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Abstract

An entropy solution # of a multi-dimensional scalar conservation law is not
necessarily in BV, even if the conservation law is genuinely nonlinear. We show
that u nevertheless has the structure of a BV function in the sense that the shock
location is codimension-one rectifiable. This result highlights the regularizing effect
of genuine nonlinearity in a qualitative ways; it is based on the locally finite rate of
entropy dissipation. The proof relies on the geometric classification of blow-ups in
the framework of the kinetic formulation.

1. Introduction

In this paper, we study the structure of entropy solutions of scalar conservation
laws in n space dimensions d;,u + div, f(u) = 0. A bounded measurable entropy
solution u is characterized by dissipation of entropy

—n.g =) +divyq) =0 in9 )

for any convex entropy-entropy flux pair (n(v), ¢g(v)) € R x R" compatible with
the given flux function f(v) € R”, that is,

g =n@/f (v) and n"(v) 20 forallveR.
Using (1, g) = £(id, f) in (1), we see that u is in particular a weak solution:
du+divy f(u) =0 ing, . )

KRUZKOV established the well-posedness of the Cauchy problem of (1) for bounded
initial data, see [17].

We recall that for a smooth solution u of (2), u is constant along the characteristic
lines of speed f’(u). Thus the nonlinearity of f imposes a certain rigidity to the
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problem: Since f’(u) varies in the transported value u, characteristics must cross
and shocks are formed. Therefore smooth solutions cannot exist in general. The
weak formulation (2) allows for singularities — at the expense of rigidity. The
Cauchy problem is ill-posed. The notion of entropy solution (1) restores the right
amount of rigidity for existence and uniqueness. In this paper, we will show that
this rigidity also survives in the form of a regularizing effect on the structure of u.

1.1. One space dimension

The regularizing effect of nonlinearity in one space dimension is well under-
stood. We give a short list of the main analytic ideas which capture this effect.

For a strictly convex flux function, i.e., f”(v) = ¢ > 0, Oleinik proved an L*®
estimate on the positive part of the spatial gradient:

@) (2, o) = 3

ct’
independent of the initial data [21]. It is based on the maximum principle for
the parabolic approximation. In fact, the “E condition” (3) characterizes entropy
solutions among all weak solutions.

For a homogeneous nonlinear flux function, i.e., f(v) = v? with p > 1,
Bénilan and Crandall established an L' estimate on the time derivative

1
9 (t, ML) = WHM(Q IMeiwy -

Roughly speaking, it is based on KRUzKOV’s L!-contraction principle [17] for
entropy solutions and a scale invariance of the solution space, see [4]. This argument
has been extended to more general flux functions [22].

We are interested in the case of a “genuinely nonlinear” flux function f(v),
which in one space dimension means that there is no v-interval on which the char-
acteristic speed f”(v) is constant. In this setting, TARTAR established a compactness
result: A sequence of uniformly bounded entropy solutions {u®}; is precompact in
L' locally [25]. This can be seen as a qualitative version of the regularizing effect
of nonlinearity.

Tartar makes use of the fact that the entropy dissipation measures

—u®) = 3 @®) + divy g ()

are (locally) uniformly bounded. This follows from the fact that uﬁ,k; is the space-
time divergence of a uniformly bounded field. Loosely speaking, Tartar’s result
states that uniformly bounded {,ufffé}k rule out fine-scale oscillations of {u®}.
CHEN & RASCLE converted this qualitative observation into a regularity result, see

[8]: An entropy solution is continuous in time with values in LllOc R™).
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1.2. Multiple space dimensions

The regularizing mechanism of genuine nonlinearity is intuitive in one space
dimension: Generically, the speed f’(v) of characteristics is different for different
values v. Hence characteristic lines transporting different values have to cross (at
earlier or later times) and thus shocks are unavoidable. These shocks dissipate
entropy, but the entropy dissipation (i 4 is (locally) finite. This should limit shock
occurrence and thus oscillations of entropy solutions. The natural generalization of
“genuinely nonlinear” to n space dimensions is the following: There is no v-interval
on which f”(v) is contained in an (n — 1)-dimensional subspace. But the geometry
of the equation is more complicated in multiple space dimensions: Characteristic
lines of different speed need not cross. Thus it is less clear if and how finite entropy
dissipation can limit the oscillation of u.

LIONS, PERTHAME & TADMOR showed that indeed even in multiple space di-
mensions, finite entropy dissipation limits the oscillations of u. Their idea was to
“unfold” the notion of an entropy solution, (2) and (1), into a kinetic equation in
the sense of the Boltzmann equation [19]. The analogue of the Maxwellian is

+1 if0<v=u,
x(w,u)=4 -1 ifusv<O, 4
0 otherwise.

It is easy to check that (1) is equivalent to

dx (v, ut,x) + f'(v) - Vix(v,ult,x)) =dhp in%,,, o)

for some non-negative measure 1 on R, x R, x R} which encodes the entropy
dissipation in the sense of

Kng = /n”(v) du(v,-) forevery entropy 7.

Notice that (5) makes the characteristic speed f’(v) appear in the transport operator
on the left-hand side. In fact, the kinetic formulation shows that whenever u is not
constant along characteristics, entropy must be dissipated. The kinetic formulation,
(4) and (5), allows us to use the velocity averaging estimates for transport equa-
tions [14, 12, 19]. Genuine nonlinearity is precisely the condition on f’(v) which
the argument requires to rule out fine-scale oscillations of the “velocity average”
u = f x (v, ) dv, based on the control of the right-hand side of (5) in form of
Jdu(v, t, x). Under stronger non-degeneracy conditions, the velocity averaging
estimates yield quantitative regularity results for entropy solutions, cf. [19, 16].

1.3. Structure

Entropy solutions u of conservation laws are expected to be piecewise smooth
with piecewise smooth shock location J, at least generically. A mathematically
convenient relaxation of this notion is to say that outside a codimension-one rec-
tifiable set J, u is approximately continuous. Such a “structure result” is true for
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any function u of bounded variation (B V) in space-time, see for instance [1, 10].
By the L'-contraction principle, an entropy solution u of a scalar conservation law
is of bounded variation if the initial data are. A priori bounds on the total variation
have also been obtained for systems of conservation laws in one space dimension,
despite the fact that the L !-contraction principle does not hold in this situation, see
[10, 6]. But BV does not seem to be an appropriate space for systems in multiple
space dimensions (see the discussion in the introduction of [24] and [5]). There-
fore, it seems desirable to develop methods, at first on the scalar level, which avoid
BV arguments.

If the initial data are just L°°, it is not expected that the solution of (1) is in
BV — except in the one-dimensional, strictly convex case. In fact, even in the best
case the a priori estimate obtained from velocity averaging is, in terms of scaling,
far from a BV estimate. This remains true for recent subtler arguments, see [27,
16, 9]. We think this is not surprising: Velocity averaging is a linear argument. The
entropy dissipation measure j is treated as a given right-hand side of the linear
transport operator in (5). Depending on the degree of non-degeneracy, some Besov
norm of u is estimated by [ du (v, 1, x). Locally in space-time, however, the entropy
dissipation generically is cubic in the shock strength, i.e., the jump size [u]:

/du(v, ) ~ )P L,

where 77" L J denotes the restriction of the n-dimensional Hausdorff measure to
the set J. This means that the control of small shocks through the entropy dissipation
is bad. In particular, the entropy dissipation does not control [ 7 U]l dA" in any
obvious way. But it is this quantity which would be controlled by the space-time
BV norm of u:

f [l de" g/m,xummx.
J

This shows that from the point of view of a local regularity theory, BV is not a
natural space — even for a scalar law. It also suggests that linear spaces might be
inappropriate to fully capture the regularizing effect.

In this paper, we show that finite entropy dissipation in combination with gen-
uine nonlinearity is indeed enough for a structure result. Loosely speaking, we
obtain BV -like structure for entropy solutions without using BV control, see The-
orem 1.

1.4. Methods and related work

Our qualitative approach to regularity is borrowed from elliptic theory: the study
of blow-ups in a given point of space-time. We investigate the blow-ups within the
framework of the kinetic formulation, (4) and (5). This allows us to study the fine
properties of u and the defect measure x simultaneously. The compactness result
through velocity averaging ensures that the limiting (#®°, ©°°) also satisfies (4)
and (5). The gain of blowing up is that u°° factorizes into a measure in v and a
measure in (¢, x), for all blow-up points except those in a set which is smaller than
codimension one. This gain in structure through (polar) factorization is a typical



Structure of Entropy Solutions for Scalar Conservation Laws 141

first step in arguments from geometric measure theory, e.g., in the theory of sets of
bounded perimeter, see Theorem 1 in Section 5.7.2 of [13].

The idea to study blow-ups within the kinetic formulation was introduced by
VASSEUR [26]. He used it to establish the existence of one-sided traces for en-
tropy solutions. These traces are “strong traces” in the L' sense. We recall that the
existence of strong one-sided traces is another typical property of BV functions.
We refer also to [7], where the authors establish existence of traces for “divergence
measure fields”, i.e., functions in L? or .# whose divergences are Radon measures.

The main step in obtaining our regularity result is the classification of solutions
to (4) and (5) with factorized u, which we call “split states”. The geometric argu-
ments are similar to those in our prior work [11], where we studied an S'-valued
conservation law in two space dimensions (no time). This conservation law arises
as a singular limit of a variational problem; in particular, the analogue of the entropy
dissipation measure u has no sign. The present analysis is also oblivious to the sign
of 1 and thus the difference in time and space variables. In comparison with [11],
additional arguments are required to obtain codimension-two rectifiability of the
boundary of the jump set of a split state.

A slightly less general version of this S'-valued conservation law has been
treated by AMBROSIO, KIRCHHEIM, LECUMBERRY & RIVIERE [2] with somewhat
different methods. In particular, these authors used an interesting connection with
viscosity solutions of the related Hamilton-Jacobi equation, see [3]. This idea has
been extended by LECUMBERRY & RIVIERE [ 18] to strictly convex conservation laws
in one space dimension. Because of the connection to Hamilton-Jacobi equations,
this approach seems limited to one space dimension.

2. Setting and statement of the result

As mentioned in the introduction, the sign of the entropy dissipation measures
and the difference between time and spatial variables play no role in our analysis.
Hence we replace (¢, x) by x, (v, f(v)) by f(v) and (n(v), g(v)) by g(v). We
start by introducing the appropriate notion of genuine nonlinearity — it is the well-
known strengthening of the condition that there is no open interval on which f’
is contained in a single hyperplane. We also introduce the set of entropies and the
notion of “quasi-solution”. To simplify the kinetic formulation, we shall without
loss of generality assume that the bounded « is positive.

Definition 1. (a) Wecall f € C>!(R, R") genuinely nonlinearif a := f’ satisfies
ZL'({veRlaw)-£=0}) = 0 forall £ eS" .
(b) Let &4 denote the set of all ¢ € C(R, R") for which there exists an n with
¢’ (w)=n'(v) f'(v) and 2"() 20 in Z,. (6)
(c) We call a measurable u: R" — (0, 1) a “quasi-solution” if
pg = —divy gu) € #R") forall g €&y, @)

A (R™) denoting the space of all locally finite Radon measures.
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Warning 1. When f : R — R, x RZ,_I is of the form f(u#) = (u, F(u)) we can
compare (c) with the usual notion of entropy solution used in the literature of scalar
conservation laws (thus we identify x| with the time variable ¢). We remark that
our notion is considerably more general for two reasons.

