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Abstract. In this paper we derive new simple estimates for ordinary differential equations
with Sobolev coefficients. These estimates not only allow to recover some old and recent
results in a simple direct way, but they also have some new interesting corollaries.

1. Introduction

When b : [0, T ] × R
n → R

n is a bounded smooth vector field, the flow of b is the smooth
map X : [0, T ] × R

n → R
n such that














dX

dt
(t, x) = b(t, X(t, x)) , t ∈ [0, T ]

X(0, x) = x .

(1)

Out of the smooth context (1) has been studied by several authors. In particular, the follow-
ing is a common definition of generalized flow for vector fields which are merely integrable.

Definition 1.1 (Regular Lagrangian flow). Let b ∈ L1
loc([0, T ]×R

n; Rn). We say that a map
X : [0, T ] × R

n → R
n is a regular Lagrangian flow for the vector field b if

(i) for a.e. x ∈ R
n the map t 7→ X(t, x) is an absolutely continuous integral solution of

γ̇(t) = b(t, γ(t)) for t ∈ [0, T ], with γ(0) = x;
(ii) there exists a constant L independent of t such that

L
n
(

X(t, ·)−1(A)
)

≤ LL
n(A) for every Borel set A ⊆ R

n. (2)

The constant L in (ii) will be called the compressibility constant of X.

Existence, uniqueness and stability of regular Lagrangian flows have been proved in [9] by
DiPerna and Lions for Sobolev vector fields with bounded divergence. In a recent ground-
breaking paper (see [1]) this result has been extended by Ambrosio to BV coefficients with
bounded divergence.

The arguments of the DiPerna–Lions theory are quite indirect and they exploit (via the
theory of characteristcs) the connection between (1) and the Cauchy problem for the transport
equation

{

∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0

u(0, ·) = ū .
(3)

1
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Assuming that the divergence of b is in L1 we can define bounded distributional solutions of
(3) using the identity b ·∇xu = ∇x · (bu)−u∇x · b. Following DiPerna and Lions we say that
a distributional solution u ∈ L∞([0, T ] × R

n) of (3) is a renormalized solution if
{

∂t[β(u(t, x))] + b(t, x) · ∇x[β(u(t, x))] = 0

[β(u)](0, ·) = β(ū)
(4)

holds in the sense of distributions for every test function β ∈ C1(R; R). In their seminal paper
DiPerna and Lions showed that, if the vector field b has Sobolev regularity with respect to
the space variable, then every bounded solution is renormalized. Ambrosio [1] extended this
result to BV vector fields with divergence in L1. Under suitable compressibility assumptions
(for instance ∇x · b ∈ L∞), the renormalization property gives uniqueness and stability
for (3) (the existence follows in a quite straightforward way from standard approximation
procedures).

In turn, this uniqueness and stability property for (3) can be used to show existence,
uniqueness and stability of regular Lagrangian flows (we refer to [9] for the original proofs
and to [1] for a different derivation of the same conclusions).

In this paper we show how many of the ODE results of the DiPerna–Lions theory can be
recovered from simple a–priori estimates, directly in the Lagrangian formulation. Though
our approach works under various relaxed hypotheses, namely controlled growth at infinity
of the field b and Lp

loc and L log L assumptions on Dxb, for simplicity let us consider a vector
field b in W 1,p ∩ L∞, p > 1. Assuming the existence of a regular Lagrangian flow X, we
give estimates of integral quantities depending on X(t, x)−X(t, y). These estimates depend
only on ‖b‖W 1,p + ‖b‖∞ and the compressibility constant L of Definition 1.1(ii). Moreover,
a similar estimate can be derived for the difference X(t, x) − X ′(t, x) of regular Lagrangian
flows of different vector fields b and b′, depending only on the compressibility constant of b
and on ‖b‖W 1,p + ‖b‖∞ + ‖b′‖∞ + ‖b − b′‖L1 . As direct corollaries of our estimates we then
derive:

(a) Existence, uniqueness, stability, and compactness of regular Lagrangian flows;
(b) Some mild regularity properties, like the approximate differentiability proved in [5],

that we recover in a new quantitative fashion.

The regularity property in (b) has an effect on solutions to (3): we can prove that for
b ∈ W 1,p∩L∞ with bounded divergence, solutions of (3) propagate the same mild regularity of
the corresponding regular Lagrangian flow (we refer to Section 5 for the precise statements).

Our approach has been inspired by a recent result of Ambrosio, Lecumberry and Maniglia
[5], proving the almost everywhere approximate differentiability of regular Lagrangian flows.
Indeed, some of the quantities we estimate in this paper are taken directly from [5], whereas
others are just suitable modifications. However, the way we derive our estimates is different:
our analysis relies all on the Lagrangian formulation, whereas that of [5] relies on the Eulerian
one.
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Unfortunately we do not recover all the results of the theory of renormalized solutions.
The main problem is that our estimates do not conver the case Db ∈ L1. Actually, the
extension to the case Db ∈ L1 of our (or of similar) estimates would answer positively to the
following conjecture of Bressan (see [6]):

Conjecture 1.2 (Bressan’s compactness conjecture). Let bk : R
+ × R

n → R
n, k ∈ N, be

smooth maps and denote by Φk the solutions of the ODEs:










d

dt
Φk(t, x) = bk(t, Φk(t, x))

Φk(0, x) = x .

(5)

Assume that ‖bk‖∞ +‖∇bk‖L1 is uniformly bounded and that the fluxes Φk are nearly incom-
pressible, i.e. that

C−1 ≤ det(∇xΦk(t, x)) ≤ C for some constant C > 0. (6)

Then the sequence {Φk} is strongly precompact in L1
loc.

At the present stage, the theory of renormalized solutions cannot be extended to cover
this interesting case (we refer to [4] and to the survey article [8] for the results achieved so far
in the framework of renormalized solutions). In another paper, [7], Bressan raised a second
conjecture on mixing properties of flows of BV vector field (see Conjecture 6.1 below), which
can be considered as a quantitative version of Conjecture 1.2. In Section 6 we show how our
estimates settle the W 1,p (p > 1) analog of Bressan’s mixing Conjecture.

In order to keep the presentation simple, in Section 2 we give the estimates and the various
corollaries in the case b ∈ W 1,p ∩L∞ and in Section 3 we present the more general estimates
and their consequences. We thank Herbert Koch for suggesting us that the Lipschitz esti-
mates hold under the assumption Db ∈ L log L (see Remark 2.4 and the discussion at the
beginning of Section 4). In Section 4 we show how to prove directly, via suitable a–priori esti-
mates, the compactness conclusion of Conjecture 1.2 when Dbk is bounded in L log L. It has
been pointed out to us independently by François Bouchut and by Pierre-Emmanuel Jabin
that a more careful analysis allows to extend this approach when the sequence {Dbk} is equi–
integrable. In Section 5 we discuss the regularity results for transport equations mentioned
above. Finally, in Section 6 we prove the W 1,p analog of Bressan’s mixing Conjecture.

1.1. Notation and preliminaries. Constants will be denoted by c and ca1,...,aq , where we
understand that in the first case the constant is universal and in the latter it depends only
on the quantities a1, . . . , aq. Therefore, during several computations, we will use the same
symbol for constants which change from line to line. When A is a measurable subset of R

n

we denote by |A| or by L n(A) its Lebesgue measure. When f : R
n ⊃ U → V is continuous,

we denote by Lip(f) the Lipschitz constant of f . When f is measurable we define

Lip(f) := min
{

Lip(g) : g is continuous and g = f almost everywhere
}

.
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When µ is a measure on Ω and f : Ω → Ω′ a measurable map, f#µ will denote the push–
forward of µ, i.e. the measure ν such that

∫

ϕdν =
∫

ϕ ◦ fdµ for every ϕ ∈ Cc(Ω
′).

2. A priori estimates for bounded vector fields and corollaries

In this section we show our estimates in the particular case of bounded vector fields.
This estimate and its consequences are just particular cases of the more general theorems
presented in the next sections. However, we decided to give independent proofs in this
simplified setting in order to illustrate better the basic ideas of our analysis.

2.1. Estimate of an integral quantity and Lipschitz estimates.

Theorem 2.1. Let b be a bounded vector field belonging to L1([0, T ]; W 1,p(Rn)) for some
p > 1 and let X be a regular Lagrangian flow associated to b. Let L be the compressibility
constant of X, as in Definition 1.1(ii). For every p > 1 define the following integral quantity:

Ap(R, X) =

[
∫

BR(0)

(

sup
0≤t≤T

sup
0<r<2R

∫

Br(x)

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dy

)p

dx

]1/p

.

Then we have
Ap(R, X) ≤ C

(

R, L, ‖Dxb‖L1(Lp)

)

. (7)

Remark 2.2. A small variant of the quantity A1(R, X) was first introduced in [5] and
studied in an Eulerian setting in order to prove the approximate differentiability of regular
Lagrangian flows. One basic observation of [5] is that a control of A1(R, X) implies the Lip-
schitz regularity of X outside of a set of small measure. This elementary Lipschitz estimate
is shown in Proposition 2.3. The novelty of our point of view is that a direct Lagrangian
approach allows to derive uniform estimates as in (7). These uniform estimates are then
exploited in the next subsections to show existence, uniqueness, stability and regularity of
the regular Lagrangian flow.

All the computations in the following proof can be justified using the definition of regular
Lagrangian flow: the differentiation of the flow with respect to the time gives the vector field
(computed along the flow itself), thanks to condition (i); condition (ii) implies that all the
changes of variable we are performing just give an L in front of the integral.

