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INTRODUCTION

Since their introduction in the XVIII century, Minimal Surfaces turned out to be a well-spring
of new mathematical concepts and ideas which not only contributed to the solution of many
known, long-standing problems but also posed new questions and even founded new areas
of mathematics. This is the case of the Geometric Measure Theory and the related regularity
issues which constitute the main frame for this research.

An immersed surface is said to be minimal if its mean curvature vector is constantly zero.
But, although clearly local, the above definition reveals its deepest implications in connection
with the overall geometry of such surfaces, as happens, for example, with global existence
issues.

The problem of finding a surface of least area stretched across a given closed contour
has been posed first by Lagrange in 1762 in the paper where first minimal surfaces have
been introduced [42]. This question, nowadays known as Plateau’s Problem from the Belgian
physicist who investigated soap bubbles, has drawn the attention of mathematicians for a
long time and has been answered in a reasonable way only relatively recently. Indeed, a
tirst general existence result, so appreciated by the mathematical community to earn the
Fields Medal to one of its author, came only around 1930 from the independent works of
the American mathematician J. Douglas [17] and the Hungarian mathematician T. Rado
[46]; whereas, other fundamental progresses have been achieved only in the 60’s thanks to
the efforts of many prominent mathematicians with main contributions by E. De Giorgi,
H. Federer, W. H. Fleming, E. R. Reifenberg and J. Simons [10, 21, 47, 55].

The need of a Regularity Theory for minimal surfaces has been first encountered in con-
nection with this existence question. All the results proven up to now, indeed, are obtained
by the means of the Calculus of Variations in suitable spaces of “generalized surfaces”.
And, what is still more surprising, such generalizations cannot be avoid in general, as
witnessed actually by the existence of solutions to Plateau’s problem which are not regular!
The regularity of minimal surfaces (where from now on the term “surface” stands for a
suitable generalization of the classical concept) is therefore one of the fundamental issue in
the understanding of global existence in some weak context.

Among the main generalizations considered, we cite Caccioppoli’s Sets, introduced in
embryo by R. Caccioppoli and then fully developed by De Giorgi, which are suited to
generalize the concept of hypersurfaces; the Rectifiable Currents, first studied by Federer and
Fleming, which represent a more general approach in any codimension (Caccioppoli’s sets
turn out to be a special case of rectifiable currents in the case of hypersurfaces); and finally
the Rectifiable Varifolds due to E. J. Almgren Jr. and W. K. Allard.

In the present thesis, we deal with some questions related to the regularity of minimal
currents. In particular, we consider the case of codimension bigger than one. In order to
understand the novelties in this case with respect to the codimension one case, it is worth
recalling that minimal, codimension one currents are smooth manifolds up to dimension
six (and in higher dimension n the singular set has Hausdorff dimension at most n —7).
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Whereas, for higher codimension currents, the situation is much different. Already Federer
pointed out the existence of two-dimensional currents which are singular. In particular, he
proved that every irreducible complex variety is actually a minimal surface, so that, for
instance, every branch point in a complex curve provides an example of singularity in a
minimal surface.

If the regularity theory for codimension one is reasonably well established and well
understood, the same cannot really be said about the regularity in codimension higher than
one. Essentially, all that is known in general is contained in the following remarkable papers:

1. On the singular structure of two-dimensional area minimizing currents in R™ [45], by E. Mor-
gan, 1982;

2. Tangent cone to two-dimensional area-minimizing currents are unique [62], by B. White, 1983;

3. Two-dimensional area-minimizing currents are classical minimal surfaces [9], by S. Chang,
1988;

4. Almgren’s big reqularity paper [2], by F. Almgren, 2000.

Although published posthumously, the results in [2] were announced by Almgren in the early
80’s and the articles by White and Chang, which give a definitive picture of two-dimensional
minimal currents, are both indebted to the work of Almgren and the third one builds upon
most of the book.

Almgren’s big regularity paper [2] is a monumental work of nearly one thousand pages,
in which the author establishes the following partial regularity result, the most general up
to now:

Theorem o.1. Every m-dimensional area-minimizing current in a n-dimensional Riemannian
manifold has a singular set of Hausdorff dimension at most m — 2.

This result is one of the major achievement in geometric measure theory and, to get it,
Almgren develops a number of new ideas which in our opinion, due in part to the difficulty
of the paper itself, have been just partially exploited till now. Nevertheless, Almgren’s work
is so important for the theory of minimal surfaces and for future developments in the field
that it is worth being better understood and clarified. Moreover, apart from its intrinsic
importance, we mention the revival interest in simplectic and complex geometry for the
regularity theory of two-dimension minimal currents (as witnessed by the works on the
regularity in special calibrated geometry, such as for the 1 — 1 currents in almost complex
manifolds by Taubes, Riviere and Tian [59, 50, 51]) and the attention given in the last years
to the theory of multi-valued functions by Goblet and Zhu [30, 27, 28, 29, 63].

This motivated us to revisit and extend some of the results in [2]. This thesis provides,
indeed, a self-contained reference for roughly the first third of the big regularity paper and
contains some new results on the theory of multi-valued functions and the approximation of
minimal currents (obtained in collaboration with C. De Lellis and M. Focardi [12, 13, 15, 56]).

viii



ALMGREN’S BIG REGULARITY PAPER

In order to illustrate the contents of the thesis, it is worth giving an account of Almgren’s
strategy in proving his partial regularity Theorem fo.1. It consists of four main steps, which
correspond roughly to the division in chapters of [2]:

1. the theory of Q-valued functions ([2, chapter 2]);

2. the approximation of minimal currents with Lipschitz graphs of Q-valued functions ([2,
chapter 3]);

3. the construction of the Center Manifold ([2, chapter 4]);
4. blow-up argument and proof of Theorem o.1 ([2, chapter 5]).

As for the codimension one case, the main idea here is to reduce the area functional
to the Dirichlet energy, which is its first non-constant term in its Taylor expansion. But
a major difficulty in higher codimensions has to be faced: in general, there is no way to
approximate a minimal current with the graph of a function! This is due essentially to
the new phenomenon of the branching. To overcome this problem, Almgren developed a
completely new theory of multi-valued function which minimize a suitable Dirichlet energy;,
called Dir-minimizing Q-valued functions.

As soon as some regularity is proved for such functions, the second step is represented by
the approximation of minimal currents by graphs of Q-valued functions which are close to be
Dir-minimizing. In doing this, the standard tools developed for the Lipschitz approximation
of the currents in codimension one cannot be applied. Indeed, in order to be of any help in
transferring the regularity information from the function to the current, the error committed
in approximating the last has to be infinitesimal with a fundamental regularity parameter
called Excess, while the standard approximation result carry an error which is linear in the
excess. At this point Almgren proves a very general and strong approximation result where
the error is a super-linear power of the excess — he claims that such very strong estimate is
needed for the remaining part of the argument.

In the last part of the strategy, Almgren argues by blow-up. But also in this procedure, a
new deep problem is encountered which was unknown in codimension one: the construction
of the Center Manifold. In blowing-up a minimal currents, in order to transfer the singularities
from the current to the limiting approximation function, one has to verify that all the sheets
of the current do not collapse in the limit to a single sheet (which, hence, will be regular
without giving any information on the current). In order to ensure this, one has to choose
first an average of the different sheets as the reference manifold with respect to which one
dilates the current. The construction of such manifold is maybe the most profound part of
Almgren’s big regularity paper and we still lack a full understanding of it.

In this thesis we revisit the first two steps of Almgren’s program and give some new
related results. In order to highlight the main contributions, we discuss the contents of the
four parts in which the thesis is divided in connection with Almgren’s big regularity paper
and other previous works.
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PART I: Q-VALUED FUNCTIONS

In this first part of the thesis, we suggest a new point of view on multi-valued functions.
In general a Q-valued function is simply a function taking valued in the unordered space
of Q points in some Euclidean space. In principle, these maps are just metric space valued,
without any differentiable structure. Nonetheless, it is possible to define for them a notion
of differentiability and a Dirichlet energy capable to approximate at the first order the area
functional.

From the very beginning we move away from Almgren’s approach. His idea was to identify,
via a very clever combinatorial argument, the space of Q-points to a simplex of a Euclidean
space and in this way to define Sobolev Q-valued maps as classical Sobolev functions with
values in this simplex. More precisely, denoting by Ag (IR™) the space of Q-points in R™,
Almgren found an injective, Lipschitz map & : Ag(R"™) — RN, for some N = N(Q,n), with
Lipschitz inverse. Therefore, according to his definitions, a map f : R™ — Ag(RR™) is a
Sobolev map if such is & o f.

We, instead, define the space of Sobolev Q-valued functions and their Dirichlet energy
using only the metric structure of Ag(IR™), in the spirit of metric space-valued Sobolev-type
spaces already considered in the literature by many authors.

Following Almgren’s construction of the biLipschitz embedding &, the energy of a map f
cannot be easily defined as the energy of the composition & o f and for this Almgren needs
to develop a differentiability theory for functions with values in Ag (R™). Our definition,
instead, allows us to define intrinsically the right Dirichlet energy and reduces the com-
binatorial part introducing other arguments of more analytic flavor. Moreover, it has the
advantage to look at the Q-valued functions as global functions, thus allowing to introduce
some PDEs techniques in the study of their regularity.

We notice that simplified and intrinsic proofs of parts of Almgren’s big regularity paper
have already been established in [28] and [27].

Part I of the thesis consists of four chapters. In the first one, we introduce the space
of Q-points and develop an elementary theory of Lipschitz Q-valued maps. In particular,
we prove a Lipschitz extension theorem and give a notion of differentiability, proving a
related Rademacher’s theorem. In Chapter 2, we give simplified proofs of the existence of
the extrinsic maps &, p and p* of Almgren (the last one does not play any role in the theory
of Dir-minimizing Q-valued functions, but will be used for the approximation result in
Part IV). In Chapter 3, we introduce the metric definition of Sobolev Q-valued functions.
We compare this notion to the one introduced by Almgren by means of & and prove some
properties for such functions. For all the result here we provide two different proofs: one
in the spirit of Almgren’s extrinsic theory, one using only the metric point of view. Finally,
in the last chapter of this part, we introduce the Dirichlet energy. As before, our definition
being much more direct, we prove that it coincides with the one used by Almgren. After
developing a trace theory for Q-valued functions, the main result here is the proof of the
existence of Dir-minimizing functions with prescribed trace.



PART II: REGULARITY THEORY FOR DIR-MINIMIZING Q-VALUED FUNCTIONS

Next we investigate the regularity of Q-functions minimizing the Dirichlet energy. In his big
regularity paper, Almgren proved that Dir-minimizing functions are Holder continuous and
differ from the superposition of Q harmonic functions just on a set of Hausdorff dimension
at most m — 2, where m is the dimension of the domain (note the analogy with Theorem o.1).

In this regularity theory, one of the main idea comes in: it is the introduction of what
Almgren called the Frequency Function, which is a measurement for the number of sheets
in the branching of Q-valued functions and branched currents. This is one of the few
major ideas from Almgren’s big regularity paper which has been successfully used in other
contexts, such as in the study of the regularity of the nodal set of solution of elliptic partial
differential equations by Lin and Garofalo [24, 25].

In this part of the thesis we give a new proof of these two regularity results in Chapter 6
and Chapter 7, and establish moreover other two new regularity results: an improved
estimate for the singular set of planar Dir-minimizing functions in Chapter 8 and the higher
integrability of the gradient of Dir-minimizing functions in Chapter 9.

The new intrinsic approach allows to give a proof of the Holder continuity and of the
estimate of the singular set for some aspect simpler. We establish, indeed, a Maximum
Principle in Chapter 5 for Dir-minimizing functions which is very useful in constructing
competitors functions and helps in reducing the combinatorial complexity in Almgren’s
arguments.

For what concerns the improved estimate on the singular set, we prove that, in the case
of planar domain, the singular set (that is where a Dir-minimizing function is not the
superposition of harmonic maps) is constituted by isolated points. This further regularity
owns much to the works of White [62] and Chang [9] on two-dimensional area-minimizing
currents.

The higher integrability result in Chapter 9 is instead new. We prove that the gradient
of a Dir-minimizing function, rather than merely square summable, belongs to some LP
space, with p > 2. This property was first noticed in conjunction with the new proof of the
approximation theorem (see Part IV below). As for the first properties of Q-valued functions,
here we give two proofs: one uses Almgren’s biLipschitz embedding & and the other is done
using only the metric point of view. Moreover, we are able to give a sharp result in the
planar case, finding the optimal higher integrability exponent.

This part of the thesis is conclude with a chapter where we show that all the regularity
results proved so far are optimal. Following always Almgren, we show that complex varieties
are locally graphs of Dir-minimizing functions. Also here we simplify Almgren’s argument.
He, indeed, deduces this property from the approximation theorem in Part IV, which is a
very deep and complicate result. Instead, we give a simple scaling and comparison argument
which makes the result self-contained.

PART III: SEMICONTINUITY OF Q-INTEGRANDS

The existence of Dir-minimizing functions is deduced in the scheme of the Calculus of
Variations as a consequence of the weak lower semicontinuity of the Dirichlet energy. In
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this part of the thesis we investigate which functionals defined on the space of Q-valued
functions are lower semicontinuous.

This problem was first considered by Mattila [44], who proved the semicontinuity for
quadratic functionals of the gradient which are symmetric under the permutation of the
entries. His study was intended as a first step towards the regularity of currents minimizing
general elliptic parametric integrands.

Here, we give a complete characterization of the integrand defined on Sobolev spaces of
Q-valued functions which are semicontinuous, introducing the notion of Q-quasiconvexity.
As for the classical case, exploiting ideas arising from the proof of the semicontinuity of
quasiconvex functionals by I. Fonseca and S. Miiller [22], we prove that the Q-quasiconvexity
is a necessary and sufficient condition to ensure the weak lower semicontinuity.

We also give a characterization of a different condition, called here Q-polyconvexity in
analogy with the classical case, which implies the Q-quasiconvexity and which allows to
recover the results by Mattila as a special case of ours.

PART IV: APPROXIMATION OF MINIMAL CURRENTS

In this last part of the thesis, we deal with the second point in Almgren’s program: the
approximation of area-minimizing currents.

As already mentioned, the main parameter in this approximation is the so called Excess,
which is an integral measure of the flatness of a current — already encountered in the
codimension one regularity theory. The novelties in Almgren’s approximation result with
respect to the all preexistent ones are the use of multiple valued functions, which, as shown
by the existence of branched minimal currents, are necessary, and the gain of an error in the
approximation which is a super-linear power of the excess.

This part is devoted to give a new, simpler proof of this deep result. The main point in our
strategy is a new higher integrability estimate for minimal currents concerning a quantity
we call the Excess Density. More in details, the difference between the mass of a minimal
current and the mass of its projection on a fixed plane is a measure whose density, instead
of merely integrable, is p-integrable, for some p > 1. Chapter 12 is devoted to the proof of
this higher integrability estimate. The key intuitions are basically two: from one side we are
able to develop a quite direct approximation theory where the errors are infinitesimal with
the excess, using a variant of the celebrated Jerrard—Soner’s BV estimate; from the other,
we observe an elementary covering and stopping time argument which leads to the higher
integrability.

This estimate, which is interesting in its own, gives a simpler proof of Almgren’s approxi-
mation theorem in Euclidean spaces, presented in Chapter 13.
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Q-VALUED FUNCTIONS






THE ELEMENTARY THEORY OF Q-VALUED FUNCTIONS

In this chapter we introduce the space of Q-points Ag and show some results about Lipschitz
Q-valued functions. We prove an extension theorem for Lipschitz maps and give a notion of
differentiability for Q-valued maps, together with chain-rule formulas and a generalization
of the classical theorem of Rademacher. These results are the routine ingredients used in
all subsequent arguments: in particular, the Lipschitz extension, combined with suitable
truncation techniques, is the basic tool of various approximations.

1.1 Q-VALUED FUNCTIONS

Roughly speaking, our intuition of a Q-valued function is that of a mapping taking values
in the unordered sets of Q points of R™, with the understanding that multiplicity can occur.
We formalize this idea by identifying the space of Q unordered points in R™ with the set of
positive atomic measures of mass Q.

Definition 1.1. Let [P;] denote the Dirac mass in P; € R™. We define the space of Q-points
as follows:

Q
Ag(R"™) := {Z [Pi] : Py € R™ for every i = 1,...,Q} .
i=1
In order to simplify the notation, we use Aq in place of Ag(R™) and we write ) ; [Pi]
when n and Q are clear from the context. Clearly, the points P; do not have to be distinct:
for instance Q [P] is an element of Ag(R™). We endow Ag (R™) with a metric which makes
it a complete metric space (the completeness is an elementary exercise left to the reader).

Definition 1.2. For every T;, T, € Aq(R™), with Ty =} ; [Pi] and T, = }_; [Si], we define

§(Ty, T2):== min [Y [Pi—Son

where g denotes the group of permutations of {1,..., Q}.

Remark 1.3. (AqQ(IR™),§) is a closed subset of a “convex” complete metric space. Indeed, §
coincides with the [2-Wasserstein distance on the space of positive measures with finite
second moment (see for instance [6, 61]). In Chapter 3 we will also use the fact that
(Ag(R™),§) can be embedded isometrically in a separable Banach space.

For the rest of the thesis () will be a bounded open subset of the Euclidean space R™. If
not specified, we will assume that the regularity of Q) is Lipschitz. Continuous, Lipschitz,
Holder and (Lebesgue) measurable functions from Q) into Aq are defined in the usual way.

Given two elements T € Aqg,(R™) and S € Aq,(R"), the sum T + S of the two mea-
sures belongs to Aq (R™) = Ag,+q,(IR™). This observation leads directly to the following
definition.



THE ELEMENTARY THEORY OF Q-VALUED FUNCTIONS

Definition 1.4. Given finitely many Q;-valued functions f;, the map f; +f2 +. ..+ fn defines
a Q-valued function f, where Q = Q1 + Q2 + ...+ Q. This will be called a decomposition of
f into N simpler functions. We speak of measurable (Lipschitz, Holder, etc.) decompositions,
when the f;i’s are measurable (Lipschitz, Holder, etc.). In order to avoid confusions with the
summation of vectors in R™, we will write, with a slight abuse of notation,

f=[f]+...+[fn]-
If Q1 =... = Qn =1, the decomposition is called a selection.
It is a general fact that any measurable Q-valued function posses a measurable selection.

Proposition 1.5 (Measurable selection). Let B C R™ be a measurable set and let f : B — Aq be
a measurable function. Then, there exist f1,...,fq measurable R™-valued functions such that

= Z [fi(x)] fora.e. x € B. (1.1)

Obviously, such a choice is far from being unique, but, in using notation (1.1), we will
always think of a measurable Q-valued function as coming together with such a selection.

Proof. We prove the proposition by induction on Q. The case Q =1 is of course trivial. For
the general case, we will make use of the following elementary observation:

(D) if U;en Bi is a covering of B by measurable sets, then it suffices to find a measurable
selection of f|g,np for every i.

Let first Ag C Aq be the closed set of points of type Q [P] and set By = f~1(Ap). Then,
By is measurable and f|g, has trivially a measurable selection.

Next we fix a point T € Ag \ Ao, T = ) ; [Pi]. We can subdivide the set of indexes
{1,...,Q} =Ir Ul into two nonempty sets of cardinality L and K, with the property that

|[Px —P1/ >0 foreveryle I and k € Ik. (1.2)

For every S = ) ; [Qi], let ms € Pq be a permutation such that
Z |P QT[S

If U is a sufficiently small neighborhood of T in Aq, by (1.2), the maps

T:UBSHZ [Qns(l)]] €A, 0:U3S— Z [[Qrts(k)]] € Ak

lely kelx

are continuous. Therefore, C = f~!(U) is measurable and [0 o f|c] + [T o f|c] is a measurable
decomposition of f|c. Then, by inductive hypothesis, f|c has a measurable selection.
According to this argument, it is possible to cover Ag \ Ag with open sets U’s such
that, if B = f~'(U), then f|g has a measurable selection. Since Aqg \ Ap is an open subset
of a separable metric space, we can find a countable covering {U;}icn of this type. Being
(BolUf! (U;)}32_; a measurable covering of B, from (D) we conclude the proof. O



1.1 Q-VALUED FUNCTIONS

For general domains of dimension m > 2, there are well-known obstructions to the
existence of regular selections. However, it is clear that, when f is continuous and the
support of f(x) does not consist of a single point, in a neighborhood U of x, there is
a decomposition of f into two continuous simpler functions. When f is Lipschitz, this
decomposition holds in a sufficiently large ball, whose radius can be estimated from below
with a simple combinatorial argument. This fact will play a key role in many subsequent
arguments.

Proposition 1.6 (Lipschitz decomposition). Let f : B C R™ — Aq be a Lipschitz function,
f= 29:1 [fi]. Suppose that there exist xo € B and i,j € {1,...,Q} such that

]fi(xo)—fj(xo” > 3(Q — 1) Lip(f) diam(B). (1.3)

Then, there is a decomposition of f into two simpler Lipschitz functions fx and fy such that
Lip(fx), Lip(fL) < Lip(f) and supp (fx(x)) Nsupp (fL(x)) = 0 for every x.

Proof. Call a “squad” any subset of indices I C {1,..., Q} such that
[fi(x0) — fr(x0)| < 3 (/I = 1) Lip(f) diam(B) foralll,rel,

where |I| denotes the cardinality of I. Let I} be a maximal squad containing 1, where L
stands for its cardinality. By (1.3), L < Q. Set Ix ={1,..., Q}\ I.. Note that, whenever 1 € Ip
and k € Iy,

[fu(x0) — fi(x0) > 3Lip(f) diam(B), (1.4)

otherwise It would not be maximal. For every x, y € B, we let 7y, 71y, € #g be permuta-
tions such that

2

7

S(f(x0), f(x))* = Z fi(x0) — frep (1) (%)

§(f(x), () =Y

i

2
(%) = 1) ()|

We define the functions f{ and fx as

fLx) = Y [f@)] and f) =Y [fa )]

ielp ielx

Observe that f = [f{] + [fx]: it remains to show the Lipschitz estimate. For this aim, we
claim that 7ty , (71 (I1)) = 71y (I ) for every x and y. Assuming the claim, we conclude that,
for every x,y € B,

S(f(x), f(y))? = S(fL(x), fL(v))® + G(fk (x), fx ()%,

and hence Lip(fy ), Lip(fx) < Lip(f).
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THE ELEMENTARY THEORY OF Q-VALUED FUNCTIONS

To prove the claim, we argue by contradiction: if it is false, choose x, y € B, 1 € It and
k € Ix with 7ty 4 (71 (1)) = 7y (k). Then, |fr 1)(x) = fr, (1) (y)‘ < §(f(x), f(y)), which in turn

implies
3Lip(f) diam(B) 2 [f1(x0) — i (xo)
< [Fx0) = Freg ) 00)] + | Fr ) (06) = i 1 () +
+‘fny(k)(y)_fk(7<0)‘
< G(f(xo0), f(x)) + G(f(x), f(y)) + ((U), (x0))
< Lip(f) (Ixo — x|+ [x =yl + [y — xol) < 3 Lip(f) diam(B).
This is a contradiction and, hence, the proof is complete. O

1.2 EXTENSION OF LIPSCHITZ Q-VALUED FUNCTIONS

This section is devoted to prove the following extension theorem.

Theorem 1.7 (Lipschitz Extension). Let B C R™ and f : B — Agq(R™) be Lipschitz. Then,
there exists an extension f : R™ — Aq(R™) of f, with Lip(f) < C(m, Q) Lip(f). Moreover, if f is
bounded, then, for every P € R™,

sup §(f(x), Q[P]) < C(m, Q) sup S(f(x), Q [P]). (1.5)
x€R™ x€B

Note that, in his big regularity paper, Almgren deduces Theorem 1.7 from the existence of
the maps & and p of Section 2.1. We instead follow a sort of reverse path and conclude the
existence of p from that of & and from Theorem 1.7.

It has already been observed by Goblet in [28] that the Homotopy Lemma 1.8 below can
be combined with a Whitney-type argument to yield an easy direct proof of the Lipschitz
extension Theorem, avoiding Almgren’s maps & and p. In [28] the author refers to the general
theory built in [43] to conclude Theorem 1.7 from Lemma 1.8. For the sake of completeness,
we give here the complete argument.

As a first step, we show the existence of extensions to C, a cube with sides parallel to the
coordinate axes, of Lipschitz Q-valued functions defined on 9C. This will be the key point
in the Whitney type argument used in the proof of Theorem 1.7.

Lemma 1.8 (Homotopy lemma). There is a constant c(Q) with the following property. For any
closed cube with sides parallel to the coordinate axes and any Lipschitz Q-function h : 9C —
Aq(R™), there exists an extension f : C — Aq(R™) of h which is Lipschitz with Lip(f) <
c(Q)Lip(h). Moreover, for every P € R™,

max G(f(x),Q[P]) £2Q max G(h(x), Q[P]). (1.6)
Proof. By rescaling and translating, it suffices to prove the lemma when C = [0, 1]™. Since
C is biLipschitz equivalent to the closed unit ball By centered at 0, it suffices to prove the
lemma with By in place of C. In order to prove this case, we proceed by induction on Q.
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For Q =1, the statement is a well-known fact (it is very easy to find an extension f with
Lip (f) < v/nLip(f); the existence of an extension with the same Lipschitz constant is a
classical, but subtle, result of Kirszbraun, see 2.10.43 in [19]). We now assume that the lemma
is true for every Q < Q*, and prove it for Q*.

Fix any xo € 0B;. We distinguish two cases: either (1.3) of Proposition 1.6 is satisfied with
B = 0B;, or it is not. In the first case we can decompose h as [hi ] + [hk], where hy and hyg
are Lipschitz functions taking values in A; and Ay, and K and L are positive integers. By
the induction hypothesis, we can find extensions of h; and hg satisfying the requirements
of the lemma, and it is not difficult to verify that f = [f{] + [fk] is the desired extension of
h to B;.

In the second case, for any pair of indices i,j we have that

[hi(xo) —hj(xo)| < 6Q* Lip(h).

We use the following cone-like construction: set P := hj(xo) and define
X
=Y [{Mm <|X> + (1) PH | (17)
i

Clearly f is an extension of h. For the Lipschitz regularity, note first that

Lip(flo,) = Lip(h), forevery 0 < r < 1.
Next, for any x € 9B, on the segment o = [0, x] we have

Lipfls, < Q* max|hi(x) —P| < 6(Q*)*Lip(h).

So, we infer that Lip(f) < 12 (Q*)? Lip(h). Moreover, (1.6) follows easily from (1.7). O

Proof of Theorem 1.7. Without loss of generality, we can assume that B is closed. Consider a
Whitney decomposition {Cy }; oy of R™ \ B (see Figure 1). More precisely (cp. with Theorem

3, page 16 of [58]):

(W1) each Cy is a closed dyadic cube, i.e. the length 1y of the side is 2k for some k € Z and
the coordinates of the vertices are integer multiples of ly;

(W2) distinct cubes have disjoint interiors and

c(m)~'dist(Cy, B) < Ik < ¢(m)dist(Cy, B). (1.8)

As usual, we call j-skeleton the union of the j-dimensional faces of Cy. We now construct
the extension f by defining it recursively on the skeletons.

Consider the 0-skeleton, i.e. the set of the vertices of the cubes. For each vertex x, we
choose % € B such that [x — %| = dist(x, B) and set f(x) = f(%). If x and y are two adjacent
vertices of the same cube Cy, then

max { [x — %[, [y — ¥/ } <dist(Cy,B) <clg =c [x—yl.
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a segment of
> the T-skeleton

‘ }J‘;;‘\ ‘B

elements of the
0 skeleton

Figure 1: The Whitney decomposition of R? \ B.

Hence, we have

§ (f(x), fy)) = G (f(%), f(§)) < Lip(f) [x — Gl < Lip(f) (|8 — x|+ x =yl +y — 1l )
< cLip(f) [x —yl.

Using the Homotopy Lemma 1.8, we extend f to f on each side of the 1-skeleton . On the
boundary of any 2-face f has Lipschitz constant smaller than 9 C(m, Q) Lip(f). Applying
Lemma 1.8 recursively we find an extension of f to all R™ such that (1.5) holds and which
is Lipschitz in each cube of the decomposition, with constant smaller than C(m, Q) Lip(f).

It remains to show that f is Lipschitz on the whole R™. Consider x, y € R™, not lying in
the same cube of the decomposition. Our aim is to show the inequality

S (f(x), fy)) < CLip(f) [x —yl, (1.9)

with some C depending only on m and Q. Without loss of generality, we can assume that
x ¢ B. We distinguish then two possibilities:

(@) x,ylNnB #0;
(b) [x,ylNnB =0.

In order to deal with (a), assume first that y € B. Let Cy be a cube of the decomposition
containing x and let v be one of the nearest vertices of Cy to x. Recall, moreover, that

f(v) = f(¥) for some ¥ with |V —v| = dist(v, B). We have then

G (f(x), fly)) <G (f(x), ) + G (f(v), f(v)) =G (f(x), f(v)) + G (f(9), f(y))
CLip(f) x —v[ + Lip(f) [ —yl
CLip(f)(Ix =Vl + [V = vI+ v — x|+ x —yl)
CLip(f)(L]< + dist(Cy, B) + diam (Cy) + Ix—yl)

IN NN

N
@
£
o

ip(f) [x —yl.
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If (a) holds but y ¢ B, then let z €]a,b[NB. From the previous argument we know
S(f(x),f(z)) < Clx—zland § (f(y), f(z)) < Cly — z|, from which (1.9) follows easily.

If (b) holds, then [x,y] = [x, P1] U [Py, P2] U...U[Ps,y] where each interval belongs to a
cube of the decomposition. Therefore (1.9) follows trivially from the Lipschitz estimate for f
in each cube of the decomposition. ]

1.3 DIFFERENTIABILITY AND RADEMACHER'S THEOREM

In this section we introduce the notion of differentiability for Q-valued functions and prove
two related theorems. The first one gives chain-rule formulas for Q-valued functions and
the second is the extension to the Q-valued setting of the classical result of Rademacher.

Definition 1.9. Let f : O — Aq and xo € Q. We say that f is differentiable at x, if there exist
Q matrices L; satisfying:

(1) S(f(x), TxyT) = o(lx —xol), where

Tio fx Z[{L (x —x0) +fi(x0)]; (1.10)

(11) I_i = L)' if fi(Xo) = f)'(Xo).

The Q-valued map Ty f will be called the first-order approximation of f at xo. The point
2 i [Li] € Ag(R™*™) will be called the differential of f at xo and is denoted by Df(x).

Remark 1.10. What we call “differentiable” is called “strongly affine approximable” by
Almgren.

Remark 1.11. The differential Df(xo) of a Q-function f does not determine univocally its first-
order approximation Ty f. To overcome this ambiguity, we write Df; for L; in Definition 1.9,
thus making evident which matrix has to be associated to fi(xo) in (i). Note that (ii) implies
that this notation is consistent: namely, if g1, ..., gq is a different selection for f, xo a point
of differentiability and 7t a permutation such that gi(xo) = f(i)(xo) for alli € {1,...,Q},
then Dgi(xo) = Df(i)(x0). Even though the f;’s are not, in general, differentiable, observe
that, when they are differentiable and f is differentiable, the Df;’s coincide with the classical
differentials.

If D is the set of points of differentiability of f, the map x — Df(x) is a Q-valued
map, which we denote by Df. In a similar fashion, we define the directional derivatives
0 f(x) = >_; [Dfi(x) - v] and establish the notation 0, f = ) _; [0 fi].

1.3.1  Chain rules

In what follows, we will deal with several natural operations defined on Q-valued functions.
Consider a function f : Q — Ag(R"™). For every O : Q — Q, the right composition f o @
defines a Q-valued function on Q. On the other hand, given a map ¥: Q x R™ — Rk, we
can consider the left composition, x — > _; [W(x, fi(x))], which defines a Q-valued function
denoted, with a slight abuse of notation, by ¥(x, f).
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The third operation involves maps F : (R™)Q — R¥ such that, for every Q points
(Y1,...,YqQ) € (]R”)Q and m € Zq,

Fyt,.., Q) =F(Un(1)s - YUn(Q)) - (1.11)
Then, x — F(f1(x),...,fq(x)) is a well defined map, denoted by Fo f.
Proposition 1.12 (Chain rules). Let f: Q) — Aq(IR™) be differentiable at x,.

(i) Comsider @ : QO — Q such that ®(yo) = xo and assume that © is differentiable at yo. Then,
f o @ is differentiable at yo and

D(fo®)(yo) = Y _[Dfi(xo) DO (yo)]. (1.12)

i

(i1) Consider ¥ : Qy x R — R such that ¥ is differentiable at (xo, fi(xo)) for every i. Then,
W(x, f) is differentiable at xo and

Z [Du¥(xo, fi(x0)) - Dfi(xo) + Dx¥(xo, fi(x0))] - (1.13)

(iii) Comsider F: (R™)Q — R¥ as in (1.11) and differentiable at (f1(xo),...,fq(x0)). Then, Fof
is differentiable at xo and

D(Fo f)( ZDUIF f1(x0),--.,fa(x0)) - Dfi(xo)- (1.14)

Proof. All the formulas are just routine modifications of the classical chain-rule. The proof of
(i) follows easily from Definition 1.9. Since f is differentiable at x,, we have

<fO‘D Z[[Df x0) - (@(y) — (D(yo))+fi(®(yo))]]> =0 (|®(y) — @(yo)l)

=0 (ly —yol), (1.15)

where the last equality follows from the differentiability of ® at yo. Moreover, again due to
the differentiability of @, we infer that

Dfi(xo) - (@(y) — D (yo)) = Dfi(x0) - D@ (yo) - (y —yo) +olly —yol)- (1.16)

Therefore, (1.15) and (1.16) imply (1.12).
For what concerns (ii), we note that we can reduce to the case of card(f(xg)) =1, i.e.

=Qup] and Df(xo) =Q]L]. (1.17)

Indeed, since f is differentiable (hence, continuous) in xo, in a neighborhood of xo we can
decompose f as the sum of differentiable multi-valued functions gy, f = ) | [gk], such
that card(gx(xo)) = 1. Then, ¥(x,f) = >, [¥(x, gx)] in a neighborhood of xy, and the
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differentiability of ¥(x, f) follows from the differentiability of the ¥(x, g« )’s. So, assuming
(1.17), without loss of generality, we have to show that

h(x) = Q [Du¥(xo,uo0) - L+ (x —x0) + Dx ¥(xo0,u0) - (x —x0) +¥(x0,uo)]
is the first-order approximation of ¥(x, f) in xo. Set
Ai(x) = Du¥(xo,uo) - (fi(x) —uo) + Dx ¥(xo,u0) - (x —x0) + ¥(xo, uo).

From the differentiability of ¥, we deduce that

( fo:M )—OR xol + G(f(x), f(x0))) = o (Ix —xol), (1.18)

where we used the differentiability of f in the last step. Hence, we can conclude (1.13), i.e

§(¥(x,f),h(x) <9 (wx,f),z [[Ai(X)]]> +9 (Z [AL(x)] ,h(x)>

0 (Ix —xol) 4 [[Du ¥(x0, u0) |5 (Z [fi(x)], QL+ (x —x0) +uo]]>

=0 ([x —xol).

where ||Dy(x0,1p)|| denotes the Hilbert-Schmidt norm of the matrix D, W(xo, o).
Finally, to prove (iii), fix x and let 7 be such that

G(F(x), f(x0)) = Y Ifni) (x) — Filx0)I%.
i
By the continuity of f and (ii) of Definition 1.9, for [x — x| small enough we have
S(f(x), Ty () > = O i) (x) — Dfilx0) - (x —x0) — i/ (1.19)
i

Set fi(xo) =zi and z = (z1,...,2Q) € (]R“)Q. The differentiability of F implies

Fof(x) —Fof(xp) ZDyLF (i) (% )—zi) =0 (G(f(x), f(x0)) = o(lx — x0l). (1.20)

Therefore, for [x —xo| small enough, we conclude

(i) (x) — zi — Dfi(x0) - (x —x0))| <

v F(z)

<CY Iy (x) = Dfilxo) - (x —x0) — zil "2 o(lx —xol), (1.21)

with C = sup; ||Dy,F(z)||. Therefore, using (1.20) and (1.21), we conclude (1.14). O

11
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1.3.2 Rademacher’s Theorem

Here we extend the classical theorem of Rademacher on the differentiability of Lipschitz
functions to the Q-valued setting. Our proof is direct and elementary, whereas in Almgren’s
work the theorem is a corollary of the existence of the biLipschitz embedding &. An intrinsic
proof has been already proposed in [27]. However our approach is considerably simpler.

Theorem 1.13 (Rademacher). Let f: Q) — Aq be a Lipschitz function. Then, f is differentiable
almost everywhere in Q.

Proof. We proceed by induction on the number of values Q. The case Q =1 is the classical
Rademacher’s theorem (see, for instance, 3.1.2 of [18]). We next assume that the theorem is
true for every Q < Q* and we show its validity for Q*.

We write f = Z?:1 [fi], where the f;’s are a measurable selection. We let Q be the set of
points where f takes a single value with multiplicity Q:

Q= {x e : fi(x) ="1fi(x) Vi}.

Note that Q is closed. In Q\ Q, f is differentiable almost everywhere by inductive hypothesis.
Indeed, by Proposition 1.6, in a neighborhood of any point x € '\ Q, we can decompose f in
the sum of two Lipschitz simpler multi-valued functions, f = [fL] + [fx], with the property
that supp (fr(x)) Nsupp (fk(x)) = 0. By inductive hypothesis, f; and fx are differentiable,
hence, also f is.

It remains to prove that f is differentiable a.e. in Q. Note that f1|4 is a Lipschitz vector
valued function and consider a Lipschitz extension of it to all ), denoted by g. We claim
that f is differentiable in all the points x where

(a) Q has density 1;
(b) g is differentiable.

Our claim would conclude the proof. In order to show it, let xo € Q be any given point
fulfilling (a) and (b) and let Ty, g(y) = L- (y —x0) + f1(x0) be the first order Taylor expansion
of g at xg, that is

lg(y) —L- (y —x0) —f1(x0)l = o(ly —xol). (1.22)

We will show that Ty f(y) := Q[L- (y —xo) + f1(x0)] is the first order expansion of f at x¢.
Indeed, for every y € R™, let r = |y — x| and choose y* € QN Bar(xp) such that

[y —y”| = dist (y,fl N BZT(XO)) :
Being f, g and Tg Lipschitz with constant at most Lip(f), using (1.22), we infer that
S(f(y), TeoT(Y)) < G(FU), F(Y™)) + S (Txo F(u™), Tuo F(W)) + G (FU™), T F(Y™))
< Lip(f) ly —y*[+ QLip(f) ly —y*[+

+5(Q oy, QIL- (u* —x0) +f1(x0)])
< (Q+ 1 Lip(f) ly —y*[+o(ly* —xol). (1.23)
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Since [y* —xol < 21 = 2|y — xpl, it remains to estimate p := [y —y*|. Note that the ball B, (y)
is contained in B, (x¢) and does not intersect Q. Therefore

. L
B Q m

* ~11/m
_ =p < C [Bar(x Q <Cm)r
YU =0 < C [Balxo) \ O e (B0l

Since x¢ is a point of density 1, we can conclude from (1.24) that |y —y*| = [y — xolo(1).