1. A quasi-solution is not necessarily a weak solution of
oru + divy F(u) = 0. ®)

In particular any entropy solution of a conservation law with a suitable source
term o;u + div,s F'(u) = g is a quasi-solution.

2. Even when a quasi-solution u is a weak solution of (8), the entropy production
g for g € & need not to be a non-negative measure (as it would be for entropy
solutions), but it can change sign.

We now introduce the notion of vanishing mean oscillation at a point and we
recall the definitions of rectifiability and of a strong trace.

Definition 2. (a) Letu € LIIOC(R”) and y € R". We say that u has vanishing mean
oscillation at y if

1
lim—/ lu(x) —uy,ldx = 0,
By (y)

where uy, , denotes the average of u on the ball B, (y).

(b) A set J C R”" is called rectifiable of dimension n — 1 if, up to an .#"~!-neg-
ligible set, it is contained in the countable union of Lipschitz graphs. We call a
Borel vector field : J — $"~! a unit normal if, for " 1-a.e. y € J, n(y) is
perpendicular to one of the Lipschitz graphs in y.

(c) Letu € LllOc (R™) and J C R" be a rectifiable set of dimension n — 1 with unit
normal 1. We call two Borel functions «~, u*: J — R left and right traces of

u on J with respect to 7 if, for /#"'-ae.y € J,
.1 - +
lim — lu(x) —u=(y)|dx + lu(x) —ut(y)ldx) = 0,
rlor B () BF(y»

where B (y) := {x € B-()| + (x —y) - n(y) > 0O}.

Remark 1. The notion of a point of vanishing mean oscillation is slightly more
general than that of Lebesgue points. Indeed a point of vanishing mean oscillation
y is a Lebesgue point if and only if the limit

limu, , u(x)dx
ol

1
= lim——
10 ri0 ZL"(Br () JB,(y)

exists and is finite. If we consider u(x) = sin(log |log |x||), then the origin is a
point of vanishing mean oscillation but not a Lebesgue point.
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We are now in the position to state our main result:

Theorem 1. Let f be genuinely nonlinear and u a quasi-solution. Then there exists
a rectifiable set J of dimension n — 1 such that

(a) u has vanishing mean oscillation at every 'y & J,
(b) u has left and right traces on J.

Remark 2. This result is slightly weaker than what we would obtain for quasi-solu-
tions u € BV (R"). In this case, (a) could be replaced by

(a*) every y ¢ J is a Lebesgue point of u.

In addition, if u satisfies div f (1) = 0, also the structure of the measures (i, is
natural:

() g =[q™) —qu)]-n#"1LJ forallg € &.

We refer to Section 1.8 in [10] for a discussion of BV solutions of systems of con-
servation laws. With the methods laid out in Section 8 of [11] (cf. Theorem 1.3(d)
of [11]), we are only able to show

© puglJ =lg®) —qu)l-n#"'LJ forallg € &.

In particular, we cannot rule out the possibility that 114 has a part which lives on a
set of dimension strictly larger than n — 1.

We divide the proof of Theorem 1 into four sections.

— In Section 3 we introduce the kinetic formulation with an “entropy dissipation
measure” u € .4 (R x R"™) with no sign. We also define the set J which appears
in Theorem 1. Finally, we introduce the notion of blow-ups and rephrase the
compactness result from velocity averaging in this context.

— In Section 4 we work out the net gain in blowing-up: Not only is the kinetic
formulation preserved, but the entropy dissipation measure u € .Z (R x R")
factorizes into a v-dependent density and a non-negative measure v in x. We call
these special solutions of the kinetic equation split states. We use the classifica-
tion of split states from Sections 5 and 6 to establish first the rectifiability of J and
then the vanishing-mean-oscillation and trace properties stated in Theorem 1.

— In Section 5 we characterize the split states. We first obtain qualitative informa-
tion and then quantitative information on their jump set J through a (second)
blow-up. We have to consider blow-ups in points of both J and its codimen-
sion-two boundary 9J. For the characterization of (second) blow-ups, we use
the results of Section 6.

— In Section 6 we characterize the simplest possible split states, which we call
flat split states. Flat split states are split states with a jump set J which is either
empty, or an entire hyperplane, or half of a hyperplane. These states correspond
to constants, shocks, and a combination of shock and rarefaction wave.
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3. Kinetic formulation and blow-up

In this section, we introduce the kinetic formulation and the concept of blow-
ups. The first proposition states the kinetic formulation. The situation is slightly
unusual since the measures (4 in (7) do not have a sign.

Proposition 1. Let u be a quasi-solution. Then there exists a locally finite Radon
measure i € A (R, x R}) such that

a(v) - Vex(,u(x)) = dp in 7, ©)
where
O [ R
The following definition introduces the set J in Theorem 1.
Definition 3. Let u and u be as in Proposition 1.
(a) We denote by v the x-marginal of the total variation || || of u:
V(A) ;== ||u||(R x A) for all Borel sets A C R". (11)
(b) We denote by J the set of positive upper /"~ density of v:
J = {y e R" linrlﬁ)up% >0¢. 12)

The next definition introduces the rescalings and the set of all blow-ups for u,
w and v at a given point y. In case of y and v, the blow-ups are also called tangent
measures (see for example Definition 14.1 of [20]). The rescalings are chosen such
that the kinetic equation (9) is invariant.

Definition 4. Let u € L}

oc®M, u € AR x R") and v € .#(R"); fix some
y € R".

(a) For any r > 0 we define u”" € LIIOC(R"), w>’ e AR x R") and v €

A (R") through

" (x) == u(y +rx),

(B x A) : n(B x (y +rA)),

yn—1

YA = oy 4 rA)
v yn—1 y

for all Borel sets A C R"” and B C R.
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(b) The sets B®(y) C L®R"), T" '(y, n) € .4 R x R") and T""!(y,v) C
A (R") are the sets of all u°, £® and v®>° resp. such that there exists a sequence
rr 4 0 with

u’"™* — u®  strongly in Llloc(Rn)’
i N u™  weakly in .Z (R x R"),
e 00 weakly in .Z (R").

The following proposition links the well-known compactness result to blow-up
sequences.

Proposition 2. Let u, i be as in Proposition 1. Then, for " '-a.e. y € R,

{u”"}, 0 is strongly precompact in Ll .(R", (13)
{uw " Y0 is weak*® precompactin M (R x R"), (14)
{v¥"} 10 is weak* precompact in A (R"). (15)

Furthermore, u™ € B®(y) and u>® € T"~(y, v) coming from the same blow-up
sequence {ry}iro0 satisfy (9).

Proof of Proposition 1. Following Kruzkov, we introduce g, € &4,

f@— f) ifuzv,

o (u) = { 0 otherwise, (16)
for v € R and write 1ty := fg,. We first prove that
[0,1]12v > uy € #Z(U) isbounded 17)

for any bounded open set U C R". Rewriting (6) as

v
g() =q(0) —n(0) f'©0) +n) f'(v) - /0 n(w) f"(w) dw,
we see that the set & introduced in Definition 1 is a closed subset of C ([0, 1], R").

Equipped with the sup-norm, it is a complete metric space, hence a space of the
second category. We introduce

F={p e W) lel = 1}.
For ¢ € T', we now consider the linear functional T, : & — R given by
Ty(q) = / pduy .
R)'l

We see from the definition of u, that the functional 7, is bounded

=U Vo - qu)
U

= cpullglloo

Tp(q)| = '/ pdug
R}’l
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— and thus continuous. Moreover, the family of functionals {7 }yer is pointwise
bounded:

sup |T¢(q)| = lugll(U) =1 cqu < oo forallg € &,
pel

since 4 is locally finite. We now apply the uniform boundedness principle (cf.

Theorem 2.2 of [23]): There exist a gg € &4, ane > 0 and a cy < oo such that
sup | Ty (9)] = lligl(U) S ey forall g € Belgo) N &4 . (18)
pel’

For arbitrary ¢ € & with |lg]lc = 1, using the linearity of ¢ — u, and the fact
that & is a convex cone, we infer from (18)

™|

1 1
l12g 1CU) = ZllieqlI (V) = g(llusqmoll(U) + g W) < =ev .

Hence the map & > g — uy € #(U) is bounded from &4 into .# (U). This
implies (17). Note also that u, vanishes if v = 1, while for v < 0 it is constant in
v: we have u, = —divy f(u).

Since v — u, is weakly measurable, we gather from (17) that

deM=/Rf€(U,X)dMU(X)dv

defines a u € .Z (R x R™). In view of the definitions (16) and (10)

d
T qv(m) = —a() x (v, u).
v

Hence —div, g, (u) = w, turns into (9) when tested with —9,¢ (v, x).

Proof of Proposition 2. It is easy to check that for y € R"” and r > 0, the resca-
lings u”"" and p”" still satisfy the kinetic equation

a() - Vax (v, u?” (1)) = 0™ in . (19)

We observe that the weak* compactness (14) of u”" follows immediately from
the control of the total variation ||u”"" || through (15). Because of (19), the strong
convergence (13) follows also from (15) via the velocity-averaging lemma (cf.
Theorem 3 in [19]).

Hence it remains to establish (15) for 2" !-a.e. y € R”". This amounts to

i V(B (y)
imsup ———

——— <oo for A" ae yeR"
rl0 r

The latter follows from a standard argument in geometric measure theory: Assume
that for a bounded set K with .7#"~!(K) > 0 we had

i V(B (y))
1m sup T

—— =o0 forally € K.
rl0 r
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Then the Vitali covering argument (cf. Theorem 1 of Section 1.5.1 in [13]) would
imply v(K) = oo. But v is locally finite.

Notice that for a non-negative measure /i, the upper .~ density of v is
bounded for all y € R”". This follows easily from testing (9) against functions
&k (v, x) := vei (x), where {@y }« is a sequence of non-negative radial test functions
with ¢ 1 1p,(y) pointwise.

4. Split states and rectifiability

In this section we will combine all results to prove Theorem 1. The section is
structured as follows

— In Section 4.1, we introduce the notion of a split state, see Definition 5. Roughly
speaking, a split state is a solution (u, ) of equation (9) for which 9, u factorizes
into a v-dependent part 7 and an x-dependent part v. In Proposition 3 we show
for /" !-a.e. y that the blow-ups in y are split states.

— In Section 4.2, we use the classification of split states from Section 5 (see Prop-
osition 5) to deduce the rectifiability of the set J defined in (12).

— In Section 4.3, we use the classification of flat split states from Section 6 (see
Propositions 6(b) and 7(b)) to show that J is the jump set of u in the sense of
Theorem 1(a), (b).

4.1. Blow-ups are split states

Definition 5. A split state is a triple (u, &, v) consisting of

— a function u € L*°(R"),
— a function &2 € BV (R) continuous from the left, and
— anon-negative v € .Z (R")

which satisfy the kinetic equation
a() - Vix(,ux)) = h(v)v in 2, forall v. (20)

We now show that blow-ups are split states. It will be crucial for Section 4.2
that the v-dependent factor 4 only depends on the blow-up point, but not on the
blow-up sequence.

