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Abstract

We consider solutions to the Cauchy problem for the incompressible Euler
equations satisfying several additional requirements, like the global and local en-
ergy inequalities. Using some techniques introduced in an earlier paper, we show
that, for some bounded compactly supported initial data, none of these admissibil-
ity criteria singles out a unique weak solution. As a byproduct, in more than one
space dimension, we show bounded initial data for which admissible solutions to
the p-system of isentropic gas dynamics in Eulerian coordinates are not unique.

1. Introduction

In this paper, we consider the Cauchy problem for the incompressible Euler
equations in n space dimensions, n � 2,

⎧
⎨

⎩

∂tv + div (v ⊗ v)+ ∇ p = 0,
div v = 0,
v(x, 0) = v0(x),

(1)

where the initial data v0 satisfies the compatibility condition

div v0 = 0. (2)

A vector field v ∈ L2
loc(R

n×]0,∞[) is a weak solution of (1) if v(·, t) is weakly
divergence-free for almost every t > 0, and

∫ ∞

0

∫

Rn
[v · ∂tϕ + 〈v ⊗ v,∇ϕ〉] dx dt +

∫

Rn
v0(x)ϕ(x, 0)dx = 0 (3)

for every test function ϕ ∈ C∞
c (R

n ×[0,∞[; R
n) with div ϕ = 0. It is well known

that then the pressure is determined up to a function depending only on time [26].
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In his pioneering work [19] Scheffer showed that weak solutions to the two
dimensional Euler equations are not unique. In particular Scheffer constructed
a nontrivial weak solution which is compactly supported in space and time, thus
disproving uniqueness for (1) even when v0 = 0. A simpler construction was later
proposed by Shnirelman in [21].

In a recent paper [7], we have shown how the general framework of convex
integration [5,12,17,23] combined with Tartar’s programme on oscillation phe-
nomena in conservation laws [24] (see also [13] for an overview) can be applied
to (1). In this way, one can easily recover Scheffer and Shnirelman’s counterex-
amples in all dimensions and with bounded velocity and pressure. Moreover, the
construction yields as a simple corollary the existence of energy-decreasing solu-
tions, thus recovering another groundbreaking result of Shnirelman [22], again
with the additional features that our examples have bounded velocity and pressures
and can be shown to exist in any dimension.

The results so far left open the question of whether one might achieve the
uniqueness of weak solutions by imposing a form of the energy inequality. Our
primary purpose in this note is to address this issue. More precisely we prove the
following theorem (for the relevant definitions of weak, strong and local energy
inequalities, we refer to Sections 2.1 and 2.2).

Theorem 1. Let n � 2. There exist bounded and compactly supported
divergence–free vector fields v0 for which there are

(a) infinitely many weak solutions of (1) satisfying both the strong and the local
energy equalities;

(b) weak solutions of (1) satisfying the strong energy inequality but not the energy
equality;

(c) weak solutions of (1) satisfying the weak energy inequality but not the strong
energy inequality.

Our examples display very wild behavior, such as dissipation of the energy
and high-frequency oscillations. We will refer to them as wild solutions. A natural
question is to characterize the set of initial data v0 to which such wild solutions
exist, that is the set of initial data for which Theorem 1 holds. The core of this note
is devoted to a first characterization in Proposition 2 of such “wild” initial data,
in terms of the existence of a suitable subsolution. An important point is that—in
contrast to the constructions in [7,19,21]—for weak solutions satisfying the energy
inequality there are nontrivial constraints on v0. For example v0 cannot be smooth
(see Section 2.3). We give a direct construction of wild initial data in Section 5, but
for example we were unable to decide the following question:1

is the set of wild initial data dense in H(Rn)?

A related question is to estimate the maximal dissipation rate possible for wild
solutions for a given initial data.

1 As usual H(Rn) denotes the set of solenoidal vector fields in L2(Rn).
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As a byproduct of our analysis, we prove a similar non-uniqueness result for the
p-system of isentropic gas dynamics in Eulerian coordinates, the oldest hyperbolic
system of conservation laws. The unknowns of the system, which consists of n + 1
equations, are the density ρ and the velocity v of the gas:

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + divx (ρv) = 0
∂t (ρv)+ divx (ρv ⊗ v)+ ∇[p(ρ)] = 0
ρ(0, ·) = ρ0

v(0, ·) = v0

(4)

(cf. (3.3.17) in [6] and Section 1.1 of [20], p. 7). The pressure p is a function of ρ,
which is determined from the constitutive thermodynamic relations of the gas in
question and satisfies the assumption p′ > 0. A typical example is p(ρ) = kργ ,
with constants k > 0 and γ > 1, which gives the constitutive relation for a poly-
tropic gas (cf. (3.3.19) and (3.3.20) of [6]). Weak solutions of (4) are bounded
functions in R

n , which solve it in the sense of distributions. Admissible solutions
have to satisfy an additional inequality, coming from the conservation law for the
energy of the system. For the precise definition, we refer to Section 2.4.

Theorem 2. Let n � 2. Then, for any given function p, there exist bounded ini-
tial data (ρ0, v0) with ρ0 � c > 0 for which there are infinitely many bounded
admissible solutions (ρ, v) of (4) with ρ � c > 0.

Remark 1. In fact, all the solutions constructed in our proof of Theorem 2 satisfy
the energy equality. They are, therefore, also entropy solutions of the full com-
pressible Euler system (see for instance example (d) of Section 3.3 of [6]) and
they show nonuniqueness in this case as well. This failure of uniqueness was sug-
gested by Elling in [10], although the arguments leading him to this suggestion
are completely unrelated to our setting.

In fact the same result also holds for the full compressible Euler system, since
the solutions we construct satisfy the energy equality; hence there is no entropy
production at all.

The paper is organized as follows. Section 2 contains a survey of several admis-
sibility conditions for (1) and the definition of admissible solutions for (4). Section 3
states a general criterion on the existence of wild solutions to (1) for a given initial
data, in Proposition 2.

In Section 4, forming the central part of the paper, we prove Proposition 2
by developing a variant of the “Baire category method” for differential inclusions
which is applicable to evolution equations in the space C

([0,∞[; L2
w(R

n)
)

(see
below). The Baire category method has been developed in [3,5,12,23], and in [7]
we applied it to (1). These techniques do not yield solutions which are weakly con-
tinuous in time—a property that is needed in connection with the strong form of
the energy inequality. Of course the constructive method is easy to modify to yield
such solutions, but Baire category techniques have the advantage of showing very
clearly the arbitrariness in each step of the construction, by exhibiting infinitely
many solutions at the same time. The main point is to find a functional setup in
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which the points of continuity of a Baire-1 map coincides with solutions of the
differential inclusion in the space C

([0,∞[; L2
w(R

n)
)
.

In Section 5 we construct initial data meeting the requirements of Proposition 2,
see Proposition 5. Finally, in Section 6 we prove the non–uniqueness Theorems 1
and 2 using Propositions 2 and 5.

2. An overview of the different notions of admissibility

In this section, we discuss various admissibility criteria for weak solutions
which have been proposed in the literature.

2.1. Weak and strong energy inequalities

All the admissibility criteria considered so far in the literature are motivated
by approximating (1) with the Navier–Stokes equations. We therefore consider the
following vanishing viscosity approximation of (1)

⎧
⎨

⎩

∂tv + div (v ⊗ v)+ ∇ p = ν∆v

div v = 0
v(x, 0) = v0(x),

(5)

where the parameter ν is positive but small. The weak formulation of (5), which
makes sense for any v ∈ L2

loc(R
n×]0,∞[), is the following: v(·, t) is weakly

divergence-free for almost every t > 0, and

∫ ∞

0

∫

Rn

[
v · (∂tϕ + ν∆ϕ)+ 〈v ⊗ v,∇ϕ〉

]
dx dt +

∫

Rn
v0(x)ϕ(x, 0)dx = 0

(6)

for every test function ϕ ∈ C∞
c (R

n × [0,∞[; R
n) with div ϕ = 0.

For smooth solutions, we can multiply (1) and (5) by v and derive corresponding
partial differential equations for |v|2, namely

∂t
|v|2

2
+ div

(

v

( |v|2
2

+ p

))

= 0 (7)

and

∂t
|v|2

2
+ div

(

v

( |v|2
2

+ p

))

= ν∆
|v|2

2
− ν|∇v|2. (8)

Recall that (1) and (5) model the movements of ideal incompressible fluids. If we
assume that the constant density of the fluid is normalized to 1, then |v|2/2 is the
energy density and (7) and (8) are simply the laws of conservation of the energy,
in local form.
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Integrating (7) and (8) in time and space and assuming that p and v are decaying
sufficiently fast at infinity, we deduce formally the following identities:

1

2

∫

Rn
|v|2(x, t)dx = 1

2

∫

Rn
|v|2(x, s)ds for all s, t � 0, (9)

1

2

∫

Rn
|v|2(x, t)dx = 1

2

∫

Rn
|v|2(x, s)dx − ν

∫ t

s

∫

Rn
|∇v|2(x, τ )dx dτ.

(10)

The celebrated result of Leray [14] (see [11] for a modern introduction) shows
the existence of weak solutions to (5) which satisfy a relaxed version of (10).

Theorem 3 (Leray). Let v0 ∈ L2(Rn) be a divergence-free vector field. Then there
exists v ∈ L∞([0,∞[; L2(Rn)) with ∇v ∈ L2(Rn×]0,∞[) such that v(·, t) is
weakly divergence-free and (6) holds for all t > 0. Moreover,

1

2

∫

Rn
|v|2(x, t)dx � 1

2

∫

Rn
|v0|2(x)dx − ν

∫ t

0

∫

Rn
|∇v|2(x, τ )dx dτ

for every t > 0, (11)

and more generally

1

2

∫

Rn
|v|2(x, t)dx � 1

2

∫

Rn
|v|2(x, s)dx − ν

∫ t

s

∫

Rn
|∇v|2(x, τ )dx dτ

for almost every s > 0 and for every t > s. (12)

In what follows, the solutions of Theorem 3 will be called Leray solutions. As
is well known, Leray solutions are weakly continuous in time, that is

t �→
∫

Rn
v(x, t) · ϕ(x)dx (13)

is continuous for any ϕ ∈ L2(Rn; R
n). In other words v ∈ C([0, T ]; L2

w(R
n)).

