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I N T R O D U C T I O N

Since their introduction in the XVIII century, Minimal Surfaces turned out to be a well-spring
of new mathematical concepts and ideas which not only contributed to the solution of many
known, long-standing problems but also posed new questions and even founded new areas
of mathematics. This is the case of the Geometric Measure Theory and the related regularity
issues which constitute the main frame for this research.

An immersed surface is said to be minimal if its mean curvature vector is constantly zero.
But, although clearly local, the above definition reveals its deepest implications in connection
with the overall geometry of such surfaces, as happens, for example, with global existence
issues.

The problem of finding a surface of least area stretched across a given closed contour
has been posed first by Lagrange in 1762 in the paper where first minimal surfaces have
been introduced [42]. This question, nowadays known as Plateau’s Problem from the Belgian
physicist who investigated soap bubbles, has drawn the attention of mathematicians for a
long time and has been answered in a reasonable way only relatively recently. Indeed, a
first general existence result, so appreciated by the mathematical community to earn the
Fields Medal to one of its author, came only around 1930 from the independent works of
the American mathematician J. Douglas [17] and the Hungarian mathematician T. Rado
[46]; whereas, other fundamental progresses have been achieved only in the 60’s thanks to
the efforts of many prominent mathematicians with main contributions by E. De Giorgi,
H. Federer, W. H. Fleming, E. R. Reifenberg and J. Simons [10, 21, 47, 55].

The need of a Regularity Theory for minimal surfaces has been first encountered in con-
nection with this existence question. All the results proven up to now, indeed, are obtained
by the means of the Calculus of Variations in suitable spaces of “generalized surfaces”.
And, what is still more surprising, such generalizations cannot be avoid in general, as
witnessed actually by the existence of solutions to Plateau’s problem which are not regular!
The regularity of minimal surfaces (where from now on the term “surface” stands for a
suitable generalization of the classical concept) is therefore one of the fundamental issue in
the understanding of global existence in some weak context.

Among the main generalizations considered, we cite Caccioppoli’s Sets, introduced in
embryo by R. Caccioppoli and then fully developed by De Giorgi, which are suited to
generalize the concept of hypersurfaces; the Rectifiable Currents, first studied by Federer and
Fleming, which represent a more general approach in any codimension (Caccioppoli’s sets
turn out to be a special case of rectifiable currents in the case of hypersurfaces); and finally
the Rectifiable Varifolds due to F. J. Almgren Jr. and W. K. Allard.

In the present thesis, we deal with some questions related to the regularity of minimal
currents. In particular, we consider the case of codimension bigger than one. In order to
understand the novelties in this case with respect to the codimension one case, it is worth
recalling that minimal, codimension one currents are smooth manifolds up to dimension
six (and in higher dimension n the singular set has Hausdorff dimension at most n− 7).
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Whereas, for higher codimension currents, the situation is much different. Already Federer
pointed out the existence of two-dimensional currents which are singular. In particular, he
proved that every irreducible complex variety is actually a minimal surface, so that, for
instance, every branch point in a complex curve provides an example of singularity in a
minimal surface.

If the regularity theory for codimension one is reasonably well established and well
understood, the same cannot really be said about the regularity in codimension higher than
one. Essentially, all that is known in general is contained in the following remarkable papers:

1. On the singular structure of two-dimensional area minimizing currents in Rn [45], by F. Mor-
gan, 1982;

2. Tangent cone to two-dimensional area-minimizing currents are unique [62], by B. White, 1983;

3. Two-dimensional area-minimizing currents are classical minimal surfaces [9], by S. Chang,
1988;

4. Almgren’s big regularity paper [2], by F. Almgren, 2000.

Although published posthumously, the results in [2] were announced by Almgren in the early
80’s and the articles by White and Chang, which give a definitive picture of two-dimensional
minimal currents, are both indebted to the work of Almgren and the third one builds upon
most of the book.

Almgren’s big regularity paper [2] is a monumental work of nearly one thousand pages,
in which the author establishes the following partial regularity result, the most general up
to now:

Theorem 0.1. Every m-dimensional area-minimizing current in a n-dimensional Riemannian
manifold has a singular set of Hausdorff dimension at most m− 2.

This result is one of the major achievement in geometric measure theory and, to get it,
Almgren develops a number of new ideas which in our opinion, due in part to the difficulty
of the paper itself, have been just partially exploited till now. Nevertheless, Almgren’s work
is so important for the theory of minimal surfaces and for future developments in the field
that it is worth being better understood and clarified. Moreover, apart from its intrinsic
importance, we mention the revival interest in simplectic and complex geometry for the
regularity theory of two-dimension minimal currents (as witnessed by the works on the
regularity in special calibrated geometry, such as for the 1− 1 currents in almost complex
manifolds by Taubes, Riviere and Tian [59, 50, 51]) and the attention given in the last years
to the theory of multi-valued functions by Goblet and Zhu [30, 27, 28, 29, 63].

This motivated us to revisit and extend some of the results in [2]. This thesis provides,
indeed, a self-contained reference for roughly the first third of the big regularity paper and
contains some new results on the theory of multi-valued functions and the approximation of
minimal currents (obtained in collaboration with C. De Lellis and M. Focardi [12, 13, 15, 56]).
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almgren’s big regularity paper

In order to illustrate the contents of the thesis, it is worth giving an account of Almgren’s
strategy in proving his partial regularity Theorem f0.1. It consists of four main steps, which
correspond roughly to the division in chapters of [2]:

1. the theory of Q-valued functions ([2, chapter 2]);

2. the approximation of minimal currents with Lipschitz graphs of Q-valued functions ([2,
chapter 3]);

3. the construction of the Center Manifold ([2, chapter 4]);

4. blow-up argument and proof of Theorem 0.1 ([2, chapter 5]).