Inserting this inequality in (1.23), we conclude that G(f(y), Tx,f(y)) = o(ly —xol), which
shows that Ty, f is the first order expansion of f at x,. O
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ALMGREN’S EXTRINSIC MAPS

Two “extrinsic maps” play a pivotal role in the theory of Q-functions developed in [2].
The first one is a biLipschitz embedding & of Ag(R™) into RN(QM) where N(Q,n) is a
sufficiently large integer. Almgren uses this map to define Sobolev Q-functions as classical
RN-valued Sobolev maps taking values in Q := £(Aqg(R™)). Using &, many standard facts
of Sobolev maps can be extended to the Q-valued setting with little effort. The second
map p is a Lipschitz projection of RN(Q™) onto Q, which is used in various approximation
arguments.

Almgren constructs also a more sophisticated Lipschitz retraction p*, which has controlled
Lipschitz constant almost 1 in suitable neighborhood of Q. This retraction p* is not relevant
for the theory of Q-valued functions but will play a crucial role in the approximation of
minimal current in Part IV.

2.1 THE BILIPSCHITZ EMBEDDING & AND THE LIPSCHITZ PROJECTION P

In the following theorem we prove the existence of the biLipschitz embedding & and the
simple retraction p. Following an observation in [9] attributed to B. White, we modify slightly
the arguments of Almgren to prove the existence of a particular embedding & which satisfies
the extra condition (iii) below useful to shorten some arguments later.

Theorem 2.1. There exist N = N(Q, n) and an injective map & : Aq(R™) — RN such that:
(i) Lip(g) = 1;
(i1) if Q = £(Aq), then Lip(£~"]a) < C(n, Q);
(iii) for every T € Aq(R™), there exists & > 0 such that

E(T) = &(S)[=S(T,S) VS €Bs(T) C Ag(R™). (2.1)

Moreover, there exists a Lipschitz map p : RN — Q which is the identity on Q.

The existence of p is a trivial consequence of the Lipschitz regularity of £~ '|o and of the
Extension Theorem 1.7.

Proof of the existence of p given & Consider &' : Q — Aq. Since this map is Lipschitz, by
Theorem 1.7 there exists a Lipschitz extension f of £~ ! to the entire space. Therefore, p = £ o f
is the desired retraction. O

The key of the proof of Theorem 2.1 is the following combinatorial statement.

15
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Lemma 2.2 (Almgren’s combinatorial lemma). There exist « = «(Q,n) > 0 and a set of
h = h(Q, n) unit vectors A ={ey,...en} C S™ ! with the following property: given any set of Q>
vectors, {v1,...,vq2} C R™, there exists ey € A such that

i -el] = vy forallk € {1,...,Q2}. (2.2)

Proof. Choose a unit vector e; and let x(Q,n) be small enough in order to ensure that the
set E:={x €S™1 : [x- ;| < a} has sufficiently small measure, that is

g_(n—l (Sn—1 )

-1
H"'(E) < 857102

(2.3)
Note that E is just the a-neighborhood of an equatorial (n — 2)-sphere of S™~'. Next, we
use Vitali’s covering Lemma (see 1.5.1 of [18]) to find a finite set A ={ey,...,en} C gl
and a finite number of radii 0 < r; < « such that

(a) the balls By, (ei) are disjoint;
(b) the balls Bs,(ei) cover the whole sphere.

We claim that A satisfies the requirements of the lemma. Let, indeed, V = {v1, .. .,sz}
be a set of vectors. We want to show the existence of e; € A which satisfies (2.2). Without
loss of generality, we assume that each v; is nonzero. Moreover, we consider the sets
Cy = {x e S xvy < oclvk\} and we let Cy be the union of the Cy’s. Each Cy is
the a-neighborhood of the equatorial sphere given by the intersection of S~ with the
hyperplane orthogonal to vi. Thus, by (2.3),

B }Cnf] Snfl)
H ' (Cy) < 85(“_] (2.4)
Note that, due to the bound r; < «,
H 1By (ey) NG
et eCy = FH] (Cv ﬂBTi(ei)) > (B (e:) ) (2.5)

2

By our choices, there must be one e; which does not belong to Cy/, otherwise
FHn-1 (S 1 1 1 1
i Zf}f” By (e)NS™ ZZW‘ (Cv N By (e0))

(a) B @4) F1 (5T
< 2K (Cy) < R

which is a contradiction (here we used the fact that, though the sphere is curved, for «
sufficiently small the (n — 1)-volume of B, (ei) N 8" 1 igsatleast 2715 ™! times the volume
of Bsr,(ei) N gn—1y, Having chosen e; ¢ Cy, we have e; ¢ Cy for every k, which in turn
implies (2.2). O

Proof of Theorem 2.1. Let A = {eq,...en} be a set satisfying the conclusion of Lemma 2.2. We
consider the enlarged set I' of n h vectors containing an orthonormal frame for each e; € A,

1 1
Fr={eq,....el, ..., en -...en},
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where, for every L € {1,...,h}, e{ = ey and {e{, ..., e} is an orthonormal basis of R™. Note
that, in principle, the vectors elB may not be all distinct: this can happen, for example, if there
exist two vectors e; and e which are orthogonal. Nevertheless, we can assume, without loss
of generality, that I' is made of n h distinct vectors (in passing, this is can always be reached
by perturbing slightly A).

Set N =Qnhand fix T € Ag(R"), T = Y ; [Pi]. For any 6{3 € T, we consider the Q
projections of the points P; on the e{5 direction, that is P - e{s . This gives an array of Q
numbers, which we rearrange in increasing order, getting a Q-dimensional vector 7[{3’ (T).
The map £: Ag — RN is, then, defined by

E(T) =h="2(my(T),..., 7 (1), e (T) o, e (T)).
The Lipschitz regularity of & is a trivial corollary of the following rearrangement inequality:
(Re) if a1 < ... < anand by < ... < by, then, for every permutation o of the indices,

(a1 —=b1)% 4+ (an — bn)? < (a —bg(”)z+"'+(Cln_bc(n))z~

Indeed, fix two points T =) _; [Pi] and S = }_; [Ri] and assume, without loss of generality,
that

S(T,8)% =) IPi—Ri”. (2.6)

Fix l and (3. Then, by (Re), 7'[{3(—]—) —71{3(8) <) ((Pi—Ry) -e{g)z. Hence, we get

T &L 1 Q 2ol &
|z,(T)—a(S)2<hZZ_Z((Pi—m-e{f’)z:hZZ|Pi—R£=6h;9(T,SJ2

Next, for T =) ; [Pi] and S = } ; [Ri], we show that
vh

5(T,8) < —~ [&(T) — &(S)], (2.7)

where « is the constant in Lemma 2.2. Consider, indeed, the Q? vectors P; — R;, for i,j €
{1,...,Q}. By Lemma 2.2, we can select a unit vector e{ =e € A C T such that

|(Pi—Rj)-el| > «|Pi—Ry|, forall i,je{l,..., QL (2.8)

Let T and A be permutations such that
7 (T) = (Pe(1) €L+, Prio)-e1) and 7 (S) = (Ra(1y-er, ..., Raq) - €1

Then, we conclude (2.7),

2 2 2 (=8) _2 2 2
§(T,S)” < Z Pei) = Rapy|” € « Z ((Pe(iy — Raqiy) - €1)
im1 imT

= o 2 |m(T) —m(S)* < x 2h|E(T) —&(S)*.

17
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To conclude the proof we need to verify (2.1). To this aim, we start noticing that, given T =
> i [Pi] € Aq, there exists 6 > 0 with the following property: for every S =} ; [Ri] € B5(T)
and every 7r{3 , assuming that G(T, S)2 = > i IPi— Ri|?, there exists a permutation 0{3 € Zq

such that the arrays (P; - 6{5 ) and (R; - ef’ ) are ordered increasingly by the same permutation

0{3 ,1.e.

H{S(T) = (Pc{‘(l) -e{s,...,P p -e{g) and 71{5(8) = (RU{S(]) 'ef,...,RG{s(Q) 'e{S') .
It is enough to choose 46 = minyg {IPi . e{5 —Pj- e{ﬁl : Py el #P;- } Indeed, let us
assume that R; - 6{3 <Rj- 6{5 . Then, two cases occur:
(@) Rj -e{S—Ri-e{3 > 295,
(b) R;j-eP —R;-ef < 2s.

In case (a), since S € Bs(T), we deduce that P; - ef’ < R; - e{3 +& < R;j - 6{3 -0 <P 6{3. In
case (b), instead, we infer that |P; '6{3 —P;- el | <Rj- el +6—R;i- el — 6 < 46, which, in turn,

by the choice of 6, leads to P; - 6{3 =P;- el Hence, in both cases we have P; - 6{5 < Pj- 6{3 ,
which means that P; - ef’ can be ordered in increasing way by the same permutation 0{3 .
Therefore, exploiting the fact that the vectors Tt{5 (T) and 7[{5 (S) are ordered by the same
permutation 0{3 , we have that, for T and S as above, it holds
h n
EM—&S)IF=hn") Y [P (T)—nf(s)?
1=1p=1
h n
_ 1 B2
=h" ZZZ|PU{3 Ra{j[i)'eﬂ
1=1p=1i=1
h Q
=h 'Y Y [Pi—R{=h" Z §(T,$) = §(T,S)%.
1=11i=1
O

2.2 THE RETRACTION p*

In this section we construct the retraction p*, which, differently from the simple p, has
a controlled Lipschitz constant in a neighborhood of Q. The construction depends on a
parameter p > 0 determining the size of the neighborhood and the Lipschitz constant.

Proposition 2.3. For every u > 0, there exists p : RNQM 0 = g£(Aq(R™)) such that:

(i) the following estimate holds for every w € W12(Q,RN),

[Dieiow < (14cw™) [ pu?+c [ DU, (29)
(dist(1,Q) < unQ) (dist(1,Q)>unQ}

with C = C(Q,n);
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(ii) for all P € Q, it holds |p%(P) —P| < Cp? .

We divide the proof into two part: in the first one we give a detailed description of the set
Q; then, we describe rather explicitly the map pj;.

2.2.1  Linear simplicial structure of Q

In this subsection we prove that the set Q can be decomposed in a families of sets {fﬂ}?:Qo,
here called i-dimensional faces of Q, with the following properties:

(pl) Q= U?:Qo Ures, F;
(p2) F :=UJ; is made of finitely many disjoint sets;

(p3) each face F € JF; is a convex open i-dimensional cone, where open means that for every
x € F there exists an i-dimensional disk D withx € D C F;

(p4) for each F € F;, F\F C Uji Ugeg, G.

In particular, the family of the 0-dimensional faces Jy contains an unique element, the
origin {0}; the family of 1-dimensional faces J7 consists of finitely many lines of the form
l, = {Av : A €]0, 400} with v € SN=T; F, consists of finitely many 2-dimensional cones
delimited by two half lines 1,,,, 1,, € F7; and so on.

To prove this statement, first of all we recall the construction of &. After selecting a suitable
finite collection of non zero vectors {el}{‘:1 , we define the linear map L : R™ Q RN given

by

L(P],...,PQ)Z: (P1 -61,...,PQ‘€1,P1 ‘62,...,PQ'62,...,P1 -eh,...,PQ'eh).

wl w2 wh

Then, we consider the map O : RN — RN which maps (w!...,w") into the vector
(v1,...,vI") where each v! is obtained from w' ordering its components in increasing order.
Note that the composition OoL: (]R“)Q — RN is now invariant under the action of the sym-
metric group Zq. & is simply the induced map on Ag = R"Q/ P and Q = £(Aq) = O(V)
where V := L(R" Q).

Consider the following equivalence relation ~ on V:

i 4,1 i_ i
1 ]’l) if Wj_wk <:>Z]~—Zk
i i i i

Vi, k, (2.10)

where w' = (wi, .. .,wb) and z' = (z},.. .,ziQ) (that is two points are equivalent if the
map O rearranges their components with the same permutation). We let € denote the set of
corresponding equivalence classes in V and € :={L~'(E) : E € &}. The following fact is an
obvious consequence of definition (2.10):

L(P)NL(S) 1mphes I—(Prt(])/---/PT[(Q))NL(ST[U)/---/STE(Q)) Ve (@Q.
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Thus, n(C) € C for every C € C and every m € . Since & is injective and is induced by
O oL, it follows that, for every pair Eq, E; € €, either O(E;) = O(E;) or O(E;) NO(E2) = 0.
Therefore, the family J:={O(E) : E € £} is a partition of Q.

Clearly, each E € € is a convex cone. Let 1 be its dimension. Then, there exists a i-
dimensional disk D C E. Denote by x its center and let y be any other point of E. Then, by
(2.10), the point z = (1 + ¢)y — e x belongs as well to E for any ¢ > 0 sufficiently small. The
convex envelope of D U{z}, which is contained in E, contains in turn an i-dimensional disk
centered in y. This establishes that E is an open convex cone. Since Ol is a linear injective
map, F = O(E) is an open convex cone of dimension 1. Therefore, J satisfies (p1)-(p3).

Next notice that, having fixed w € E, a point z belongs to E \ E if and only if

(a) w} > wi implies z} > z]i for every 1, j and k;
(b) there exists r, s and t such that w > w{ and z{ = z{.

Thus, if d is the dimension of E, E\E C Uj—q Ugee; G, where &4 is the family of d-
dimensional classes. Therefore,

O(E\E) C Uj<a Unes; H, (2.11)
from which (recalling F = O(E)) we infer that

O(E\E)NF=O(E\E)NO(E) = 0. (2.12)

Now, since O(E\E) c O(E) C O(E) =F, from (2.12) we deduce O(E\ E) C F\ F. On the other
hand, it is simple to show that F ¢ O(E). Hence, F\ F C O(E)\F=O(E)\ O(E) C O(E\ E).
This shows that F\ F = O(E \ E), which together with (2.11) proves (p4).

2.2.2 Construction of pj

The construction is divided into three steps:
1. first we specify pj, in Q;
2. then we find an extension on a p“Q—neighborhood of Q, 9 na;
3. finally we extend the pj, to all RN.

For the rest of the section, u > 0 is a fixed number and we write simply p* for pj,.

Step 1. Construction on Q

The construction of p* on Q is made through a recursive procedure whose main building
block is the following lemma.

Lemma 2.4. Let b > 2 and D € IN. There exists a constant C such that the following holds for every
T €10, 1[. Let V¢ C RP be a d-dimensional cone and let v : 9By, N V¢ — RP satisfy Lip(v) < 1+71
and [v(x) — x| < . Then, there exists an extension w of v, w : B, N V4 — RP, such that

Lipw) <14 Cv1, wx)—x/<14+Cy/T and w(x)=0 VxeBNVg.
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Proof. First extend v to Br N Vq by setting it identically O there. Note that such a function is
still Lipschitz continuous with constant 1+ C t. Indeed, for x € 9B, N V¢ and y € B, N V¢,
we have that

vx) =vly)l =X <X+T=b+T1<(1+CT1)(b—1) < (1+C1)[x—yl.

Let w be an extension of v to By, N VY with the same Lipschitz constant, whose existence is
guaranteed by the classical Kirszbraun’s Theorem, see [19, Theorem 2.10.43]. We claim that
w satisfies [w(x) — x| < 14 C /1, thus concluding the lemma.

To this aim, consider x € By, \ B; and set y = b x/|x| € 0By. Consider, moreover, the line v
passing through 0 and w(y), let 7t be the orthogonal projection onto r and set z = 7(w(x)).
Note that, if [x| < C T, then obviously [w(x) — x| < [x] + [w(x)| < C7. Thus, without loss of
generality, we can assume that [x| > C T for some constant 7. In this case, the conclusion is
clearly a consequence of the following estimates:

z—w(x)| < CVr, (2.13)
Ix —z] < Cr. (2.14)
To prove (2.13), note that Lip(mow) < 1+ Ct and, hence,
z—wy) < (T+Ct)x—yl<b—|x|+CT (2.15)
|z =|mow(x) —mow(0)] < (1+C1)lx| < x|+ Cr.
Then, by the triangle inequality,
2l = wy)l =w(y) =zl 2 b (1 =1) = b+ x| - Ct > [x| - Cr. (2.16)
Since |x| > C, the left hand side of (2.16) can be supposed nonnegative and we obtain

(2.13),

z—w(x)* = w(x)I* —[21* < (1+ C1)*[x]* - (x| - C1)* < Cr.

For what concerns (2.14), note that

’x—zw(y)‘ <|E|y—w(y)<xlCT<CT. (2.17)
On the other hand, since by (2.15) [z—w(y)| < b— x| +Ct < b—T < [w(y)land w(y) -z > 0,
we have also

o= Bt = el B il < m-m+m—'H(M<Ca
which together with (2.17) gives (2.14). O

Now we pass to the construction of the map p*. To fix notation, let Sx denote the k-
skeleton of Q, that is the union of all the k-faces, Sx = Upcg, F. Forevery k =1...,nQ —1
and F € F, let ?a,b denote the set

]’ia,b = {x € Q : dist(x,F) < a, dist(x,Sx_1)> b},
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where a,b > 0 are given constants. In the case of maximal dimension F € F,q, for every
a > 0, F, denotes the set

Fo={x€F:dist(x,Snq_1) > a}.

Next we choose constants 1 = chg—1 < chng—2 < ... < ¢o such that, for every T <
k < nQ —1, each family {F2¢, ¢, ,re7, is made by pairwise disjoint sets. Note that this is
possible: indeed, since the number of faces is finite, given cyx one can always find a cyx_1
such that the lAEzCk,ck4 ’s are pairwise disjoint for F € JFy.

Moreover, it is immediate to verify that

nQ-1
U U Feeveen U U Fengi UB2e, =2.
k=1 FeTFy FEFno
To see this, let Ay = U]:egfkf:zck,cki] and Anq = UpeganZquqz if x ¢ UE:QVC[k, then it turns
out that dist(x, Sx—1) < cx—1 for every k = 1,...,nQ, that means in particular that x belongs
to BZCO-

Now we are ready to define the map p* inductively on the Ay’s. On A, we consider the
map f,q =Id. Then, we define the map f,,q—1 on A, UAq—1 starting from f,,q and, in
general, we define inductively the map fyx on U?:Qkfh knowing fi ;1.

The map fy41: U{‘:Qk 114 — Q we start with satisfies the following two properties:

2-MQ+k+1 2—Q+k+1

(ax+1) Lip(frp1) <1+ Cu and [fry1(x) —x/ < Cp ;

(bx+1) for every k-dimensional face G € Jy, setting coordinates in Gy¢, ¢, , in such a way
that GNGacpe, , € R* x{0} € RN, fy 1 factorizes as

nQ
fer1(¥,2) = (Y, i (2) € REXRNF Y (y,2) € Gaepe , N | Av
l=k+1

The constants involved depend on k but not on the parameter p.

Note that, f,,q satisfies (anqg) and (br,q) trivially, because it is the identity map. Given
fr+1 we next show how to construct fy. For every k-dimensional face G € Jy, setting
coordinates as in (byx41), we note that the set Vy, := Ga¢, ¢, ; N ({y} X IRN_k) N B¢, (u,0)
is the intersection of a cone with the ball B, (u, 0). Moreover, hy1(z) is defined on Vy N
(B2, (y,0)\ B, (y,0)). Hence, according to Lemma 2.4, we can consider an extension wy of
hicr1lfjz/=2¢,) on Vy N By, (again not depending on y) satisfying Lip(wy) <1+ C u2
lz—wi(z) < Cp2 ™™ and wi(z) =0ina neighborhood of 0 in V.

Therefore, the function fi defined by

(y,wi(z)) for x=(y,z) € Gaeper 4 C Ak,

fr(x) =
fra1(x) for x € U{l:QkH A\ Ay,

(2.18)

satisfies the following properties:
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(ax) Mfro1(x)—x < C uzfnmkﬂ and Lip(fx) < 1+C uzfnmk. Indeed, the first estimate
follows immediately from Lemma 2.4. And, for what concerns the second, we conclude
Lip(fx) < 1+C u2 " on every Gac,c, , by the same lemma. Now, every pair
of points x,y contained, respectively, into two different Gy, ¢, , and Hp¢, ¢, , are
distant apart at least one. Therefore, using the first estimate,

ficb0) = fiely)l < e—yl+ Cu? " < (T T ) x -,
which gives the second.

(by) for every (k — 1)-dimensional face H € Fy_1, setting coordinates in Hp¢, ¢, , in such
a way that HNHae, | ¢, C R¥T x {0} ¢ RN=**1 f factorizes as

nQ
fiy’,z') = (v, elz) e R xRN M v (y,2) € Hae ey, U [ AL
1=k

Indeed, when H C 9G, with G € Fyx41 and z’ = (z],z) where (y, z) is the coordinate
system selected in (by1) for G, then

hi(z) = (21, wk(2)) .

After nQ steps, we get a function fo = pj : Q — Q which satisfies

2@ 2mQ

Lip(pg) <1+Cpu and [p5(x) —x/ < Cp

Moreover, since the extensions wy coincide with the projection in balls B Cp2- QKT around
the origin, hence, in particular on balls B, it is easy to see that, for every face F € Jy, the
map p; coincides with the projection on F for x € F, 5¢, ,, thatis

po(x) =mr(x) Vx€Fuoe ;- (2.19)

Step 2. Extension to Q,nq

Now we need extend the map pj : Q — Q to a neighborhood of Q preserving the same
Lipschitz constant.

We start noticing that, since the number of all the faces is finite, when p is small enough,
there exists a constant C = C(N) such that

dist (Fui+] \Uj<aL UG€3F]. Guj+1,Hui+1 \Uj<i UGef;j Guj+]) >C ui, VF+#HeF;. (2.20)

The extension pj is defined inductively, starting this time from a neighborhood of the
O-skeleton of Q. On the ball B,, the extension go has the constant value 0 (note that this is
compatible with the pj by (2.19)).

Now we come to the inductive step. Suppose we have an extension gy of pj defined on
the pk+t! -neighborhood of the k-skeleton Sy, that is

k
(Sk)eer =QUBLU (] [ Fuw,
1=1FecTh
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with the property that Lip(gy) < 1+C u2 ", Then, we define the extension to the p**2-
neighborhood of Sy 1 in the following way: for every F € Fy 41,

g in (Sk) ki1 NF k2 = A,
Ok i1 = R (2.21)
e in {x € RN : |mp(x)] > 2citNFyer2 =B

Note that, if we consider each connected component C of (Sx41) k2 \ (Sk) ki1, grt is
defined on a portion of C which is mapped into the closure K of a single face. Since K is
a convex closed set, we can use Kirszbraun’s Theorem to extend gy to C with optimal
Lipschitz constant, that is always 1+ C u2 e,

Next, notice that if x belongs to the boundary of two connected components C; and
C2, then it belongs to (Si) 1. Thus, the map g1 is continuous. We next bound the
global Lipschitz constant of gi1. Indeed consider points x € F k2 \ (Sx)xv1 and y €
FLHZ \ (Sx) yrr1, with F,F € Fy 7. Since by (2.20) x —y| > C 1k, we easily see that

k01 (%) — g1 (W) < 25T + g (mr (%) — g (7 ()]
<2u% H (1 Cp? ")re(x) — 7 (y)]
<2pT (T4 Cp2 ™) (x—yl+ 2kt
<(+Cu ™ x—vyl

Therefore, we can conclude again that Lip(gx4+1) < 1+ C uzan, finishing the inductive step.
After making the step above nQ times we arrive to a map g, which extends pj and is
defined in a u™Q-neighborhood of Q. We denote this map by p3.

Step 3. Extension to RN

Finally, we extend p7 to all of RN with a fixed Lipschitz constant. This step is immediate
recalling the Lipschitz extension theorem for Q-valued functions. Indeed, taken £~ o p* :
Synq — Ag, we find a Lipschitz extension h : RN — Aq of it with Lip(h) < C. Clearly, the
map p* := & o h fulfills all the requirements of Proposition 2.3.



SOBOLEV Q-VALUED FUNCTIONS

Here we introduce the definition of Sobolev Q-valued functions. Our approach follows
Ambrosio [3] and Reshetnyak [48] and allows us to define such classes of functions starting
from the metric properties of Aq, avoiding the biLipschitz embedding & used by Almgren.

The two approaches, the metric one and the extrinsic one, turn out to be equivalent. After
some first results on one dimensional domains, we prove the equivalence between our
definition and Almgren’s one and extend some standard properties of Sobolev functions to
the multi-valued case. In doing this, we provide two proofs for each result: one in Almgren’s
framework, using the extrinsic maps  and p, one using only the metric structure of Ag. It is
worth noticing that some of the properties are actually true for Sobolev spaces taking values
in fairly general metric targets, whereas some others do depend on the specific structure of
AqQ.

3.1 SOBOLEV Q-VALUED FUNCTIONS

To our knowledge, metric space-valued Sobolev-type spaces were considered for the first
time by Ambrosio in [3] (in the particular case of BV mappings). The same issue was then
considered later by several other authors in connection with different problems in geometry
and analysis (see for instance [32], [41], [53], [40], [39], [8] and [36]). The definition adopted
here differs slightly from that of Ambrosio and was proposed later, for general exponents,
by Reshetnyak (see [48] and [49]).

Before starting with the definition, re recall that the spaces LP(Q, Ag) consists of those
measurable maps u: Q — Aq such that ||G(u, Q [0])||» is finite. Observe that, since Q is
always bounded for us, this is equivalent to ask that ||G(u, T)||r» is finite for every T € Aq.

Definition 3.1 (Sobolev Q-valued functions). A measurable function f: QO — Aq is in the
Sobolev class WP (1 < p < o) if there exist m functions @; € LP(Q,R") such that

(1) x — G(f(x), T) e WP (Q) forall T € Aqg;
(i) [9; G(f, T)| < ¢; almost everywhere in Q forall T € Ag and for all j € {1,..., m}.

As already remarked by Reshetnyak, this definition is equivalent to the one proposed by
Ambrosio. The proof relies on the observation that Lipschitz maps with constant less than 1
can be written as suprema of translated distances. This idea, already used in [3], underlies
in a certain sense the embedding of separable metric spaces in {*°, a fact exploited first in
the pioneering work [31] by Gromov (see also the works [5], [4] and [37], where this idea
has been used in various situations).

Proposition 3.2. Let Q C R™ be open and bounded. A Q-valued function f belongs to W1 (Q, Aq)
if and only if there exists a function p € LP(Q,R™) such that, for every Lipschitz function
¢ : Ag — R, the following two conclusions hold:
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(a) pofeW'P(Q);
(b) ID (¢ of)(x)| < Lip(d) W(x) for almost every x € Q.

Proof. Since the distance function from a point is a Lipschitz map, with Lipschitz constant
1, one implication is trivial. To prove the opposite, consider a Sobolev Q-valued function

f: we claim that (a) and (b) hold with 1 = (Z] (p]z) 1/ 2, where the @j’s are the functions in
Definition 3.1. Indeed, take a Lipschitz function ¢ € Lip(Aq). By treating separately the
positive and the negative part of the function, we can assume, without loss of generality,
that ¢ > 0. If {Ti}iew C Ag is a dense subset and L = Lip(¢), it is a well known fact that
¢(T) =inf; {$(T;) + LS(T;, T) }. Therefore,

d)of:iri1f{c[)(Ti)—|—L9(Ti,f)} = irilfgi. (3.1)

Since f € W"V(Q,AQ), each g; € W''P(Q) and the inequality [D(¢ o f)| < sup; [Dgi| holds
a.e. On the other hand, |[Dgi| = L|DS(f, Ti)| < L, /Z]- (pjz a.e. This completes the proof. [

It is not difficult to show the existence of minimal functions ¢; fulfilling (ii) in Defini-
tion 3.1.

Proposition 3.3. For every Sobolev Q-valued function f € wip (Q, Aq), there exist g; € LP, for
j=1,...,m, with the following two properties:

(1) ‘a]—S(f,T)‘ < gjae. forevery T € Ag;
(ii) if @5 € LP is such that ‘ajS(f,T)] < @jforall T € Aqg, then g; < @; a.e.

These functions are unique and will be denoted by |9;f|. Moreover, chosen a countable dense subset
{Tilien of Aq, they satisfy

05| =sup|0; G(f, T;)|  almost everywhere in Q. (3.2)
ieN

Proof. The uniqueness of the functions gj is an obvious corollary of their property (ii). It is
enough to prove that g; = |0;f| as defined in (3.2) satisfies (i), because it obviously satisfies
(ii). Let T € Ag and {T;, } C {Ti} be such that T;, — T. Then, §(f, Ty, ) — G(f, T) in LP and,
hence, for every \ € CX(Q),

’/ajg(f,ﬂw‘ lim ‘/S(f,nk)ajxp‘_hm ’/ajg(f,Tik)¢‘</gj|xp|. (3.3)

ix——+oo ix——+o0
Since (3.3) holds for every 1, we conclude |0;5(f, T)| < gj a.e. O

Remark 3.4. Definition 3.1 can be easily generalized when the domain is a Riemannian
manifold M. In this case we simply ask that f o x~! is a Sobolev Q-function for every open
set U C M and every chart x : U — R™. In the same way, given a vector field X, we can
define intrinsically [0xf| and prove the formula corresponding to (3.2) (the details are left to
the reader).

Finally we endow wlp (Q, Ag) with a metric.



3.2 ONE DIMENSIONAL W1’p-DECOMPOSITION

Proposition 3.5. Given f and g € WP (Q, Aq), define

m
dwio(f,9) = [IS(f, )ll» + ) sup [9;5(f, Ti) — 9;5(g, T1)| (3-4)
j=1 1 Lp
Then, (W'P(Q, Aq), dwr) is a complete metric space and
dwir(fi,f) = 0 = [Dfel 2 DA (3.5)

Proof. The proof that dyy1,» is a metric is a simple computation left to the reader; we prove
its completeness. Let {fi jxen be a Cauchy sequence for dyy1,». Then, it is a Cauchy sequence
in LP(Q, Aq). There exists, therefore, a function f € LP(Q, Aq) such that fx — f in LP. We
claim that f belongs to W]'p(O_,AQ) and dyy1,(f, f) — 0. Since f € W”’(O_,AQ) if and
only if dy1»(f,0) < 00, it is clear that we need only to prove that dy,1» (fx,f) — 0. This is a
consequence of the following simple observation:

= sup Z Haj9(f,Ts)—ajg(fkrTs)HLp(Es)
Lr  PePg cp

g llm dW],p (f]_, fk), (36)

l—+4+o00

sup [9;9(f, Tt) — 9;5(fi, To) |

where P is the family of finite measurable partitions of ). Indeed, by (3.6),

. (36) . .
Hm dyas(fi f) < lim [H9(f,fk)uw +m lim dww(ﬁ,fk)} = 0.

We now come to (3.5). Assume dy1, (fi, f) — 0 and observe that

105 — [951]] =

sup 19;5(fi, To)| — sup ‘ajg(fk/Ti)“ < sup 10;G5(fi, To) — 055 (fi, To)| -

Hence, one can infer H|a,-fk| — ‘6jf1} HLD < dye (fi, fr). This implies that [Dfy| is a Cauchy
sequence, from which the conclusion follows easily. O

3.2 ONE DIMENSIONAL W]’p-DECOMPOSITION

Now we prove some regular decompositions for one dimensional Sobolev maps. In the
what follows I = [a,b] is a closed bounded interval of R and the space of absolutely
continuous functions AC(I, Ag) is defined as the space of those continuous f : [ — Ag
such that, for every ¢ > 0, there exists 6 > 0 with the following property: for every
at<try<..<tyn <D,

D (tai—tai1) <d implies Y S§(f(tzi), flt2i 1)) <e.

1

Proposition 3.6. Let f € W1'p(I,AQ). Then,

(a) f e AC(L, Aq) and, moreover, f € COJ_%(I,AQ)forp >1;
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(b) there exists a selection fq,...,fq € WP (I, R™) of f such that |Dfi| < |Df| almost every-
where.

Remark 3.7. A similar selection theorem holds for continuous Q-functions. This result needs
a subtler combinatorial argument and is proved in Almgren’s big regularity paper [2]
(Proposition 1.10, p. 85). The proof of Almgren uses the Euclidean structure, whereas a more
general argument has been proposed in [14].

Proof. We start with (a). Fix a dense set {Ti}ienw C Aq. Then, for every i € N, there is a
negligible set E; C I such that, for every x <y € I'\ E;,

y Yy
/ S(f, )| < / DAl

Fix x <y € I\ UiE; and choose a sequence {T;, } converging to f(x). Then,

|S(f(x), i) = G(f(y), Ti)| <

y

5(1(x) (y)) = lim [S(£(x), Ts) = §(F(v), To)| < [ DA, 67
—00 X

Clearly, (3.7) gives the absolute continuity of f outside U; E;. Moreover, f can be redefined in

a unique way on the exceptional set so that the estimate (3.7) holds for every pair x,y. In the

)

case p > 1, we improve (3.7) to §(f(x),f(y)) < || IDf|||rr Ix—yl(p_] /p, thus concluding the

Holder continuity.

For (b), the strategy is to find fy,...,fq as limit of approximating piecewise linear
functions. To this aim, fix k € IN and set
_b—a

AkZ—T and ty:=a+1Ay, with 1=0,...,k.

By (a), without loss of generality, we assume that f is continuous and we consider the points
f(t1) = Y_; [Pi]. Moreover, after possibly reordering each {P}}ic(1 . )}, we can assume that

S(f(ti1), f(t)2 =Y [PET— P (38)

Hence, we define the functions f]f as the linear interpolations between the points (ti, Pil),
that is, for every 1 =1,...,k and every t € [t;_1, t1], we set
t—t . _ t—ti1 1
ff(t) = — P + ——— PL.
l( ) Ak 1 + Ak 1
It is immediate to see that the flf’s are W' functions; moreover, for every t € (t1_1,t),
thanks to (3.8), the following estimate holds,

1-1_ pl 1
DAk ()] = Pt - P < S(f(tlxi,f(tl)) <][t D] (1) dt = h¥ (1), (3.9)

ti1

Since the functions h* converge in LP to [Df| for k — 400, we conclude that the f‘f’s are
equi-continuous and equi-bounded. Hence, up to passing to a subsequence, which we do
not relabel, there exist functions f,...,fq such that f‘f — f;i uniformly. Passing to the limit,
(3.9) implies that |Df;i| < |Df| and it is a very simple task to verify that ) ; [fi] = f. O



3.2 ONE DIMENSIONAL W1’p-DECOMPOSITION

Proposition 3.6 cannot be extended to maps f € WP (81, Aq). For example, we identify
R? with the complex plane C and S! with the set {z € C : |z| = 1} and we consider the
map f:5' — Ag(RR?) given by f(z) =Y .>_, [(]. Then, f is Lipschitz (and hence belongs
to WP for every p) but it does not have a continuous selection. Nonetheless, we can use
Proposition 3.6 to decompose any f € WP (S, Aq) into “irreducible pieces”.

Definition 3.8. f € WP (S! ,Aq) is called irreducible if there is no decomposition of f into 2
simpler W' functions.

Proposition 3.9. For every Q-function g € W1'p(81,AQ(R“)), there exists a decomposition
g= Zj]:1 [g;], where each g; is an irreducible W' map. A function g is irreducible if and only if

(1) card (supp (g(z))) = Q for every z € S' and
(ii) there exists a WP map h: S' — R™ with the property that f(z) = 2_co—, [R(Q)].
Moreover, for every irreducible g, there are exactly Q maps h fulfilling (ii).

The existence of an irreducible decomposition in the sense above is an obvious conse-
quence of the definition of irreducible maps. The interesting part of the proposition is the
characterization of the irreducible pieces, a direct corollary of Proposition 3.6.

Proof. The decomposition of g into irreducible maps is a trivial corollary of the definition
of irreducibility. Moreover, it is easily seen that a map satisfying (i) and (ii) is necessarily
irreducible.

Let now g be an irreducible WP Q-function. Consider g as a function on [0, 271 with
the property that g(0) = g(2n) and let hy,...,hqg in WP ([0,27], R™) be a selection as
in Proposition 3.6. Since we have g(0) = g(27), there exists a permutation o such that
hi(2m) = hg(1)(0). We claim that any such o is necessarily a Q-cycle. If not, there is a
partition of {1,..., Q} into two disjoint nonempty subsets I} and Ik, with cardinality L and
K respectively, such that o(I;) = I; and o(Ix) = Ix. Then, the functions

gr=) [n] and gk=) [hi]

iel ielg

would provide a decomposition of f into two simpler WP functions.

The claim concludes the proof. Indeed, for what concerns (i), we note that, if the support
of g(0) does not consist of Q distinct points, there is always a permutation o such that
hi(27) = hg(4)(0) and which is not a Q-cycle. For (ii), without loss of generality, we can
order the h; in such a way that o(Q) = 1 and o(i) =i+ 1 for i < Q — 1. Then, the map
h:[0,2n] — R™ defined by

h(0) =hi(Q0—2(i—1)m), for 0 € 2(i1—1)t/Q,2im/Q)],
fulfils (ii). Finally, if a map h € WP (81 R") satisfies

9(6) = > [R((6+2in)/Q)] for every 6, (3.10)

i
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then there is j € {1,...,Q} such that h(0) = h(2jt/Q). By (i) and the continuity of h and h,
the identity h(8) = h(0 + 2j7/Q) holds for 0 in a neighborhood of 0. Therefore, since s is
connected, a simple continuation argument shows that h(8) = h(8 + 2j7t/Q) for every 6. On
the other hand, all the h of this form are different (due to (1)) and enjoy (3.10): hence, there
are exactly Q distinct W' functions with this property. ]

3.3 ALMGREN’S EXTRINSIC THEORY

It is clear that, using &, one can identify measurable, Lipschitz and Holder Q-valued functions
f with the corresponding maps & o f into RN, which are, respectively, measurable, Lipschitz,
Holder functions taking values in Q a.e. We now show that the same holds for the Sobolev
classes of Definition 3.1, thus proving that the definition adopted by Almgren is equivalent
to the one we introduced.

Theorem 3.10. A Q-valued function f belongs to the Sobolev space WP (Q, Aq) according to
Definition 3.1 if and only if & o f belongs to WP (Q,RN). Moreover, there exists a constant
C = C(n, Q) such that

ID(&of)| < [Dfl < C[D(g0of).

Proof. Let f be a Q-valued function such that g = £of € W''P(Q,RN). Note that the
map Y1 : Q> y — G (y),T) is Lipschitz, with a Lipschitz constant C that can be
bounded independently of T € Aq. Therefore, §(f,T) = Yt og is a Sobolev function
and ‘8]- (Yro g)} < C[o59] for every T € Aq. So, f fulfills the requirements (i) and (ii) of
Definition 3.1, with ¢; = C \a,-g , from which, in particular, [Df| < C|D(§ o f)|.