More generally we have

Lemma 1. Let v be a weak solution of (1) or a distributional solution of (5),
belonging to the space L∞([0, T ]; L2(Rn)). Then, v can be redefined on a set of t
of measure zero so that v ∈ C([0, T ]; L2

w(R
n)).

This property (or a variant of it) is common to all distributional solutions of
evolution equations which can be written as balance laws (see for instance The-
orem 4.1.1 in [6]) and can be proved by standard arguments. In Appendix A we
include, for the reader’s convenience, a proof of a slightly more general statement,
which will be useful later. From now on we will use the slightly shorter notation
C
([0, T ]; L2

w

)
for C

([0, T ]; L2
w(R

n)
)
.

If a weak solution v of (1) is the strong limit of a sequence of Leray solutions
vk of (5) with vanishing viscosity ν = νk ↓ 0, then v inherits in the limit (11)
and (12). Therefore one might say that this limit should be the weakest form of the
energy inequality that solutions of (1) should satisfy. This motivates the following
definition.
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Definition 1. A weak solution v ∈ C
([0, T ]; L2

w

)
of (1) satisfies the weak energy

inequality if
∫

Rn
|v|2(x, t)dx �

∫

Rn
|v0|2(x)dx for every t > 0, (14)

and it satisfies the strong energy inequality if
∫

Rn
|v|2(x, t)dx �

∫

Rn
|v|2(x, s)dx for all s, t with t > s. (15)

Finally, v satisfies the energy equality if equality holds in (14).

2.2. The local energy inequality

Consider next a Leray solution of (5). Since v ∈ L∞
t (L

2
x ) and ∇v ∈ L2

t (L
2
x ), the

Sobolev inequality and a simple interpolation argument shows thatv ∈ L3
loc(R

n×]0,
∞[) if the space dimension n is less or equal to 4.2 In this case, one could formu-
late a weak local form of the energy inequality, requiring that the natural inequality
corresponding to (8) holds in the distributional sense. This amounts to the condition
∫ ∞

0

∫

Rn
|∇v|2ϕ dx dt �

∫ ∞

0

∫

Rn

|v|2
2
(∂tϕ + ν∆ϕ)+

( |v|2
2

+ p

)

v · ∇ϕ dx dt

(16)

for any nonnegative ϕ ∈ C∞
c (R

n×]0,∞[). Note that, since v ∈ L3
loc and

∆p = div div (v ⊗ v) , (17)

by the Calderon–Zygmund estimates we have p ∈ L3/2
loc . Therefore pv is a well–

defined locally summable function.
It is not known whether the Leray solutions satisfy (16). However, it is possible

to construct global weak solutions satisfying the weak energy inequality and the
local energy inequality. This fact has been proved for the first time by Scheffer
in [18] (see also the appendix of [4]). The local energy inequality is a fundamental
ingredient in the partial regularity theory initiated by Scheffer and culminating in
the work of Caffarelli, Kohn and Nirenberg, see [4] and [15].

Theorem 4. Let n � 4 and let v0 ∈ L2(Rn) be a divergence–free vector field. Then
there exists a weak solution v of (5) with ∇v ∈ L2

loc and which satisfies (11), (12)
and (16).

2 Indeed, by the Sobolev embedding, we conclude that v ∈ L2
t (L

2∗
x ). Interpolating

between the spaces L∞L2 and L2 L2∗
we conclude that u ∈ Lr

t (L
s
x ) for every exponents r

and s satisfying the identities

1

r
= 1 − α

2

1

s
= α

2
+ 1 − α

2∗ = 1

2
− 1 − α

n
for some α ∈ [0, 1].

Plugging α = 2/(2 + n) we obtain r = s = 2(1 + 2
n ) =: q . Clearly, q � 3 for n = 2, 3, 4.
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By analogy, for weak solutions of (1), Duchon and Robert in [9] have
proposed to look at a local form of the energy inequality (14).

Definition 2 (Duchon–Robert). Consider an L3
loc weak solution v of (1). We say

that v satisfies the local energy inequality if

∂t
|v|2

2
+ div

(

v

( |v|2
2

+ p

))

� 0 (18)

in the sense of distributions, that is if
∫ ∞

0

∫

Rn

|v|2
2
∂tϕ +

( |v|2
2

+ p

)

v · ∇ϕ � 0 (19)

for every nonnegative ϕ ∈ C∞
c (R

n×]0,∞[).
Similarly, if the equality in (19) holds for every test function, then we say that

v satisfies the local energy equality.

Since (17) holds even for weak solutions of (1), v ∈ L3
loc implies p ∈ L3/2

loc , and
hence the product pv is well–defined. Note, however, that, for solutions of Euler,
the requirement v ∈ L3

loc is not at all natural, even in low dimensions: there is no
a priori estimate yielding this property.

2.3. Measure-valued and dissipative solutions

Two other very weak notions of solutions to incompressible Euler have been
proposed in the literature: DiPerna–Majda’s measure-valued solutions [8] and
Lions’ dissipative solutions (see Chapter 4.4 of [16]).

Both notions are based on considering weakly convergent sequences of Leray
solutions of Navier–Stokes with vanishing viscosity.

On the one hand, the possible oscillations in the nonlinear term v ⊗ v lead to
the appearance of an additional term in the limit, where this term is subject to a
certain pointwise convexity constraint. This can be formulated by saying that the
weak limit is the barycenter of a measure-valued solution (cf. [8] and also [1,25]
for alternative settings using Wigner- and H-measures). A closely related object is
our “subsolution”, defined in Section 4.1.

On the other hand, apart from the energy inequality, a version of the Gron-
wall inequality prevails in the weak limit, leading to the definition of dissipative
solutions, cf. Appendix B. As a consequence, dissipative solutions coincide with
classical solutions as long as the latter exist:

Theorem 5 (Proposition 4.1 in [16]). If there exists a solution v ∈ C([0, T ];
L2(Rn)) of (1) such that (∇v+∇vT ) ∈ L1([0, T ]; L∞(Rn)), then any dissipative
solution of (1) is equal to v on R

n × [0, T ].
This is relevant for our discussion because of the following well known fact.

Proposition 1. Let v ∈ C([0, T ]; L2
w) be a weak solution of (1) satisfying the weak

energy inequality. Then v is a dissipative solution.
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Our construction yields initial data for which the nonuniqueness results of
Theorem 1 hold on any time interval [0, ε[. However, for sufficiently regular ini-
tial data, classical results give the local existence of smooth solutions. Therefore,
Proposition 1 implies that, a fortiori, the initial data considered in our examples
have necessarily a certain degree of irregularity.

Though Proposition 1 is well known, we have not been able to find a refer-
ence for its proof and therefore we include one in Appendix B (see the proof of
Proposition 6).

2.4. Admissible solutions to the p-system

As usual, by a weak solution of (4), we understand a pair (ρ, v) ∈ L∞(Rn) such
that the following identities hold for every test function ψ, ϕ ∈ C∞

c (R
n ×[0,∞[):

∫ ∞

0

∫

Rn

[
ρ∂tψ + ρv · ∇xψ

]
dx dt +

∫

Rn
ρ0(x)ψ(x, 0)dx = 0, (20)

∫ ∞

0

∫

Rn

[
ρv · ∂tϕ + ρ〈v ⊗ v,∇ϕ〉

]
dx dt +

∫

Rn
ρ0(x)v0(x) · ϕ(x, 0)dx = 0.

(21)

Admissible solutions have to satisfy an additional constraint. Consider the inter-
nal energy ε : R

+ → R given through the law p(r) = r2ε′(r). Then admissible
solutions of (20) have to satisfy the inequality

∂t

[

ρε(ρ)+ ρ|v|2
2

]

+ divx

[(

ρε(ρ)+ ρ|v|2
2

+ p(ρ)

)

v

]

� 0 (22)

in the sense of distributions (cf. (3.3.18) and (3.3.21) of [6]). More precisely

Definition 3. A weak solution of (4) is admissible if the following inequality holds
for every nonnegative ψ ∈ C∞

c (R
n × R):

∫ ∞

0

∫

Rn

[(

ρε(ρ)+ ρ|v|2
2

)

∂tψ +
(

ρε(ρ)+ ρ|v|2
2

+ p(ρ)

)

v · ∇xψ

]

+
∫

Rn

(

ρ0ε(ρ0)+ ρ0|v0|2
2

)

ψ(·, 0) � 0. (23)

3. A criterion for the existence of wild solutions

In this section we state some criteria to recognize initial data v0 which allow
for many weak solutions of (1) satisfying the weak, strong and/or local energy
inequality. In order to state it, we need to introduce some of the notation already
used in [7].
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3.1. The Euler equation as a differential inclusion

In particular, we state the following lemma (compare with Lemma 2.1 of [7]).
Here and in what follows we denote by Sn the space of symmetric n × n matrices,
by Sn

0 the subspace of Sn of matrices with trace 0, and by In the n × n identity
matrix.

Lemma 2. Suppose v ∈ L2(Rn × [0, T ]; R
n), u ∈ L2(Rn × [0, T ];Sn

0 ), and q is
a distribution such that

∂tv + div u + ∇q = 0,
div v = 0.

(24)

If (v, u, q) solve (24) and in addition

u = v ⊗ v − 1

n
|v|2 In almost everywhere in R

n × [0, T ] , (25)

then v and p := q − 1
n |v|2 solve (1) distributionally. Conversely, if v and p solve

(1) distributionally, v, u = v⊗v− 1
n |v|2 In and q = p + 1

n |v|2 solve (24) and (25).

Next, for every r � 0, we consider the set of Euler states of speed r

Kr :=
{

(v, u) ∈ R
n × Sn

0 : u = v ⊗ v − r2

n
In, |v| = r

}

(26)

(cf. Section of [7], in particular (25) therein). Lemma 2 says simply that solutions
to the Euler equations can be viewed as evolutions on the manifold of Euler states
subject to the linear conservation laws (24).