Proposition 3. Let f, u be as in Theorem 1. Then for 7" '-a.e. y € R" there
exists an hy € BV (R) with the following property:

For any (u™, v>®) € B®(y) x T" ' (y, v) coming from the

same blow-up sequence, (U, h,, v™°) is a split state. 21)

Proof. It follows from Proposition 2 that, for .7#”"~!-a.e. blow-up point y € R”,
any (#°°, v®>°) as in (21) satisfies

a() - Vix(w,u®(x)) = u>* ing,, (22)

where u is the weak™* limit of some rescaling of w. This is our starting point.
Then the proof proceeds in three steps.
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— In Step 1 we construct a family {H, }, of measures in v such that the factorization
u = Hy x v*> holds for A" e, y.

— In Step 2, we establish additional regularity for the factor Hy, as a consequence
of the interplay between the product structure of ;°° and the kinetic equation
(22). More precisely, we show that 9, H, = hy.jfl with hy, € BV (R).

— In Step 3, we select a representative of &, such that the kinetic equation (22)
holds pointwise in v.

Step 1. Recall the definition of v € .Z(R"), cf. (11). By standard measure-the-
ory arguments (see Theorem 2.28 of [1]), there exists a weakly v-measurable map
H:R" — #(R) with u = [ Hdv, that is,

/(pd,u = / /go(v,x)de(v)dv(x), Vo e CP(R xR").
n R

We now use the fact that v-a.e. y € R” is a Lebesgue point for H with respect to
the weak* topology on . (R). More precisely, we have

rnfl

V(B (y))
see Proposition 9. Recall the definition of the jump set J in (12). For any y ¢ J

(1" = Hy x v7") .0 forv-ae. yeR", (23)

we have u”" . 0 and thus 1 = 0 so that there is nothing to prove. Hence we
restrict ourselves to y € J. By the Vitali covering argument, the definition of J
implies that any v-negligible subset of J is also .72~ ! -negligible. Thus (23) holds
for #"~!-a.e. y € J. On the other hand, we already know from Proposition 2 that

v(B,(y)

—— < oo for#" lae.ye R (24)

lim sup
rl0 r

Hence (23) and (24) combine to
w”" — Hy x v’ 2.0 for e, yeld,
which in particular yields 4> = H, x v*> for A" ae yel.

Step 2. We now prove that 3, Hy = hy.Z! for some hy € BV(R). As in Step 1,
we may restrict ourselves to the case y € J. Then there exists a blow-up sequence
with v £ 0, which we shall consider. According to (22) and Step 1 we have

a(v) - Vix (v, u®™(x)) = 9y(Hy x v°) = (3, Hy) x v inZ, .. (25)
Pick a ¢ € C{°(R") with [ ¢ dv>® = 1. Then (25) yields
Hy = —a(v) - / Vo(x) x(v,u™(x))dx in2). (26)

Notice that for fixed x, x (v, u®°(x)) is of bounded variation in v with uniformly
bounded total variation f [0y x (v, u®(x))|dv < 2. Hence also the x-integral

/ Vo(x) x (v, u®™(x)) dx

isa BV function. Since a € C'(R), we infer from (26) that 3, Hy is a BV function.
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Step 3. We finally prove that the kinetic equation (22) holds pointwise in v. Ac-
cording to (25) and Step 2 we have

a() - Vix (v, u®x) =hy xv>® ing, . 27
Then the one-sided continuity of x (v, ©u®(x)) in v yields

x(—e,u*(x) — x(@,u>(x)) stronglyin LllOC ase | 0.

On the other hand, since 4 is of bounded variation, we may select a representative
with the same one-sided continuity, that is,

hy(v—¢) — hy(v) ase|0.
Then (27) improves to

a() - Vex (v, u™(x)) = hy(v) x v in Z, for all v.

4.2. J is rectifiable

Recall the definition of the set J, cf. (12). We will prove in this subsection that J
is rectifiable. The main ingredient is the classification of split states (u, &, v) stated
and proved in Section 5, cf. Proposition 5. According to the compactness property
stated in Proposition 2, for any v™ € T"~!(y, v), there is a u>® € B> (y) coming
from the same blow-up sequence. Hence we may combine Proposition 3 from
Section 4.1 with Proposition 5 to obtain the following statement on 7"~ (y, v).

Proposition 4. Let f, u be as in Theorem 1. For #" '-a.e. y € J, there exist
constants L, g > 0 and an orthonormal coordinate system xi, ... , X, (both only
depending on y) with the following property:

For every v™® € T"1(y, v) with v>® # 0, there exist

—a constant e € R,
— a function w: R"™2 — R with Lip(w) < L

such that v>® = g A"~ J* for some set J> of the form
JP={x1=e or J¥={x1=ex, 2wx2,...,x-1)},  (28)

see Fig. 1. Furthermore, there exists at least one v™° € T"~1(y, v) with v>® # 0.

The last statement follows from the definition of J in (12). Now let y € J
be as in Proposition 4. Proposition 4 does not make full use of the fact that all
v>® e T"~1(y, v) are blow-ups of a single measure v at a single point y. The main
contribution of this subsection is to make use of this fact in order to show

0eJ® forall v™® e T" (y,v). (29)

Before establishing (29), let us argue that Proposition 4 and (29) imply the
rectifiability of J by well-established arguments from geometric measure theory.



150 CAMILLO DE LELLIS, FELIX OTTO & MICHAEL WESTDICKENBERG

X1

%MUW

IT={x; =e}
Fig. 1. The set J*°.

Indeed, fix a y € J for which Proposition 4 holds. Now (29) combined with (28)
implies that e = 0 and thus

J® C{x; =0} forall v>®eT" '(y,v).

Hence an indirect argument using the weak™ compactness of {v*""}, ¢ (see Prop-
osition 2), yields the cone property

v((y + Cy) N B.(y))

lrif(} ] = 0, (30)
where, say, Cy = {8|x{] 2 |(x2, ..., xn)|}. On the other hand, (29) combined

with (28) implies ¢ = 0 and w(0) < 0. Thus we find from the Lipschitz continuity
of w that there exists a cone

X1 =0,x, 2 cl(r2, ..., o)} € J® forall v eT"(y,v).

Again by an indirect argument using the weak* compactness of the sequence
{v¥"}, 10 we gather that v has positive lower "1 density:

liminf 250D

0. 31
rio ol @D

A set J which has the property that there exists some measure v such that (31) and
(30) holds for s#"1-a.e. y € J is rectifiable of dimension n — 1, see Proposition
10.

‘We now return to the crucial (29). So, for the following, we fix y € J for which
Proposition 4 holds. The proof is divided into three steps.

— In Step 1, we introduce a functional .% on .# (R") with the following property:
On 7"~ 1(y, v), .Z assumes its maximal value 1 for those v>® = g~ J>®
for which 0 € J°.

— In Step 2, we show that on T”’l(y, v), the functional .% is monotone with
respect to rescaling v™° > (V*°)% for s > 0.

— In Step 3, we use a continuity argument in the scaling parameter to show that
we either have .7 (T~ (y, v)) = {1}, or we have .Z (T"~!(y, v)) = {0}. This
allows us to conclude (29).
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Step 1. A discriminating functional
In this step, we define a functional .% on .# (R") and a number r; > 0 such
that for any v>® = g "1 J® e T""!(y,v),

F ™) e[0,1], (32)
FOWP¥)=1<0eJ%, (33)
FW®) =0= v>®(B,(0) =0. (34)

We proceed as follows: The Lipschitz constants of all functions w which may
appear for v™° € T"~!(y, v) are bounded by the same constant L. Thus we can
findawedge W := {x, = c|(x2, ..., xn—1)|} with the following property: Assume
X =g "L J® and J*® C {x| = e}; then

YyEJX = +W)N{x; =e} CJ®.
We fix a radial cut-off function: Let ¢(r) be smooth with

o(r)>0 forr <1

/
o(r) =0 forr>1} and ¢ (r) <0 forr €[0,1).

Then the value of the functional .# for any t € .# (R") is given by

F(r) = l/ o(lx])dt(x), whereb := g/ go(|x|)djf"_1(x)
b Jw (x1=0}NW

and g is the constant in Proposition 4. For v>® € T~ !(y, v) this gives

F(1®) = % /J Wgo(|x|>d%"—l(x>.
N

On the one hand, (28) implies that J* C {x; = e}. Thus

/J pllshde! < / o(x]) d"!
N

{x1=0}N"W

with equality only if J°° > {x; = 0} N W N B1(0). This gives (32) and the — in
(33). On the other hand, (28) implies that

JP D =e,xp Z2w(0) +cl(x2, ..., a1}
Therefore
0/ = (e=0andw(0) £0) = J®D{x;=0NW.
This implies the <= in (33). Finally, (28) also yields the existence of an r; > 0

with
JNWNBI0) =0 = J*®NB,0) =0

This gives (34).
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Step 2. Monotonicity under rescaling
In this step, we show that for any v™° = g R I = T”_l(y, V)

d
ds

y(@“’)“) > 0 with equality only if Z (V™) € {0,1}.  (35)

s=1

We have by definition of .Z and (v*°)%* (cf. Definition 4)

ar 0010,s _ 8 M n—1
7 (07)°) = /meq;(s)d;f ).

Hence we obtain the representation

d

ds

7 () = ¢ f, o DI+ (= D) dor ™ o,

s=1 b
(36)

Passing to polar coordinates we get
/ ¢'(1xDIx dA" ! (x)
JeNW

1
= / ¢ (rr A" 2(J® N W N 3B,(0))dr
0

1
/ (go’(r)r"—l)(r2—"%n—2(10o nwn aB,(O))) dr (37
0
and, with an integration by parts,
[ ethane
JeNnw

1
= f @(r) A" 2(J®° N W N3B,(0)) dr
0

1
v on
0

By definition of the wedge W, (28) yields for p = p > 0,
(e, px2,...,px) €JXNW = (e, px2,...,pxy) €J®.
This implies the monotonicity
~2—n n—2( yoo
o= A (I mwmaBm(O))

< p2—n<%pn—2(jooﬂWﬂaBm(0)),

which for » 2 7 > e can be reformulated as
(2 — &))" T A" N W N 9B 0))
< (2= AT A2(I® AW N 9B0).
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Since A" ~2(J®° N W N 3B;(0)) = 0 for 7 < |e|, this implies
P (I® N WNAB0) S P2 (I N WNABA(0)  (39)
for all r = 7 > 0. We integrate (39) in 7 and obtain for all r > 0

(n—Dr'™" " (I® AW N B.(0)) £ r¥7" " (I N W NJB0)).
(40)

This in combination with (37), (38) and (36) yields the = in (35).
Equality in (35) enforces equality in (40) fora.e. 1 = r = 0. This in turn implies
equality in (39) fora.e. 1 = r = 7 = 0, which yields

either " 2(J®* NWNJB,(0)) >0 forae. 1=>r =0
or A" 2(J®NWNIB(0) =0 forae. 1=>r=0.

This entails
either 0€ J® or J*NWnNB0) =9,

which according to Step 1 implies that
either Z(L*®)=1 or FO>) =0.

