In the paper we do not give a proof of equation (18), a key statement of Theorem 4.2. The statement is not at all trivial and requires indeed a certain amount of work.

Proof of (18). Let $\{x_i\}$ be the set such that $\mathcal{L}^3(F(x_i)) > 0$.

Step 1 First of all we show that each $F(x_i)$ is a Caccioppoli set. Set $x = x_i$, let $r \in R_x$ and consider the Caccioppoli set $C = \operatorname{im}_T(u, B(x, r))$. For \mathcal{L}^3 -a.e. y, u(y) is a point of density 1 for $\operatorname{im}_G(u, \Omega)$. A standard Fubini argument implies that for \mathcal{L}^1 -a.e. r we have the property that \mathcal{H}^2 -a.e. point $y \in u(\partial B(x, r))$ is of density 1 for $\operatorname{im}_G(u, \Omega)$. Assume that r enjoys this property. $D := \operatorname{im}_T(u, B(x, r)) \setminus \operatorname{im}_G(u, \Omega)$ is a Caccioppoli set and $\partial^* D \subset \partial^* \operatorname{im}_T(u, B(x, r)) \cup \partial^* \operatorname{im}_G(u, \Omega)$. By Lemma $3.10, \ \mathcal{H}^2(\partial^* \operatorname{im}_T(u, B(x, r)) \setminus u(\partial B(x, r))) = 0$. Thus, since \mathcal{H}^2 a.e. $y \in u(\partial B(x, r))$ is of density 1 for $\operatorname{im}_G(u, \Omega)$, we conclude that, up to \mathcal{H}^2 -null sets, $\partial^* D \subset \partial^* \operatorname{im}_G(u, \Omega)$.

Consider now a sequence of radii $r_j \downarrow 0$ as above and the corresponding sets $D_j := \operatorname{im}_T(u, B(x, r_j)) \setminus \operatorname{im}_G(u, \Omega)$. By the monotonicity property of Lemma 3.12(ii), $\bigcap D_j = F(x)$. On the other hand, $\operatorname{Per} D_j \leq \operatorname{Per} \operatorname{im}_G(u, \Omega) = 0$. Thus we conclude that F(x) is a Caccioppoli set and that

$$\operatorname{Per}(F(x)) \le \operatorname{Per}\operatorname{im}_G(u,\Omega).$$
 (1)

Step 2 Consider a finite number of points x_1, \ldots, x_N . We can argue as above and define the set $D_j := (\bigcup_{i=1}^N \operatorname{im}_T(u, B(x_i, r_j))) \setminus \operatorname{im}_G(u, \Omega)$. Choosing suitable radii $r_j \downarrow 0$ we then conclude that

Per
$$\left(\bigcup_{i=1}^{N} F(x_i)\right) \leq \operatorname{Perim}_{G}(u, \Omega)$$
.

We next claim that $\mathcal{H}^2(\partial^* F(x_i) \cap \partial^* F(x_j)) = 0$ if $i \neq j$. Consider indeed a radius $r \in R_{x_i} \cap R_{x_j}$ with $r < ||x_i - x_j||$. By Lemma 3.12, $\operatorname{im}_T(u, B(x_i, r)) \cap \operatorname{im}_T(u, B(x_j, r)) = \emptyset$. Moreover,

$$\mathcal{H}^{2}(\partial^{*} \operatorname{im}_{T}(u, B(x_{i}, r)) \setminus u(\partial B(x_{i}, r)))$$

= $\mathcal{H}^{2}(\partial^{*} \operatorname{im}_{T}(u, B(x_{j}, r)) \setminus u(\partial B(x_{i}, r))) = 0.$

Recalling that u is injective on Ω_d and that Definition 3.11(ii) holds, if we choose the radius r appropriately we conclude that

$$\mathcal{H}^2(\partial^* \operatorname{im}_T(u, B(x_i, r)) \cap \partial^* \operatorname{im}_T(u, B(x_i, r))) = 0.$$

Since $F(x_i) \subset \operatorname{im}_T(u, B(x_i, r))$, we must have

$$\partial^* F(x_i) \subset \operatorname{im}_T(u, B(x_i, r)) \cup \partial^* \operatorname{im}_T(u, B(x_i, r)).$$

Thus, we conclude that $\mathcal{H}^2(\partial^* F(x_i) \cap \partial^* F(x_j)) = 0$. But then, we have

$$\sum_{i=1}^{N} \operatorname{Per} F(x_i) = \operatorname{Per} \left(\bigcup_{i=1}^{N} F(x_i) \right) \leq \operatorname{Per} \operatorname{im}_G(u, \Omega) \,. \tag{2}$$

Letting $N \uparrow \infty$ we conclude the desired inequality.

Acknowledgments I am very grateful to Duvan Henao for pointing out the incompleteness of the proof of Theorem 4.2.