Next, we denote by K co
r the convex hull in R

n × Sn
0 of Kr . In the following

Lemma we give an explicit formula for K co
r . Since it will be often used in the

sequel, we introduce the following notation. For v,w ∈ R
n let v � w denote the

symmetrized tensor product, that is

v � w = 1

2
(v ⊗ w + w ⊗ v) , (27)

and let v © w denote its traceless part, that is

v © w = 1

2
(v ⊗ w + w ⊗ v)− v · w

n
In . (28)

Note that

v © v = v ⊗ v − |v|2
n

In;

hence Kr is simply

Kr = {(v, v © v) : |v| = r} .
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Lemma 3. For any w ∈ Sn let λmax(w) denote the largest eigenvalue of w. For
(v, u) ∈ R

n × Sn
0 let

e(v, u) := n

2
λmax(v ⊗ v − u). (29)

Then

(i) e : R
n × Sn

0 → R is convex;

(ii) 1
2 |v|2 � e(v, u), with equality if and only if u = v ⊗ v − |v|2

n In ;
(iii) |u|∞ � 2 n−1

n e(v, u), where |u|∞ denotes the operator norm of the matrix;
(iv) The 1

2r2-sublevel set of e is the convex hull of Kr , that is

K co
r =

{

(v, u) ∈ R
n × Sn

0 : e(v, u) � r2

2

}

. (30)

(v) If (u, v) ∈ R
n × Sn

0 , then
√

2e(v, u) gives the smallest ρ for which (u, v) ∈
K co
ρ .

In view of (ii) if a triple (v, u, q) solving (24) corresponds to a solution of
the Euler equations via the correspondence in Lemma 2, then e(v, u) is simply
the energy density of the solution. In view of this remark, if (v, u, q) is a solu-
tion of (24), e(v, u) will be called the generalized energy density, and E(t) =∫

Rn e(v(x, t), u(x, t))dx will be called the generalized energy.
We postpone the proof of Lemma 3 to the next subsection and we state now

the criterion for the existence of wild solutions. Its proof, which is the core of the
paper, will be given in Section 4.

Proposition 2. Let Ω ⊂ R
n be an open set (not necessarily bounded) and let

ē ∈ C
(
Ω×]0, T [) ∩ C

([0, T ]; L1(Ω)
)
.

Assume there exists (v0, u0, q0) smooth solution of (24) on R
n×]0, T [ with the

following properties:

v0 ∈ C
([0, T ]; L2

w

)
, (31)

supp (v0(·, t), u0(·, t)) ⊂⊂ Ω for all t ∈]0, T [, (32)

e
(
v0(x, t), u0(x, t)

)
< ē(x, t) for all (x, t) ∈ Ω×]0, T [ . (33)

Then there exist infinitely many weak solutions v of the Euler equations (1) in
R

n × [0, T [ with pressure

p = q0 − 1

n
|v|2 (34)

such that

v ∈ C
([0, T ]; L2

w

)
, (35)

v(x, t) = v0(x, t) for t = 0, T, almost everywhere x ∈ R
n, (36)

1

2
|v(x, t)|2 = ē(x, t) 1Ω for every t ∈]0, T [, almost everywhere x ∈ R

n.

(37)
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Remark 2. The condition (32) implies that ē > 0 on Ω×]0, T [. Hence Ω ⊂ R
n

plays the role of the spatial support of the solutions. On the other hand, according
to the statement of the Proposition the pair (v, p) satisfies the Euler equations

∂tv + div v ⊗ v + ∇ p = 0,

div v = 0,

in all of R
n in the sense of distributions. In particular, even though the divergence-

free condition implies that there is no jump of the normal trace of v across the
boundary ∂Ω , the first equation shows that there is a jump of the normal trace of
v ⊗ v which is compensated by a jump of p across ∂Ω .

3.2. Proof of Lemma 3

Proof. (i) Note that

e(v, u) = n

2
max
ξ∈Sn−1

〈
ξ, (v ⊗ v − u)ξ

〉
= n

2
max
ξ∈Sn−1

〈
ξ, 〈ξ, v〉v − uξ

〉

= n

2
max
ξ∈Sn−1

[
|〈ξ, v〉|2 − 〈ξ, uξ 〉

]
. (38)

Since for every ξ ∈ Sn−1 the map (v, u) �→ |〈ξ, v〉|2 −〈ξ, uξ 〉 is convex, it follows
that e is convex.

(ii) Since v ⊗ v = v © v + |v|2
n In , we have, similarly to above, that

e(v, u) = n

2
max
ξ∈Sn−1

〈
ξ, (v © v − u)ξ

〉
+ |v|2

2

= n

2
λmax(v © v − u)+ |v|2

2
.

(39)

Observe that, since v © v−u is traceless, the sum of its eigenvalues is zero. There-
fore λmax(v © v − u) � 0 with equality if and only if v © v − u = 0. This proves
the claim.

(iii) From (38) and (39), we deduce

e(v, u) � n

2
max
ξ∈Sn−1

(
−〈ξ, uξ 〉

)
= −n

2
λmin(u) .

Therefore −λmin(u) � 2
n e(v, u). Since u is traceless, the sum of its eigenvalues is

zero; hence

|u|∞ � (n − 1)|λmin(u)| � 2(n − 1)

n
e(v, u).

(iv) Without loss of generality we assume r = 1. Let

S1 :=
{

(v, u) ∈ R
n × Sn

0 : e(v, u) � 1

2

}

. (40)
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Observe that e(v, u) = 1
2 for all (v, u) ∈ K1; hence, by convexity of e,

K co
1 ⊂ S1.

To prove the opposite inclusion, observe first of all that S1 is convex by (i) and com-
pact by (ii) and (iii). Therefore S1 is equal to the closed convex hull of its extreme
points. In light of this observation it suffices to show that the extreme points of S1
are contained in K1.

To this end let (v, u) ∈ S1\K1. By a suitable rotation of the coordinate axes, we
may assume that v⊗v−u is diagonal, with diagonal entries 1/n � λ1 � · · · � λn .
Note that (v, u) /∈ K1 �⇒ λn < 1/n. Indeed, if λn = 1/n, then we have the iden-
tity u = v ⊗ v − 1

n In . Since the trace of u vanishes, this identity implies |v|2 = 1

and u = v ⊗ v − |v|2
n In , which give (v, u) ∈ K1.

Let e1, . . . , en denote the coordinate unit vectors, and write v = ∑
i v

i ei . Con-
sider the pair (v̄, ū) ∈ R

n × Sn
0 defined by

v̄ = en, ū =
n−1∑

i=1

vi (ei ⊗ en + en ⊗ ei ).

A simple calculation shows that

(v + t v̄)⊗ (v + t v̄)− (u + t ū) = (v ⊗ v − u)+ (2t vn + t2)en ⊗ en .

In particular, since λn < 1/n, e(v + t v̄, u + t ū) � 1/n for all sufficiently small
|t |, so that (v, u)+ t (v̄, ū) ∈ S1. This shows that (v, u) cannot be an extreme point
of S1.

(v) is an easy direct consequence of (iv). ��

4. Proof of Proposition 2

Although the general strategy for proving Proposition 2 is based on Baire cat-
egory arguments as in [7], there are several points in which Proposition 2 differs,
which give rise to technical difficulties. The main technical difficulty is given by
the requirements (35) and (37), where we put a special emphasis on the fact that the
equality in (37) must hold for every time t . The arguments in [7], which are based
on the interplay between weak-strong convergence following [12], yield only solu-
tions in the space L∞([0, T ]; L2(Rn)

)
. Although such solutions can be redefined

on a set of times of measure zero (see Lemma 1) so that they belong to the space
C
([0, T ]; L2

w

)
, this gives the equality

1

2
|v(·, t)|2 = ē(·, t) 1Ω for almost every t ∈ ]0, T [ . (41)

For the construction of solutions satisfying the strong energy inequality this con-
clusion is not enough. Indeed, a consequence of Theorem 1(c) is precisely the fact
that (37) does not follow automatically from (41).
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This section is split into five parts. In Section 4.1 we introduce the functional
framework, we state Lemmas 4, 5 and Proposition 3, and we show how Proposi-
tion 2 follows from them. The two lemmas are simple consequences of functional
analytic facts, and they are proved in Section 4.2. Instead, the perturbation prop-
erty of Proposition 3 is the key point of the abstract argument, and it is the only
place where the particular geometry of the equation enters. In Section 4.3 we intro-
duce the waves which are the basic building blocks for proving Proposition 3. In
Section 4.4 we introduce a suitable potential to localize the waves of Section 4.3.
Finally, in Section 4.5 we use these two tools and a careful construction to prove
Proposition 3.

4.1. Functional setup

We start by defining the space of “subsolutions” as follows. Let v0 be a vector
field as in Proposition 2 with associated modified pressure q0, and consider velocity
fields v : R

n × [0, T ] → R
n which satisfy

div v = 0, (42)

attain the initial and boundary conditions

v(x, 0) = v0(x, 0),

v(x, T ) = v0(x, T ),

supp v(·, t) ⊂⊂ Ω for all t ∈]0, T [,
(43)

and such that there exists a smooth matrix field u : R
n×]0, T [→ Sn

0 with

e
(
v(x, t), u(x, t)

)
< ē(x, t) for all (x, t) ∈ Ω×]0, T [,

supp u(·, t) ⊂⊂ Ω for all t ∈]0, T [,
∂tv + div u + ∇q0 = 0 in R

n × [0, T ].
(44)

Definition 4 (The space of subsolutions). Let X0 be the set of such velocity fields,
that is

X0 =
{
v ∈ C∞(

R
n×]0, T [) ∩ C

([0, T ]; L2
w

) : (42), (43), (44) are satisfied
}
,

and let X be the closure of X0 in C
([0, T ]; L2

w

)
.

We assume that ē ∈ C
([0, T ]; L1(Ω)

)
, therefore there exists a constant c0 such

that
∫

Ω
ē(x, t)dx � c0 for all t ∈ [0, T ]. Since for any v ∈ X0, we have

1

2

∫

Rn
|v(x, t)|2 dx �

∫

Ω

ē(x, t)dx for all t ∈ [0, T ],

we see that X0 consists of functions v : [0, T ] → L2(Rn) taking values in a
bounded subset B of L2(Rn). Without loss of generality we can assume that B is
weakly closed. Let dB be a metric on B which metrizes the weak topology. Then
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(B, dB) is a compact metric space. Moreover, dB induces naturally a metric d on
the space Y := C([0, T ]; (B, dB)) via the definition

d(w1, w2) = max
t∈[0,T ] dB (w1(·, t), w2(·, t)) . (45)

The topology induced by d on Y is equivalent to the topology of Y as subset of
C
([0, T ]; L2

w

)
. Moreover, the space (Y, d) is complete. Finally, X is the closure in

(Y, d) of X0; hence (X, d) is also a complete metric space.