Step 3. Compactness and continuity
Now we consider the function

: 1 ,
fr)y =7 (V) = 5 /W p(|x[) dv™" (x)

and observe that (see Definition 4)

d
rfo= 2 7 (0n)
s=1
1
= /W(<p/(|x|>|x| + (1= De(xD)dv* ). @)

Both expressions are continuous under blow-up. That is, if there exist a sequence
. | *
ry 4 0Oand v™®© € T"_l(y, v) with v —~ p°_then

flr) — F ™), (42)

7 (%)), (43)

, d
S ) — oo

s=1

Indeed, for the interior V(I)/ and the closure W of the wedge W we have

/0 e(Ixdv™ = liminf/ p(|x]) dv”",

/ o(|x) dv® = lim sup/ o(|x]) dv¥ " .
W ktoo w
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This follows from standard arguments since ¢ = 0. The difference between the
two integrals on the left-hand side is just the integral over the boundary 0 W of W.
But for this we can estimate

/ e(x])dv>™ = g/ o(x)d#"" = 0.
ow {x1=e}NaW

This implies (42), and then (43) follows by a similar argument. We use (42) in (41),
and the fact that —¢’(|x|)|x| = 0 by assumption.
Now we claim that for all § > 0 there exist &€ > 0, ro > 0 such that

Vr<ry, f(r)els,1—-8 = rf'(r)2e. (44)

Indeed, assume that this is not true. Then there exists a § > 0 with the following
property: We can find a sequence ri | O with f(rx) € [8, 1—8]and ry f'(r) < 1/k
for all k € N. By weak* compactness we may assume (extracting a subsequence if
necessary) that v ’* . 1 for some v>® € T"!(y, v). Then, because of (42)
and (43), we obtain

d ‘
Fw®) el[s,1-6] and —| F ((UOO)O») —0,
ds

s=1

which is a contradiction to (35). This proves (44).

We will show next that if f(r) does not converge to 1 when r | 0, then neces-
sarily f(r) converges to zero. So fix some § > 0. Then there exist ¢ and ry such
that (44) holds. Assume now that for some r; < ro we have f(r1) € [5,1 — §].
Then because of (44),

fr) £ f(r1) —elog(ri/r)

for all r such that f([r,71]) C [§, 1 — §]. Thus there exists a number r, such that
0 < rp < rp with f(r2) < 8. Thanks again to (44) we have f(r) < §forallr < rp.
This proves the following implication:

liminf f(r) <1—8 = limsup f(r) <.
ri0 rl0

As § > 0 was arbitrary, we have
ith li =1 li =0.
either rlﬁ)l fr) or rlirol fr)
In view of (42), this translates into:
either % (T”_l(y, v)) ={1} or F (T"_l(y, v)) = {0}.

By Step 1, this means

either 0 € J*° for all v™®° € T"~1(y, v)

| (45)
or J®NB,0)=0 forall v™® e T" "(y,v).
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It follows from the definitions, that 77! (v, v) is invariant under rescaling, i.e.,
W) e T"=1(y,v) for any r > 0 and v>® € T"~!(y, v). Hence the second
possibility in (45) would yield

J®NB.(0)=0 forallv™® e T" '(y,v)andr > 0,

and thus 7"~ !(y, v) = {0}, which is ruled out by the last part of Proposition 4.
Therefore the first possibility in (45) must hold, which concludes the proof of (29).

4.3. J is the jump set

In this subsection, we prove that J is indeed the jump set in the sense of Theorem
1 (a) and (b). Next to the rectifiability of J established in the previous subsection, we
will use the characterization of flat split states from Section 6, namely Propositions
6 and 7.

We start with Theorem 1 (a). By definition of J in (12) we have

y® =0 forallv™® e 7" ' (y,v)andy ¢ J.

We use Proposition 3 and Proposition 6 (b) from Section 6 to translate this property
of T"~!(y, v) into the following property of B*®(y):

u® = const forallu® € B®(y)andy & J.

By an indirect argument based on the strong compactness of {u”"}, o stated in
Proposition 2, this implies that « has vanishing mean oscillation (cf. Definition 2)
fory ¢ J.

We now come to Theorem 1 (b). According to the previous subsection J is
rectifiable. Thatis, J = « Jk, where each of the countably many Jj is contained
in a Lipschitz graph. We prove first that

v > g A" T with gi(y) > 0 for " lae. y € Ji. (46)

This gives a closer link between v and J beyond the definition (12). Note that
2"~V J; is a locally finite Radon measure. From the Lebesgue decomposition
theorem (cf. Theorem 1 of Section 1.6.2 in [13]) we obtain

V=g A" LT+ vy, (47)

where vy is the singular part, and g is the .7~ ! J; density of v, i.e.,

. v(Br(y)) -1
= lim for 7" '-ae.y € Ji.
80 = AT (7 1 B, () ek

Since Jy is rectifiable

. A" (U N B ()
im

m — € (0,00) for#" ae. yeJi.
r r
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Then we can use the fact that by definition of J D Ji

B
lim supM >0 forally e Ji

0 rn=l
to conclude that
gk(y) >0 fors" lae yeJ.

Throwing away the singular part vy in (47) gives (46).

Now we use the rectifiability of J to further characterize 7"~ (y, v) for 7"~ 1-
a.e. y € J. According to Proposition 4 and to (29), we already know that for
2" ae. y € J, there exists an orthonormal coordinate system xi, ... , X, such
that, for all v>° € 7! (y, v) we have

X =g L J® with J® C {x; = 0}. (48)

On the other hand, we find from (46) and the rectifiability of J that, for 7" !-a.e.
y € Jy and all v™® € T" 1 (y, v),

V® 2 g (y) A" ix - me(y) = 0}, (49)

where 71 (y) is the unit normal vector to Ji in y. Since gx(y) > 0, (48) and (49)
yield J*° = {x - n;(y) = 0} and therefore (48) improves to

V® =g " L{x - mi(y) = 0}. (50)

We now translate (50), which is a property of 7"~ !(y, v), into a property of
B°°(y). Indeed, Proposition 3 and Proposition 7 (b) from Section 6 give

T
ulin{n,-x >0
uoo:{y {77) }

00 oo n—1_
uyin{ny-x<0}} for all u®*® € B*°(y) and " *-a.e. y € J,

where u;r, u, € Ronlydepend on y. Here 1y is the normal to J in y. By an indirect
argument based on the strong compactness of {u”"}, | stated in Proposition 2, this

implies the existence of one-sided traces of u on J in the sense of Definition 2.

5. Classification of split states

In this section we will prove

Proposition 5. Assume (u, h, v) is a split state with hv # 0. Then there exist con-
stants L, g > 0 and an orthonormal coordinate system xi, ... ,x, (both only
depending on h) with the following property:

There exist

—a constant e € R, and
— a function w: R"2 — R with Lip(w) < L
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such that v = g "~ J for some set J of the form
J={x1=e} or J={x1=€,x, Zwx2,..., %1}

Remark 3. Note that for n = 2, Proposition 5 implies that the set J is either empty,
or a line or a half-line. In higher dimensions our characterization gives many more
possibilities. Hence we might be tempted to conjecture that the situation is less
complicated. This is not the case: Our classification of split states is optimal and it
remains optimal even under much stronger assumptions. In particular, the situation
does not become simpler if we consider fluxes f which are smoother and are genu-
inely nonlinear in a stronger sense, or if we consider split states which are entropy
solutions of conservation laws.
Indeed we can easily check the following:

—Leta(v) := (1, v, v?) and h(v) = vl 1j(v). If L > 0 is sufficiently small,
then for any function w : R — R with Lip (w) < L there exists u : R - R
such that

a(v) - Vix (v, u(x)) = h)#*L{xa = 0,x1 = w(x3)}.

Moreover u is an entropy solution of
Oyt + 2, u” + 2007 = 0.

Note that f/ = a € C®, and f satisfies the strongest requirement on genuine
nonlinearity: inf, |a’(v)| > 0.

Proof of Proposition 5. The proof is divided into four steps.

In Section 5.1 we prove that v = g.7#"~!_ J for some set J contained in two
Lipschitz graphs and some Borel function g which is strictly positive on J.

In Section 5.2 we use a blow-up argument in y € J and the results of Section 6
to show that J is contained in a single Lipschitz graph and that g and the normal
n are constant on J.

In Section 5.3 we argue that J is contained in at most countably many parallel
hyperplanes IT; and that J N Iy is the intersection of 2n Lipschitz supergraphs
of dimensionn — 1.

In Section 5.4 we use a blow-up argument around points y in the boundary of
J N Tl relative to IT; and the results of Section 6 to conclude that J is contained
in a single hyperplane and that it is a single Lipschitz supergraph.

5.1. Rectifiability of J

Let us define

J = {yeR"

. V(B ()
imsup ——— > 0.
rio 1"

We will prove that J is contained in two Lipschitz graphs and that v = g.#" =1 J
for some positive Borel function g.



158 CAMILLO DE LELLIS, FELIX OTTO & MICHAEL WESTDICKENBERG

Definition 6. Let vy, ... , v, be such that h(vy), ..., h(v,) # 0 and a(vy), ...,
a(v,) span R". Then we define the open set

C:=R (a/h)(v) +---+R(a/h)(vy)
as the cone spanned by characteristic directions (a/h)(vy), ... , (a/h)(v,).

We proceed as follows:

— In Step 1 we prove that there exist two cones CT in the sense of Definition 6
such that for any y € R”

v(y4+CH =0 or v(y—C7)=0. (51)

— In Step 2, we argue that there exist two Lipschitz graphs ¢*, %~ such that
Jo C 9T UY ™, where Jy is the support of v

Jo = {x € R"| v(B,(x)) > 0 for every r > 0}. (52)

— Finally, in Step 3, we show that there exists a positive Borel function g such that
v=g" L.

Step 1. Since the BV function i does not vanish identically, it does not vanish
on some open interval. According to genuine nonlinearity we thus can choose n
numbers

v, >-~->v1_>vr>-~->vj[>0
so that the two sets {vf’, e v,J[} and {v|,...,v,} satisfy the assumptions of
Definition 6. We call the corresponding cones, see Fig. 2, C* and C ™.

Since Lebesgue points of u are dense and the cones C* are open, it is enough
to prove (51) for any Lebesgue point of u. In fact, for any y € R"” we can select
a sequence y; — y such that every yi is a Lebesgue point for u. Extracting a

subsequence if necessary, we may suppose that all y; + C* or all y, — C~ are

C+

(a/h)(3)
(a/h)(va (a/h)(v])

(a/h)(vy)

<a/h><v;\/ (a/W)())

—C~
Fig. 2. The cones Ct and —C~.
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v-negligible because of (51). In the first case {(yx + CT) N (y + CT)}¢ is an
increasing sequence of open sets converging to y + CT. Since v is Radon, we have

v(y+CH) = lim v( +CHN (G +CT)) < lim vy +CH) =0.
k—o00 k— o0

In the second case we use a symmetric argument.