Vice versa, assume that f is in W'? (Q, Aq) and let @; be as in Definition 3.1. Choose a
countable dense subset {T; }icn of Aqg, and recall that any Lipschitz real-valued function ®
on Aq can be written as

@(-) = sup {@(T;) — Lip (®) S(-, Ti) }.
ieN
This implies that 9; (@ o f) € LP with \aj (Do f)‘ < Lip(®) ;. Therefore, since Q) is bounded,
®of € WIP(Q). Being & a Lipschitz map with Lip(&) < 1, we conclude that £of ¢
WP (Q,RN) with [D(§ 0 f)| < |Df|. O

We now use the theorem above to transfer in a straightforward way several classical
properties of Sobolev spaces to the framework of Q-valued mappings. In particular, in the
subsequent subsections we deal with Lusin type approximations, trace theorems, Sobolev and
Poincaré inequalities, and Campanato-Morrey estimates. Finally subsection 3.3.4 contains a
useful technical lemma estimating the energy of interpolating functions on spherical shells.

3.3.1 Lipschitz approximation and approximate differentiability

We start with the Lipschitz approximation property for Q-valued Sobolev functions.
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Proposition 3.11 (Lipschitz approximation). Let f be in WP (Q, Aq). For every A > 0, there
exists a Lipschitz Q-function fy such that Lip (f) < A and

{x € Q: f(x) #fA(x)}] < )\Cp/ (IDFIP + §(f, Q [0])P), (3.11)
Q

where the constant C depends only on Q, m and Q.

Proof. Consider & o f: by the Lusin-type approximation theorem for classical Sobolev func-
tions (see, for instance, 6.6.3 of [18]), there exists a Lipschitz function hy : Q — RN such that
Hx € Q : &of(x) #ha(x)}| < (C/AP)||E o f”Bva‘ Clearly, the function f) = £ 1opohy has
the desired property. O

A direct corollary of the Lipschitz approximation and of Theorem 1.13 is that any Sobolev
Q-valued map is approximately differentiable almost everywhere.

Definition 3.12 (Approximate Differentiability). A Q-valued function f is approximately
differentiable in x, if there exists a measurable subset Q C Q containing xo such that Q has
density 1 at xo and f| is differentiable at x,.

Corollary 3.13. Any f € W''P(Q, Aq) is approximately differentiable a.e.

Proof. For every k € IN, choose a Lipschitz function fy such that Q\ Qy = {f # f} has
measure smaller than k™P. By Rademacher’s Theorem 1.13, fy is differentiable a.e. on
Q. Thus, f is approximately differentiable at a.e. point of Q. Since |Q \ UxQy| = 0, this
completes the proof. O

The approximate differential of f at xo can then be defined as D(f|5) because it is
independent of the set Q. With a slight abuse of notation, we will denote it by Df, as
the classical differential. Similarly, we can define the approximate directional derivatives.
Moreover, for these quantities we use the notation of Section 1.3, that is

Df=)Y [Dfi] and of=) [of],

1 1

with the same convention as in Remark 1.11, i.e. the first-order approximation is given by

Tiof =2 [filxo) + Dfi(x0) - (x —x0]].
Finally, observe that the chain-rule formulas of Proposition 1.12 have an obvious extension
to approximate differentiable functions.

Proposition 3.14. Let f: QO — Aq(IR™) be approximate differentiable at xo. If ¥ and F are as in
Proposition 1.12, then (1.13) and (1.14) holds. Moreover, (1.12) holds when ® is a diffeomorphism.

Proof. The proof follows trivially from Proposition 1.12 and Definition 3.12. ]

3.3.2  Sobolev and Poincaré inequalities

1_1

1
As usual, for p < m we set PP =P m

Proposition 3.15 (Sobolev Embeddings). The following embeddings hold:
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(1) ifp <m, then W]IP(Q,AQ) C L9(Q, Aq) for every q € [1,p*], and the inclusion is compact
when q < p*;

(il) if p =m, then WW(Q,AQ) C L9(Q, Aq), for every q € [1,400), with compact inclusion;
cee . ], 0, _ . m . . .
(iii) if p > m, then W''P(Q), Aq) C CV*(Q, Aq), for . =1 ‘]‘9‘, with compact inclusion.

Proof. Since fis a L9 (resp. Holder) Q-function if and only if £ o f is L9 (resp. Holder), the
proposition follows trivially from Theorem 3.10 and the Sobolev embeddings for & o f (see,
for example, [1] or [64]). O

Proposition 3.16 (Poincaré inequality). Let M be a connected bounded Lipschitz open set of an
m-dimensional Riemannian manifold and let p < m. There exists a constant C = C(p, m,n, Q, M)
with the following property: for every f € WP (M, Aq), there exists a point f € Aq such that

(/ 9(f,f)”*)p* <C (/ |Dfp>". (3.12)
M M

Remark 3.17. Note that the point f in the Poincaré inequality is not uniquely determined.
Nevertheless, in analogy with the classical setting, we call it a mean for f.

Proof. Set h := §of : M — Q C RN. By Theorem 3.10, h € W!'P(M,RN). Recalling
the classical Poincaré inequality (see, for instance, [1] or [64]), there exists a constant
C = C(p,m, M) such that, if h = {3, h, then

(/M [h(x) —H‘p* dx) ” <C </M |th> ’ ) (3.13)

Let now v € Q be such that !E — v| = dist (E, Q) (v exists because Q is closed). Then, since h
takes values in Q almost everywhere, by (3.13) we infer

a 1 1
_ * * _ * p* P
</M R—v|" dx) S </M [R—hx)[" dx) <C (/M |Dh|p> . (3.14)
Therefore, using (3.13) and (3.14), we end up with
=Vl < [[h=h]l e +[[h=v] - <2C|Dh],.

Hence, it is immediate to verify, using the biLipschitz continuity of &, that (3.12) is satisfied
with f = £~ (v) and a constant C(p, m,n, Q, M). O

3.3.3 Campanato—-Morrey estimates

We prove next the Campanato-Morrey estimates for Q-functions, a crucial tool in the proof
of the Holder regularity for Dir-minimizing functions.
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Proposition 3.18. Let f € W1'2(B1,AQ) and « € (0, 1] be such that
/ |Df|> < A rm—2+2x for everyy € By and a.e. v €]0,1 —[yl[.
B+ (y)

Then, for every 0 < & < 1, there is a constant C = C(m,n, Q,d) with

S(f(x), f(y))

= [f] ro,um < A. .
x—y* [flcon(s;) < CVA (3.15)

x,y€Bs

Proof. Consider & o f: as shown in Theorem 3.10, there exists a constant C depending on
Lip(&) and Lip(&~") such that

/ D(£0f)(x)Pdx < CAr™ 2+2%
Br(y)

Hence, the usual Campanato-Morrey estimates (see, for example, 3.2 in [33]) provide the
existence of a constant C = C(m, «, d) such that

&of(x) —&of(y)l < CVA x—y|* forevery x,y € Bs.

Thus, composing with £~ 1 we conclude the desired estimate (3.15). O

3.3.4 A technical Lemma

Finally we prove a technical lemma which estimates the Dirichlet energy of an interpolation
between two functions defined on concentric spheres. The lemma is particularly useful to
construct competitors for Dir-minimizing maps.

Lemma 3.19 (Interpolation Lemma). There is a constant C = C(m,n, Q) with the following
property. Let v > 0, g € WLZ(OBT,AQ) and f € W]'Z(aBr“,s),AQ). Then, there exists h €
W12(B,\ By(1—¢),AqQ) such that hlag, = g, h|aBT“,£) =fand

Dir(h, By \ B,(1_¢)) < Cer [Dir(g, dB,) + Dir(f, 9B,(1_¢))]+

+ S e, f1—e)x)? dx. (3.16)
ET 9B,

Proof. By a scaling argument, it is enough to prove the lemma for r = 1. As usual, we
consider p = Eogand @ = §of. For x € 0B and t € [1 — ¢, 1], we define
t=T+e)vXx)+ (-t o ((1—-¢)x)

O(tx) = . ,
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and @ = po ®. It is straightforward to verify that ® belongs to W'?(B; \ B;_,, Q). Moreover,
the Lipschitz continuity of p and an easy computation yield the following estimate,

—2 2
DOI"<C DO
/1;1\Bla ‘ ‘ S /1;1\316 | |

1 2

2 2 W) =@ ((1T—e)x)

<cf [ <|aT<p(x) bl + . )

= Ce{Dir(y,0B7) + Dir(¢,0B7_¢)}+

tCe! /aB W) — @ ((1— )0 dx,

where 9 denotes the tangential derivative. Consider, finally, h = £ 1 o @: (3.16) follows
easily from the biLipschitz continuity of &. O

The following is a straightforward corollary.

Corollary 3.20. There exists a constant C = C(m,n, Q) with the following property. For every
g€ W1'2(6B1,AQ), there ish € W1'2(B1,AQ) with hlapg, = g and

Dir(h,B;) < CDir(g,9B;) + C (g, Q [0])%.
631
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The theory of Sobolev Q-valued functions as developed in the previous section is indepen-
dent from the extrinsic maps & and p. To show this, we provide here a second proofs of all
the results already proved in the framework of the metric theory of Q-valued functions.

3.4.1 Lipschitz approximation

In this subsection we prove a strengthened version of Proposition 3.11. The proof uses, in the
metric framework, a standard truncation technique and the Lipschitz extension Theorem 1.7
(see, for instance, 6.6.3 in [18]). This last ingredient is a feature of Ag (R™) and, in general, the
problem of whether or not general Sobolev mappings can be approximated with Lipschitz
ones is a very subtle issue already when the target is a smooth Riemannian manifold (see
for instance [52], [7], [34] and [35]). The truncation technique is, instead, valid in a much
more general setting, see for instance [37].

Proposition 3.21 (Lipschitz approximation). There exists a constant C = C(m, Q, Q) with the
following property. For every f € WP (Q, Aq) and every A > 0, there exists a Q-function f such
that Lip (fy) < CA,

< C[IDFI|P,
AP

and dyp (f, f2) < Cdy1e (f, Q [0]). Moreover, Ay (f, fA) = o(1) and [Ex| = o(A™P).

Eal = |{x € Q: f(x) # fA(x)}| (3.17)
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Proof. We consider the case 1 < p < oo (p = oo is immediate) and we set
Q) ={x€Q: M(IDf]) <A},

where M is the Maximal Function Operator (see [57] for the definition). By rescaling, we
can assume |||Df|||r» = 1. As a consequence, we can also assume A > C(m, Q, Q), where
C(m, Q, Q) will be chosen later.

Notice that, for every T € Ag and everyj €{1,...,m},

M([9;S(f, T)|) <K M(IDf]) <A in Q,.

By standard calculation (see, for example, 6.6.3 in [18]), we deduce that, for every T, §(f, T)
is (CA)-Lipschitz in Qj, with C = C(m). Therefore,

‘S(f(x),T) —S(f(y),T)‘ <CAlx—yl Vx,yeQpandVTe Ag. (3.18)

From (3.18), we get a Lipschitz estimate for f[q, by setting T = f(x). We can therefore use
Theorem 1.7 to extend f|n, to a Lipschitz function f) with Lip(f)) < CA.
The standard weak (p —p) estimate for maximal functions (see [57]) yields

C C
0\ Q |</ DIP < = o(1), 1
A AP O\Qy )2 AP (3 9)

which implies (3.17) and [Ex| = o(A™P). Observe also that, from (3.19), it follows that

/ IDfAlP < C [Df[P. (3.20)
Q\Q; O\Q, 2

It remains to prove dyy 1, (f,fa) < Cdyip(f, Q[0]) and dy1»(fa, f) — 0. By (3.20), it
suffices to show

1G(fA, Q [OD) |l < Cdys(f,Q[0]) and [|G(fa,f)|Lr — 0.

We first choose the constant C(m,Q, Q) < A so to guarantee that 2|Q,| > [Q]. Set g =
S(f,Q[0]), ga := G(fa,Q[0]) and h = g — gx. Let h be the average of h over Q and use the
Poincaré inequality and the fact that h vanishes on Q) to conclude that

Q| _ _
A 2w < lonRP < /|h—hp < C[DhP, < c/ (IDFP + IDFAP) < c/ DAP.
2 0O\Q, O\Q, 2
Therefore,
IhP, < C DA
O\Qy )2

So, using the triangle inequality, we conclude that

15(fA, Q [OD]ILr < [IS(f, Q [OD)][Lr 4 CIDF[||Lr < Cdyyrr (f, Q[O])
and
IS(f, ) D = 1S(f, Q [0 [ILr (a\ay) + MILe
< IS(F, Q[OD[Lr (avan) + ClIDflLr (0\Qy 1) (3.21)
Since [\ Q,[ | 0, the right hand side of (3.21) converges to 0 as A | 0. O
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3.4.2  Sobolev embeddings

The following proposition is an obvious consequence of the definition and holds under
much more general assumptions.

Proposition 3.22 (Sobolev Embeddings). The following embeddings hold:

(1) if p <m, then W'P(Q, Aq) C LY(Q, Aq) for every q € [1,p*], where p* = nT—_%, and the
inclusion is compact when q < p*;

(i) if p = m, then WP (Q,Aq) C LY(Q, Aq), for every q € [1,+00), with compact inclusion.
Remark 3.23. In Proposition 3.15 we have also shown that
(iil) if p > m, then W1'p(Q,AQ) C CO'“(Q,AQ), fora=1-— %, with compact inclusion.

It is not difficult to give an intrinsic proof of it. However, in the regularity theory of Chapters
3 and 5, (iii) is used only in the case m = 1, which has already been shown in Proposition 3.6.

Proof. Recall that f € LP(Q, Aq) if and only if §(f, T) € LP(Q) for some (and, hence, any) T.
So, the inclusions in (i) and (ii) are a trivial corollary of the usual Sobolev embeddings for
real-valued functions, which in fact yields the inequality

1S(f, Q[0 ILa(a) < C(n, Q, Q)dw1»(f, Q[0]). (3.22)

As for the compactness of the embeddings when q < p*, consider a sequence {fy }xen of
Q-valued Sobolev functions with equi-bounded dyy1,,-distance from a point:

dywis (fi, Q [O]) = [IS(Fi, QIOD) [l » + Y [[135Fkl[| 1 < C < +o0.
j

For every | € IN, let fy 1 be the function given by Proposition 3.21 choosing A = .

From the Ascoli-Arzela Theorem and a diagonal argument, we find a subsequence (not
relabeled) fy such that, for any fixed 1, {fy 1}x is a Cauchy sequence in C°. We now use this
to show that fy is a Cauchy sequence in L9. Indeed,

1S5(fr, fr ) e < NG(F, fro ) lpa + 1S (Fn fio, U e + 1S (Fieu fre) [l a - (3-23)

We claim that the first and third terms are bounded by C1'/9~1/P"_ It suffices to show it for
the first term. By Proposition 3.21, there is a constant C such that dy,1, (fx,1, Q [0]) < C for
every k and 1. Therefore, we infer

||9(fk/ fk,l)”ﬁq < C [g(fk/ Q [[Oﬂ)q + 9(fk,1/ Q HO]])q]

{fr#fi )
< (”9(fk, oD+ + 1S (fit, [[O]])ng*)ka # fu TP <l

where in the last line we have used (3.22) (in the critical case p*) and the Holder inequality.

Let € be a given positive number. Then we can choose 1 such that the first and third term in
(3.23) are both less than ¢/3, independently of k. On the other hand, since {f 1}« is a Cauchy
sequence in CO, there is an N such that ||G(fy 1, fir1)|lLa < /3 for every k, k/ > N. Clearly,
for k,k’ > N, we then have ||G(fy, fx/)|| < €. This shows that {f\} is a Cauchy sequence in L9
and hence completes the proof of (i). The compact inclusion in (ii) is analogous. O
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3.4.3 Campanato—Morrey estimate

Here we give another proof of the Campanato-Morrey estimate in Proposition 3.18.

Proof of Proposition 3.18: metric point of view. Let T € Ag be given. Then,

IDS(f, T)]? < D> < A 1™ 2H2%  forae. 1 €]0,1].
B, B,

By the classical estimate (see 3.2 in [33]), §(f, T) is a-Holder with
S0, T) = S(FW), I _

sup x <
xy€eBs Ix — U‘
where C is independent of T. This implies easily (3.15). O]

3.4.4 Poincaré inequality

A proof of (a variant of) this Poincaré-type inequality appears already, for the case p =1
and a fairly general target, in the work of Ambrosio [3]. Here we use, however, a different
approach, based on the existence of an isometric embedding of Ag(R™) into a separable
Banach space. We then exploit the linear structure of this larger space to take averages.
This idea, which to our knowledge appeared first in [37], works in a much more general
framework, but, to keep our presentation easy, we will use all the structural advantages of
dealing with the metric space Ag(R™).

Proposition 3.24 (Poincaré inequality). Let M be a connected bounded Lipschitz open set of a
Riemannian manifold. Then, for every 1 < p < m, there exists a constant C = C(p, m,n, Q, M)
with the following property: for every function f € W1 (M, Aq), there exists a point f € Aq such

that
(/ 9(f,f)p*>p* <cC (/ |Df|p)p, (3.24)
M M
P

where p* = %.

The key ingredients of the proof are the lemmas stated below. The first one is an elementary
fact, exploited first by Gromov in the context of metric geometry (see [31]) and used later to
tackle many problems in analysis and geometry on metric spaces (see [5], [4] and [37]). The
second is an extension of a standard estimate in the theory of Sobolev spaces. Both lemmas

will be proved at the end of the subsection.

Lemma 3.25. Let (X, d) be a complete separable metric space. Then, there is an isometric embedding
i: X — B into a separable Banach space.

Lemma 3.26. Forevery 1 < p < mand v > 0, there exists a constant C = C(p, m,n, Q) such that,
for every f € WW(Br,AQ) NLip (By, Aq) and every z € By,

/ G(f(x), f(z))Pdx < CrPHm—T / DAI(x)P x— 2™ dx. (3.25)
B, B,
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Proof of Proposition 3.24. Step 1. We first assume M = B, C R™ and f Lipschitz. We regard
f as a map taking values in the Banach space B of Lemma 3.25. Since B is a Banach space,
we can integrate B-valued functions on Riemannian manifolds using the Bochner integral.
Indeed, being f Lipschitz and B a separable Banach space, in our case it is straightforward to
check that f is integrable in the sense of Bochner (see [16]; in fact the theory of the Bochner
integral can be applied in much more general situations).

Consider therefore the average of f on M, which we denote by S¢. We will show that

[ it=sdp<c [ . (3.26)

First note that, by the usual convexity of the Bochner integral,

IWﬂ&h<fWMﬂwmwzfémdfx

Hence, (3.26) is a direct consequence of Lemma 3.26:

[t =silhax< [ f (50, )P dzan
B, B, /B,
< Crpim-] ][ w—z|' "™ Df|(w)P dw dz
r 7By

< CrP [Df|(w)P dw.
B,

Step 2. Assuming M = B, C R™ and f Lipschitz, we find a point f such that

/ S(f,f)" <crP / IDf|P. (3.27)
Consider, indeed, f € Aq a point such that

S: —fllg = min [|Ss—T|s. 28
IS+ —flls Trg;anHf I8 (3-28)

Note that f exists because Aq is locally compact. Then, we have

/’ c/nfaw /|&—mp

(3-26), (3.28) (3.26)
< Crp/ |Dfp+C/ HSf—pr < Crp/ |DA|P.
: B,

Step 3. Now we consider the case of a generic f € w! P (B, Aq). From the Lipschitz
approximation Theorem 3.21, we find a sequence of Lipschitz functions f converging to f,
dw1e (fx, f) — 0. Fix, now, an index k such that

S(fx, )P <P [ [Dff’ and IDf[P <2 | [|DfPP, (3-29)
B, B, B, B,
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and set f = fy, with the f) found in the previous step. With this choice, we conclude

_ (327) (3-29)
/ 51" <c [ S0+ / S (i F)? cr [ Dfp. (330)
. B, B,

B,

Step 4. Using classical Sobolev embeddings, we prove (3.24) in the case of M = B,. Indeed,

since G(f, f) € WP (B,), we conclude

1
_ _ (3:30) P
1S(F, D)o < ISED||yiw < c</B |Df|p>p.

Step 5. Finally, we drop the hypothesis of M being a ball. Using the compactness and
connectedness of M, we cover M by finitely many domains A7, ..., Ay biLipschitz to a ball
such that Ay NU;<xA; # (0. This reduces the proof of the general statement to that in the
case M = A UB, where A and B are two domains such that AN B # () and the Poincaré
inequality is valid for both. Under these assumptions, denoting by fo and fg two means for
f over A and B, we estimate

S(fA,fB)p*z][ G(fn, )P ][9 fp, )P +c][9 )P < (/ |Dfp)
ANB M

Therefore,

/ S(f,fa)P /SffA /SffA
AUB

</ S(f, A )P +C/ §(f, f5)P" + CS(fa, f)"'[B]
A B

p*
<c</ |va)p.
M

Proof of Lemma 3.25. We choose a point x € X and consider the Banach space A := {f €
Lip(X,R) : f(x) = 0} with the norm ||f||a = Lip(f). Consider the dual A’ and leti: X — A’
be the mapping that to each y € X associates the element [y] € A’ given by the linear
functional [y](f) = f(y). First of all we claim that i is an isometry, which amounts to prove
the following identity:

=[%

O]

d(z,y) = |yl = [2[[ar = sup fly) —f(z)] WxyeX (3:31)
f(x)=0,Lip(f)<1
The inequality |f(y) — f(z)| < d(y, z) follows from the fact that Lip(f) = 1. On the other
hand, consider the function f(w) := d(w,y) — d(y,x). Then f(x) = 0, Lip(f) = 1 and
If(y) —f(z) = d(y, 2).

Next, let C be the subspace generated by finite linear combinations of elements of i(X).

Note that C is separable and contains i(X): its closure in A’ is the desired separable Banach
space B. O
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Proof of Lemma 3.26. Fix z € B,. Clearly the restriction of f to any segment [x, z] is Lipschitz.
Using Rademacher, it is easy to justify the following inequality for a.e. x:

1
§(f(x), f(2)) < x— 2] /O Dfl(z + t(x—2)) dt. (3.32)

Hence, one has

(3.32) 1
/ G(f(x), F(2))P dx 2 / / x — 2P [DFl(z 4+ tix — 2))P dt dx
B,N0B.(z) B,NoB.(z) Jo

1
< sv/ / 1D (w)P dw dt
0 BrmaBts(Z)

]
= sp+m1/ / lw —z|""™Df|(w)P dw dt
0 BrﬂaBts[z]

<Pt [ ezl DA ()P dw, (33
B,
Integrating in s the inequality (3.33), we conclude (3.25),

S(f(x), f(z))P dx < CrPTm—! w —z|" "™ Df|(w)P dw.
B, B,

3.4.5 Calderon—Zygmund property

The following lemma, not proved in the previous section, will be used later in the proof of
the semicontinuity result in Chapter 11.

Lemma 3.27. Let u € W]'p(Q,AQ). Then, for L™-a.e. xo € Q it holds

lim p P ™ / 9P (1, Tygut) = . (3.34)
p—0 Cp(xo)

Proof. By the Lipschitz approximation, there exists a family (u)) with Lip(u)) < A such
that dyy1.0 (1, upx) = o(1) as A — +4o00. Denote by Q) = {x¢ : Tx,u = Tx,ux}. Then it holds
Q) C Oy forA < A and L™\ Q) =o0o(1).

We prove (3.34) for all xo € Q) Lebesgue point for X, and [Du[PXxo\q,, for some A € IN,
ie.

lim X0, = Iim p”ML™(Cp(x0) N Q) =1 and lim DuPxao\0, =0.
P—=0JCy(x0) p—0 P=0./Cp(x0)

(3-35)

Let, indeed, x¢ be such a point for a fixed Q): we estimate as follows

][ GP (1, Ty ) < 27 ][ G (1, Tegtin) + 20~ f S (1, 1)
Cp(XO) Cp[xo) Cp(XO)

<olpP) 4 CoP™ / D(S(un, W), (3.36)
Co(x0)\Qx
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where in the latter inequality we used Rademacher’s theorem for Q-functions and a Poincaré
inequality for the classical Sobolev function §(u, u,) which satisfies

0O, C {S(u,u;\) = O} and p ™L™(Cp(x0)NQx) =>1/2 for small p.
Since §(u,up) = sup, 15(w, Ti) — §(Ti, up)| and
DIS(w, T) = §(T, ua)l < [DS(w, Ti)[ + [DG(Ty, ua)l < [Dul+ [Dup| L™-ae. on Q,

it holds (recall that A < C|Du| on Q\ Q)
oo | DS wn)P < o7 [ sup (DIS(u, Ty) — §(To, wr))”
Co(x0)\Qx Co(xo)\Qr i

<Cpp ™ / DuP %2 o(pP).
Co(x0)\Qx

3.4.6 Interpolation Lemma

We prove in this section Lemma 3.19 (the statement below is, in fact, slightly simpler:

Lemma 3.19 follows however from elementary scaling arguments). In this case, the proof
relies in an essential way on the properties of Aq (R™) and we believe that generalizations
are possible only under some structural assumptions on the metric target.

Lemma 3.28 (Interpolation Lemma). There exists a constant C = C(m,n, Q) with the following
property. For any g, § € W12(3B1,Aq), there is h € W'2(By \ By_.,Aq) such that

h(x) = g(x), h((1—¢)x) =g(x), forx e 0By,

and

Dir(h,B;\B7_¢) < C {eDir(g, dB1) + ¢ Dir(g,0B) + ¢! S (g, @)2} .
Proof. For the sake of clarity, we divide the proof into two steps: in the first one we prove
the lemma in a simplified geometry (two parallel hyperplanes instead of two concentric
spheres); then, we adapt the construction to the case of interest.

Step 1. Interpolation between parallel planes. We let A = [—1,1]™~1, B = A x [0, ¢] and
consider two functions g, § € W1'2(A,AQ). We then want to find a function h : B — Ag
such that

9B,

h(x,0) =g(x) and h(x,¢e) = §(x); (3-37)

Dir(h,B) < C <eDir(g,A)—|—sDir(g,A)+s1 /Ag(g,g)2>, (3.38)

where the constant C depends only on m, n and Q.
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For every k € IN,, set Ay = [-1— k1, 14+k 1™ and decompose Ay in the union
of (k+1)™"T cubes {Ck,1}1:1,...,(k 4 1ym-1 with disjoint interiors, side length equal to 2/k

and faces parallel to the coordinate hyperplanes. We denote by xy 1 their centers. Therefore,

Cr1 =Xk + [—%, %] met Finally, we subdivide A into the cubes {Dy1};_; _jm-1 of side

2/k and having the points xy 1 as vertices, (so {Dy,1} is the decomposition “dual” to {Cy 1};
see Figure 2).

Figure 2: The cubes Cy; and Dy 1.

On each Cy 1 take a mean gy ; of g on Cy 1 NA. On Ay we define the piecewise constant
functions gy which takes the constant value g, ; on each Cy :
with

in Ck,l/

_ _ C
Ik = Jk.1 S(g,9x1)? < kz/ IDgl?.
Ck,lmA

CiriNA
In an analogous way, we define gy from § and denote by §y 1 the corresponding averages.
Note that g — g and gy — § in LZ(A,AQ).

We next define a Lipschitz function fy : B — Agq. We set fi(xk,1,0) = gx1 and fx(x 1, €) =
dx,1. We then use Theorem 1.7 to extend fi on the 1-skeleton of the cubical decomposition
given by Dy 1 x [0, ¢]. We apply inductively Theorem 1.7 to extend fy to the j-skeletons.

If Vi1 and Zy 1 denote, respectively, the set of vertices of Dy 1 x {0} and Dy 1 x {¢}, we then
conclude that

Lip(fxlp,, x(e}) < CLip(fklz,,) and Lip(fklp,, x(0}) < CLip(fxlv,)- (3-39)

Let (xx,i,0) and (xy j,0) be two adjacent vertices in Vi ;. Then,

G(fi(xxk,1,0), Fr(xk 3, 0))% = Glgw (xx,1), gk (X1 §))? ][ S (xki), gr(xxk,j))?

Ckliﬂck,]’ NnA

<C S(9x.is g)?+C
Ck,iﬂA

C / 5
<o Dgl”.
N

km+1 CriUCk;

5(9, 9k )2
Ck,jﬂA

(3-40)
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In the same way;, if (xy i, €) and (xyj, €) are two adjacent vertices in Zy 1, then

C

Ck,iU Ck,,'

S(fr(xai, €), frxkj, €))?
Finally, for (xy,0) and (xy i, €), we have
S(fi(xk,i,0), fre(xx i, 8))2 =& 25(gii, gri)? < ][ e 2 5(gx, Gi)%
CrinA

Hence, if {Cy, «}y—1,. om-1 are all the cubes intersecting Dy 1, we conclude that the Lipschitz
constant of fi in Dy 1 x [0, €] is bounded in the following way:

C

< T (|D9|2+|D§|2+€729(9k/§k)2)-

Lip(filp,  x(0,¢])

Uocck,cx

Observe that each Cy « intersects at most N cubes Dy, for some dimensional constant N.

Thus, summing over 1, we conclude

Dir(fy, A x [0, e]) ( /|D92+£/ IDgP> 4+ ¢! /99k,9k > (3-41)

Next, having fixed Dy, consider one of its vertices, say x’. By (3.39) and (3.40), we conclude

C
fic(y,0), fr(x’,0 Dol*
g S0 600 < iy [ ol

For any x € Dy 1, gk(x) is equal to fx(x’, 0) for some vertex x’ € Dy 1. Thus, we can estimate

/9 fie(x,0), gic(x kz/ [Dgl. (3-42)

Recalling that g — g in L2, we conclude, therefore, that fy(-,0) converges to g. A similar
conclusion can be inferred for fi (-, €).

Finally, from (3.41) and (3.42), we conclude a uniform bound on |/[fx[[| 2(g)- Using the
compactness of the embedding W'? C 12, we conclude the existence of a subsequence
converging strongly in L? to a function h € W'2(B). Obviously, h satisfies (3.38). We now
want to show that (3.37) holds.

Let & €]0, ¢[ and assume that f (-, 5) — f(-,8) in L? (which in fact holds for a.e. §). Then, a
standard argument shows that

/9 x,8),9(x))? dx—]1<1Tm S(fi(x,8), gk (x))? dx 11msup6||\ka|H \Cé.
o0 kToo

Clearly, this implies that f(-,0) = g. An analogous computation shows f(-, &) = g.

Step 2. Interpolation between two spherical shells. In what follows, we denote by D the closed

(m — 1)-dimensional ball and assume that ¢ : D — 0B N{x;ym > 0} is a diffeomorphism.

Define ¢_ : D — 9B N{xm < 0} by simply setting ¢_(x) = —d 4 (x). Next, let ¢ : A — D be
a biLipschitz homeomorphism, where A is the set in Step 1, and set

e+ =¢+r0d, g+ =9goe+ and G+ =30 Q4.
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Consider the Lipschitz approximating functions constructed in Step 1, fi  : A x [0, ¢] — Ag
interpolating between gy and gy —.

Next, to construct fi,_, we use again the cell decomposition of Step 1. We follow the
same procedure to attribute the values fy _(xy 1,0) and fi,_ (xy,1, €) on the vertices xy 1 & JA.
We instead set fy _(xx,1,0) = fi,+(xk,1,0) and fi _(xk 1, €) = fi 4 (xx1,€) when x| € 0A.
Finally, when using Theorem 1.7 as in Step 1, we take care to set fi + = fi,_ on the skeletons
lying in 9A and we define

fio 1 (@3 ¢/ ), T—=Ix]) if xpm >

0
fi(x) = :
fi,— (@~ (x/Ix), 1 —=Ix]) if x;m <O.

Then, fy is a Lipschitz map. We want to use the estimates of Step 1 in order to conclude the
existence of a sequence converging to a function h which satisfies the requirements of the
proposition. This is straightforward on {x;, > 0}. On {x;, < 0} we just have to control the
estimates of Step 1 for vertices lying on 0A. Fix a vertex xy 1 € 9A.

In the procedure of Step 1, fi,— (xx,1,0) and fx, _(xi 1, €) are defined by taking the averages
hyx 1 and hy | for go @ and §o @ on the cell Cy NA. In the procedure specified above the
values of fi,_(xy,1,0) and fy,_(xy 1, €) are given by the averages of go ¢ and §o ¢, which
we denote by gy 1 and §i,1. However, we can estimate the difference in the following way

C
lgx,1 — hitl < / Dgl?,
km+2 Er

where Ey | is a suitable cell in 0B containing ¢ (Cy,1) and @_(Cy ). Since these two cells
have a face in common and ¢4 are biLipschitz homeomorphisms, we can estimate the
diameter of Ey 1 with C/k (see Figure 3). Therefore the estimates (3.41) and (3.42) proved in
Step 1 hold with (possibly) worse constants. O

©_

Figure 3: The maps ¢+ and the cells Ey ;.
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In this chapter we define a suitable Dirichlet energy (where suitable means capable to
approximate the area functional for multi-valued graphs) and prove the existence of Q-
valued functions minimizing it. In passing, we prove that the energy we define is the same
considered by Almgren, thus leading to the perfect correspondence between the metric
theory we developed and the extrinsic theory of Almgren.

4.1 DIRICHLET ENERGY

We start fixing the following notation: given a function f € W'2(Q, Aq), we set
— 2
IDfI? = > [05f| (4.1)
j=1

and, in the same way, on a general Riemannian manifold M, we choose an orthonormal
frame X1, ... X;n and set |Df|2 = > Iaxifl2 (this definition is independent of the choice of
coordinates and frames, as it can be seen from Proposition 4.2). The Dirichlet energy is hence
defined as follows.

Definition 4.1. For every f € W1?(U, Aqg), where U is an open subset of a Riemannian
manifold, the Dirichlet energy is given by Dir(f, U) fu |Df|.

It is not difficult to see that when f can be decomposed into finitely many regular
single-valued functions, i.e. f(x) = ) ; [fi(x)] for some differentiable functions f;, then

Dir(f, U) / IDf;|? = ZDII‘ i, ).

Almgren introduces a different definition of Dirichlet energy. More precisely, using our
notations, Almgren’s definition reads simply as

/ Z 1955 (x)[? dx, (4.2)

where a,-fi are the approximate partial derivatives of Definition 3.12, which exist almost
everywhere thanks to Corollary 3.13. Moreover, (4.2) makes sense because the integrand
does not depend upon the particular selection chosen for f. The two energies turn out to be
equivalent.

Proposition 4.2 (Equivalence of the definitions). For every f € W'2(Q, Aq) and every j =
1,...,m, we have

|ajﬂ2 = Z |ajm2 a.e. (4-3)
i
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Therefore the Dirichlet energy Dir(f, Q) of Definition 4.1 coincides with (4.2).

Proof. We recall the definition of [0;f| and |Df| given in (3.2) and (4.1): chosen a countable
dense set {Tij1en C Ag, we define

m
057 = sup|3;G(f, )| and IDF2:= Y [a;f]”.
leN _

By Proposition 3.11, we can consider a sequence g* = ZQ [gX] of Lipschitz functions
with the property that [{g* # f}| < 1/k. Note that |9;f| = Ia]gk| and ) ; |E)]g1 =3 . 19;fil?
almost everywhere on {g* = f}. Thus, it suffices to prove the proposition for each Lipschitz
function g*.

Therefore, we assume from now on that f is Lipschitz. Note next that on the set E; = {x €
Q : f(x) = Ty} both [05f] and ) ; \a,-fi|2 vanish a.e. Hence, it suffices to show (4.3) on any
point xo where f and all §(f, Ty) are differentiable and f(x¢) & {Ti}1eN.

Fix such a point, which, without loss of generality, we can assume to be the origin, xo = 0.
Let Tof be the first oder approximation of f at 0. Since §(-, Ty) is a Lipschitz function, we
have G(f(y), Ty) = S(Tof(y), Ty) + o(ly|). Therefore, g(y) := G(Tof(y), Ty) is differentiable at 0
and 3;9(0) = 3;5(f, T)(0).

We assume, w1thout loss of generality, that G(f(0 =) ;Ifi(0 — Pi|?, where Ty =
> i [Pi]. Next, we consider the function

)= \/Z [fi(0) + Df(0) -y — Pyf2.

Then, g < h. Since h(0) = g(0), we conclude that h — g has a minimum at 0. Recall that both
h and g are differentiable at 0 and h(0) = g(0). Thus, we conclude Vh(0) = Vg(0), which in
turn yields the identity

9; G(f, T1)(0) = 9;9(0) = d5h(0 Z ¢Z - Pi) - a;ﬁg). (4-4)

Using the Cauchy-Schwartz inequality and (4.4), we deduce that
2 2
19;1(0)% = sup [3;S(f, T(0)|~ < D [3;f:(0)]". (4.5)
lelN i
If the right hand side of (4.5) vanishes, then we clearly have equality. Otherwise, let Q; =

fi(0) + A 9;f;(0), where A is a small constant to be chosen later, and consider T = }_; [Q;].
Since {Ty} is a dense subset of Aq, for every ¢ > 0 we can find a point Ty = ) ; [Pi] such that

P; = fi(0) + A0;fi(0) +AR;, with [Ri| < € for every i.

Now we choose A and ¢ small enough to ensure that G(f( = ;Ifi(0 — P;|? (indeed,
recall that, if f;(0) = fi(0), then 9;f;(0) = 9;f(0)). So, we can repeat the Computation above
and deduce that

i) - 051;(0)

Z\/Zlf P|2 Z¢Z|af )+ RiZ

0; §(f, Ty)(0
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Hence,
24 €|0;fy
o610 Z ()
\/z |a fi(0)+¢)2
Letting ¢ — 0, we obtain the inequality [9;f[(0) > Zj (ajfi(O))z. O

Remark 4.3. Fix a point xo of approximate differentiability for f and consider its first order
approximation at xo, Tx, (x) = > [fi(xo) + Dfi(x0) - (x —Xo)]. Note that the integrand in (4.2)
coincides with ) ; |Dfi(x0)? (Where |L| denotes the Hilbert-Schmidt norm of the matrix L)
and it is independent of the orthonormal coordinate system chosen for R™. Thus, Proposition
4.2 (and its obvious counterpart when the domain is a Riemannian manifold) implies that
Dir(f, Q) is as well independent of this choice.

Remark 4.4. In the sequel, we will often use the following notation: given a Q-point T &
AQ(R™), T =3, [Pi], we set

T := S(T,Qo])* = }_IPif.

In the same fashion, for f : Q — Ag, we define the function [f| : Q — R by setting
Ifl(x) = [f(x)|. Then, Proposition 4.2 asserts that, since we understand Df and 9;f as maps
into, respectively, Aq (R™*™) and Ag (R™), this notation is consistent with the definitions
of [Df| and [0;f| given in (4.1) and (3.2).

Exploiting White’s observation in (iii) of Theorem 2.1, the Dirichlet energy of a function
f € W12 can be recovered, moreover, as the energy of the composition & o f.

Proposition 4.5. For every f € W1f2(Q,AQ), it holds |Df| = |D(&of)| a.e. In particular,
Dir(f, Q) = [, [D(&0f)[%.