During the proof, we will use some tools borrowed from the theory of maximal functions.
We recall that, for a function f ∈ L1

loc(R
n; Rm), the local maximal function is defined as

Mλf(x) = sup
0<r<λ

∫

Br(x)

|f(y)| dy .

For more details about the maximal function and for the statements of the lemmas we are
going to use, we refer to Appendix A.

Proof of Theorem 2.1. For 0 ≤ t ≤ T , 0 < r < 2R and x ∈ BR(0) define

Q(t, x, r) :=

∫

Br(x)

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dy .
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From Definition 1.1(i) it follows that for a.e. x and for every r > 0 the map t 7→ Q(t, x, r) is
Lipschitz and

dQ

dt
(t, x, r) ≤

∫

Br(x)

∣

∣

∣

∣

dX

dt
(t, x) −

dX

dt
(t, y)

∣

∣

∣

∣

(|X(t, x) − X(t, y)|+ r)−1 dy

=

∫

Br(x)

|b(t, X(t, x)) − b(t, X(t, y))|

|X(t, x) − X(t, y)|+ r
dy . (8)

We now set R̃ = 4R + 2T‖b‖∞. Since we clearly have |X(t, x) − X(t, y)| ≤ R̃, applying
Lemma A.3 we can estimate

dQ

dt
(t, x, r) ≤ cn

∫

Br(x)

(MR̃Db(t, X(t, x)) + MR̃Db(t, X(t, y)))
|X(t, x) − X(t, y)|

|X(t, x) − X(t, y)| + r
dy

≤ cnMR̃Db(t, X(t, x)) + cn

∫

Br(x)

MR̃Db(t, X(t, y)) dy . (9)

Integrating with respect to the time, passing to the supremum for 0 < r < 2R and exchanging
the supremums we obtain

sup
0≤t≤T

sup
0<r<2R

Q(t, x, r)

≤ c + cn

∫ T

0

MR̃Db(t, X(t, x)) dt + cn

∫ T

0

sup
0<r<2R

∫

Br(x)

MR̃Db(t, X(t, y)) dydt . (10)

Taking the Lp norm over BR(0) we get

Ap(R, X) ≤ cp,R + cn

∥

∥

∥

∥

∫ T

0

MR̃Db(t, X(t, x)) dt

∥

∥

∥

∥

Lp(BR(0))

(11)

+cn

∥

∥

∥

∥

∫ T

0

sup
0<r<2R

∫

Br(x)

MR̃Db(t, X(t, y)) dydt

∥

∥

∥

∥

Lp(BR(0))

. (12)

Recalling Definition 1.1(ii) and Lemma A.2, the integral in (11) can be estimated with

cnL
1/p

∫ T

0

‖MR̃Db(t, x)‖Lp(BR+T‖b‖∞ (0)) dt ≤ cn,pL
1/p

∫ T

0

‖Db(t, x)‖Lp(BR+R̃+T‖b‖∞
(0)) dt .

(13)
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The integral in (12) can be estimated in a similar way with

cn

∫ T

0

∥

∥

∥

∥

sup
0<r<2R

∫

Br(x)

[(MR̃Db) ◦ (t, X(t, ·))] (y) dy

∥

∥

∥

∥

Lp(BR(0))

dt

= cn

∫ T

0

‖M2R [(MR̃Db) ◦ (t, X(t, ·))] (x)‖Lp(BR(0)) dt

≤ cn,p

∫ T

0

‖[(MR̃Db) ◦ (t, X(t, ·))] (x)‖Lp(B3R(0)) dt

= cn,p

∫ T

0

‖(MR̃Db) ◦ (t, X(t, x))‖Lp(B3R(0)) dt

≤ cn,pL
1/p

∫ T

0

‖MR̃Db(t, x)‖Lp(B3R+T‖b‖∞ (0)) dt

≤ cn,pL
1/p

∫ T

0

‖Db(t, x)‖Lp(B3R+T‖b‖∞+R̃(0)) dt . (14)

Combining (11), (12), (13) and (14), we obtain the desired estimate for Ap(R, X). �

We now show how the estimate of the integral quantity gives a quantitative Lipschitz
estimate.

Proposition 2.3 (Lipschitz estimates). Let X : [0, T ]×R
n → R

n be a map. Then, for every
ε > 0 and every R > 0, we can find a set K ⊂ BR(0) such that |BR(0) \K| ≤ ε and for any
0 ≤ t ≤ T we have

Lip (X(t, ·)|K) ≤ exp
cnAp(R, X)

ε1/p
.

Proof. Fix ε > 0 and R > 0. We can suppose that the quantity Ap(R, X) is finite, otherwise
the thesis is trivial; under this assumption, thanks to (34) we obtain a constant

M = M(ε, p, Ap(R, X)) =
Ap(R, X)

ε1/p

and a set K ⊂ BR(0) with |BR(0) \ K| ≤ ε and

sup
0≤t≤T

sup
0<r<2R

∫

Br(x)

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dy ≤ M ∀x ∈ K .

This clearly means that

∫

Br(x)

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dy ≤ M for every x ∈ K, t ∈ [0, T ] and r ∈]0, 2R[.
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Now fix x, y ∈ K. Clearly |x − y| < 2R. Set r = |x − y| and compute

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

=

∫

Br(x)∩Br(y)

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dz

≤

∫

Br(x)∩Br(y)

log

(

|X(t, x) − X(t, z)|

r
+ 1

)

+ log

(

|X(t, y)− X(t, z)|

r
+ 1

)

dz

≤ cn

∫

Br(x)

log

(

|X(t, x) − X(t, z)|

r
+ 1

)

dz + cn

∫

Br(y)

log

(

|X(t, y) − X(t, z)|

r
+ 1

)

dz

≤ cnM =
cnAp(R, X)

ε1/p
.

This implies that

|X(t, x) − X(t, y)| ≤ exp

(

cnAp(R, X)

ε1/p

)

|x − y| for every x, y ∈ K.

Therefore

Lip(X(t, ·)|K) ≤ exp
cnAp(R, X)

ε1/p
.

�

Remark 2.4. The quantitative Lipschitz estimates also hold under the assumption b ∈
L1([0, T ]; W 1,1(Rn)) ∩ L∞(Rn) and MλDb ∈ L1([0, T ]; L1(Rn)) for every λ > 0. To see this
we define

Φ(x) =

∫ T

0

MR̃Db(t, X(t, x)) dt

and we go back to (10), which can be rewritten as

sup
0≤t≤T

sup
0<r<2R

Q(t, x, r) ≤ c + cnΦ(x) + cnM2RΦ(x) .

For ε < 1/(4c) we can estimate
∣

∣

∣

∣

{

x ∈ BR(0) : c + cnΦ(x) + cnM2RΦ(x) >
1

ε

}
∣

∣

∣

∣

≤

∣

∣

∣

∣

{

x ∈ BR(0) : cnΦ(x) >
1

4ε

}
∣

∣

∣

∣

+

∣

∣

∣

∣

{

x ∈ BR(0) : cnM2RΦ(x) >
1

2ε

}
∣

∣

∣

∣

≤ εcn

∫

BR(0)

Φ(x) dx + εcn

∫

B3R(0)

Φ(x) dx

≤ εcn

∫ T

0

∫

B3R(0)

MR̃Db(t, X(t, x)) dxdt

≤ εcnL

∫ T

0

∫

B3R+T‖b‖∞ (0)

MR̃Db(t, x) dxdt ,
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where in the third line we applied Chebyshev inequality and the weak estimate (33) and in
the last line Definition 1.1(ii). This means that it is possible to find a set K ⊂ BR(0) with
|BR(0) \ K| ≤ ε such that

∫

Br(x)

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dy ≤
cnL

ε

∫ T

0

∫

B3R+T‖b‖∞ (0)

MR̃Db(t, x) dxdt

for every x ∈ K, t ∈ [0, T ] and r ∈]0, 2R[. Arguing as in the final part of the proof of
Proposition 2.3 we obtain the Lipschitz estimate also in this case.

2.2. Existence, regularity and compactness. In this subsection we collect three direct
corollaries of the estimates derived above, concerning approximate differentiability, existence
and compactness of regular Lagrangian flows.

Corollary 2.5 (Approximate differentiability of the flow). Let b be a bounded vector field
belonging to L1([0, T ]; W 1,p(Rn)) for some p > 1, or belonging to L1([0, T ]; W 1,1(Rn)) and
satisfying MλDb ∈ L1([0, T ]; L1(Rn)) for every λ > 0, and let X be a regular Lagrangian flow
associated to b. Then X(t, ·) is approximately differentiable a.e. in R

n, for every t ∈ [0, T ].

Proof. The proof is an immediate consequence of the Lusin type approximation of the flow
with Lipschitz maps given in Proposition 2.3 and Remark 2.4 and of Theorem B.1. �

Corollary 2.6 (Compactness of the flow). Let {bh} be a sequence of vector fields equi-
bounded in L∞([0, T ] × R

n) and in L1([0, T ]; W 1,p(Rn)) for some p > 1. For each h, let Xh

be a regular Lagrangian flow associated to bh and let Lh be the compressibility constant of Xh,
as in Definition 1.1(ii). Suppose that the sequence {Lh} is equi-bounded. Then the sequence
{Xh} is strongly precompact in L1

loc([0, T ] × R
n).

