Errata to "The min-max construction of minimal surfaces"

1. Varia

Many thanks to Alessandro Pigati for pointing out the following mistakes.

- (1) The Definition 1.1 does not seem to be strong enough to ensure $\{\psi(t, \Sigma_t)\}_t$ is again a generalized family when $\psi \in C^{\infty}([0, 1] \times M, M)$ is a smooth path of diffeomorphisms. As I do in some subsequent works one should strengthen the assumption of continuity in the parameter t in some way. A possibility which covers all the applications of the papers is the following:
 - For everty given τ there is a discrete set $P(\tau)$ such that, as $t \to \tau$, Σ_t converges in C^1 to Σ_τ locally on $M \setminus P(\tau)$. An even weaker sufficient condition would be convergence in the sense of varifolds.
- (2) The argument of Lemma B.1 is wrong. In particular (70) is not at all guaranteed by the fact that $\psi_T(y) \cdot \nabla \varphi(y) \ge 0$. The test function χ should indeed be chosen rather differently. One should consider first a slightly larger strictly convex set K' which contains K and such that $\partial K \cap \partial K' = \{x\}$. Then we should take the test vector field

$$\chi(x) := \varphi(\operatorname{dist}(x, \partial K')) n(\pi(x)),$$

where

- $\varphi : [0,1] \to [1,0]$ is identically 1 in 0, $\varphi' < 0$ on $[0,\varepsilon]$ for some positive ε and then vanishes identically on $[\varepsilon,\infty]$;
- n is the inward unit normal to $\partial K'$;
- π is the orthogonal projection onto $\partial K'$.

For ε sufficiently small this is an admissible test vector field because it can be multiplied by a cut-off function $\alpha(x)$ so to make it compactly supported without changing its values in a

©0000 (copyright holder)

neighborhood of the support of the varifolds: note that $\partial K' \cap \partial K = \{x\}$ is used crucially here.

Then it can be checked that the strict convexity of K'guarantees the following. For a sufficiently small ε the trace of $D\chi(y)$ on any 2-plane is nonnegative for any y and it is strictly positive for y in a neighborhood of x.

2. Pull-tight lemma

There are (minor) issues with Proposition 4.1 (some passages are wrong as written and some would require more explanations). Moreover, some things are unnecessarily complicated. I have therefore decided to rewrite its proof from scratch. Thanks to Bill Allard for pointing out the mistakes in the original version.

PROPOSITION 2.1. Assume Λ is a saturated family. Then there exists a minimizing sequence $\{\{\Sigma_t\}^n\} \subset \Lambda$ such that, if $\{\Sigma_{t_n}^n\}$ is a min-max sequence, then $\mathfrak{d}(\Sigma_{t_n}^n, \mathcal{V}_{\infty}) \to 0$.

PROOF. Step 1: A map from X to the space of vector fields. For $k \in \mathbb{Z}$ define the annular neighborhood of \mathcal{V}_{∞}

$$\mathcal{V}_k = \left\{ V \in X | 2^{-k+1} \ge \mathfrak{d}\left(V, \mathcal{V}_\infty\right) \ge 2^{-k-2} \right\} \,.$$

For every $V \in \mathcal{V}_k$ choose a smooth vector field χ_V such that

$$\delta V(\chi_V) < 0$$
.

By linearity we can assume that

$$\|\chi_V\|_{C^k} \le \frac{1}{k} \quad \text{for } k \in \mathbb{N} \setminus \{0\}.$$

Next, for each such V choose a metric ball $B_{2\rho}(V)$ (with respect to the distance \mathfrak{d}) such that

$$\delta W(\chi_V) \le \frac{1}{2} \delta V(\chi_V) \qquad \forall W \in B_{2\rho}(V)$$

Cover \mathcal{V}_k with a finite number of balls $B_{\rho_i}(V_i)$. Moreover, for each i choose a continuous function $\psi_i \in C_c(B_{2\rho_i}(V_i))$ which is identically equal to 1 on $B_{\rho_i}(V_i)$ and satisfies $0 \leq \psi_i \leq 1$. We then define the map

$$\mathcal{V}_k \ni V \quad \mapsto \quad H^k_V := \frac{\sum_i \psi_i(V) \chi_{V_i}}{\sum_i \psi_i(V)} \in C^{\infty}(M, TM) \,.$$

Observe that:

- (a) $\delta V(H_V^k) < 0$ for every $V \in \mathcal{V}_k$;
- (b) $V \mapsto H_V^k$ is continuous;
- (c) $||H_V^k||_{C^k} \leq \frac{1}{k}$ for every $k \in \mathbb{N}$ and for every $V \in \mathcal{V}_k$.