Proof. As for Proposition 4.2, it is enough to show the proposition for a Lipschitz function f.
We prove that the functions |Df| and |D (E, o f)| coincide on each point of differentiability of f.

Let xo be such a point and let Ty f(x) = >_; [fi(xo) + Dfi(xo) - (x —x0)] be the first order
expansion of f in x¢. Since G(f(x), Txof( x)) = o(|x —x¢|) and locally Lip(&) =1, it is enough
to prove that [Df|(xg) = [D(& o Ty, f)(x0)l.

Using the fact that Df;i(xo) = Dfj(xo) when fi(xo) = fj(xo), it follows easily that, for
every x with [x — x| small enough,

G(T, Flx Z|Df x0) - (x —x0)I?.

Hence, since & is an isometry in a neighborhood of each point, for [x — x| small enough, we
infer that

|£(Teo f(x) — Z\Df x0) - (x —x0)I%. (4.6)

For x = te; +x¢ in (4.6), where the e;’s are the canonical basis in R™, taking the limit as t
goes to zero, we obtain that

05 (& 0 Txy T) (x0) Z\aﬂ Xo).
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Summing in j and using Proposition 4.2, we conclude that [Df|(xo) = [D(§ o Ty, f)(x0)|, which
concludes the proof. O

4.2 TRACE THEORY

The usual notion of trace at the boundary can be easily generalized to the setting of Q-valued
functions.

Definition 4.6 (Trace of Sobolev Q-functions). Let () C R™ be a Lipschitz bounded open
setand f € WP (Q, Ag). A function g belonging to LP (9}, Ag) is said to be the trace of f
at 0Q) (and we denote it by fl3 ) if, for every T € Ag, the trace of the real-valued Sobolev
function G(f, T) coincides with G(g, T).

It is straightforward to check that this notion of trace coincides with the restriction of f to
the boundary when f is a continuous function which extends continuously to Q. We show
here the existence of the trace of a Q-valued Sobolev function. Moreover, we prove that
the space of functions with given trace W;’p (Q, Aq) defined below is closed under weak
convergence. A suitable trace theory can be build in a much more general setting. Here,
instead, we prefer to take advantage of Proposition 3.21 to give a fairly short proof.

Definition 4.7 (Weak convergence). Let fy,f € W"p(Q,AQ). We say that fi converges
weakly to f for k — oo, (and we write fi. — f) in wtp (Q,Aq), if

i) [S(fx, )P — 0, for k — oo;
(ii) there exists a constant C such that [ [Dfy|P < C < oo for every k.
Proposition 4.8. Let f € W1'p(Q,AQ). Then, there exists an unique g € LP(0Q), Aq) such that
(@pof)oa=9og  forall ¢ €Lip(Aqg). (4.7)

We denote g by flaq. Moreover, flaq = £ 1 ((&0f)|an) and the following set is closed under weak
convergence:

WA (Q,Aq) = {f e W*(Q, Aq) : flaa = g}

Proof. Consider a sequence of Lipschitz functions fy with dy1» (fx,f) — 0 (whose existence
is ensured from Proposition 3.21). We claim that fi |3 is a Cauchy sequence in LP(0Q, Aq).
To see this, notice that, if {T;}iciy is a dense subset of Aq,

S(fx, 1) = sup|S(fi, Ti) — §(fi, T)I.

Moreover, recalling the classical estimate for the trace of a real-valued Sobolev functions,
Iflaalliy < C|Ifll\y10, we conclude that

I 0lEa a0 < € [ St AP + 3 [ i5i(h fur
j

< C/Qg(fk,fl)p+Z/glsl}p‘ajS(fk,Ti)—ajS(ﬁ,Tin
j i

< C dW]/P (fkl fl)p/ (48)



4.3 EXISTENCE OF DIR-MINIMIZING FUNCTIONS

(where we used the identity !E)j (supi gi) ] < sup; [959il, which holds true if there exists an
h € LP(Q) with |gil, [Dgi| < h € LP(Q)).

Let, therefore, g be the LP-limit of fx. For every ¢ € Lip(Ag), we clearly have that
(@ ofr)loa — @ogin LP. But, since @ o fx — @ of in WP (Q), the limit of (¢ o fx)|s0 is
exactly (¢ o f)[aq. This shows (4.7). We now come to the uniqueness. Assume that g and §
satisfy (4.7). Then, G(g, Ti) = G (g, T;) almost everywhere on Q) and for every i. This implies

5(9,9) =sup(S(g, Ti) =G(§, i) =0 ae.on Q,

ie.g=gae.

Note that fi,— f in the sense of Definition 4.7 if and only if ¢ o fyx— ¢ o f for any Lipschitz
function ¢. Therefore, the proof that the set W;’Z is closed is a direct consequence of the
corresponding fact for classical Sobolev spaces of real-valued functions.

Now we come to the last assertion of the proposition. Set h = £ 1((&0f)yn). Since
Eoh = (§of)|aq, then, for every Lipschitz real-valued map ® on Q, we have ®(&oh) =
O((&of)lan) = (DPo&of)lan. Using the Lipschitz maps Y (-) := G(&~1(-), T) defined on Q
for every T € Aqg, we conclude that fl[oo = h. O

4.3 EXISTENCE OF DIR-MINIMIZING FUNCTIONS

We can now formulate a Dirichlet problem for Q-valued functions as follows: a map
fe W1'2(Q,AQ) is said to be Dir-minimizing if

Dir(f, Q) < Dir(g,Q) forall g € W]'Z(Q,AQ) with flao = glso.
The main result of this chapter is the following theorem.

Theorem 4.9 (Existence for the Dirichlet Problem). Let g € W' 'Z(Q,AQ ). Then, there exists a
Dir-minimizing function f € w! 'Z(Q,AQ) such that flao = glsn.

Proof. Letg € W' 'Z(Q,AQ) be given. Thanks to Propositions 4.8 and 3.15, it suffices to verify
the sequential weak lower semicontinuity of the Dirichlet energy. To this aim, let f;, — fin
Wl'Z(Q,AQ ): we want to show that

Dir(f, Q) < liminf Dir(fy, Q). (4-9)

k—o00

Let {Ti}iew be a dense subset of Ag and recall that \ajflz = supl(aj S(f, Tl))z. Thus, if we set

2
RN = 9;5(f,T))%,
N le{r{}%m( ;G(f, )

we conclude that hj n T [05f 2. Next, for every N, denote by P the collections P = {El}lN:]
of N disjoint measurable subsets of (). Clearly, it holds

hin=sup > (35(f,T)) 1,

PEPE cp
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By the Monotone Convergence Theorem, we conclude
Dir(f, Q) Zsup/ N = Zsup sup Z / (ajg(f/Tl))z
j=1 N PePnEcP E

Fix now a partition {Fy, ..., FnJ such that, for a given ¢ > 0,

;/ﬁ(ajS(f,m)S sup ) /El(ajg(f,m)z—g.

PePn E.eP

Then, we can find compact sets {Ky, ..., Kn} with Ky € Fy and
S | (@5 = sup Y / (3;5(f, T))* — 2e.
1

Since the K{’s are disjoint compact sets, we can find disjoint open sets U; D K;. So, denote
by On the collections of N pairwise disjoint open sets of (3. We conclude

Dir(f, Q) Zsup/h]N —Zsup sup Z / (6j9(f,T1))2. (4.10)

=1 N PeOnycp

Note that, since §(fx, Ti) — G(f, Ty) strongly in L2(Q), then 0;G(fx, L) — 9;G(f, Ty) in L2(U)
for every open U C Q. Hence, for every N and every P € Oy, we have

> / (3;S(f, Ty)) < lim inf > / (3;S(f, T)) lirninf/ 10512
Uep u, — 400 Uep k—o0 Q
1

Taking the supremum in Oy and in N, and then summing in j, in view of (4.10), we achieve
(4.9). o

Remark 4.10. The lower semicontinuity of the Dirichlet energy is a special case of the more
general semicontinuity result in Part III Chapter 11.
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PRELIMINARY RESULTS

In this chapter we prove some preliminary results which will be useful for the regularity
theory. In particular, we are going to derive the variation formulas and a kind of maximum
principle for Dir-minimizing functions. The chapter is closed by a concentration-compactness
result which will be used in Part IV.

5.1 FIRST VARIATIONS

There are two natural types of variations that can be used to perturb Dir-minimizing Q-
valued functions. The first ones, which we call inner variations, are generated by right
compositions with diffeomorphisms of the domain. The second, which we call outer varia-
tions, correspond to “left compositions” as defined in Subsection 1.3.1. More precisely, let f
be a Dir-minimizing Q-valued map.

(IV) Given ¢ € C(Q,R™), for ¢ sufficiently small, x — @, (x) = x + e@(x]) is a diffeomor-
phism of O which leaves 9Q fixed. Therefore,

_d o D)2
= = S_O/Q|D(f ). (5.1)

(OV) Given 1]) € C°°(Q x R™,R™) such that supp () C Q' x R™ for some Q' CC Q, we set
= ; [filx) + eW(x, fi(x))] and derive

d
0= — DV, | .
de 5—0/Q| e (52)

The identities (5.1) and (5.2) lead to the following proposition.

Proposition 5.1 (First variations). For every ¢ € CX(Q,R™), we have

2/Z<Dfi:Dfi-Dcp> —/|Df|Z div = 0. (5.3)

For every \p € C®(Q x Ry, R™) such that
supp () € Q' x R™  for some Q' CC Q,
and

Dubl < C<oo and [P|+[Dxpl < C(1+ul), (5.4)

we have

/Z(Dfi( : Dy (x, fi( dx+/Z<Df : Dud(x, fi(x)) - Dfy(x)) dx = 0. (5.5)

53



54

PRELIMINARY RESULTS

Proof. We apply formula (1.12) of Proposition 3.14 to compute

D(fo®.)(x) = ) [Dfi(x+e(x))+eDfi(x+e@(x))]-Do(x)]. (5.6)

For ¢ sufficiently small, ®, is a diffeomorphism. We denote by q);] its inverse. Then,
inserting (5.6) in (5.3), changing variables in the integral (x = @ '(y)) and differentiating in
€, we get

d
0= —
de

[ 3 Dfifu) + eDfi - D@ (u))F det DO (v) dy
e=0 i

=2/Z<Dfi(y):Dfi(y)-Dcp(dey—/ZDfi(y)lzdivcp(y)dy.

This shows (5.3). As for (5.5), using (1.13) and then differentiating in ¢, the proof is straight-
forward (the hypotheses in (5.4) ensure the summability of the various integrands involved
in the computation). O

Testing (5.3) and (5.5) with suitable ¢ and 1, we get two key identities. In what follows, v
will always denote the outer unit normal on the boundary 9B of a given ball.

Proposition 5.2. Let x € Q. Then, for a.e. 0 < v < dist(x, 0Q)), we have

m-2) [ pte=r[ pEoarf 3P, (5)
Br(x) 9B+ (x) 3B+ (x) 3

IDf|? :/ O Ty, fi). (5.8)
/];r(x) aBr(X);< ' 1> >

Remark 5.3. The identities (5.7) and (5.8) are classical facts for R™-valued harmonic maps f,
which can be derived from the Laplace equation Af = 0.

Proof. Without loss of generality, we assume x = 0. We test (5.3) with a function ¢ of the form
@ (x) = ¢(]x]) x, where ¢ is a function in C*®([0,0)), with ¢ = 0 on [r, c0), v < dist(0,0Q),
and ¢ = 1 in a neighborhood of 0. Then,

Do(x) = ¢(x))Id +¢'(Ix)) x® % and div o(x) =md(x]) + x| " (x]), (5.9)

where Id denotes the m x m identity matrix. Note that

0 fi(x) = Dfy(x) - .
X

Then, inserting (5.9) into (5.3), we get

Q
0=2 [ IDFxIP i) ax-+2 [ 3 10 F (01 /(1) el
i=1

—m / DF)2 (1)) dx — / DF)R ' (x]) x| dx.
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By a standard approximation procedure, it is easy to see that we can test with

1 fort<r—1/n,

(5.10)
nir—t) forr—1/n<t<r. >

$(t) = dnlt) = {

With this choice we get

Q
0=2-m) [DfR pnli)ax—2 [ 3 iR dx

Br\Brfl/n i=1
.I

+ — / IDf(x)|? x| dx.
n BT\Br71/n

Let n T co. Then, the first integral converges towards (2—m) [5_ IDf?. As for the second
and third integral, for a.e. 1, they converge, respectively, to

Q
—r 0yfil* and r/ IDf|2.

/szTi; v R):
Thus, we conclude (5.7).

Similarly, test (5.5) with P (x, u) = ¢(|x]) u. Then,

Dyb(xw) = ¢(x)Id and Dyp(x,u) =¢’(x)ue % (5.11)

Inserting (5.11) into (5.5) and differentiating in ¢, we get

Q
0= [ IDFGIR G0l ax-+ [ 3 (filx), 00 Fs(x) () .
i=1

Therefore, choosing ¢ as in (5.10), we can argue as above and, for n T co, we conclude
(5.8). O

5.2 A MAXIMUM PRINCIPLE FOR Q-VALUED FUNCTIONS

The two propositions of this section play a key role in the proof of the Holder regularity for
Dir-minimizing Q-functions when the domain has dimension strictly larger than two. Before
stating them, we introduce two important functions on Ag (R™).

Definition 5.4 (Diameter and separation). Let T = ) ; [Pi] € Aqg. The diameter and the
separation of T are defined, respectively, as

d(T) :=max[P; —P;| and s(T):=min {|Pi —Pj|: Py #P;},

_L/]
with the convention that s(T) = o0 if T = Q [P].

The following proposition is an elementary extension of the usual maximum principle for
harmonic functions.
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Proposition 5.5 (Maximum Principle). Let f : QO — Aq be Dir-minimizing, T € Aq and
T < s(T)/4. Then, §(f(x), T) < r for H™ ge. x € 0Q implies that G(f, T) < r almost everywhere
on Q.

The next proposition allows to decompose Dir-minimizing functions and, hence, to argue
inductively on the number of values. Its proof is based on Proposition 5.5 and a simple
combinatorial lemma.

Proposition 5.6 (Decomposition for Dir-minimizers). There exists a positive constant o«(Q) > 0
with the following property. If f : O — Aq is Dir-minimizing and there exists T € Aq such that
S(f(x),T) < «(Q) d(T) for K™ T-a.e. x € dQ, then there exists a decomposition of f = [g] + [h]
into two simpler Dir-minimizing functions.

5.2.1 Proof of Proposition 5.5

The proposition follows from the next lemma.

Lemma 5.7. Let T and r be as in Proposition 5.5. Then, there exists a retraction 9 : Aqg — B (T)
such that

(1) S(8(S1),9(S2)) < G(S1,S2) if S1 ¢ B(T),

(ii) 9(S) = S for every S € B+(T).

We assume the lemma for the moment and argue by contradiction for Proposition 5.5. We
assume, therefore, the existence of a Dir-minimizing f with the following properties:

(a) f(x) € B(T) for a.e. x € 0Q);

(b) f(x) € B.(T) for every x € E C (), where E is a set of positive measure.

Therefore, there exist ¢ > 0 and a set E’ with positive measure such that f(x) & B ¢(T) for
every x € E’. By (i) of Lemma 5.7 and (a), ¥ o f has the same trace as f. Moreover, by (i) of
Lemma 5.7, [D(9 o f)| < |Df| a.e. and, by (i) and (b), [D(d o f)| < [Df| a.e. on E’. This implies
Dir(d o f, Q) < Dir(f, ), contradicting the minimizing property of f.

Proof of Lemma 5.7. First of all, we write

]
T=> k&[],
=1

where |Q; — Qi| > 4 for every i #j.
If §(S,T) < 2r, then S = Zj]:] [S;] with S5 € Ba.(k; [Q;]) C Ax,. If, in addition,
G(S,T) = r, then we set

k;
S;=> [Su].
1=1
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and we define

k;

(S) = ZZ [[ZTS_(-?’(;S)(SLJ —Qj)+ Qjﬂ :

ji=11=1

We then extend O to Ag by setting

8(5) = T if S¢ Byr(T),
S if SeB.(T).

It is immediate to verify that ¥ is continuous and has all the required properties. O

5.2.2  Proof of Proposition 5.6

The key idea is simple. If the separation of T were not too small, we could apply directly
Proposition 5.5. When the separation of T is small, we can find a point S which is not too far
from T and whose separation is sufficiently large. Roughly speaking, it suffices to “collapse”
the points of the support of T which are too close.

Lemma 5.8. For every 0 < e < 1, we set (e, Q) = (5/3)3Q. Then, for every T € Aq, there exists
a point S € Aq such that

B(e, Q) d(T)
S(S,T)

s(S) < +oo, (5.12)

<
< es(S). (5-13)

Assuming Lemma 5.8, we conclude the proof of Proposition 5.6. Set ¢ = 1/8 and x(Q) =
eB(e,Q) = 24-3° /8. From Lemma 5.8, we deduce the existence of an S satisfying (5.12) and
(5.13). Then, there exists 6 > 0 such that, for almost every x € 9Q),

S(£(x),S) < S(F(x), T) + S(T,5) < a(Q) d(T) + 5(83) _ s s(TSJ s

So, we may apply Proposition 5.5 and infer that G(f(x),S) < 5(45) — o for almost every x in Q.

The decomposition of f in simpler Dir-minimizing functions is now a simple consequence of
the definitions. More precisely, if S = Z)] 1K [[Qj]] € Aq, with the Qj’s all different, then
f(x) = Z]I 1 [[f]- (x)]] , where the f;’s are Dir-minimizing k;-valued functions with values in
the balls B$,5 (k]’ [[QJ]] )

Proof of Lemma 5.8. For Q < 2, we have d(T) < s(T) and it suffices to choose S = T. We now
prove the general case by induction. Let Q > 3 and assume the lemma holds for Q — 1. Let
T =) ;[Pi] € Ag. Two cases can occur:

(a) either s(T) = (&/3)3% d(T);

(b) or s(T) < (¢/3)3% d(T).
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In case (a), since the separation of T is sufficiently large, the point T itself, i.e. S =T, fulfills
(5.13) and (5.12). In the other case, since the points P; are not all equal (s(T) < 00), we can
take P7 and P; realizing the separation of T, i.e.

£\ 3%

Pr—Pal=s(M < (5) am. (5:14)

Moreover, since Q > 3, we may also assume that, suppressing P, we do not reduce the
diameter, i.e. that

Q
d(T)=d(T), where T=) [P]. (5.15)
i=2

For T, we are now in the position to use the inductive hypothesis (with ¢/3 in place of ).
Hence, there exists S = Z]Q: _1] [[Qj]] such that

£ 3Q71 - - ~ ~ & ~
(5)° a(M<s(S and §(5T)<3s(3). (5.16)
Without loss of generality, we can assume that
Q1 — P2l < 5(5, 7). (5.17)

Therefore, S = [Qq] +[S] € Aq satisfies (5.12) and (5.13). Indeed, since s(S) = s(5), we infer

3Q-1

(8>3Q d(T) (25) £ (E) a (™) (5%6)

3 3 (5 s(S) =< s(S), (5.18)

S(S,T)<S(S,T)+1Q1 —P1I < G(5,T) +1Q1 — P2+ [P, — P4

(5.14),(5.17) . 3Q (5.16), (5.18) 2
< 2581+ (3) < S8+ 3

3 s(S) = ¢5s(S).

5.3 CONCENTRATION-COMPACTNESS

The aim of this section is to show the following result.

Proposition 5.9. Let (g1)1eN be a sequence in W1'2(Q,AQ) with sup, Dir(gy, Q) < +o0. Then,
there are maps (; € W]'Z(Q_,AQ].), with Q = Z]-I:] Qj and ] > 1, and points y} e R™, with
Iy} —yi| — +oo for i # j, such that, up to a subsequence (note relabeled), the Q-valued maps

w1 = Zjlzl [[Tyjl o (] satisfy
IETOOHS(gl/wl)HLZ(Q] =0. (519)

Moreover, if Q' is an open subset of Q) and Jy a sequence of Borel sets with [Ji| — O, then

lim inf </ \Dgl\z —/ |Dw1|2> >0, (5.20)
1 QN\Jy loX;

and liminf, [ (IDgi|2 — [Dwy|?) = 0 holds, if and only if iminf, [ (|D 1|—\le\)2:o.
g Y g
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Proof. First of all, by Proposition 3.16, we can find §; € Aq(IR™) such that

/9(91,91)2 < C/|D91|2 <C,

where c and C are constants independent of 1. We prove (5.19) by induction on Q and
distinguish two cases.

Case 1: liminf; d(gy) < oo. After passing to a subsequence, we can then find y; € R™ such
that the functions Ty, o g1 are equi-bounded in the W'-2-distance. Hence, by Proposition
3.15, there exists a Q-valued ¢ such that T, o g1 converges to ¢ in 2. Note that, when Q =1,
we are always in this case.

Case 2: limy d(gy) = +o0. By Lemma 5.8 there are points S; € Aq such that
s(S1) > B1sgd(g1) and G(Sy, g1) < s(S1)/8.

Set 11 = s(S1)/4 and let 8; be the retraction into B, (S{) provided by Lemma 5.7. Thus,
S| = 2{21 ki [Pt], with min; ; [Pf — P{\ = s(Sy). In principle, the numbers I and k; depend
on 1 but, up to a subsequence, we can assume that they do not depend on L.

Clearly, the functions hy = 61 o gy satisfy Dir(hy, Q) < Dir(gy, Q) and can be decomposed
as the superposition of ki-valued functions z{, with k; < Q,

]
=Y [2], with (S} [P{])lleo < 0o
i=1

The existence of wy such that ||G(hy, wy)||{2 — 0 follows, hence, by induction and, with-
out loss of generality, we also can assume that limy [y} —y}l = +oo for i # j. Showing
IS(hy, g1)|l 2 — O, therefore, completes the proof of (5.19).

To this aim, recall first that |{gy # hi}| ={G (g1, S1) > i} €{SG (g1, G1) > m1/2}. Thus,
C C
(o1 £h) < 1S (g1, 31) > /2 < 2/ L 5l0u00) <
T H{S(gua)>5} (d(g1))

Since d(gi) — +o0, we conclude [{g1 # hi}| — 0. Next, since 81(g1) = g1 and Lip(01) = 1, we
have G(hy, g1) < (g1, g1). Therefore, by Sobolev embedding, for m > 3 we infer

S(hy, g1)? :/ S(hy, g1)* < 2/ S(hy, g1)? +2/ S(g1, g1)?
B> {g1#h) {hi#gi} {hi#gi}
_2
<4/ S(a1, 002 < 19 (g1, 8012+ b # gu)f' 7
{hi#gt}

+2

C mo2
S —— </ D912> .
d(g)m2 \/B,

Recalling again that d(g:) diverges, this shows ||G(hy, g1)||{2 — 0. The obvious modification
when m = 2 is left to the reader.

Now we come to the proof of (5.20). Arguing as in case 2, we find hy = }_; [z}] such that
IS(h, gu)|l 2 — O, ||9(’r7yil oz}, ii)|lr2 — 0 and |Dhy| < [Dgyl. Therefore, we conclude that

D(EO’LH%OZDA*D(EOQ)/ (5.21)
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and hence

Dir(¢y, Q) =/ D(Eo )P <liminf [ [D(Eot.

1oz4)? = liminf Dzl
Loz 1
l O\ ' l

O\
(5.22)

Y

Summing over i, we obtain (5.20). As for the final claim of the lemma, let w = ) ; [¢i] and
assume Dir(gy, Q) — Dir(w, Q). Set J1 :={g1 # hi} and recall that |J;] — 0. Thus, by (5.20),
we conclude that fh IDgil> — 0 and hence, that (|[Dgi| — |Dhy|) — 0 strongly in L?. On the
other hand, we also infer

limsupZ/|D(£oT_y_loz{)|2zlimsup/thlz < / Dwl|?.
L 1 ' 1 Q

In conjunction with (5.22), this estimate leads to lim; [ [D(&o T 10 z{)\z = [ID(§0 &),
which, in turn, by (5.21), implies D(& o T 10 z{) — D(& o ¢) strongly in L2. Therefore,
IDh| — |Dw] in L2, thus concluding the proof. O



HOLDER REGULARITY

Here we prove the first main regularity result of Almgren’s Dir-minimizing Q-valued
functions theory, the Holder regularity.

Theorem 6.1 (Holder regularity). There exists a positive constant x = «(m, Q) > 0 with
the following property. If f € W'2(Q, Aq) is Dir-minimizing, then f € Co*(Q’) for every
Q' cc Q ¢ R™. For two-dimensional domains, we have the explicit constant x(2,Q) =1/Q.

After rescaling and translation, it is clear that all we need to prove is the following theorem,
which clearly implies Theorem 6.1.

Theorem 6.2. There exist constants o« = o(m, Q) €]0,1[ (with o = % when m = 2) and

C = C(m,n, Q, d) with the following property. If f : By — Aq is Dir-minimizing, then

[f]co,a(B—é) = sup < CDir(f,Q)% forevery 0 < & < 1.

6.1 PROOF OF THE HOLDER REGULARITY

The proof of Theorem 6.2 consists of two parts: the first is stated in the following proposition
which gives the crucial estimate; the second is a standard application of the Campanato—
Morrey estimates in Proposition 3.18.

Proposition 6.3 (Basic estimate). Let f € W'2(B,, Aq) be Dir-minimizing and suppose that

g = flos, € W'2(3B;, Aq).
Then, we have that

Dir(f,B;) < C(m)rDir(g, 0B;), (6.1)
where C(2) = Q and C(m) < (m—2)"".

The minimizing property of f enters heavily in the proof of this last proposition, where the
estimate is achieved by exhibiting a suitable competitor. This is easier in dimension 2 because
we can use Proposition 3.9 for g. In higher dimension the argument is more complicated
and relies on Proposition 5.6 to argue by induction on Q. Now, assuming Proposition 6.3,
we proceed with the proof of Theorem 6.2.

Proof of Theorem 6.2. Set

2Q7! form =2,
y(m) = .
Clm)™ —m+2 form>2,
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where C(m) is the constant in (6.1). We want to prove that
/ IDf|? < rm_ZH’/B IDf|? forevery 0 <r < 1. (6.2)
v 1
Define h(r) = |, B, IDf|2. Note that h is absolutely continuous and that
h(r) = /aB |Df]? > Dir(f,dB,) forae.r, (6.3)
where, according to Definitions 3.1 and 4.1, Dir(f, 9B;) is given by

Dir(f, 3B,) — / 942,
0B,

with [9.f]2 = |Df]?2 — 29:1 |0, fi|2. Here 9. and 9+ denote, respectively, the tangential and
the normal derivatives. We remark further that (6.3) can be improved for m = 2. Indeed, in
this case the outer variation formula (5.7), gives an equipartition of the Dirichlet energy in
the radial and tangential parts, yielding

W(r) = /a Ipf2 - Dulf.%8r) (6.4)

Therefore, (6.3) (resp. (6.4) when m = 2) and (6.1) imply
(m—2+7v)h(r) <rh'(r). (6.5)

Integrating this differential inequality, we obtain (6.2):

D> =h(r) <T™ #TYR(1) =™ 2Y [ DA%,
B, B

Now we can use the Campanato-Morrey estimates for Q-valued functions given in

Proposition 3.18 in order to conclude the Holder continuity of f with exponent 6 = ¥. [

6.2 BASIC ESTIMATE: THE PLANAR CASE

It is enough to prove (6.1) for r = 1, because the general case follows from an easy scaling
argument. We first prove the following simple lemma.

Remark 6.4. In this subsection we introduce a complex notation which will be also useful
later. We identify the plane R? with C and therefore we regard the unit disk as

D={zeC:lzl<ll={re®:0<r<1,0eR]}
and the unit circle as

S'=0D={zeC:|z=1={e® : 0 € R}.



6.2 BASIC ESTIMATE: THE PLANAR CASE

Lemma 6.5. Let { € W'2(ID,R™) and consider the Q-valued function f defined by

= > [clz]

zQ=x

Then, the function f belongs to w! 'Z(JD,AQ) and
Dir(f, D) = / D¢, (6.6)
D
Moreover, if {|g1 € W'2(ST,R™), then flg1 € W'2(ST, Aq) and

Dir(flg1,S") / 007 (6.7)

Proof. Define the following subsets of the unit disk,
Dj={re®:0<r<1,(j-1)21/Q<0<j2n/Q} and C={re®:0<r<1,0+£0},

and let @; : € — D; be determinations of the Q"-root, i.e.
@; (re®) =10 etlGti-1g),

It is easily recognized that fle = }_; [Co @;]. So, by the invariance of the Dirichlet energy
under conformal mappings, one deduces that f € W]'Z(G,AQ) and

Dir(f, C) ZDII‘ (o, C :/]DID(IlZ. (6.8)

From the above argument and from (6.8), it is straightforward to infer that f belongs to
W!2(ID,Aq) and (6.6) holds. Finally, (6.7) is a simple computation left to the reader. O

We now prove Proposition 6.3. Let g = Z]] _1 [g5] be a decomposition into irreducible
kj-functions as in Proposition 3.9. Consider, moreover, the W12 functions Yj - Sl 5 R™
“unrolling” the g; as in Proposition 3.9 (ii):

Z [h’)

zlx

We take the harmonic extension C1 of yi in ID, and consider the k;-valued functions f;
obtained “rolling” back the ¢;: fi(x) = Y i« _, [C1(z)]. The Q-function f = 2{21 [fi] is an
admissible competitor for f, since f|51 = flg1. By a simple computation on planar harmonic
functions, it is easy to see that

[ mar< [ o, (69)

Hence, from (6.6), (6.7) and (6.9), we easily conclude (6.1):

] J
Dir(f,ID) < Dir (f,ID) = ZDir(fl,lD) (©6) Z/ DR

(6 9) 6.
Z mT“”ZMMm,)QM@).

1=1
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6.3 BASIC ESTIMATE: CASE m >3

To understand the strategy of the proof, fix a Dir-minimizing f and consider the “radial”
competitor h(x) = f(x/|x]). An easy computation shows the inequality Dir(h,B;) < (m —
2)~'Dir(f,9B1). In order to find a better competitor, set f(x) = 5 [@(Ix])fi(x/Ix|)]. With a
slight abuse of notation, we will denote this function by ¢(|x|)f(x/|x|). We consider moreover
functions ¢ which are 1 for t = 1 and smaller than 1 for t < 1. These competitors are,
however, good only if fl3g, is not too far from Q [0].

Of course, we can use competitors of the form

Z [{V‘F o) (fi <|§|> v>ﬂ , (6.10)

1
which are still suitable if, roughly speaking,
(C) on 9B1, f(x) is not too far from Q [v], i.e. from a point of multiplicity Q.

A rough strategy of the proof could then be the following. We approximate f[3g, with a
f=[f1]+...+[f;] decomposed into simpler W2 functions f; each of which satisfies (C).
We interpolate on a corona By \ Bj_s between f and f, and we then use the competitors of
the form (6.10) to extend f to By_;. In fact, we shall use a variant of this idea, arguing by
induction on Q.

Without loss of generality, we assume that
Dir(g,0B) = 1. (6.11)

Moreover, we recall the notation |T| and [f| introduced in Remark 1.11 and fix the following
one for the translations:

if ve R"™, then 7, (T) := Z [Ti —V], forevery T = Z [Ti] € Ag.
i i

Step 1. Radial competitors. Let g = ) ; [Pi] € Aq be a mean for g, so that the Poincaré
inequality in Proposition 3.16 holds, and assume that the diameter of g (see Definition 5.4)
is smaller than a constant M > 0,

d(g) < M. (6.12)

LetP=Q ! Z.lQ:1 P; be the center of mass of g and consider f =tpofand h=7pog. It
is clear that h = ﬂaB] and that h = Tp(g) is a mean for h. Moreover, by (6.12),

R* =Y [Pi—P? < QM2
i
So, using the Poincaré inequality, we get

2 —2 =2 ) 5 (6.11)
h* <2 §(hh)"+2 [h|” < CDir(g,9B1) +CM?* < Cp, (6.13)
6B1 6131 aB]
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where Cy is a constant depending on M.
We consider the Q-function f(x) := ¢(|x|) h (i), where ¢ is a W'2([0, 1]) function with

[x
@(1) = 1. From (6.13) and the chain-rule in Proposition 1.12, one can infer the following

estimate:

1 1
/ ‘Dﬂz = (/ |h|2> / @' (r)?rmTdr+ (/ Dh|2> / e(r)2rm3dr
BT aB] 0 681 0

1
< / ((p(r)zrm_3 + CM(p’(r)zrm_1)dr =:1(o).
0

Since T_p (fA) is a suitable competitor for f, one deduces that

Dir(f,By) < inf  I(¢).
eewl.2([0,1])
e(1)=1

We notice that I(1) = —1, as pointed out at the beginning of the section. On the other
hand, ¢ = 1 cannot be a minimum for I because it does not satisfy the corresponding
Euler-Lagrange equation. So, there exists a constant yy1 > 0 such that

1

Dir(f,B7) < inf 1 =— 2 . 6.1
(f,B1) onf (@) 5 2¥m (6.14)

e(1)=1

In passing, we note that, when Q =1, d(T) = 0 and hence this argument proves the first
induction step of the proposition (which, however, can be proved in several other ways).

Step 2. Splitting procedure: the inductive step. Let Q be fixed and assume that the proposition
holds for every Q* < Q. Assume, moreover, that the diameter of g is bigger than a constant
M > 0, which will be chosen later:

d(g) >M

Under these hypotheses, we want to construct a suitable competitor for f. As pointed out
at the beginning of the proof, the strategy is to decompose f in suitable pieces in order to
apply the inductive hypothesis. To this aim:

(a) let S = Z}:] k; [Q;] € Aq be given by Lemma 5.8 applied to ¢ = 1‘—6 and T=T7,ie S

such that
BM < Bd(g) <s(S) ZI?;?\Qi—QjI, (6.15)
_ s(S)
5(S,9) < 6’ (6.16)

where 3 = 3(1/16, Q) is the constant of Lemma 5.8;

(b) letd: Ag — Bg(s),s(S) be given by Lemma 5.7 applied to T = S and v = ~g-.
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We define h € W1'2(aB1,n) by h((1—m)x) = 9 (g(x)), where n > 0 is a parameter to be
fixed later, and take h a Dir-minimizing Q-function on B;_,, with trace h. Then, we consider
the following competitor,

F h on By,
interpolation between h and g as in Lemma 3.19,

and we pass to estimate its Dirichlet energy.

By Proposition 5.6, since h has values in Bg(s)/s8(S), h can be decomposed into two Dir-
minimizing K and L-valued functions, with K,L < Q. So, by inductive hypothesis, there
exists a positive constant ¢ such that

g 1 . 1 .
Dir (h,B1_y) < <m_2—c) (1—m) Dir(h, 9B1_y) < <m_2—c> Dir(g,0B1), (6.17)

where the last inequality follows from Lip(9) = 1.
Therefore, combining (6.17) with Lemma 3.19, we can estimate

- 1 C
Dir (f,B;) < (m—z —+ Cn> Dir(g, 9B1) + =~ /6131 9(9,8(9))2, (6.18)

with C = C(n, m, Q). Note that
§(g,9(g(x))) < §G(g(x),g) forevery x € 0By,

because, by (6.16), 3(g) = g. Hence, if we define

Ei={x € 9By :g(x) #8(g(x))} = {x € 3B1 : 9(x) & By(s) /(5 |,

the last term in (6.18) can be estimated as follows:

/613 9(9’8(9))2 :[59(9,19(9))2 <2/E [9(916)2+9(§,8(g))2]

_\2 N2 B
<4/ES(9,9) dX<4H9(g,g) | La E|(a=1)/a
< CDir(g, dB;) [E[l9=1)/d = c[g|la—1)/a, (6.19)

where the exponent q can be chosen to be (m —1)/(m —3) if m > 3, otherwise any q < oo if
m = 3.
We are left only with the estimate of |E|. Note that, for every x € E,

(6.16)
S(0(x),9) > S(9(x),5) —5(g,5) > B _sB) _ s3]

8§ 16 16
So, we deduce that
_ s(S) C _, 615 C
< > — < < — . .
|E|\H9(g,g)/ 1 H\S(S)z  Sla92 "< {Dir(g 28 (6.20)
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Hence, collecting the bounds (6.17), (6.19) and (6.20), we conclude that

~ 1 C
i < | ——— .
Dir(f,By) < <m—2 C+Cn+nM“’> , (6.21)

where C = C(n,m,Q) and v =v(m).

Step 3. Conclusion. We are now ready to conclude. First of all, note that ¢ is a fixed positive
constant given by the inductive assumption that the proposition holds for Q* < Q. We then
choose 11 so that Cn < (/2 and M so large that C/(mM") < (/4, where C is the constant in
(6.21). Therefore, the constants M, ypm and 1 depend only on n,m and Q. With this choice,
Step 2 shows that

» (6.21) 1
Dir(f,By) < Dir(f,B;) < <m_2 — i) Dir(g,9B7), if d(g) > M;

whereas Step 1 implies

(6.14) 1
Dir(f,B1) <" (15~ 2y ) Dirlg, 081, if dlg) < M.

This concludes the proof.
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ESTIMATE OF THE SINGULAR SET

In this chapter we prove second main Almgren’s regularity result, the estimate on the
dimension of the singular set of a Dir-minimizing function. In order to state the theorem,
we introduce the following definition of singular set.

Definition 7.1 (Regular and singular points). A Q-valued function f is regular at a point
x € Q if there exists a neighborhood B of x and Q analytic functions f; : B — R™ such that

fly) = Z [fi(y)] for almosteveryy € B

and either fi(x) # f;(x) for every x € B or f; = f;. The singular set Z¢ of f is the complement
of the set of regular points.

The result is the following.

Theorem 7.2 (Estimate of the singular set). Let f be a Dir-minimizing function. Then, the singular
set L¢ of f is relatively closed in Q). Moreover, if m = 2, then L¢ is at most countable, and if m > 3,
then the Hausdorff dimension of X¢ is at most m — 2.

To prove this regularity theorem, Almgren developed one of his main idea of the paper,
the so called Frequency Function, which turned out to be the right quantity to look in order
to perform a blow-up analysis of Dir-minimizing functions. In the first section, we prove
Almgren’s celebrated estimate on the frequency function. Then, following Almgren, we show
the convergence of the blow-up of Dir-minimizing function and use a modified Federer’s
reduction argument to prove Theorem 7.2.

7.1 FREQUENCY FUNCTION

The following is the quantity considered by Almgren.

Definition 7.3 (The frequency function). Let f be a Dir-minimizing function, x € Q) and
0 < r < dist(x, 0Q)). We define the functions

o TDx,f(T)

Dys(r) = / DI, Hys(r) = / 2 and Tog(r) = 22xr), (7.1)
B, (x) 3B, Hy ¢ (7)

I ¢ is called the frequency function.

When x and f are clear from the context, we will often use the shorthand notation D(r),
H(r) and I(r).

Remark 7.4. Note that, by Theorem 6.2, |f 2 is a continuous function. Therefore, Hy (1) is a
well-defined quantity for every r. Moreover, if H, ¢(r) = 0, then, by minimality, f|g (x) = 0.
So, except for this case, I (1) is always well defined.
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The principal result about the frequency function is the following monotonicity estimate.

