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AMBROSIO
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INTRODUCTION

Consider the Cauchy problem for transport equations on R+ × Rn:

(1)







∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0

u(0, x) = u(x) .

Here b : R+ × Rn → Rn is a given smooth vector field, u a given smooth initial

condition and u the unknown function. Smooth solutions of (1) are constant along

curves φ : [a, b] → Rn solving the system of ordinary differential equations φ̇(t) =

b(t, φ(t)). Indeed, differentiating g(t) = u(t, φ(t)) we find

dg

dt
= ∂tu(t, φ(t)) + φ̇(t) · ∇xu(t, φ(t)) = ∂tu(t, φ(t)) + b(t, φ(t)) · ∇xu(t, φ(t)) = 0 .

Thus, if Φ : R+ × Rn → Rn is the one–parameter family of diffeomorphisms solving

(2)







∂tΦ(x, t) = b(t,Φ(x, t))

Φ(0, x) = x

and Φ−1(t, ·) denotes the inverse of the diffeomorphism Φ(t, ·), then the unique solution

u of (1) is given through the formula u(t, x) = u(Φ−1(t, x)). This is the classical method

of characteristics for transport equations. Our discussion justifies the name transport

equation: the quantity u is simply “transported” along the trajectories of the ODE

(2). It is therefore not surprising that these equations appear in the mathematical

description of many phenomena in classical and statistical physics.

When b is Lipschitz, existence and uniqueness of solutions to (2) are given by the

classical Cauchy–Lipschitz Theorem, but for less regular b this elegant and elementary

picture breaks down. On the other hand, many physical phenomena lead naturally to

consider transport equations where the coefficients b are discontinuous. The literature

related to this kind of problems is huge and I will not try to give an account of it here.

Let me just mention that in many of these problems one deals with coefficients which

typically have jump discontinuities, take for instance the theory of shock waves.

It is therefore desirable to have a theory of solutions for ODEs and transport equations

which allows for non–smooth coefficients. The Sobolev spaces W 1,p (given by functions
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u ∈ Lp with distributional derivatives in Lp) are probably the most popular spaces

of irregular functions in partial differential equations. In their groundbreaking paper

[28], motivated by their celebrated work on Boltzmann equation, DiPerna and Lions

introduced a theory of generalized solutions for transport equations and ODEs with

Sobolev coefficients. Loosely speaking, this is done at the loss of a “pointwise” point of

view into an “almost everywhere” point of view. Though a generic function u ∈W 1,p(Ω)

might be extremely irregular, its singular set, at least in a suitable measure theoretic

sense, has necessarily codimension higher than 1. In particular, functions with jump

discontinuities do not belong to W 1,p. Indeed, if the discontinuities are along nice

regular surfaces, the distributional derivatives are nothing more than Radon measures.

A commonly used functional–analytic closure of such “jump functions” is the BV

space, i.e. the set of summable functions whose distributional derivatives are Radon

measures. The extention of the DiPerna–Lions theory to BV functions has been for

a while an important open problem. After some attempts by other authors leading

to partial results (see [33], [15], [21]; some of these works were motivated by specific

problems in partial differential equations and mathematical physics), Ambrosio solved

the problem in its full generality in [4]. This note is an attempt to illustrate the most

important ideas of the DiPerna–Lions theory and of Ambrosio’s result. In order to

focus on the main points, I will not consider the most general results proved so far.

Moreover, I will not follow the shortest proofs and often I will consider cases which

later on become corollaries of more general theorems.

In the first section I discuss the first key idea of [28]: the notion of renormalized

solutions and its link to the uniqueness and stability for (1). In Section 2 I discuss

the hard core of the DiPerna–Lions theory for W 1,p fields: the so called commutator

estimate. In Section 3, following the ideas of Ambrosio, I push gradually the DiPerna–

Lions approach towards the BV case. The proof of Ambrosio’s Theorem is finally

achieved in Section 4 in two different ways, based on observations of Bouchut and

Alberti. Section 5 discusses the third key idea of [28], a sort of converse of the classical

theory of characteristics: appropriate results on transport equations can be used to

infer interesting conclusions on ODEs. Section 6 surveys further results, conjectures

and open problems in three different directions of research. Section 7 contains the

proof of one technical proposition on BV functions used in Section 3.

1. RENORMALIZED SOLUTIONS

1.1. Distributional solutions

Let us start by rewriting (1) in the following way:

(3)







∂tu+ divx(ub) − u divxb = 0

u(0, x) = u(x) .
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Here and in what follows I denote by divxb the divergence (in space) of the vector b.

Clearly any classical solution of (3) is a solution of (1) and viceversa. However, equation

(3) can be understood in the distributional sense under very mild assumptions on u and

b. This is stated more precisely in the following definition.

Definition 1.1. — Let b and u be locally summable functions such that the distribu-

tional divergence of b is locally summable. We say that u ∈ L∞
loc is a distributional

solution of (3) if the following identity holds for every test function ϕ ∈ C∞
c (R × Rn)

(4)

∫ ∞

0

∫

Rn

u [∂tϕ+ b · ∇xϕ+ ϕ divxb] dx dt = −

∫

Rn

u(x)ϕ(0, x) dx

Of course for classical solutions the identity (4) follows from a simple integration by

parts. The existence of weak solutions under quite general assumptions is an obvious

corollary of the maximum principle for transport equations combined with a standard

approximation argument.

Lemma 1.2 (Maximum Principle). — Let b be smooth and let u be a smooth solution

of (3). Then, for every t we have supx∈Rn u(t, x) ≤ supx∈Rn u(x) and infx∈Rn u(t, x) ≥

infx∈Rn u(x). Hence ‖u(t, ·)‖L∞(Rn) ≤ ‖u‖∞.

Proof. — The lemma is a trivial consequence of the method of characteristics. Indeed,

arguing as in the introduction u(t, x) = u(Φ−1(t, x)), where Φ is the solution of (2).

From this representation formula the inequalities follow trivially.

Theorem 1.3. — Let b ∈ Lp with divxb ∈ L1
loc and let u ∈ L∞. Then there exists a

distributional solution of (3).

Proof. — Consider a standard family of mollifiers ζε and ηε respectively on Rn and

R × Rn. Let bε = b ∗ ηε and uε = u ∗ ζε be the corresponding regularizations of b and

u. Then ‖uε‖∞ is uniformly bounded. Consider the classical solutions uε of

(5)







∂tuε + bε · ∇xuε = 0

uε(0, ·) = uε .

Note that such solutions exist because we can solve the equation with the method of

characteristics: indeed each bε is Lipschitz and we can apply the classical Cauchy–

Lipschitz theorem to solve (2). By Lemma 1.2 we conclude that ‖uε‖∞ is uniformly

bounded. Hence there exists a subsequence converging weakly∗ to a function u ∈

L∞(R+ × Rn). Let us fix a test function ϕ ∈ C∞
c (R × Rn). Since the uε are classical

solutions of (5), the identity (4) is satisfied if we replace u, b and u with uε, bε and uε.

On the other hand, since bε → b, divxbε → divxb and uε → u locally strongly in L1
loc,

we can pass into the limit in such identities to achieve (4) for u, u and b.
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1.2. Renormalized solutions

Of course the next relevant questions are whether such distributional solutions are

unique and stable. Under the general assumptions above the answer is negative, as it

is for instance witnessed by the elegant example of [27]. However, DiPerna and Lions

in [28] proved stability and uniqueness when b ∈W 1,p ∩ L∞ and divxb ∈ L∞.

Theorem 1.4. — Let b ∈ L1(R+,W 1,p(Rn)) ∩ L∞ with bounded divergence. Then for

every u ∈ L∞ there exists a unique distributional solution of (3). Moreover, let bk and

uk be two smooth approximating sequences converging strongly in L1
loc to b and u such

that ‖uk‖∞ is uniformly bounded. Then the solutions uk of the corresponding transport

equations converge strongly in L1
loc to u.