Proof. Fix δ > 0 and R > 0. Since {bh} is equi-bounded in L∞([0, T ]×R
n), we deduce that

{Xh} is equi-bounded in L∞([0, T ] × BR(0)): let C1(R) be an upper bound for this norms.
Applying Proposition 2.3, for every h we find a Borel set Kh,δ such that |BR(0) \ Kh,δ| ≤ δ
and

Lip
(

Xh(t, ·)|Kh,δ

)

≤ exp
cnAp(R, Xh)

δ1/p
for every t ∈ [0, T ].

Recall first Theorem 2.1 implies that Ap(R, Xh) is equi-bounded with respect to h, because
of the assumptions of the corollary. Moreover, using Definition 1.1(i) and thanks again to
the equi-boundedness of {bh} in L∞([0, T ] × R

n), we deduce that there exists a constant
Cδ

2(R) such that

Lip
(

Xh|[0,T ]×Kh,δ

)

≤ Cδ
2(R) .

If we now set Bh,δ = [0, T ]×Kh,δ and Mδ = max
{

C1(R), Cδ
2(R)

}

, we are in position to apply
Lemma C.1 with Ω = [0, T ] × BR(0). Then the sequence {Xh} is precompact in measure
in [0, T ] × BR(0), and by equi-boundedness in L∞ we deduce that it is also precompact in
L1([0, T ]×BR(0)). Using a standard diagonal argument it is possible to conclude that {Xh}
is locally precompact in L1([0, T ] × R

n). �
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Corollary 2.7 (Existence of the flow). Let b be a bounded vector field belonging to
L1([0, T ]; W 1,p(Rn)) for some p > 1 and such that [divb]− ∈ L1([0, T ]; L∞(Rn)). Then there
exists a regular Lagrangian flow associated to b.

Proof. This is a simple consequence of the previous corollary. Choose a positive convolution
kernel in R

n and regularize b by convolution. It is simple to check that the sequence of smooth
vector fields {bh} we have constructed satisfies the equi-bounds of the previous corollary.
Moreover, since every bh is smooth, for every h there is a unique regular Lagrangian flow
associated to bh, with compressibility constant Lh given by

Lh = exp

(
∫ T

0

‖[divbh(t, ·)]
−‖L∞(Rn) dt

)

. (15)

Thanks to the positivity of the chosen convolution kernel, the sequence {Lh} is equi-bounded,
then we can apply Corollary 2.6. It is then easy to check that every limit point of {Xh} in
L1

loc([0, T ] × R
n) is a regular Lagrangian flow associated to b. �

Remark 2.8. An analogous existence result could be obtained removing the hypothesis on
the divergence of b, and assuming that there is some approximation procedure such that
we can regularize b with equi-bounds on the compressibility constants of the approximating
flows. This remark also applies to Corollaries 3.7 and 4.3.

2.3. Stability estimates and uniqueness. In this subsection we show an estimate similar
in spirit to that of Theorem 2.1, but comparing flows for different vector fields. A direct
corollary of this estimate is the stability (and hence the uniqueness) of regular Lagrangian
flows.

Theorem 2.9 (Stability of the flow). Let b and b̃ be bounded vector fields belonging to

L1([0, T ]; W 1,p(Rn)) for some p > 1. Let X and X̃ be regular Lagrangian flows associated to

b and b̃ respectively and denote by L and L̃ the compressibility constants of the flows. Then,
for every time τ ∈ [0, T ], we have

‖X(τ, ·) − X̃(τ, ·)‖L1(Br(0)) ≤ C
∣

∣

∣
log
(

‖b − b̃‖L1([0,τ ]×BR(0))

)
∣

∣

∣

−1

,

where R = r + T‖b‖∞ and the constant C only depends on τ , r, ‖b‖∞, ‖b̃‖∞, L, L̃, and
‖Dxb‖L1(Lp).

Proof. Set δ := ‖b − b̃‖L1([0,τ ]×BR(0)) and consider the function

g(t) :=

∫

Br(0)

log

(

|X(t, x) − X̃(t, x)|

δ
+ 1

)

dx .
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Clearly g(0) = 0 and after some standard computations we get

g′(t) ≤

∫

Br(0)

∣

∣

∣

∣

∣

dX(t, x)

dt
−

dX̃(t, x)

dt

∣

∣

∣

∣

∣

(

|X(t, x) − X̃(t, x)| + δ
)−1

dx

=

∫

Br(0)

|b(t, X(t, x)) − b̃(t, X̃(t, x))|

|X(t, x) − X̃(t, x)| + δ
dx

≤
1

δ

∫

Br(0)

|b(t, X̃(t, x)) − b̃(t, X̃(t, x))| dx

+

∫

Br(0)

|b(t, X(t, x)) − b(t, X̃(t, x))|

|X(t, x) − X̃(t, x)| + δ
dx . (16)

We set R̃ = 2r + T (‖b‖∞ + ‖b̃‖∞) and we apply Lemma A.3 to estimate the last integral as
follows:
∫

Br(0)

|b(t, X(t, x)) − b(t, X̃(t, x))|

|X(t, x) − X̃(t, x)| + δ
dx ≤ cn

∫

Br(0)

MR̃Db(t, X(t, x)) + MR̃Db(t, X̃(t, x)) dx .

Inserting this estimate in (16), setting r̃ = r + T max{‖b‖∞, ‖b̃‖∞}, changing variables in
the integrals and using Lemma A.2 we get

g′(t) ≤
L̃

δ

∫

Br+T‖b̃‖∞
(0)

|b(t, y) − b̃(t, y)| dy +
(

L̃ + L
)

∫

Br̃(0)

MR̃Db(t, y) dy

≤
L̃

δ

∫

Br+T‖b̃‖∞
(0)

|b(t, y) − b̃(t, y)| dy + cnr̃
n−n/p

(

L̃ + L
)

‖MR̃Db(t, ·)‖Lp

≤
L̃

δ

∫

Br+T‖b̃‖∞
(0)

|b(t, y) − b̃(t, y)| dy + cn,pr̃
n−n/p

(

L̃ + L
)

‖Db(t, ·)‖Lp .

For any τ ∈ [0, T ], integrating the last inequality between 0 and τ we get

g(τ) =

∫

Br(0)

log

(

|X(τ, x) − X̃(τ, x)|

δ
+ 1

)

dx ≤ C1 , (17)

where the constant C1 depends on τ , r, ‖b‖∞, ‖b̃‖∞, L, L̃, and ‖Dxb‖L1(Lp).
Next we fix a second parameter η > 0 to be chosen later. Using Chebyshev inequality we

find a measurable set K ⊂ Br(0) such that |Br(0) \ K| ≤ η and

log

(

|X(τ, x) − X̃(τ, x)|

δ
+ 1

)

≤
C1

η
for x ∈ K.
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Therefore we can estimate
∫

Br(0)

|X(τ, x) − X̃(τ, x)| dx

≤ η
(

‖X(τ, ·)‖L∞(Br(0)) + ‖X̃(τ, ·)‖L∞(Br(0))

)

+

∫

K

|X(τ, x) − X̃(τ, x)| dx

≤ ηC2 + cnrnδ (exp(C1/η)) ≤ C3 (η + δ exp(C1/η)) , (18)

with C1, C2 and C3 which depend only on T , r, ‖b‖∞, ‖b̃‖∞, L, L̃, and ‖Dxb‖L1(Lp). Without
loss of generality we can assume δ < 1. Setting η = 2C1| log δ|−1 = 2C1(− log δ)−1, we have
exp(C1/η) = δ−1/2. Thus we conclude

∫

Br(0)

|X(τ, x) − X̃(τ, x)| dx ≤ C3

(

2C1| log δ|−1 + δ1/2
)

≤ C| log δ|−1 , (19)

where C depends only on τ , r, ‖b‖∞, ‖b̃‖∞, L, L̃, and ‖Dxb‖L1(Lp). This completes the
proof. �

Corollary 2.10 (Uniqueness of the flow). Let b be a bounded vector field belonging to
L1([0, T ]; W 1,p(Rn)) for some p > 1. Then the regular Lagrangian flow associated to b,
if exists, is unique.

Proof. It follows immediately from the stability proved in Theorem 2.9. �

Remark 2.11 (Stability with weak convergence in time). Theorem 2.9 allows to show the
stability when the convergence of the vector fields is just weak with respect to the time. This
setting is in fact very natural in view of the applications to the theory of fluid mechanics
(see Theorem II.7 in [9] and [11], in particular Theorem 2.5). In particular, under suitable
bounds on the sequence {bh}, the following form of weak convergence with respect to the
time is sufficient to get the thesis:

∫ T

0

bh(t, x)η(t) dt −→

∫ T

0

b(t, x)η(t) dt in L1
loc(R

n) for every η ∈ C∞
c (0, T ).

Indeed, fix a parameter ε > 0 and regularize with respect to the spatial variables only using
a standard convolution kernel ρε. We can rewrite the difference Xh(t, x) − X(t, x) as

Xh(t, x) − X(t, x) =
(

Xh(t, x) − Xε
h(t, x)

)

+
(

Xε
h(t, x) − Xε(t, x)

)

+
(

Xε(t, x) − X(t, x)
)

,

where Xε and Xε
h are the flows relative to the regularized vector fields bε and bε

h respectively.
Now, it is simple to check that

• The last term goes to zero with ε, by the classical stability theorem (the quantitative
version is not needed at this point);

• The first term goes to zero with ε, uniformly with respect to h: this is due to the
fact that the difference bε

h−bh goes to zero in L1
loc([0, T ]×R

n) uniformly with respect
to h, if we assume a uniform control in W 1,p on the vector fields {bh}, hence we can
apply Theorem 2.9, and we get the desired convergence;
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• The second term goes to zero for h → ∞ when ε is kept fixed, because we are dealing
with flows relative to vector fields which are smooth with respect to the space variable,
uniformly in time, and weak convergence with respect to the time is enough to get
the stability.