Definition 5 (The functionals Iε,Ω0 ). Next, for any ε > 0 and any bounded open
set Ω0 ⊂ Ω consider the functional

Iε,Ω0(v) := inf
t∈[ε,T −ε]

∫

Ω0

[
1

2
|v(x, t)|2 − ē(x, t)

]

dx .

It is clear that on X each functional Iε,Ω0 is bounded from below.
We are now ready to state the three important building blocks of the proof of

Proposition 2. The first two lemmas are simple consequences of our functional
analytic framework.

Lemma 4. The functionals Iε,Ω0 are lower-semicontinuous on X.

Lemma 5. For all v ∈ X we have Iε,Ω0(v) � 0. If Iε,Ω0(v) = 0 for every ε > 0 and
every bounded open set Ω0 ⊂ Ω , then v is a weak solution of the Euler equations
(1) in R

n × [0, T [ with pressure

p = q0 − 1

n
|v|2,

and such that (35),(36),(37) are satisfied.

The following proposition is the key point in the whole argument, and it is the
only place where the particularities of the equations enter. It corresponds to Lemma
4.6 of [7], though its proof is considerably more complicated due to the special role
played by the time variable in this context.

Proposition 3 (The perturbation property). Let Ω0 and ε > 0 be given. For all
α > 0 there exists β > 0 (possibly depending on ε and Ω0) such that, whenever
v ∈ X0 with

Iε,Ω0(v) < −α ,
there exists a sequence {vk} ⊂ X0 with vk

d→ v and

lim inf
k→∞ Iε,Ω0(vk) � Iε,Ω0(v)+ β .

Remark 3. In fact the proof of Proposition 3 will show that in case Ω is bounded
and ē is uniformly bounded inΩ ×[0, T ], the improvement β in the statement can
be chosen to be

β = min
{
α/2,Cα2

}
,

with C only depending on |Ω| and ‖ē‖∞.
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We postpone the proofs of these facts to the following subsections, and now
show how Proposition 2 follows from them and the general Baire category argu-
ment.

Proof of Proposition 2. Since the functional Iε,Ω0 is lower-semicontinuous on the
complete metric space X and takes values in a bounded interval of R, it can be
written as a pointwise supremum of countably many continuous functionals, see
Proposition 11 in Section 2.7 of Chapter IX of [2]. Therefore, Iε,Ω0 is a Baire-1
map and hence its points of continuity form a residual set in X . We claim that if
v ∈ X is a point of continuity of Iε,Ω0 , then Iε,Ω0(v) = 0.

To prove the claim, assume the contrary, that is, that there exists v ∈ X which is a
point of continuity of Iε,Ω0 and Iε,Ω0(v) < −α for some α > 0. Choose a sequence

{vk} ⊂ X0 such that vk
d→ v. Then in particular Iε,Ω0(vk) → Iε,Ω0(v) and so, by

possibly renumbering the sequence, we may assume that Iε,Ω0(vk) < −α. Using
Proposition 3 for each function vk and a standard diagonal argument, we find a new
sequence {ṽk} ⊂ X0 such that

ṽk
d→ v in X,

lim
k→∞ Iε,Ω0(ṽk) � Iε,Ω0(v)+ β.

This contradicts the assumption that v is a point of continuity of Iε,Ω0 , thereby
proving our claim.

Next, letΩk be an exhausting sequence of bounded open subsets ofΩ . Consider
the set Ξ which is the intersection of

Ξk := {
v ∈ X : I1/k,Ωk is continuous at v

}
.

Ξ is the intersection of countably many residual sets; hence it is residual. Moreover,
if v ∈ Ξ , then Iε,Ω0(v) = 0 for any ε > 0 and any bounded Ω0 ⊂ Ω . By Lemma
5, any v ∈ Ξ satisfies the requirements of Proposition 2. One can easily check that
the cardinality of X is infinite and therefore the cardinality of any residual set in X
is infinite as well. This concludes the proof. ��

4.2. Proofs of Lemma 4 and Lemma 5

Proof of Lemma 4. Assume for a contradiction that there exists vk, v ∈ X such

that vk
d→ v in X , but

lim
k→∞ inf

t∈[ε,T −ε]

∫

Ω0

[
1

2
|vk(x, t)|2 − ē(x, t)

]

dx

< inf
t∈[ε,T −ε]

∫

Ω0

[
1

2
|v(x, t)|2 − ē(x, t)

]

dx .

Then there exists a sequence of times tk ∈ [ε, T − ε] such that

lim
k→∞

∫

Ω0

[
1

2
|vk(x, tk)|2 − ē(x, tk)

]

dx

< inf
t∈[ε,T −ε]

∫

Ω0

[
1

2
|v(x, t)|2 − ē(x, t)

]

dx . (46)
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We may assume without loss of generality that tk → t0. Since the convergence in
X is equivalent to the topology of C

([0, T ]; L2
w

)
, we obtain that

vk(·, tk) ⇀ v(·, t0) in L2(Rn) weakly,

and hence

lim inf
k→∞

∫

Ω0

[
1

2
|vk(x, tk)|2 − ē(x, tk)

]

dx �
∫

Ω0

[
1

2
|v(x, t0)|2 − ē(x, t0)

]

dx .

This contradicts (46), thereby concluding the proof. ��
Proof of Lemma 5. For v ∈ X0 there exists u : R

n×]0, T [→ Sn
0 such that (44)

holds. Therefore
1

2
|v(x, t)|2 � e

(
v(x, t), u(x, t)

)
< ē(x, t)

for all (x, t) ∈ Ω×]0, T [; hence Iε,Ω0(v) � 0 for v ∈ X0. For general v ∈ X the
inequality follows from the density of X0 and the lower-semicontinuity of Iε,Ω0 .

Next, let v ∈ X and assume that Iε,Ω0(v) = 0 for every ε > 0 and every

bounded open Ω0 ⊂ Ω . Let {vk} ⊂ X0 be a sequence such that vk
d→ v in X

and let uk be the associated sequence of matrix fields satisfying (44). The sequence
{uk} satisfies the pointwise estimate

|uk |∞ � 2(n − 1)

n
e(vk, uk) <

2(n − 1)

n
ē

inΩ because of Lemma 3(iii), whereas uk = 0 outsideΩ . Therefore {uk} is locally
uniformly bounded in L∞; hence, by extracting a weakly convergent subsequence
and relabeling, we may assume that

uk
∗
⇀ u in L∞

loc

(
R

n×]0, T [).
Since vk → v in C

([0, T ]; L2
w

)
and Iε,Ω0(v) = 0 for every choice of ε andΩ0, we

see that v satisfies (35), (36) and (37). Moreover, the linear equations
{
∂tv + div u + ∇q0 = 0,
div v = 0

hold in the limit, and—since e is convex—we have

e
(
v(x, t), u(x, t)

)
� ē(x, t) for almost everywhere(x, t) ∈ Ω × [0, T ].

(47)

To prove that v is a weak solution of the Euler equations (1) with pressure
p = q0 − 1

n |v|2, in view of Lemma 2, it suffices to show that

u = v ⊗ v − |v|2
n

In almost everywhere in R
n × [0, T ]. (48)

Combining (37) and (47), we have

1

2
|v(x, t)|2 = e

(
v(x, t), u(x, t)

)
for almost every (x, t) ∈ Ω × [0, T ],

so that (48) follows from Lemma 3(ii) and since u = 0, v = 0 outside Ω . ��
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4.3. Geometric setup

In this subsection we introduce the first tool for proving Proposition 3. The
admissible segments defined below correspond to suitable plane-wave solutions
of (24). More precisely, following Tartar [24], the directions of these segments
belong to the wave cone Λ for the system of linear PDEs (24) (cf. Section 2 of [7]
and in particular (7) therein).

Definition 6. Given r > 0 we will call σ an admissible segment if σ is a line
segment in R

n × Sn
0 satisfying the following conditions:

– σ is contained in the interior of K co
r ,

– σ is parallel to (a, a ⊗ a) − (b, b ⊗ b) for some a, b ∈ R
n with |a| = |b| = r

and b �= ±a.

The following lemma, a simple consequence of Carathéodory’s theorem for
convex sets, ensures the existence of sufficiently large admissible segments (cf.
with Lemma 4.3 of [7]).

Lemma 6. There exists a constant C > 0, depending only on the dimension, such
that for any r > 0 and for any (v, u) ∈ int K co

r there exists an admissible line
segment

σ =
[
(v, u)− (v̄, ū) , (v, u)+ (v̄, ū)

]
(49)

such that

|v̄| � C

r

(
r2 − |v|2

)
and dist (σ, ∂K co

r ) � 1

2
dist ((v, u), ∂K co

r ).

Proof. Let z = (v, u) ∈ int K co
r . First of all, note that (v, u) lies in the inte-

rior of a convex polytope of R
n × Sn

0 spanned by N∗ elements of Kr . Denote by

zi = (vi , vi ⊗ vi − |r |2
n In) such elements, where clearly vi ∈ R

n and |vi | = r . By
possibly perturbing the zi slightly, we can ensure that vi �= ±v j whenever i �= j
(this is possible since (v, u) is contained in the interior of the polytope).

By Caratheodory’s Theorem z can be written as a positive convex combination
of at N + 1 of the zi ’s, where N = n(n + 3)/2 − 1 (the dimension of R

n × Sn
0 ).

In other words

z =
d+1∑

i=1

λi zi ,

where λi ∈ ]0, 1[ ,
∑d+1

i=1 λi = 1 and 1 � d � N . Assume that the coefficients are

ordered so that λ1 = maxi λi . Then, for any j > 1, the segment σ j = [z − λ j
2 (z j −

z1), z + λ j
2 (z j − z1)] satisfies

dist (σ j , ∂K co
r ) � 1

2
dist (z, ∂K co

r ).

Indeed, if B = Bp(z) ⊂ K co
r , then K co

r contains the convex hull of B ∪ {z ±
λ j (z j − z1)}, which obviously contains the open balls Bρ/2(w) for every w ∈ σ j .
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On the other hand z − z1 = ∑d+1
i=2 λi (zi − z1), so that

|v − v1| � d max
i=2...N+1

λi |vi − v1| � N max
i=2...N+1

λi |vi − v1|. (50)

Let j > 1 be such that λ j |v j − v1| = maxi=2...d+1 λi |vi − v1|, and let

(v̄, ū) = 1

2
λ j (z j − z1)

= 1

2
λ j

(
v j − v1, v j ⊗ v j − v1 ⊗ v1

)
.

