surfaces, each isotopic to the boundary of a regular tubular
neighborhood of Γi ∈ N , (which is a double cover of Γi);

• The sum of the areas of the the third group vahishes as j ↑ ∞.

As a consequence one would conclude that ni is even whenever Γi ∈ N
and that (0.5) holds.

The type of convergence described above is exactly the one proved
by Meeks, Simon and Yau in [MSY82] for sequences of surfaces which
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are minimizing in a given isotopy class. The key ingredients of their
proof is the γ–reduction and the techniques set forth by Almgren and
Simon in [AS79] to discuss sequences of minimizing disks. However,
in their situation there is a fundamental advantage: when the sequence
{Σj} is minimizing in a given isotopy class, one can perform the γ–
reduction “globally”, and conclude that, after a finite number of surg-
eries which do not increase the genus, there is a constant σ > 0 with
the following property:

• For any ball B with radius σ, each curve in ∂B ∩Σj bounds a
small disk in Σj .

In the case of min–max sequences, their weak 1/j–almost minimiz-
ing property on subsets of the ambient manifold allows to perform the
γ–reduction only to surfaces which are appropriate local modifications
of the Σj ’s, see the Squeezing Lemma of Section 2.2 and the modified
γ–reduction of Section 2.2. Unfortunately, the size of the open sets
where this can be done depends on j. In order to show that the picture
above holds, it seems necessary to work directly in open sets of a fixed
size.

4.3.2. An example. In this section we show that (0.4) cannot
hold for sequences which are 1/j–a.m.. Consider in particular the man-
ifold M =] − 1, 1[×S2 with the standard product metric. We param-
eterize S2 with {|ω| = 1 : ω ∈ R3}. Consider on M the orientation–
preserving diffeomorphism ϕ : (t, ω) 7→ (−t,−ω) and the equivalence
relation x ∼ y if x = y or x = ϕ(y). Let N = M/∼ be the quo-
tient manifold, which is an oriented Riemannian manifold, and con-
sider the projection π : M → N , which is a local isometry. Clearly,
Γ := π({1}×S2) is an embedded 2–dimensional (real) projective plane.
Consider a sequence tj ↓ 1. Then, each Λj := {tj} × S2 is a totally
geodesic surface in M and, therefore, Σj = π(Λj) is totally geodesic
as well. Let r be the injectivity radius of N and consider a smooth
open set U ⊂ N with diameter smaller than r such that ∂U intersects
Σj transversally. Then Σj ∩ U is the unique area–minimizing surface
spanning ∂U ∩ Σj .

Hence, the sequence of surfaces {Σj} is 1/j–a.m. in sufficiently
small annuli of N . Each Σj is a smooth embedded minimal sphere and
Σj converges, in the sense of varifolds, to 2Γ. Since g(Σj) = 0 and
g(Γ) = 1, the inequality

g(Γ) ≤ lim inf
j↑∞

g(Σj) ,

which corresponds to (0.4), fails in this case.



Table of symbols

TxM the tangent space of M at x
TM the tangent bundle of M .
Inj (M) the injectivity radius of M .
H2 the 2–d Hausdorff measure in the metric space (M, d).
H2
e the 2–d Hausdorff measure in the euclidean space R3.

Bρ(x) open ball
Bρ(x) closed ball
∂Bρ(x) distance sphere of radius ρ in M .
diam(G) diameter of a subset G ⊂M .
d(G1, G2) the Hausdorff distance between the subsets

G1 and G2 of M .
D, Dρ the unit disk and the disk of radius ρ in R2.
B, Bρ the unit ball and the ball of radius ρ in R3.
expx the exponential map in M at x ∈M .
Is(U) smooth isotopies which leave M \ U fixed.
G2(U), G(U) grassmannian of (unoriented) 2–planes on U ⊂M .
An(x, τ, t) the open annulus Bt(x) \Bτ (x).
AN r(x) the set {An(x, τ, t) where 0 < τ < t < r}.
C∞(X, Y ) smooth maps from X to Y .
C∞
c (X, Y ) smooth maps with compact support from X

to the vector space Y .
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