In order to conclude, we fix an arbitrary δ > 0 and we first find ε > 0 such that the norm of
the third term is smaller than δ and such that the norm of the first term is smaller than δ
for every h. For this fixed ε, we find h such that the norm of the second term is smaller than
δ. With this choice of h we have estimated the norm of Xh(t, x)−X(t, x) with 3δ, hence we
get the desired convergence.

Remark 2.12 (Another way to show compactness). If we apply Theorem 2.9 to the flows

X(t, x) and X̃(t, x) = X(t, x+h)−h relative to the vector fields b(t, x) and b̃(t, x) = b(t, x+h),
where h ∈ R

n is fixed, we get for every τ ∈ [0, T ]

‖X(τ, ·)−X(τ, ·+h)−h‖L1(Br(0)) ≤ C
∣

∣log
(

‖b(t, x) − b(t, x + h)‖L1([0,τ ]×BR(0))

)
∣

∣

−1
≤

C

| log(h)|
.

Hence we have a uniform control on the transations in the space, and we can deduce a
compactness result applying the Riesz-Fréchet-Kolmogorov compactness criterion (Lemma
C.2).

3. Estimates for more general vector fields and corollaries

In this section we extend the previous results to more general vector fields, in particular
we drop the boundedness condition on b. More precisely, we will consider vector fields
b : [0, T ] × R

n → R
n satisfying the following regularity assumptions:

(R1) b ∈ L1([0, T ]; W 1,p
loc (Rn)) for some p > 1;

(R2) We can write
b(t, x)

1 + |x|
= b̃1(t, x) + b̃2(t, x)

with b̃1(t, x) ∈ L1([0, T ]; L1(Rn)) and b̃2(t, x) ∈ L1([0, T ]; L∞(Rn)).

Since we are now considering vector fields which are no more bounded, we have to take
care of the fact that the flow will be no more locally bounded in R

n. However, we can give an
estimate of the measure of the set of the initial data such that the corresponding trajectories
exit from a fixed ball at some time.

Definition 3.1 (Sublevels). Fix λ > 0 and let X : [0, T ] × R
n → R

n be a locally summable
map. We set

Gλ :=
{

x ∈ R
n : |X(t, x)| ≤ λ ∀t ∈ [0, T ]

}

. (20)

Proposition 3.2 (Uniform estimate of the superlevels). Let b be a vector field satisfying
assumption (R2) and let X be a regular Lagrangian flow associated to b, with compressibility
constant L. Then we have

|BR(0) \ Gλ| ≤ g(R, λ) ,
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where the function g only depends on ‖b̃1‖L1(L1), ‖b̃2‖L1(L∞) and L; moreover g(R, λ) ↓ 0 for
R fixed and λ ↑ +∞.

Proof. Let φt be the density of X(t, ·)#χBR(0)L
n with respect to L n and notice that, by the

definition of push-forward and by Definition 1.1(ii), we have ‖φt‖1 = ωnR
n and ‖φt‖∞ ≤ L.

Thanks to Definition 1.1(i) we can compute

∫

BR(0)

sup
0≤t≤T

log

(

1 + |X(t, x)|

1 + R

)

dx ≤

∫

BR(0)

∫ T

0

∣

∣

dX
dt

(t, x)
∣

∣

1 + |X(t, x)|
dtdx

=

∫ T

0

∫

BR(0)

|b(t, X(t, x))|

1 + |X(t, x)|
dxdt

≤

∫ T

0

∫

Rn

|b(t, x)|

1 + |x|
φt dxdt .

Using Hölder inequality, for every decomposition of b(t, x)/(1 + |x|) as in assumption (R2)
we get

∫

BR(0)

sup
0≤t≤T

log

(

1 + |X(t, x)|

1 + R

)

dx ≤ L‖b̃1‖L1(L1) + ωnR
n‖b̃2‖L1(L∞) .

From this estimate we easily obtain

|BR(0) \ Gλ| ≤

[

log

(

1 + λ

1 + R

)]−1
(

L‖b̃1‖L1(L1) + ωnRn‖b̃2‖L1(L∞)

)

,

and the right hand side clearly has the properties of the function g(R, λ) stated in the
proposition. �

3.1. Estimate of an integral quantity and Lipschitz estimates. We start with the
definition of an integral quantity which is a generalization of the quantity Ap(R, X) of The-
orem 2.1. In this new setting we will need a third variable (the truncation parameter λ),
hence we set

Ap(R, λ, X) :=

[
∫

BR(0)∩Gλ

(

sup
0≤t≤T

sup
0<r<2R

∫

Br(x)∩Gλ

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dy

)p

dx

]
1
p

(21)
where the set Gλ is the sublevel relative to the map X, defined as in Definition 3.1.

In the following proposition, we show a bound on the quantity Ap(R, λ, X) which corre-
sponds to the bound on Ap(R, X) in Theorem 2.1.

Theorem 3.3. Let b be a vector field satisfying assumptions (R1) and (R2) and let X be a
regular Lagrangian flow associated to b, with compressibility constant L. Then we have

Ap(R, λ, X) ≤ C
(

R, L, ‖Dxb‖L1([0,T ],Lp(B3λ(0)))

)

.
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Proof. We start as in the proof of Theorem 2.1, obtaining the validity of inequality (8) for
every x ∈ Gλ. Since |X(t, x) − X(t, y)| ≤ 2λ, applying Lemma A.3 we deduce

dQ

dt
(t, x, r) ≤ cnM2λDb(t, X(t, x)) + cn

∫

Br(x)∩Gλ

M2λDb(t, X(t, y)) dy .

Then, arguing exactly as in the proof of Theorem 2.1, we get the estimate

Ap(R, λ, X) ≤ cp,R + cn

∥

∥

∥

∥

∫ T

0

M2λDb(t, X(t, x)) dt

∥

∥

∥

∥

Lp(BR(0)∩Gλ)

(22)

+cn

∥

∥

∥

∥

∫ T

0

sup
0<r<2R

∫

Br(x)∩Gλ

M2λDb(t, X(t, y)) dydt

∥

∥

∥

∥

Lp(BR(0)∩Gλ)

. (23)

Recalling Definition 1.1(ii) and Lemma A.2, the integral in (22) can be estimated with

cnL
1/p

∫ T

0

‖M2λDb(t, x)‖Lp(Bλ(0)) dt ≤ cn,pL
1/p

∫ T

0

‖Db(t, x)‖Lp(B3λ(0)) dt ,

Define the characteristic function 1A of a subset A of R
n as

1A(x) :=

{

1 if x ∈ A
0 if x 6∈ A.

The integral in (23) can be estimated in a similar way with

cn

∫ T

0

∥

∥

∥

∥

sup
0<r<2R

∫

Br(x)∩Gλ

[(M2λDb) ◦ (t, X(t, ·))] (y) dy

∥

∥

∥

∥

Lp(BR(0)∩Gλ)

dt

≤ cn

∫ T

0

∥

∥

∥

∥

sup
0<r<2R

∫

Br(x)

[(M2λDb) ◦ (t, X(t, ·))] (y)1Gλ
(y) dy

∥

∥

∥

∥

Lp(BR(0)∩Gλ)

dt

= cn

∫ T

0

‖M2R [(M2λDb) ◦ (t, X(t, ·))1Gλ
(·)] (x)‖Lp(BR(0)∩Gλ) dt

≤ cn,p

∫ T

0

‖[(M2λDb) ◦ (t, X(t, ·))1Gλ
(·)] (x)‖Lp(B3R(0)) dt

= cn,p

∫ T

0

‖(M2λDb) ◦ (t, X(t, x))‖Lp(B3R(0)∩Gλ) dt

≤ cn,pL
1/p

∫ T

0

‖M2λDb(t, x)‖Lp(Bλ(0)) dt

≤ cn,pL
1/p

∫ T

0

‖Db(t, x)‖Lp(B3λ(0)) dt .

Then we obtain the desired estimate for Ap(R, λ, X). �
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Proposition 3.4 (Lipschitz estimates). Let X and b be as in Theorem 3.3. Then, for every
ε > 0 and every R > 0, we can find λ > 0 and a set K ⊂ BR(0) such that |BR(0) \ K| ≤ ε
and for any 0 ≤ t ≤ T we have

Lip (X(t, ·)|K) ≤ exp
cnAp(R, λ, X)

ε1/p
.

Proof. The proof is exactly the proof of Proposition 2.3, with some minor modifications due
to the necessity of a truncation on the sublevels of the flow. This can be done as follows.
For ε > 0 and R > 0 fixed, we apply Proposition 3.2 to get a λ large enough such that
|BR(0) \ Gλ| ≤ ε/2. Next, using equation (34) and the finiteness of Ap(R, λ, X), we obtain
a constant

M = M(ε, p, Ap(R, λ, X)) =
Ap(R, λ, X)

(ε/2)1/p

and a set K ⊂ BR(0) ∩ Gλ with |(BR(0) ∩ Gλ) \ K| ≤ ε/2 and

sup
0≤t≤T

sup
0<r<2R

∫

Br(x)∩Gλ

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dy ≤ M ∀x ∈ K .