Then σ , defined by (49), is contained in the interior of K co
r ; hence it is an admissible

segment. Moreover, by the choice of j and using (50)

1

4r N

(
r2 − |v|2

)
= 1

4r N
(r + |v|)(r − |v|) � 1

2N
|v − v1| � |v̄|.

This finishes the proof. ��

4.4. Oscillations at constant pressure

In this section we construct a potential for the linear conservation laws (24).
Similar potentials were constructed in the paper [7] (see Lemma 3.4 therein). How-
ever, the additional feature of this new potential is that it allows one to localize the
oscillations at constant pressure, which are needed in the proof of Proposition 3.

As a preliminary step recall from Section 3 in [7] that solutions of (24) in
R

n correspond to symmetric divergence-free matrix fields on R
n+1 for which the

(n + 1), (n + 1) entry vanishes. To see this it suffices to consider the linear map

R
n × Sn

0 × R � (v, u, q) �→ U =
(

u + q In v

v 0

)

. (51)

Note also that with this identification q = 1
n tr U . Therefore solutions of (24) with

q ≡ 0 correspond to matrix fields U : R
n+1 → R

(n+1)×(n+1) such that

div U = 0, U T = U, U(n+1),(n+1) = 0, tr U = 0. (52)

Furthermore, given a velocity vector a ∈ R
n , the matrix of the corresponding Euler

state is

Ua =
(

a ⊗ a − |a|2
n In a

a 0

)

.

The following proposition gives a potential for solutions of (24) oscillating between
two Euler states Ua and Ub of equal speed at constant pressure.

Proposition 4. Let a, b ∈ R
n such that |a| = |b| and a �= ±b. Then there exists

a matrix-valued, constant coefficient, homogeneous linear differential operator of
order 3

A(∂) : C∞
c (R

n+1) → C∞
c

(
R

n+1; R
(n+1)×(n+1))

and a space–time vector η ∈ R
n+1 with the following properties:
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– U = A(∂)φ satisfies (52) for all φ ∈ C∞
c (R

n+1)

– η is not parallel to en+1;
– if φ(y) = ψ(y · η), then

A(∂)φ(y) = (Ua − Ub) ψ
′′′(y · η).

Proof. A matrix-valued homogeneous polynomial of degree 3

A : R
n+1 → R

(n+1)×(n+1)

gives rise to a differential operator required by the proposition if and only if
A = A(ξ) satisfies

Aξ = 0, AT = A, Ae(n+1) · e(n+1) = 0, tr A = 0 (53)

for all ξ ∈ R
n+1.

Define the (n + 1)× (n + 1) antisymmetric matrices

R = a ⊗ b − b ⊗ a,

Q(ξ) = ξ ⊗ en+1 − en+1 ⊗ ξ,

where in the definition of R we treat a, b ∈ R
n as elements of R

n+1 by setting the
(n + 1)’s coordinate zero. The following facts are easily verified:

(i) Rξ · ξ = 0, Q(ξ)ξ · ξ = 0, due to antisymmetry;
(ii) Rξ · en+1 = 0, since a · en+1 = b · en+1 = 0;

(iii) Rξ · Q(ξ)ξ = 0, because by (i) and (ii) Rξ is perpendicular to the range of
Q.

Let

A(ξ) = Rξ � (
Q(ξ)ξ

) = 1

2

(
Rξ ⊗ (

Q(ξ)ξ
) + (

Q(ξ)ξ
) ⊗ Rξ

)

The properties (i), (ii), (iii) immediately imply (53).
Now define η ∈ R

n+1 by

η = −1

(|a||b| + a · b)2/3

(

a + b − (|a||b| + a · b)en+1

)

.

Since |a| = |b| and a �= ±b, |a||b| + a · b �= 0 so that η is well-defined and
non-zero. Moreover, a direct calculation shows that

A(η) =
(

a ⊗ a − b ⊗ b a − b
a − b 0

)

= Ua − Ub.

Finally, observe that if φ(y) = ψ(y · η), then A(∂)φ(y) = A(η)ψ ′′′(y · η). ��
The following simple lemma ensures that the oscillations of the plane-waves

produced by Proposition 4 have a certain size in terms of functionals of the type
Iε,Ω0 .
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Lemma 7. Let η ∈ R
n+1 be a vector which is not parallel to en+1. Then for any

bounded open set B ⊂ R
n

lim
N→∞

∫

B
sin2(Nη · (x, t)

)
dx = 1

2
|B|

uniformly in t ∈ R.

Proof. Let us write η = (η′, ηn+1) ∈ R
n × R, so that η′ ∈ R

n\{0}. By elementary
trigonometric identities

sin2(Nη · (x, t)
) = sin2(Nη′ · x)

+ sin2(Nηn+1t) cos(2Nη′ · x)

+ 1

2
sin(2Nη′ · x) sin(2Nηn+1t).

For the second term we have
∣
∣
∣

∫

B
sin2(Nηn+1t) cos(2Nη′ · x)dx

∣
∣
∣ �

∣
∣
∣

∫

B
cos(2Nη′ · x)dx

∣
∣
∣ → 0

as N → ∞, and similarly the third term vanishes in the limit uniformly in t . The
statement of the lemma now follows easily. ��

4.5. Proof of the perturbation property

We are now ready to conclude the proof of Proposition 3.
Step 1. Shifted grid. We start by defining a grid on R

n
x × Rt of size h. For

ζ ∈ Z
n let |ζ | = ζ1 + · · · + ζn and let Qζ , Q̃ζ be cubes in R

n centered at ζh with
sidelength h and 3

4 h, respectively, that is

Qζ := ζh +
[

−h

2
,

h

2

]n

, Q̃ζ := ζh +
[

−3h

8
,

3h

8

]n

.

Furthermore, for every (ζ, i) ∈ Z
n × Z let

Cζ,i =
{

Qζ × [ih, (i + 1)h] if |ζ | is even,

Qζ × [(i − 1
2 )h, (i + 1

2 )h] if |ζ | is odd.

Next, we let 0 � ϕ � 1 be a smooth cutoff function on R
n
x × Rt , with support

contained in [−h/2, h/2]n+1, identically 1 on [−3h/8, 3h/8]n+1 and strictly less
than 1 outside. Denote by ϕζ,i the obvious translation of ϕ supported in Cζ,i , and
let

φh :=
∑

ζ∈Zn ,i∈Z

ϕζ,i .

Given an open and bounded set Ω0, let

Ωh
1 =

⋃{
Q̃ζ : |ζ | even, Qζ ⊂ Ω0

}
, Ωh

2 =
⋃{

Q̃ζ : |ζ | odd, Qζ ⊂ Ω0
}
.
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Fig. 1. The “shifted” grid in dimension 1 + 1

Observe that

lim
h→0

|Ωh
ν | = 1

2

(
3

4

)n

|Ω0| for ν = 1, 2,

and for every fixed t the set {x ∈ Ω0 : φh(x, t) = 1} contains at least one of the
sets Ωh

ν , see Fig. 1. Indeed, if

τ h
1 =

⋃

i∈N

[(

i + 1

4

)

h,

(

i + 3

4

)

h

]

and τ h
2 =

⋃

i∈N

[(

i − 1

4

)

h,

(

i + 1

4

)

h

]

,

then τ h
1 ∪ τ h

2 = R, and for ν = 1, 2

φh(x, t) = 1 for all (x, t) ∈ Ωh
ν × τ h

ν .

Now let v ∈ X0 with

Iε,Ω0(v) < −α
for some α > 0, and let u : Ω×]0, T [ → Sn

0 be a corresponding smooth matrix
field satisfying (44). Let

M = max
Ω0×[ε/2,T −ε/2] ē, (54)

and let Eh : Ω0 × [ε, T − ε] → R be the step-function on the grid defined by

Eh(x, t) = Eh(ζh, ih) = 1

2

∣
∣v(ζh, ih)

∣
∣2 − ē(ζh, ih) for (x, t) ∈ Cζ,i .
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This is well-defined provided h < ε. Since v and ē are uniformly continuous on
Ω0 × [ε/2, T − ε/2], for any ν ∈ {1, 2}

lim
h→0

∫

Ωh
ν

Eh(x, t)dx = 1

2

(
3

4

)n ∫

Ω0

[1

2
|v(x, t)|2 − ē(x, t)

]
dx

uniformly in t ∈ [ε, T − ε]. In particular there exists a dimensional constant c > 0
such that, for all sufficiently small grid sizes h and for any t ∈ [ε, T − ε], we have

∫

Ωh
ν
|Eh(x, t)|dx � cα

whenever
∫

Ω0

[
1
2 |v(x, t)|2 − ē(x, t)

]
dx � −α

2 .
(55)

Next, for each (ζ, i) ∈ Z
n × Z such that Cζ,i ⊂ Ω0 × [ε/2, T − ε/2] let

zζ,i = (
v(ζh, ih), u(ζh, ih)

)
,

and, using Lemma 6, choose a segment

σζ,i = [
zζ,i − z̄ζ,i , zζ,i + z̄ζ,i

]

admissible for r = √
2ē(ζh, ih) (cf. Definition 6) with midpoint zζ,i and direction

z̄ζ,i = (
v̄ζ,i , ūζ,i

)
such that

|v̄ζ,i |2 � C

ē(ζh, ih)
|Eh(ζh, ih)|2 � C

M
|Eh(ζh, ih)|2. (56)

Since z := (v, u) and ē are uniformly continuous, for sufficiently small h, we have

e
(
z(x, t)+ λz̄ζ,i

)
< ē(x, t) for all λ ∈ [−1, 1] and (x, t) ∈ Cζ,i . (57)

Thus we fix the grid size 0 < h < ε/2 so that the estimates (55) and (57) hold.
Step 2. The perturbation. Fix (ζ, i) for the moment. Corresponding to the

admissible segment σζ,i , in view of Proposition 4 and the identification (51) there
exists an operator Aζ,i and a direction ηζ,i ∈ R

n+1, not parallel to en+1, such that
for any N ∈ N

Aζ,i
(

N−3 cos
(
Nηζ,i · (x, t)

)) = z̄ζ,i sin
(
Nηζ,i · (x, t)

)
,

and such that the pair (vζ,i , uζ,i ) defined by

(vζ,i , uζ,i )(x, t) := Aζ,i
[
ϕζ,i (x, t) N−3 cos

(
Nηζ,i · (x, t)

)]

satisfies (24) with q ≡ 0. Note that (vζ,i , uζ,i ) is supported in the cylinder Cζ,i and
that
∥
∥
∥(vζ,i , uζ,i )− ϕζ,i z̄ζ,i sin

(
Nηζ,i · (x, t)

)∥∥
∥∞

=
∥
∥
∥Aζ,i

[
ϕζ,i N−3 cos

(
Nηζ,i · (x, t)

)] − ϕζ,i Aζ,i
[

N−3 cos
(
Nηζ,i · (x, t)

)]∥∥
∥∞

� C
(

Aζ,i , ηζ,i , ‖ϕζ,i‖C3
) 1

N
, (58)
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since Aζ,i is a linear differential operator of homogeneous degree 3. Let

(ṽN , ũN ) :=
∑

(ζ,i):Cζ,i ⊂Ω0×[ε,T −ε]
(vζ,i , uζ,i )

and

(vN , uN ) = (v, u)+ (ṽN , ũN ) .

