The proof of Theorem 3.22 contains a mistake in the existence of the regular Lagrangian flow Φ . Indeed, in the step about the stronc convergence of Φ_n , the curve $t \mapsto \Gamma^j(t,x)$ does not solve any ODE and hence it is not clear why it should be Lipschitz. I give here an alternative argument.

Step 1 We use Lemma 3.7 to define the solutions of the continuity equations at any time.

Step 2We strenghten Corollary 3.19: The weak* convergence of $\zeta_n(t,\cdot)$ to $\zeta(t,\cdot)$ holds at every time t. Indeed let φ be a test functions which depends only on the space variable x and set

$$f_n(t) := \int \zeta_n(t, x)\varphi(x)dx$$
$$f(t) := \int \zeta(t, x)\varphi(x)dx$$

 f_n and f are continuous by Lemma 3.7. Using the equations defining them you get also

$$f'_n(t) = \int \zeta_n(t, x) \nabla \varphi(x) \cdot b_n(t, x) dx$$
.

Thus $||f'_n||_{C^0} \leq C$ for some constant C which depends only on φ .

By Ascoli-Arzelà f_n converges uniformly to some continuous function. However, by the weak* convergence of ζ_n to ζ (in time and space), $f_n \to f$ uniformly. Ne concludi the f_n converges to f uniformly, and hence pointwise for every t. Since $\|\zeta_n(t,\cdot)\|_{\infty}$ is uniformly bounded and φ is an arbitrary test function, we conclude that $\zeta_n(t,\cdot) \to \zeta(t,\cdot)$ weak* in L^{∞} for every t.

Step 3 We next strenghten Corollary 3.20, claiming that $u_n(t,\cdot)$ converges strongly in L^1_{loc} to $u(t,\cdot)$ for all t. Indeed note that Step 2, the renormalization property and Corollary 3.14 imply that

$$\zeta_n(t,\cdot)u_n^2(t,\cdot) \to \zeta(t,\cdot)u^2(t,\cdot)$$
 and $\zeta_n(t,\cdot)u_n(t,\cdot) \to \zeta(t,\cdot)u(t,\cdot)$ weakly* in L^{∞} for every t .

Step 4 We now get back to the existence part in the proof of Theorem 3.22. In *Existence. Step 2: Strong convergence*: we can apply the Step 3 above to the maps w_n and conclude that $w_n(t,\cdot)$ converges strongly to $w(t,\cdot)$ for all t. Having obtained this property, we can continue with the rest of the proof, which is correct.

Acknowledgments. I thank Michiel Bertsch for pointing out the mistake