Theorem 7.5. Let f be Dir-minimizing and x € Q. Either there exists p such that flg () = 0 or
I ¢(7) is an absolutely continuous nondecreasing positive function on 10, dist(x, 0Q)[.

A simple corollary of Theorem 7.5 is the existence of the limit
Ix,f(o) = lim Ix,f(r)/
r—0
when the frequency function is defined for every r.

Proof. We assume, without loss of generality, that x = 0. D is an absolutely continuous
function and

D'(r) = /a ] IDf|> forae.r. (7.2)

As for H(r), note that |f| is the composition of f with a Lipschitz function, and therefore
belongs to W2 It follows that [f|> € W1 and hence that H € W1

In order to compute H’, note that the distributional derivative of [f|2 coincides with the
approximate differential a.e. Therefore, Proposition 3.14 justifies (for a.e. r) the following
computation:

d B B 10
H“T)_L/ () Pdy = (m—1)rm™2 thﬂzdy+t/ 1 L ey dy
dr JaB, 9B, 9B, or

m—1/ 2
= |f] —1—2/ 0+ T, f1).
T 0B~ aBr;< h 1>

Using (5.7), we then conclude

H/r) = ™ () +2D(r). 73

Note, in passing, that, since H and D are continuous, H € C' and (7.3) holds pointwise.
If H(r) = 0 for some v, then, as already remarked, fl[g, = 0. In the opposite case, we
conclude that I € CNW,:'. To show that I is nondecreasing, it suffices to compute its

loc’
derivative a.e. and prove that it is nonnegative. Using (7.2) and (7.3), we infer that

/D) rD(r) H'(r)
PO =am* wm P e
~ D(r) , rD'(v) D(r) D(r)?
“Hm T HE ™ VHE T THE?
B (2—m)D(r)+rD’(r)_2TD(r)2 for ae. (7.4)
N H(r) H(r)2 er 74

Recalling (5.7) and (5.8) and using the Cauchy-Schwartz inequality, from (7.4) we conclude
that, for almost every r,

2
.
I, R TS avfz : f 2 a’vfi/ fi = O- .
") H(r)2 {/aBT(X) | /GBr(X)| | </OBT(X) ;< >> } g 75)

O]



7.1 FREQUENCY FUNCTION

Now we pass to prove two corollaries of Theorem 7.5.

Corollary 7.6. Let f be Dir-minimizing in B,. Then, 1o ¢(v) = « if and only if f is x-homogeneous,
ie.

e [ YUP
fy) = Iy f(|y>. (7:6)

Remark 7.7. In (7.6), with a slight abuse of notation, we use the following convention (already
adopted in Subsection 6.3). If {3 is a scalar function and f = } ; [fi] a Q-valued function, we
denote by f the function ) ; [f fi].

Proof. Let f be a Dir-minimizing Q-valued function. Then, I(r) = « if and only if equality
occurs in (7.5) for almost every v, i.e. if and only if there exist constants A, such that

fi(u) = Ay 04 fi(y), for almost every r and a.e. y with [y| = . (7.7)

Recalling (5.8) and using (7.7), we infer that, for such r,

rD(r) T fop, LildvFi i) ) ™A fop, i ffil®

oa=1I(r)= = = =TAr.
H(r) Jop, i Ifil? Jow, 2 Ifil?
So, summarizing, I(r) = « if and only if
fily) = ‘%' 0~fi(y) for almost every y. (7.8)

Let us assume that (7.6) holds. Then, (7.8) is clearly satisfied and, hence, I(r) = . On the
other hand, assuming that the frequency is constant, we now prove (7.6). To this aim, let
oy =1{ry : 0 < r < p} be the radius passing through y € 9B;. Note that, for almost every
Y, flo, € W12; so, for those y, recalling the W2 gelection in Proposition 3.6, we can write
flo, = P [[fi\gy]] , where fi|s, : [0, p] — R™ are W2 functions. By (7.8), we infer that fi|s,
solves the ordinary differential equation

o«
(filo, ) (v) = = filg, (r), fora.e. .
T

Hence, for a.e. y € 9By and for every v € (0, p], fils, (1) = 1% f (y), thus concluding (7.6). [

Corollary 7.8. Let f be Dir-minimizing in B,. Let 0 < 1 < t < p and suppose that 1o ¢(r) = I(7)
is defined for every v (i.e. H(r) # O for every v). Then, the following estimates hold:

(1) for almost every r < s < t,

d H 21
dtle=s [m (Tm@ )] - T(r) (7.9)
and
2I(t) H(t) H(r) 21(r) H(t)
({) tm—1 < Tmi] = ({) tm—l; (7.10)
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(i) i I(t) > O, then

t

I(v) /r\21(t) D(t) D(r) T\ 21(r) D(t)
1(t) (%) tm—2 s rm—2 < ( ) tm—2" (7.11)

Proof. The proof is a straightforward consequence of equation (7.3). Indeed, (7.3) implies,
for almost every s,

d (Hm > _H/(s) (m—T1)H(s) g 2D(s)

dt

Tm—] Sm—] gm Sm—] 4

which, in turn, gives (7.9). Integrating (7.9) and using the monotonicity of I, one obtains

. . . . T D(r)
(7.10). Finally, (7.11) follows from (7.10), using the identity I(r) = 77 R O

7.2 BLOW-UP OF DIR-MINIMIZING Q-VALUED FUNCTIONS

Let f be a Q-function and assume f(y) = Q [0] and Dir(f, B,(y)) > 0 for every p. We define
the blow-ups of f at y in the following way,

m—2

p z flpx+y)

Dir(f, B, (y)) (7.12)

The main result of this section is the convergence of blow-ups of Dir-minimizing functions
to homogeneous Dir-minimizing functions, which we call tangent functions.
To simplify the notation, we will not display the subscript y in f , when y is the origin.

fy,pl(x) =

Theorem 7.9. Let f € W'2(B4, Aq) be Dir-minimizing. Assume £(0) = Q [0] and Dir(f, B,) > 0
for every p < 1. Then, for any sequence {f,, } with py | 0, a subsequence, not relabeled, converges
locally uniformly to a function g : R™ — Aq (R™) with the following properties:

(a) Dir(g,B1) = 1and glq is Dir-minimizing for any bounded Q;

(b) g(x) =Ix|*g <l>, where & = 1o ¢(0) > 0 is the frequency of f at 0.

[x

Theorem 7.9 is a direct consequence of the estimate on the frequency function and of the
following convergence result for Dir-minimizing functions.

Proposition 7.10. Let fy, € W'2(Q, Aq) be Dir-minimizing Q-functions weakly converging to
f. Then, for every open Q)" CC Q, f|q: is Dir-minimizing and it holds moreover that Dir(f, Q') =
limk Dil‘(fk, Q/)

Remark 7.11. In fact, a suitable modification of our proof shows that the property of being

Dir-minimizing holds on Q0. However, we never need this stronger property in the sequel.
Assuming Proposition 7.10, we prove Theorem 7.9.

Proof of Theorem 7.9. We consider any ball By of radius N centered at 0. It follows from

estimate (7.11) that Dir(f,, Bn) is uniformly bounded in p. Hence, the functions f,, are all
Dir-minimizing and Theorem 6.2 implies that the f,, s are locally equi-Holder continuous.
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Since f,(0) = Q[0], the f,’s are also locally uniformly bounded and the Ascoli-Arzela
theorem yields a subsequence (not relabeled) converging uniformly on compact subsets
of R™ to a continuous Q-valued function g. This implies easily the weak convergence (as
defined in Definition 4.7), so we can apply Proposition 7.10 and conclude (a) (note that
Dir(fy, B1) =1 for every p). Observe next that, for every r > 0,

_ 1Dir(g, By) — lim r Dir(f,, By) _ lim prDir(f, By )

log(r) = —F/"7—5— e
° Jos, l9? 0—0  [op, [fol? p—0 faBpT|f|z

So, (b) follows from Corollary 7.6, once we have shown that Ip¢(0) > 0. Assume, by
contradiction, that Iy ¢(0) = 0. Then, by what shown so far, the blowups f, converge to
a continuous 0-homogeneous function g, with g(0) = Q [0]. This implies that g = Q [0],
against conclusion (a), namely Dir(g, B7) = 1. O

=To,¢(0). (7.13)

Proof of Proposition 7.10. We consider the case of ) = Bj: the general case is a routine
modification of the arguments (and, besides, we never need it in the sequel). Since the
fx’s are Dir-minimizing and, hence, locally Holder equi-continuous, and since the fy’s
converge strongly in L2 to f, they actually converge to f uniformly on compact sets. Set
D, = liminfy Dir(fy, B,) and assume by contradiction that f|g, is not Dir-minimizing or
Dir(f, B;) < D, for some r < 1. Under this assumption, we can find ro > 0 such that, for
every r > 1o, there exist a g € W]'Z(BT,AQ) with

glos, = flop, and vy, := D, —Dir(g,B;) > 0. (7.14)

Fatou’s Lemma implies that lim infy Dir(fy, 0B ) is finite for almost every T,
1 1
liminf Dir(fy, 0B;) dr < liminf | Dir(fy,0B;)dr < C < +co.

Passing, if necessary, to a subsequence, we can fix a radius r > o such that

Dir(f,0B;) < klim Dir(fy, 0B;) < M < 4o0. (7.15)

—+00

We now show that (7.14) contradicts the minimality of fx in B, for large n. Let, indeed,
0 < & < 1/2 to be fixed later and consider the functions fx on B, defined by

. g (%) for x € By_s,

fr(x) =
hk(X) for x € B, \ B,_s,

where the hy’s are the interpolations provided by Lemma 3.19 between fi, € W'2(3B,, Aq)
and g (:j‘é) € W1'2(Br_5,AQ). We claim that, for large k, the functions fx have smaller
Dirichlet energy than fy, thus contrasting the minimizing property of fy, and concluding

the proof. Indeed, recalling the estimate in Lemma 3.19, we have

Dir fi, B) <Dir(f, B—s) + C [Dir(f, 0B,) + Dir(fi,, 0B,)] + - / §(fi )2
0B,
C

< Dir(g,By) + C5 Dir(g, 3B) + C 5 Dir(fy, 0B,) + = / S(r, )%
0B,
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Choose now 4 such that 4 Cd (M + 1) < v+, where M and vy, are the constants in (7.15) and
(7.14). Using the uniform convergence of fy to f, we conclude, for k large enough,

s (7.14), (7.15) C 2
Dir(fy,By) < DT—yT+C5M+C5(M+1)+g G(fy, )",
0B,

vy  C 2 Yr
<D, 1Ty = fir, f)2 <D, — .
T 2+5 aBrg(k ) < Uy 4

This gives the contradiction. O

7.3 ESTIMATE OF THE SINGULAR SET

In this section we estimate the Hausdorff dimension of the singular set of Dir-minimizing Q-
valued functions as in Theorem 7.2. The main point of the proof is contained in Proposition
7.12, estimating the size of the set of singular points with multiplicity Q. Theorem 7.2 follows
then by an easy induction argument on Q.

Proposition 7.12. Let Q be connected and f € W'2(Q, Aq(R™)) be Dir-minimizing. Then, either
f = Q [] with ¢ : Q — R™ harmonic in Q, or the set

Yor={xeQ:f(x)=Q[u], yeR"}

(which is relatively closed in Q) has Hausdorff dimension at most m — 2 and it is locally finite for
m=2

We will make a frequent use of the function o : O — IN given by the formula
o(x) = card(supp f(x)). (7.16)
Note that o is lower semicontinuous because f is continuous. This implies, in turn, that Lq ¢

is closed.

7.3.1  Preparatory Lemmas

We first state and prove two lemmas which will be used in the proof of Proposition 7.12.
The first reduces Proposition .12 to the case where all points of multiplicity Q are of the
form Q [0]. In order to state it, we introduce the map n : Ag(R™) — R™ which takes each
measure T = ) ; [Pi] to its center of mass,

n(r) = =87

Lemma 7.13. Let f: QO — Aq(R™) be Dir-minimizing. Then,
(a) the function nof:Q — R™ is harmonic;

(b) forevery ¢ : O — R™ harmonic, g := ) _; [fi + (] is as well Dir-minimizing.
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Proof. The proof of (a) follows from plugging P (x, u) = ¢(x) € C(Q,R™) in the variations
formula (5.5) of Proposition 5.1. Indeed, from the chain-rule (1.14), one infers easily that
QD(nof) =), Df; and hence, from (5.5) we get [(D(nof): D) = 0. The arbitrariness of
Ce CX(Q,R™) gives (a).

To show (b), let h be any Q-valued function with hlgo = flan: we need to verify that, if
h:= Y ; [hi+ ], then Dir(g, Q) < Dir(h, Q). From Almgren’s form of the Dirichlet energy
(see (4.2)), we get

Dir(g, Q) :/ Z|ajgi|2=/ > {195fil* + 1050 + 2951 950}
Q 1 Q ij
min. of f
Y {1032} +2 [ Dinot) D
Q i Q

:Dir(ﬁ,Q)—l—Z/Q{D(nof)—D(n oh)}- D¢ (7.17)

Since 1 o f and 1 o h have the same trace on 0Q) and ( is harmonic, the last integral in (7.17)
vanishes. H

The second lemma characterizes the blow-ups of homogeneous functions and is the
starting point of the reduction argument used in the proof of Proposition 7.12.

Lemma 7.14 (Cylindrical blow-up). Let g : By — Ag(R™) be an o-homogeneous and Dir-
minimizing function with Dir(g, B1) > 0 and set 3 = 1, 4(0). Suppose, moreover, that g(z) = Q [0]
for z = e /2. Then, the tangent functions h to g at z are 3-homogeneous with Dir(h, B1) =1 and
satisfy:

(a) hiser) = QO] for every s € R;

(b) h(x1,%2,...,%xm) = h(x2,...,xm), where L : R™~T — Aq (R™) is Dir-minimizing on any
bounded open subset of R™~ 1.

Proof. The first part of the proof follows from Theorem 7.9, while (a) is straightforward.
We need only to verify (b). To simplify notations, we pose x’ = (0,x2,...,%xm): we show
that h(x’) = h(s ey +x’) for every s and x’. This is an easy consequence of the homogeneity
of both g and h. Recall that h is the local uniform limit of g, ,, for some pyx | 0 and set
Cx := Dir(g, Bpk(z))*”z, B=1,4(0) and Ay := 1—2]%' where z = e7 /2. Hence, we have

homof hyo o 920 (sAker +Akx’) lim C;, 9 (A 24 A prc X)
KToo AP koo AB
k k
}\ X /
hom.zof g lim Cy k  9zpx (X )

p—0 AE

h(sey +x')

=h(x'),

where we used Az + Ak pr X' =z + sAy pr e1 + Ak px X’ and limy oo Ak = 1.

The minimizing property of h is a consequence of the Dir-minimality of h. It suffices
to show it on every ball B C R™ " for which hlag € W'-2. To fix ideas, assume B to be
centered at 0 and to have radius R. Assume the existence of a competitor h € W12(B) such
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that Dir(h, B) < D(h,B) —y and hlag = hlsg. We now construct a competitor h' for h on a
cylinder C; = [-L, L] x Bg. First of all we define

h'(x1,%2,...,%n) = 1(x2,...,%n) for|x;] <L—1.

It remains to “fill in” the two cylinders C! =]L—1,L[xBgr and C? =] — L, —(L — 1)[xBg. Let
us consider the first cylinder. We need to define h/ in C] in such a way that h’ = h on the
lateral surface |L — 1,L[x0Bg and on the upper face {L} x Bg and h’ = h on the lower face
{L— 1} x Bg. Now, since the cylinder C{ is biLipschitz to a unit ball, recalling Corollary 3.20,
this can be done with a W2 map.

Denote by u and v the upper and lower “filling” maps in the case L = 1 By the x;-
invariance of our construction, the maps

ur (x1,...,xm) =ulx; —L,...,xm) and vi(x1,.. ., xm) =ulx1+L,...,xm)
can be taken as filling maps for any L > 1. Therefore, we can estimate

Dir(h’,C) — D(h,Cr) < (Dir (h/,Cl UC}) —Dir (h,C] UC?)) —2(L—1)y
=A—=-2(L-1)y,

where A is a constant independent of L. Therefore, for a sufficiently large L, we have
D(h/,Cr) < D(h, Cr) contradicting the minimality of h in Cy. O

7.3.2  Proof of Proposition 7.12

With the help of these two lemmas we conclude the proof of Proposition 7.12. First of all
we notice that, by Lemma 7.13, it suffices to consider Dir- minimizing function f such that
n o f = 0. Under this assumption, it follows that Zq ¢ = {x : f(x) = Q [0]}. Now we divide
the proof into two parts, being the case m = 2 slightly different from the others.

The planar case m = 2. We prove that, except for the case where all sheets collapse, g ¢
consists of isolated points. Without loss of generality, let 0 € L ¢ and assume the existence of
1o > 0 such that Dir(f, B;) > 0 for every r < 1 (note that, when we are not in this case, then
f = Q [0] in a neighborhood of 0). Suppose by contradiction that 0 is not an isolated point
in Lqg,f, i.e. there exist xjc — 0 such that f(xyx) = Q [0]. By Theorem 7.9, the blow-ups f |
converge uniformly, up to a subsequence, to some homogeneous Dir-minimizing function g,
with Dir(g,B1) = 1 and n o g = 0. Moreover, since f(xy) are Q-multiplicity points, we deduce
that there exists w € S' such that g(w) = Q [0]. Up to rotations, we can assume that w = ej.
Considering the blowup of g in the point e;/2, by Lemma 7.14, we find a new tangent
function h with the property that h(0,x;) = h(x2) for some function h : R — Aq which
is Dir-minimizing on every interval. Moreover, since Dir(h, By) = 1, clearly Dir (ﬁ, I) > 0,
where I = [—1, 1]. Note also that n o h = 0 and h(0) = Q [0]. From the 1-d selection criterion
in Proposition 3.9, this is clearly a contradiction. Indeed, by a simple comparison argument,
it is easily seen that every Dir-minimizing 1-d function h is an affine function of the form

= ) ; [Li(x)] with the property that either L;(x) # L;j(x) for every x or L;i(x) = L;(x)
for every x. Since h(0) = Q [0], we would conclude that h = Q [L] for some linear L. On the
other hand, by n o h = 0 we would conclude L = 0, contradicting Dir(ﬁ, I) > 0.
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We conclude that, if x € Zq ¢, either x is isolated, or U C X ¢ for some neighborhood of x.
Since () is connected, we conclude that, either g ¢ consists of isolated points, or g ¢ = Q.

The case m > 3. In this case we use the so-called Federer’s reduction argument (following
closely the exposition in Appendix A of [54]). We denote by H* the Hausdorff t-dimensional
measure and by 3! the Hausdorff pre-measure defined by

IH;iA):inf{zz_dmnﬂEkf :Aw:LmeNEk}. (7.18)
kelN

We use this simple property of the Hausdorff pre-measures H : if K; are compact sets
converging to K in the sense of Hausdorff, then

lim sup HE, (Kq) < HE(K). (7.19)
l—+o0

To prove (7.19), note first that the infimum on (7.18) can be taken over open coverings.
Next, given an open covering of K, use its compactness to find a finite subcovering and the
convergence of Ky to conclude that it covers K; for 1 large enough (see the proof of Theorem
A.4 in [54] for more details).

Step 1. Let t > 0. If K, (Zq,¢) > O, then there exists a function g € W'2(By, Aq) with the
following properties:

(a1) g is a homogeneous Dir-minimizing function with Dir(g,B1) = 1;
(b1) nog =0
(c1) HE (Zq,9) > 0.
We note that 3} -almost every point x € L ¢ is a point of positive t density (see Theorem
3.6 in [54]), i.e.
HE (Zg,eNBr(x))

rt

> 0.

lim sup
r—0
So, since HE (ZQ,f) > 0, from Theorem 7.9 we conclude the existence of a point x € Zq ¢
and a sequence of radii px — 0 such that the blow-ups f, >, converge uniformly to a
function g satisfying (a;) and (b7), and

Kt (= NB
lim sup o (£Q, N Bpy ()

> 0. .20
k—+o0 pkt (7 )

From the uniform convergence of fy ;,, to g, we deduce easily that, up to subsequence,
the compact sets Ky = @ NZQf,,,, converge in the sense of Hausdorff to a compact set

K C Xq,g- So, from the semicontinuity property (7.19), we infer (c1),

H(Zq,q) = HE

o0

(K) > limsup 5, (Ky) > limsup U-C;O(B% NZQ,f
k—-+o0 k—-+o00

FHt (= NB,. (x)) &
= lim sup °°( Qf n pr | )) 7>20) 0.
k—+o00 Px

x,2pk )
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Step 2. Let t > 0 and g satisfying (aq)-(c1) of Step 1. Suppose, moreover, that there exists
1<1l<m—2, withl—1 < t, such that

g(x) =8(xt,..., Xm). (7.21)
Then, there exists a function h € W1-2(By, Aq) with the following properties:
(az) hisa homogeneous Dir-minimizing function with Dir(h,Bq) = 1;
(by) noh=0;
(c2) HE (Zgn) >0
(d2) h(x) =h(xt41,. ., Xm)-

We notice that K5, (R'"™" x {0}) =0, being t > 1 — 1. So, since K, (£q,4) > 0, we can find
apoint 0 #x=(0,...,0,x(,...,xm) € Lg,g Of positive density for H’ L Xq 4. By the same
argument of Step 1, we can blow-up at x obtaining a function h with properties (a;), (b2)
and (cz). Moreover, using Lemma 7.14, one immediately infers (d;).

Step 3. Conclusion: Federer’s reduction argument.

Let now t > m — 2 and suppose H' (£q,¢) > 0. Then, up to rotations, we may apply
Step 1 once and Step 2 repeatedly until we end up with a Dir-minimizing function h with
properties (az)-(c2) and depending only on two variables, h(x) = h(x1,x2). This implies
that h is a planar Q-valued Dir-minimizing function such that n o h =0, Dir(h,B;) =1 and
Ht-mt2 <ZQ,}1) > 0. As shown in the proof of the planar case, this is impossible, since

t—m+ 2 > 0 and the singularities are at most countable. So, we deduce that H* (ZQ,f) =0,
thus concluding the proof.

7.3.3  Proof of Theorem 7.2

Let o be as in (7.16). It is then clear that, if x is a regular point, then o is continuous at x.
On the other hand, let x be a point of continuity of o and write f(x) = Z]] _1 k; [P;], where
P; # P; for 1 # j. Since the target of o is discrete, it turns out that 0 = J in a neighborhood
U of x. Hence, by the continuity of f, in a neighborhood V C U of x, there is a continuous
decomposition f = Z]] _11f;} in kj-valued functions, with the property that f;(y) # fi(y)
for every y € V and fj = k; [g;] for each j. Moreover, it is easy to check that each g; must
necessarily be a harmonic function, so that x is a regular point for f. Therefore, we conclude

Y ={x: 0 is discontinuous at x}. (7.22)

The continuity of f implies easily the lower semicontinuity of o, which in turn shows,
through (7.22), that X is relatively closed.

In order to estimate the Hausdorff dimension of Z¢, we argue by induction on the number
of values. For Q = 1 there is nothing to prove, since Dir-minimizing R™-valued functions are
classical harmonic functions. Next, we assume that the theorem holds for every Q*-valued
functions, with Q* < Q, and prove it for Q-valued functions. If f = Q [¢] with { harmonic,
then X¢ = () and the proposition is proved. If this is not the case, we consider first X ¢ the
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set of points of multiplicity Q: it is a subset of ¢ and we know from Proposition 7.12 that it
is a closed subset of O with Hausdorff dimension at most m — 2 and at most countable if
m = 2. Then, we consider the open set Q' = QO \ Zg ¢. Thanks to the continuity of f, we can
find countable open balls By such that Q' = Uy By and f|g, can be decomposed as the sum
of two multiple-valued Dir-minimizing functions:

flg, = [fro.] + [fvo,], withQi <Q, Q2<Q,
and

supp (fx,q, (x)) Nsupp (fx,q,(x)) =0 for every x € By.
Clearly, it follows from this last condition that

TiNBk = Zh 0, ULfyq,-

Moreover, fy,q, and fy,q, are both Dir-minimizing and, by inductive hypothesis, L, , and
ka,Qz are closed subsets of By with Hausdorff dimension at most m — 2. We conclude that

= ZQ,f U U (ka,m U ka,Q2>
kelN

has Hausdorff dimension at most m — 2 and it is at most countable if m = 2.
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Following in part ideas of [9], we are able to improve Almgren’s estimate of the singular set
for two dimensional Dir-minimizing functions. The new estimate is the following.

Theorem 8.1 (Improved estimate of the singular set). Let f be Dir-minimizing and m = 2. Then,
the singular set L¢ of f consists of isolated points.

To prove this result, we give in the first section a more stringent description of 2-d tangent
functions to Dir-minimizing functions. In the second section, we use a comparison argument
to show a certain rate of convergence for the frequency function of f. This rate implies the
uniqueness of the tangent function. In Section 8.3, we use this uniqueness to get a better
description of a Dir-minimizing functions around a singular point: an induction argument
on Q yields finally Theorem 8.1.

8.1 CHARACTERIZATION OF 2-D TANGENT Q-VALUED FUNCTIONS

In this section we analyze further the Dir-minimizing functions f : D — Ag (IR™) which are
homogeneous, that is

f(r,0) =1r%g(0) for some a > 0. (8.1)
Recall that, for T = }_; [T;] we denote by n(T) the center of mass Q' Y ; T.

Proposition 8.2. Let f : D — Aq(R™) be a nontrivial, x-homogeneous function which is Dir-
minimizing. Assume in addition that o f = 0. Then,

(a) = 5’; € Q, with MCD (n*, Q*) = 1;
(b) there exist injective (R-)linear maps L; : C — R™ and k; € IN such that
J X ]
fx) =ko[O]+ > & Y [[Lj ot ]] = ko [0] + Y ¥ [f;(x)] - (8.2)
j=1  z2Q"=x j=1
Moreover, ] > 1and k; > 1 forall j > 1. If Q* =1, either ] > 2 or ko > 0.
(c) Forany i # j and any x # O, the supports of fi(x) and f;(x) are disjoint.

Proof. Let f be a homogeneous Dir-minimizing Q-valued function. We decompose g = flg;
into irreducible W2 pieces as described in Proposition 3.9. Hence, we can write g(8) =
ko [0] + Z]-I:] k; [g;(x)], where

(i) ko might vanish, while k; > 0 for every j > 0,
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(ii) the gj’s are all distinct, Q;-valued irreducible W'? maps such that g;(x) # Q [0] for
some x € S'.

By the characterization of irreducible pieces, there are W' maps vy; : S' — R™ such that

gix)= > [n=)]. (83)

2% =x

Recalling (8.1), we extend vy; to a function 3; on the disk by setting 3;(r,0) =% Qiy,— (0) and
we conclude that

J J
fx)=ko[OI+) > [Bi(2)] =ko[O]+ D ¥ [f;(x)].
j=1

]:1 ZQj:X

It follows that each f; is an a-homogeneous, Dir-minimizing function which assumes
values different from Q [0] somewhere. By Lemma 6.5, 35 is necessarily a Dir-minimizing
R™-valued function. Since $3; is (x Q;)-homogeneous, its coordinates must be homogeneous
harmonic polynomials. Moreover, {3; does not vanish identically. Therefore, we conclude that
n; = « Qj is a positive integer. Thus, the components of each (3; are linear combinations of
the harmonic functions (r,0) — 1™ cos(n;0) and (r, 0) — r™ sin(n;0). It follows that there
are (nonzero) R-linear map L : C — R™ such that B;(z) = L; - z™.

Next, let n* and Q* be the two positive integers such that x = n*/Q* and MCD (n*, Q*) =
1. Since n;/Q; = @ = n*/Q*, we necessarily have Q; = m;Q* for some integer m; = % > 1.
Hence,

o)=Y iz

. >k
zm)Q =X

However, if m; > 1, then supp (g;) = Q* # Qj, so that g; would not be irreducible. Therefore,
Q; = Q™ for every j.

Next, since Dir(f,D) >0,] > 1.If Q* =1,] =1 and kg =0, then f = Q [f1] and f; is an
R™-valued function. But then f1 =1 o f = 0, contradicting Dir(f, D) > 0. Moreover, again
using the irreducibility of g;, for all x € S, the points

L; 2V with z2Q =«

are all distinct. This implies that L; is injective. Indeed, assume by contradiction that L; -v =0
for some v # 0. Then, necessarily Q* > 2 and, without loss of generality, we can assume that
v=-ej.Letx =™ €8 with 8/Q* = /2 — t/Q*, and let us consider the set

R:={z" €8':2Q =x} = {el0+27k)/Q")

Therefore wi = e'9/Q" and w, = el(0+27)/Q" — ¢1m—10/Q" 3re two distinct elements of R.
However, it is easy to see that wy —w, = 2cos(8/Q*)ey. Therefore, Ljw; = Lyw;, which is
a contradiction. This shows that L; is injective and concludes the proof of (b).

Finally, we argue by contradiction for (c). If (c) were false, up to rotation of the plane
and relabeling of the gi’s, we assume that supp (g1(0)) and supp g2(0) have a point P in
common. We can, then, choose the functions y; and y; of (8.3) so that

Y1(0) =v1(2m) = v2(0) = v2(2m) = P.



8.2 UNIQUENESS OF 2-D TANGENT FUNCTIONS

We then define & : ID — R™ in the following way:

2 Q* .
£(r,0) = Tz Rt (20) ?f 0 < [0,m,
12%Q"y,(20) if 6 € [r, 27

Then, it is immediate to verify that
(0] + [F200] = > [E(=)]. (8.4)
22Q" =x

Therefore, f can be decomposed as

fo)= Y L&+ ko [] + (k= D [f1 0] + (k2 = 1 [F200] + Yy [ (x)]

22Q% —x iz]

It turns out that the map in (8.4) is a Dir-minimizing function, and, hence, that & is a (2 x Q*)-
homogeneous Dir-minimizing function. Since 2 x Q* = 2n* we conclude the existence of a
linear L : C — R™ such that

[+l = Y [rz2v]=2 3 [r=].
zQ" =x

22Q% =x
Hence, for any x € S', the cardinality of the support of [g1(x)] + [g2(x)] is at most Q*. Since
each g; is irreducible, the cardinality of the support of [gi(x)] is everywhere exactly Q*. We
conclude thus that g1 (x) = g2(x) for every x, which is a contradiction to assumption (ii) in
our decomposition. O

8.2 UNIQUENESS OF 2-D TANGENT FUNCTIONS

The key point of this section is the rate of convergence for the frequency function, as stated
in Proposition 8.3. We use here the functions Hy ¢, Dy f and Iy ¢ introduced in Definition 7.3
and drop the subscripts when f is clear from the context and x = 0.

Proposition 8.3. Let f € W1'2(]D,AQ) be Dir-minimizing, with Dir(f,ID) > 0 and set o« =

Io,¢(0) = I(0). Then, there exist constants y > 0, C > 0, Ho > 0 and Do > 0 such that, for every

0<r«l,
0

<I(r)—a<CrY, (8.5)

H(r)
~ r2o+1

D(r)

_ Y
Ho < CvY and 0< S

— Dy <Cr. (8.6)

The proof of this result follows computations similar to those of [9]. A simple corollary of
(8.5) and (8.6) is the uniqueness of tangent functions.

Theorem 8.4. Let f : ID — Aq(R™) be a Dir-minimizing Q-valued functions, with Dir(f,ID) > 0
and £(0) = Q [0]. Then, there exists a unique tangent map g to f at 0 (i.e. the maps fo , defined in
(7.12) converge locally uniformly to g).

In the first subsection we prove Theorem 8.4 assuming Proposition 8.3, which will be then
proved in the second subsection.
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8.2.1  Proof of Theorem 8.4

Set « = Ip ¢(0) and note that, by Theorem 7.9 and Proposition 8.3, x = Do/Ho > 0, where
Dy and Hy are as in (8.6). Without loss of generality, we might assume Dy = 1. So, by (8.6),
recalling the definition of blow-up f,, it follows that

folr,0) = p *f(rp,0) (1+0(p¥/?)). (8.7)

Our goal is to show the existence of a limit function (in the uniform topology) for the
blow-up f,. From (8.7), it is enough to show the existence of a uniform limit for the functions
hy(r,0) = p~*fy(rp,0). Since hy(r,0) = r%h, (1, 0), it suffices to prove the existence of a
uniform limit for h,lg1. On the other hand, the family of functions {h,},~¢ is equi-Holder
(cp. with Theorem 7.9 and (8.6) in Proposition 8.3). Therefore, the existence of an uniform
limit is equivalent to the existence of an L? limit.

So, we consider 1/2 < s < r and estimate

2 2 (f(r,0) f(s,e)>2 2”( Td(f(t,G))‘ )2
Shh? /9( S aes [ (]G (R ) ) ae
27 2

dt( to )

dt de. (8.8)
This computation can be easily justified because r — f(r,0) is a W!-? function for a.e. 6.
Using the chain rule in Proposition 1.12 and the variation formulas (5.7), (5.8) in Proposition
5.2, we estimate (8.8) in the following way:

27 27 2 2
> Ifil \avfd (0+fi, fi)
o 9 (e he)” < T_S/ /Z{ 2oz T e 2% Zar

(5'7)’:(5'8)(r—s)/r{ocz H(t) L by, Pl }dt

t20(+3 ZtZDch] tZ(XJrZ

(1 /D) H(t) D(t)
- (T_S)/s {Zt ( 2a > ol T _“tz“”}dt
o [ (22 e i}

"1 /D)’ "1 /D !
<(T—s)/s 2t<t2(?> dt:(r—s)/s Zt(tz(;i)—Do) dt  (89)

where the last inequality follows from the monotonicity of the frequency function, which
implies, in particular, that « < Ip¢(t) for every t. Integrating by parts the last integral of
(8.9), we get

T'—S

27t

1 D(r) 1 D(s)
: S (hy, he)? < (r—s) [ZY<T2; —Do>—zs<szi —Do>]+

+(T‘—S)/S 21? <132(L) —Do>.
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Recalling that 0 < D(r)/r?* — Do < CrY and s = 1/2 we estimate

2m 5 r—sg T
G (hy, he)? < ru(r—s)/

< Cr. .
, S T T (8.10)

Let now s < r and choose L € N such that r/2-1 < s < r/25. Iterating (8.10), we reach

L-1 L Ty/z 2
st < o () ) < £ i <o
1=0 1=0
This shows that h,|¢1 is a Cauchy sequence in L? and, hence, concludes the proof.
8.2.2  Proof of Proposition 8.3
The key of the proof is the following estimate:
2
I'(r) > Claty=10r)) (I- o). (8.11)

We will prove (8.11) in a second step. First we show how to conclude the various statements
of the proposition.

Step 1. (8.11)== Proposition 8.3. Since I is monotone nondecreasing (as proved in Theorem
7.5), there exists o > 0 such that o +v —I(r) > v/2 for every r < rp. Therefore,

(1) > % (I(r) =) Vr<ro. (8.12)

Integrating the differential inequality (8.12), we get the desired conclusion:
I(M)—a <Y (I(rp) — ) = CrY.

From the computation of H’ in (7.3), we deduce easily that

<H(r)>': ZD(r)' (8.13)

T T

This implies the following identity:

(10g r];lo(ci)1 ) B <logH1(‘r) logrza) - <H(T)) e 2 (I(r) —a) > 0. (8.14)

T T T

So, in particular, we infer the monotonicity of log Eg)] and, hence, of Ec(x:)l . We can, therefore,

integrate (8.14) and use (8.5) in order to achieve that, for 0 < s < r < 1 and for a suitable
constant C,, the function

1 H(T) H(r)e ¥ TY)

08 ot — Cy 17 =log < P2t
is decreasing. So, we conclude the existence of the following limits:

. H(r) e v’ . H(r)
Jim e = lim ey = Ho >0,

85



86

TWO DIMENSIONAL IMPROVED ESTIMATE

with the bounds, for r small enough,

H(r)
r2o+1

H(r)e & H(r)

T2octT SHo < T2oct T

(1-CrY) <

This easily concludes the first half of (8.6). The rest of (8.6) follows from the following
identity:

= Do = (1)~ 1o) sy +1o (aapr —Ho )

Indeed, both addendum are positive and bounded by CrY.

Step 2. Proof of (8.11). Recalling the computation in (7.4), (8.11) is equivalent to

rD/(r)  21(r)?
Hr)

2
>Z
T

(a+y —1(r) (1(r) — ),

which, in turn, reduces to

(20+7v)D(r) < TDZ/(T) + o‘(‘”;”Hm. (8.15)

To prove (8.15), we exploit once again the harmonic competitor constructed in the proof of
the Holder regularity for the planar case in Proposition 6.3. Let v > 0 be a fixed radius and
f(rel®) = g(0) = Z)] :1 [[gj ( 6)]] be an irreducible decomposition as in Proposition 3.9. For
each irreducible g;, we find y; € w!2(8T R™) and Qj such that

Qj

o o (5]

i=1

We write now the different quantities in (8.15) in terms of the Fourier coefficients of the y;’s.
To this aim, consider the Fourier expansions of the v;’s,

4q;,0

+o0
5 + Z r'{aj,cos(10) + b, sin(10)},

1=1

v;(0) =

and their harmonic extensions

g0

+o0o
5 Z p'{a;, cos(10) +bj, sin(10)}.

1=1

Recalling Lemma 6.5, we infer the following equalities:

T21—1 2

. . 1
D'(r) zzzDir(gj,rS1) = Z m ZZnZZ (a]-zll—l-b)-z,l), (8.16)
j

: Qj T Y

2

Ta' 0

2]’ +Zr2”] (ai1+bj2,1)}. (8.17)
1

H(T):Z/rsl \9;‘|2=ZQ]'/TS1 h/j\z:thQj{
) ) )
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Finally, using the minimality of f,

D(r) < ) Dir(g;,By)=m) > r*'1(af; +b7)). (8.18)
j il

We deduce from (8.16), (8.17) and (8.18) that, to prove (8.15), it is enough to find a y such
that

2

(2a+y) 1< (lg +ofaty)Q;,  foreveryl€Nand every Q;,
j

which, in turn, is equivalent to

YQ; (1—aQj) < (1—aQ;)?. (8.19)

Note that the Q;’s depend on r, the radius we fixed. However, they are always natural
numbers less or equal than Q. It is, hence, easy to verify that the following v satisfies (8.19):

LO{kJ+1—OCk} (8.20)

= min
Y 1<k<Q { k
8.3 THE SINGULARITIES OF 2-D DIR-MINIMIZING FUNCTIONS ARE ISOLATED

We are finally ready to prove Theorem 8.1.

Proof of Theorem 8.1. Our aim is to prove that, if f : QO — Aq is Dir-minimizing, then the
singular points of f are isolated. The proof is by induction on the number of values Q. The
basic step of the induction procedure, Q = 1, is clearly trivial, since Z¢ = (). Now, we assume
that the claim is true for any Q’ < Q and we will show that it holds for Q as well.