In order to understand their proof, we first go back to classical solutions u of (3),

and we observe that, whenever β : R → R is a C1 function, β(u) solves

(6)







∂t[β(u)] + divx[β(u)b] − β(u) divxb = 0

[β(u)] = β(u) .

This can be seen, for instance, using the chain rule for differentiable functions, i.e.

∂tβ(u) + b · ∇xβ(u) = β ′(u)[∂tu + b · ∇xu]. Otherwise, one can observe that, since

u must be constant along the trajectories (2), so must be β(u). Motivated by this

observation, we introduce the following terminology.

Definition 1.5. — Let b ∈ L1
loc with divxb ∈ L1

loc. A bounded distributional solution

of (3) is said renormalized if β(u) is a solution of (6) for any β ∈ C1. The field b

is said to have the renormalization property if every bounded distributional solution of

(3) is renormalized.

When b and u are not regular we cannot use the chain rule, neither the theory of

characteristics. Therefore, whether a distributional solution is renormalized might be a

nontrivial question. Actually, for quite general b, there do exist distributional solutions

which are not renormalized (see again [27]). The proof of Theorem 1.4 by DiPerna and

Lions consists of two parts, the first one, which is “soft” can be stated as follows.

Proposition 1.6. — If b ∈ L∞ has the renormalization property and its divergence is

bounded, then the uniqueness and stability properties of Theorem 1.4 hold.

The second one, which is the “hard” part of the proof, states essentially that W 1,p

fields have the renormalization property.

Theorem 1.7. — Any b ∈ L1([0,∞[,W 1,p(Rn)) has the renormalization property.

We postpone the “hard part” to the next section and come first to Proposition 1.6.
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Proof. — Uniqueness. Fix a u0 and let u and v be two distributional solutions of

(3). It then follows that w = u − v is a distributional solution of the same transport

equation with initial data 0. By the renormalization property so is w2, i.e.

(7)







∂tw
2 + divx(w

2b) = w2 divxb

w2(0, ·) = 0

Integrating (7) “formally” in space we obtain

∂t

∫

Rn

w2(t, x) dx =

∫

Rn

w2(t, x) divxb ≤ ‖divxb‖∞

∫

Rn

w2(t, x) .

Since
∫

Rn w
2(0, x) dx = 0, by Gronwall’s Lemma we would conclude

∫

Rn w
2(t, x) dx =

0 for every t. We sketch how to make rigorous this formal argument. Assume for

simplicity ‖b‖∞ ≤ 1. Let T,R > 0 be given and choose a smooth cut–off function

ϕ ∈ C∞
c (R × Rn) such that ϕ = 1 on [0, T ]×BR(0) and ∂tϕ ≤ −|∇xϕ| on [0, 2T ]× Rn

Now let ψ ∈ C∞
c (] − 2T, 2T [) be nonnegative and test (7) with ψ(t)ϕ(t, x). Define

f(t) =
∫

Rn w
2(t, x)ϕ(t, x) dx and use Fubini’s Theorem to get

−

∫ ∞

0

f(t)∂tψ(t) dt =

∫ ∞

0

∫

ψ(t)ϕ(t, x)w2(t, x) divxb(t, x) dx dt

+

∫ ∞

0

∫

ψ(t)w2(t, x)
[

∂tϕ(t, x) + b(t, x) · ∇xϕ(t, x)
]

dx dt .

Note that the second integral in the right hand side is nonpositive, whereas the first

one can be estimated by ‖divxb‖∞
∫

f(t)ψ(t) dt. We conclude that f satisfies a “distri-

butional” form of Gronwall’s inequality for t ∈ [0, 2T [. It can be easily seen that this

implies f = 0. Thus w = 0 a.e. on [0, T ] ×BR(0), and by the arbitrariness of R and T

we conclude w = 0.

Stability. Arguing as in Theorem 1.3, we easily conclude that, up to subsequences,

uk converges weakly∗ in L∞ to a distributional solution u of (3). However, by the

uniqueness part of the Theorem, this solution is unique, and hence the whole sequence

converges to u. Since the bk and the uk are both smooth, u2
k solves the corresponding

transport equations with initial data u2. Arguing as above, u2
k must then converge,

weakly∗ in L∞, to the unique solution of (3) with initial data u2. But by the renormal-

ization property this solution is u2. Summarizing, uk
∗
⇀ u and u2

k
∗
⇀ u2 in L∞, which

clearly implies the strong convergence in L1
loc.

2. THE COMMUTATOR ESTIMATE OF DIPERNA AND LIONS

In this section we come to the “hard part”, i.e. Theorem 1.7. We first prove a milder

conclusion, neglecting the initial conditions, which will be adjusted later.
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Proposition 2.1. — Assume b ∈ L1(R+,W 1,p(Rn)) and let u ∈ L∞ solve

(8) ∂tu+ divx(ub) − u divxb = 0

distributionally on R+ × Rn. Then, for every β ∈ C1,

(9) ∂t[β(u)] + divx(β(u)b) − β(u) divxb = 0 .

2.1. Commutators

Let us fix u and b as in Proposition 2.1 and consider a standard smooth and even

kernel ρ in Rn. By a slight abuse of notation we denote by u ∗ ρε the convolution

in the x variable, that is [u ∗ ρε](t, x) =
∫

u(t, y)ρε(x − y)dy. Mollify (8) to obtain

0 = ∂tu ∗ ρε + [divx(bu)] ∗ ρε − [u divxb] ∗ ρε. We rewrite this identity as

(10) ∂tu ∗ ρε + b · ∇xu ∗ ρε = −Rε + [(u divxb) ∗ ρε − u ∗ ρε divxb]

where Rε are simply the commutators

(11) Rε = [divx(bu)] ∗ ρε − divx[b(u ∗ ρε)] .

Since Rε is a locally summable function, the identity (10) implies that ∂tu ∗ ρε is also

locally summable. Thus, u ∗ ρε is a Sobolev function in space and time, and we can use

the chain rule for Sobolev functions (see for instance Section 4.2.2 of [30]) to compute

∂t[β(u ∗ ρε)] + b · ∇x

[

β(u ∗ ρε)
]

= β ′(u ∗ ρε)
[

∂tu ∗ ρε + b · ∇xu ∗ ρε

]

.

Inserting (10) in this identity we get

(12) ∂t[β(u ∗ ρε)] + b · ∇x

[

β(u ∗ ρε)
]

= β ′(u ∗ ρε)
{

Rε + [(u divxb) ∗ ρε − u ∗ ρε divxb]
}

.

Now, the left hand side of (12) converges distributionally to the left hand side of (9).

Recall that ‖β ′(uε)‖∞ and ‖u ∗ ρε‖∞ are uniformly bounded, whereas

[(u divxb) ∗ ρε − u ∗ ρε divxb] −→ 0

strongly in L1
loc. Therefore, in order to prove Proposition 2.1 we just need to show that

β ′(u ∗ ρε)Rε converges to 0. This is implied by the following lemma.

Lemma 2.2 (Commutator estimate). — Let b ∈ L1(R+,W 1,p(Rn)), u ∈ L∞ and Rε as

in (11). Then Rε → 0 in L1
loc.

2.2. The commutator estimate of DiPerna and Lions

Proof of Lemma 2.2. — Without loss of generality we assume that the kernel ρ is sup-

ported in B1(0). First we use the elementary identity

Rε = −
∑

i

(ubi) ∗ ∂xi
ρε +

∑

i

bi(u ∗ ∂xi
ρε) − u ∗ ρε divxb

and we expand the convolutions to obtain

(13) Rε(t, x) =

∫

u(t, y)(b(t, x) − b(t, y)) · ∇ρε(x− y) dy −
[

u ∗ ρε divxb
]

(t, x) .
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Since ∇ρε(ξ) = ε−n−1∇ρ(ξ/ε), we perform the change of variables z = (x− y)/ε to get

(14) Rε(t, x) = −

∫

u(t, x+ εz)
b(t, x+ εz) − b(t, x)

ε
· ∇ρ(z) dz −

[

u ∗ ρε divxb
]

(t, x)

Next, fix a compact set K. By standard properties of Sobolev functions (see for instance

Section 5.8.2 of [29]), the difference quotients

(15) dε,z(t, x) =
b(t, x+ εz) − b(t, x)

ε

are bounded in Lp(K) independently of z ∈ B1(0) and ε ∈]0, 1[. We now let ε ↓ 0.