As for the codimension one case, the main idea here is to reduce the area functional
to the Dirichlet energy, which is its first non-constant term in its Taylor expansion. But
a major difficulty in higher codimensions has to be faced: in general, there is no way to
approximate a minimal current with the graph of a function! This is due essentially to
the new phenomenon of the branching. To overcome this problem, Almgren developed a
completely new theory of multi-valued function which minimize a suitable Dirichlet energy,
called Dir-minimizing Q-valued functions.

As soon as some regularity is proved for such functions, the second step is represented by
the approximation of minimal currents by graphs ofQ-valued functions which are close to be
Dir-minimizing. In doing this, the standard tools developed for the Lipschitz approximation
of the currents in codimension one cannot be applied. Indeed, in order to be of any help in
transferring the regularity information from the function to the current, the error committed
in approximating the last has to be infinitesimal with a fundamental regularity parameter
called Excess, while the standard approximation result carry an error which is linear in the
excess. At this point Almgren proves a very general and strong approximation result where
the error is a super-linear power of the excess – he claims that such very strong estimate is
needed for the remaining part of the argument.

In the last part of the strategy, Almgren argues by blow-up. But also in this procedure, a
new deep problem is encountered which was unknown in codimension one: the construction
of the Center Manifold. In blowing-up a minimal currents, in order to transfer the singularities
from the current to the limiting approximation function, one has to verify that all the sheets
of the current do not collapse in the limit to a single sheet (which, hence, will be regular
without giving any information on the current). In order to ensure this, one has to choose
first an average of the different sheets as the reference manifold with respect to which one
dilates the current. The construction of such manifold is maybe the most profound part of
Almgren’s big regularity paper and we still lack a full understanding of it.

In this thesis we revisit the first two steps of Almgren’s program and give some new
related results. In order to highlight the main contributions, we discuss the contents of the
four parts in which the thesis is divided in connection with Almgren’s big regularity paper
and other previous works.
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part i: q-valued functions

In this first part of the thesis, we suggest a new point of view on multi-valued functions.
In general a Q-valued function is simply a function taking valued in the unordered space
of Q points in some Euclidean space. In principle, these maps are just metric space valued,
without any differentiable structure. Nonetheless, it is possible to define for them a notion
of differentiability and a Dirichlet energy capable to approximate at the first order the area
functional.

From the very beginning we move away from Almgren’s approach. His idea was to identify,
via a very clever combinatorial argument, the space of Q-points to a simplex of a Euclidean
space and in this way to define Sobolev Q-valued maps as classical Sobolev functions with
values in this simplex. More precisely, denoting by AQ(Rn) the space of Q-points in Rn,
Almgren found an injective, Lipschitz map ξ : AQ(Rn)→ RN, for some N = N(Q,n), with
Lipschitz inverse. Therefore, according to his definitions, a map f : Rm → AQ(Rn) is a
Sobolev map if such is ξ ◦ f.

We, instead, define the space of Sobolev Q-valued functions and their Dirichlet energy
using only the metric structure of AQ(Rn), in the spirit of metric space-valued Sobolev-type
spaces already considered in the literature by many authors.

Following Almgren’s construction of the biLipschitz embedding ξ, the energy of a map f
cannot be easily defined as the energy of the composition ξ ◦ f and for this Almgren needs
to develop a differentiability theory for functions with values in AQ(Rn). Our definition,
instead, allows us to define intrinsically the right Dirichlet energy and reduces the com-
binatorial part introducing other arguments of more analytic flavor. Moreover, it has the
advantage to look at the Q-valued functions as global functions, thus allowing to introduce
some PDEs techniques in the study of their regularity.

We notice that simplified and intrinsic proofs of parts of Almgren’s big regularity paper
have already been established in [28] and [27].

Part I of the thesis consists of four chapters. In the first one, we introduce the space
of Q-points and develop an elementary theory of Lipschitz Q-valued maps. In particular,
we prove a Lipschitz extension theorem and give a notion of differentiability, proving a
related Rademacher’s theorem. In Chapter 2, we give simplified proofs of the existence of
the extrinsic maps ξ, ρ and ρ∗ of Almgren (the last one does not play any role in the theory
of Dir-minimizing Q-valued functions, but will be used for the approximation result in
Part IV). In Chapter 3, we introduce the metric definition of Sobolev Q-valued functions.
We compare this notion to the one introduced by Almgren by means of ξ and prove some
properties for such functions. For all the result here we provide two different proofs: one
in the spirit of Almgren’s extrinsic theory, one using only the metric point of view. Finally,
in the last chapter of this part, we introduce the Dirichlet energy. As before, our definition
being much more direct, we prove that it coincides with the one used by Almgren. After
developing a trace theory for Q-valued functions, the main result here is the proof of the
existence of Dir-minimizing functions with prescribed trace.
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part ii : regularity theory for dir-minimizing q-valued functions

Next we investigate the regularity of Q-functions minimizing the Dirichlet energy. In his big
regularity paper, Almgren proved that Dir-minimizing functions are Hölder continuous and
differ from the superposition of Q harmonic functions just on a set of Hausdorff dimension
at most m− 2, where m is the dimension of the domain (note the analogy with Theorem 0.1).

In this regularity theory, one of the main idea comes in: it is the introduction of what
Almgren called the Frequency Function, which is a measurement for the number of sheets
in the branching of Q-valued functions and branched currents. This is one of the few
major ideas from Almgren’s big regularity paper which has been successfully used in other
contexts, such as in the study of the regularity of the nodal set of solution of elliptic partial
differential equations by Lin and Garofalo [24, 25].

