Both estimates (2.13) and (4.2) are incorrect: the right hand side is missing a factor r^{-1}. The correct estimate is

$$
\begin{equation*}
|I(z, r)-I(y, r)| \leq C\left[\left(W_{r / 8}^{4 r}\left(x_{1}\right)\right)^{1 / 2}+\left(W_{r / 8}^{4 r}\left(x_{2}\right)\right)^{1 / 2}\right] \frac{|z-y|}{r} \quad \forall z, y \in\left[x_{1}, x_{2}\right] . \tag{1}
\end{equation*}
$$

This estimate is in fact the one which is invariant under the rescaling $u_{r}(x):=u(r x)$, which is the rescaling used in the proof to reduce the statement to the case $r=1$. The mistake is no consequence for the rest of the paper because in fact the estimate is used when $r=1$ in all the subsequent arguments.

Moreover, in the last two displayed equations of Section 4 the square root is missing on the right hand sides. The correct estimates are

$$
\begin{array}{rlrl}
\partial_{v} I(x, 1) & \leq C\left(\sqrt{W\left(x_{1}\right)}+\sqrt{W\left(x_{2}\right)}\right) & & \forall x \in\left[x_{1}, x_{2}\right] \\
\left|\partial_{v} I(x, 1)\right| & \leq C\left(\sqrt{W\left(x_{1}\right)}+\sqrt{W\left(x_{2}\right)}\right) & \forall x \in\left[x_{1}, x_{2}\right] .
\end{array}
$$