So, we fix f : R2 D Q — Ag Dir-minimizing. Since the function f — Q [n o f] is still
Dir-minimizing and has the same singular set as f (notations as in Lemma 7.13), it is not
restrictive to assume nof = 0.

Next, let g ¢ = {x : f(x) = Q[0]} and recall that, by the proof of Theorem 7.2, either
Xo,s = Q or L, consists of isolated points. Assuming to be in the latter case, on D\ Zq ,
we can locally decompose f as the sum of a Qq-valued and a Q;-valued Dir-minimizing
function with Q1, Q2 < Q. We can therefore use the inductive hypothesis to conclude that
the points of ¢\ L ¢ are isolated. It remains to show that no x € g ¢ is the limit of a
sequence of points in X\ Zq +.

Fix xo € L. Without loss of generality, we may assume xo = 0. Note that 0 € L ¢
implies D(r) > 0 for every r such that B, C Q. Let g be the tangent function to f in 0 . By
the characterization in Proposition 8.2, we have

]
g=ko[0]+ D> ¥ [g;].

j=1

where the g;’s are Q*-valued functions satisfying (a)-(c) of Proposition 8.2 (in particular
a =n*/Q* is the frequency in 0). So, we are necessarily in one of the following cases:
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(i) max{ko,]—1}>0;
(ii)) J=1,ko =0and k1 < Q.
If case (i) holds, we define

d. .
di; := min dist(supp (gi(x)),supp (gj(x))) and &=min—". (8.21)
x€S! iz 4
By Proposition 8.2(c), we have ¢ > 0. From the uniform convergence of the blow-ups to g,
there exists 1o > 0 such that

G(f(x),g(x)) < elx|* forevery [x| < o. (8.22)

The choice of ¢ in (8.21) and (8.22) easily implies the existence of f;, with j € {0, ..., ]}, such
that o is a W12 ko-valued function, each f;isa w2 (k; Q*)-valued function for j > 0, and

J

fls,, =Y [f;]. (8.23)

j=0

It follows that each f; is a Dir-minimizing function. The sum (8.23) contains at least two
terms: so each fj take less than Q values and we can use our inductive hypothesis to conclude
that X N By, = Uj Lt N By, consists of isolated points.

If case (ii) holds, then k Q* = Q, with k < Q, and g is of the form

o) = Y kL],

2Q% =x
where L is injective. In this case, set

d(r) = min IL- z?* —L. ZE*\.

* *
20" =29 21 #£25, |2 | =r1/QF

Note that

d(r)=cr* and max dist(supp (f(x)),supp (g(x))) = o(r%).

[x|="

This implies the existence of r > 0 and ¢ € C(B, Ax(R™)) such that

f(x) = Z [¢(2)] for x| < .

.
zQ% =x

Set p =19 . If x # B, \ 0 and o < min{|x|, p — [x[}, then obviously ¢ € W12(Bg(x)). Thus,
{ € WI2(B, \ By) for every o > 0. On the other hand, after the same computations as
in Lemma 6.5, it is easy to show that Dir((, B, \ Bs) is bounded independently of p. We
conclude that { € W' 'Z(Bp \ {0}). This implies that ¢ € W1'2(Bp) (see below) and hence we
can apply the same arguments of Lemma 6.5 to show that ( is Dir-minimizing. Therefore, by
inductive hypothesis, £, consists of isolated points. So,  is necessarily regular in a punctured
disk B5(0) \ {0}, which implies the regularity of f in the punctured disk B j1,o+ \ {0}.
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For the reader’s convenience, we give a short proof of the claim ¢ € w2 (Bp). This is in
fact a consequence of the identity w2 (Bp \{0}) = w2 (B,) for classical Sobolev spaces, a
byproduct of the fact that 2-capacity of a single point in the plain is finite.

Indeed, we claim that, for every T € Ay (R™), the function ht := G((, T) belongs to
w! 'Z(Bp). Fix a test function ¢ € CX(B,) and denote by Al the distributional derivative
Ox, ht in B, \ {0}. For every o € (0,p) let s € CP(Bs) be a cutoff function with the
properties:

() 0< e <1
(ii) |DWs|lco < Co~', where C is a geometric constant independent of .
Then,

[rrose = [nrociova) + [ hrou((-va)e)
:/thTaXi(@%)—/Nm o) @)

(1) (I1)

Letting o | 0, (II) converges to [ Alg. As for (I), we estimate it as follows:

(DI < |ox (@ Vo) llzs,) IhTllL2(B,)-

By the absolute continuity of the integral, ||ht|{2(5,) — 0 as o | 0. On the other hand,
we have the pointwise inequality |9« (@ W) < C(1+ o~ ). Therefore, ||0, (¢ Yollr2(s,) is
bounded independently of o. This shows that (I) | 0 and hence we conclude the identity
[ htdx, @ = — [ Alg. Thus, A is the distributional derivative of ht in B,. O
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In this chapter we prove another new regularity theorem for Dir-minimizing Q-valued
functions. This result concerns the higher integrability of the gradient which, rather than
merely square summable, turns out to be p summable for some p > 2.

Theorem 9.1. There exists p = p(n, m, Q) > 2 such that, for every QO C R™ open and u €
W'2(Q, Aq (R™)) Dir-minimizing, [Dul € LY__(Q).

loc

This theorem is closely related to the higher integrability estimate for minimal currents
presented in Chapter 12 and plays a crucial role in the proof of Almgren’s approximation
theorem given in Chapter 13. Here, we propose two different proofs: one uses the biLipschitz
embedding &, the other is based only on the metric theory of Q-valued functions. For what
concerns the case m = 2, we found an explicit integrability exponent: using the examples
provided by complex varieties in the next Chapter 10, we can show that this upper bound is
in fact optimal.

9.1 TWO DIMENSIONAL CASE

We here give a simple proof for the two dimensional case, which in addition provides the
optimal integrability exponent. This proof relies on the following proposition, because by
Theorem 8.1 the singular points are isolated in dimension two.

Proposition 9.2. Let u € W'2(B;, Aq) be Dir-minimizing and assume that L., = {0}. Then,

|IDu| € LP(B1) for every p < %

Proof. Let x € B7 \ {0} and set r = [x|. Then, by X, = {0}, in B+(x) there exists an analytic
selection of u, ulg,(x) = >_; [wi], where u; : By(x) — R™ are harmonic functions. Using the
mean value inequality for Du;, one infers that

1

] 2
Dus(x) < ][ Duil < —— < / Du-z) ,
' B VI s

from which

1 Dir(u, B, (x))
Dul(6)? = 3~ Dusto) < 5 5 [, ot = P (91

1

Using the decay estimate in 6.2 obtained in the proof of the Holder regularity with r =1
together with (9.1), we deduce that

Dir(u, B3)

1-& 7
Ve T Q

[Dul(x) <
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which in turn implies the conclusion,

O]

Remark 9.3. The range {2, %) for the integrability exponent is optimal. Consider, indeed,
the complex variety ¥ = {(z,w) : wQ =z} C C%. By Theorem 10.1 in Chapter 10, the Q-
[w] is Dir-minimizing in B,. Moreover, [Du/(z) = Q \zlé_1 .

valued function u(z) =) ,,0_,

2Q
Hence, [Du| € LP for every p < % and |Du| ¢ LT,

9.2 GENERAL CASE

Now we pass to the proof of Theorem 9.1 for m > 3. We present here the intrinsic proof. The
first step is a Caccioppoli’s inequality for Dir-minimizing functions. For P € R™, we denote
by Tp the following map: tp : Ag(R™) — Ag(R"),

Tp(T) := Z [Ti—P], forevery T= Z IT:] -

Lemma 9.4 (Caccioppoli’s inequality). Let w € W'2(Q, Aq) be Dir-minimizing. Then, for every
P € R™ and everyn € CX(Q),

/ IDul?n? < / ltpul® [Dnf%. (9.2)
Q Q
In particular, in the case QO = By,
2 _ 4 2
IDul” < = |Tpul”. (9-3)
B% ™ JB,,

Proof. Recall the outer variation for Dir-minimizing functions in Proposition 5.1, and apply
it to P(x,y) = n(x)? (y — P), where P and 1 are as in the statement. Since D, (x,y) =
21(x) Dn(x) ® (y —P) and Dy (x,y) = N(x)?1d , this leads to

O:/Q;<Dui(x) :2nDn®(uiP)>+/Q;<Dui(x) :1? Duy(x)). (9.4)

Applying Holder’s inequality in (9.4), we conclude (9.2):

[ ou? == 3 [ (Duitui~PlmDn) < [ 3 Dud i~ Pl n
Q i Q Q i
% 1
</ (ZIDWI2 nz) (Z ui—PIDnIZ>
Q 1 X

< < /Q nZIDuIZ)Z < /Q fep (w) 2 IDn2>2-

The last conclusion of the lemma follows from (9.2) choosingn = 1in B3, ,, and |[Dn| < % O



9.2 GENERAL CASE

In the same way of the semicontinuity of the Dirichlet energy, one can prove the semicon-
tinuity of [ [Df|P. Also this lemma is a special case of the more general semicontinuity result
in Part III Chapter 11.

Lemma 9.5 (Semicontinuity). Let fy, f € wlp (Q,AQ), p < 00, be such that fi. — f (according
to Definition 4.7). Then,

/Dﬂp hmmf |ka|p (9.5)

Proof. The proof of this result is very similar to the proof of the semicontinuity for the
Dirichlet energy given in Section 4.3. Let {T{ }1cn be any dense subset of Ag and recall that
|Df| is the monotone limit of hy with

2
ht = {jngg;(ajs;(f,ni)) :

By the Monotone Convergence Theorem, [ [Df|P = supy i h’]i]. Therefore, denoting by Pnm

the collections P = {E¢}i_g1, . 1,.1enm Oof N™ disjoint open subsets of ), we conclude that

P
2

/ IDfP :sup/ hX, =sup sup Z / a §S(f, Ty, )) . (9.6)
o N

N PGTNm E cP

It follows easily from the hypotheses that, for every 1 ={l,..., 1z} and every open set Ey,
the vector-valued maps (915(fx, Ty, ), ..., 0mG(fx, T1,,)) converge weakly in LP(E;) to the
map (015(f, Ty,),...,9mSG(f, Ty, ). Hence, by the semicontinuity of the norm,

P 2
2 2
2 o 2
0;G(f, Ty <1 f 0;G(fx, Tu.
/ET ]Z( iS(f,TL)) fiminf | ]Z( iS(fi, Ty,))
Summing in Ey € P, in view of (9.6), we achieve (11.13). O

The following reverse Holder inequality is the basic estimate for the higher integrability.

Proposition 9.6. Let 2‘“ < s < 2. Then, there exists C > 0 such that, for every u: QO — Aq
Dir-minimizing, x € Q and r < min {1,dist(x,0Q)/2},

1
2 s
<][ IDuIZ> <C<][ IDus> . (9.7)
B, (x) By (x)

Proof. The proof is divided into two steps.
Step 1: we assume that u has average 0, nou = % = 0.
The proof is by induction on the number of values Q. The basic step Q = 1 is clear: indeed,
in this case nou = u = 0. Now, we assume that (9.7) holds for every Q' < Q and, by

contradiction, it does not hold for Q.
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94 HIGHER INTEGRABILITY OF DIR-MINIMIZING FUNCTIONS

Then, up to translations and dilations of the domain, there exists (1); ¢ W2 (B4, Aq) of
Dir-minimizing functions such that n ou; = 0 and

(7{3 Duu5>l < (Fos I0wi?)” (9:8)

l

Moreover, without loss of generality, we may also assume that fB4 w2 =1. Using Cacciop-
poli’s inequality (9.3), we have that Dir(u, B3) < 4, which in turn, by (9.8), implies

||9(LL1,Q IIO]])||W1,5(B4J < C < +o0.

Since s* > 2, we can apply the compact Sobolev embedding to deduce that there exists a
subsequence (not relabeled) u; converging to some 1 in L?(B,). From (9.8) and Lemma 9.5,
we deduce that

[u?=1  and / Dul* =0, (9-9)
By B4
which implies that u is constant, u = T € Aq. Since by Theorem 6.1 the u;’s are equi-
bounded and equi-Holder in B, always up to a subsequence (again not relabeled), the u{s
converge uniformly to T in B,. This implies, in particular, that

noT:llir+n nou =0. (9.10)
From (9.9) and (9.10), one infers that T is not a point of multiplicity Q. Therefore, since
up — T uniformly in B;, for 1 large enough the u,’s must split in the sum of two Dir-
minimizing functions u; = [vi] + [w1], where the v{’s are Qj-valued functions and the
wy’s are Qz-valued, with Q1, Q2 positive and Q1 + Q2 = Q. Applying now the inductive
hypothesis to vi and wy we contradict (9.8) for 1 large enough,

1 1 1

2 2 2

(f |Du12> <<][ |Dv12> +(][ le2>
Bq(x) Bi(x) Bi(x)

1
<C (f |Dv1|5>s e (7[ |DW1|S> |
B2(x) B2(x)
l
gzc(f |Du1|5) .
B,(x)

Step 2: generic Dir-minimizing function .
Let u be Dir-minimizing and ¢ = n ou: then, by Lemma 7.13, ¢ : O — R™ is harmonic
and D¢ = ) ; Duy, from which

Del? < Q) [Dui* = QDul. (9.11)
i

Moreover, again by Lemma 7.13, the Q-valued function v =} ; [uy — ¢] is Dir-minimizing
as well. Note that

Dul> <2/Dv*+2Q|Dyl? and |Dv|*> <2|Duf*+2Q|Degl?. (9.12)



9.2 GENERAL CASE

Using the inequality /3 ; aj < }_; /qj for positive aj, we deduce

1 1
2 2
(f |Du|2> <(][ 2Dv2+2QD<p2>
Br(x) B (x)
; ;
<2<][ Dv2> +2Q(][ |D<p|2) : (9.13)
By (x) By (x)

For the first term in the right hand side of (9.13), we use Step 1, since nov =0, to get

1 1 1
2 s (9.12) s\ s
(£ o) <c(f o) Te(f  @our+2qiper))
B (x) Bor(x) Bar(x)

1 1
s (9.11) s
<c(][ 2Duls+2QD<ps> < c(f |Du5)  (91g)
Bor(x) B2r(x)

For the remaining term in (9.13), we use the standard estimate for harmonic functions,

C
De(x)| < m HD(PHU(BZT) Vx € By, (9-15)

and infer

1

1
2 (915) C C B 1
|D<p|2> < S pel, <(/ |D<p|s) (1-1)
(]ér(x) Lk EB2) = A Jg )

%(9.11) %
<C f Del* ) <c f Dup ) (9.16)
By (x) Bar(x)

Clearly, (9.13), (9.14) and (9.16) finish the proof. O

The proof of Theorem 9.1 is now an easy consequence of the following reverse Holder
inequality with increasing supports proved by Giaquinta and Modica in [26, Proposition

5.1].

Theorem 9.7 (Reversed Holder inequality). Let QO C R™ be open and g € L}, (Q), with q > 1
and g > 0. Assume that there exist positive constants b and R such that

1
<][ gq)q gb][ 9, Vx€Q,Vr<min{R,dist(x,00Q)/2}. (9.17)
B (x) Bor(x)

Then, there exist p = p(q,b) > q and c = c(m, q,b) such that g € LFOC(Q) and
1 1
P q
(f gp> <c<][ gq> , Vx€Q,Vr<min{R,dist(x,00)/2}.
B:(x) Bor(x)

Proof of Theorem 9.1. Consider the function g = [Dul®, where s < 2 is the exponent in
Proposition 9.6. Estimate (9.7) implies that hypothesis (9.17) of Theorem 9.7 is satisfied

with q = % > 1. Hence, there exists an exponent p’ > ¢, such that g belongs to L{’; (Q),

ie [Dule L] (Q)forp=p' s>2. O
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9.3 EXTRINSIC PROOF

In this section we prove Proposition 9.6 using the biLipschitz embedding &.

Proof of Proposition 9.6. Let u: QO — Ag(R™) be a Dir-minimizing map and let ¢ = Eou:
Q — Q C RN. Since the estimate is invariant under translations and rescalings, it is enough
to prove it for x = 0 and r = 1. We assume, therefore QO = B,. Let ¢ € RN be the average of
@ on B;. By Fubini’s theorem, there exists p € [1,2] such that

(le—@l°*+Del*) < C (lo —@I* +Dol*) < C|ID@|{sp,)-
2B, B, 2

Consider ¢[ap,. Since § > 1 — m, we can use the embedding W' (3B,) — H'/2(3B,)
(see, for example, [1]). Hence, we infer that

H<P|aBp—<DHH%(aB < C[Dolliss,) - (9.18)

o)
where || - || 12 = || - |tz + |- [y1/2 and |- [;y1,2 is the usual H'/?-seminorm. Let ¢ be the
harmonic extension of @[3p, in B,. It is well known (one could, for example, use the result
in [1] on the half-space together with a partition of unity) that

D¢IF < C z : :
|, or <cimiey (919)

Therefore, using (9.18) and (9.19), we conclude [D¢ || 25 ) < C|[D@|is(5,)- Now, since
po ®lo, = ulop, and p o ¢ takes values in Q, by the the minimality of u and the Lipschitz
properties of €, £~ and p, we conclude

1 1 ]

</B Du|2>2 =© </B D‘@z); <cC (/B D<p8>s <cC </B IDu|S>s.



EXAMPLES OF DIR-MINIMIZING MAPS: COMPLEX VARIETIES

In this chapter we show that complex varieties are locally graphs of Dir-minimizing functions.

Theorem 10.1. Let ¥ C CH x C¥ ~ R?* x R?Y be an irreducible holomorphic variety which is a
Q : T-cover of the ball B, C C* under the orthogonal projection. Then, there exists a Dir-minimizing
Q-valued function f € WLZ(B],AQ(IRZ“’)) such that graph(f) =¥ N (By; x CY).

Theorem 10.1 provides many examples of Dir-minimizing functions and, in particular,
shows that the regularity results for Dir-minimizing functions proved in Theorem 6.1,
Theorem 7.2, Theorem 8.1 and Proposition 9.2 are optimal.

Theorem 10.1 has been proved by Almgren in his big regularity paper [2, Theorem
2.20] using the deep and complicated approximation theorem of minimal currents via
graphs of Lipschitz Q-functions reproved in Chapter 13. Here we give a more elementary
proof avoiding this approximation result. For the planar case, moreover, we also provide
an alternative argument which exploits the equality between the area and the energy of
conformal maps. We hope that this approach can be extended to the study of regularity
issues for more complicated calibrated geometries.

10.1 PUSH-FORWARD OF CURRENTS UNDER Q-FUNCTIONS

In the first section we collect some results on the push-forward of rectifiable currents under
Q-valued functions, among which, in particular, a characterization the boundary of the
graph of a Lipschitz Q-function.

Given a Q-valued function f : R™ — Aqg(R™), we set T = Y, [(x,fi(x))], f : R™ —
Ag(R™F™). If R € Z(R™) is a rectifiable current associated to a k-rectifiable set M with
multiplicity 6, R = t(M, 0, ), where ¢ is a borel simple k-vector field orienting M (we use
the notation in [54]), and if f is a proper Lipschitz Q-valued function, we can define the
push-forward of T under f as follows.

Definition 10.2. Given R = 1(M, 6, &) € Z(R™) and f € Lip(R™, Ag(R™)) as above, we
denote by T¢ g the current in R™*™ defined by

(Ter, w) = / 0 > (wofy, DMfyf)dH* vwe Z*R™M), (10.1)
Moy

where ) ; [DMf;(x)] is the differential of f restricted to M.

Remark 10.3. Note that, by Rademacher’s Theorem 1.13 the derivative of a Lipschitz Q-
function is defined a.e. on smooth manifolds and, hence, also on rectifiable sets.
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As a simple consequence of the Lipschitz decomposition in Proposition 1.6, there exist
{Ej}jen closed subsets of Q, positive integers k;,1, Lj € IN and Lipschitz functions fj1 : E; —
R™, for1=1,...,L;, such that

L
j—fk(M \ UjEj) =0 and f|Ej = Z kj/l [[fj/l]] . (10.2)
1=1

From the definition, Tfr = Zﬂ k;j1f;14(RLE;) is a sum of rectifiable currents defined by
the push-forward under single-valued Lipschitz functions. Therefore, it follows that Tt r is
rectifiable and coincides with t(f(M), 6%, Tf), where

DM 14&(x)

0¢(x, fj,1(x) = k;18(x) and T‘f(xffm(xnzm
),

VXEE]'.

By the standard area formula, using the above decomposition of T¢ g, we get an explicit
expression for the mass of Tg r:

M (Tf’R) e /M [€] Z \/det (DNH?l . (DMFL)T) d 3k, (10.3)

10.1.1  Boundaries of Lipschitz Q-valued graphs

With a slight abuse of notation, when R = [Q] € Z,,(R™) is given by the integration over
a Lipschitz domain O C R™ of the standard m-vector € = e A--- /A ey, we write simply
T¢, o for T¢ r. The same we do for T 5, understanding that 0Q) is oriented as the boundary
of [Q]. The main result for what concerns the push-forward under Q-valued functions is
given in the following theorem.

Theorem 10.4. For every Q Lipschitz domain and f € Lip(Q, Aq), 9 Tr,a = Tro0-

In order to prove this theorem, we need the following slight variant of the homotopy
Lemma 1.8.

Lemma 10.5. There exists a constant cq with the following property. For every C C R™ closed
cube centered at xo and u € Lip(C, Aq) Lipschitz, there exists h € Lip(C, Aq) with the following
properties:

(i) hoc = woc, Lip(h) < cq Lip(w) and [|§(u, h) ||« < cq Lip(w) diam(C);
(il) u= Zj]:1 [w] and h = Zj]:1 [ni], for some ] =1, and Ty, ¢ is a cone over Ty, ac,
Th,c = [(x0,a5)] xTy0c, for some a; € R™.
Proof. The proof is essentially contained the same of Lemma 1.8. Indeed, (i) follows straight-
forwardly from the conclusions there. For what concerns (ii), following the inductive

argument in Lemma 1.8, due to the obvious invariances it is enough to prove that, for the
cone-like extension of u, h(x) = > ; [||x|[w; (x/||x||)], where |x|| = sup; Ixi| is the uniform
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norm, Tn,c, = [0] xTy,ac,, with Cy = [—1,1]™. This follows easily from the decomposition
Tuac, = 251 kj10,14(RLE;) described in the previous subsection. Indeed, setting

F; :{tXZXEEj,O<t< 1},
clearly h decomposes in Fj as u in E;j and hj14(RLF;) = [0] x@;,14(RLE;). O

Proof of Theorem 10.4. Observe that we can reduce to the case the domain Q is the unit
cube [0,1]™. Indeed, by a partition of unity argument, we can assume that there exists
¢ : Q — [0,1]™ biLipschitz homeomorphism. Set g : [0,1]™ — Aqg such that go¢p = f
and ¢(x,y) = (¢(x),y), : Q x R™ — [0,1]™ x R™. Hence, following [54, Remark 27.2 (3)]
and using the characterization T¢, o = T(f(Q), ef,ff), it is simple to verify that (T)#Tf,()_ =
Ty 10,11 and analogously $4T¢,00 = T 5(0,1m. S0, since the boundary and the push-forward
commute, from now on, without loss of generality, we can assume Q = [0, 1]™.

The proof is by induction on the dimension of the domain m. For m = 1, by the Lipschitz
selection principle in Proposition 3.6 there exist single-valued Lipschitz functions f; such
that f = ) ; [fi]. Hence, it is immediate to verify that

M=) o= (5r1)—5(0) = Trion-
i

i
For the inductive argument, consider the dyadic decompositions of scale 2~ of Q,

Q= U Qi with Qi =2""(k+[0,1]™).
kefo,...,.2t—1}m

In each Qy,1, set hy,1 the cone-like extension given by Lemma 10.5 and
T = Z Thk,l/Qk,l = Th,
k

with h; the Q-function which coincides with hy 1 in Qy 1. Note that the hy’s are equi-Lipschitz
and converge uniformly to f by Lemma 1.8 (i).

By inductive hypothesis, since each face F of 0Qy 1 is a (m — 1)-dimensional cube, 0T¢ F =
Tt oF. Taking into account the orientation of oF for each face, it follows immediately that

an,a Qx1 — 0. (10.4)

Moreover, by Lemma 10.5, each T, |, q,, is a sum of cones. Therefore, using (10.4) and 9([0] x
xT) =T —[0] 9T (see [54, Section 26]), d(TyL_ Qx,1) = 0Tn, ,Qi, = Tr,0Q,,- Considering
the different orientations of the boundary faces of adjacent cubes, it follows that all the
contributions cancel except those at the boundary of Q, thus giving 0Ty = Tf 0.

The integer m-rectifiable currents T, hence, have all fix boundary and equi-bounded
mass (from (10.3), being the hy’s equi-Lipschitz). By the compactness theorem for integral
currents (see [54, Theorem 27.3]), there exists an integral current S which is the weak limit
for a subsequence of the Ty (not relabeled). Clearly, 0S = lim_,,, 0Ty = T¢,5. We claim that
Tf,0 = S, thus concluding the proof.

To show the claim, notice that, since hy — f in L, then supp (S) C graph(f). So, we need

only to show that the multiplicity of the currents S and T o coincide almost everywhere.
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Consider a point x € Ej, for some E; in (10.2). From the Lipschitz continuity of f and hy, in a
neighborhood U of x, hy and S can be decomposed in the same way as f,
L L
h1|u = Z [[h[lp]] and SI_(U X IRTL) = Z Sp,
p=1 p=1

where the hy,,’s are k; ,-valued and the S,, are integer rectifiable m-currents with disjoint
supports. By definition, the density of Tf o in (x, fj, (x)) is kj . On the other hand, since

Sy = li{nﬂﬁTth,u =k [U] and supp(Sp) N ({x} x R™) = (x,fjp(x)),

it follows that the density of S;, (and hence of S) in (x, f; ;, (x)) equals k; ,,. Since [Q \ U; E;| = 0,
this implies S = T¢ . O

10.1.2  First order expansion of the mass

Up to now we have defined push-forward under Lipschitz maps. Nevertheless, thanks to the
approximate differentiability property of Sobolev Q-functions, for full dimensional current
R = [Q], the definition of T¢ o in (10.1) makes sense for Sobolev functions as soon as the
action is finite for every differential form w € 2™(R™*™). It is easy to verify that this
condition is satisfied if

M(Ttq) = /Q Z \/det (DMf_i . (DME)T) < +o0.

For such functions, we have the following Taylor expansion of the mass of T¢ .

Lemma 10.6. Let f € W2(Q, Aq) such that M (T¢ ) < +oo. Then,
A 5
M (Tas,a) = QA+ 5 Dir(f,Q)+o (?\ ) as A — 0. (10.5)

Proof. For every A > 0, set Ay = {|Df| < 7\*%} and B, = {|Df| > 7\*%}. Since f €
W1'2(Q,AQ), for A — 0, we have that

Dir(A f,Q) = Dir(A f, Ay) + A2 / IDf|* = Dir(AM f, Ax) +0 (A?) . (10.6)
Ba

Using the inequality v1+x% > 1+ %2 — XTA for [x| < 2, since A|Df| < VA in A, for A < 4 we
infer that

2 B A% |Df|? 4 e
M(Taro) =D [ /1+A2IDfi12 > QIBal+ 14+ =~ CA'Df]
i /O A
2

A
> Q|Q|+ = Dir(f,Ay) — CA3|Df?
2 A

(10.6) )\2 . 2
=7 Q|Q|+ 5 Dir(f, Q) 4+ 0 (A%). (10.7)
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For what concerns the reversed inequality, we argue as follows. In A,, since for every
multi index « with |« > 2 we have

MIME 2 < CAZDF 2 < CAYDA 2,

we use the inequality v1+x% <1+ % " and get

M(Taf,a,) < Z/A \/1 + A2 |Df;|2 + CA3 |Dfy|?
i A

2
= QJAA+ }\7 Dir(f, Ay) +o0 (A?). (10.8)

In B,, instead, we use the same inequality and the condition M(T¢,) < +oco to infer

M(Tat,) < Z/B V142 |Dfi|2+\/Z AZelMe2
i A

| =2
)\2
< Q[Bal+ 7Dir(f,B)\) +Z/ A? Z Mcxz
i B o | =2
(10.6) 2 M 2
< QIBal+0(A%) + A" M(Tss,) = Q[Bal+0 (A7) (10.9)
From (10.7), (10.8) and (10.9), the proof follows. O

10.2 COMPLEX VARIETIES AS MINIMAL CURRENTS

In the following we consider irreducible holomorphic varieties ¥ C C** of dimension p.

Following Federer [20], we associate to ¥ the integer rectifiable current of real dimension
2u denoted by [#] given by the integration over the manifold part of ¥, #;s. Recall that
the singular part ¥ng = ¥\ ¥4eq is a complex variety of dimension at most (p—1). A
well-known result by Federer asserts that [#] is a mass-minimizing cycle.

Theorem 10.7. Let ¥ be an irreducible holomorphic variety. Then, the integer rectifiable current
171 has locally finite mass and is a locally mass-minimizing cycle, that means 0 [V] = 0 and
M([7]) < M(S) for every integer current S with 0S = 0 and supp (S — [¥]) compact.

We consider domains Q C R?* ~ C* with the usual identification (x,y1) ~ z; =
(xy +1yy) for L=1,..., u. Moreover, ¥ C Q x R¥Y C R2"*2Y ~ CHHY is always supposed
to be a Q : 1-cover of Q under the orthogonal projection 7 onto Q, thatis 7y [#] = Q [Q].

Clearly, under this hypothesis, there exists a Q-valued function f : Q — Aqg(R?¥) such
that ¥ = graph(f). From Definition 7.1, we readily deduce £ C 7t(%4ing), which in particular
implies dimg(Zf) < 2 — 2. Therefore, locally in Q \ Z¢ x R?Y, 7 is the superposition of
graphs of holomorphic functions, that is, for every w € Q \ Ly, there exist a radius r and Q
holomorphic functions f; : Br(w) — CY such that flg, () = >_; [fi]. The following are the
main properties of f.

Proposition 10.8. Let ¥ C Q x R?Y be a holomorphic variety as above and f the associated
Q-valued function. Then, the following hold:
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(i) feW'2(Q,Aq) and, for u =1, M([¥]L Q) = Q + 22,
i) [V]LQ=Tsq and 3([V]LB(x)) = T oB,(x) for every x and a.e. v > 0 with B+ (x) C Q.

Proof. Note that, for every smooth h : R? — R?¥ and, as usual, h(w) = (w, h(w)),

IDhJ?

2 7
with equality if and only if h is conformal, i.e. [0xh| = |[0yh| and 9xh - dyh = 0. Indeed,
(10.10) reads as

\/det (DR-DhT) <1+ (10.10)

2 2\ 2
det(Dﬁ-DﬁT):det< 1 10xh| - 0xh- 9y h) (HM) ,

dxh-9yh  1+[dyh| 2

which in turn is equivalent to 0 < ([dxh|? — IE)yhlz)2 +4(dxh-dyh)?.
In the case p = 1, applying (10.10) to the local holomorphic, hence conformal, selection of
f, from (10.3) we get

Dir(f,Q\ £¢)

MIPILO\E0) = Q+ =

(10.11)

In the case u > 1 and g : R?* — R?Y smooth, (10.10) together with Binet-Cauchy’s formula
(see [18, Section 3.2 Theorem 4]), for every L =1,-- -, u, we infer

det(Dg-Dg") =1+[Dgl*+ Y  Map(Dg)?
lo]=IB[>2
2v

2 1 + |ax19‘2 + |ay19‘2 + Z (aXlgiaylgj - aXngaylgi)z
i,j=1

= det (Vlg . VlgT) , (10.12)

where My stands for the «,  minors of a matrix and V{ denotes the derivative with
respect to x; and yi. Hence, if f; is a local holomorphic, consequently conformal, selection
for f: Q C R?* — Aq, we infer that

Q u
|Dﬂ2 Z Z < vgiz> b Z Z \/det (Vifi - Wif])

i=11=1 i=11=1
Z\/det Df; - DT).

Integrating, we conclude, for p > 1,

(10 12)

Dir(f, O\ £¢)

M IO T > Q+ =5

(10.13)

Now since the mass of [#] is finite, by (10.11) and (10.13) the energy of f is finite in Q \ Z¢.
Being dimg¢(Z¢) < m — 2, Lemma 10.9 below gives (i).
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Being [7] defined by the integration over #eg and H™ (7t(#ing)) = 0, it follows straight-
forwardly that Ty, is well-defined by (10.1) and coincides with [#7]. For the same reason,
since also H™ ! (7(Ying)) = 0, O([¥]LBr(x)) = T¢ a8, (x) for every B(x) € Q such that
floB,(x) € W2 and M(3([#]LBy(x))) is finite, that is for every x and a.e. v > 0, thus
concluding the proof of (ii). O

We say that a function f : QO € R™ — Ag(R™) has a smooth local selection in Q' C Q
if, for every x € Q’, there exist r > 0 and f; : By(x) — R™ smooth functions such that
B, (x) = 29:1 [fi]. Note that, in this case, [Df|* = > IDf;|? is well defined on the whole
Q'. The following is a simple consequence of the definition.

Lemma 10.9. Let f : O C R™ — Aq have a smooth local selection in ' C Q. If dimg(Q\ Q') <
m— 2 and fQ, |Df|? < 400, then f belongs to W"Z(Q,AQ).

Proof. The proof follows from the characterization of classical Sobolev functions via the
slice property. Indeed, for every T € Ag, the function x — G(f(x), T) is smooth and satisfies
ID(S(f(+), T))| < [Df| in Q. Therefore, since the projection of Q\ Q' on each coordinate
hyperplane is a set of H™~! measure zero, for H™ '-a.e. line parallel to the axes, the
restriction of §(f(-), T) belongs to w2, Recalling [18, Section 4.9.2], it follows that G(f(-), T) €
W12(Q) with [D(G(f(+), T))| < |Df| a.e. in Q. By Definition 3.1, we, hence, conclude. O

10.3 COMPLEX VARIETIES AS DIR-MINIMIZING Q-VALUED FUNCTIONS

We divide the proof of Theorem 10.1 into two parts: in the first one we give an argument for
the planar case which is particularly simple and exploit the equality between the area and
the energy functionals; in the second part we give a proof valid in every dimension.

10.3.1  Planar case p =1

In view of Proposition 10.8, we need only to show that f is Dir-minimizing in By. Choose a
radius r € [1,2] such that 0B, N X = () and set g = flsp,. Note that g is Lipschitz continuous.
For every h € Lip(B,, Ag) with hlag, = g, from the Taylor expansion of the mass and from
(10.10), we infer that

Dir(h, By)

M(ThB,) —Q < 5

(10.14)

By Theorem 10.4, 0Th 8, = T,08, = 0([¥]L B+). So, using Theorem 10.7 we infer

(10.11) (10.14)

Dir(f,By) "= "2 (M(T¢p,) —Q) < 2(M(Th,) —Q) < Dir(h,By).

Since the set of Lipschitz functions with trace g is dense in W;’Z (Br, Aq) (as can be deduce
easily from the Lipschitz approximation in Proposition 3.21), this implies that f is Dir-
minimizing in B, and, a fortiori, in By. O

Remark 10.10. The planar result provides examples of Dir-minimizing functions with singular
set of dimension m — 2 for every m, thus proving the optimality of the regularity Theorem
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7.2. Indeed, if g : B C R? — Ag is Dir-minimizing and £, # {), then f: By x R™ "2 — Aq
with f(x1,%2,...,%xm) = g(x1,%x2) is also Dir-minimizing (see the arguments in Lemma 7.14)
and dimg}((Zf) =m-—2.

10.3.2 General case . > 1

Here we exploit the expansion of the mass given in Lemma 10.6. The reason why this can be
done without the strong approximation theory developed by Almgren in [2] and reproved
with different methods in [13] is that, given as above a complex variety which is the graph
of a multi-valued function, the rescaled current Lys [#] = Tr¢, where L, : C*tY — CH*V is
given by La(x,y) = (x,Ay), is also a complex variety (being the L,’s linear complex maps),
and, hence, it is also area-minimizing.

The proof is by contradiction. Assume f is not Dir-minimizing in B7. Then, there exists
ue W1'Z(B1,AQ) and n > 0 such that Dir(u, B7) < Dir(f,B7) —n and ulss, = flas,. Set

u inB1,
wW =

f inBz\B].

We want to use w in order to construct competitor currents for L4 [#]. To this aim,
consider first its Lipschitz approximations we, for every e > 0, such that (see Proposition

3.21):

(a) [Ec| =0 (e?) as e — 0, where E. = {w. #w};

(b) Lip(we) < e ';

(c) [[IDwe|—IDwl||{2 =0(1) as e — 0.
By Proposition 10.8 and Lemma 10.6, for every open A such that E; C A and [A| < 2[E,]|,

M(b\#( [7]L(Ee x RZV))) =M (Tate,) < M(Tar,A)
: A2
023 Q1A+ 5 / IDfI2 +0 (A*) =0 (¢2) + O (A%).
A

Using Fubini and again Proposition 10.8, we can find radii r) . such that

[EcN0By, .| =0 (e?), (10.15)

TAe

d(La#[#1-By) = Taron, and M(Tage,noB,) =0 (¢2) + 0 (\?). (10.16)
Set Sy = T)\f,aBr}\ o Taw.,0 By .- Note that, by Theorem 10.4, being w, Lipschitz,

(10.16

0Sne = 0Tarop,, . —0Thw, by, = 00(Las [#]LBy) =0.
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Moreover, since Lip(Aw.) < Ae~! and T?\f,aBTA \E. = TAwg,aBrA \E,, the mass of S  can be
estimated in the following way:

M(Sye) = M(TAf,EgﬂbBT)\’s) + M(TAWE,EeﬁaBr)\/e)

(10.16) (10.15)
10<1 0 (52) +0 ()\2) +C A |€E€| 125 0 (62) +0 (?\2) +o(Ae). (10.17)

Fore =N\, M (Sx») =0 (7\2) and, by the isoperimetric inequality [54, Theorem 30.1], there
exists an integer current Ry such that

aR)\ = S)\)\ and M (R)\) <M (S}\)\)% =0 (7\2) . (10.18)
The current T, = T, wa By, T R) contradicts now the minimality of the complex current
Las#([7]L B+, ). Indeed, it is easy to verify that 0Ty = 0(L# [#]L B+,) and, for small A,

A2
M (Ta) =M (Las [7]L (Br, x R*Y)) =Q By, | + 5 Dir(wy, By, )+

)\2
—QIByy| — > Dir(f, By, ) + o (A?)
2
<—¥+0(A2) <o,
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SEMICONTINUITY OF Q-FUNCTIONALS






Q-QUASICONVEXITY AND Q-POLYCONVEXITY

In this part of the thesis we investigate systematically the semicontinuity properties of func-
tionals defined on Sobolev spaces of Q-valued maps. In particular, we consider functionals
which are expressed as integrals of what we call Q-integrands.

Definition 11.1 (Q-integrands). A measurable map ¢ : (RM)Q x (lRmX“)Q — R is a Q-
integrand if, for every m € Zq,

g(a1,...,aQ,A1,...,AQ) = g(anm,...,an(Q),Anm,...,AN(Q)).