So let y € R" be a Lebesgue point of u. Recall v;” > v?‘. In the case of
u(y) > vf’ we shall argue that v(y + CT) = 0; in the case of u(y) < v, the
same argument yields v(y — C~) = 0. Hence we assume u(y) > vfr. Since y is a
Lebesgue point for u with u(y) > v1+, we have

y is a Lebesgue point of X(vf‘, u(-))

with x (v, u(y)) = 1. (53)

According to the definition of split states, x (vfr, u(.)) is monotone increasing in
direction (a/h)(v{"), see (20) with v = v{".On the other hand, x (v;", u(:)) < 1.
Hence we may conclude from (53)

y1 is a Lebesgue point of x(vf, u(-))

+
Yoy R/ MO ik un) = 1.

(54)

Since v; < vr we have 1 2> X(v;, u(-)) 2 X(vr, u(-)). Hence (54) implies

y1 is a Lebesgue point of X(v;', u(-))

+
VI EYFRU@IMOD G x F, () = 1.

We thus may repeat the previous argument with y replaced by y; and vfr replaced
by v;' . The analogue of (54) is

¥, is a Lebesgue point of X(v;, u(-))

Yy €yt R @/ G xWF, u(y)) = 1.

(55)

Butsince y € y+R, (a/h) (vf) was arbitrary, this means that (55) actually holds
for all y» € y + R (a/h)(v]) + R (a/h)(vy). Since CT = R, (a/h)(v}) +
-+« + R (a/h)(v;}) we obtain after n steps

yn is a Lebesgue point of X(v:[, u())

+
Vi €y +CT Gith x i, u(m)) = 1.

(56)
Since y + C* is an open set, (56) in combination with (20) for v = v;" implies as
desired v(y + C*) = 0.
Step 2. Consider the two closed sets

d* ={y eR" v(y £CF) =0). (57)

Since C* is an open cone, &/ is the supergraph of a Lipschitz function. Hence
@+ .= 9.a/* is a Lipschitz graph. By Step 1 we have

R' = /T U/~ (58)
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o
Since C* are open, the interiors .27 of the two sets satisfy

é*mJozé‘mJozﬂ, (59)
(cf. (52)). We easily conclude from (58) and (59) that, as desired,
JoCadT U™ =9t U9 .
Step 3. As in the previous section, we define J to be the set of points in which v

has positive upper 7"~ density:

I V(B (y)
imsup ——— >

0¢. (60)
rl0 r

J = {yeR"

Since (u, h, v) is a split state, we have a uniform upper bound on the .72~ ! density
of v: There exists a constant ¢ with

v(Br(y)) < "' foreveryy e R, r > 0. (61)

Indeed, fix v € R such that A(v) # 0 and let y € R" be given. Take a sequence
of non-negative radial test functions with ¢ — 1p, () pointwise. Clearly we can
choose these functions in such a way that

fim / Vo = A" OB, ().
k1 oo

Testing the kinetic equation (20) with ¢ and letting k 1 oo then yields

1
v(B,(y)) < lim sup

/X(v, u(x))a() - Vor (x) dx

Ih()] " kroo

la@)| , n—1
< H" (3B (Y)),
= )| (0B (y))

which proves (61).

By Step 2, J C Jy is contained in the union of the two Lipschitz graphs ¢+ and
%~ . Because of (61), a Vitali covering argument implies that v = vL Jp is abso-
lutely continuous with respect to the Radon measure 7"~ (4% U %™). Then
the Radon-Nikodym theorem yields

v=g" L@t uY), (62)
where the density g is defined #"!-a.e.in 9+t U¥~ by
B
o) — lim V(B (»)

r0 AT(GF UG N B ()
Because of the Lipschitz graph property, for " '-ae. y e 9t UZ~,

(@t ug) N B(0)
lim €
rl0 r”*l

0, 0).

Hence, by definition (60) we have J = {y € T U% | g(y) > 0}, ignoring an
"~ !-negligible set. Then (62) improves as desired to

v=g#" 'LJ with g>O0onlJ. (63)
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5.2. Blow-up to hyperplane

In this subsection, we perform a blow-up in y € J. We will use the results
of Section 6 to characterize these blow-ups. Recall from the previous subsection
that there exist a Borel function g > 0 and a set J contained in the union of two
Lipschitz graphs ¢* (with unit normal n*) such that v = g.#”~! L J. We proceed
in two steps

— In Step 1, we will argue that g is constant along J and that n* can be chosen
constant along J. Furthermore, both values only depend on #.

— In Step 2, we will show that J is contained in only one of the two Lipschitz
graphs 47, which we call 4.

Step 1. Let %di C 97* be the set of points of differentiability of the Lipschitz
function determining ¥*. By the Rademacher theorem we have

AN GE)9E) = 0. (64)

According to Step 2 of Section 5.1 we can construct a Borel measurable map
o: Jo — {£} with
y € 9% forall y € J.

Let J. C J denote the set of Lebesgue points for both « and g. Then
2" VNJ) T =0. (65)
We now obtain from (63), for all y € (gj Uy, )nJ,,
Vs g AT L O () - x =0}, (66)

Because of (64) and (65), (66) holds for " !-ae.y e J.
Fix some point y € J for which (66) holds. From (66) we gather that T y, V)
consists of the single element

v® = g(y) A" L{n*D(y) - x =0}

Thus for any u® € B*(y), (u®, h, v®°) is a flat split state. In Proposition 7(b) of
Section 6 we will prove that

s _ JuT = sup{v| h(v) # 0} on {(n*(y) - x > 0}, 67
T Vum = inf{v] h(v) #£ 0} on {2 (y) - x < O}, (67)

(after possibly replacing 7 (y) by —n®®)(y)). Moreover, we have
gMh®W) = 144+ @ a@) - n*P(y) forallv e R. (68)

Equation (67) uniquely determines % in terms of /. Furthermore, (68) determines
g(y) and n*©)(y) in terms of 4. Indeed, because of genuine nonlinearity we can
find n numbers vy, ..., v, € (u”, uT] such that a(vy), ..., a(v,) span R”. Then
n°™(y)/g(y) is the intersection of n hyperplanes {a(v;) - x = h(v;)}. This fixes
both g(y) and n%%)(y), since g(y) > 0 and |[n*™ (y)| = 1.
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Step 2. Now let u™ be the number determined in (67). Recall the notation of Step
1 of Section 5.1. In view of h(v;) # 0, (68) implies ut > v > vf‘. We use this
fact to argue that

Vye @ u¥9 )N, viy+cChH=0. (69)

The compactness result in Proposition 2 and (67) yields for y € (%j Uy, )nJ,

1
lim—(/ |u—u+|dx+f |u—u_|dx)=0.
ri0 1" \J B (y) B ()

Since by assumption u™ > v1+, there exists a sequence yy — y such that for

every k,

vk is a Lebesgue point of u with u(yx) > vf‘.

Now the argument from Step 1 of Section 5.1 yields v(yx + CT) = 0, which in the
limit k 1 oo turns into (69).

Since #"1(J\ ((%d+ Ug,)nJ,)) =0, (gj U¥Y, )N Jyis densein J. Hence
(69) improves to

Vyeld, viy+Ch) =0. (70)

According to definition (57), (70) implies J C .7 T. On the other hand, by (59) we
o o
have JN &+ C JoN /= (. Bothyield J C 0./t =47,

5.3. Rectifiability of 0J

In this subsection we prove that up to an .7~ !-negligible set, J is contained
in at most countably many distinct hyperplanes {I1;}; normal to 5. Furthermore,
each J N Il is the intersection of 2n Lipschitz supergraphs of dimension n — 1.
Before proceeding we need some notation.

Definition 7. Let vy, ... , v, be such that h(vy), ..., h(v,) # 0 and a(vy), ...,
a(v,) span R". Then we define the open set

W :=R(a/h)(vi) + Ry(a/h)(v2) + - -+ R (a/h)(vn)
as the wedge with axis (a/h)(vy) spanned by the n — 1 characteristic directions
(a/h)(v2), ..., (a/h)(vn).
The proof is divided into three steps.

— In Step 1 we prove that there exist 2n wedges wlE . W™ in the sense of
Definition 7 with the following property:

vy + Wity =0 or

VyeZNT Fjell om0,

(71)
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— In Step 2 we construct a set J which is open relative to ¢ and differs from J
only by an .7#"~!-negligible set. Furthermore,

fﬂ(y+Wj'+)=0 or

Vye%\f djef{l,...,n} jm(y_Wj,—):O

(72)
— In Step 3 we show that there exist at most countably many distinct numbers {ey }x
such that

jZUjk’ where jkizjﬂl_[k, Iy :={n-x = et}
k

and 7 is the unit normal defined in Step 1 of Section 5.2. Furthermore, for any k,

- Jk is open with respect to Ik,

— Ji is the intersection of 2n Lipschitz supergraphs 42% , %"’i of dimen-
sionn — 1.

Thus J; has locally finite perimeter with respect to I .

Step 1. Since the wedges are open and v is a Radon measure, it is enough to prove
(71) for all y € ¢, \ J. Let C be the cone with respect to which ¢ is a Lipschitz
graph (see Step 2 of Section 5.1), and let vy, ..., v, € (u™, ut] be the num-
bers generating C in the sense of Definition 6. Because of y € ¥, there exists a
hyperplane I1, containing the origin such that y + IT, is tangent to ¢ in y. Since

a(vy), ... ,a(v,) span R”, there exists a j € {1, ..., n} such that
a(vj) ¢ I1,. (73)
Because of genuine nonlinearity, we may pick 2(n — 1) numbers
w,jl_ >~~>w£’_ > vj >wé+>~-~>wﬁ+
such that the sets {v;, w£’+, e, w,/,’+} and {v;, wé’_, e, w,/,"_} satisfy the con-

ditions of Definition 7. We call the corresponding wedges W/ and W/-~. We will
argue that these 2n wedges satisfy (71).

The idea is the following: Because of y € ¥, and (73), the characteristic line
£:=y+R(a/h)(vj) crosses ¥ only in y. If we had y ¢ Jy instead of justy & J,
all of £ would be outside the support Jy of v. Because of (20), x (v, u(-)) should
be constant along ¢, say, of value 1. Hence we may apply the argument from Step
1 of Section 5.1, to every point of £: The cone spanned by

(@/h) ), @/Bywi™), ..., @/ hywi™)

and attached to a point of £ is outside the support of v. Then the wedge W/-* with
axis (a/h)(v;) spanned by (a/h)(w ) ,(a/h)(wy ) would be outside the
support of v. But since we just have y ¢ J , we need a more careful argument.

