
Errata on “h-principle and rigidity for C1,α isometric embeddings”

The proof of Corollary 4 in the paper has a gap, pointed out to us by Reza Pakzad. The
corrected argument yields the weaker conclusion of Corollary A below. Moreover, [1, Corollary
3] does not follow from Pogorelov’s work and [1, Theorem 3], as claimed in the paper: in only
to apply Theorem 9 of page 650 in [2] the map u must be assumed to be an embedding and not
merely an immersion (as clarified at [2, Page 572], the term “smooth surface” in the book denotes
what the modern literature would call embedded C1 two-dimensional submanifolds).

Corollary A Let β > 0, D ⊂ R2 be the closed unit disk and g ∈ C2,β a metric on D with
positive Gauss curvature. Then there is a smooth short embedding v ∈ C∞(D,R3) and a positive
δ with the following property. If u ∈ C1,α(D,R3) is an isometric embedding with α > 2

3 , then
‖u− v‖C0 ≥ δ.

Moreover, in addition to the case of closed surfaces, the convexity can be concluded from the
work of Pogorelov in another case:

Corollary B Let β > 0 and (Ω, g) be a complete 2-dimensional Riemannian C2,β manifold without
boundary and with positive Gauss curvature. If u ∈ C1,α(Ω,R3) is a proper isometric embedding
with α > 2

3 , then u(Ω) is a complete unbounded convex surface of R3.

Corollary B follows from Theorem 3 in [1] and Theorem 2 at page 613 of Pogorelov’s monograph
[2].

Concerning the gap in the proof of [1, Corollary 4], note that, first of all, Sabitov’s estimate in
Step 3 of the proof is quoted incorrectly: the estimate is in the interior and depends on the distance
to the boundary of the domain. This is immaterial: the argument could be changed by looking
instead at the maximal open set U of the form V×] − a, a[ such that u(Ω) ∩ U is the graph of a
(locally) C2 function with f |∂V = a and U has diameter smaller than c0. The remaining argument
is then correct: note however that it just implies that U has a sufficiently large diameter, but it
does not imply that it contains a ball centered on y with radius controlled uniformly from below,
as claimed in estimate (101): it might happen that such maximal U is very long and thin. We
next show how this can however still be used to prove Corollary A above.

Proof of Corollary A. Let D and g be as in the statement and fix a u ∈ C1,α isometric embedding
of (D, g) into R3 with α > 2

3 . Then the following alternative holds:

(a) Either u(D1/2) is locally uniformly convex;
(b) Or there are points x ∈ D1/2 and y ∈ ∂D such that the straight segment σ = [u(x), u(y)]

is contained in u(Ω).

We first prove the alternative. Denote by N the Gauss map of the immersed surface. Using the
terminology of Pogorelov, we say that x ∈ D1/2 is a regular point if there is a neighborhood U of
it with the property that N(u(y)) 6= N(u(x)) for every y 6∈ U \ {x}. As argued in the Appendix
of [1] regular points are dense in D.

Moreover, following the explanation over there, u is uniformly convex in a neighborhood of u(x)
for any regular point x. Let π be the tangent plane to u(D) at u(x). To fix ideas assume that it
is the plane {x3 = 0} and that locally around u(x) the surface is the graph of a convex function
(x1, x2, f(x1, x2)). It follows from [2] and [3] that f is a uniformly convex function. Consider the
family of planes πt := {x3 = t} for t positive. For small t’s one of the connected components of
πt ∩ u(D) must be a curve γt which bounds a disk containing u(x) in u(D). We then argue as in
the proof of Theorem 1 at page 613 in [2]: as we follow the evolution of γt, it either contracts to a
point or it intersects with u(∂D), and as long as none of the two events happen, γt keeps being a
convex curve which in u(D) bounds a convex region containing u(x). As described in the proof of
Theorem 2 at page 615, in case γt becomes a point, we would find a portion of u(D) homeomorphic
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to the 2-sphere, which is not possible. Since u(D) is bounded, there must therefore be a t̄ such
that πt̄ ∩ u(D) contains a curve γt̄ with the following properties:

(i) γt̄ is a convex curve;
(ii) γt̄ ∩ u(∂D) is not empty;

(iii) γt̄ bounds a convex region Ω in u(D) which contains u(x).