Hence the set K satisfies |BR(0) \ K| ≤ ε and
∫

Br(x)∩Gλ

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dy ≤ M ∀x ∈ K, ∀t ∈ [0, T ], ∀r ∈]0, 2R[ .

The proof can be concluded as the proof of Proposition 2.3, where now the integrals are
performed on the sublevels Gλ. �

3.2. Existence, regularity and compactness.

Corollary 3.5 (Approximate differentiability of the flow). Let b be a vector field satisfying
assumptions (R1) and (R2) and let X be a regular Lagrangian flow associated to b. Then
X(t, ·) is approximately differentiable a.e. in R

n, for every t ∈ [0, T ].

Proof. The proof is an immediate consequence of the Lusin type approximation of the flow
with Lipschitz maps given in Proposition 3.4 and of Theorem B.1. �

Corollary 3.6 (Compactness of the flow). Let {bh} be a sequence of vector fields satisfying
assumptions (R1) and (R2). For every h, let Xh be a regular Lagrangian flow associated
to bh and let Lh be the compressibility constant associated to Xh, as in Definition 1.1(ii).
Suppose that for every R > 0 the uniform estimate

‖Dxbh‖L1([0,T ];Lp(BR(0))) + ‖b̃h,1‖L1(L1) + ‖b̃h,2‖L1(L∞) + Lh ≤ C(R) < ∞ (24)

is satisfied, for some decomposition bh/(1 + |x|) = b̃h,1 + b̃h,2 as in assumption (R2). Then
the sequence {Xh} is locally precompact in measure in [0, T ] × R

n.
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Proof. The proof is essentially identical to the proof of Corollary 2.6. Fix R > 0 and δ > 0.
Applying Proposition 3.2 and thanks to the uniform bound given by (24), we first find λ > 0
big enough such that

|BR(0) \ Gh
λ| ≤ δ/3 ,

with Gh
λ as in Definition 3.1. Thanks again to (24), we can apply Theorem 3.3 to deduce

that the quantities Ap(R, λ, Xh) are uniformly bounded with respect to h. Now we apply
Proposition 3.4 with ε = δ/3 to find, for every h, a measurable set Kh ⊂ BR(0) ∩ Gh

λ such
that

|(BR(0) ∩ Gh
λ) \ Kh| ≤ δ/3

and
Lip (Xh(t, ·)|Kh

) is uniformly bounded w.r.t. h.

Now we are going to show a similar Lipschitz estimate with respect to the time. Since the
maps

[0, T ] × Kh ∋ (t, x) 7→ bh(t, Xh(t, x))

are uniformly bounded in L1([0, T ] × Kh) (this is easily deduced recalling assumption (R2),
the bound (24) and the fact that Kh ⊂ BR(0)), for every h, applying Chebyshev inequality,
we can find a measurable set Hh ⊂ [0, T ] × Kh such that

|([0, T ] × Kh) \ Hh| ≤ δ/3

and
‖bh(t, Xh(t, x))‖L∞(Hh) ≤ C/δ ,

where the constant C only depends on the constant C(R) given by (24). Then we deduce
that

∥

∥

∥

∥

dXh

dt
(t, x)

∥

∥

∥

∥

L∞(Hh)

is uniformly bounded w.r.t. h.

Hence we have found, for every h, a measurable set Hh ⊂ [0, T ] × BR(0) such that

|([0, T ] × BR(0)) \ Hh| ≤ δ

and
‖Xh‖L∞(Hh) + Lipt,x (Xh|Hh

) uniformly bounded w.r.t. h.

Then we apply Lemma C.1 to obtain that the sequence {Xh} is precompact in measure in
[0, T ]×BR(0). A standard diagonal argument gives the local precompactness in measure of
the sequence in the whole [0, T ] × R

n. �

Corollary 3.7 (Existence of the flow). Let b be a vector field satisfying assumptions (R1)
and (R2) and such that [divb]− ∈ L1([0, T ]; L∞(Rn)). Then there exists a regular Lagrangian
flow associated to b.

Proof. It is sufficient to regularize b with a positive convolution kernel in R
n and apply

Corollary 3.6. It is simple to check that the regularized vector fields satisfy the equi-bounds
needed for the compactness result. �
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3.3. Stability estimates and uniqueness.

Theorem 3.8 (Stability estimate). Let b and b̃ be vector fields satisfying assumptions (R1)

and (R2). Let X and X̃ be regular Lagrangian flows associated to b and b̃ respectively and

denote by L and L̃ the compressibility constants of the flows. Then for every λ > 1 and
every τ ∈ [0, T ] the following estimate holds

∫

Br(0)

1 ∧ |X(τ, x) − X̃(τ, x)| dx ≤
C

log(λ)
+ Cλ‖b − b̃‖L1([0,τ ]×Bλ(0)) , (25)

where the constant C only depends on L, L̃ and on the L1(L1) + L1(L∞) norm of some

decomposition of b and b̃ as in assumption (R2), while the constant Cλ depends on λ, r, L,

L̃ and ‖Db‖L1([0,τ ];Lp(B3λ(0))).

Proof. For every λ > 1 fixed define the sets Gλ and G̃λ, relatively to X and X̃, as in (20).
Set

δ = δ(λ) := ‖b − b̃‖L1([0,τ ]×Bλ(0)) .

Define

g(t) :=

∫

Br(0)∩Gλ∩G̃λ

log

(

|X(t, x) − X̃(t, x)

δ
+ 1

)

dx .

Clearly we have g(0) = 0 and we can estimate

g′(t) ≤

∫

Br(0)∩Gλ∩G̃λ

|b(t, X(t, x)) − b̃(t, X̃(t, x))|

|X(t, x) − X̃(t, x)| + δ
dx

≤

∫

Br(0)∩Gλ∩G̃λ

|b(t, X̃(t, x)) − b̃(t, X̃(t, x))|

|X(t, x) − X̃(t, x)| + δ
+

|b(t, X(t, x)) − b(t, X̃(t, x))|

|X(t, x) − X̃(t, x)| + δ
dx

≤

∫

Br(0)∩Gλ∩G̃λ

1

δ
|b(t, X̃(t, x)) − b̃(t, X̃(t, x))| +

|b(t, X(t, x)) − b(t, X̃(t, x))|

|X(t, x) − X̃(t, x)|
dx

≤
1

δ

∫

Br(0)∩Gλ∩G̃λ

|b(t, X̃(t, x)) − b̃(t, X̃(t, x))| dx

+cn

∫

Br(0)∩Gλ∩G̃λ

(

M2λDb(t, X(t, x)) + M2λDb(t, X̃(t, x))
)

dx

≤
L̃

δ

∫

Bλ(0)

|b(t, x) − b̃(t, x)| dx + cn(L + L̃)

∫

Bλ(0)

M2λDb(t, x) dx

≤
L̃

δ

∫

Bλ(0)

|b(t, x) − b̃(t, x)| dx + cn,p(L + L̃)λn−n/p‖Db(t, ·)‖Lp(B3λ(0)) .
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Integrating with respect to t between 0 and τ we obtain

g(τ) =

∫

Br(0)∩Gλ∩G̃λ

log

(

|X(τ, x) − X̃(τ, x)

δ
+ 1

)

dx

≤ L̃ + cn,p(L + L̃)λn−n/p‖Db‖L1([0,τ ];Lp(B3λ(0))) = Cλ ,

where the constant Cλ depends on λ but also on the other parameters relative to b and
b̃. Now fix a value η > 0 which will be specified later. We can find a measurable set
K ⊂ Br(0) ∩ Gλ ∩ G̃λ such that |(Br(0) ∩ Gλ ∩ G̃λ) \ K| < η and

log

(

|X(τ, x) − X̃(τ, x)

δ
+ 1

)

≤
Cλ

η
∀x ∈ K .

Then we deduce that
∫

Br(0)

1 ∧ |X(τ, x) − X̃(τ, x)| dx

≤ |Br(0) \ (Gλ ∩ G̃λ)| + |(Br(0) ∩ Gλ ∩ G̃λ) \ K| +

∫

K

|X(t, x) − X̃(t, x)| dx

≤
C

log(λ)
+ η + Cδ exp(Cλ/η) ≤

C

log(λ)
+ Cλ‖b − b̃‖L1([0,τ ]×Bλ(0)) ,

choosing η = 1/ log(λ) in the last line. �

Corollary 3.9 (Stability of the flow). Let {bh} be a sequence of vector fields satisfying
assumptions (R1) and (R2), converging in L1

loc([0, T ]×R
n) to a vector field b which satisfies

assumptions (R1) and (R2). Denote by X and Xh the regular Lagrangian flows associated
to b and bh respectively, and denote by L and Lh the compressibility constants of the flows.
Suppose that, for some decomposition bh/(1 + |x|) = b̃h,1 + b̃h,2 as in assumption (R2), we
have

‖b̃h,1‖L1(L1) + ‖b̃h,2‖L1(L∞) equi-bounded in h

and that the sequence {Lh} is equi-bounded. Then the sequence {Xh} converges to X locally
in measure in [0, T ] × R

n.