For each fixed z, dε,z converges strongly in Lp(K) to ∂zb. The functions uz,ε(t, x) =

u(t, x + εz) are instead uniformly bounded in L∞, and, by the L1–continuity of the

translation, they converge strongly in L1(K) to u.

Therefore we conclude that Rε converges strongly in L1
loc to

R0(t, x) = −u(t, x)

∫

∂zb(t, x) · ∇ρ(z) dz −
[

u divxb
]

(t, x)

= −u(t, x)
∑

i,j

∂ib
j(t, x)

∫

zi∂zj
ρ(z) dz − u(t, x) divxb(t, x) .

Integrating by parts we have
∫

zi∂zj
ρ = −δij . So R0 = 0, which completes the proof.

2.3. The initial condition

In order to prove Theorem 1.7 we still need to show that β(u) takes the initial

condition [β(u)](0, ·) = β(u)(·). This is achieved with a small trick.

Proof of Theorem 1.7. — Consider b and u as in Theorem 1.7 and extend both of them

to negative times by setting b(t, x) = 0 and u(t, x) = u(x) for t < 0. It is then immediate

to check that ∂tu+divx(bu) = u divxb distributionally on the whole space–time R×Rn.

On the other hand the proof of Proposition 2.1 remains valid if we replace R+ with R

(actually the proof remains the same on any open set Ω ⊂ R × Rn). Therefore

∂t[β(u)] + divx[bβ(u)] = β(u) divxb

distributionally on R × Rn. We test this equation with a ϕ ∈ C∞
c (R × Rn), recalling

that [β(u)](t, x) = β(u(x)) and b(t, x) = 0 for t < 0. We then conclude

(16)

∫ ∞

0

∫

Rn

β(u)
[

∂tϕ+ b ·∇xϕ+divxb ϕ
]

dx dt = −

∫

Rn

β(u(x))

∫ 0

−∞

∂tϕ(t, x) dt dx .

On the other hand, since ϕ is smooth, we can integrate by parts in t in the right hand

side of (16) in order to get −
∫

β(u(x))ϕ(0, x)dx. This concludes the proof.
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3. THE BV CASE: THE COMMUTATOR ESTIMATE OF AMBROSIO

Let us try to push the proof of DiPerna and Lions to the BV case (we recall here that

a function of bounded variation is simply a summable function whose distributional

derivatives are Radon measures). Notice however that, in order to make sense of a

distributional solution of (3) as in Definition 1.1, we do need the additional assumption

divxb ∈ L1, because for a generic BV function the divergence is only a Radon measure.

The only point where the strategy of DiPerna and Lions does not work is in the

proof of Lemma 2.2. There we can still conclude that the difference quotients (15)

are bounded in L1
loc, but we cannot conclude that they converge strongly in L1

loc to

∂zb. In fact, ∂zb is now a Radon measure, and dε,z converges to it weakly∗ in the

space of Radon measures (this weak∗ convergence is the one coming from duality with

continuous functions through the Riesz Representation Theorem). However, though we

cannot conclude that Lemma 2.2 holds, we still get some information: the right hand

side of (12) is uniformly bounded in L1
loc, and hence converges (up to subsequences) to

a Radon measure µ. We include this statement in a Lemma to which we will refer later.

Lemma 3.1. — Let u ∈ L∞ and b ∈ L1(R+, BV (Rn)) with divxb ∈ L1. Assume that

∂tu+ divx(ub) − u divxb = 0 distributionally on R+ × Rn. Then, for every β ∈ C1,

(17) ∂t[β(u)] + divx(β(u)b) − β(u) divxb = µ

for some Radon measure µ.

3.1. Difference quotients of BV functions

In what follows we will denote by Dxb the distributional differential in the space

variables of the vector field b. That is, the matrix of distributional partial derivatives.

In order to go beyond Lemma 3.1, consider that, by the Radon–Nikodym decomposition,

the distributional derivative Dxb, which is a measure, can be split into the part which

is absolutely continuous with respect to the Lebesgue measure and the singular part.

We denote them by Da
xb and Ds

xb. The Sobolev space W 1,1 is simply given by those BV

functions b for which the singular part Ds
xb vanishes. For such functions, according to

Proposition 2.1, the measure µ in (17) vanishes. It is therefore natural to conjecture

that, in the general BV case, µ is a singular measure.

In order to show this, we need a refined analysis of the difference quotients of BV

functions. We start by introducing a bit of terminology. First of all, we can regard Dxb

as a matrix of measures or as a matrix–valued measure. Since Da
xb is an absolutely con-

tinuous function, we can write it as fL n+1, where L n+1 denotes the n+1–dimensional

Lebesgue measure, and f is a matrix–valued function. In this case f is usually denoted

by ∇xb in the literature (indeed it coincides with an appropriate measure–theoretic

notion of pointwise differential of b, see [14]).

Thanks to the Radon–Nikodym decomposition, a similar splitting holds for Ds
xb as

well. That is, we might write Ds
xb = M |Ds

xb|, where |Ds
xb| is the total variation measure
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of Ds
xb (and hence a nonnegative measure), and M is a matrix–valued Borel function.

We are now ready to state the following

Proposition 3.2. — Let b ∈ BV (R × Rn,Rn) and let z ∈ Rn. Then the difference

quotients

b(t, x+ δz) − b(t, x)

δ

can be canonically written as b1,δ(z)(t, x) + b2,δ(z)(t, x), where

(a) b1,δ(z) converges strongly in L1
loc to ∇xb · z as δ ↓ 0.

(b) For any compact set K ⊂ R × Rn we have

(18) lim sup
δ↓0

∫

K

∣

∣b2,δ(z)(t, x)
∣

∣ dx dt ≤ |Ds
xb · z|(K) .

(c) For every compact set K ⊂ R × Rn we have

(19) sup
δ∈]0,ε[

∫

K

(
∣

∣b1,δ(z)(t, x)
∣

∣ +
∣

∣b2,δ(z)(t, x)
∣

∣

)

dx dt ≤ |z||Dxb|(Kε)

where Kε = {(t, x) : dist ((t, x), K) ≤ ε}.

Loosely speaking, in this canonical splitting b1,δ(z) is converging towards the abso-

lutely continuous part of ∂zb, whereas b2,δ(z) is converging towards the singular part.

In order to understand why this decomposition is possible, consider the case when b

is a function of one real variable, and split its derivative b′ into the sum b′a + b′s of its

absolutely continuous part and its singular part. Let b1 be a primitive of b′a and b2
a primitive of b′s. For instance we can define b1(x) = b′a([0, τ [) and b2(x) = b′s([0, τ [)

for τ positive and b1(x) = −b′a(]τ, 0]) and b2(x) = b′s(] − τ, 0]) for τ negative. The

sum of the difference quotients of b1 and b2 give the difference quotients of b, and it is,

actually, the splitting of Proposition 3.2. For instance, since b1 is a W 1,1 function, its

difference quotients converge strongly in L1 to its derivative, that is b′a: this gives (a).

The remaining points (b) and (c) follow in a similar way. The proof of the proposition

in the general case is perhaps the most technical part of this note, but it is based on

the 1–dimensional case sketched above through the “slicing theory” of BV functions.

The interested reader will find it in the appendix.