Choose next a function $\psi^k \in C_c(\mathcal{V}_k)$ with the properties that $0 \leq \psi^k \leq 1$ and $\psi^k \equiv 1$ on $\{V \in \mathcal{V}_k : 2^{-k} \geq \mathfrak{d}(V, \mathcal{V}_\infty) \geq 2^{-k-1}\}$. On $X \setminus \mathcal{V}_\infty$ we define the continuous function

$$V \mapsto H_V := \frac{\sum_k \psi^k(V) H_V^k}{\sum_k \psi^k(V)}$$

Observe that:

- (a') $\delta V(H_V) < 0$ for every $V \in X \setminus \mathcal{V}_{\infty}$;
- (b') $V \mapsto H_V$ is continuous;
- (c') $||H_V||_{C^{k-1}} \leq \frac{1}{k-1}$ if $\mathfrak{d}(\mathcal{V}, \mathcal{V}_{\infty}) \leq 2^{-k}$ and $k \in \mathbb{N} \setminus \{0, 1\}$.

Extend the map $V \mapsto H_V$ to X by setting it identically equal to 0 on $\mathcal{V}_{\infty} \cap X$. By property (c') it turns out that such extension is continuous in the C^k norm. By the arbitrariness of k we thus conclude that $V \mapsto H_V$ is actually continuous in the C^{∞} space.

Step 2: A map from X to the space of isotopies. For each $V \in X$ let Ψ_V be the one-parameter family of diffeomorphisms generated by H_V . For each $V \in X \setminus \mathcal{V}_{\infty}$ there is a positive time σ_V such that

$$\delta(\Psi(s,\cdot)_{\sharp}V)(H_V) \le \frac{1}{2}\delta V(H_V) < 0 \qquad \forall s \in [0,\sigma_V].$$

By the continuity of the map H_V , the map $(s, V) \mapsto \delta(\Psi(s, \cdot)_{\sharp}V)(H_V)$ is also continuous. Thus we conclude the existence of a radius ρ_V such that

$$\delta(\Psi(s,\cdot)_{\sharp}W)(H_W) \le \frac{1}{4} \delta V(H_V) < 0 \qquad \forall s \in [0,\sigma_V], \forall W \in B_{2\rho_V}(V).$$

Arguing as in the first step we then can construct a continuous function $\sigma: X \to [0, \infty]$ such that:

- (i) $\sigma = 0$ on \mathcal{V}_{∞} ;
- (ii) σ is positive on $X \setminus \mathcal{V}_{\infty}$;
- (iii) $\max_{t \in [0,\sigma(V)]} \delta(\Psi(s,\cdot)_{\sharp} V)(H_V) < 0$ for every $V \in X \setminus \mathcal{V}_{\infty}$ and for every $s \in [0,\sigma(V)]$.

Let us now redefine a new H_V by multiplying the old one by $\sigma(V)$. For this newly defined H_V (which remains continuous and vanishes identically on \mathcal{V}_{∞}) the property (iii) becomes

$$\max_{s \in [0,1]} \delta(\Psi(s, \cdot)_{\sharp} V)(H_V) < 0 \quad \text{for every } V \in X \setminus \mathcal{V}_{\infty}.$$
(1)

Step 3: Conclusion. We next take a minimizing sequence $\{\{\Gamma_t^n\}_t\}^n \subset \Lambda$ and consider newly defined families $\{\Xi_t^n\}_t$ by setting

$$\Xi_t^n = \Psi_{\Gamma_t^n}(1, \Gamma_t^n) \,.$$

4 ERRATA TO "THE MIN–MAX CONSTRUCTION OF MINIMAL SURFACES"

Never mind, for the moment, that $\{\Xi_t^n\}_t$ is not necessarily an element of Λ (because the map $(t, x) \mapsto \Psi_{\Gamma_t^n}(1, x)$ is not known to be smooth in the parameter t). We wish first to show that the sequence $\{\{\Xi_t^n\}_t\}^n$ has the other property claimed by the Proposition. To this aim we choose a sequence $\{t_n\}$ such that $\lim_n \mathcal{H}^2(\Xi_{t_n}^n) = m_0$ and, by possibly passing to a subsequence, assume without loss of generality that the sequence $\{\Gamma_{t_n}^n\}_n$ (namely the counterpart of $\{\Xi_{t_n}^n\}_n$ in the original minimizing sequence $\{\{\Gamma_t^n\}_t\}^n$) converges to some varifold V. Note that, by continuity of the map Ψ , we would then have that

$$\Xi_{t_n}^n = \Psi_{\Gamma_{t_n}^n}(1, \cdot)_{\sharp} \Gamma_{t_n}^n \quad \text{converges to} \quad \Psi_V(1, \cdot)_{\sharp} V \tag{2}$$

(in the varifold sense and hence in the metric \mathfrak{d}). If V itself is stationary, we are then finished because Ψ_V is the 1-parameter family generated by the vector field $H_V = 0$ and thus $\Psi_V(1, \cdot)_{\sharp}V = V$.