Proof. Notice that, under the hypothesis of this corollary, the constants Ch,τ and Ch,τ
λ in

(25) can be chosen uniformly with respect to τ ∈ [0, T ] and h ∈ N. Hence we find universal
constant C and Cλ, depending only on the assumed equi-bounds, such that

∫

Br(0)

1 ∧ |X(τ, x) − Xh(τ, x)| dx ≤
Ch,τ

log(λ)
+ Ch,τ

λ ‖b − bh‖L1([0,τ ]×Bλ(0))

≤
C

log(λ)
+ Cλ‖b − bh‖L1([0,T ]×Bλ(0)) . (26)
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Now fix ε > 0. We first choose λ big enough such that

C

log(λ)
≤

ε

2
,

where C is the first constant in (26). Since now λ is fixed, we find N such that for every
h ≥ N we have

‖b − bh‖L1([0,T ]×Bλ(0)) ≤
ε

2Cλ
,

thanks to the convergence of the sequence {bh} to b in L1
loc([0, T ] × R

n). Notice that N
depends on λ and on the equi-bounds, but in turn λ only depends on ε and on the equi-
bounds. Hence we get

∫

Br(0)

1 ∧ |X(τ, x) − Xh(τ, x)| dx ≤ ε for every h ≥ N = N(ε).

This means that {Xh(τ, ·)} converges to X(τ, ·) locally in measure in R
n, uniformly with

respect to τ ∈ [0, T ]. In particular we get the thesis. �

Corollary 3.10 (Uniqueness of the flow). Let b be a vector field satisfying assumptions (R1)
and (R2). Then the regular Lagrangian flow associated to b, if exists, is unique.

Proof. It follows immediately from Corollary 3.9. �

4. A direct proof of compactness

In this section we propose an alternative proof of the compactness result of Theorem
2.6, which works under an assumption of summability of the maximal function of Db. The
strategy of this proof is slightly different from the previous one: we are not going to use the
Lipschitz estimates of Proposition 2.3 and Remark 2.4, but instead we prove an estimate
of an integral quantity which turns out to be sufficient to get compactness, via the Riesz-
Fréchet-Kolmogorov compactness criterion.

We will assume the following regularity assumption on the vector field:

(R3) For every λ > 0 we have MλDb ∈ L1([0, T ]; L1
loc(R

n)).

Notice that, by Lemma A.2, this assumption is equivalent to the condition
∫ T

0

∫

Bρ(0)

|Dxb(t, x)| log (2 + |Dxb(t, x)|) dxdt < ∞ for every ρ > 0.

This means that Dxb ∈ L1([0, T ]; L logLloc(R
n)), i.e. a slightly stronger bound than Dxb ∈

L1([0, T ], L1
loc(R

n)).
We define a new integral quantity, which corresponds to those defined in Theorem 2.1 for

p = 1, but without the supremum with respect to r. For R > 0 and 0 < r < R/2 fixed we
set

a(r, R, X) =

∫

BR(0)

sup
0≤t≤T

∫

Br(x)

log

(

|X(t, x) − X(t, y)|

r
+ 1

)

dydx .

We first give a quantitative estimate for the quantity a(r, R, X), similar to those for Ap(R, X).
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Theorem 4.1. Let b be a bounded vector field satisfying assumption (R3) and let X be a
regular Lagrangian flow associated to b, with compressibility constant L. Then we have

a(r, R, X) ≤ C
(

R, L, ‖MR̃Dxb‖L1([0,T ];L1(BR̃(0)))

)

,

where R̃ = 3R/2 + 2T‖b‖∞.

Proof. We start as in the proof of Theorem 2.1, obtaining inequality (9) (but this time it is

sufficient to set R̃ = 3R/2 + 2T‖b‖∞). Integrating with respect to the time and then with
respect to x over BR(0), we obtain

a(r, R, X) ≤ cR + cn

∫

BR(0)

∫ T

0

MR̃Db(t, X(t, x)) dtdx

+cn

∫

BR(0)

∫ T

0

∫

Br(x)

MR̃Db(t, X(t, y)) dydtdx .

As in the previous computations, the first integral can be estimated with

cnL ‖MR̃Db‖L1([0,T ];L1(BR+T‖b‖∞ (0))) ,

but this time we cannot bound the norm of the maximal function with the norm of the
derivative. To estimate the last integral we compute

cn

∫

BR(0)

∫ T

0

∫

Br(x)

MR̃Db(t, X(t, y)) dydtdx

= cn

∫

BR(0)

∫ T

0

∫

Br(0)

MR̃Db(t, X(t, x + z)) dzdtdx

≤ cn

∫

Br(0)

∫ T

0

∫

BR(0)

MR̃Db(t, X(t, x + z)) dxdtdz

≤ cn

∫

Br(0)

∫ T

0

L

∫

B3R/2+T‖b‖∞ (0)

MR̃Db(t, w) dwdtdx

= cnL‖MR̃Db‖L1([0,T ];L1(B3R/2+T‖b‖∞ (0))) .

Hence the thesis follows, by definition of R̃. �

Next, we show how this estimate implies compactness for the flow.

Corollary 4.2 (Compactness of the flow). Let {bh} be a sequence of vector fields equi-
bounded in L∞([0, T ] × R

n) and suppose that the sequence {MλDbh} is equi-bounded in
L1([0, T ]; L1

loc(R
n)) for every λ > 0. For each h, let Xh be a regular Lagrangian flow as-

sociated to bh and let Lh be the compressibility constant associated to Xh, as in Definition
1.1(ii). Suppose that the sequence {Lh} is equi-bounded. Then the sequence {Xh} is strongly
precompact in L1

loc([0, T ] × R
n).
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Proof. We apply Theorem 4.1 to obtain that, under the assumptions of the corollary, the
quantities a(r, R, Xh) are uniformly bounded with respect to h. Now observe that, for
0 ≤ z ≤ R̃ (with R̃ = 3R/2 + 2T‖b‖∞ as in Theorem 4.1), thanks to the concavity of the
logarithm we have

log
(z

r
+ 1
)

≥
log
(

R̃
r

+ 1
)

R̃
z .

Since |Xh(t, x) − Xh(t, y)| ≤ R̃ this implies that
∫

BR(0)

sup
0≤t≤T

∫

Br(x)

|Xh(t, x) − Xn(t, y)| dydx

≤
R̃

log
(

R̃
r

+ 1
)C

(

R, Lh, ‖MR̃Dbh‖L1([0,T ];L1(BR̃(0)))

)

≤ g(r) ,

where the function g(r) does not depend on h and satisfies g(r) ↓ 0 for r ↓ 0. Changing the
integration order this implies

∫

Br(0)

∫

BR(0)

|Xh(t, x) − Xh(t, x + z)| dxdz ≤ g(r) ,

uniformly with respect to t and h.
Now notice the following elementary fact. There exists a dimensional constant αn > 0

with the following property: if A ⊂ B1(0) is a measurable set with |B1(0) \ A| ≤ αn, then
A + A ⊃ B1/2(0). Indeed, if the thesis were false, we could find x ∈ B1/2(0) such that
x 6∈ A + A. This would imply in particular that x 6∈ (A ∩ B1/2(0)) + (A ∩ B1/2(0)), so that

[

x −
(

A ∩ B1/2(0)
)]

∩
[

A ∩ B1/2(0)
]

= ∅ . (27)

Now notice that there exists a dimensional constant γn such that |B1/2(0)∩(x−B1/2(0))| ≥ γn,
since we are supposing x ∈ B1/2(0). But since |B1(0) \ A| ≤ αn, we also have

∣

∣B1/2(0) \
(

A ∩ B1/2(0)
)
∣

∣ ≤ αn

and
∣

∣

(

x − B1/2(0)
)

\
(

x −
(

A ∩ B1/2(0)
))
∣

∣ =
∣

∣B1/2(0) \
(

A ∩ B1/2(0)
)
∣

∣ ≤ αn .

But this is clearly in contradiction with (27) if we choose αn < γn/2.
Then fix αn as above and apply Chebyshev inequality for every h to obtain, for every

0 < r < R/2, a measurable set Kr,h ⊂ Br(0) with |Br(0) \ Kr,h| ≤ αn|Br(0)| and
∫

BR(0)

|Xh(t, x + z) − Xh(t, x)| dx ≤
g(r)

αn
for every z ∈ Kr,h.

For such a set Kr,h, thanks to the previous remark, we have that Kr,h +Kr,h ⊃ Br/2(0). Now
let v ∈ Br/2(0) be arbitrary. For every h we can write v = z1,h + z2,h with z1,h, z2,h ∈ Kr,h.
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We can estimate the increment in the spatial directions as follows:
∫

BR/2(0)

|Xh(t, x + v) − Xh(t, x)| dx

=

∫

BR/2(0)

|Xh(t, x + z1,h + z2,h) − Xh(t, x)| dx

≤

∫

BR/2(0)

|Xh(t, x + z1,h + z2,h) − Xh(t, x + z1,h)| + |Xh(t, x + z1,h) − Xh(t, x)| dx

≤

∫

BR(0)

|Xh(t, y + z2,h) − Xh(t, y)| dy +

∫

BR(0)

|Xh(t, x + z1,h) − Xh(t, x)| dx ≤
2g(r)

αn
.

Now notice that, by Definition 1.1(i), for a.e. x ∈ R
n we have

dXh

dt
(t, x) = bh(t, Xh(t, x)) for every t ∈ [0, T ].

Then we can estimate the increment in the time direction in the following way

|Xh(t + τ, x)−Xh(t, x)| ≤

∫ τ

0

∣

∣

∣

∣

dXh

dt
(t + s, x)

∣

∣

∣

∣

ds =

∫ τ

0

|bh(t + s, Xh(t + s, x))| ds ≤ τ‖bh‖∞ .