Remark 3.3. — The decomposition of the proof is canonical in the sense that we give

an explicit way of constructing b1,δ and b2,δ from the measures Da
xb · z and Ds

xb · z. One

important consequence of this explicit construction is the following linearity property:

If b1, b2 ∈ BVloc, λ1, λ2 ∈ R, and z ∈ Rn, then

(λ1b
1 + λ2b

2)i,δ(z)(t, x) = λ1b
1
i,δ(z)(t, x) + λ2b

2
i,δ(z)(t, x) .
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3.2. The commutator estimate of Ambrosio

We now use the technical Proposition 3.2 to give a more careful estimate on the

commutators Rε. The idea is again to follow the proof of Lemma 2.2, but this time,

once arrived to (14), we will substitute the difference quotients of b with the splitting

given by Proposition 3.2. We will then show that the “b1,ε” cancels with the divergence,

whereas for the singular part “b2,ε” we will use the crudest estimate available. In order

to state the final result, we first need some notation.

Definition 3.4. — For any η ∈ C∞
c (Rn) and any n× n matrix M we define

Λ(M, η) =

∫

Rn

|∇η(z) ·M · z| dz .

We are now ready to state Ambrosio’s Commutators Estimate.

Proposition 3.5 (Commutators estimate). — Let b, u and β be as in Lemma 3.1.

Let ρ be any even convolution kernel and let M be the matrix–valued Borel function

such that Ds
xb = M |Ds

xb|. Then the measure µ of (17) satisfies the inequality

(20) |µ| ≤ CΛ(M, ρ)|Ds
xb| .

Proof. — Consider a continuous compactly supported test function ϕ and use the com-

putations of Subsection 2.2 in order to conclude

−

∫

ϕdµ = lim
ε↓0

−

∫

ϕβ ′(u ∗ ρε)Rε =

∫

ϕβ ′(u)u divxb

+ lim
ε↓0

∫

ϕ(t, x)[β ′(u)u](t, x+ εz)
b(t, x + εz) − b(t, x)

ε
· ∇ρ(z) dz dx dt

=

∫

ϕβ ′(u)u divxb+ lim
ε↓0

∫

ϕ(t, x)[β ′(u)u](t, x+ εz)b1,ε(z)(t, x) · ∇ρ(z) dz dx dt(21)

+ lim
ε↓0

∫

ϕ(t, x)[β ′(u)u](t, x+ εz)b2,ε(z)(t, x) · ∇ρ(z) dz dx dt .(22)

We now use Proposition 3.2 to show that (21) vanishes and to estimate (22) with (a

suitable modification of) the right hand side of (20).

Indeed, from Proposition 3.2(a) and (c), and from the strong L1
loc convergence of

u ∗ ρε to u, the second integral in (21) converges to

(23)

∫

ϕ(t, x)β ′(y(t, x))u(t, x)
∑

i,j

ej · ∇b(t, x) · ei

∫

zj∂zi
ρ(z) dz dx dt .

Arguing as in Subsection 2.2, (23) is equal to

−

∫

ϕ(t, x)u(t, x)β ′(u(t, x)) tr∇b(t, x) dx dt .

On the other hand, tr∇b is just the absolutely continuous part of the divergence of

b. Since by assumption divxb is absolutely continuous, it coincides with its absolutely

continuous part. Therefore, (21) vanishes.
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We now come to (22). Since β ′ and u are both bounded, (22) can be estimated by

(24) C lim sup
ε↓0

∫

|ϕ(t, x)|

∫

|b2,ε(z)(t, x) · ∇ρ(z)| dz dx dt

Next, let S = ‖ϕ‖C0 , let Kσ be the closure of {(t, x) : |ϕ(t, x)| > σ} and rewrite (24) as

(25) C lim sup
ε↓0

∫ S

0

∫

Kσ

∫

|b2,ε(z)(t, x) · ∇ρ(z)| dz dx dt dσ .

From Proposition 3.2(c), we know that

(26) lim sup
ε↓0

∫

Kσ

|b2,ε(z)(t, x) · ∇ρ(z)| dt dx ≤ |Ds
xb · ∇ρ(z)|(Kσ) .

Moreover, since for z outside the support of ρ the integral in (26) vanishes, the map

(σ, z) →

∫

Kσ

|b2,ε(z)(t, x) · ∇ρ(z)| dt dx

is bounded. Therefore, we integrate (25) first in (t, x) and use (26) and the dominated

convergence theorem to bound (25) with a constant time

(27)

∫ S

0

∫

|∇ρ(z) ·Ds
xb · z|(Kσ) dz dσ .

Let νz be the measure |∇ρ(z) ·Ds
xb · z| = |∇ρ(z) ·M · z||Ds

xb|. Then (27) is simply
∫ ∫

|ϕ(t, x)|dνz(t, x) dz =

∫ ∫

|ϕ(t, x)| |∇ρ(z) ·M(t, x) · z| d|Ds
xb|(t, x) dz

=

∫

|ϕ(t, x)|

[
∫

|∇ρ(z) ·M(t, x) · z| dz

]

d|Ds
xb|(t, x)

=

∫

|ϕ(t, x)|Λ(M(t, x), ρ) d|Ds
xb|(t, x) .

Summarizing, we get
∫

ϕdµ ≤ C

∫

|ϕ(t, x)|Λ(M(t, x), ρ)d|Ds
xb|(t, x)

for any continuous compactly supported ϕ. This is indeed the desired claim (20).

3.3. Optimizing the choice of the kernel

Let us recollect what proved so far in this section. We started with a BV field b, a

distributional solution u of ∂tu + divx (ub) = u divxb and a function β ∈ C1(R) and

we have proved that the distribution ∂t[β(u)] + divx[β(u)b]− β(u) divxb is a measure µ

satisfying

(28) |µ| ≤ CΛ(M, ρ)|Ds
xb| ,

for any choice of an even convolution kernel ρ ∈ C∞
c (Rn).

Clearly our estimate is far from being optimal: the measure µ and the constant C are

both independent of the kernel ρ. We can therefore optimize in ρ. Since the estimate
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(28) has a local nature, this optimization procedure is, in a certain sense, equivalent to

vary the regularizing kernel in t and x. In order to state our optimized estimate, we

define the set of kernels

(29) K =
{

η ∈ C∞
c (B1(0)) such that η ≥ 0 is even, and

∫

B1(0)
η = 1

}

.

Theorem 3.6. — Let u, b, and β be as in Lemma 3.1. Then ∂t[β(u)] + divx[β(u)b]−

β(u) divxb = f |Ds
xb| for some Borel function f satisfying

(30) |f(t, x)| ≤ C inf
ρ∈K

Λ(M(t, x), ρ) for |Ds
xb|–a.e. (t, x).

Proof. — Let µ be as in (17). The inequality (28) implies its absolute continuity with

respect of |Ds
xb|. Therefore there exists a Borel function f such that µ = f |Ds

xb|. There

is only one technical subtlety to take into account. From Proposition 3.5 we know that

|f(t, x)| ≤ Λ(M(t, x), ρ) for |Ds
xb|–a.e. (t, x)

whenever we fix a convolution kernel ρ. However, the set of measure zero where the

inequality fails might in principle depend on ρ. This gives no trouble as soon as we

infimize on a countable set of kernels K′ (because a countable union of sets of measure

zero has measure zero!):

|f(t, x)| ≤ inf
ρ∈K′

Λ(M(t, x), ρ) for |Ds
xb|–a.e. (t, x).

However, for any fixed matrix M , the map ρ 7→ Λ(M, ρ) is continuous for the W 1,1

topology. Therefore, if we choose K′ to be any countable subset of K dense in the W 1,1

topology, then the infimum over K′ coincides with the infimum over K.

4. THE LEMMAS OF BOUCHUT AND ALBERTI

Our plan so far lead us to the following question: given a matrix M , what is the

infimum of the functional Λ(M, ρ) over the set of kernels K? One lower bound for this

infimum follows from a simple integration by parts:

Λ(M, ρ) ≥

∣

∣

∣

∣

∫

B1(0)

∇ρ(y) ·M · y dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k,j

Mjk

∫

B1(0)

yj
∂ρ

zk
(y) dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−
∑

k,j

Mjk

∫

B1(0)

δjkρ(y) dy

∣

∣

∣

∣

∣

= |trM | .(31)

Now, in the case at hand, recall that M |Ds
xb| is the singular part of the derivative

Dxb. Therefore trM |Ds
xb| is just the singular part of the divergence, which by our

assumptions is zero. The proof that ∂t[β(u)] + divx[β(u)b] = 0 is therefore completed

by the following Lemma, whose proof is due to Alberti:
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Lemma 4.1 (Alberti). — For any n× n matrix M we have

(32) inf
η∈K

Λ(M, η) =
∣

∣trM
∣

∣ .