In this part of the thesis we give a new proof of these two regularity results in Chapter 6

and Chapter 7, and establish moreover other two new regularity results: an improved
estimate for the singular set of planar Dir-minimizing functions in Chapter 8 and the higher
integrability of the gradient of Dir-minimizing functions in Chapter 9.

The new intrinsic approach allows to give a proof of the Hölder continuity and of the
estimate of the singular set for some aspect simpler. We establish, indeed, a Maximum
Principle in Chapter 5 for Dir-minimizing functions which is very useful in constructing
competitors functions and helps in reducing the combinatorial complexity in Almgren’s
arguments.

For what concerns the improved estimate on the singular set, we prove that, in the case
of planar domain, the singular set (that is where a Dir-minimizing function is not the
superposition of harmonic maps) is constituted by isolated points. This further regularity
owns much to the works of White [62] and Chang [9] on two-dimensional area-minimizing
currents.

The higher integrability result in Chapter 9 is instead new. We prove that the gradient
of a Dir-minimizing function, rather than merely square summable, belongs to some Lp

space, with p > 2. This property was first noticed in conjunction with the new proof of the
approximation theorem (see Part IV below). As for the first properties of Q-valued functions,
here we give two proofs: one uses Almgren’s biLipschitz embedding ξ and the other is done
using only the metric point of view. Moreover, we are able to give a sharp result in the
planar case, finding the optimal higher integrability exponent.

This part of the thesis is conclude with a chapter where we show that all the regularity
results proved so far are optimal. Following always Almgren, we show that complex varieties
are locally graphs of Dir-minimizing functions. Also here we simplify Almgren’s argument.
He, indeed, deduces this property from the approximation theorem in Part IV, which is a
very deep and complicate result. Instead, we give a simple scaling and comparison argument
which makes the result self-contained.

part iii : semicontinuity of q-integrands

The existence of Dir-minimizing functions is deduced in the scheme of the Calculus of
Variations as a consequence of the weak lower semicontinuity of the Dirichlet energy. In
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this part of the thesis we investigate which functionals defined on the space of Q-valued
functions are lower semicontinuous.

This problem was first considered by Mattila [44], who proved the semicontinuity for
quadratic functionals of the gradient which are symmetric under the permutation of the
entries. His study was intended as a first step towards the regularity of currents minimizing
general elliptic parametric integrands.

Here, we give a complete characterization of the integrand defined on Sobolev spaces of
Q-valued functions which are semicontinuous, introducing the notion of Q-quasiconvexity.
As for the classical case, exploiting ideas arising from the proof of the semicontinuity of
quasiconvex functionals by I. Fonseca and S. Müller [22], we prove that the Q-quasiconvexity
is a necessary and sufficient condition to ensure the weak lower semicontinuity.

We also give a characterization of a different condition, called here Q-polyconvexity in
analogy with the classical case, which implies the Q-quasiconvexity and which allows to
recover the results by Mattila as a special case of ours.

part iv: approximation of minimal currents

In this last part of the thesis, we deal with the second point in Almgren’s program: the
approximation of area-minimizing currents.

As already mentioned, the main parameter in this approximation is the so called Excess,
which is an integral measure of the flatness of a current – already encountered in the
codimension one regularity theory. The novelties in Almgren’s approximation result with
respect to the all preexistent ones are the use of multiple valued functions, which, as shown
by the existence of branched minimal currents, are necessary, and the gain of an error in the
approximation which is a super-linear power of the excess.

This part is devoted to give a new, simpler proof of this deep result. The main point in our
strategy is a new higher integrability estimate for minimal currents concerning a quantity
we call the Excess Density. More in details, the difference between the mass of a minimal
current and the mass of its projection on a fixed plane is a measure whose density, instead
of merely integrable, is p-integrable, for some p > 1. Chapter 12 is devoted to the proof of
this higher integrability estimate. The key intuitions are basically two: from one side we are
able to develop a quite direct approximation theory where the errors are infinitesimal with
the excess, using a variant of the celebrated Jerrard–Soner’s BV estimate; from the other,
we observe an elementary covering and stopping time argument which leads to the higher
integrability.

This estimate, which is interesting in its own, gives a simpler proof of Almgren’s approxi-
mation theorem in Euclidean spaces, presented in Chapter 13.
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Part I

Q - VA L U E D F U N C T I O N S





1
T H E E L E M E N TA RY T H E O RY O F Q - VA L U E D F U N C T I O N S

In this chapter we introduce the space ofQ-points AQ and show some results about Lipschitz
Q-valued functions. We prove an extension theorem for Lipschitz maps and give a notion of
differentiability for Q-valued maps, together with chain-rule formulas and a generalization
of the classical theorem of Rademacher. These results are the routine ingredients used in
all subsequent arguments: in particular, the Lipschitz extension, combined with suitable
truncation techniques, is the basic tool of various approximations.

1.1 q-valued functions

Roughly speaking, our intuition of a Q-valued function is that of a mapping taking values
in the unordered sets of Q points of Rn, with the understanding that multiplicity can occur.
We formalize this idea by identifying the space of Q unordered points in Rn with the set of
positive atomic measures of mass Q.

Definition 1.1. Let JPiK denote the Dirac mass in Pi ∈ Rn. We define the space of Q-points
as follows:

AQ(Rn) :=

{
Q∑
i=1

JPiK : Pi ∈ Rn for every i = 1, . . . ,Q

}
.