Observe that the sum consists of finitely many terms. Therefore from (57) and (58),
we deduce that there exists N0 ∈ N such that

vN ∈ X0 for all N � N0. (59)

Furthermore, recall that for all (x, t) ∈ Ων × τν we have φh(x, t) = 1; hence

|ṽN (x, t)|2 = |v̄ζ,i |2 sin2(Nηζ,i · (x, t)) ,

where i ∈ N is determined by the inclusion (x, t) ∈ Cζ,i . Since ηζ,i ∈ R
n+1 is not

parallel to en+1, from Lemma 7, we see that

lim
N→∞

∫

Q̃ζ

|ṽN (x, t)|2dx = 1

2

∫

Q̃ζ

|v̄ζ,i |2dx

uniformly in t . In particular, using (56) and summing over all (ζ, i) such that
Cζ,i ⊂ Ω0 × [ε, T − ε], we obtain

lim
N→∞

∫

Ωh
ν

1

2
|ṽN (x, t)|2dx � c

M

∫

Ωh
ν

|Eh(x, t)|2dx (60)

uniformly in t ∈ τν ∩ [ε, T − ε], where c > 0 is a dimensional constant.
Step 3. Conclusion. For each t ∈ [ε, T − ε] we have

∫

Ω0

[
1

2
|vN (x, t)|2 − ē(x, t)

]

dx =
∫

Ω0

[
1

2
|v(x, t)|2 − ē(x, t)

]

dx

+
∫

Ω0

1

2
|ṽN (x, t)|2dx

+
∫

Ω0

ṽN (x, t) · v(x, t)dx .

Since v is smooth on Ω0 × [ε/2, T − ε/2],
∫

Ω0

ṽN (x, t) · v(x, t)dx → 0 as N → ∞, uniformly in t,

hence

lim inf
N→∞ Iε,Ω0(vN ) � lim inf

N→∞ inf
t∈[ε,T −ε]

{∫

Ω0

[1

2
|v|2 − ē

]
dx +

∫

Ω0

1

2
|ṽN |2dx

}

.
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Since the limit in (60) is uniform in t , it follows that

lim inf
N→∞ Iε,Ω0(vN ) � inf

t∈[ε,T −ε]

{∫

Ω0

[1

2
|v|2 − ē

]
dx + c

M
min
ν∈{1,2}

∫

Ωh
ν

|Eh |2dx

}

� inf
t∈[ε,T −ε]

{∫

Ω0

[1

2
|v|2−ē

]
dx+ c

M |Ω0| min
ν∈{1,2}

(∫

Ωh
ν

|Eh |dx
)2

}

,

where we have applied the Cauchy–Schwarz inequality on the last integral. We
conclude, using (55), that

lim inf
N→∞ Iε,Ω0(vN ) � min

{

−α
2
,−α + c

M |Ω0|α
2
}

� −α + min

{
α

2
,

c

M |Ω0|α
2
}

.

On the other hand we recall from (59) that vN ∈ X0 for N � N0 and furthermore

clearly vN
d→ v. This concludes the proof.

5. Construction of suitable initial data

In this section we construct examples of initial data for which we have a “sub-
solution” in the sense of Proposition 2. We fix here a bounded open set Ω ⊂ R

n .

Proposition 5. There exist triples (v̄, ū, q̄) solving (24) in R
n × R and enjoying

the following properties:

q̄ ≡ 0, (v̄, ū) is smooth in R
n × (R\{0}) and v̄ ∈ C

(
R; L2

w

)
, (61)

supp (v̄, ū) ⊂ Ω×] − T, T [, (62)

supp (v̄(·, t), ū(·, t)) ⊂⊂ Ω for all t �= 0 , (63)

e
(
v̄(x, t), ū(x, t)

)
< 1 for all (x, t) ∈ R

n × (R\{0}) . (64)

Moreover

1

2
|v̄(x, 0)|2 = 1 almost everywhere in Ω. (65)

Remark 4. Observe that (64) and (65) together imply that v̄(t) → v̄(0) strongly
in L2(Rn) as t → 0.

Proof. In analogy with Definition 4, we consider the space X0, defined as the set
of vector fields v : R

n×]−T, T [→ R
n in C∞(Rn×]−T, T [) to which there exists

a smooth matrix field u : R
n×] − T, T [→ Sn

0 such that

div v = 0,

∂tv + div u = 0,
(66)

supp (v, u) ⊂ Ω × [−T/2, T/2[ , (67)
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and

e
(
v(x, t), u(x, t)

)
< 1 for all (x, t) ∈ Ω×] − T, T [ . (68)

This choice of X0 corresponds—up to changing the time interval under considera-
tion—in Section 4.1 to the choices (v0, u0, q0) ≡ (0, 0, 0) and ē ≡ 1. Similarly to
before, X0 consists of functions v :]−T, T [ → L2(Rn) taking values in a bounded
set B ⊂ L2(Rn) (recall that in this section we assume Ω is bounded). On B the
weak topology of L2 is metrizable, and correspondingly, we find a metric d on
C(] − T, T [ , B) inducing the topology of C(] − T, T [ , L2

w(R
n)).

Next we note that with minor modifications the proof of the perturbation prop-
erty in Section 4.5 leads to the following claim (cf. Remark 3 following the statement
of Proposition 3):

Claim. LetΩ0 ⊂⊂ Ω be given. Let v ∈ X0 with associated matrix field u and let
α > 0 such that

∫

Ω0

[1

2
|v(x, 0)|2 − 1

]
dx < −α.

Then for any ε > 0 there exists a sequence vk ∈ X0 with associated smooth matrix
field uk such that

supp (vk − v, uk − u) ⊂ Ω0 × [−ε, ε], (69)

vk
d→ v, (70)

and

lim inf
k→∞

∫

Ω0

1

2
|vk(x, 0)|2dx �

∫

Ω0

1

2
|v(x, 0)|2dx + min

{
α

2
,Cα2

}

, (71)

where C is a fixed constant independent of ε, α,Ω0 and v.

Fix an exhausting sequence of bounded open subsets Ωk ⊂ Ωk+1 ⊂ Ω , each
compactly contained inΩ , and such that |Ωk+1\Ωk | � 2−k . Let also ρε be a stan-
dard mollifying kernel in R

n . Using the claim above, we construct inductively a
sequence of velocity fields vk ∈ X0, associated matrix fields uk and a sequence of
numbers ηk < 2−k as follows.

First of all let v1 ≡ 0 and u1 ≡ 0. Having obtained (v1, u1), . . . , (vk, uk) and
η1, . . . , ηk−1, we choose ηk < 2−k in such a way that

∥
∥vk − vk ∗ ρηk

∥
∥

L1 < 2−k . (72)

Furthermore, we define

αk = −
∫

Ωk

[
1

2
|vk(x, 0)|2 − 1

]

dx .

Note that due to (68) we have αk > 0.
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Then we apply the claim withΩk , α = 3
4αk and ε = 2−k T to obtain vk+1 ∈ X0

and associated smooth matrix field uk+1 such that

supp (vk+1 − vk, uk+1 − uk) ⊂ Ωk × [−2−k T, 2−k T
]
, (73)

d(vk+1, vk) < 2−k, (74)
∫

Ωk

1
2 |vk+1(x, 0)|2dx �

∫

Ωk

1
2 |vk(x, 0)|2dx + 1

4 min
{
αk,Cα2

k

}
, (75)

and recalling that d induces the topology of C(] − T, T [, L2
w), we can prescribe in

addition that
∥
∥(vk − vk+1) ∗ ρη j

∥
∥

L2(Ω)
< 2−k for all j � k for t = 0. (76)

From (73) we deduce that there exists v̄ ∈ C(] − T, T [ , L2
w(Ω)) such that

vk
d→ v̄.

From (73) we see that for any compact subset A ofΩ×]−T, 0[ ∪ ]0, T [ there exists
k0 such that (vk, uk)|A = (vk0 , uk0)|A for all k > k0. Hence (vk, uk) converges
in C∞

loc(Ω×] − T, 0[∪]0, T [) to a smooth pair (v̄, ū) solving the Equations (66)
in R

n×]0, T [ and such that (61), (62), (63) and (64) hold. It remains to show that
1
2 |v̄(x, 0)|2 = 1 for almost every x ∈ Ω .

From (74) we obtain

αk+1 � αk − 1

4
min

{
αk,Cα2

k

} + |Ωk+1\Ωk | � αk − 1

4
min

{
αk,Cα2

k

} + 2−k,

from which we deduce that

αk → 0 as k → ∞. (77)

Note that

0 �
∫

Ω

[1

2
|vk(x, 0)|2 − 1

]
dx � −(

αk + |Ω\Ωk |
)

� −(αk + 2−k). (78)

Therefore, by (77),

lim
k↑∞

∫

Ω

[1

2
|vk(x, 0)|2 − 1

]
dx = 0. (79)

Finally, observe that, using (76), for t = 0 and for every k

∥
∥vk ∗ ρηk − v̄ ∗ ρηk

∥
∥

L2 �
∞∑

j=0

∥
∥vk+ j ∗ ρηk − vk+ j+1 ∗ ρηk

∥
∥

L2

� 2−k + 2−(k+1) + · · · � 2−(k−1) .

(80)

On the other hand

‖vk − v̄‖L2 � ‖vk − vk ∗ ρηk ‖L2 + ‖vk ∗ ρηk − v̄ ∗ ρηk ‖L2 + ‖v̄ ∗ ρηk − v̄‖L2 .
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Thus, (72) and (80) imply thatvk(·, 0) → v̄(·, 0) strongly in L2(Rn), which together
with (79) implies that

1

2
|v̄(x, 0)|2 = 1 for almost every x ∈ Ω.