However, Ambrosio’s original proof was instead based on a special case of Alberti’s

Lemma, proved by Bouchut in [15]. There the author was interested in a renormalization

property for fields with special structure.

Lemma 4.2 (Bouchut). — For any pair of vectors ξ, χ ∈ Rn we have

(33) inf
η∈K

Λ(χ⊗ ξ, η) = |ξ · χ| =
∣

∣tr (χ⊗ ξ)
∣

∣ .

Indeed, when M |Ds
xb| is the singular part of the distributional derivative of a BV

function, M(t, x) is a rank–one matrix for |Ds
xb|–a.e. (t, x). This result, which is

probably the deepest one in the theory of BV functions, is also due to Alberti (see [2];

for a recent brief, but nonetheless complete, account of the proof, see [25]). In order

to understand its statement, the reader might check it on the easiest examples, i.e.

functions which are piecewise constants. In this case the result is a trivial fact: the

hard core of Alberti’s result is that the same property holds also when (part of) the

distributional derivative of b is a fractal–type measure.

In any case, by Alberti’s Rank–one Theorem, Bouchut’s Lemma is already sufficient

to prove the renormalization theorem of Ambrosio.

Theorem 4.3. — Let u, b, and β be as in Lemma 3.1. Then ∂t[β(u)] + divx[β(u)b]−

β(u) divxb = 0

Moreover, arguing exactly as in Subsection 2.3, we can adjust the initial condition to

conclude

Theorem 4.4. — Let b ∈ L1(R+, BV (Rn)) with absolutely continuous divergence.

Then b has the renormalization property.

Before coming to the proof of these lemmas, we want to point out an important

fact. As already said, we can regard the optimization procedure of Theorem 3.6 as an

implementation of the idea “a varying regularizing kernel approximates better than a

fixed one”. Then both Bouchut’s and Alberti’s Lemmas tell us that, close to points

where the singular part of Ds
xb is large, the optimal choice is a very anisotropic kernel.

This intuition originated in Bouchut’s paper [15].

4.1. Bouchut’s Lemma

The proof of Bouchut’s Lemma is very elementary and it exploits convolution kernels

which have a very simple structure i.e. they are close to the indicator function of a very

thin rectangle, whose long sides are parallel to χ.
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Proof of Lemma 4.2. — If d = 2 we can fix an orthonormal basis of coordinates z1, z2
in such a way that ξ = (a, b) and χ = (0, c). Consider the rectangle rε = [−ε/2, ε/2] ×

[−1/2, 1/2] and consider the kernel ηε = 1
ε
1rε

. Let ζ ∈ K and denote by ζδ the family

of mollifiers generated by ζ . Clearly ηε ∗ ζδ ∈ K for ε+ δ small enough.

Denote by ν = (ν1, ν2) the unit normal to ∂rε and recall that

(34) lim
δ↓0

∣

∣

∣

∣

∂(ηε ∗ ζδ)

∂zi

∣

∣

∣

∣

∗
⇀

|νi|

ε
H

1 ∂rε .

in the sense of measures (here H
1 ∂rε denotes the usual 1–dimensional measure on

the boundary of rε).

Thus, we can compute

lim sup
δ↓0

Λ(M, ηε ∗ ζδ) ≤ lim sup
δ↓0

∫

R2

(

|az1| + |bz2|
)

|c|

∣

∣

∣

∣

∂(ηε ∗ ζδ)

∂z2

∣

∣

∣

∣

dz1dz2

=
2|c|

ε

∫ ε/2

−ε/2

(

|az1| +
|b|

2

)

dz1 = |ac|
ε

2
+ |bc| .

Note that bc = trM . Thus, if we define the convolution kernels λε,δ = ηε ∗ ζδ we get:

(35) lim sup
ε↓0

lim sup
δ↓0

Λ(M, ηε ∗ ζδ) ≤ |trM | .

For n ≥ 2 we consider a system of coordinates x1, x2, . . . , xn such that η =

(a, b, 0, . . . , 0), ξ = (0, c, 0, . . . , 0) and we define the convolution kernels

λε,δ(x) = [ηε ∗ ζδ](x1, x2) · ζ(x3) · . . . · ζ(xn) .

The conclusion of the Lemma follows easily.

4.2. Alberti’s Lemma

The proof of Alberti’s Lemma is in a certain sense a generalization of Bouchut’s

proof. The basic idea is to take a convolution kernel which is concentrated on a very

long tube made of trajectories of the ODE γ̇ = M · γ.

Proof of Lemma 4.1. — By the identity ∇η(z) ·M · z = div (M · zη(z)) − trMη(z), it

suffices to show that for every T > 0 there exists η ∈ K such that

(36)

∫

Rn

|div(M · zη(z))| dz ≤
2

T
.

Given a smooth nonnegative convolution kernel θ with compact support, we claim that

the function

η(z) =
1

T

∫ T

0

θ(e−tM · z) e−ttr M dt
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has the required properties. Here etM is the matrix
∑

i
tiM i

i!
. That is, etM · z is just

the solution of the ODE γ̇ = M · γ with initial condition γ(0) = z, and e−ttr M is the

determinant of e−tM . The usual change of variables yields
∫

η(z)ϕ(z) dz =
1

T

∫ T

0

∫

ϕ(z)θ(e−tM · z)e−ttr M dz dt

=
1

T

∫ T

0

∫

ϕ(etM · ζ)θ(ζ) dζ dt ,(37)

for any integrable bounded ϕ. Hence ηL d is the time average of the push-forward of

the measure θL d along the trajectories of γ̇ = M · γ. This is the point of view taken

in [5] to prove (36), for which we argue with the direct computations shown below.

Note that

div (M · zη(z)) =
1

T

∫ T

0

div (M · z θ(e−tM · z))e−ttr M dt .

A tedious but straightforward computation (see [26]) shows

div (M · zθ(e−tM · z))e−t tr M = −
d

dt

(

θ(e−tM · z)e−t tr M
)

.

Thus
∫

Rn

| div (M · zη(z))| dz =

∫

Rn

1

T

∣

∣

∣

∣

∫ T

0

div (M · zθ(e−tM · z))e−t tr M dt

∣

∣

∣

∣

dz

=

∫

Rn

1

T

∣

∣

∣

∣

∫ T

0

d

dt

(

θ(e−tM · z)e−t tr M
)

dt

∣

∣

∣

∣

dz

=

∫

Rn

1

T

∣

∣θ(e−TM · z)e−T tr M − θ(z)
∣

∣ dz

≤
1

T

(
∫

Rn

θ(e−TM · z)e−T tr M dz +

∫

Rn

θ(z) dz

)

=
1

T

(
∫

Rn

θ(ζ) dζ +

∫

Rn

θ(z) dz

)

=
2

T
.

This shows (36) and concludes the proof.

5. THE CONTINUITY EQUATION AND REGULAR LAGRANGIAN

FLOWS

Another major point of the DiPerna–Lions theory is that the classical road from

characteristics to transport equations can be reversed: the renormalization property

and the induced uniqueness and stability of weak solutions to transport equations can

be used to infer existence, uniqueness and stability of a suitable generalized notion of

flow for the ODEs (2). In his paper [4], Ambrosio has proposed a new way of looking

at this side of the DiPerna–Lions theory, based on the analysis of probability measures
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on the space of paths. In the present note we follow yet another presentation, given in

[26].

We start by defining our generalized notion of flow.

Definition 5.1. — Let b ∈ L∞([0,∞[×Rn,Rn). A map Φ : [0,∞[×Rn → Rn is a

regular Lagrangian flow for b if

(a) For L 1–a.e. t we have |{x : Φ(t, x) ∈ A}| = 0 for every Borel set A with |A| = 0;

(b) The following identity is valid in the sense of distributions

(38)







∂tΦ(t, x) = b(t,Φ(t, x))

Φ(0, x) = x .