In order to simplify the notation, we use AQ in place of AQ(Rn) and we write
∑
i JPiK

when n and Q are clear from the context. Clearly, the points Pi do not have to be distinct:
for instance Q JPK is an element of AQ(Rn). We endow AQ(Rn) with a metric which makes
it a complete metric space (the completeness is an elementary exercise left to the reader).

Definition 1.2. For every T1, T2 ∈ AQ(Rn), with T1 =
∑
i JPiK and T2 =

∑
i JSiK, we define

G(T1, T2) := min
σ∈PQ

√∑
i

∣∣Pi − Sσ(i)

∣∣2,

where PQ denotes the group of permutations of {1, . . . ,Q}.

Remark 1.3. (AQ(Rn), G) is a closed subset of a “convex” complete metric space. Indeed, G

coincides with the L2-Wasserstein distance on the space of positive measures with finite
second moment (see for instance [6, 61]). In Chapter 3 we will also use the fact that
(AQ(Rn), G) can be embedded isometrically in a separable Banach space.

For the rest of the thesis Ω will be a bounded open subset of the Euclidean space Rm. If
not specified, we will assume that the regularity of ∂Ω is Lipschitz. Continuous, Lipschitz,
Hölder and (Lebesgue) measurable functions from Ω into AQ are defined in the usual way.

Given two elements T ∈ AQ1(R
n) and S ∈ AQ2(R

n), the sum T + S of the two mea-
sures belongs to AQ(Rn) = AQ1+Q2(R

n). This observation leads directly to the following
definition.

3



4 the elementary theory of q-valued functions

Definition 1.4. Given finitely manyQi-valued functions fi, the map f1+ f2+ . . .+ fN defines
a Q-valued function f, where Q = Q1 +Q2 + . . .+QN. This will be called a decomposition of
f into N simpler functions. We speak of measurable (Lipschitz, Hölder, etc.) decompositions,
when the fi’s are measurable (Lipschitz, Hölder, etc.). In order to avoid confusions with the
summation of vectors in Rn, we will write, with a slight abuse of notation,

f = Jf1K + . . .+ JfNK .

If Q1 = . . . = QN = 1, the decomposition is called a selection.

It is a general fact that any measurable Q-valued function posses a measurable selection.

Proposition 1.5 (Measurable selection). Let B ⊂ Rm be a measurable set and let f : B→ AQ be
a measurable function. Then, there exist f1, . . . , fQ measurable Rn-valued functions such that

f(x) =
∑
i

Jfi(x)K for a.e. x ∈ B. (1.1)

Obviously, such a choice is far from being unique, but, in using notation (1.1), we will
always think of a measurable Q-valued function as coming together with such a selection.

Proof. We prove the proposition by induction on Q. The case Q = 1 is of course trivial. For
the general case, we will make use of the following elementary observation:

(D) if
⋃
i∈N Bi is a covering of B by measurable sets, then it suffices to find a measurable

selection of f|Bi∩B for every i.

Let first A0 ⊂ AQ be the closed set of points of type Q JPK and set B0 = f−1(A0). Then,
B0 is measurable and f|B0 has trivially a measurable selection.

Next we fix a point T ∈ AQ \ A0, T =
∑
i JPiK. We can subdivide the set of indexes

{1, . . . ,Q} = IL ∪ IK into two nonempty sets of cardinality L and K, with the property that

|Pk − Pl| > 0 for every l ∈ IL and k ∈ IK. (1.2)

For every S =
∑
i JQiK, let πS ∈PQ be a permutation such that

G(S, T)2 =
∑
i

|Pi −QπS(i)|
2.

If U is a sufficiently small neighborhood of T in AQ, by (1.2), the maps

τ : U 3 S 7→
∑
l∈IL

q
QπS(l)

y
∈ AL, σ : U 3 S 7→

∑
k∈IK

q
QπS(k)

y
∈ AK

are continuous. Therefore, C = f−1(U) is measurable and Jσ ◦ f|CK + Jτ ◦ f|CK is a measurable
decomposition of f|C. Then, by inductive hypothesis, f|C has a measurable selection.

According to this argument, it is possible to cover AQ \ A0 with open sets U’s such
that, if B = f−1(U), then f|B has a measurable selection. Since AQ \ A0 is an open subset
of a separable metric space, we can find a countable covering {Ui}i∈N of this type. Being
{B0}∪ {f−1(Ui)}

∞
1=1 a measurable covering of B, from (D) we conclude the proof.



1.1 q-valued functions 5

For general domains of dimension m > 2, there are well-known obstructions to the
existence of regular selections. However, it is clear that, when f is continuous and the
support of f(x) does not consist of a single point, in a neighborhood U of x, there is
a decomposition of f into two continuous simpler functions. When f is Lipschitz, this
decomposition holds in a sufficiently large ball, whose radius can be estimated from below
with a simple combinatorial argument. This fact will play a key role in many subsequent
arguments.

Proposition 1.6 (Lipschitz decomposition). Let f : B ⊂ Rm → AQ be a Lipschitz function,
f =
∑Q
i=1 JfiK. Suppose that there exist x0 ∈ B and i, j ∈ {1, . . . ,Q} such that∣∣fi(x0) − fj(x0)

∣∣ > 3 (Q− 1) Lip(f) diam(B). (1.3)

Then, there is a decomposition of f into two simpler Lipschitz functions fK and fL such that
Lip(fK), Lip(fL) 6 Lip(f) and supp (fK(x))∩ supp (fL(x)) = ∅ for every x.

