1. From (3.10) to (3.11)

The proof of (3.11) uses the claim that from (3.10) we can conclude

$$
e(r) \leq C r^{\varepsilon / 2}
$$

It is indeed correct that (3.10) implies the latter estimate, but we could have given some more details about its derivation. First of all recall that, by the monotonicity formula

$$
C_{0} r^{\varepsilon}+e(r) \geq 0
$$

for a suitable constant C_{0}. Hence consider

$$
\bar{e}(r):=\max \{e(r), 0\},
$$

and we claim that, from (3.10), it follows that

$$
\begin{equation*}
\bar{e}(s) \leq\left(\frac{s}{r}\right)^{a} \bar{e}(r)+\bar{C} r^{\varepsilon} \quad \forall 0<s<r \leq r_{0} \tag{*}
\end{equation*}
$$

Indeed we distinguish two cases:

- $e(s)=\bar{e}(s)$; in this case it is trivial because $e(r) \leq \bar{e}(r)$;
- $e(s) \neq \bar{e}(s)$; then $\bar{e}(s)=0$, but on the other hand the right hand side is certainly positive if \bar{C} is chosen bigger than C_{0} because of (\dagger).
Next set $\tilde{e}(r):=\bar{e}(r)+\tilde{C} r^{\varepsilon}$. We then claim that, if \tilde{C} is chosen sufficiently large,

$$
\tilde{e}\left(\frac{r}{2}\right) \leq \frac{1}{2^{\varepsilon / 2}} \tilde{e}(r) \quad \forall 0<r \leq r_{0}
$$

This is indeed equivalent to

$$
\bar{e}\left(\frac{r}{2}\right) \leq \frac{1}{2^{\varepsilon / 2}} \bar{e}(r)+\tilde{C}\left(\frac{1}{2^{\varepsilon / 2}}-\frac{1}{2^{\varepsilon}}\right) r^{\varepsilon},
$$

which can be derived by $(*)$ recalling that $\varepsilon / 2 \leq a$ and $\bar{e}(r) \geq 0$ and ensuring that

$$
\tilde{C}\left(\frac{1}{2^{\varepsilon / 2}}-\frac{1}{2^{\varepsilon}}\right) \geq \bar{C}
$$

Iterating now the inequality for \tilde{e} we conclude

$$
\tilde{e}(s) \leq\left(\frac{2 s}{r_{0}}\right)^{\varepsilon_{2}} \max \left\{\tilde{e}(r): \frac{r_{0}}{2} \leq r \leq r_{0}\right\} \quad \forall s<r_{0}
$$

which clearly implies

$$
\tilde{e}(s) \leq C s^{\varepsilon / 2} \quad \forall s \leq r_{0}
$$

(for an appropriately chosen constant C). Since $e(s) \leq \tilde{e}(s)$, the desired claim readily follows.

We in fact note that the argument implies also

$$
|e(s)| \leq C s^{\varepsilon / 2}
$$

