Errata on “h-principle and rigidity for C"® isometric embeddings”

The proof of Corollary 4 in the paper has a gap, pointed out to us by Reza Pakzad. The
corrected argument yields the weaker conclusion of Corollary A below. Moreover, [1, Corollary
3] does not follow from Pogorelov’s work and [1, Theorem 3], as claimed in the paper: in only
to apply Theorem 9 of page 650 in [2] the map u must be assumed to be an embedding and not
merely an immersion (as clarified at [2, Page 572], the term “smooth surface” in the book denotes
what the modern literature would call embedded C! two-dimensional submanifolds).

Corollary A Let 8 > 0, D C R? be the closed unit disk and g € C?# a metric on D with
positive Gauss curvature. Then there is a smooth short embedding v € C°°(D, R3) and a positive
§ with the following property. If v € C1%(D,R3) is an isometric embedding with a > %, then
lu—vlco = 6.

Moreover, in addition to the case of closed surfaces, the convexity can be concluded from the
work of Pogorelov in another case:

Corollary B Let 3 > 0 and (€, g) be a complete 2-dimensional Riemannian C*# manifold without
boundary and with positive Gauss curvature. If u € C1¥(2,R?) is a proper isometric embedding
with o > %, then u(f2) is a complete unbounded convex surface of R3.

Corollary B follows from Theorem 3 in [1] and Theorem 2 at page 613 of Pogorelov’s monograph
[2].
Concerning the gap in the proof of [1, Corollary 4], note that, first of all, Sabitov’s estimate in
Step 3 of the proof is quoted incorrectly: the estimate is in the interior and depends on the distance
to the boundary of the domain. This is immaterial: the argument could be changed by looking
instead at the maximal open set U of the form Vx| — a, a[ such that «(2) N U is the graph of a
(locally) C? function with f|sy = a and U has diameter smaller than cy. The remaining argument
is then correct: note however that it just implies that U has a sufficiently large diameter, but it
does not imply that it contains a ball centered on y with radius controlled uniformly from below,
as claimed in estimate (101): it might happen that such maximal U is very long and thin. We
next show how this can however still be used to prove Corollary A above.

Proof of Corollary A. Let D and g be as in the statement and fix a u € C1® isometric embedding
of (D, g) into R® with o > 2. Then the following alternative holds:

(a) Either u(D9) is locally uniformly convex;
(b) Or there are points € D; /5 and y € 9D such that the straight segment o = [u(z), u(y)]
is contained in u(§2).

We first prove the alternative. Denote by N the Gauss map of the immersed surface. Using the
terminology of Pogorelov, we say that z € Dy, is a regular point if there is a neighborhood U of
it with the property that N(u(y)) # N(u(z)) for every y & U \ {x}. As argued in the Appendix
of [1] regular points are dense in D.

Moreover, following the explanation over there, u is uniformly convex in a neighborhood of u(x)
for any regular point z. Let 7 be the tangent plane to u(D) at u(x). To fix ideas assume that it
is the plane {x3 = 0} and that locally around u(x) the surface is the graph of a convex function
(21, z2, f(z1,22)). It follows from [2] and [3] that f is a uniformly convex function. Consider the

family of planes m; := {x3 = t} for ¢ positive. For small ¢’s one of the connected components of

m Nu(D) must be a curve 7, which bounds a disk containing u(x) in u(D). We then argue as in
the proof of Theorem 1 at page 613 in [2]: as we follow the evolution of 7, it either contracts to a
point or it intersects with u(9D), and as long as none of the two events happen, 7; keeps being a
convex curve which in u(D) bounds a convex region containing u(x). As described in the proof of

Theorem 2 at page 615, in case ; becomes a point, we would find a portion of u(D) homeomorphic
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to the 2-sphere, which is not possible. Since u(D) is bounded, there must therefore be a t such

that 7z N u(D) contains a curve 7 with the following properties:

(i) vz is a convex curve;
(ii) 77 Nu(9dD) is not empty; B
(iii) 7 bounds a convex region 2 in u(D) which contains u(z).
We denote by d(z) the value ¢, by Q(z) the region © and by ~(z) the curve ;.

Now, if every point x € D/, is regular, then alternative (a) holds. Assume therefore that
there is a nonregular point x. Since regular points are dense, select a sequence xj of regular
points converging to x. The numbers d(xy) must converge to 0, otherwise, for a subsequence
(not relabeled), the regions Q(zx) would converge to a nontrivial convex region (x) containing
x, namely there would be a neighborhood U of = such that «(U) is convex and hence uniformly
convex, contradicting the assumption that x is not a regular point.

We next claim that the curves v(zx) must converge to a segment. Otherwise a subsequence

would converge to a nontrivial convex curve 7 in the tangent plane 7 to u(D) at u(z). The region
bounded by such curve  in 7 would have to be a subset of u(D), but all its counterimages would
consist of nonregular points, while we already know that regular points are dense in D. The limit
of the curves ~y(xy) is thus a straight segment, which must contain the point u(x) and a point p in

u(0D). We conclude that alternative (a) holds.

We now come to the claim of the Corollary, which will be shown for the embedding (z1,x2) —
v(z1,x2) = (4nz1,4n22,0) when n > 0 is sufficiently small. Clearly v is a short embedding if
§ is small enough. Let now u be an isometric embedding into R? of class C1® for o > % with
lu—vllp < 4. If alternative (b) were to hold, the segment o would be long at most 47+ 0. However,
the counterimage of this segment is a curve joining a point € Dy, and a point y € Dy (which
is in fact a geodesic for the metric g): the length of the curve with respect to the metric g is thus
larger than a constant ¢y > 0 depending only on g. Thus, if n < € and ¢ is sufficiently small,
alternative (b) is excluded.

Fix therefore such an 7 < € and assume that there is a sequence of isometric embeddings wuy,
of class C1* with a > % converging uniformly to it. We can assume withot loss of generality that
each ug(Dy /2) is locally convex. Let wy be the planar maps consisting of the first two components
of uy,. For sufficiently large k the degree of the map wy in the square [1,7]? equals the degree of
the map (v, v2), which is 1. Assume without loss of generality that this holds for every k.

Consider now an infinite strip of the form
S = {(w1,2,23) 1 271 =t,—n < w3 <1}

By Sard’s theorem for a.e. ¢ the intersection S;Nug (D7) is transversal to u(Dy). Select a t € [—n, 7]
such that this holds true for every k. Then S; Nuy(D1) consists of finitely many closed curves and
finitely many arcs, the endpoints of the latter being contained in the two lines ¢4 (t) = {(t, £n, z3)}.
Since the degree of the map wy, is 1 on [—n, ]2, there must be at least one arc which is connecting
the two lines (otherwise the degree of the map would be 0 on the whole segment {(¢, z2) : |z2| < n}).
Denote by ay, the arc, by g, and pg its two endpoints, by S the arc u;l oay, and by ¢ and py the
two endpoints of the latter. Observe that, by the uniform converge of u; to v, the arc 8 must be
contained in Dy for k large enough. Since u(D; 9) is locally uniformly convex, B is then given
by {(t,s,9r(s)),—n < s < n}, where the function gj is C? and either convex or concave. Observe
however that g; converges uniformly to 0: in particular the lengths of the i’ are converging to
27n. On the other hand the points g and py converge, respectively, to ¢ = (¢, —i) and p = (¢, %)
The geodesic distance, in the metric g, between these two points would have to be at most 27n. On



the other hand such distance can be bounded from below with a positive constant depending only
on g, and this would not be possible if 5 is chosen sufficiently small. O
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