Note that assumption (a) guarantees that b(t,Φ(t, x)) is well defined. Indeed, if b̂ = b

L n+1–a.e., then b̂(t,Φ(t, x)) = b(t,Φ(t, x)) for L n+1–a.e. (t, x).

Ideally one could divide the DiPerna–Lions theory into two separate parts: how

to prove “renormalization–type” properties and which kind of “renormalization–type”

properties imply existence, uniqueness and stability of regular Lagrangian flows. An

example of this approach is given by the notes [26], where the two parts are presented

in completely independent ways. Instead, here we focus on the specific theorem be-

low, with the hope to keep the notation and details to a minimum and highlight the

mechanisms which link renormalized solutions to regular Lagrangian flows.

Theorem 5.2. — Let b ∈ L1(R+, BV (Rn))∩L∞ with bounded divergence. Then there

exists a unique regular Lagrangian flow Φ for b. Moreover, if bk is a sequence of smooth

vector fields converging strongly in L1
loc to b such that ‖divxb‖∞ is uniformly bounded,

then the flows of bk converge strongly in L1
loc to Φ.

During the proof of this theorem we will recover an important fact: the regular

Lagrangian flow is a suitable weak notion of characteristics for the transport equation.

5.1. The density of a regular Lagrangian flow and the continuity equation

Denote by µΦ the measure (id ,Φ)#L n+1 ([0,∞[×Rn), i.e. the push–forward via

the map (t, x) 7→ (t,Φ(t, x)) of the Lebesgue n+ 1–dimensional measure on [0,∞[×Rn.

Such push–forward is simply defined by the property
∫

[0,∞[×Rn

ψ(t, x) dµΦ(t, x) =

∫

[0,∞[×Rn

ψ(t,Φ(t, x)) dL n+1(t, x)

valid for every ψ ∈ Cc(R×Rm). Observe that (a) is equivalent to the absolute continuity

of µΦ with respect to the Lebesgue measure, and hence to the existence of a ρ ∈

L1
loc([0,∞[×Rn) such that µΦ = ρL n+1.

Definition 5.3. — The ρ defined above will be called the density of the regular La-

grangian flow Φ.
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When b is smooth and Φ is the classical solution of (38), t 7→ Φ(t, ·) is a one–parameter

family of diffeomorphisms. For each t let us denote by Φ−1(t, ·) the inverse of Φ(t, ·).

Then ρ can be explicitly computed as ρ(t, x) = det∇xΦ(t,Φ−1(t, x)) and the classical

Liouville Theorem states that ρ solves the continuity equation ∂tρ + divx(ρb) = 0.

Moreover, since Φ(0, x) = x, the initial condition for ρ is ρ(0, x) = 1. This property

remains true for regular Lagrangian flows and it is simply the special case ζ = 1 in the

following Proposition.

Proposition 5.4. — Let Φ be a regular Lagrangian flow for a field b. Let ζ ∈ L∞(Rn)

set µ = (id ,Φ)#(ζL n+1). Then there exists ζ ∈ L1
loc([0,∞[×Rn) such that µ = ζL n+1.

This ζ solves (distributionally)

(39)







∂tζ + divx(ζb) = 0

ζ(0, ·) = ζ .

Proof. — First of all, notice that µ ≤ ‖ζ‖∞µΦ. So µ is absolutely continuous and hence

there exists a ζ ∈ L1
loc such that µ = ζL n+1. Now, let ψ ∈ C∞

c (R × Rn) be any given

test function. Our goal is to show that

(40) −

∫

[0,∞[×Rn

ζ(t, x)
(

∂tψ(t, x) + b(t, x) · ∇xψ(t, x)
)

dx dt =

∫

Rn

ζ(x)ψ(0, x) dx .

By definition, the left hand side of (40) is equal to

(41) −

∫

Rn

ζ(x)

[
∫ ∞

0

(

∂tψ(t,Φ(t, x)) + ∇xψ(t,Φ(t, x)) · b(t,Φ(t, x))
)

dt

]

dx .

The proof would follow if we could integrate by parts in t, since ψ(0,Φx(0)) = ψ(0, x)

and ψ(T,Φx(T )) = 0 for any T large enough (because ψ is compactly supported). On

the other hand this integration by parts is easy to justify for a.e. x, since (38) implies

that the curve t 7→ Φ(t, x) is Lipschitz for a.e. x.

5.2. Uniqueness of solutions to the continuity equation

Next, let us assume that divxb is bounded in L∞. Then we would expect, formally,

that the density of Φ is bounded away from 0 and +∞. Indeed, assume that b and Φ

are both smooth and rewrite the continuity equation as ∂tρ+ b ·∇xρ+ ρ divxb = 0. Fix

x and differentiate the function ω(t) = ρ(t,Φ(t, x)) to get

dω

dt
(t) = ∂tρ(t,Φ(t, x)) + ∂tΦ(t, x) · ∇xρ(t,Φ(t, x))

= ∂tρ(t,Φt, x)) + b(t,Φ(t, x)) · ∇xρ(t,Φ(t, x)) = −divxb(t,Φ(t, x))ρ(t,Φ(t, x))

= −divxb(t,Φ(t, x))ω(t) .(42)

Since −‖divxb‖∞ ≤ −divxb(t,Φ(t, x)) ≤ ‖divxb‖∞ and ω(0) = 1, we can use Gronwall’s

Lemma to conclude exp(−T‖divxb‖∞) ≤ ω(T ) ≤ exp(T‖divxb‖∞). But Φ(T, ·) is
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surjective, because it is a diffeomorphism. Therefore we conclude

(43) exp(−T‖divxb‖∞) ≤ ρ ≤ exp(T‖divxb‖∞).

We cannot use this formal argument on the density of a general regular Lagrangian

flow. On the other hand, by a standard approximation procedure, we can show the

following Lemma.

Lemma 5.5. — Let b ∈ L∞ with bounded divergence. Then there exists a ρ̃ ∈ L∞
loc

satisfying the bounds (43) and solving

(44)







∂tρ̃+ divx(ρ̃b) = 0

ρ̃(0, ·) = 1 .

Proof. — Let ϕ be a standard convolution kernel, and consider bk = b ∗ϕk−1. Consider

the densities ρk of the classical flows of bk. Equation (39) holds with b and ρ̃ replaced

by bk and ρk. On the other hand, for ρk we can argue as above and get the bounds

exp(−‖divxbk‖∞) ≤ ρk(t, x) ≤ exp(−‖divxbk‖∞). Since ‖divxbk‖∞ ≤ ‖divxb‖∞, there

exists a subsequence of ρk which converges weakly∗ in L∞ to a ρ̃ satisfying (43). Arguing

as in Theorem 1.3 we obtain (44) by passing into the limit in the continuity equations

for ρ̃k.

If we knew the uniqueness of solutions to the continuity equation, this existence result

would become a proof of the formal bound (43) for the density of any regular Lagrangian

flow. As usual, we consider the case of b smooth in order to get some insight. Let ρ

and ρ̃ be two smooth solutions of (44), with ρ̃ > 0, and define u = ρ/ρ̃. Then we could

use the chain rule to compute

∂tu+ b · ∇xu = ρ̃−2
{

ρ̃
[

∂tρ+ b · ∇xρ
]

− ρ
[

∂tρ̃+ b · ∇xρ̃
]}

.

Adding and subtracting ρ̃−2(ρρ̃ divxb), we achieve

∂tu+ b · ∇xu = ρ̃−2
{

ρ̃
[

∂tρ+ divx(ρb)
]

− ρ
[

∂tρ̃+ divx(ρ̃b)
]}

= 0 .

But since u(0, x) = ρ(0, x)/ρ̃(0, x) = 1, we conclude u(t, x) = 1 for every t and x.

The computations above are very similar, in spirit, to the renormalization property.