When g is a Q-integrand and u : O — Aq(R™) is differentiable at some point x¢, the
value
g(ul(xo), Du(xo)) := g(ui(xo), ..., uq(xo0), Dui(xo), ..., Dug(xo))

is well defined (compare with Remark 1.11). If u = Z)] 1 [wj]], withw! : Q — Agq;(R™) and
a1 +---+qy = Q, we write also gw',...,w),Dw',...,DW/). Note also that, for vectors
{a7,...,a;}in R™, and w! as above, the following expression is well defined,

f(cn,...,a],...,a],...,a],Dw] (xo),...,DwI(xo)).
E/_/ N———

a1 qj

It turns out that the correct notion to be considered for the semicontinuity of such
functionals is the analog of the quasiconvexity (see Definition 11.8 and Theorem 11.9 below).
Clearly, the semicontinuity result proved by Mattila in [44] is contained in this analysis.

We generalize also the related notion of polyconvexity to the case of Q-valued maps and
prove that any policonvex Q-integrand is quasiconvex. This answer partially to an open
question posed by Mattila in [44].

11.1 EQUI-INTEGRABILITY

We start collecting several results concerning equi-integrable sequences. Our aim is to prove
Corollary 11.5 which will be used in the proof of Theorem 11.9. Let us first recall some
definitions and introduce some notation. As usual, in the following O C R™ denotes a
bounded Lipschitz set.

Definition 11.2. A sequence (gy) in L' (Q) is equi-integrable if one of the following equivalent
conditions holds:

(a) for every ¢ > 0 there exists & > 0 such that, for every L™-measurable set E C Q with
L™(E) < §, we have sup, [¢ gkl < &

(b) the distribution functions @y (t) := f{\gk\>t} lgk| satisfy lim_, o sup, @i (t) = 0;
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(c) (De la Vallée Poissin’s criterion) if there exists a Borel function ¢ : [0, +00) — [0, +00]

such that
ot
lim —— =400 and sup | @(lgkl)dx < 4o0. (11.1)
t—+oo t x Jo

Note that, since Q has finite measure, a equi-integrable sequence is also equi-bounded.
We prove now Chacon’s biting lemma.

Lemma 11.3. Let (gy) be a bounded sequence in L' (Q). Then, there exist a subsequence (kj) and a
sequence (t;) C [0, +o0) with t; — +oo such that (gx; V (—tj) At;) is equi-integrable.

Proof. Without loss of generality, assume gy > 0 and consider for every j € IN the functions
h{( = g; /\j. Since (hL)k is equi-bounded in LOO, up to passing to a subsequence (not
relabeled) there exists the L weak* limit f; of h}, for every j. Clearly the limits f; have the
following properties:

(@) f; < fj41 for every j (since h{; < h{j] for every k);

7

®) (1]l = timuc R |,

(c) sup; 15l = sup; limy Hh{(‘ <supy gkl < +oo.

L1
By the Lebesgue monotone convergence theorem, (a) and (c), it follows that (f;) converges in

L' to a function f. Moreover, from (b), for every j we can find a k; such that | [ h%;j — [ f;] <

].71

We claim that th = gy, /\j tulfills the conclusion of the lemma (with t; = j). To see this, it
is enough to show that th weakly converges to f in L!, from which the equi-integrability

follows. Let a € L* be a test function. Since th < th for 1 < j, we have that

[ Glallex = ank, < [ (s~ a)n,. (11.2)
Taking the limit as j goes to infinity in (11.2), we obtain (by (b) and f; L f)

[ el =) < Jale [ 1 timsup [ any,
From which, passing to the limit in 1, we conclude

lim.sup / ath < / af. (11.3)

j

Using —a in place of a, one obtain as well the inequality

/af < lim]_inf/ah{;j. (11.4)

(11.3) and (11.4) together concludes the proof of the weak convergence of hij tofinl!. O
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Next we show that concentration effects for critical Sobolev embedding do not show up if
equi-integrability of functions and gradients is assumed.

Lemma 11.4. Let p € [1,m) and (g) € W'P(Q) be such that (|gi|P) and ([Vgy|P) are both
equi-integrable. Then (|g|P") is equi-integrable as well.

Proof. Since (gy) is bounded in WP (Q), Chebychev’s inequality implies

S‘}Pjpﬁm(ﬂgk\ >j}) < C < +oo. (11.5)
j

For every fixed j € IN, consider the sequence gL = grx — (g V (=) A\j). Then, ( g{;) C
WP (Q) and Vg%< = Vg in {|gk| > j} and Vg;< = 0 otherwise. The Sobolev embedding
yields

I94E,e () < clgkByrniy < [ (9P +IVoul)ax. (11.6)
{lgxl>j}

Therefore, the equi-integrability assumptions imply that for every e > 0 there exists j. € N

such that for every j > j.

sup || gl (q) < €/2. (11.7)
K

Let 6 > 0 and consider a generic L™-measurable sets E C O with L™(E) < 6. Then, since
we have

lorlle gy < gk — 0k o () + 93w gy < e (L™ ENP" + [0 1o ()
by (11.7), to conclude it suffices to choose & such that j.6'/P" < ¢/2. O

From Lemma 11.3 and Lemma 11.4, we get the following result reminiscent of Lemma 2.3
in [23]. Our proof does not rely on Young measure theory.

Corollary 11.5. Let (vi) C W''P(Q, Aq) be weakly converging to . Then, there exists a subse-
quence (v;) and a sequence (u;) C W]'OO(Q,AQ) such that

(i) L™({vx, #w}) = o(1) and wy—win WW’(Q,AQ);
(ii) (IDw|P) is equi-integrable;
(iii) ifp € [1,m), (w;|P") is equi-integrable and, if p = m, (|u;|9) is equi-integrable for any q > 1.
Proof. Define gy := MP (|Dvy|) and notice that (gi) C L'(Q) is a bounded by the standard
weak (p —p) estimate for maximal functions (see [57] for example). Applying Lemma 11.3

to (gx), we find a subsequence (k;) and a sequence (tj;) C [0,+00) with t; — +oo such
that (gx; A\ tj) is equi-integrable. Let Q; := {x € Q : g;(x) < t;} and u; be the Lipschitz
extension of vy| Q; with Lipschitz constant ctj] /P (see Proposition 3.21), which satisfies
10\ Qj = o(t; ") and dyyis (1, vi;) = o(1).

Clearly, (i) follows from these properties. Furthermore, since by construction we have

IDy;[? = [Dvi, [P < gi; = gK; Atjon Q5 and  [Dy;fP < ctj =c(gx; Aty) on Q\ Q;,
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(i) is established as well. As for (iii), note that the functions f; := [u;| = G(u;, Q [0]) are
in W'P(Q), with |Dfj| < |Duy| by the definition of metric space valued Sobolev maps.
Moreover, by (i) f; converge weakly to [ul, since |[[u] — fj|[rr < ||G(w, u;)||Lr. Hence, (If;/P)
and (|Df;|P) are equi-integrable, which in turn, in case p € [1, m), imply the equi-integrability
of (Ju;[P") by Lemma 11.4. In case p = m, the property follows from Holder inequality and
Sobolev embedding (we leave the simple details to the reader). O

Finally, we prove the following averaged version of the equi-integrability which will be
used later in this chapter. Here C, denotes a cube with parallel to the axes edges with length
T.

Lemma 11.6. Let gy € L'(Q) with gy > 0 and sup, fC ©(gK) < oo, where py | 0 and @ is
superlinear at infinity. Then, it holds

lim <sup p;m/ gk> =0 (11.8)
oo\ k {gr>t)

and, for sets Ay C C,, such that L™(Ay) =o(p, ™),

—m —
kgrgoo Py / gk =0. (11.9)

Proof. Using the superlinearity of ¢, for every ¢ > 0 there exists R > 0 such that t < e@(t)
for every t > R, so that

lim sup (sup [ gk> <e sup][ ©(gr) < Ce. (11.10)
{gx=>t} k JCp,

t—+o0

Then, (11.8) follows as ¢ | 0. For what concerns (11.9), we have

pk‘“/ gkzpk‘“/ gk+pk‘“/ gk
Ax ArN{gk<t) AxN{gk=>t}

< tp MLM(Ak) + sup [ /

9k>t1

By the hypothesis L™(Ay) = o(p, ™), taking the limit as k tends to +oo and then as t tends
to +o00, by (11.8) the right hand side above vanishes. O

11.2 Q-QUASICONVEXITY AND SEMICONTINUITY

In this section we characterize all the semicontinuous functionals defined on the space of
Q-valued functions. We start recalling the definition of affine Q-function and introducing
the notion of Q-quasiconvexity.

Definition 11.7 (Affine Q-functions). A map u: Q — Ag(R™) is called affine if there are
constants ay,...,ag € R™ and linear maps Ly,..., Lo € R™*™ with the properties that

1) u(x) = ;[ai +Li-x];
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(11) Li = L)' if ai = aj.

Definition 11.8 (Quasiconvex Q-integrands). A locally bounded Q-integrand f : (RM)® x
(R™>*™) L Ris quasiconvex if the following holds. Let:

(i) u be any given affine Q-function

]
ji=1

where a; # aj for i #j.

(ii) w € W(Cy,.Aq,) be any given Lipschitz map with w/|ac, = qj [a; + Ljlac, ], where
Cy1 =[-1/2,1/2]™ is the unit cube.

Then,
f(a1,...,a1,...,a],...,a],L1,...,L1,...,L],...,L])
—— N—_———
q1 qy q1 qj
</ f(ai,...,a1,...,qj,...,a;,Dw', ..., DW)). (11.11)
C
! a1 qj

The following is the main result of this chapter.

Theorem 11.9. Let O C R™ be a bounded open set, f : O x (]R“)Q X (lRmX“) Q R continuous
and p € [1,+ool. Assume that:

(In) f(xo,-,-) is a quasiconvex Q-integrand for every xo € Q;
(Gr) there is a constant C > 0 such that
0 < f(xo,a,A) < C(1+1al? +]A]P),
where q =0ifp >m, q=p"ifp <mand q > 1 any exponent if p = m.

Then the functional
u— Flu) = / f(x,u(x), Du(x)) dx
Q

is weakly lower semicontinuous in wl» (Q,Agq(R™)).
Conversely, f(xo, -, ) is a Q-integrand for every xo € Q and F is weakly™ lower semicontinuous
in W1'°°(Q,AQ (R™)), then f(xo, -, -) is quasiconvex for every xo € Q.

Remark 11.10. Following Mattila, a quadratic integrand is a function of the form

E(u) Z:LZ<ADui;Dui>/
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where R™*™ 5 M = AM € R™*™ is a linear symmetric map. This integrand is called
Q-semielliptic if

m
/ Z(ADfi, Dfi) >0 Vfe Lip(R™, Ag) with compact support. (11.12)

Obviously a Q-semielliptic quadratic integrand is k-semielliptic for every k < Q. We now
show that Q-semiellipticity and quasiconvexity coincide. Indeed consider a linear map
x — L-x and a Lipschitz k-valued function g(x) = Zl 1 [fa(x)+L- x]] where f = ) ; [fi] is
compactly supported in Cy and k < Q. Recall the notationnof =k~! Y, f; and the chain
rule formulas in [12, Section 1.3.1]. Then,

E(g) = E(f) + k|Cy[(AL,L) +2/C > (AL Dfy)

:E(f)+k|C1|<AL,L)+2k/ (AL, D(nof)) =E(f) +k|Cq|(AL,L),
Cy

where the last equality follows integrating by parts. This equality obviously implies the

equivalence of Q-semiellipticity and quasiconvexity.

Proof. Sufficiency of quasiconvexity. We prove that, given a sequence (vi) C W'P(Q, Aq)
weakly converging to u € whp (Q,Ag) and f as in the statement of Theorem 11.9, then

F(u) < liminf F(vy). (11.13)

k—o0

Up to extracting a subsequence, we may assume that the inferior limit in (11.13) is actually
a limit (in what follows, for the sake of convenience, subsequences will never be relabeled).
Moreover, using Corollary 11.5, again up to a subsequence, there exists (uy ) such that (i)-(iii)
in Corollary 11.5 hold. If we prove

Fu) < lim Fuy), (11.14)

k—o0
then (11.13) follows, since, by the equi-integrability properties (ii) and (iii),
Flux) = / f(x, v, Dvi) +/ f(x, ux, Duy)
{(vie=ui} {(vicAux}
<Fw)+C (1+ | + [Duk[P) = F(vi) +o(1).
viAut
For the sequel, we will fix a function ¢ : [0, +00) — [0, +00] superlinear at infinity such

that

sup/ (Jug|9) + (p(IDuklp))dx < o0. (11.15)

In order to prove (11.14), it suffices to show that there exists a subset of full measure Qcao
such that for xo € Q) we have

dp

f(xo,ulx0), Dulxo)) < 77

(x0), (11.16)
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where p is the weak*® limit in the sense of measure of any converging subsequence of
(f(x, w, Dux)L™L Q). We choose Q to be the set of points xo which satisfy (3.34) in
Lemma 3.27 and, for a fixed subsequence with ((p(luqu) + (p(IDuklp))Lm L Q—*, satisfy

dﬁ?’/“ (x0) < 4o00. (11.17)
Note that such Q has full measure by the standard Lebesgue differentiation theory of
measure and Lemma 3.27.

We prove (11.16) by a blow-up argument following Fonseca and Miiller [22]. Since in the
space Aq translations make sense only for Q multiplicity points, blow-ups of Q-valued
functions are not well-defined in general. Hence, to carry on this approach, we need first
to decompose the approximating functions uy according to the structure of the first order-
approximation Ty, u of the limit, in such a way to reduce to the case of full multiplicity
tangent planes.

Claim 1. Let xo € Q and u(xg) = Z]-I:] d; [[a]-]], with ai # aj for i # j. Then, there exist py. | O
and (wy) C W1'°°(Cpk(xo),AQ) such that:

@ we =¥, [{wg;}] with w, € whoo(cpk(m Aay)s 19w w(x0)) Lo, (o)) = (1)
and G(wi(x),u Z 1 §( wk ), a5 [a;])? for every x € Cyp, (x0);

(b) fcpk(XO) 9]3 (Wk/ TXou) = O(pE)/

(©) limig oo fe, (xy) F(x0, 1lx0), DWi) = g (x0)-

Proof. We choose radii px which satisfy the following conditions:

sup (@(uklh) + @(IDug|?)) < +o0, (11.18)
k Cpk(Xo)
dp
f(x, we, Duy) — ———(xo), (11.19)
][cpk(xO) acm
f Sl =olf) and 9P (1ux, Teot) = ofp}). (11.20)
Cpy (x0) Cp, (x0)

As for (11.18) and (11.19), since
(@(u|M) + @(IDufP)) L™LO—*v  and  f(x,u, Duy)L™LO—",

we only need to check that v(0C;, (xo)) = n(9Cp, (x0)) = 0 (see for instance Proposition 2.7
of [11]). Fixed such radii, for every k we can choose a term in the sequence (uy) in such a
way that the first half of (11.20) holds (because of the strong convergence of (uy) to u): the
second half is, hence, consequence of (3.34).

Set 1 = 2|Dul(x0) px and consider the retraction maps 9y : Aq — By (u(x0)) C Ag
constructed in [12, Lemma 3.7] (note that for k sufficiently large, these maps are well defined).
The functions wy := 9y o uy satisfy the conclusions of the claim.
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Indeed, since 9y takes values in B;, (u(xo)) C Ag and ¢ — 0, (a) follows straightforwardly.
As for (b), the choice of Ty implies that 9y o Ty, u = T ;u on Cy,, (x0), because

T
5(Txguu(x), (x0)) < [Dulxo)l b —xol < IDu(xo)l pic = - (11.21)
Hence, being Lip(dx) < 1, from (11.20) we conclude
][ 9P (wie, Ty 1) —][ G (91 0 1ty Dy 0 Tugt) < ][ 9P (1., Tuot) = 0(p]).
Coy (x0) Coy (x0) Coy (x0)

To prove (c), set Ay = {wk %+ uk} {G(uk, u(xo)) > ¢} and note that, by Chebychev’s
inequality, we have

TE Lm(Ak) < 919 (UK,U.(XO)) < 2‘}9—1 9]9 (u'k/ TXou') +2p_1 9]9 (TXou/u'(XO))
Ak Ak Ak
(11.20), (11.21) rP
< olpp )+ L™ (A,

which in turn implies
L™(Ax) = o(py'). (11.22)

Using Lemma 11.6, we prove that

lim f f (%0, u(x0), Dwy) —][ f(x,wr,Dwy) | =0. (11.23)
k=00 \ JCy, (x0) Coy (x0)

Indeed, for every t > 0,

][ f (x0,u(x0), Dwy) —][ f (x, wi, Dwy)
Cpk(XO) Cpk(XO)

<o (f (x0, w(xo), Dwid) + f (x, Wi, Dwi) )
Coy (x0)N{IDwy [ >t}

+po ™ If (xo0,u(x0), Dwi) — f (x, wi, Dwy) |

Cpk xo)N{|Dwy|<t}

< sup — / (T+ il 9+ DwilP) + weelpr + [Gwi, wlxo) [l <),
K PR Cpyp (x0)N{IDwy[ >t}

(11.24)

where wy; is a modulus of continuity for f restricted to the compact set C,(xo) X
Blu(x)j+1 X Bt € Q x (R™)Q x (R™™)Q. To fully justify the last inequality we remark that
we choose the same order of the gradients in both integrands so that the order for u(x¢) and
for wy is the one giving the L* distance between them. Then, (11.23) follows by passing
to the limit in (11.24) first as k — +o0 and then as t — +o0 thanks to (11.8) in Lemma 11.6
applied to 1+ [wg|9 (which is equi-bounded in L*(C,, (xo)) and, hence, equi-integrable)
and to |Dwy|P.
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Thus, in order to show item (c), it suffices to prove

lim ][ f (%, U, Duy) —7[ f(x,wy,Dwy) | =0. (11.25)
k=00 \ JCp, (x0) Coy (x0)

By the definition of Ay, we have

][ f (Xr Uy, DUk) - ][ f (X/ Wy, DWk)
Cpk (x0)

Cpk(Xo)

< p]:m A (f (X/uk/ Duk) + f (X,Wk, DWk))
k

C

X m

(14 Wil + [u|? + [Dwy [P + [Dug|P).
pk Ak

Hence, by the equi-integrability of uy, wy and their gradients, and by (11.22), we can
conclude from (11.9) of Lemma 11.6 O

Using Claim 1, we can now “blow-up” the functions wy and conclude the proof of (11.16).
More precisely we will show:

Claim 2. For every y > 0, there exist (zy) C W]'°°(C1,AQ) such that zylac, = Tx,ulac, for
every k and

lim sup f(xo,u(xo),Dzk) < du (x0) +v. (11.26)

k—+oco0 JCy acm

Assuming the claim and testing the definition of quasiconvexity of f(xy, -, -) through the
zi’s, by (11.26), we get

f(xo0,u(x0), Du(xo)) < limsup [ f(xo,u(xo), Dzy) < L (x0) +v,
k—+4o00 JCq aem

which implies (11.16) by letting v | 0 and concludes the proof.

Proof of Claim 2. We consider the functions wy of Claim 1 and, since they have full multiplic-
ity at xo, we can blow-up. Let (x := Z]-I:] [[C{(ﬂ with the maps Ci € W]IOO(C1,qu) defined
by Ci(y) =T g (p? Ta; (WL)(XO + pk-)) (y). Clearly, a simple change of variables gives

G —q;faj+L] in LP(Cy,Ag) (11.27)
and, by Claim 1 (c),

Jim [ f(routxe), DG = b o) (11.28)
Now, we modify the sequence ((x) into a new sequence (zy ) in order to satisfy the boundary
conditions and (11.26). For every & > 0, we find r € (1 — 5, 1) such that

lim inf IDCk|P < ¢ and lim GP (Cx, Txu) = 0. (11.29)
k—+o00 JacC, d k—+o0 JaC,
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Indeed, by using Fatou’s lemma, we have

1
/ lim inf IDlk|Pds < liminf IDlkIP < C,
1—5 k—=+o JaC, k—+too JCy\Cis
LI . (11.27)
/ lim [ 9P(G, Tew)ds < limin G (G, Teow) "7,
1—5 k—+00 Jac, k=00 JC\Ci_s

which together with the mean value theorem gives (11.29). Then we fix ¢ > 0 such that
1(1+¢) < 1 and we apply the interpolation result [12, Lemma 2.15] to infer the existence of
a function zy € W1f°°(C1,AQ) such that zy|c, = Cklc,, Zk|C1\Cr(H€) = TX0u|C1\Cr(1+g) and

C
/ Dzl < Cer< | pars | |DTX0uP) + 5 T
Cr1tency aC, aC, €T Jac,

C
< Ce(T +5*1)+z GP (Cx, Tipw). (11.30)
o0C,

Therefore, by (11.30), we infer

/f(xo,u(xo),DZk)Z/ f(xo,u(x0), Dk )+
Cq

Cr

+ / f(xo, ulxo), Dzic) + / f(xo, ulxo), Du(xo))
Cr140)\Cr CiI\Cr(14¢)

< /C f(xo0, u(xo), Dx)+
C

+Ce(1+8 1)+ N GP (i, Tiput) + CB.
0C,

Choosing & > 0 and & > 0 such that Ce(1+5~") + C6 < v, and taking the superior limit as
k goes to +oo in the latter inequality, we get (11.26) thanks to (11.28) and (11.29). O

11.2.1  Necessity of quasiconvexity

We now prove that, if F is weak*-W'1* Jower semicontinuous, then f(xo, -, -) is Q-quasiconvex
for every xo € Q. Without loss of generality, assume xo = 0 and fix an affine Q-function
u and functions w as in Definition 11.8. Set 2} (y) := Zfi] [(wj (Y))i —aj — L; -y]], so that
b2, lac, = a5 [0], and extend it by C;-periodicity.

We consider v) (y) = > {7, [k (2 (ky))i + a; + L; - y] and, for every r > 0 such that
Cr C Q, we define uy (x) = Z]J:1 T(1-1)q; (Tv%< (T‘_]X>). Note that:

(a) for every r, uyr — uin L*(Cy, Ag) as k — +oo;
(b) uxrlac, =ulac, for every k and ;

(c) for every k, uy+(0) = Z].I:1 Ta; (r/kzj(O)) —u(0)asr—0;
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(d) for every r, sup, |HDuk,rH|]_00(Cr) < +00, since

qd; ) 2
Dz! (kr_]x) + Lj‘ .

] .
D, 2(x) = 3 DV (7 'x) = Y
2 2.

ji=11i=1

From (a) and (d) it follows that, for every r, uj,—*u in W1'°°(Cr(xo),AQ) as k — 4o0.
Then, by (b), setting uy » =uon Q\ C,, the lower semicontinuity of F implies that

F(u,Cy) :/ f(x,u, Du) < liminf F(uy,r, Cy). (11.31)

k—+o0

By the definition of uy , changing the variables in (11.31), we get

/ f(ry,m +rLy -y,...,a]+rL]~y,L1,...,L])dy
Gy
q1 qj

< liminf . f(rU, T(1—r)ay (VR -, T -y e, (TVE(Y), DVL(Y), . .., DV (y)) dy.
1

(11.32)

Noting that T(j_y)q; (Tvi(y)) — gj [a;] in L*(Cy,Aq,) as r tends to 0 and DvL(y) =
11, (D2 (ky)), (11.32) leads to

f(O,a1,...,a1,...,a],...,a],L1,...,L])

a1 qj
< liminf f(O, ai,...,ai,...,ajs...,aj T, (Dz' (ky)), .. S TL (Dzl(ky)))dy.
k—o0 C \ﬁqf—/ \T_/
1 y
(11.33)
Using the periodicity of zJ, the integral on the right hand side of (11.33) equals
/ f(xo,a1,...,a1,...,a],...,a],’rl_1 (DZ! (y)),...,TLI(DzI(y)))dy.
© q1 qj
Since Ty (Dz)) = Dw/, we conclude (11.11).
O

11.3 Q-POLYCONVEXITY

Definition 11.8, although it gives the right condition for semicontinuity, is difficult to verify
in practice. For this reason, in order to provide explicit examples of semicontinuous Q-
functional, we introduce the following generalization of the standard notion of policonvexity.
First we fix the following notation. If A € R™*™ and k < min{m,n} =: N, then

@ oo=(ct1,...,01), B=1(B1,...,Px) are multi-indices of order k, i.e.

IT<ui<omp<...<ox<n 1T<Br1<Phr<...<Pr<m.
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(b) |« =[B]:=k;

(c)
A‘Xl (SRR A‘Xl B
Mup(A) :=det | : .o ;

Ay -+ Axpy
) if t(n,m) = Y 1, (M (H), M:R™™ — RTMM) is the map
M(A) := (A, adj,A, ... ,adjyA),

where adj, A, k € {2,..., N}, stands for the matrix of all the k x k minors of the n x m
matrix A. The scalar product in R*™™ is indicated by (-, ).

Definition 11.11. A map P : R™*™ — IR is polyaffine if there are constants co,c}xﬁ (for
lLe{l1,...,N}and «, p multi-indices) such that

N
P(A)=co+ Z Z c}xﬁ Mgp (A). (11.34)
=1 |al=IB]=1
Equivalently, there is some ¢ € R™(mM) such that (11.34) rewrites as
P(A) =co +(C, M(A)). (11.35)

Definition 11.12 (Polyconvex Q-integrands). A Q-integrand f : (RM)Q x (IR“XT“) ? L Ris
polyconvex if there exists a map g : (R™)? x (RT(mm)) ? _, R such that:

Q

(i) the function g(as,...,aq,-): (]RT(m'“)) — R is convex for every aj,...,ag € R"™,

(ii) forevery aj,...,aqg € R"and (Ly,...,Lg) € (R™*™)Q it holds

f(ar,...,aq,Li,...,Lg) = g(ai,...,aq,M(Ly),...,M(Lg)). (11.36)

The important fact about Q-policonvexity is that it implies Q-quasiconvexity.
Theorem 11.13. Every locally bounded polyconvex Q-integrand f is quasiconvex.

In order to prove Theorem 11.13 we represent polyconvex functions as supremum of a
family of polyaffine functions retaining some symmetries from the invariance of f under the
action of Y.

Proposition 11.14. Let f be a Q-integrand, then the following are equivalent:

(i) fisa polyconvex Q-integrand,
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(ii) for every choice of vectors ay,...,aq € R™ and matrices Aq,...Aq € R™™, with Ay = A;
if ay = aj, there exist polyaffine functions P; : R™*™ — R, with P; = P; if ay = a;, such
that

Q
f(a1,...,aQ,A1,...,AQ):ZPj(Aj), (11.37)
=1
and

Q
f(ar,...,aq,Li,...,Lg) > E P;(L;) foreveryLy,...,Lg € R™*™. (11.38)
=

Proof. (i)=(ii). Let g be a function representing f according to Definition 11.12. Convexity
of the subdifferential of g(ay,...,aq,-), condition (11.36) and the invariance of f under the
action of permutations yield that there exists ¢ € dg(a, ..., ag, M(A1),...,M(Aq)), with
(i = ¢ if ay = a;, such that for every X (RT(M1))Q we have

Q
g((l],...,CI.Q,X],...,XQ)29((1],...,(1Q,M(A1),.. +ZC)/X M )>
ji=1

(11.39)

Hence, the maps P; : R™*™ — R given by
P;(L):=Q 'g(ai,...,aq, M(A1),...,M(AQ)) + (g, M(L) — M(A;)) (11.40)

are polyaffine and such that (11.37) and (11.38) follow.
(ii)=(i). By (11.37) and (11.38), there exists (;, satisfying (; = ¢; if a; = aj, such that

Q
f(a1,...,aQ,L1,...,LQ) > f(a1,...,aQ,A1,...,AQ) —|—Z<CJ‘,M(L]')*M(A]')>. (11.41)
j=1

Then setting,

Q

g(a1,...,aQ,X1,...,XQ)::sup{f(cu,...,aQ,A],..., —I—ZC),X M(A )>},
j=1

(11.42)

where the supremum is taken over all Ay, ..., Ag € R™*™ with A; = A;j if a; = a;, it follows
clearly that g (a1 PR Yoy ) is a convex function and (11.36) holds thanks to (11.41). In turn,
these remarks and the equality co((M(]Rnxm))Q) = (RT(mn))Q imply that g(a1 ,eoee,0Q, )
is everywhere finite. O

We are now ready for the proof of Theorem 11.13.
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Proof of Theorem 11.13. Assume that f is a polyconvex Q-integrand and consider a;, L; and
w as in Definition 11.8. Corresponding to this choice, by Proposition 11.14, there exit
polyaffine functions Pj satisfying (11.37) and (11.38), which now read as

f(ay,...,ay,...,ay,...,ay,Lqy,...,Ly,...Ly,..., L} ) = :P: (L; 11.
(a1 1 ] 7, L1 1 ] 7) ;q; (L) (11.43)
a1 qj a1 qj

and, for every By,...,Bg € R™*™,

] Zlgj‘h
f(a1,...,a1,...,a],...,a],B1,...,BQ)22 Z P;(Bi) ;. (11.44)
di qaj j=1 1= a1+

To prove the theorem it is enough to show that

J
>_aiPil / ZZP (Dw)) (11.45)
j=1

‘jlll

Indeed, then the quasiconvexity of f follows easily from

J
(11.37)
f((l],...,(l],...,(l (l],I_],...,L],...L],...,L]) = Zq]—P L
%,_/ —— :
q1 qj =
(11. 45) j (11.38) 1
ZZP (Dw!) < / f(a1,...,a1,...,a1,...,aI,Dw,...,Dw]).
C1J' 1i=1 C a1 q']

To prove (11.45), consider the current T,,; -, associated to the graph of the q;-valued
map w. It is easy to verify from the definition that the current associated to the graph of a
Lipschitz Q-valued function u acts on forms w(x,y) = ZIN:] > ol=| Bl=1 w}xﬁ (x,y)dxg A dyp
in the following way:

Two,w /ZZ Z Oo Whp (%, 1 (x)) Mg (Duy (x)) dx. (11.46)

i=11=1|x|=|B|=1

Hence, by (11.46), for the exact, constant coefficient m-form

N
dw) = cz) dx + Z Z Ou c’;;fﬁ dxg Adyg,
1=1]x|=[B|=1

it holds
/ Z P; Dw T, dew)) (11.47)
C

where P] (A) = Cg) + Z]l\J:] Z\Od:\ﬁ\:L C]o,(lﬁ) M(Xﬁ (A)
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Since ulac, = Wwlac,, from Theorem 10.4 it follows that dT,,,c, = 0Ty, c,. Then, (11.45) is
an easy consequence of (11.47): for W (x) = qj [a; + L; - x|, one has, indeed,

J J 4 J
>_aiPilLy :/ ZZP]'( =2 Ty, do))
j=1 j=11i=1 j=1

J

Z wi,Cyr :.

j=1 j

<6Tui,C1 4 w)>

_'I\’I~

1=

J 4
(Twicp dwl)y = [ 33 Py(Dw)).

Cij=1i=1

I\/]H

—_

This finishes the proof. O

Explicit examples of polyconvex functions are collected below (the elementary proof is
left to the reader).

Proposition 11.15. The following class of functions are polyconvex Q-integrands:

(a) f(ar,...,aq,Li,...,Lg) == g(S(L, Q[0])) with g : R — R convex and increasing;

(b) flar,...,aq,Ly,...,Lg Z” 1 9(Ly — L) with g : R™*™ — R convex;
(c) flar,...,aq,L1,...,Lg Zl 1 9(ai, Ly) with g : R™ x R™*™ — R measurable and
polyconvex.

Remark 11.16. Consider as in Remark 11.10 a linear symmetric map R™*™ > M — AM €
R™ ™. As it is well-known, for classical single valued functions, the functional [(A Df, Df)
is quasiconvex if and only if it is rank-1 convex. If min{m, n} < 2, quasiconvexity is equivalent
to polyconvexity as well (see [60]). Hence, in this case, by Theorem 11.13, every 1-semielliptic
integrand is quasiconvex and therefore Q-semielliptic.

We stress that for min{m,n} > 3 there exist 1-semielliptic integrands which are not
polyconvex (see always [60]).
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Part IV

APPROXIMATION OF MINIMAL CURRENTS






HIGHER INTEGRABILITY OF AREA-MINIMIZING CURRENTS

In this and in the next chapter, we give a new proof of the approximation of minimal
current provided in Almgren’s big regularity paper. In particular here we prove the higher
integrability estimate which is the new, main ingredient in this new proof. Its proof depends
heavily on the higher integrability of Dir-minimizing functions proved in Chapter 9.

In order to do that, we develop a standard Lipschitz approximation technique based on
a modification of the by now well-known Jerrard-Soner’s BV estimate, and prove a first
weaker approximation result where the errors are infinitesimal with the Excess.

12.1 HIGHER INTEGRABILITY ESTIMATE

The principal quantities which are involved in this estimate are the excess and the density
excess. In what follows, we consider integer rectifiable m-currents T supported in some open
cylinder C;(y) = Br(y) x R™ € R™ x R™ and satisfying the following assumption:

T = Q[Br(y)] and 0OT =0, (H)

where 7t : R™ x R™ — R™ is the orthogonal projection and m,n, Q are fixed positive
integers. For such currents, we denote by et the excess measure and by Ex(T,C:(y)) the
cylindrical excess, respectively defined by

eT(A) = M(TI_(A X ]R“)) —QJA]| for every Borel A C B;(y),

b = LD _ ()

We denote, moreover, by dt the density of the excess measure et and we call it the excess
density,

e1(Bs(x))

41 (x) = limsup s
m

s—0

The higher integrability estimate can be then formulated as follows.

Theorem 12.1. There exist constants p > 1 and C,e > 0 such that, for every mass-minimizing,
integer rectifiable m-current T satisfying (H) and E = Ex(T, C4) < €y, it holds

/ 8P < CEP. (12.1)
{6<1}032

In the case Q = 1, we know a posteriori that T coincides with the graph of a C!"* function
over B, (see [10], for instance). However, for Q > 2 this conclusion does not hold and
Theorem 12.1 has, therefore, an independent interest.

We pass now to the proof of Theorem 12.1 which is carried over the next sections.
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12.2 LIPSCHITZ APPROXIMATION OF CURRENTS

Given a normal m-current T, following [5] we can view the slice map x — (T, 7, x) as a BV
function taking values in the space of 0-dimensional currents (endowed with the flat metric).
Indeed, by a key estimate of Jerrard and Soner (see [5] and [38]), the total variation of the
slice map is controlled by the mass of T and 9T.

Combining this point of view with the metric theory of Q-valued functions and a standard
truncation arguments, we develop a powerful and simple Lipschitz approximation technique,
which gives a systematic tool to find graphical approximations of integer rectifiable currents.
For this purpose we introduce the maximal function of the excess measure of a current T
satisfying (H):

Mt (x) := sup M = sup Ex(T, Cs(x)).

Bi(x)CB,(y) PmS™ B (x)CB.(y)

Our main approximation result is the following and relies on an improvement of the usual
Jerrard—Soner estimate.

Proposition 12.2 (Lipschitz approximation). There exist constants ¢, C > 0 with the following
property. Let T be an integer rectifiable m-current in Cys(x) satisfying (H) and, set K := {My <
n} N Bzs(x), forn € (0,c). Then, there exists u € Lip(B3s(x), Ag (IR™)) such that graph(ulx) =
TL(K xR™), Lip(u) < Cn% and

Ba<(x) \KI < Ter((My >1/2). (12.2)

In order to prove this proposition, we show first a modified BV estimate for the slice of
integer currents.

12.2.1 The modified Jerrard-Soner estimate

For the sake of brevity, we do not introduce the machinery of metric space valued BV
functions, developed by Ambrosio in [3], which nevertheless remains the most elegant
framework for this theory — cp. to [5]. We adopt the definitions and the standard notation
due to Federer, see [19] and [54]. An integer rectifiable O-current S in R™ with finite mass is
simply a finite sum of Dirac’s deltas: S = Z{; 0; 0x,, where h € N, 0; € {—1,1} for every i
and the xi’s are (not necessarily distinct) points in R™. The space of such measures, denoted
by Jo(IR™), is a Banach space when endowed with the flat norm

IF(S) :=sup {(S,}) : b € C'(R™), ||, DV, <1},

where (S,9) = ) ; 01 (x4). Note that F(dx,5y) =[x —ylif x —y| < 1.
Let T be an integer rectifiable m-dimensional normal current on C4. The slicing map
x — (T, m, x) takes values in Jo(R™*™) and is characterized by (see Section 28 of [54])

/ ((T,m,x),d(x,)ydx = (T,pdx) for every ¢ € CZ(Cy).
By
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Note that, in particular supp ((T,m, x)) C 7 1({x}). Moreover, (H) implies that, if we write
(T,m,x) =2 ; 0id(x,y,), then } ; 0y =
Our estimates concerns the push- forwards of the slices (T, 7, x) into the vertical direction,

T == qy((T,,x)) € Jo(R™), (12.3)

where g : R™*™ — R™ is the orthogonal projection on the last n components. Ty is
characterized through the identity

/B (T, ¥) @(x) dx = (T, @(x)P(y) dx) for every ¢ € CX(B4), P € CZ(R™).

Proposition 12.3 (Modified BV estimate). Let T be an integer rectifiable current in C4 with
0T = 0 and satisfying (H). For every \p € CP(R™), set Oy, (x) := (Tx, V). If Y|l , |IDV]|o < T,
then @, € BV(Bg4) and satisfies

(|D(I)11)|(A))2 <2er(A)M(TL(A x R™)) for every Borel A C By. (12.4)

Note that (12.4) is a refined version of the usual Jerrard-Soner estimate, where the right
hand side would rather be M (TL(A x R™))? (cp. to [5]). Note also that assumption (H) can
be dropped if in (12.4) et is replaced by its total variation.

Proof. 1t is enough to prove (12.4) for every open set A C By. To this aim, recall that

DDy I(A) = sup { /A Oy (x)dive(x) dx : ¢ € CE(A,R™), o]l < 1}. (12.5)
For any vector field ¢ as in (12.5), (div ¢(x)) dx = de, where

oc:Z(pj ¥/ and d¥ = (—1)j*1dx1 A A TADITT A Adx™
j
Moreover, by the characterization of the slice map, we have

/AGDq)(X)divcp(X) dx:/ (T, W(y)) dive(x) dx = (T, b(y) div @(x) dx)

B4
=(T,Ydx) =(T,dV ) — (T, db A ) = —(T,db A ), (12.6)

where in the last equality we used the hypothesis 0TL C4 = 0.
Observe that the m-form d{) /A « has no dx component, since

dpAa=) ¥ (- ]]aq) (y) @5(x) dy* A dg.

j=11i=1

Let € be the m-vector orienting R™ and write T=(T-&)é+S (see Section 25 of [54] for the
scalar product on m-vectors). We then conclude that (T, dp A &) = (S- ||T||, di A &) and

/AX ISP aT) = /AXW (1-(?-6)2) a7 <2/AXR“ (1-(?5)) d|[T|| = 2er(A).
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Since [dp A «| < [|[DY]| o, [|@]lo < 1, Cauchy-Schwartz yields

/A%(x)dw(x) de < (T, db A | = (ST, b Aol < lap Al [ IS/
X n

< (/ 52 d||T||>2 VMTL(A x RY))
A XR™
< V2 /er(A) VM(TL(A x RM)).