Combining these two informations, for (t0, t1) ⊂⊂ [0, T ], R > 0, v ∈ Br/2(0) and τ > 0
sufficently small we can estimate

∫ t1

t0

∫

BR/2(0)

|Xh(t + τ, x + v) − Xh(t, x)| dxdt

≤

∫ t1

t0

∫

BR/2(0)

|Xh(t + τ, x + v) − Xh(t + τ, x)| + |Xh(t + τ, x) − Xh(t, x)| dxdt

≤ T
2g(r)

αn
+

∫ t1

t0

∫

BR/2(0)

τ‖bh‖∞ dxdt ≤ T
2g(r)

αn
+ cnTRnτ‖bh‖∞ .

The thesis follows applying the Riesz-Fréchet-Kolmogorov compactness criterion (see Lemma
C.2), recalling that {bh} is uniformly bounded in L∞([0, T ] × R

n). �

Corollary 4.3 (Existence of the flow). Let b be a bounded vector field satisfying assumption
(R3) and such that [divb]− ∈ L1([0, T ]; L∞(Rn)). Then there exists a regular Lagrangian flow
associated to b

Proof. It is sufficient to regularize b with a positive convolution kernel in R
n and apply

Corollary 4.2. It is simple to check that the regularized vector fields satisfy the equi-bounds
needed for the compactness result, due to the convexity of the map z 7→ z log(2 + z) for
z ≥ 0. �
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5. Lipexpp–regularity for transport equations with W 1,p coefficients

In this section we show that solutions to transport equations with Sobolev coefficients
propagate a very mild regularity property of the initial data.

Definition 5.1 (The space Lipexpp). We say that a function f : E ⊂⊂ R
n → R

k belongs to
Lipexpp(E) if for every ε > 0 there exists a measurable set K ⊂ E such that

(i) |E \ K| ≤ ε;
(ii) Lip(f |K) ≤ exp

(

Cε−1/p
)

for some constant C < ∞ independent on ε.

Moreover we denote by |f |LEp(E) the smallest constant C such that the conditions above hold.

Remark 5.2. Note that:

• Lipexp∞ is the space of functions which coincide with a Lipschitz function almost
everywhere;

• |f |LEp(E) is not homogeneus, and then it is not a norm, and can be explicitely defined
as

|f |LEp(E) := sup
ε>0

{

ε1/p log min {Lip(f |K) : |E \ K| ≤ ε}
}

;

• one can compare this definition with a similar result for Sobolev functions: if f ∈
W 1,p(E; Rk), then for every ε > 0 there exists a set K ⊂ E such that |E \ K| ≤ ε
and ‖Df‖L∞(K) ≤ ‖Df‖Lp(E)ε

−1/p.

Theorem 5.3. Let b be a vector field satisfying assumptions (R1) and (R2) and such that
divxb ∈ L1([0, T ]; L∞(Rn)). Let ū ∈ L∞(Rn) such that ū ∈ Lipexpp(Ω) for every Ω ⊂⊂ R

n.
Let u be the solution of the Cauchy problem











∂tu(t, x) + b(t, x) · ∇xu(t, x) = 0

u(0, ·) = ū .

(28)

Then for every Ω ⊂⊂ R
n we have that

sup
0≤t≤T

|u(t, ·)|LEp(Ω) < ∞ .

Remark 5.4. Since u ∈ C([0, T ], L1
loc(R

n) − w), we can define u(t, ·) for every t ∈ [0, T ].

Proof of Theorem 5.3. Let X be the regular Lagrangian flow generated by b. Then:

(a) There exists a constant C > 0 such that C−1|Ω| ≤ |X(t, Ω)| ≤ C|Ω| for every
t ∈ [0, T ] and for every Ω ⊂ R

n; therefore, for every t ∈ [0, T ], we can define Ψ(t, x)
via the identity X(t, Ψ(t, x)) = Ψ(t, X(t, x)) = x for a.e. x ∈ R

n;
(b) For every t we have u(t, x) = u(Ψ(t, x)) for almost every x.

Note that if for every t we consider the regular Lagrangian flow Φ(t, ·, ·) of










dΦ

dτ
(t, τ, x) = −b(t − τ, Φ(t, τ, x))

Φ(t, 0, x) = x ,
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then Ψ(t, x) = Φ(t, t, x). Therefore, thanks to Proposition 3.4 we conclude that

sup
0≤t≤T

|Ψ(t, ·)|LEp(Ω) ≤ C1(Ω)

for every Ω ⊂⊂ R
n.

Let t ∈ [0, T ], R > 0 and ε > 0 be given. Choose K1 ⊂ BR(0) such that

• |BR(0) \ K1| ≤ ε/3;
• Lip(Ψ(t, ·)|K1) ≤ exp(|Ψ(t, ·)|LEp(BR(0))(ε/3)−1/p).

Applying Proposition 3.2 we can find R̄ > 0 such that

|Ψ(t, BR(0)) \ BR̄(0)| ≤
ε

3C
,

where C is the constant in (a). Now, select K2 ⊂ BR̄(0) such that

• |BR̄(0) \ K2| ≤ ε/3C;
• Lip(ū|K2) ≤ exp(|ū|LEp(BC(R)(0))(ε/3C)−1/p),

where again C is as in (a). Next consider K := K1 ∩ (Ψ(t, ·))−1(K2) = K1 ∩X(t, K2). Since

BR(0) \ K ⊂
(

BR(0) \ K1

)

∪
(

BR(0) \ X(t, K2)
)

⊂
(

BR(0) \ K1

)

∪ X
(

t, Ψ(t, BR(0)) \ BR̄(0)
)

∪ X(t, BR̄(0) \ K2) ,

we have

|BR(0) \ K| ≤ |BR(0) \ K1| + |X
(

t, Ψ(t, BR(0)) \ BR̄(0)
)

| + |X(t, BR̄(0) \ K2)| ≤ ε .

Given x, y ∈ K we have Ψ(t, x), Ψ(t, y) ∈ K2 and hence we can estimate

|u(t, x) − u(t, y)| = |u(Ψ(t, x)) − ū(Ψ(t, y))| ≤ Lip(ū|K2)|Ψ(t, x) − Ψ(t, y)|

≤ Lip(ū|K2)Lip(Ψ(t, ·)|K1)|x − y|

= |x − y| exp
{[

(3C)1/p|ū|LEp(BR̄(0)) + 31/p|Ψ(t, ·)|LEp(BR(0))

]

ε−1/p
}

.

Therefore ε1/p log(Lip(u(t, ·)|K)) is bounded by a constant independent of ε and t (but which
depends on R). Taking the supremum over t and ε, we conclude that

sup
0≤t≤T

|u(t, ·)|LEp(BR(0)) ≤ C(R) ,

and this concludes the proof. �

6. An application to a conjecture on mixing flows

In [7] the author considers a problem on mixing vector fields on the two-dimensional torus
K = R

2/Z
2. In this section, we are going to show that the Lipschitz estimate of Proposition

3.4 gives an answer to this problem, although in the Lp setting (p > 1) instead of the L1

setting considered in [7].
Fix coordinates x = (x1, x2) ∈ [0, 1[×[0, 1[ on K and consider the set

A =
{

(x1, x2) : 0 ≤ x2 ≤ 1/2
}

⊂ K .
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If b : [0, 1]×K → R
2 is a smooth time dependent vector field, we denote as usual by X(t, x)

the flow of b and by Φ : K → K the value of the flow at time t = 1. We assume that the
flow is nearly incompressibile, so that for some κ′ > 0 we have

κ′|Ω| ≤ |X(t, Ω)| ≤
1

κ′
|Ω| (29)

for all Ω ⊂ K and all t ∈ [0, 1]. For a fixed 0 < κ < 1/2, we say that Φ mixes the set A up
to scale ε if for every ball Bε(x) we have

κ|Bε(x)| ≤ |Bε(x) ∩ Φ(A)| ≤ (1 − κ)|Bε(x)| .

Then in [7] the following conjecture is proposed:

Conjecture 6.1 (Bressan’s mixing conjecture). Under these assumptions, there exists a
constant C depending only on κ and κ′ such that, if Φ mixes the set A up to scale ε, then

∫ 1

0

∫

K

|Dxb| dxdt ≥ C| log ε| for every 0 < ε < 1/4.

In the following, we are going to show the following result:

Theorem 6.2. Let p > 1. Under the previous assumptions, there exists a constant C
depending only on κ, κ′ and p such that, if Φ mixes the set A up to scale ε, then

∫ 1

0

‖Dxb‖Lp(K) dt ≥ C| log ε| for every 0 < ε < 1/4.

Proof. We set M = ‖Dxb‖L1([0,1];Lp(K)) and A′ = K \ A. Applying Proposition 3.4, and
noticing that the flow is bounded since we are on the torus, for every constant η > 0 we can
find a set B with |B| ≤ η such that

Lip
(

Φ−1|K\B

)

≤ exp(βM) , (30)

where the constant β depends only on κ′, η and p. Since Φ mixes the set A up to scale ε,
for every x ∈ A we have

|Bε(Φ(x)) ∩ Φ(A′)| ≥ κ|Bε(Φ(x))| . (31)

We define
Ã =

{

x ∈ A : Bε(Φ(x)) ∩
[

Φ(A′) \ B
]

= ∅
}

.

From this definition and from (31) we get that for every x ∈ Ã

|Bε(Φ(x)) ∩ B| ≥ κ|Bε(Φ(x))| . (32)

From (32) and the Besicovitch covering theorem we deduce that for an absolute constant c
we have

|Φ(Ã)| ≤
c

κ
|B| ≤

cη

κ
.

