
1. From (3.10) to (3.11)

The proof of (3.11) uses the claim that from (3.10) we can conclude

e(r) ≤ Crε/2 .

It is indeed correct that (3.10) implies the latter estimate, but we could have given some
more details about its derivation. First of all recall that, by the monotonicity formula

C0r
ε + e(r) ≥ 0 (†) .

for a suitable constant C0. Hence consider

ē(r) := max{e(r), 0} ,
and we claim that, from (3.10), it follows that

ē(s) ≤
(s
r

)a
ē(r) + C̄rε ∀0 < s < r ≤ r0 . (∗)

Indeed we distinguish two cases:

• e(s) = ē(s); in this case it is trivial because e(r) ≤ ē(r);
• e(s) 6= ē(s); then ē(s) = 0, but on the other hand the right hand side is certainly

positive if C̄ is chosen bigger than C0 because of (†).
Next set ẽ(r) := ē(r) + C̃rε. We then claim that, if C̃ is chosen sufficiently large,
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ẽ(r) ∀0 < r ≤ r0 .

This is indeed equivalent to
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rε ,

which can be derived by (∗) recalling that ε/2 ≤ a and ē(r) ≥ 0 and ensuring that

C̃

(
1

2ε/2
− 1

2ε

)
≥ C̄ .

Iterating now the inequality for ẽ we conclude

ẽ(s) ≤
(
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)ε2

max
{
ẽ(r) :

r0
2
≤ r ≤ r0

}
∀s < r0 ,

which clearly implies
ẽ(s) ≤ Csε/2 ∀s ≤ r0

(for an appropriately chosen constant C). Since e(s) ≤ ẽ(s), the desired claim readily
follows.

We in fact note that the argument implies also

|e(s)| ≤ Csε/2 .
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