It is therefore not a surprise that the theorem below follows from suitable modifications

of the proof of Theorem 4.4.

Theorem 5.6. — Let b ∈ L1(R+, BV (Rn)) ∩ L∞ with bounded divergence and let ρ̃

and ζ be L1
loc functions solving respectively (44) and (39). If ρ̃ ≥ C > 0, then u = ζ/ρ̃

is a distributional solution of

(45)







∂tu+ divx(ub) − u divxb = 0

u(0, ·) = ζ .

By minor modifications of the ideas of Section 1, Lemma 5.5 and Theorem 5.6 yield

the desired uniqueness for solutions of the continuity equations.
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Corollary 5.7. — Let b be as in Theorem 5.6. Then there exists a unique ζ ∈

L1
loc solving (39). Therefore, if Φ is a regular Lagrangian flow for b, the density of Φ

coincides with the density ρ̃ of Lemma 5.5 and hence satisfies the bounds (43).

5.3. Uniqueness and stability of regular Lagrangian flows

The uniqueness of solutions of the continuity equations yields easily the uniqueness

and stability of regular Lagrangian flows.

Proof of the uniqueness and stability parts in Theorem 5.2. — Uniqueness. Let Φ

and Ψ be two regular Lagrangian flows for b. Fix a ζ ∈ Cc(R
n) and consider the unique

solution ζ of (39). According to Proposition 5.4 we have (id ,Φ)#(ζL n+1) = ζL n+1 =

(id ,Ψ)#(ζL n+1). This identity means that
∫

ϕ(t,Φ(t, x))ζ(x) dt dx =

∫

ϕ(t,Ψ(t, x))ζ(x) dt dx

for every test function ϕ ∈ Cc(R×Rn). But since ζ has compact support, one can infer

the equality even when ϕ(t, y) = χ(t)yi for χ ∈ Cc(R). So
∫

Φi(t, x))χ(t)ζ(x) dt dx =

∫

Ψi(t, x))χ(t)ζ(x) dt dx

for any pair of functions χ ∈ Cc(R) and ζ ∈ Cc(R
n). This easily implies Φi = Ψi a.e..

Stability. Consider a sequence {bk} as in the statement of the Theorem and let Φk be

the corresponding classical flows. Fix a ζ ∈ Cc(R
n) and consider the ζk and uk solving,

respectively, the continuity equations and the transport equations with coefficients bk
and initial data ζ . Recall that, if ρk are the densities of Φk, then ζk = ukρk. The

uk are essentially bounded functions, and by the bounds in Subsection 5.2, the ρk are

locally uniformly bounded. Therefore the ζk are locally uniformly bounded and, up to

subsequences, they converge, weakly∗ in L∞
loc, to some ζ . Arguing as in Theorem 1.3,

this ζ must be the unique distributional solution of (39). So, fixing a test function

ϕ ∈ Cc(R × Rn) and arguing as in the uniqueness part, we get

lim
k↑∞

∫

ϕ(t,Φk(t, x))ζ(x) dt dx =

∫

ϕ(t,Φ(t, x))ζ(x) dt dx ,

where we are allowed to test with ϕ(t, y) = χ(t)yi: this gives the weak∗ convergence

of Φk to Φ in L∞
loc. Testing with ϕ(t, y) = χ(t)|y|2, we conclude as well the weak∗

convergence of |Φk|2 to |Φ|2. This implies of course the strong L1
loc convergence.

5.4. Existence of regular Lagrangian flows

The proof of existence of regular Lagrangian flows follows from an approximation

argument. Indeed, let bk be a standard regularization of b, with ‖bk‖∞ + ‖divxbk‖∞
bounded by a constant C and bk → b strongly in L1

loc. Consider the flows Φk of bk. By

the bounds of Subsection 5.2, exp(−Ct) ≤ det∇xΦ
k(t, x) ≤ exp(Ct), which translates

into the bounds exp(−Ct)|A| ≤ |Φk(t, A)| ≤ exp(Ct)|A| for every Borel set A. Assume

for the moment that we could prove the strong convergence of Φk to a map Φ. Then,
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clearly exp(−Ct)|A| ≤ |Φ(t, A)| ≤ exp(Ct)|A|, and hence Φ satisfies condition (a)

in Definition 5.1. It is then an exercise in elementary measure theory to show that

bk(t,Φ
k(t, x)) converges to b(t,Φ(t, x)) strongly in L1

loc. Since Φk solves







∂tΦ
k(t, x) = bk(t,Φ

k(t, x))

Φk(0, x) = x

it is straightforward to conclude that Φ solves (38) distributionally.

The main point is therefore to show the strong convergence of Φk. This follows from

the stability of the corresponding transport equations.

Proof of the strong convergence of Φk. — Consider, backward in time, the ODE

(46)







∂tΛ
k(t, x) = bk(t,Λ

k(t, x))

Λk(T, x) = x

Let Γk(t, ·) be the inverse of the diffeomorphism Λk(t, ·). If u ∈ L∞(Rn), then uk(t, x) =

u(Γk(t, x)) is the unique (backward) solution of the transport equation







∂tuk + divx(bkuk) = uk divxbk

uk(T, ·) = u(·) .

By Theorem 4.4 and Proposition 1.6, uk converges strongly in L1
loc to the unique (back-

ward) solution u of






∂tu+ divx(bu) = u divxb

u(T, ·) = u(·) .

Choose u(x) = χ(x)xi, where χ is a smooth cutoff functions. Since uk(t, x) =

χ(Γk(t, x))Γk
i (t, x) we infer easily the strong L1

loc convergence of the components Γk
i .

This implies that Γk converges to a map Γ strongly in L1
loc([0, T ] × Rn). On the other

hand, for any given x, Γk(·, x) is a Lipschitz curve with Lipschitz constant bounded

independently of k. It is then easy to see that Γk(t, ·) is a Cauchy sequence in L1(A)

for every bounded A and every t ∈ [0, T ]. In particular, Γk(0, ·) converges to some map

strongly in L1
loc.

Now, Γk(0, ·) is the inverse of Λk(0, ·), which in view of (46) is the inverse of Φk(T, ·).

Therefore we conclude that for each T there exists a map Φ(T, ·) such that Φk(T, ·) →

Φ(T, ·) strongly in L1
loc. Again, using the fact that, for each x, Φk(·, x) is a Lipschitz

curve with Lipschitz constant bounded independently of k, it is not difficult to see that

Φk is a Cauchy sequence in L1(A) for any bounded A ⊂ R+ × Rn. This concludes the

proof.
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6. BEYOND BV AND BEYOND RENORMALIZED SOLUTIONS:

FURTHER RESULTS, CONJECTURES AND OPEN PROBLEMS

6.1. Nearly incompressible BV fields

By nearly incompressible fields b we understand those fields for which there exists a

regular Lagrangian flow Φ satisfying the bounds c(t)|A| ≤ |Φ(t, A)| ≤ C(t)|A|, for some

continuous and nonvanishing functions c and C. At a first glance there are at least two

obstructions to build a theory of renormalized solutions for nearly incompressible flows.

On the one hand, it seems necessary to give a meaning to u divxb in order to define

distributional solutions u of (3). On the other hand, it is not clear how to define nearly

incompressible fields without referring to some flow.

Both these issues can be naturally solved by using the continuity equation. Indeed, we

can define nearly incompressible fields as those b for which there exists a distributional

solution ρ̃ of (44). Moreover, there are appropriate versions of the renormalization

property which use only the continuity equation and hence can be stated without as-

sumptions on the divergence of b. This point of view was first taken in [7] and it has

been systematically explored in [26]. The “soft” part of the DiPerna–Lions theory can

be extended naturally to this setting. Concerning the “hard” part, i.e. the proof of

the corresponding renormalization properties, the W 1,p case of this theory follows from

the DiPerna–Lions estimate for the commutators. The BV case is instead still open.

Indeed, the motivation in [7] was the following conjecture raised by Bressan in [17].