Proof. Call a “squad” any subset of indices I ⊂ {1, . . . ,Q} such that

|fl(x0) − fr(x0)| 6 3 (|I| − 1) Lip(f) diam(B) for all l, r ∈ I,

where |I| denotes the cardinality of I. Let IL be a maximal squad containing 1, where L
stands for its cardinality. By (1.3), L < Q. Set IK = {1, . . . ,Q} \ IL. Note that, whenever l ∈ IL
and k ∈ IK,

|fl(x0) − fk(x0)| > 3Lip(f) diam(B), (1.4)

otherwise IL would not be maximal. For every x, y ∈ B, we let πx, πx,y ∈PQ be permuta-
tions such that

G(f(x0), f(x))2 =
∑
i

∣∣fi(x0) − fπx(i)(x)
∣∣2 ,

G(f(x), f(y))2 =
∑
i

∣∣∣fi(x) − fπx,y(i)(y)
∣∣∣2 .

We define the functions fL and fK as

fL(x) =
∑
i∈IL

q
fπx(i)(x)

y
and fK(x) =

∑
i∈IK

q
fπx(i)(x)

y
.

Observe that f = JfLK + JfKK: it remains to show the Lipschitz estimate. For this aim, we
claim that πx,y(πx(IL)) = πy(IL) for every x and y. Assuming the claim, we conclude that,
for every x,y ∈ B,

G(f(x), f(y))2 = G(fL(x), fL(y))2 + G(fK(x), fK(y))2,

and hence Lip(fL), Lip(fK) 6 Lip(f).



6 the elementary theory of q-valued functions

To prove the claim, we argue by contradiction: if it is false, choose x, y ∈ B, l ∈ IL and
k ∈ IK with πx,y(πx(l)) = πy(k). Then,

∣∣∣fπx(l)(x) − fπy(k)(y)
∣∣∣ 6 G(f(x), f(y)), which in turn

implies

3Lip(f) diam(B)
(1.4)
< |fl(x0) − fk(x0)|

6
∣∣fl(x0) − fπx(l)(x)

∣∣+ ∣∣∣fπx(l)(x) − fπy(k)(y)
∣∣∣+

+
∣∣∣fπy(k)(y) − fk(x0)

∣∣∣
6 G(f(x0), f(x)) + G(f(x), f(y)) + G(f(y), f(x0))

6 Lip(f) (|x0 − x| + |x− y| + |y− x0|) 6 3Lip(f) diam(B).

This is a contradiction and, hence, the proof is complete.

1.2 extension of lipschitz q-valued functions

This section is devoted to prove the following extension theorem.

Theorem 1.7 (Lipschitz Extension). Let B ⊂ Rm and f : B → AQ(Rn) be Lipschitz. Then,
there exists an extension f̄ : Rm → AQ(Rn) of f, with Lip(f̄) 6 C(m,Q) Lip(f). Moreover, if f is
bounded, then, for every P ∈ Rn,

sup
x∈Rm

G(f̄(x),Q JPK) 6 C(m,Q) sup
x∈B

G(f(x),Q JPK). (1.5)

Note that, in his big regularity paper, Almgren deduces Theorem 1.7 from the existence of
the maps ξ and ρ of Section 2.1. We instead follow a sort of reverse path and conclude the
existence of ρ from that of ξ and from Theorem 1.7.

It has already been observed by Goblet in [28] that the Homotopy Lemma 1.8 below can
be combined with a Whitney-type argument to yield an easy direct proof of the Lipschitz
extension Theorem, avoiding Almgren’s maps ξ and ρ. In [28] the author refers to the general
theory built in [43] to conclude Theorem 1.7 from Lemma 1.8. For the sake of completeness,
we give here the complete argument.

As a first step, we show the existence of extensions to C, a cube with sides parallel to the
coordinate axes, of Lipschitz Q-valued functions defined on ∂C. This will be the key point
in the Whitney type argument used in the proof of Theorem 1.7.

Lemma 1.8 (Homotopy lemma). There is a constant c(Q) with the following property. For any
closed cube with sides parallel to the coordinate axes and any Lipschitz Q-function h : ∂C →
AQ(Rn), there exists an extension f : C → AQ(Rn) of h which is Lipschitz with Lip(f) 6
c(Q)Lip(h). Moreover, for every P ∈ Rn,

max
x∈C

G(f(x),Q JPK) 6 2Q max
x∈∂C

G(h(x),Q JPK). (1.6)

Proof. By rescaling and translating, it suffices to prove the lemma when C = [0, 1]m. Since
C is biLipschitz equivalent to the closed unit ball B1 centered at 0, it suffices to prove the
lemma with B1 in place of C. In order to prove this case, we proceed by induction on Q.
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For Q = 1, the statement is a well-known fact (it is very easy to find an extension f̄ with
Lip (f̄) 6

√
nLip(f); the existence of an extension with the same Lipschitz constant is a

classical, but subtle, result of Kirszbraun, see 2.10.43 in [19]). We now assume that the lemma
is true for every Q < Q∗, and prove it for Q∗.

Fix any x0 ∈ ∂B1. We distinguish two cases: either (1.3) of Proposition 1.6 is satisfied with
B = ∂B1, or it is not. In the first case we can decompose h as JhLK + JhKK, where hL and hK
are Lipschitz functions taking values in AL and AK, and K and L are positive integers. By
the induction hypothesis, we can find extensions of hL and hK satisfying the requirements
of the lemma, and it is not difficult to verify that f = JfLK + JfKK is the desired extension of
h to B1.

In the second case, for any pair of indices i, j we have that∣∣hi(x0) − hj(x0)
∣∣ 6 6Q∗ Lip(h).