Taking the supremum over all such ¢’s, we conclude estimate (12.4). O

12.2.2  The Lipschitz approximation technique

We are now ready for the proof of Proposition 12.2. Before, we recall the following notation.
For a vector measure v in B4, |v| denotes its total variation and M(v) its local maximal
function:

VI(Bs(x)

W s™

M(v)(x) ==

0<s<4r—|x|

We recall moreover the following proposition (see for instance Section 6.6.2 of [18], up to the
necessary elementary modifications), a fundamental ingredient in the proof of Proposition
12.2.

Proposition 12.4. There is a dimensional constant C with the following property. If v is a vector
measure in Bay, 0 €]0,00[ and Jg :={x € B3, : M(v) < 0}, then

C
ol < gvI(Baz). (12.7)
If in addition v = Df for some f € BV(Ba4,), then
lf(x) —f(y)| < COIx—yl|l forae x,y€]Jp. (12.8)

Proof of Proposition 12.2. Since the statement is invariant under translations and dilations,
without loss of generality we assume x = 0 and s = 1. Consider the slices Ty € Jo(IR™) of T
(as defined in (12.3)). Recall that M(TL A x R™) = [, M(Ty) for every open set A (cp. to [54,
Lemma 28.5]). Therefore,

M(T,) < lim MUILE(0)

o <Mt (x)+Q for almost every x.
T— m

Without loss of generality, we can assume ¢ < 1. Hence, for almost every point in K,
being 1 < 1, we have that M(Tx) < Q + 1. On the other hand, M(Tx) > Q for every x,
because ;T = Q [B4]. Thus, T, is the sum of Q positive Dirac’s delta for every x € X,
that is, Tx = ) ;84,(x) for some measurable functions g;. We set g := } ; [gi], so that
g:K— Ag(R™).
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For every { € CX(IR"™), by Proposition 12.3 we deduce that

DD, [(Br(x))\* 2e7 (B (x)) M(T, €y (x))
P U BT ) S B2
o<r<4—|x| T O<r<4—|x| T
2e1(Br(x)) (e1(B+(x)) + Q[B,l)
B,

M(ID®y)(x)* =

<
O<r<a—|x|

<2M1(x)?+2QM7(x) < CMy(x).

Hence, by Proposition 12.4, this implies the existence of a constant C > 0 such that

Dy, (x) — Dy (y)| = <Cn2lx—y| forae xyeK.

S wloix) = Y wloily)

Taking the supremum over all the { € CX(R™) with [\, [|DWV], < 1, we deduce that

F(g(x) —g(y)) < Cn'/?x—yl. (12.9)

It is well-known that there is a constant C such that §(T;, T;) < CF(Ty — T,), for every
T, T, € Ag(R™) C Jp(R™), if IF(Ty —T3) is small enough. Therefore, from (12.9), since
n < cand s = 1, for ¢ small enough, we infer that g can be viewed as a Lipschitz map
to (Ag(R™),5). Recalling Theorem 1.7, we can extend g to a map u: Bz — (Ag(R™),9)
with constant Cn'/2. Clearly, u(x) = Tx for almost every point x € K, which implies
graph(ulx) = TL(K x IR™). Finally, (12.2) follows directly from Proposition 12.4. O

Remark 12.5. In what follows, we will always choose n = Ex(T, Cas(x))?*, for some « €
(0, (2m)~"). The map u given by Proposition 12.2 will then be called the E*-Lipschitz (or
briefly the Lipschitz) approximation of T in C34(x). Note that, if x ¢ K, then there exists

such that, for E = Ex(T, C45(x)),
E2x < M < E7(4S)m
b Wm T N LR '

This implies that v, < 4s Ew". Hence, following the proof of Proposition 12.4, one deduces
that the Lipschitz approximation u satisfies the following estimates:

Lip(u) < CE%, [Br(x)\KI < CE%er ((Mr > E2%/2)0B_, 120 0),

IDu? < M+ > E2%/20 N B (12.10)
/Br(X)\K h \eT({ T /2} T+4SE%(X)>'

12.2.3 Taylor expansion of the area of Lipschitz multi graph

We conclude this section with the following technical result on the Taylor expansion of the
area functional for Lipschitz Q-valued maps.

Proposition 12.6. There is a constant C > 1 such that, for every g € Lip(Q, Aq(R™)) with
Lip(g) < 1 and for every Borel set A C (), it holds

1—C 'Lip(g)? 1+ CLip(g)?
7 p(g) / |D9‘2 < eglraph(g)(A) < zp(g)/ ‘Dg|2 (12'11)
A A
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Proof. Note that det(Df; - Df{ )2 = 1+ |Dfi|* + 2 a2 (MY )2, where « is a mult1 index

and M the corresponding minor of order || of Df;. Since v1 + x2 <14+ X% 7 and M‘f"l <
C |Dfll*l < C|Df|? Lip(f )l®I=2 < C|Df|? when |«| > 2, we conclude

M (graph(fla)) Z/ ( +DfP+ > (M) )
lx|>2

< Q|A|+/A(;|Df|2+C|Df|4) < QIAl+ % (1+ CLip(f)?) [, IDfI%.

4

On the other hand, exploiting the lower bound 1 + "72 - <V1+ x2,

M (graph(flx)) Z:/\WFHDHZ 2:/ + 1DfP — L D)
> Z/ (1 + 1IDfy|2 — lLip(f)2|Dfi|2>
1 A

= QIAl+ 3 (1 - 3Lip(f)?) [, IDF2.

This concludes the proof. O

12.3 HARMONIC APPROXIMATION

The second step in the proof of Theorem 12.1 is a suitable compactness argument which
shows that, when T is mass minimizing, the approximation f is close to a Dir-minimizing
function w, with an o(E) error.

Theorem 12.7 (o(E)-improvement). Let « € (0, (2m)~). For every m > 0, there exists e1 =
e1(m) > 0 with the following property. Let T be a rectifiable, area-minimizing m-current in Cy4q(x)
satisfying (H). If EX(T, C45(x)) < €1 and f is the E*-Lipschitz approximation of T in C35(x), then

/ IDfIZ < ner(Bas(x)), (12.12)
BZs( )\K
and there exists a Dir-minimizing w € W12(Bas(x), Aq (R™)) such that
2
[ stwe [ (Dfl-Dw)® < ner(Bas(o). (12.13)
B2 (x) B2y (x)

This theorem is the multi-valued analog of De Giorgi’s harmonic approximation, which
is ultimately the heart of all the regularity theories for minimal surfaces. Our compactness
argument is, to our knowledge, new (even for n = 1) and particularly robust. Indeed, we
expect it to be useful in more general situations.

Proof. Both the arguments for the proof of (12.12) and (12.13) are by contradiction and builds
upon the construction of a suitable comparison current. We divide the proof into different
steps.
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Proof of (12.12). Without loss of generality, assume x = 0 and s = 1. Arguing by contradic-
tion, there exist a constant cy, a sequence of currents (T;)1en and corresponding Lipschitz
approximations (f)ien such that

E1 :=Ex(T,C4) - 0 and IDff* > ¢ Er.
B2\Ky

Set Hy := {M, < E{*/2} C Bs. Since Ty and graph(f,) coincide over K, the Taylor expan-
sion (12.11) gives le\Hl IDf{]? < Cet,(Ky \ Hy). Together with (12.10), this leads to

5
c1 By < / IDf1* < Cer,(Bs \Hy), Vs¢ [,3] ,
B,\H, 2

which in turn, for 2¢c; = ¢1/C, implies
er,(HLNBs) <er(Bs) —2cy By (12.14)

Since Lip(f1) < CE{* — 0, the Taylor expansion and (12.14) give, for | big enough,

IDfy|? 5
et (HiNBg) <er(Bs) —c2 By, Vse |5,3]. (12.15)
H{NBg 2 2

Our aim is to show that (12.15) contradicts the minimality of Ty. To this extent, we construct
a competitor current in different steps.

Step 1: splitting. Consider the maps g1 := f1//Ey. Since sup, Dir(g, B3) < co and [B3 \
Hy| — 0, we can find maps {5 and w; = Zj]:] [[Ty} o (5] as in Lemma 5.9 such that

(@1) Br:= [g, S(gr, w1)? = 0;
(b1) liminfy(Dir(g, Q NHy) — Dir(wy, Q)) > 0 for every Q C Bs.

Let w:= Zj [[C]-]] and note that |Dwq| = [Dw]|.
Step 2: choice of a suitable radius. From the estimates in (12.10), one gets
M(Ty — graph(fi), C3) = M(Ty, (B3 \ K¢) x R™) + M(graph(fy), (B3 \ K{) x R™)
< QB3 \ Ki/+Ei1+Q[B3 \ K|+ C[B3 \ Ky| Lip(f1)
<Ei+CE|{ 2*< CE{ 2™ (12.16)

With a slight abuse of notation, we write (T; — graph(f,))L 0C, for (Ty — graph(fi), ¢, 1),
where ¢(z,y) = |z| and introduce the real valued function \; given by

Pr(r) := Ef"‘_]M((Tl—graph(fl)) I_OGT) + Dir(gy, 0B;) + Dir(w, 0B;) + [31_1/aB S(gy, wi)?.

From (a7), (b1) and (12.16), lim inf; f; P(r) dr < co. By Fatou’s Lemma, there is v € (%,3)
and a subsequence, not relabeled, such that lim1(r) < co. Hence, it follows that:
)2

— 0,

(@2) [os, Slgu Wi
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(b2) Dir(wq,9B;) + Dir(gy, 0B;) < M for some M < oo,
(c2) M((Ty — graph(f,))L9B,) < CE{ %~

Step 3: Lipschitz approximation of wy. We now apply Lemma 3.21 to the (;’s and find
Lipschitz maps (; with the following requirements:

(i) Dir(g;, By) < Dir(¢;, By) +¢2/(2Q),

(iii) faBr Q(Ej,w)z < c%/(ZGC Q (M + 1)), where C is the constant in the interpolation
Lemma 3.19.

The function @ := Z[[T 1o (i] is, then, a Lipschitz approximation of w; which, for (i)-(iii),
(b1), (b2) and (12.15), sat1sf1es, for 1 big enough,

(a3) Dir(@1,By) < Dir(w, By) +¢2/2 < 2et (By) —c2,
(b3) Dir(®y,0B:) < Dir(w,0B:)+1 < M+1,

(c3) [y, G(@1,w1)? <c5/(2°C (M +1)).

Step 4: patching graph(w) and T,. Next, apply the interpolation Lemma 3.19 to @; and
gy with € = ¢,/(2*(M + 1)). We then find maps & such that &1/aB, = giles, and, from (ay),
(a3)-(c3), for 1 large enough,

Dir (&1, By) < Dir (@, B;) + ¢ Dir (@, 9B;) + e Dir(gy, 8B,) + Ce ! G (@1, 1)
)=
c c c c
<2Ef1 eTl(BT)—cz—I——z—l——z—I——z<2Ef]eTL(B ) — hey (12.17)
8 8 4 2
Moreover, from the last estimate in Lemma 3.19, if follows that Lip(&;) < CE“ 1/2 , since

Lip(gi) < CEY "2, Lip(@) ZLlp G)<C and [G(@1,g1)]l < C+CEF 2

Set z; := E1 & and consider the current Z; := graph(&;). Since zi|pg, = filos,, 0Z1 =
graph(fi)L 0B,. Therefore, from (cz), M(0(TiL B, — Z;)) < CE{ 2% From the isoperimetric
inequality (see [54, Theorem 30.1]), there exists an integral current Ry such that 9R; =
d(TM L€, —Zy) and M(Ry) < CET—2o)m/(m—1)

Set finally Wi = T{L(C4 \ €;) + Z1 + Ry. By construction, it holds obviously oWy = 9Ty.
Moreover, since o < 1/(2m), for 1 large enough, W, contradicts to the minimality of T;:

D 2 (1—2x)m
MW —M(T) < QIB, |+ (14 CE) [ P24 e ™ — QlBy |- e, (B1)
(1217 ¢ E (1-2x)m
<(1+CEZS) (eTl(BT)— 241>+CEl T _er.(By)

(1—2a)m

< —cE +CE["2*4+CE, ™" <.

Proof of (12.13). The proof is again by contradiction. Let (T;); be a sequence with vanishing
E := Ex(Ty, C4) and contradicting (12.13), and perform again Steps 1 and 3. Clearly, since
(12.13) does not hold, up to extraction of a subsequence, we can assume that
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(i) either lim; fBz Dgi? > [[Dw/?,
(ii) or, for some j, ¢ is not Dir-minimizing in B;.

Indeed, in case one between (i) and (ii) does not hold, it suffices to set w = w1, because,
when each ¢; is harmonic, inf ¢, S(Ty% o Ci(x),Ty} 0 (j(x)) — oo and, by the Maximum
principle in Proposition 5.5, wy is harmonic for 1 large enough as well.

In case (i), since, for large 1,

/ Dwyl* < / IDg1l* —2c2 < E{ ler(By) —ca,
B, B,

for some positive constant c,, we can arguing exactly as in the proof of (12.12).
In case (ii), we find a competitor for ¢’ and, hence, new functions @ such that ®|sg, =
w1|a]3 N and

lim/ D@2 < lim/ Dwf* < lim/ |D91|2 —2¢cy < Ef1eT(Br) —Ca.
1 B, 1 B, 1 B,

We then can argue as above with @ in place of w1, thus concluding the proof. ]

12.3.1  Weak Almgren’s estimate

Theorems 12.7 and 9.1 imply the following key estimate, which is a weaker form of an
estimate proved by Almgren (see Proposition 13.3) and will lead to Theorem 12.1 via a an
elementary “covering and stopping radius” argument.

Proposition 12.8. For every k > 0, there exists e, = €2(k) > 0 with the following property. Let T
be an integer rectifiable, area-minimizing current in Ca(x) satisfying (H). If Ex(T, C45(x)) < €2,
then

et (A) < KEX(T, Cas(x))s™  for every Borel A C Bs(x) with |A| < e2/Bas(x).  (12.18)

Proof. Without loss of generality, we can assume s = 1 and x = 0. Let f be the E*-Lipschitz
approximation in C3, with « € (0,1/(2m)). Fix n = k/4 and choose ¢, (k) < €1(n). Arguing
as in Step 4 of the first part of the proof, we find a radius r € (2,3) and a current R such that

OR = (T — graph(f))L_dB, and M(R) < CE!l-®)m/(m=1)

Hence, by the minimality of T and using the Taylor expansion in Proposition 12.6, we have

M(TL €,) < M(graph(f)L €, + R) < M(graph(f)L €,) + C Ex(T, €4) (1-20) m
Df|?
s Q|BT+/ | 2| +CEx(T, €)', (12.19)

where v is a fixed constant. On the other hand, using again the Taylor expansion for the part
of the current which coincides with the graph of f, we deduce as well that

M(TLGC,) >M(TL((B+\K) x R™)) +M(TL((B+NK) x R™))

IDf|?
2

M(TL((By \K) x]R“))+QBmK|+/ — CEX(T,€4)" 1.
B

T

(12.20)
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Subtracting (12.20) from (12.19), by the choice of ¢,, we deduce from (12.12),

Df
eT(Br\K)g/B\K| 2‘ +CE'™v < 2 +CE”" (12.21)

Let now A C By be such that |A| < ¢; |B4|. Combining (12.21) with the Taylor expansion
and Theorem 9.1, we finally get, for some constants C and q > 1 (independent of E) and for
€2 (k) sufficiently small,

[Dwl?

Df
er(A) <er(A\K)+ IDf? +T+CE””
A

E
\32 4+ CIA|"/9E £ CE'Y < kE.

+ CE"™Y <er(By\ K) /

12.4 PROOF OF THE HIGHER INTEGRABILITY ESTIMATE

The theorem is a consequence of the followmg estimate: there exists constants Y > 2™ and
B > 0 such that, for every c € [1, (YE)™ and s € [2,4] with s +2/ ¥/c <

/ o<y P / 5. (12.22)
cE
{v c ESKTINB; {7<b<1}085+%ﬁ
Iterate (12.22) to obtain
/ ot <y <P / or <y KP4™E, (12.23)
{y2* T ESOHr<IINB, {y E<SO1<1INBy

for every k < L:= [(log, (A/E) —1)/2] (note that, since y > 2™, it holds 2}, y~*/™ < 2).
Therefore, setting
= TE <o <y?*TE} for k=1,...,L,
Ao ={or <vE} and A ={*TTTELor <1y,
for p < 1+ /2, we conclude the theorem:

L+1 L+1

[s=3 [ seS e [
B2 k=0 AxNB2 k=0 AxNBy
L+1
(223)
<C)Y yk=Blgr < CEP.
k=0

We now come to the proof of (12.22). Let Ng be the constant in Besicovich’s covering
theorem and choose P € IN so large that Ng < 2P-1. Sety = max{2™,1/¢5(272™ P)l and
B=— logy(NB /2P=1), where ¢, is the constant in Proposition 12.8.

Let ¢ and s be any real numbers as above. First of all, we prove that, for a.e. x € {ycE <

7 < 1}N B, there exists 1y such that

E(T,C4r (x)) < cE and E(T,Cp(x)) = cE Vp€]0,4ryl. (12.24)
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Indeed, since &t (x) = lim,_,o E(T,Cy(x)) > ycE > 2™McE and

m
Wm p™ pm v/c

it suffices to choose 4rx = min{p <4/ ¥/c: E(T,Cp(x)) < cE}. Note that r, < 1/ Y/c.
Consider now the current T restricted to C4r (x ). We note that, for the choice of v, setting

={ycE <1},

E(T,Cp(x)) =

E
Ex(T,C4r (x)) < cE < y—E < e (szmfP) )
E B4+ o
|A\ < M < e (2 2m P) ‘B4rX(X)|
cEy

Hence, we can apply Proposition 12.8 to TL G4, (x) to get

/ o1 < / or <er(A) <272™ Per(Byr, (%)
By, (x)N{y c E<dr<T) A

(12.24)
<272 P ()™ wm EX(T, €ar (x) < 27 Per(By (%))
(12.25)
Thus,
er(Br, (x)) = bT+/ 6T+/ o7
By, (x)N{d7>1} Brx(x)ﬁ{%nggl} By (x)N{or<SF
cE
/bT—i—/ O+ — wm
(<t <dr<) Y
(224) (1229,
< (2 +v7 ") er(By (x))+/ oT. (12.26)
By, (x)N{§F <Or<1}

Therefore, recalling that y > 2™ > 4, from (12.25) and (12.26) we infer that

2 P
/ or < _])_1/ or <271 / or.
Br (x)N{ycE<dr<) 1 =277 =Y JB (x)n{eE<or<t) Bry (x)N{SE<dr<1)

Finally, by Besicovich’s covering theorem, we choose Ng families of disjoint balls B, (x)
whose union covers {ycE < &1 < 1}N B and, recalling that r < 2/ ¥/c for every x, we
conclude

/ o1 < Np 2~ P! / o1,
{v c E<dr<T)NBs {%@Tg}msﬁ%ﬁ

which, for the above defined 3, implies (12.22).
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APPROXIMATION OF AREA-MINIMIZING CURRENTS

Here we prove the approximation theorem for minimizing currents. The following theorem,
proved by De Giorgi [10] in the case n = Q =1, is due in its generality to Almgren, who
spends almost the entire third chapter of his big regularity paper [2] to accomplish it.

For reader’s convenience, before stating the result, we recall hypothesis (H) of the previous
chapter: T will always denote an integer rectifiable m-current such that

T =Q[Br(y)] and 0OT =0, (H)

Theorem 13.1. There exist positive constants C,d,eo with the following property. For every
mass-minimizing, integer rectifiable m-current T in the cylinder C4 which satisfies (H) and E =
Ex(T,C4) < e, there exist a Q-valued function f € Lip(B1, Aq(IR™)) and a closed set K C By such
that

Lip(f) < CEé, (13.12)
graph(flx) = TL(K x R™) and [B;\K| < CE'"?, (13.1b)
2
M(TI_C‘31)—me—/B D;I' < CE'?, (13.10)
1

The most interesting aspects of Theorem 13.1 are the use of multiple-valued functions
(necessary when n > 1, as for the case of branched complex varieties) and the gain of a
small power E? in the three estimates (13.1). Observe that the usual approximation theorems,
which cover the case Q = 1 and stationary currents, are stated with & = 0.

Remark 13.2. The careful reader will notice two important differences between the most
general approximation theorem of Almgren’s book and Theorem 13.1.

First of all, though the smallness hypothesis Ex(T, C4) < ¢¢ is the same, the estimates
corresponding to (13.1) are stated in terms of the “varifold excess”, a quantity smaller than
Ex. An additional argument, which we report in the last section, shows that Ex and the
varifold excess are indeed comparable. This is obtained from a strengthened version of
Theorem 13.1, which to our knowledge is new and has an independent interest (compare
with Theorem 13.5).

Second, the most general result of Almgren is stated for currents in Riemannian manifolds.
However, we believe that such generalization follows from standard modifications of our
arguments and do not address this issue in the present work.

13.1 ALMGREN’S ESTIMATE

The first step in the proof is represented by the following estimate due to Almgren. We
prove it using Theorem 12.1.

139



140

APPROXIMATION OF AREA-MINIMIZING CURRENTS

Theorem 13.3. There exist constants o,C > 0 such that, for every mass-minimizing, integer
rectifiable m-current T in Cy4 satisfying (H) and E = Ex(T, C4) < €9, it holds

er(A) < CE(E® +|A[%) for every Borel A C By,s. (13.2)

Here we follow partially Almgren’s strategy. The main point is to estimate the size of
the set over which the graph of the Lipschitz approximation f differs from T. As in many
standard references, in the case Q = 1 this is achieved comparing the mass of T with the
mass of graph (f * pgw ), where p is a smooth convolution kernel and w > 0 a suitably chosen
constant.

However, for Q > 1, the space Ag(R™) is not linear and we cannot regularize f by
convolution. To bypass this problem, we use Almgren’s biLipschitz embedding &, convolving
the map & o f and projecting the convolution back on the set £(Aq) via the retraction pj
which is very little expensive in terms of energy in the u neighborhoods of £(Aq (R™)).

At this point our Theorem 12.1 enters in a crucial way in estimating the size of the set
where the regularization of & o f is far from &(Aq (IR™)), leading to a much clearer and direct
proof.

13.1.1  Convolution procedure

Letx € (0,(2m)~ ') and fix the E*-Lipschitz approximation f. The strategy here is to consider
a suitable convolution of the approximation f in order to find a competitor with energy over
B3,2 \ K which is a superlinear power of the excess.

One of the main point in the convolution procedure is the following consequence of
Theorem 12.1: since |Df|? < Cé1 and &1 < E2%* < 1in K, there exists q = 2p > 2 such that

(/K|Df|q>q < CEL. (13.3)

Proposition 13.4. Let T be as in Theorem 13.1 and let f be its E*-Lipschitz approximation. Then,
there exist constants 5, C > 0 and a subset B € [1,2] with |B| > 1/2 such that, for every s € B, there
exists a Q-valued function g € Lip(Bs, Aq) which satisfies glas, = fla,, Lip(g) < CE* and

: IDg? </B KIDf|2+CE”5. (13.4)
S Sr‘|

Proof. We give an explicit construction of g’ := & o g starting from f’ := &of and the
projection pj; given in Proposition 2.3 with a constant p > 0 to be fixed later: then, composing
with £, we recover g. In order to simplify the notation, we simply write p* in place of Py

To this aim, let © > 0 and ¢ > 0 be parameters and 1 < 71 < 12 < r3 < 2 be radii to
be fixed later. Let ¢ € C®(B7) be a standard mollifier in RN and, for the sake of brevity,
let lin(hy, hy) denote the linear interpolation in B, \ Bs between two functions hq|sp, and
hzlag,. The function g’ is defined as follows:

VEtin (52,07 (7)) in By, \ Br,,
g = ﬁlin( * (‘%) *( >I<(p5>> in By, \Br,, (13.5)
VEp* ( * Qe ) in B,,.
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Clearly g'log,, = f'loB,,. We pass now to estimate its energy.
Step 1. Energy in B, \ By,. By the estimate on the linear interpolation, it follows directly

that
/ D2 < C / DFR+C / D(p* o )2+
Bry\Br, B.;\Br, By, \Bs,

SB[ (f) :
(r3—12)% /B, \By, | VE VE
E anQ+l
<C / e SER (13.6)
B, \B, T3 —T2

where we used |p*(P) —P| < Cp2 " forall P € Q.
Step 2. Energy in By, \ By,. Here, using the same interpolation inequality and the L2
estimate on convolution, we get

C
[ omeRec] pfRe S [ g2
B.,\Br, B.,\Br, (r2=m71)% Je,,\B,,
Ce? Ce?E
<C D12 + 52/ IDf'|? = C Df2+———. (137
B.,\Br, (r2—711)% JB, B.,\Br, (r2—71)

Step 3. Energy in By,. For this estimate we use the fine bounds on the projection p*. (see

Proposition 2.3). To this aim, consider the set Z := {x € By, @ dist (\% * (pE,Q> > u”Q}.

Then, one can estimate
/ IDg')? < (1 +cu2“Q)/ |D(f’*<ps)\2+c/ D (f'x@c)|” =1 + 1. (13.8)
B, B, \Z z

We consider 11 and I, separately. For the first we have

L < (1+Cu2“Q)/B (IDF + 9. )2

™

< (1+ew) [ oo+ (140 ) [ (Dm0 5 00+

BT] BT]
1

+2 (1+cu ™) (/B ((IDf'IXK)*@s))Z> (/B ((|Df’|xB]\K)*<pa)2> .

(13.9)

Next we notice that the following two estimates hold for the convolutions:

/ ((IDF xx) * 92)? < / (IDFxx)? < / DF2 + / DF? (13.10)
T Br]+£ Br]mK BT]+£\BT]

B 1
and, using Lip(f’) < CE* and |B; \ K| < CE' 2«

2 2
/ ((IDFf'IxB, \k) * @e))” < CE* HXBr] \K * Qe

B,

12

C E272 o

2
2
< CE%* HXBr]\K‘ . oelltz < TN (13.11)
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Hence, putting (13.10) and (13.11) in (13.9), we get

1
. CngZa CEZfZa 2
I < (1+Cu2 Q)/ IDf'|>+C Df’|2 + ~—— + CE2 <N>
B, NK By, 1e\Br, € €
. CE2-2x CEI ™
g/ Df'2+Cpu? " E+C DfP 4+ ——+ -  (1312)
By, NK Bryte\Br, € €

For what concerns I, first we argue as for I, splitting in K and B; \ K, to deduce that

, CE22¢ (CEI-«
Iz<C/Z((|Df’|xK)*cps) P (13.13)

Then, regarding the first addendum in (13.13), we note that

2

fl f/
< Ce? (13.14)

VETTTVE

Hence, using the higher integrability of |[Df| in K, that is (13.3), we obtain

f/ * 52\ qTJ
| ((or1x0 < 00)* <12 (/B

1Z/u2nQ < /

By,

2(q-2)

((|Df’|xK)*<pa)q> <ce(g)

1

(13.15)
Hence, putting all the estimates together, (13.8), (13.12), (13.13) and (13.15) give
/ Dg’[* < / IDf'|* + c/ IDf'[*+
B'r] B'r] NK BT] +£\Br1
1—2x A 2la2)
,-ne E E2 € a
+CE[p + N + N/ <HnQ . (13.16)

Now we are ready to estimate the total energy of g’ and conclude the proof of the
proposition. We start fixing v, — 1 = r3 — 12 = A. With this choice, summing (13.6), (13.7)
and (13.16),

/ Dg’|? g/ |Df’|2+c/ IDf'|>+
B B,;NK By +3A\Br,

T3 T3
21+ 2 T«
€ -n Ez € a
FCE [ +(u )

A A2

We set e = E4, p = EP and A = E€ choosing

:1—20c b:1—20c and ¢ — 1-2«

S NI ANTQ Q2N Q"
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Now, for a choice of a constant C > 0 sufficiently large, there is a set B C [1,2] with [B] > 1/2
such that, for every r1 € B, it holds

1—x
/ IDf'|? < C?\/ Df'|2 < CE' "7 Znng,
Br]+3)\\Br1 Br1

Then, for a suitable 4 = d(, 1, N, Q) and for s = r3, we conclude (13.4).
For what concerns the Lipschitz constant of g’, we notice that it is bounded by

Lip(g') < CLip(f'+ ¢.) < CLip(f/) < CE* in By,
Lip(g') < CLip(f/) + C Lf="@clie < (14 £)Lip(f') < CEX in By, \ By,
Lip(g') < CLip(f) + CEV/2 22" < CEX 4 CEV2 < CEX  in By, \ By,

13.1.2  Proof of Theorem 13.3

Consider the set B C [1,2] given in Proposition 13.4 and, as done in subsection 12.3.1, choose
r € B and a integer rectifiable current R such that

OR = (T —graph(f))L 9B, and M(R) < CEl!-2e)m/(m=1),

Since glas, = flaB,, we use graph(g) + R as competitor for the current T. In this way we
obtain, for a suitable o,

M (TL€) < QIBSI+/ | 29' reee " g, |+/B N ‘sz' +CEC. (13.17)
On the other hand, again using Taylor’s expansion (12.11),
M(TLCs) =M (TL(Bs \ K) x R™) + M (graph(flg,~k))
>M (TL(Bs \K) x R™) + QKN Bs| + /KmBs 'Dzﬂz —CE'fO, (13.18)

Hence, from (13.17) and (13.18), we get e1(Bs \ K) < CE'*©.
This is enough to conclude the proof. Indeed, for A C By, using the higher integrability of
|Df| in K, possibly changing o, we get

IDf|?

E1+cr
5 +C

er(A) < er(ANK) +er(A\K) </A )
N

2

a-=2 v 1+U o
< CIANK|% (/ Df|q> +CE'fo < (|A| YE )
ANK
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13.2 PROOF OF THE APPROXIMATION THEOREM

Finally we come to the proof of the main result.

Choose oc < min{(2m)~', (2(1 + 0))~ ' o}, where o is the constant in Theorem 9.1 and let f
be the E*-Lipschitz approximation of TL C4 3.

Clearly (13.1a) follows directly from (12.10) for 6 < . Set A = {MT > E? "‘/2} C Byys.
Applying (13.2) to A, since by (12.7) |A| < CE'~2%, we get (13.1b), for some positive 5,

|B] \K| < CE—ZoceT (A) < CE]+G—ZOC+CE1+G—2[]+G)OL < CE1+6.

<er(B1\K) +er(By \K) +

On the other hand, (13.1¢) is consequence of (13.2) and (12.11). Indeed, if we set I' = graph(f):
D 2
M(TLE)) _me_/ D
B, 2

IDf[?
er(By) —/
B, 2
(13.2),(12.11)

< CE1+“+CIB1\K|+CLip(f)2/ IDf|?
B

< C(E1+0'+E1+2(x) — CE1+6.

13.3 COMPLEMENTARY RESULTS

In this section we prove two side results.

13.3.1 A variant of Theorem 13.1

Theorem 13.5. There are constants C, x, €1 > 0 such that the following holds. Assume T satifes the
assumptions of Theorem 13.1 with B4 := EX(T, C4) < €7 and set E, := Ex(T, Cy.). Then there exist a
radius s €]1,2[, a set K C Bg and a map f: Bg — Aq(R™) such that:

Lip(f) < CEY, (13.19a)

graph(flx) = TL(K x R™) and [Bs\K| < CE!*%, (13.19b)
Df|?

M(TLCs) — Qwms™ —/B | 2' < CElMe, (13.19¢)

The theorem will be derived from the following lemma, which in turn follows from
Theorem 13.1 through a standard covering argument.

Lemma 13.6. There are constants C,[3,e2 > 0 such that the following holds. Assume T is an
area-minimizing, integer recitifiable current in C,, satisfying (H) and E := Ex(T,C,) < €2. Set
T = p(1 —4EP). Then there exist a set K C B, and a map f: B, — Aq (R™) such that:

Lip(f) < CEP, (13.20a)
graph(flx) = TL(K x R™) and [B,\K| < CE'*Brm, (13.20b)

D 2
M(TLE;) — Qwmr™ / |2f‘ < CE'FBym, (13.20¢)

T
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Proof. Without loss of generality we prove the lemma for p = 1. Fix § > 0 and ¢, > 0
and assume T as in the statement. We choose a family of balls B! = B (&;) satisfying the
following conditions:

(i) the numer N of such balls is bounded by CE—™B;
(i) B4gs(&i) C By and {Bgs 5 (&)} covers By = By_4gs;
(iii) each B! intersects at most M balls BJ.

The constants C and M are dimensional and do not depend on E, 3 and ¢;. Moreover,
observe that
EX(T, Cqpp(&1)) <47 ™E ™PEX(T,C) < CE'" ™A,

Fix now ¢, such that s}fmﬁ < o, with ¢p the constant in Theorem 13.1. Applying (the

obvious scaled version of) Theorem 13.1, for each B! we obtain a set K; C B; and a map
fi : Bi = Ag(R™) such that

Lip(fi) < CE(I-mRI® (13.21)

graph(filx,) = TL(K; x R™) and [B'\K;| < CE(!-mRI(1+8)gmB, (13.22)
Df|?

M(TL €gp (&) —QwmE™P —/Bi Leiis 2' ’ < CEUmBITHOIEMB, (13.23)

Set next I(1) :={j : BN B! # @} and J; := Ki N Nje1(1) Kj- By (iii) and (13.22), we have
BU\ Ji| < CET-mB)(TH8)+mb, (13.24)

Define K := (J]i. Since filj;nj; = fjlj;ny;, there is a function f : K — Aq(R™) such that
fly, = fi. Choose {3 so small that (1 —mfp)(1+6) > 1+ . Then, (13.20b) holds because of (i)
and (13.24).

We claim next that f satisfies the Lipschitz bound (13.20a). First take x,y € K such that
Ix —y| < EP /2. Then, by (ii), x € BEﬁ/z(ai) for some 1 and hence x,y € B'. By the definition
of K, x € J; C K; for some j. On the other hand, B’ N B' # () and thus, by the definition of J;,
we necessarily have x € K;. For the same reason we conclude y € Kj. It follows from (13.21)
and the choice of B < (1 —mp)d that

() — f(y)l = Ifi(x) — fi(y)| < CEPpx —yl.

Next, assume that x,y € K and |x —y| > EP /2. On the segment 0 = [x,y], fix N < SEBx —vy|
points ¢ with (o =%, (N =y and |Gi+1 — G < EP /4. We can choose (; so that, for each
ie{l,N—1},Bt.= Bes /g(Ci) C By. Obviously, if 3 and ¢ are chosen small enough, (13.20b)
implies that B'NK # () and we can select z; € BN K # 0. But then |z, 1 —zi| < EP/2 and
hence [f(zi+1) — f(zi)| < CE?B. Setting zny = N = Y and zp = (o = x, we conclude the
estimate

N
[f(x) = f(y)l < D _If(i+1)—f(i)] < CNE*P < CEPx—y].
i=0

Thus, f can be extended to B, with the Lipschitz bound (13.20a). Finally, a simple argument
using (13.20a), (13.20b), (13.23) and (i) gives (13.20c) and concludes the proof. O
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Proof of Theorem 13.5. Let 3 be the constant of Lemma 13.6 and choose « < 3/(2+ ). Set
ro := 2 and Ep := Ex(T,C,,), 71 := 2(1 —4E§) and By = Ex(T,C,). Obviously, if &7 is
sufficiently small, we can apply Lemma 13.6 to T in €,,. We also assume of having chosen
€1 so small that 2(1 — 4Eg ) > 1. Now, if E; > E;HB/ 2, then f satisfies the conclusion of the
theorem. Otherwise we set 1o = r1(1 — 4E?) and E; := Ex(T, C,,). We continue this process

and stop only if
(a) either rny < T;
1+B/2
(b) or En > EY .

First of all, notice that, if €7 is chosen sufficiently small, (a) cannot occur. Indeed, we have

E; < E(()HB/ZV < s}HB/Z and thus

B2/2
log%i = Zlog(] —4E{3) > —SZE{3 > —SZ £$+1B2/z > -8 623151562/2 (13.25)
1
Clearly, for ¢ sufficiently small, the right and side of (13.25) is larger than log(2/3), which
gives 1y > 4/3.

Thus, the process can stop only if (b) occurs and in this case we can apply Lemma 13.6
to T in G, , and conclude the theorem for the radius s = rn. If the process does not
stop, we conclude that Ex(T,C;,) — 0. If s := limy rn, we then conclude that s > 1 and
that Ex(T,Cs) = 0. But then, because of (H), this implies that there are Q points q; € R™
(not necessarily distinct) such that TLCs = ) ; [Bs x{qi}]. Thus, if we set K = Bs and
f =) ;[ai], the conclusion of the theorem holds trivially. O

13.4 THE VARIFOLD EXCESS

As pointed out in Remark 13.2, though the approximation theorems of Almgren have
(essentially) the same hypotheses of Theorem 13.1, the main estimates are stated in terms
of the “varifold excess” of T in the cylinder C4. More precisely, consider the representation
of the rectifiable current T as T ||T||. As it is well-known, T(x) is a simple vector of the
form vi A... Avy with (vi,vj) = di;. Let T, be the m-plane spanned by vy,..., vy, and
let 7, : R™™™ — 1, be the orthogonal projection onto Ty. Finally, for any linear map
L:R™*™ — R™, denote by ||L|| the operator norm of L. Then, the varifold excess is defined

by

VEX(T, Cy(x0)) :/ |7t — 7|2 d|| T (x), (13.26)
whereas
Ex(T, €y (xo)) = /e MRUCELNL S (13.27)

The two quantities differ. If on the one hand VEx < CEx for trivial reasons (indeed, ||7t, —
7| < C||T(x) — &m]| for every x), VEx might, for general currents, be much smaller than Ex.
However, Almgren’s statements can be easily recovered from Theorem 13.1 thanks to the
following proposition.



13.4 THE VARIFOLD EXCESS

Proposition 13.7. There are constants €3,C > 0 with the following properties. Assume T is
as in Theorem 13.5 and consider the radius s given by its conclusion. If Ex(T,C2) < e3, then
Ex(T, C,) < CVEX(T, C,).

- ém‘ < C1 and |f(x) - ém‘ <
— €ml > co}. We can then write

Proof. Note that there are constants ¢y, C1 such that IT(x)
Cillmte — 7| if [T(x) — €m| < co. Let now D :={x € €, : [T(x)

Ex(T,€,) < C1VEX(T, €,) + 2M(TL D).

On the other hand, from the bounds (13.19), it follows immediately that M(TL D) <
CEx(T, @)+, If e3 is chosen sufficiently small, we conclude

27 TEx(T, @) < Ex(T,C,) — CEX(T, C)'+* < C VEX(T, C,) .
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