��

6. Proofs of Theorems 1 and 2

Before embarking on the proof of Theorems 1 and 2, we recall the following
well-known fact: in the class of weak solutions in C([0, T ]; L2

w) it is possible to
“glue” solutions which agree at a certain time. This is a consequence of the fact
that if v ∈ C([0, T ]; L2

w), then being a solution of (1) in R
n × [0, T [ in the sense

of distributions is equivalent to v being divergence–free for all t ∈ [0, T ] and
∫

Rn
v(x, t)ϕ(x, t)dx−

∫

Rn
v(x, s)ϕ(x, s)dx =

∫ t

s

∫

Rn
[v∂tϕ+〈v ⊗ v,∇ϕ〉]dx dτ

for all ϕ ∈ C∞
c (R

n × [0, T ]) with div ϕ = 0 and for all s, t ∈ [0, T ].

6.1. Theorem 1

Proof of (a) Let T = 1/2, Ω be the open unit ball in R
n , and (v̄, ū) be as in

Proposition 5. Define ē ≡ 1, q0 ≡ 0,

v0(x, t) :=
{
v̄(x, t) for t ∈ [0, 1/2]
v̄(x, t − 1) for t ∈ [1/2, 1], (81)

u0(x, t) :=
{

ū(x, t) for t ∈ [0, 1/2]
ū(x, t − 1) for t ∈ [1/2, 1]. (82)

It is easy to see that the triple (v0, u0, q0) satisfies the assumptions of Proposition 2
with ē ≡ 1. Therefore, there exists infinitely many solutions v ∈ C([0, 1]; L2

w) of
(1) in R

n × [0, 1] with

v(x, 0) = v̄(x, 0) = v(x, 1) for almost everywhere x ∈ Ω,
and such that

1

2
|v(·, t)|2 = 1Ω for every t ∈ ]0, 1[. (83)

Since 1
2 |v0(·, 0)|2 = 1Ω as well, it turns out that the map t �→ v(·, t) is continuous

in the strong topology of L2.
By the remark above each such v can be extended to a solution in R

n × [0,∞[
which is 1-periodic in time, by setting v(x, t) = v(x, t −k) for t ∈ [k, k +1]. Then
the energy

E(t) = 1

2

∫

Rn
|v(x, t)|2dx



252 Camillo De Lellis & László Székelyhidi Jr.

is equal to |Ω| at every time t ; hence v satisfies the strong energy equality in the
sense specified in Section 2.

Next, notice that 1
2 |v|2 = 1Ω×[0,∞[ and that p = −|v|2/n = − 2

n 1Ω×[0,∞[.
Therefore for any ϕ ∈ C∞

c (R
n×]0,∞[), we have

∫ ∞

0

∫

Rn

|v|2
2
∂tϕ +

( |v|2
2

+ p

)

v · ∇ϕ dx dt

=
∫ ∞

0

∫

Ω

∂tϕ + n − 2

n
v · ∇ϕ dx dt = n − 2

n

∫ ∞

0

∫

Rn
v · ∇ϕ dx dt = 0.

This gives infinitely many solutions satisfying both the strong energy equality and
the local energy equality and all taking the same initial data.

Proof of (b) As in the proof of (a), let T = 1/2, Ω be the open unit ball in
R

n , and (v̄, ū) be as in Proposition 5. Again, as in the proof of (a), we set q0 ≡ 0.
However we choose v0, u0 and ē differently:

v0(x, t) :=
{
v̄(x, t) for t ∈ [0, 1/2]
0 for t ∈ [1/2, 1], (84)

and

u0(x, t) :=
{

ū(x, t) for t ∈ [0, 1/2]
0 for t ∈ [1/2, 1]. (85)

Next consider the function

ẽ(t) =
{

maxx∈Ω e(v0(x, t), u0(x, t)) for t ∈]0, 1]
1 for t = 0.

It is easy to see that ẽ is continuous in [0, 1] (the continuity at t = 0 follows from
(65) and (61)), ẽ(t) < 1 for t > 0, and ẽ = 0 in a neighborhood of t = 1. Define
ê : [0, 1] → R as

ê(t) := (1 − t)+ t max
τ∈[t,1] ẽ(τ ).

Then ê is a continuous monotone decreasing function, with

ê(0) = 1, ê(1) = 0 and 1 > ê(t) > ẽ(t) for every t ∈]0, 1[.
Now, apply Proposition 2 to get solutions v ∈ C([0, 1]; L2

w) of (1) in R
n×[0, T ]

with v(·, 0) = v0(·, 0), v(·, 1) = 0 and such that

1

2
|v(·, t)|2 = ê(t) 1Ω for every t ∈]0, 1[ . (86)

Arguing as in the proof of (a), we conclude that t �→ v(·, t) is a strongly continuous
map. Since v(·, 1) = 0, we can extend v by zero on R

n × [1,∞[ to get a global
weak solution on R

n × [0,∞[. Clearly, this solution satisfies the strong energy
inequality. However, it does not satisfy the energy equality. Note, in passing, that
v satisfies the local energy inequality by the same reason as in (a).



On Weak Solutions of the Euler Equations 253

Proof of (c) As in the proof of (a) and (b), let T = 1/2,Ω be the open unit ball
in R

n , and (v̄, ū) be as in Proposition 5. Again, as in the proof of (a) and (b), we
set q0 ≡ 0. This time we choose v0, u0 as in (b) and ē as in (a).

Let v1 ∈ C([0, 1]; L2
w) be a solution of (1) obtained in Proposition 2. Since

1
2 |v0(·, 0)|2 = 1Ω , as before, the map t �→ v1(·, t) is continuous in the strong
topology of L2 at every t ∈ [0, 1[. However, this map is not strongly continuous at
t = 1, because v1(1, ·) = 0.

Next, let v2 ∈ C([0, 1]; L2
w) be a solution of (1) obtained in Proposition 2 with

ē ≡ 1 and (v0, u0, q0) ≡ (0, 0, 0). Since v1, v2 ∈ C([0, 1]; L2
w) with v1(·, 1) =

v2(·, 0) = v2(·, 1) = 0, the velocity field v : R
n × [0,∞[ → R

n defined by

v(x, t) =
{
v1(x, t) for t ∈ [0, 1]
v2(x, t − k) for t ∈ [k, k + 1], k = 1, 2, . . .

(87)

belongs to the space C([0,∞[ ; L2
w) and therefore v solves (1). Moreover

1

2

∫

|v(x, t)|2dx = |Ω| for every t �∈ N

and

1

2

∫

|v(x, t)|2dx = 0 for every t ∈ N, t � 1.

Hence v satisfies the weak energy inequality but not the strong energy inequality.

6.2. Theorem 2

We recall that p(ρ) is a function with p′(ρ) > 0. Let

α := p(1), β := p(2) and γ = β − α.

Let Ω be the unit ball. Arguing as in the proof of Theorem 1(a), we find an initial
data v0 ∈ L∞(Rn) with |v0|2 = nγ 1Ω and for which there exist infinitely many
weak solutions (v, p̃) of (1) with the following properties:

– v ∈ C([0,∞[; L2) and |v|2 = nγ 1Ω×[0,∞[;
– p̃ = −|v|2/n = −γ 1Ω×[0,∞[.
In particular v is divergence-free and (v, p̃) satisfy

∂tv + div v ⊗ v + ∇ p̃ = 0 in D′(Rn×]0,∞[).
Then (v, p̂) also satisfy this equation, where p̂(x, t) := p̃(x, t) + β. But observe
that for every t � 0 and for almost every x ∈ R

n , we have

p̂(x, t) =
{
α if x ∈ Ω,
β if x /∈ Ω.

so that

p̂(x, t) = p(ρ(x, t)) for almost everywhere (x, t) ∈ R
n × [0,∞[,
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where ρ is defined by

ρ(x, t) =
{

1 if x ∈ Ω,
2 if x /∈ Ω,

for every t � 0. This shows that (21) holds. To see that (20) holds, observe that ρ
is independent of t and v is supported in Ω . Hence

∫ ∞

0

∫

Rn

[
ρ∂tψ + ρv · ∇ψ]

dx dt +
∫

Rn
ρ0(x)ψ(x, 0)dx

=
∫ ∞

0

∫

Ω

v · ∇ψ dx dt =
∫ ∞

0

∫

Rn
v · ∇ψ dx dt = 0,

because v is divergence-free in R
n for every t . Therefore for any such v, the pair

(ρ, v) is a weak solution of (4) with initial data (ρ0, v0), where ρ0 = 1Ω+2 1Rn\Ω .
Each such solution is admissible. Indeed, similarly to the previous calculation

we obtain
∫ ∞

0

∫

Rn

(

ρε(ρ)+ ρ
|v|2

2

)

∂tψ +
(

ρε(ρ)+ ρ
|v|2

2
+ p(ρ)

)

v · ∇ψ dx dt

+
∫

Rn

(

ρ0ε(ρ0)+ ρ0 |v0|2
2

)

ψ(x, 0)dx

=
∫ ∞

0

∫

Ω

|v|2
2
∂tψ + (ε(1)+ nγ + α)v · ∇ψ dx dt +

∫

Ω

|v0|2
2
ψ(x, 0)dx

= 0,

because v ∈ C([0,∞[; L2
w) and v is divergence-free in R

n . This proves (23) and
thus concludes the proof of the theorem.
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Appendix A: Weak continuity in time for evolution equations

In this section we prove a general lemma on the weak continuity in time for certain
evolution equations. Lemma 1 is a corollary of this Lemma and standard estimates
for the Euler and Navier–Stokes equations.