From the compressibility condition (29) we deduce

|Ã| ≤
cη

κκ′
.
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Since, using again (29), we know that

|Φ−1(B)| ≤
|B|

κ′
≤

η

κ′
,

we can choose η > 0, depending on κ and κ′ only, in such a way that

|Ã| + |Φ−1(B)| ≤
1

6
.

This implies the existence of a point x̄ ∈ A \
[

Ã ∪ Φ−1(B)
]

with dist (x̄, A′) ≥ 1/6. Let

ȳ = Φ(x̄). Since x̄ 6∈ Ã, we can find a point z̄ ∈ Bε(ȳ) ∩
[

Φ(A′) \ B
]

. Clearly we have
|ȳ − z̄| ≤ ε and (since Φ−1(z) ∈ A′) we also have |x̄ − Φ−1(z̄)| ≥ 1/6.

Since ȳ, z̄ 6∈ B, we can apply (30) to deduce

1

6
≤ εLip

(

Φ−1|K\B

)

≤ ε exp(βM) ,

where now β depends only on κ, κ′ and p, since η has been fixed. This implies that

M = ‖Dxb‖L1([0,1];Lp(K)) ≥
1

β
log

(

1

6ε

)

.

Hence we can find ε0 > 0 such that

M ≥
1

2β
| log ε| for every 0 < ε < ε0.

We are now going to show the thesis for every 0 < ε < 1/4. Indeed, suppose that the
thesis is false. Then, we could find a sequence {bh} of vector fields and a sequence {εh} with
ε0 < εh < 1/4 in such a way that

‖Dxbh‖L1([0,1];Lp(K)) ≤
1

h
| log εh|

and the corresponding map Φh mixes the set A up to scale εh. This implies that

‖Dxbh‖L1([0,1];Lp(K)) ≤
1

h
| log εh| ≤

1

h
| log ε0| −→ 0 as h → ∞.

Up to an extraction of a subsequence, we can suppose that εh → ε̄ and that Φh → Φ strongly
in L1(K). For this, we apply the compactness result in Theorem 3.6, noticing that (29) gives
a uniform control on the compressibility constants of the flows and that we do not need any
assumption on the growth of the vector fields, since we are on the torus and then the flow
is automatically uniformly bounded. Now, notice that the mixing property is stable with
respect to strong convergence: this means that Φ has to mix up to scale ε̄ ≤ 1/4. But since
‖Dxbh‖L1([0,1];Lp(K)) → 0, we deduce that Φ is indeed a translation on K, hence it cannot
mix the set A up to a scale which is smaller than 1/4. From this contradiction we get the
thesis. �
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Remark 6.3. We notice that the constant 1/4 in Theorem 6.2 depends on the shape of the
set A: this bound comes from the fact that a translation does not mix up to a scale ε < 1/4.
Our proof can be easily extended to the case of a measurable set A with any shape, giving
a different upper bound for the values of ε such that the result is true.

Appendix A. Maximal functions

In this first appendix, we recall the definition of the local maximal function of a locally finite
measure and of a locally summable function and we recollect some well-known properties
which are used throughout all this paper.

Definition A.1 (Local maximal function). Let µ be a (vector-valued) locally finite measure.
For every λ > 0, we define the local maximal function of µ as

Mλµ(x) = sup
0<r<λ

|µ|(Br(x))

|Br(x)|
= sup

0<r<λ

∫

Br(x)

d|µ|(y) x ∈ R
n .

When µ = fL n, where f is a function in L1
loc(R

n; Rm), we will often use the notation Mλf
for Mλµ.

The proof of the following two lemmas can be found in [12].

Lemma A.2. Let λ > 0. The local maximal function of µ is finite for a.e. x ∈ R
n and we

have
∫

Bρ(0)

Mλf(y) dy ≤ cn,ρ + cn

∫

Bρ+λ(0)

|f(y)| log(2 + |f(y)|) dy .

For p > 1 and ρ > 0 we have
∫

Bρ(0)

(Mλf(y))p dy ≤ cn,p

∫

Bρ+λ(0)

|f(y)|p dy ,

but this is false for p = 1. For p = 1 we have the weak estimate

|{y ∈ Bρ(0) : Mλf(y) > α}| ≤
cn

α

∫

Bρ+λ(0)

|f(y)| dy , (33)

for every α > 0.

Lemma A.3. If u ∈ BV (Rn) then there exists a negligible set N ⊂ R
n such that

|u(x) − u(y)| ≤ cn|x − y| (MλDu(x) + MλDu(y))

for x, y ∈ R
n \ N with |x − y| ≤ λ.

We also recall the Chebyshev inequality:

|{|f | > t}| ≤
1

t

∫

{|f |>t}

|f(x)| dx ≤
|{|f | > t}|1/q

t
‖f‖Lp(Ω) ,

which implies

|{|f | > t}|1/p ≤
‖f‖Lp(Ω)

t
. (34)
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Appendix B. Convergence in measure and approximate differentiability

We recall that a sequence of Borel maps {fh} is said to be locally convergent in measure
to f if

lim
h→∞

|{x ∈ BR(0) : |fh(x) − f(x)| > δ}| = 0 for every R > 0 and δ > 0.

This convergence is equivalent to the fact that

1 ∧ |fh − f | → 0 in L1
loc(R

n).

If the sequence {fh} is locally equi-bounded in L∞, then the local convergence in measure
is equivalent to the strong convergence in L1

loc.
We say that a Borel map f : R

n → R
k is approximately differentiable at x ∈ R

n if there
exists a linear map L : R

n → R
k such that the difference quotients

y 7→
f(x + εy) − f(x)

ε
locally converge in measure as ε ↓ 0 to Ly. This is clearly a local property. Equivalently, the
approximative differentiability condition can be stated in the following way: there exists a
map f̃ , differentiable in the classical sense at x, such that f̃(x) = f(x) and the coincidence

set {y : f̃(y) = f(y)} has density 1 at x. This characterization, together with Rademacher
theorem and some extension arguments, shows that if f |K is a Lipschitz map for some set
K ⊂ R

n, then f is approximately differentiable at almost every point of K. In the following
theorem we show a kind of converse of this statement: an approximately differentiable map
can be approximated, in the Lusin sense, with Lipschitz maps.

Theorem B.1. Let f : Ω → R
k. Assume that there exist Ah such that |Ω \ ∪hAh| = 0 and

f |Ah
is Lipschitz for any h. Then f is approximately differentiable at a.e. x ∈ Ω. Conversely,

if f is approximately differentiable at all points of Ω′ ⊂ Ω, we can write Ω′ as a countable
union of sets Ah such that f |Ah

is Lipschitz for any h (up to a redefinition on a negligible
set).

For the proof, see Theorem 3.1.16 of [10].

Appendix C. Compactness

In this appendix we give some “abstract” results which have been used in the previous
sections to prove compactness for the regular Lagrangian flows.

Lemma C.1. Let Ω ⊂ R
n be a bounded Borel set and let {fh} be a sequence of maps into

R
m. Suppose that for every δ > 0 we can find a positive constant Mδ < ∞ and, for every

fixed h, a Borel set Bh,δ ⊂ Ω with |Ω \ Bh,δ| ≤ δ in such a way that

‖fh‖L∞(Bh,δ) ≤ Mδ

and
Lip

(

fh|Bh,δ

)

≤ Mδ .

Then the sequence {fh} is precompact in measure in Ω.
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Proof. For every j ∈ N we find the value M1/j and the sets Bh,1/j as in the assumption of the
lemma, with δ = 1/j. Now, arguing component by component, we can extend every map
fh|Bh,1/j

to a map f j
h defined on Ω in such a way that the equi-bounds are preserved, up to

a dimensional constant: we have

‖f j
h‖L∞(Ω) ≤ M1/j for every h

and

Lip
(

f j
h

)

≤ cnM1/j for every h.

Then we apply Ascoli-Arzelà theorem (notice that by uniform continuity all the maps f j
h can

be extended to the compact set Ω̄) and using a diagonal procedure we find a subsequence

(in h) such that for every j the sequence {f j
h}h converges uniformly in Ω to a map f j

∞.
Now we fix ε > 0. We choose j ≥ 3/ε and we find N = N(j) such that

∫

Ω

|f j
i − f j

k | dx ≤ ε/3 for every i, k > N .

Keeping j and N(j) fixed we estimate, for i, k > N
∫

Ω

1 ∧ |fi − fk| dx ≤

∫

Ω

1 ∧ |fi − f j
i | dx +

∫

Ω

1 ∧ |f j
i − f j

k | dx +

∫

Ω

1 ∧ |f j
k − fk| dx

≤ |Ω \ Bi,1/j | +

∫

Ω

|f j
i − f j

k | dx + |Ω \ Bk,1/j |

≤
1

j
+

ε

3
+

1

j
≤ ε .

It follows that the given sequence has a subsequence which is Cauchy with respect to the
convergence in measure in Ω. This implies the thesis. �

We also recall the following classical criterion for strong compactness in Lp, since we used
it during the proof of Corollary 4.2.

Lemma C.2 (Riesz-Fréchet-Kolmogorov compactness criterion). Let F be a bounded subset
of Lp(RN) for some 1 ≤ p < ∞. Suppose that

lim
|h|→0

‖f(· − h) − f‖p = 0 uniformly in f ∈ F .

Then F is relatively compact in Lp
loc(R

N ).
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