We think of j being fixed and introduce orthonormal coordinates xi, ... , X,
such that (a/h)(v;) points in the direction of (1,0,...,0). We write x =
(x2, ..., x,). Because of (73), there exists & > 0 such that

M, N{Ix'| < alx|} = 9. (74)
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Since y € ¥ is a point of differentiability of the graph ¢ with tangent plane IT,,
(74) implies that there exists an rg such that

90 (v + (18] < @l ) N By (@) ) = 2. (75)

Recall that ¢ is a Lipschitz graph with respect to the cone C. Since (a/ h)(v;), that

is (1,0, ... ,0), is one of the characteristic directions spanning C, (75) improves
to

90 (v + (U] < i) N IX] < 2 r0))) =4, (76)

cf. Fig. 3. In view of v = g#"~'_J with J C ¢, v vanishes on the open set
R" \ ¢4. Hence we deduce from (20), putting v = v » that

x(vj, u(-)) is constant in direction x; in each of the two sets
y+ ({Ix’l <+ax N il¥'| < E=ro ) . (77)
v+ ({11 < —axi} n {ix < )
We also infer from (20) that

X (vj, u(-)) is monotone non-decreasing in direction x; . (78)

On the other hand, for any » > 0 we have

(ot i) < ¥l < | < O

Thus we obtain from integrating (20) with v = v; (cf. Fig. 3)

71 r
|(a/h>(v,->|/fr“2_/
s Nt

—x(vj, u(yr +x1 — ﬁ%7 y/ +x’))) dx'dx,
< =B (). (79)

Ix'|<

} (x (vj, uyr +x1,y +x"))

the set of
equation (76)

%

‘ @/ M)

Fig. 3. Inequality (79) is obtained by integrating over the set bounded by the thick lines.
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Since y ¢ J, we gather by the definition (60) of J and from (78) that

lim n/m f ’X(vj,u(y1+xl,y’+x’))
rl0r {|x|< 22}
—x(vj, ulyr +x1 — ﬁ?, y +x'))‘dx/dx1 = 0. (80)

Since x (vj,u(-)) € {0, 1}, the integrand in (80) also takes values 1 or O only.
Hence, for each r small enough, it must vanish on a set with positive measure.
Select a sequence {r¢}x € (0, rg) with r; | 0. Then we can pick two sequences
{y;r}k, {; }x of numbers

+ 1 o 1 o Ik
Yk € ( 1+o2 2’ 1+oz2 k)X {|x < \/7 2P 81)
e (——F—r Tk '] < Tk
i ez k0T J1+a2 2 a2 2>
such that
y;r and y, are Lebesgue points of x (v;, u(-)) of same value. (82)
Because of

1 rk 1 ) { 1 o rk}
A=) XX < = F
( 1402 27 J1+a? k <l Vita? 2

’ ’ a r
C{|x|<+ax1}ﬂ{|x|<m2}

and the analogous statement, we gather from (82) and (77) that

the rays y,j +R, (a/h)(vj) and y, — R (a/h)(v;) consist
of Lebesgue points of x (v;, u(-)) of same value.

We distinguish between the cases where this common value (which depends on k)
is either 1 or 0. If it is 1, then we may argue as in Step 1 of Section 5.1 to prove that

v (0 Ry @/m@p + ) = v (37— k= Rya/mwp + CF) =0,
(83)

where C/* is the cone spanned by (a/h)(v;), (a/h)(wy ™), ..., (a/h)(wy ™). If
this value is 0 we have

v (08 Ry@/ ) = €7 ) = (3~ Rula/ ) =€) =0,
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where C/+~ is the cone spanned by (a/h)(v;), (a/h) (w3 "), ..., (a/h)(wy ).
Let us, without loss of generality, assume that the value is 1 for infinitely many
k’s. According to (81), both sequences {y,j'}k and {y, }x converge to y. Since v is
Radon, (83) turns into

v (y R, (a/h)(v)) + cH) = (y — R, (a/h))) + cH) —0.
Since by Definition 7,
(Ro@/M@p) +CIF) U (=R @/ M) + CIF) = Wi,
we obtain as desired v(y + W/ 1) = 0.
Step 2. We define J as follows:
T =9\ @\ D). (84)

By construction, J is open relative to &. We now show that J and J only differ by
an %”’i"—negligible set. We first argue that J is not much larger than J. Indeed,
since J CY\ (G \J)=J UG \Y),wehave J \ J C ¥\ ¥, and thus

AN INTD) S AN GN\G) =0.
We will now argue that J is not much smaller than J. We start with
INT=TNG\J
CUNL) U @\D) U (NG N (G \ ). (85)
We claim that the last term does not contribute
J.NG 0 (Gy\J) =0. (86)

Indeed, for y € J, N¥; we know according to (66) of Section 5.2 that the only
element v™ of 7"~ !(y, v) is given by

v =g " {n-x =0} (87)

On the other hand, we know by Step 1, that for y € 9\ J there exists j €
{1, ..., n} such that, say, v(y + W/-T) = 0. This is preserved in the blow-up and
thus we obtain

vy 4+ Wity =0 forall v™® e T" 1(y, v). (88)

Denote by (a/h)(v;) the axis of the wedge Wit By definition, we have i (v;) # 0
and thus by (68) (a/h)(v;) -n = g > 0. Hence the axis of the wedge is transversal
to the plane {5 - x = 0}. Therefore (87) and (88) cannot hold simultaneously. This
proves (86). Together with (85) we conclude J \ JcWu \ Jx) U (¥ \ ¥,) and thus

HVIND VTN T+ NG\ G = 0.
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It remains to show (72). Pick y € ¥\ J. By definition (84) we have y € ¥, \ J
and thus by Step 1 thereexistsa j € {1, ... , n} with, say, v(y+Wj’+) = 0. Accord-
ing to Section 5.1 we have v = g~ ! J with g > 0. According to Section 5.2,
g is constant, and according to the above, J and J only differ by an .~ -negligi-
ble set. Hence v (y + WJ+) = 0means 7"~ (J N (y+ W/ +)) = 0. Now observe
that both sets J and y 4+ W/* are open relative to the Lipschitz graph ¢. Then
2" 1(J N (y + WPt)) = 0 actually implies as desired that J N (y + W/H) = @.

Step 3. Since the J constructed in Step 2 is open relative to the Lipschitz graph ¢,
it disintegrates into at most countably many relatively open and connected subsets
Ji.. Since by Section 5.2, the normal to ¢ is equal to the constant 1 on each set Jy,
there exists a number ¢ such that Jk C Iy := {n X = ek} Keeplng the same
notation, we regroup the Ji’s in such a way that J N Iy = Ji. So J is still open
relative to [T, but not necessarily connected.

It remains to show that Jj has locally finite perimeter with respect to the hyper-
plane IT. For this purpose, we consider

ClE.=witn{n.-x=0} forje{l, ..., n}.

As we have argued in Step 2, the axis of the wedge W/ is transversal to the plane
{n-x = 0}. Hence C/* is an (n — _1)-dimensional open cone. Let 3 Ji be the
boundary of Jk relative to I. Since Jk is open, 8Jk C (9\ Jk) N ITk. According
to Step 2, we then have

JkN(y+City=0@or

Vyedy djefl,....n} NGy —Cimy—@

(89)

Similar to Step 2 of Section 5.1, we consider
AT =y e M Je N (y £ €5 = ).

Since C/* is an open cone, JZ{kj *isthe supergraph of a Lipschitz function of dimen-
sionn — 1 and %k]’i = Bsszj‘i is a Lipschitz graph. Every y € 8~J~k is cqntained
in at least one of the sets .;szj * because of (89). Moreover, since J; N mfk] g
by the openness of Ji, we even have

dcgtu.ugrtug U U

Thus J; is a set of locally finite perimeter.

5.4. Blow-up to half-hyperplane

In this subsection, we perform a blow-up in y € 9J := Uk Bfk, where Bfk
is the boundary of J; relative to IT;. We will use the results from Section 6 to
characterize the blow-ups. Recall that by Section 5.3, any Jy has an inner normal
wg in the sense of sets of finite perimeter. We proceed in two steps:
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— In Step 1 we show for "2 ae. y € 8fk
=g Ln - x =0, wx(y) - x 2 0)
forall v>® ¢ 7" (¥, v). We conclude from Proposition 8 that
wr(y) € C* for A" 2ae.y e dly,

where the convex cone C* only depends on /.

— In Step 2 we show that J is contained in a single hyperplane and that Jisa
Lipschitz supergraph of dimension n — 1. Furthermore, the Lipschitz property
is given by the (non-degenerate) dual of the cone C*.

Step 1. Fix k. According to Section 5.3 Step 3, J is a set of finite perimeter with
respect to I1;. By the theory of sets of finite perimeter, see for instance Theorem 1
of Section 5.7 in [13], we have for " 2-ae. y € aJx

"L J)YT S T x = 0, k() - x 2 0).
In view of v = g%ﬂn_l LJ, fk =JN [T, this implies

vOL{n-x =0} =g 'L{n-x=0,ar(y) - x =0} (90)

for any v™ € T"~1(y, v). By the compactness result in Proposition 2, there exists
an u® € B*°(y) such that (u®, h, v®>°) is a split state.

We now argue that v>° vanishes outside {n - x = 0}. Since J is open relative
to &, we have 3J; C ¢ \ J. Hence we may apply Step 2 of Section 5.3 to points

y € 9 Ji: There exists a Borel measurable map j: aJr — {1,...,n} x {£} with
vy +#79)y=0 forally e dJy, 91)
where #%F = :tWi'f. According to Step 3 of Section 5.3, there exists a Borel
measurable map j': 8J; — {1,...,n} x {&} such that
y€ g/ ‘O forall y € 3.

For 5" 2-ae. yE E)fk, we have

y is a Lebesgue point of the functions j and j’,
y is a point of differentiability of gkj o ),
w (y) is the inner normal of ;z%k] 28

For such a y we obtain from (91)
C(n-x=0,wp(y) - x =0} +#IP) =0, Yv*®eT" (y,v). (92)

To simplify notation, we denote by (a/h)(v1) the axis of the wedge # /() and by
(a/h)(vy), ..., (a/h)(v,) the characteristic directions, see Definition 7.
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Since a(vy), ... ,a(v,) span R" and (a/h)(vy) - n = g > 0, a linear algebra
argument shows that

(n-x=0,wp(y) - x =0} + #7Y equals either H~ or H,
where the open half-spaces H* and H ™ are given by
H* :={n-x=0,+wr(y) - x > 0} + R(a/h)(v1).
In view of (90) and (92), the first possibility is ruled out. We retain
V°(H™) =0, 93)

cf. Fig. 4.
We now argue that also

v(H" \ {n-x =0, 0k (y) - x Z0}) =0. (94)

Indeed, because of (90), (20) applied to the split state (u°°, h, v*>°) and v = v
yields

(@/m)@1) - Vix (i, u™(x) = g2 'L{n-x =0,wx(y) - x Z0}.  (95)
On the other hand, x € {0, 1}. Hence we conclude from (95) that

lLae.in{n-x=0,wr(y)-x >0} + R (a/h)(vy),

x (i, = () = 0 ae.in{n-x =0, (y)-x >0} =R, (a/h)(v1)

Using (20) once again, we see that v vanishes on these two open sets. Since their
union is H \ {n-x =0, wx(y) - x = 0}, we obtain (94), cf. Fig. 5.

The results of Section 5.3 applied to the split state (u°°, k, v°°) yield vV>®° =
gH"~'LJ*, where J* is contained in countably many hyperplanes normal to 7,

the wedge z + # /() the half-space H™

the half-hyperplane
{n-x=0,0t(y) - x> 0} _

the half-space H ™~ /
(a/m)(v1)

Fig. 4. The wedges give v*°(H ™) = 0.
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theset {n-x =0, wx(y) - x > 0} + Ry(a/h)(vy)

the hyperplane
R"\ (HTUH")

/ (a/h)(v1)
theset {n-x =0, wp(y) - x > 0} — Ry (a/h)(vy)

Fig. 5. A line ¢ parallel to (a/h)(vy) cannot “meet” the measure in two points.

where 1 only depends on k. In particular, the hyperplane R” \ (H* U H ™), which
is transversal to J°, carries no measure:

V(R"\(HYUH7))=0 (96)
cf. Fig. 5.
We now collect (93), (94) and (96) and combine this with (90) to obtain
X =g " i -x =0, w01(y) - x =0}

Hence (u™, gh, " 'L{n-x =0, wx(y) - x = 0}) is a flat split state for which
Proposition 8 applies.