We use the following cone-like construction: set P := h1(x0) and define

f(x) =
∑
i

s
|x|hi

(
x

|x|

)
+
(
1− |x|

)
P

{
. (1.7)

Clearly f is an extension of h. For the Lipschitz regularity, note first that

Lip(f|∂Br) = Lip(h), for every 0 < r 6 1.

Next, for any x ∈ ∂B, on the segment σx = [0, x] we have

Lipf|σx 6 Q∗max
i

|hi(x) − P| 6 6 (Q∗)2 Lip(h).

So, we infer that Lip(f) 6 12 (Q∗)2 Lip(h). Moreover, (1.6) follows easily from (1.7).

Proof of Theorem 1.7. Without loss of generality, we can assume that B is closed. Consider a
Whitney decomposition {Ck}k∈N of Rm \B (see Figure 1). More precisely (cp. with Theorem
3, page 16 of [58]):

(W1) each Ck is a closed dyadic cube, i.e. the length lk of the side is 2k for some k ∈ Z and
the coordinates of the vertices are integer multiples of lk;

(W2) distinct cubes have disjoint interiors and

c(m)−1dist(Ck,B) 6 lk 6 c(m) dist(Ck,B). (1.8)

As usual, we call j-skeleton the union of the j-dimensional faces of Ck. We now construct
the extension f̄ by defining it recursively on the skeletons.

Consider the 0-skeleton, i.e. the set of the vertices of the cubes. For each vertex x, we
choose x̃ ∈ B such that |x− x̃| = dist(x,B) and set f̄(x) = f(x̃). If x and y are two adjacent
vertices of the same cube Ck, then

max
{

|x− x̃| , |y− ỹ|
}

6 dist(Ck,B) 6 c lk = c |x− y| .
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B

0 skeleton
elements of the

a segment of
the 1-skeleton

Figure 1: The Whitney decomposition of R2 \B.

Hence, we have

G
(
f̄(x), f̄(y)

)
= G (f(x̃), f(ỹ)) 6 Lip(f) |x̃− ỹ| 6 Lip(f)

(
|x̃− x| + |x− y| + |y− ỹ|

)
6 cLip(f) |x− y| .

Using the Homotopy Lemma 1.8, we extend f to f̄ on each side of the 1-skeleton . On the
boundary of any 2-face f̄ has Lipschitz constant smaller than 9C(m,Q) Lip(f). Applying
Lemma 1.8 recursively we find an extension of f̄ to all Rm such that (1.5) holds and which
is Lipschitz in each cube of the decomposition, with constant smaller than C(m,Q) Lip(f).

It remains to show that f̄ is Lipschitz on the whole Rm. Consider x, y ∈ Rm, not lying in
the same cube of the decomposition. Our aim is to show the inequality

G
(
f̄(x), f̄(y)

)
6 CLip(f) |x− y|, (1.9)

with some C depending only on m and Q. Without loss of generality, we can assume that
x 6∈ B. We distinguish then two possibilities:

(a) [x,y]∩B 6= ∅;

(b) [x,y]∩B = ∅.

In order to deal with (a), assume first that y ∈ B. Let Ck be a cube of the decomposition
containing x and let v be one of the nearest vertices of Ck to x. Recall, moreover, that
f̄(v) = f(ṽ) for some ṽ with |ṽ− v| = dist(v,B). We have then

G
(
f̄(x), f̄(y)

)
6 G

(
f̄(x), f̄(v)

)
+ G

(
f̄(v), f(y)

)
= G

(
f̄(x), f̄(v)

)
+ G (f(ṽ), f(y))

6 CLip(f) |x− v| + Lip(f) |ṽ− y|

6 CLip(f)
(
|x− v| + |ṽ− v| + |v− x| + |x− y|

)
6 CLip(f)

(
lk + dist(Ck,B) + diam (Ck) + |x− y|

)
(1.8)
6 CLip(f) |x− y| .
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If (a) holds but y 6∈ B, then let z ∈]a,b[∩B. From the previous argument we know
G(f̄(x), f̄(z)) 6 C|x− z| and G

(
f̄(y), f̄(z)

)
6 C|y− z|, from which (1.9) follows easily.

If (b) holds, then [x,y] = [x,P1] ∪ [P1,P2] ∪ . . . ∪ [Ps,y] where each interval belongs to a
cube of the decomposition. Therefore (1.9) follows trivially from the Lipschitz estimate for f̄
in each cube of the decomposition.

1.3 differentiability and rademacher’s theorem

In this section we introduce the notion of differentiability for Q-valued functions and prove
two related theorems. The first one gives chain-rule formulas for Q-valued functions and
the second is the extension to the Q-valued setting of the classical result of Rademacher.

Definition 1.9. Let f : Ω→ AQ and x0 ∈ Ω. We say that f is differentiable at x0 if there exist
Q matrices Li satisfying:

(i) G(f(x), Tx0f) = o(|x− x0|), where

Tx0f(x) :=
∑
i

JLi · (x− x0) + fi(x0)K ; (1.10)

(ii) Li = Lj if fi(x0) = fj(x0).

The Q-valued map Tx0f will be called the first-order approximation of f at x0. The point∑
i JLiK ∈ AQ(Rn×m) will be called the differential of f at x0 and is denoted by Df(x0).

Remark 1.10. What we call “differentiable” is called “strongly affine approximable” by
Almgren.