On the other hand by construction

$$\mathcal{H}^2(\Xi^n_t) \leq \mathcal{H}^2(\Gamma^n_t)$$
 .

Hence, we conclude that $||V||(M) = \lim_{n} \mathcal{H}^2(\Gamma_{t_n}^n) = m_0$ (because $\{\{\Gamma_t^n\}_t\}^n$ was a minimizing sequence in Λ). Note however that, if V were not stationary, then (2) and (1) would imply

$$m_0 = \lim_{n \to \infty} \mathcal{H}^2(\Xi_{t_n}^n) = \|\Psi_V(1, \cdot)_{\sharp}V\|(M)$$

= $\|V\|(M) + \int_0^1 \delta(\Psi(s, \cdot)_{\sharp}V)(H_V) \, ds < m_0$,

reaching a contradiction.

We have thus proved that $\{\{\Gamma_t^n\}_t\}^n$ enjoys the second property of the proposition. We now wish to regularize each $\{\Gamma_t^n\}_t$ in the parameter t. To this aim, for each n let h_t^n denote the one parameter family of vector fields $H_{\Gamma_t^n}$. The map $(t, x) \mapsto h^n(t, x) := h_t^n(x)$ is continuous. However, in addition

$$\lim_{t \to \tau} \|h^n(t, \cdot) - h^n(\tau, \cdot)\|_{C^k} = \lim_{t \to \tau} \|H_{\Gamma^n_t} - H_{\Gamma^n_\tau}\|_{C^k} = 0$$

for every fixed k. By a standard smooth procedure (for instance by convolution with a standard kernel in the parameter t), we can construct a smooth map $(t, x) \mapsto \bar{h}^n(t, x)$ with the property

$$\max_{t} \|h^{n}(t,\cdot) - \bar{h}^{n}(t,\cdot)\|_{C^{1}} \le \frac{1}{n+1}.$$
(3)

Consider now for each fixed n and t the one-parameter family of diffeomorphisms $\Phi_t^n(s, \cdot)$ generated by \bar{h}_t^n and the one-parameter family of diffeomorphisms $\Psi_t^n(s, \cdot)$ generated by h_t^n . Note that $\Xi_t^n = \Psi_t^n(1, \Gamma_t^n)$. Define thus correspondingly $\Sigma_t^n := \Phi_t^n(1, \Gamma_t^n)$. By the smoothness of the map \bar{h} in the paremeter t, we now know that $\{\Sigma_t^n\}_t$ is indeed an element of Λ . On the other hand (3) implies the property that

$$\lim_{n \to \infty} \max_{t} \mathfrak{d} \left(\Sigma_t^n, \Xi_t^n \right) = 0.$$

We therefore can conclude that:

• First of all

$$\limsup_{n} \max_{t} \mathcal{H}^{2}(\Sigma_{t}^{n}) = \limsup_{n} \max_{t} \mathcal{H}^{2}(\Xi_{t}^{n})$$
$$\leq \limsup_{n} \max_{t} \mathcal{H}^{2}(\Gamma_{t}^{n}) \leq m_{0}.$$

Thus $\{\{\Sigma_t^n\}_t\}^n \subset \Lambda$ is a minimizing sequence. • Secondly, if $\lim_n \mathcal{H}^2(\Sigma_{t_n}^n) = m_0$, then $\lim_n \mathcal{H}^2(\Xi_{t_n}^n) = m_0$. Therefore

$$\limsup_{n} \mathfrak{d} \left(\Sigma_{t_n}^n, \mathcal{V}_{\infty} \right) = \limsup_{n} \mathfrak{d} \left(\Xi_{t_n}^n, \mathcal{V}_{\infty} \right) = 0 \,.$$

Namely $\{\{\Sigma_t^n\}_t\}^n$ inherits from $\{\{\Xi_t^n\}_t\}^n$ the second property claimed in the statement of the proposition.

 $\{\{\Sigma_t^n\}_t\}^n$ is then the desired sequence.