Step 2. Since Ji is a set of locally finite perimeter, the Gauss theorem holds: for
any ¢ € C;°(Iy) and any direction T with 7 - n =0

/~ depd A" = / T A2,
Jk aJx
Hence we conclude from (93) that the characteristic function 1 Ji 1S monotone non-

increasing in any direction t dual to the cone C*. This implies that J; is the entire
plane ITj or a Lipschitz supergraph with a Lipschitz constant only depending on
the cone dual to C*.

Now fix a characteristic direction (a/h)(vy). As in Step 1, we may argue that
v vanishes on the open sets fk + R, (a/h)(v1):

v(Jk + Ry(a/ () = v(Jk — R, (a/h)(v))) = 0.
Since v = g "' J with g > 0, this implies

JN(Jk +Ro(a/W)(w) = J N (Je =R (a/h)(v1)) = 0. 97)
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M

[T

My (a/h)(v1)

Fig. 6. Two connected components would give a contradiction.

If we now assume that there exists another component Jw of J lying in a different
hyperplane ITy with k¥’ # k, then again Jy is either the entire hyperplane Iy or
a Lipschitz supergraph in Iy determined by the same cone C as Ji. Then (see
Fig. 6)

Jp N ((ik + R, (a/m) D) U (Jk — R+(a/h)(v1))) #0

which contradicts (97). Hence J lies in a single hyperplane.

6. Classification of flat split states

In this section we will classify flat split states. Loosely speaking, we call a
split state (u, h, v) “flat” if the jump set is empty, half of a hyperplane or an entire
hyperplane.

— Ifv = 0, we will prove in Proposition 6 that « is constant. This may be considered
as a Liouville result.

— Ifv=2"""_{.-x =0} forij € S"~!, we will show in Proposition 7 that u is
constant in either half-space {£7 - x > 0}. Furthermore, these constants and the
normal %7 are uniquely determined by /. In the language of conservation laws,
these split states correspond to a single shock.

—Ifv=u/""1{§7-x =0,&-x = 0} for some orthonormal pair of vectors
7 and @, we will show in Proposition 8 that the codimension-two normal @ is
constrained to be in the dual of an n — 1 dimensional cone C, where C only
depends on £. In the language of conservation laws, these split states correspond
to a combination of a shock with a rarefaction wave.

Proposition 6. Let (u, h, v) be a split state.

(a) Assume v(2) = 0 for some open set Q@ C R". Then u is continuous in 2.
(b) Assume v(R"™) = 0. Then u is constant.
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Proposition 7. Let (u, h, v) be a split state.
(a) Assume h # 0 and v = A" Q' fora set @ # Q' C {ij - x = 0}, which is
relatively open in the hyperplane, and some unit vector 7). Then h has the form

h(v) =1~y (W)a() - n, (98)

for some u~ < ut and a unit vector n. Because of genuine nonlinearity, u™
and n are uniquely determined by h and a. Furthermore

1 = #£n, u has one-sided traces ut on Q. 99)

(b) Assume h # 0 and v = A"~ L{fj - x = 0} for some unit vector 7. Then in
addition to (a),

uz{bﬁ in{n- x>0}, (100)

u—in{n-x <0}.

Proposition 8. Let (u, h, v) be a split state. Assume h # 0andv = "' _{fj-x =
0, @ - x = 0} for some pair of orthonormal vectors 7, @. Then we have in addition
to Proposition 7 (a) @ € C*, where C* is the dual cone of

! the convex cone generated by the set of directions

{@@) - md' @) = @@ -ma®}, -

with respect to the hyperplane {n - x = 0}. Because of genuine nonlinearity, C is
genuinely (n — 1)-dimensional.

6.1. The case of an empty jump set

In this subsection, we prove Proposition 6. Both parts of the proposition are a
consequence of the following property which will be established below. Let 2 C R”
be an open set with v(2) = 0, y € Q a Lebesgue point of # and R > 0 arbitrary
with Br(y) C Q2. Then

Ve >0,up € R 36 only depending on a, ¢ and ug, such that
12 i = (2"~ ac on Br(y) (101)
u(y § U u § o + .. SR\Y) |-

Before establishing (101), let us show how it implies Proposition 6. We first notice
that (101) can be improved to

Ve >0 34 only depending on a,¢ and the L°° bound on u

Zu(y) —e
Su(y) +e

(102)

such that u{ } a.e.in Bsg(y)

by a standard compactness argument. Indeed, let ¢ > 0 be given. Let M be an L™
bound on u. Select finitely many numbers {uy}; with

[—-M, M) C | luk ux + /2], (103)
k
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Let & be the 6 of (101) belonging to /2 and uy. We claim that
§ :=min{s1,...,68,} >0

works for (102). Indeed, because of (103), there exists k with u(y) € [ug, urp+¢/2].
In particular u(y) 2 uy, so that by (101),

u 2 up—e/2 ae.in Bsr(y) D Bsr(y). (104)
On the other hand, u; = u(y) — £/2 so that (104) turns into
u 2 u(y) —e ae.in Bsg(y).

The other inequality in (102) is proved in a similar way.

Property (102) states that there is a locally uniform modulus of continuity in
every Lebesgue point y of u. Since the Lebesgue points are dense, u admits a con-
tinuous representative in 2. This proves part (a) of Proposition 6. For part (b), we
fix a Lebesgue point y of # and send R in (102) to infinity:

Ve>0 J|u(x)—u(y)| <e forae. xinR”",

which obviously yields as desired u = u(y) a.e. in R".

Let us now argue in favor of (101). The argument is similar to the one given
in Step 1 of Section 5.1. By rescaling and translation, we may assume R = 1 and
y = 0.Let e > 0 and up € R be given. By genuine nonlinearity, there exist n
numbers

uo > vy > -0 > U, = Ug — &,

such that a(vy), ..., a(v,) span R". Since 0 is a Lebesgue point of u with, say,
u(y) = ug > vi, we have

0 is a Lebesgue point of y (vy, u(-)) with value 1.
Now (20), for v = vy and v(B1(0)) = 0, yields
Ra(vy) N B1(0) are Lebesgue points of x (vy, u(-)) with value 1.
Since vy < vy, this yields
Ra(vy) N B1(0) are Lebesgue points of x (va, u(-)) with value 1.
We now apply (20) for v = v, and get

(Ra(vy) N B1(0) +Ra(v2)) N B1(0)

. . (105)
are Lebesgue points of x (v, u(-)) with value 1.

A simple geometric consideration shows that there exists a §> > 0, only depending
on a and vy, vy, such that

(Ra(v1) N B1(0) + Ra(v2)) N B1(0) D (Ra(vy) + Ra(vz)) N Bs, (0),
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Fig. 7. Existence of B, (0).

see Fig. 7. Hence (105) implies

(Ra(vr) + Ra(vz)) N Bs, (0)
are Lebesgue points of x (v, u(-)) with value 1.

We now iterate this argument. Because of Ra(vy) +- - - + Ra(v,) = R”, we obtain
after n steps the existence of a § := §, > 0, only depending on a and vy, ... , v,
(and thus on € and ug), such that

Bs(0) are Lebesgue points of y (v, u(-)) with value 1.

This means
u=v, = uy—¢& ae.on Bs(0).

The other inequality in (101) is proved in a similar way.

6.2. The case of a hyperplane as jump set

In this subsection, we prove Proposition 7. We divide the proof into three steps:

— In Step 1, we prove that u has one-sided traces u™ on {5 - x = 0}.
— In Step 2, we establish (98) and (99).
— In Step 3, we establish (100).

Step 1. We use the argument from Lemma 3.1 in [15]. For notational convenience,
we choose a coordinate system xy, ... , x, such that = (1,0, ... , 0). We denote
by the prime the projection onto the last (n — 1) components. We considerav € R
with

ai(v) # 0. (106)
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Since in particular, v({77 - x > 0}) = 0, (20) turns into
1 x (v, u(x))+ (@ /a)@) - Vx@,ux) =0 in .@}’C (107)
in {7 - x > 0}. Without loss of generality we may assume that
(1, x") is a Lebesgue point of x (v, u(:)) for #" '-ae. x' e R" L.
We conclude from (107) that, for all x; > 0,

x (v, uxr, x))=x (v, u(l,x" + (1 = x1)(@/a))(v))) for A" ae X eRY7L

(108)
Introducing
x . x") = x (v, u(l,x" + (a'/a) (v))), (109)
we infer from (108)
lim ‘X(v, u(xy, x)) — x T, x| dx’
x40 J B (0)
= lim ‘X(v, u(l,x' + (1 = x1)(@ /a))))
X0 J B (0)
—X(v,u(l,x’—}—(a’/al)(v)))‘dx’ =0 (110)

for all R < oo. Thus (109) is the upper trace of x(v,u(-)) on {x; = 0} in
Ll (R,

Because of genuine nonlinearity, (106) holds for a.e. v € R. Hence also (110)
holds for a.e. v € R. We now introduce

at(x) :=/ x (v, x') dv. (111)
R

Because of u(x) = fR x (v, u(x))dv and (110) (which holds for a.e. v € R), we
obtain by dominated convergence

/ lu(xr, x) —aT(x")dx' — 0 (112)
B/ (0)

for x; | 0 and all R < oco. Hence (111) is the upper trace of u on {x; = 0} in
Llloc(R”’1 ). In a similar fashion, we establish the existence of lower traces x ~ (v, -)
and .

Step 2. We first argue that for all but countably many v’s, x (v, &%) is the upper resp.
lower trace of x (v, u(-)),i.e., xT(v, -) = x (v, #t). Indeed, consider the countable
set

E = {veR[#" ! (1¥ e R"a* () = v)) > 0},
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For v € R\ E, we conclude from (112) by dominated convergence that
/ X (v, u(xr, x)) = x (v, @ (x)]dx" — 0 (113)
BR(0)

as x1 1 Oresp. x; | Oforall R < oo.
By assumption, (20) turns into

a(v) - Vex (v, u@) = h()#" 'L,
which we test with ¢ € C§°(R") of the form
p(x1, x') = @1(x1/8) 9" (x").
In the limit & | 0, we obtain from (113) (recall that 7 = (1,0, ..., 0))

a) - 7 fgoor [x @, 0T () — x, i~ N ]e' ) dx" = h() [o ¢ () dx’
forallv e R\ E.

Since ¢’ € C3° (R"1) was arbitrary, we conclude that

a) -7 [x, at (")) — x(w, i (x")] = h(v)
for #" l-ae.x’ €Q and ve R\ E.

Since E is countable, there exists an .7~ !-negligible set E’ such that

a() -7 [x, a" (") = x @, a= ()] = h(v)

(114)
forallv e R\ Eandallx’' € Q' \ E'.

Observe that

+1(y, g1 (v) for o < B,

X, B) — x(v, @) = { —1(g.a)(v) fora = B.