Remark 1.11. The differential Df(x0) of a Q-function f does not determine univocally its first-
order approximation Tx0f. To overcome this ambiguity, we write Dfi for Li in Definition 1.9,
thus making evident which matrix has to be associated to fi(x0) in (i). Note that (ii) implies
that this notation is consistent: namely, if g1, . . . ,gQ is a different selection for f, x0 a point
of differentiability and π a permutation such that gi(x0) = fπ(i)(x0) for all i ∈ {1, . . . ,Q},
then Dgi(x0) = Dfπ(i)(x0). Even though the fi’s are not, in general, differentiable, observe
that, when they are differentiable and f is differentiable, the Dfi’s coincide with the classical
differentials.

If D is the set of points of differentiability of f, the map x 7→ Df(x) is a Q-valued
map, which we denote by Df. In a similar fashion, we define the directional derivatives
∂νf(x) =

∑
i JDfi(x) · νK and establish the notation ∂νf =

∑
i J∂νfiK.

1.3.1 Chain rules

In what follows, we will deal with several natural operations defined on Q-valued functions.
Consider a function f : Ω → AQ(Rn). For every Φ : Ω̃ → Ω, the right composition f ◦Φ
defines a Q-valued function on Ω̃. On the other hand, given a map Ψ : Ω×Rn → Rk, we
can consider the left composition, x 7→

∑
i JΨ(x, fi(x))K, which defines a Q-valued function

denoted, with a slight abuse of notation, by Ψ(x, f).
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The third operation involves maps F : (Rn)Q → Rk such that, for every Q points
(y1, . . . ,yQ) ∈ (Rn)Q and π ∈PQ,

F(y1, . . . ,yQ) = F
(
yπ(1), . . . ,yπ(Q)

)
. (1.11)

Then, x 7→ F(f1(x), . . . , fQ(x)) is a well defined map, denoted by F ◦ f.

Proposition 1.12 (Chain rules). Let f : Ω→ AQ(Rn) be differentiable at x0.

(i) Consider Φ : Ω̃→ Ω such that Φ(y0) = x0 and assume that Φ is differentiable at y0. Then,
f ◦Φ is differentiable at y0 and

D(f ◦Φ)(y0) =
∑
i

JDfi(x0) ·DΦ(y0)K . (1.12)

(ii) Consider Ψ : Ωx ×Rnu → Rk such that Ψ is differentiable at (x0, fi(x0)) for every i. Then,
Ψ(x, f) is differentiable at x0 and

DΨ(x, f))(x0) =
∑
i

JDuΨ(x0, fi(x0)) ·Dfi(x0) +DxΨ(x0, fi(x0))K . (1.13)

(iii) Consider F : (Rn)Q → Rk as in (1.11) and differentiable at (f1(x0), . . . , fQ(x0)). Then, F ◦ f
is differentiable at x0 and

D(F ◦ f)(x0) =
∑
i

DyiF(f1(x0), . . . , fQ(x0)) ·Dfi(x0). (1.14)

Proof. All the formulas are just routine modifications of the classical chain-rule. The proof of
(i) follows easily from Definition 1.9. Since f is differentiable at x0, we have

G

(
f ◦Φ(y),

∑
i

JDfi(x0) · (Φ(y) −Φ(y0)) + fi(Φ(y0))K

)
= o (|Φ(y) −Φ(y0)|)

= o (|y− y0|), (1.15)

where the last equality follows from the differentiability of Φ at y0. Moreover, again due to
the differentiability of Φ, we infer that

Dfi(x0) · (Φ(y) −Φ(y0)) = Dfi(x0) ·DΦ(y0) · (y− y0) + o(|y− y0|). (1.16)

Therefore, (1.15) and (1.16) imply (1.12).
For what concerns (ii), we note that we can reduce to the case of card(f(x0)) = 1, i.e.

f(x0) = Q Ju0K and Df(x0) = Q JLK . (1.17)

Indeed, since f is differentiable (hence, continuous) in x0, in a neighborhood of x0 we can
decompose f as the sum of differentiable multi-valued functions gk, f =

∑
k JgkK, such

that card(gk(x0)) = 1. Then, Ψ(x, f) =
∑
k JΨ(x,gk)K in a neighborhood of x0, and the
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differentiability of Ψ(x, f) follows from the differentiability of the Ψ(x,gk)’s. So, assuming
(1.17), without loss of generality, we have to show that

h(x) = Q JDu Ψ(x0,u0) · L · (x− x0) +Dx Ψ(x0,u0) · (x− x0) +Ψ(x0,u0)K

is the first-order approximation of Ψ(x, f) in x0. Set

Ai(x) = Du Ψ(x0,u0) · (fi(x) − u0) +Dx Ψ(x0,u0) · (x− x0) +Ψ(x0,u0).

From the differentiability of Ψ, we deduce that

G

(
Ψ(x, f),

∑
i

JAi(x)K

)
= o

(
|x− x0| + G(f(x), f(x0))

)
= o (|x− x0|) , (1.18)

where we used the differentiability of f in the last step. Hence, we can conclude (1.13), i.e.

G (Ψ(x, f),h(x)) 6 G

(
Ψ(x, f),

∑
i

JAi(x)K

)
+ G

(∑
i

JAi(x)K ,h(x)

)

6 o (|x− x0|) + ‖Du Ψ(x0,u0)‖G

(∑
i

Jfi(x)K ,Q JL · (x− x0) + u0K

)
= o (|x− x0|) .

where ‖Duψ(x0,u0)‖ denotes the Hilbert–Schmidt norm of the matrix Du Ψ(x0,u0).
Finally, to prove (iii), fix x and let π be such that

G
(
f(x), f(x0)

)2
=
∑
i

|fπ(i)(x) − fi(x0)|
2.