Conjecture 6.1 (Bressan’s compactness conjecture). — Let bk : R × Rn → Rn be a

sequence of smooth vector fields and denote by Φk the corresponding flows. Assume that

‖bk‖∞ + ‖∇bk‖L1 is uniformly bounded and that C−1 ≤ det(∇xΦ
k(t, x)) ≤ C for some

constant C > 0. Then the sequence {Φk} is strongly precompact in L1
loc.

Bressan’s conjecture was initially motivated by a problem in the theory of hyperbolic

systems of conservation laws. However, in order to solve this problem one does not

need to tackle Conjecture 6.1: a milder statement, which is a corollary of Ambrosio’s

result, suffices (see [10] and [7]). At present, the best result available in the direction of

Conjecture 6.1 is contained in [11] and goes towards a theory of renormalized solutions

for nearly incompressible BV fields. This paper makes strong use of a refined theory

of traces for transport equations, developed in [9].

6.2. Beyond BV fields

Can one hope for the renormalization property when b is in a space larger than BV ?

The counterexamples available in the literature show fields which are quite close to

be BV and do not have the renormalization property (see [27] and [22], both inspired

by an older construction of Aizenmann [1]). Moreover, these examples have severe

consequences on the possibility of building a general theory of existence for hyperbolic

systems of conservation laws on transport equations (see [23]).
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Nonetheless there are still many interesting open problems in this direction. For

instance, in two dimensions and for divergence–free autonomous fields, renormalization

theorems are available even under very mild assumptions, because of the underlying

Hamiltonian structure (see [16], [31], [20]). In the recent paper [3] the authors have

given a necessary and sufficient condition for the renormalization property when b

is divergence–free, planar, autonomous and bounded. In particular, they produce a

striking example of such a b which does not have the renormalization property.

A very interesting open question, naturally linked to Euler’s equations, is whether

the renormalization property holds for divergence–free fields b ∈ L∞(R, L2(R2)) when

the vorticity of b is a measure. Another open question is whether the renormalization

property holds for fields b with absolutely continuous divergence when the symmetric

part of the gradient is a measure. The property indeed holds when the symmetric part

of the gradient is in L1, see [19]. For a more general result in this direction, see [9].

6.3. A direct Lagrangian approach

In the DiPerna–Lions theory, conclusions on the “Lagrangian point of view” are re-

covered from theorems on the “Eulerian point of view”. A natural question is whether

one could get the same results directly, for instance proving a–priori estimates on the

solutions of the ODEs. Indeed, the whole theory of regular Lagrangian flows for W 1,p

fields with p > 1 can be recovered by proving appropriate estimates in the Lagrangian

formulation, as it has been recently shown in [24]. These estimates also provide mild

regularity properties for regular Lagrangian flows and distributional solutions to trans-

port equations. In a nutshell, if b ∈W 1,p and Φ is the corresponding flow, the Lp norm

of the difference of Φ(t, ·) − Φ(t, · + v) can be estimated by a constant (depending on

the compressibility of b, and the Lp norm of ∇b) times | log(|v|)|−1.

The estimates of [24] were inspired by some computations of [12], where the au-

thors proved the approximate differentiability of regular Lagrangian flows. In turn, [12]

was inspired by another result of [32] on weak differentiability properties for regular

Lagrangian flows. See also [13] for a comparison among the various weak notions of

differentiability used in these papers.

The estimates of [23] quantify the compactifying properties of transport equations

with Sobolev coefficients. In particular they imply the Lp version of a second conjecture

of Bressan on the mixing of flows (see [18]), which we state below.

Fix coordinates x = (x1, x2) ∈ [0, 1[×[0, 1[ on the torus T = R2/Z2 and consider

the set A =
{

(x1, x2) : 0 ≤ x2 ≤ 1/2
}

⊂ T. Given a smooth divergence–free field

b : [0, 1] × T → R2 denote by Φ its flow. For a fixed κ ∈]0, 1/2[, we say that Φ mixes

the set A up to scale ε if for every ball Bε(x) we have

κ|Bε(x)| ≤ |Bε(x) ∩ Φ(1, A)| ≤ (1 − κ)|Bε(x)| .
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Conjecture 6.2 (Bressan’s mixing conjecture). — Under these assumptions, there

exists a constant C depending only on κ s.t., if Φ mixes the set A up to scale ε, then
∫ 1

0

∫

T

|Dxb| dxdt ≥ C| log ε| for every 0 < ε < 1/4.

7. APPENDIX: PROOF OF PROPOSITION 3.2

Proof. — Let e1, . . . , en be orthonormal vectors in Rn. In the corresponding system

of coordinates we use the notation x = (x1, . . . , xn−1, xn) = (x′, xn). Without loss of

generality we can assume that z = en. Recall the following elementary fact: if µ is a

Radon measure on R, then the functions

µ̂δ(τ) =
µ([τ, τ + δ])

δ
= µ ∗

1[−δ,0]

δ
(τ) τ ∈ R

satisfy

(47)

∫

K

|µ̂δ| dτ ≤ µ(Kδ)

for every compact set K ⊂ R, where Kδ denotes the δ–neighborhood of K.

Consider the measure Den
b = Dxb · en, and the vector–valued function ∇xb · en.

Clearly this function is the Radon–Nikodym derivative of Den
b with respect to L n+1

and we denote by Ds
en
b the singular measure Ds

xb · en = Den
b−∇xb · enL

n+1.

We define

b1,δ(t, x
′, xd) =

1

δ

∫ xn+δ

xn

∇xb · en(t, x′, s) ds .

By Fubini’s Theorem and standard arguments on convolutions, we get that b1,δ →

∇xb · en strongly in L1
loc. Next set

b2,δ(t, x
′, xn) =

b(t, x′, xn + δ) − b(t, x′, xn)

δ
− b1,δ(t, x

′, xn) ,

and, for L n–a.e. (t, x) ∈ R × Rn−1, define bt,y : R → R by bt,y(s) = b(t, y, s).

We recall the following slicing properties of BV functions (see Theorem 3.103, The-

orem 3.107, and Theorem 3.108 of [14]):

(a) bt,y ∈ BVloc(R,R
n) for L n–a.e. (t, y);

(b) If we let Dsbt,y + b′t,yL
1 be the Radon–Nikodym decomposition of Dbt,y, then we

have

∇xb(t, y, s) · en = b′t,y(s) for L n+1–a.e. (t, y, s)

and

|Ds
en
|(A) =

∫

Rn

|Dsbt,y|(A ∩ {(t, y, s) : s ∈ R}) dt dy ;

(c) bt,y(s+ δ) − bt,y(s) = Dbt,y([s, s+ δ]).



972–24

Therefore, for any δ > 0 and for L n–a.e. (t, y) we have

b(t, y, xn + δ) − b(t, y, xn)

δ
=

bt,y(xn + δ) − bt,y(xn)

δ
=

Dbt,y([xn, xn + δ])

δ

= ̂(b′t,yL
1)

δ
(xn) + ̂(Dsbt,y)δ(xn)

= b1,δ(t, y, xn) + ̂(Dsbt,y)δ(xn) for L 1–a.e. xn.

Therefore
∫

K

|b2,δ| ≤

∫

Rn

∫

{xn:(t,y,xn)∈K}

∣

∣

∣

̂(Dsbt,y)δ(xn)
∣

∣

∣
dxn dy dt

≤

∫

Rn

|Dsbt,y| ({xn : (t, y, xn) ∈ Kδ}) dy dt = |Ds
xb · en|(Kδ) ≤ |Ds

xb|(Kδ) .(48)

Letting δ ↓ 0, this gives (18).

Note moreover that
∫

K

|b1,δ| ≤

∫

Rn

∫

{xn:(t,y,xn)∈K}

∣

∣

∣

̂(b′t,yL
1)

δ
(xn)

∣

∣

∣
dxn dy dt

≤

∫

Kδ

|∇xb · en|(t, y, xn) dy dt dxn ≤

∫

Kδ

|∇xb|(t, y, xn) dy dt dxn .(49)

Adding the bounds (48) and (49) we get (19).
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