Recall that the BV -function % is continuous from the left, that is, h(v — &) — h(v)
for ¢ | 0 (see Definition 5). Hence (114) improves to

a() -7 [x @, a" (") = x @, @~ ()] = h(v)

, A (115)
forallv e Randall x" € @'\ E'.

Since h # 0 and Q' \ E’ # @, (115) proves that 4 is of the form (98).
On the other hand, since genuine nonlinearity implies that there exists at most
one triple u~ < ut, n € R" with (115), we conclude that
=4n and a*t(x) =u* forallx’' € Q' \ E’
i=-n and at(x) =uT forall x’ € Q' \ E’

This establishes (99).
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Step 3. In this step, we will use the fact that according to Proposition 6 (a), u is
continuous in R" \ {n - x = 0}. Because of genuine nonlinearity, there exists a
sequence v; — ul with

(a/h)(v;)) - n#0 and v; <ut.

Let y € {n-x = 0} be arbitrary. According to (99) and v; < u™, there exists a
sequence y, — y with

n-yk >0 and wu(y) > vj.

This implies that yy is a Lebesgue point of x (v;, u(-)) with 1. According to (20)
and v({n - x > 0}) = 0 we conclude that

Y + R (a/h)(v;) are Lebesgue points of x (vj, u(-)) with value 1.

This means
uZv;j on yr+R (a/h)(v)),

which in the limit £ 1 oo turns into
uzvj on y+R, (a/h)(v;).
Since y € {n - x = 0} was arbitrary, j 1 oo implies that u > u™* on {5 - x > 0}.

The remaining three inequalities are proved in a similar way.

6.3. The case of a half-hyperplane as jump set

In this subsection, we prove Proposition 8. According to Proposition 7 (a), we
already know that

fi=+n and h(@)=a)-n forallve W™, ut].

We proceed in three steps:

— Let I C (u™,u™] be an interval with a(v) - n # 0 forall v € I. In Step 1 we
prove

I>v +— (a/h)(v)-@ is monotone non-decreasing.

— In Step 2, we argue that
@ - ((a(v) -nd () — (@) - n)a(v)) >0 forallvel[u ,ut]. (116)
— In Step 3, we argue that

the convex cone generated by the set of directions

{@a@w)-md @) =@ @) -ma®}, g, Y

is genuinely (n — 1)-dimensional.
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Step 1. We argue by contradiction and assume that there exist v* € I withv™ < v+
such that

@/ a&> @/he?)-a. (118)

Recall the argument from Step 1 of Section 5.4, which loosely can be formulated
as: x (v, u(-)) has to jump from O to 1 along a line which crosses the jump set in a
transversal characteristic direction (a/h)(v). More precisely, from

a(®)  Vex @t u@x) =h5H#" 'L n-x=0,0-x =0}
and x € {0, 1} we conclude that
lae.in{n-x=0,&-x =0} + R, (a/h)(v),

. 3 (119)
Oae.in{n-x=0,0 x =0} — R, (a/)(v¥).

xWE u) = {

Notice that
{n-x=0,&-x >0} £R, (a/h)(v¥)
={+n-x >0,&)~x—&)-(a/h)(vi)(n-x) > 0}.

We conclude from Proposition 6 (a), that u is continuous in the set R" \ {n - x =

0, @ - x 2 0}. Then (119) translates to
>vtin{n-x>0,0-x—a&- (/b)) (4 x) >0},
u ) _ _ (120)
<vFin{n-x<0,&-x—a&-(a/h)wF) (- x) > 0}.

According to our assumption (118) and by the mean-value theorem, there exists
v™ < v < vt with
(a/W7)-&@> (a/h)) &> (a/h)(") - &. (121)
Arbitrarily close to {n - x = 0, @ - x < 0}, we can find a Lebesgue point y of
x (v, u(-)). Since y is close to {n - x = 0, @ - x < 0}, the line y + R(a/h)(v) does
not intersect {n - x = 0, ® - x = 0}, that is, the support of v, see Fig. 8. Hence we
conclude from (20):

y 4+ R(a/h)(v) are Lebesgue points of x (v, u(-)) of same value. (122)

We distinguish two cases. The first case is that this common value is 1. Then (122)
yields, by the continuity of u,

uzv ony+R(a/h)(v)
which contradicts (120) for v—, since v~ < v and since (121) implies
(y +R(a/h)(v)) N{n-x<0,0-x—a-@/hw )mn-x)>0}#0.

The second case is that this common value is 0. Then (122) yields, by the continuity
of u,
u<v ony—+R(a/h)(v)

which contradicts (120) for v, since v < v and since (121) implies

(y +R@/ M) N{n-x >0,0-x =& (a/H©) (- x) > 0} # 0.
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/[

R(a/h)(v*)

A
1
R (™) 1]
(a/)(v)?“
i
I
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Fig. 8. The line y + R(a/h)(v).

Step 2. Since a is continuous, the set of v € (u™, u™] with a(v) - n # 0 is open.
For these v, the infinitesimal version of Step 1 reads

(@) -n) @@ @) — (@ -n @ - o 0. (123)

Since a is genuinely nonlinear, we have a(v)-n # 0 for almostall v. By a continuity
argument, (123) improves to (116) then.

Step 3. Obviously, the cone C defined by (117) is contained in the (n — 1)-dimen-
sional set { - x = 0}. Assume that C were contained in a linear subspace of
{n-x = 0}. This would mean that there existed a unit vector w orthogonal to n such
that C is contained in { - x = 0, w - x = 0}. By definition (117) this would imply

(a()-n) (@ W) -w)— @) - -n) @) -w)=0 forallvelu,ut]. (124)

By genuine nonlinearity and continuity of a, there exists an open interval I C
[u~, u™] such that a(v) - n does not vanish on /. This allows us to rewrite (124) on
I as

d (a(v) o)

— ):0 forallv e I,
a(v)-n

dv

so that there exists a ¢ € R with

a(v) -w
a()-n

=c¢ forallv el

This contradicts the genuine nonlinearity of a.
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Appendix A

The following proposition can be stated in a much more general setting, but in
view of our application and to avoid cumbersome details we will restrict ourselves
to a quite specific situation.

Proposition 9. Let v be a non-negative finite Radon measure on R" and H : R" —
A (R) a weakly measurable map such that the total variation of Hy is 1 v-a.e. Then
for v-a.e. y we have

1
lim ———— ’
110 v(B, () {/Rxs,w §<v

- / (/ C(v, = y)de(v)> dv(x)} —0 (A2
By (y) R r

forevery t € C°(R x R").

X —y
- )d[Hy % v](v, x)

Proof. Select a countable family of functions . C Cg°(R) which is dense in
Cg°(R) with respect to the uniform topology. For every ¢ € .7, define a function
fo € L'(R™) through f,(y) := fR @dHy(v), and put § := ﬂwey Sy, where

Sy == {y eR" ] y is a v-Lebesgue point for f;, }

Of course, v(R"\ §) = 0. We will prove that every y € § satisfies (A.125). Indeed,
lety € S, and for every ¢ € C3°(R x R") let us define

FUr) = —— {/ ;(v, X y)d[Hy % V](v, x)
V(Br(y)) RxB,(y) r

—/ (/ ;(v,ﬂ)de(v)>dv(x)}.
B (y) R r

Choose ¥ € C3°(R") and ¢ € .. Then we have

/()AW(x,y)¢(v)de(U)dV(x) = / ¥ (52) fe(x) dv(x),
ry

B (y)

f ¥ (2)e) dHy x v](v,x) = f,(») / ¥ (52) dv(x).
RxB,(y) By (x)

Moreover

/ w(x:y)(fgo()’)_frp(x))dv(x)
Br(y)

< ||w||oo/B()|f¢<y>—f¢<x>|du(x>.
ry

Since x is a v-Lebesgue point for f,, we have

1

o . i )
I B0 B,(,V)‘”( ) (fo(9) = f(0))dv(x) = 0,
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and we conclude that
lim.Z (Yo, r) = 0.
rl0

This proves (A.125) for any function ¢ € CJ°(R x R") such that there exist

Gl n €T\ Vii oo Y € CERY)

with ¢ = >, ¥; ¢;. These functions are dense in Cj°(R x R"). It is easy to see
that

|Z (&, )= FE =208 =&l
forall ¢, & € Cg°(R x R™). This completes the proof.

Appendix B

The following proposition is a particular case of the best known and most widely
used criterion for rectifiability, see Theorem 15.19 of [20]. We give here a proof for
the reader’s convenience.

Proposition 10. Ler v be a non-negative locally finite Radon measure on R". Let
J C R”" be a set with the following properties:

— For all y € J there exists an orthonormal coordinate system x1, ... , Xp such
that with Cy, == {8|x1| 2 [(x2, ..., xp)|}
v + C,)N B,
i (b +Cy)NB.(») _ 0
rl0 rn—1
—Forally e J
B
lim inf v(,—(?))) > 0.
rl0 -

Then J is contained in a countable union of Lipschitz graphs.

Proof. We need to show that J can be decomposed into countably many pieces,
each of which is a Lipschitz graph. We proceed as follows. First, fix some orthonor-
mal coordinate system X1, ... , X, and consider the two-sided cone C := {4|X| =
[(X2, ..., X»)|}. Then there exist finitely many cones C1, ... , Cy all obtained by
a suitable rotation of C around the origin, such that for any orthonormal coordinate

system xi, ..., x, there existsak € {1, ..., N} with
{8x1] 2 [(x2, ..., x|} D Ck.
This induces a decomposition of J into subsets Jy, ... , Jy such that

v((y + Cr) N B:(y))
,,.n—l

= 0.

VyeJy lim
Y k rl0
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Now we decompose Ji further into countably many subsets J,ﬁ’m forl,m € Nin
such a way that

Vye J,ﬁ’m Vr

A

Ci) N Be, < Lypn—t
' {Eggg))ki L = (B.126)

We consider one such J, ,i’m and assume that in a suitable coordinate system Cy =
{4]x1] = |x’|} with x" := (x2, ..., x,,). Then we have (see Fig. 9)
we 2l 2 X}, wl =5 = B/(w)C{4xi|ZxX}. (B.127)
The proof is straightforward. Choose ¢ € B, (w). Then
4151] 2 4(lwi| = 161 — wi]) 2 4(wi] = [ — w))
Z4(lwil —r) 2 2wl —4r = |w| +r
Z il —lw—=¢l+r gl
Now we claim that
Vyedi™ I (y+ 2l 2 X)) N Bss(y) = 4. (B.128)

Indeed, assume that this is not true. Let z be a point in that intersection. Then we
putr := %|Z —y| £8,andsince z — y € {2|x1]| = |x’|} and |z — y| = 5r, we have
by (B.127)

B, (z) Cy+ {4lx1| 2 |x']}).

Obviously, B,(z) C Be,(y) so that
By(2) C (v + {4lx1] 2 1x']}) N Ber () -

This contradicts (B.126). Hence (B.128) is proved. We split J,ﬁ’m into countably
many subsets which are contained in a ball of radius 2. After relabeling, we obtain
a decomposition of Ji into countably many pieces Ji, ; such that

Vj Vyedr; Jiin(y+ 2l z X)) =0

X1

Fig. 9. Explanation of (B.127).
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because of (B.128). Hence, every J ; is contained in a Lipschitz graph. This proves
the proposition.
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