Lemma 8. Let v ∈ L∞(]0, T [; L2(Rn)), u ∈ L1
loc(R

n×]0, T [,Rn×n) and
q ∈ L1

loc(]0, T [×R
n) be distributional solutions of

∂tv + divx u + ∇q = 0 . (88)

Then, after redefining v on a set of t’s of measure zero, v ∈ C(]0, T [; L2
w).
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Proof. Consider a countable set {ϕi } ⊂ C∞
c (R

n,Rn) dense in the strong topology
of L2. Fix ϕi and any test function χ ∈ C∞

c (]0, T [). Testing (88) with χ(t)ϕi (x),
we obtain the following identity:

∫ T

0
Φi∂tχ = −

∫ T

0
χ

∫

Rn

[〈u,∇ϕi 〉 + q divϕi
]
, (89)

where Φi (t) := ∫
ϕi (x) · v(x, t)dx . We conclude therefore that Φ ′

i ∈ L1 in the
sense of distributions. Hence we can redefine each Φi on a set of times τi ⊂]0, T [
of measure zero in such a way that Φi is continuous. We keep the same notation
for these functions, and let τ = ∪iτi . Then τ ⊂]0, T [ is of measure zero and for
every t ∈]0, T [\τ we have

Φi (t) =
∫

ϕi (x) · v(x, t)dx for every i . (90)

Moreover, with c := ‖v‖L∞
t (L2

x )
, we have that |Φi (t)| � c‖ϕi‖L2 for all t ∈]0, T [.

Therefore, for each t ∈]0, T [ there exists a unique bounded linear functional Lt on
L2(Rn,Rn) such that Lt (ϕi ) = Φi (t). By the Riesz representation theorem there
exists v̄(·, t) ∈ L2(Rn) such that

– v̄(·, t) = v(·, t) for every t ∈]0, T [\τ ;
– ‖v̄(·, t)‖L2 � c for every t ;
–

∫
v̄(x, t) · ϕi (x)dx = Φi (t) for every t .

To conclude we show that v̄ ∈ C(]0, T [; L2
w), that is, that for any ϕ ∈ L2(Rn,Rn)

the function Φ(t) := ∫
v(x, t) · ϕ(x)dx is continuous on ]0, T [. Since the set {ϕi }

is dense in L2(Rn,Rn), we can find a sequence sequence { jk} such that ϕ jk → ϕ

strongly in L2. Then

∣
∣Φ(t)−Φ jk (t)

∣
∣ � c

∥
∥ϕ jk − ϕ

∥
∥

L2 . (91)

Therefore Φ jk converges uniformly to Φ, from which we derive the continuity of
Φ. This shows that v̄ ∈ C(]0, T [; L2

w) and concludes the proof. ��

Appendix B: Dissipative solutions

We follow here the book [16] and define dissipative solutions of (1). First of all, for
any divergence-free vector field v ∈ L2

loc(R
n × [0, T ]), we consider the following

two distributions:

– The symmetric part of the gradient d(v) := 1
2 (∇v + ∇vt );

– E(v) given by

E(v) := −∂tv − P(div (v ⊗ v)) . (92)
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Here P denotes the Helmholtz projection on divergence-free fields, so that if p(x, t)
is the potential-theoretic solution of −∆p = ∑

i, j ∂
2
i j (v

iv j ), then

P(div (v ⊗ v)) = div (v ⊗ v)+ ∇ p .

Finally, when d(v) is locally summable, we denote by d−(v) the negative part of
its smallest eigenvalue, that is (−λmin(d(v)))+.
P. L. Lions introduced the following definition in [16]:

Definition 7. Let v ∈ L∞([0, T ]; L2(Rn))∩C([0, T ]; L2
w). Then v is a dissipative

solution of (1) if the following two conditions hold:

– v(x, 0) = v0(x) for x ∈ R
n ;

– div v = 0 in the sense of distributions;
– whenever w ∈ C([0, T ]; L2(Rn)) is such that d(w) ∈ L1

t (L
∞
x ),

E(w) ∈ L1
t (L

2
x ) and div w = 0, then

‖v(·, t)− w(·, t)‖2
L2

x

� e
∫ t

0 2‖d−(w)‖L∞
x

dτ ‖v0(·)− w(·, 0)‖2
L2

x

+ 2
∫ t

0

∫

Rn
e
∫ t

s 2‖d−(w)‖L∞
x

dτ E(w)(x, s) · (v(x, s)− w(x, s))dx ds

(93)

for every t ∈ [0, T ].
We next come to the proof of Proposition 1 which we state again for the reader’s
convenience.

Proposition 6. Let v ∈ C([0, T ]; L2
w) be a weak solution of (1) satisfying the weak

energy inequality. Then v is a dissipative solution.

Proof. As already remarked at page 156 of [16], it suffices to check Definition 7
for smooth w. This is achieved by suitably regularizing the test function w of (93)
and observing that if w ∈ C([0, T ]; L2(Rn)) is such that d(w) ∈ L1

t (L
∞
x ), then

any approximation wk such that

(a) wk → w in C([0, T ]; L2);
(b) d(wk) → d(w) almost everywhere in R

n × [0, T ];
(c) lim supk→∞ ‖d(wk)‖L∞

x
� ‖d(w)‖L∞

x

also satisfies

E(wk) → E(w) in L1
t L2

x

and hence one can pass to the limit in (93). Indeed, this follows from the observation
that P(E(w)) = 2P(d(w) · w) (see the computations on page 155 of [16]).
Step 1. Next we show that it suffices to check Definition 7 when w is compactly
supported in space. Indeed, fix w as above. We claim that we can approximate w
with compactly supported divergence–free vector fieldswk such that (a),(b) and (c)
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above hold. The reader may consult Appendix A of [16] and jump directly to Step 2.
Otherwise, the following is a short self-contained proof.

Fix a smooth cut-off function χ equal to 1 on the ball B1(0), supported in the
ball B2(0), and taking values between 0 and 1, and set χr (x) = χ(r−1x). Let ξ be
the potential–theoretic solution of ∆ξ = curl w, so that w = curl ξ . Recall that in
dimension n = 2 the curl operator can be defined as curl = (−∂2, ∂1), in dimen-
sion n = 3, it is given by curl w = ∇ × w and ξ is obtained via the Biot–Savart
law. Let 〈ξ 〉k = 1

|B2k\Bk |
∫

B2k\Bk
ξ dx and let

wk = curl
(
χk(ξ − 〈ξ 〉k)

)
.

Clearly wk is compactly supported and divergence–free. Since ξ is smooth, and
‖∂i (χk)‖∞ � Ck−1 and ‖∂2

i j (χk)‖∞ � Ck−2, we see that

d(wk)(·, t) → d(w)(·, t) locally uniformly

for every t . Thus (b),(c) follow easily. Moreover ‖∇ξ(·, t)‖L2
x

� ‖w(·, t)‖L2
x

and
hence, using the Poincaré inequality, for every t ∈ [0, T ] we have

‖wk(t, ·)− w(t, ·)‖2
L2

x
� C

∫

Rn\Bk (0)
|w|2

+ C‖∇χk−1‖2
C0

∫

B2k (0)\Bk (0)
|ξ − 〈ξ 〉k |2

� C
∫

Rn\Bk (0)
|w|2 + C

k2

∫

B2k\Bk (0)
|∇ξ |2

� C
∫

Rn\Bk (0)
|w|2 + C

k2

∫

Rn
|w|2 .

Since w ∈ C([0, T ]; L2(Rn)), we deduce (a).
Step 2. We are now left with task of showing (93) whenw is a smooth test function
compactly supported in space. Consider the function

F(t) :=
∫

Rn
|w(x, t)− v(x, t)|2dx .

Since w is smooth and v ∈ C([0, T ], L2
w), F is lower-semicontinuous. Moreover,

due to the weak energy inequality v(t, ·) → v(0, ·) strongly in L2
loc as t ↓ 0. So F

is continuous at 0. We claim that, in the sense of distributions,

dF

dt
� 2

∫

Rn

[
E(w) · (v − w)− d(w)(v − w) · (v − w)

]
dx . (94)

From this inequality we infer

dF

dt
� 2‖d−(w)(t, ·)‖L∞

x
F(t)+ 2

∫

Rn

[
E(w) · (v − w)

]
dx . (95)
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From the continuity of F at t = 0 and Gronwall’s Lemma, we conclude (93) for
almost everywhere t . By the lower semicontinuity of F , (93) actually holds for
every t . Therefore it remains to prove (94). We expand F as

F(t) =
∫

Rn
|v(x, t)|2dx +

∫

Rn
|w(x, t)|2dx − 2

∫

Rn

[
v(x, t) · w(x, t)

]
dx

=: F1(t)+ F2(t)+ F3(t).

The weak energy inequality implies d
dt F1(t) � 0 and a standard calculation gives

dF2

dt
(t) = −2

∫

Rn

[
E(w) · w]

dx .

It remains to show that

dF3

dt
= 2

∫

Rn

[
E(w) · v − d(w)(v − w) · (v − w)

]
dx (96)

We fix a smooth function ψ ∈ C∞
c (]0, T [) and test (1) (or more precisely (3)) with

w(x, t)ψ(t). It then follows that

2
∫

R

∫

Rn
v · wψ ′ dx dt = −2

∫

R

ψ

∫

Rn

[
v · ∂tw + 〈v ⊗ v,∇w〉]dx dt. (97)

Inserting ∂tw = −E(w)− P(div(w⊗w)) and taking into account that div v = 0,
we obtain

∫

R

F3(t)ψ
′(t)dt = 2

∫

R

ψ

∫

Rn

[〈v ⊗ v,∇w〉 − div(w ⊗ w) · v]dx dt

−2
∫

R

ψ

∫

Rn
E(w) · v dx dt (98)

Next, observe that div(w ⊗ w) · v = ∑
j,i v jwi∂iw j and that 〈v ⊗ v,∇w〉 =∑

j,i v jvi∂iw j . Therefore we have

〈v ⊗ v,∇w〉 − div(w ⊗ w) · v = ∇w (v − w) · v. (99)

On the other hand,

∇w (v − w) · w =
∑

i, j

(vi − wi )∂iw jw j = (v − w) · ∇ 1

2
|w|2.

Since v−w is divergence-free in the sense of distributions and |w|2/2 is a smooth
function compactly supported in space, integrating by parts, we get

∫

R

ψ

∫

Rn

[∇w (v − w) · w]
dx dt = 0. (100)

From (98), (99) and (100), we obtain
∫

R

F3(t)ψ
′(t)dt = 2

∫

R

ψ

∫

Rn

[∇w (v − w) · (v − w)
]
dx dt

−2
∫

R

ψ

∫

Rn
E(w) · v dx dt. (101)
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Finally, observe that

∇w(v − w) · (v − w) = 〈∇w, (v − w)⊗ (v − w)
〉 = 〈

d(w), (v − w)⊗ (v − w)
〉
,

since (v − w) ⊗ (v − w) is a symmetric matrix. Plugging this into (101), by the
arbitrariness of the test function ψ , we obtain (96). ��
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