We denote by d(x) the value t̄, by Ω(x) the region Ω and by γ(x) the curve γt̄.

Now, if every point x ∈ D1/2 is regular, then alternative (a) holds. Assume therefore that
there is a nonregular point x. Since regular points are dense, select a sequence xk of regular
points converging to x. The numbers d(xk) must converge to 0, otherwise, for a subsequence
(not relabeled), the regions Ω(xk) would converge to a nontrivial convex region Ω(x) containing
x, namely there would be a neighborhood U of x such that u(U) is convex and hence uniformly
convex, contradicting the assumption that x is not a regular point.

We next claim that the curves γ(xk) must converge to a segment. Otherwise a subsequence
would converge to a nontrivial convex curve γ in the tangent plane π to u(D) at u(x). The region
bounded by such curve γ in π would have to be a subset of u(D), but all its counterimages would
consist of nonregular points, while we already know that regular points are dense in D. The limit
of the curves γ(xk) is thus a straight segment, which must contain the point u(x) and a point p in
u(∂D). We conclude that alternative (a) holds.

We now come to the claim of the Corollary, which will be shown for the embedding (x1, x2) 7→
v(x1, x2) = (4ηx1, 4ηx2, 0) when η > 0 is sufficiently small. Clearly v is a short embedding if
δ is small enough. Let now u be an isometric embedding into R3 of class C1,α for α > 2

3 with
‖u−v‖0 ≤ δ. If alternative (b) were to hold, the segment σ would be long at most 4η+δ. However,
the counterimage of this segment is a curve joining a point x ∈ D1/2 and a point y ∈ ∂D1 (which
is in fact a geodesic for the metric g): the length of the curve with respect to the metric g is thus
larger than a constant c0 > 0 depending only on g. Thus, if η < c0

5 and δ is sufficiently small,
alternative (b) is excluded.

Fix therefore such an η ≤ c0
5 and assume that there is a sequence of isometric embeddings uk

of class C1,α with α > 2
3 converging uniformly to it. We can assume withot loss of generality that

each uk(D1/2) is locally convex. Let wk be the planar maps consisting of the first two components

of uk. For sufficiently large k the degree of the map wk in the square [η, η]2 equals the degree of
the map (v1, v2), which is 1. Assume without loss of generality that this holds for every k.

Consider now an infinite strip of the form

St := {(x1, x2, x3) : x1 = t,−η ≤ x2 ≤ η} .

By Sard’s theorem for a.e. t the intersection St∩uk(D1) is transversal to u(D1). Select a t ∈ [−η, η]
such that this holds true for every k. Then St ∩uk(D1) consists of finitely many closed curves and
finitely many arcs, the endpoints of the latter being contained in the two lines `±(t) = {(t,±η, x3)}.
Since the degree of the map wk is 1 on [−η, η]2, there must be at least one arc which is connecting
the two lines (otherwise the degree of the map would be 0 on the whole segment {(t, x2) : |x2| ≤ η}).
Denote by αk the arc, by qk and pk its two endpoints, by βk the arc u−1

k ◦αk, and by q̄k and p̄k the
two endpoints of the latter. Observe that, by the uniform converge of uk to v, the arc βk must be
contained in D1/2 for k large enough. Since u(D1/2) is locally uniformly convex, βk is then given

by {(t, s, gk(s)),−η ≤ s ≤ η}, where the function gk is C2 and either convex or concave. Observe
however that gk converges uniformly to 0: in particular the lengths of the βk’ are converging to
2η. On the other hand the points q̄k and p̄k converge, respectively, to q̄ = (t,−1

4) and p̄ = (t, 1
4).

The geodesic distance, in the metric g, between these two points would have to be at most 2η. On
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the other hand such distance can be bounded from below with a positive constant depending only
on g, and this would not be possible if η is chosen sufficiently small. �

References
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