Proof of Proposition 2.1. In the second displayed equation, after (50), last inequality. If we use this inequality and follow the remaining arguments we then reach

$$
\int_{B_{s}}|D g|^{2} \leq 2 \int_{B_{s} \backslash L}|D h|^{2}+C E^{1+\delta} r^{m}
$$

instead of (50).
One should instead use:

$$
\begin{aligned}
\leq & \underbrace{\int_{B_{s-r E^{\theta}}}\left(\left(|D h| \mathbf{1}_{B_{s} \backslash L}\right) * \varphi_{r E^{\gamma}}\right)^{2}}_{I}+\underbrace{\int_{B_{s-r E^{\theta}}}\left(\left(|D h| \mathbf{1}_{B_{s} \cap L}\right) * \varphi_{r E^{\gamma}}\right)^{2}}_{I I} \\
& +2 \underbrace{\int_{B_{s-r E^{\theta}}}\left(|D h| \mathbf{1}_{B_{s} \cap L}\right) * \varphi_{r E^{\gamma}}\left(|D h| \mathbf{1}_{B_{s} \backslash L}\right) * \varphi_{r E^{\gamma}}}_{I I I} .
\end{aligned}
$$

The integrals I and $I I$ are estimated as in the paper. Since, moreover, $I \leq C E r^{m}$, using Cauchy-Schwartz and the estimate for $I I$ we reach $I I I \leq C E^{3 / 2-m \gamma / 2-\alpha} r^{m}$. For a suitable δ, (47) implies then $I I I+I I \leq$ $C E^{1+\delta} r^{m}$. This shows indeed (50).