By the continuity of f and (ii) of Definition 1.9, for |x− x0| small enough we have

G
(
f(x), Tx0f(x)

)2
=
∑
i

|fπ(i)(x) −Dfi(x0) · (x− x0) − zi|
2. (1.19)

Set fi(x0) = zi and z = (z1, . . . , zQ) ∈ (Rn)Q. The differentiability of F implies∣∣∣∣∣F ◦ f(x) − F ◦ f(x0) −
∑
i

DyiF(z) ·
(
fπ(i)(x) − zi

)∣∣∣∣∣ = o (G(f(x), f(x0)) = o(|x− x0|). (1.20)

Therefore, for |x− x0| small enough, we conclude∣∣∣∣∣∑
i

DyiF(z) ·
(
fπ(i)(x) − zi −Dfi(x0) · (x− x0)

)∣∣∣∣∣ 6
6 C
∑
i

|fπ(i)(x) −Dfi(x0) · (x− x0) − zi|
(1.19)
= o(|x− x0|), (1.21)

with C = supi ‖DyiF(z)‖. Therefore, using (1.20) and (1.21), we conclude (1.14).
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1.3.2 Rademacher’s Theorem

Here we extend the classical theorem of Rademacher on the differentiability of Lipschitz
functions to the Q-valued setting. Our proof is direct and elementary, whereas in Almgren’s
work the theorem is a corollary of the existence of the biLipschitz embedding ξ. An intrinsic
proof has been already proposed in [27]. However our approach is considerably simpler.

Theorem 1.13 (Rademacher). Let f : Ω → AQ be a Lipschitz function. Then, f is differentiable
almost everywhere in Ω.

Proof. We proceed by induction on the number of values Q. The case Q = 1 is the classical
Rademacher’s theorem (see, for instance, 3.1.2 of [18]). We next assume that the theorem is
true for every Q < Q∗ and we show its validity for Q∗.

We write f =
∑Q∗
i=1 JfiK, where the fi’s are a measurable selection. We let Ω̃ be the set of

points where f takes a single value with multiplicity Q:

Ω̃ =
{
x ∈ Ω : f1(x) = fi(x) ∀i

}
.

Note that Ω̃ is closed. InΩ \ Ω̃, f is differentiable almost everywhere by inductive hypothesis.
Indeed, by Proposition 1.6, in a neighborhood of any point x ∈ Ω \ Ω̃, we can decompose f in
the sum of two Lipschitz simpler multi-valued functions, f = JfLK + JfKK, with the property
that supp (fL(x))∩ supp (fK(x)) = ∅. By inductive hypothesis, fL and fK are differentiable,
hence, also f is.

It remains to prove that f is differentiable a.e. in Ω̃. Note that f1|Ω̃ is a Lipschitz vector
valued function and consider a Lipschitz extension of it to all Ω, denoted by g. We claim
that f is differentiable in all the points x where

(a) Ω̃ has density 1;

(b) g is differentiable.

Our claim would conclude the proof. In order to show it, let x0 ∈ Ω̃ be any given point
fulfilling (a) and (b) and let Tx0g(y) = L · (y− x0) + f1(x0) be the first order Taylor expansion
of g at x0, that is

|g(y) − L · (y− x0) − f1(x0)| = o(|y− x0|). (1.22)

We will show that Tx0f(y) := Q JL · (y− x0) + f1(x0)K is the first order expansion of f at x0.
Indeed, for every y ∈ Rm, let r = |y− x0| and choose y∗ ∈ Ω̃∩B2r(x0) such that

|y− y∗| = dist
(
y, Ω̃∩B2r(x0)

)
.

Being f, g and Tg Lipschitz with constant at most Lip(f), using (1.22), we infer that

G
(
f(y), Tx0f(y)

)
6 G

(
f(y), f(y∗)

)
+ G
(
Tx0f(y

∗), Tx0f(y)
)
+ G
(
f(y∗), Tx0f(y

∗)
)

6 Lip(f) |y− y∗| +QLip(f) |y− y∗|+

+ G
(
Q Jg(y∗)K ,Q JL · (y∗ − x0) + f1(x0)K

)
6 (Q+ 1) Lip(f) |y− y∗| + o

(
|y∗ − x0|

)
. (1.23)
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Since |y∗ − x0| 6 2 r = 2 |y− x0|, it remains to estimate ρ := |y− y∗|. Note that the ball Bρ(y)
is contained in Br(x0) and does not intersect Ω̃. Therefore

|y− y∗| = ρ 6 C
∣∣B2r(x0) \ Ω̃

∣∣1/m 6 C(m) r

(
|B2r(x0) \ Ω̃|

|B2r(x0)|

) 1
m

. (1.24)

Since x0 is a point of density 1, we can conclude from (1.24) that |y− y∗| = |y− x0|o(1).
Inserting this inequality in (1.23), we conclude that G(f(y), Tx0f(y)) = o(|y− x0|), which
shows that Tx0f is the first order expansion of f at x0.





2
A L M G R E N ’ S E X T R I N S I C M A P S

Two “extrinsic maps” play a pivotal role in the theory of Q-functions developed in [2].
The first one is a biLipschitz embedding ξ of AQ(Rn) into RN(Q,n), where N(Q,n) is a
sufficiently large integer. Almgren uses this map to define Sobolev Q-functions as classical
RN-valued Sobolev maps taking values in Q := ξ(AQ(Rn)). Using ξ, many standard facts
of Sobolev maps can be extended to the Q-valued setting with little effort. The second
map ρ is a Lipschitz projection of RN(Q,n) onto Q, which is used in various approximation
arguments.

Almgren constructs also a more sophisticated Lipschitz retraction ρ∗, which has controlled
Lipschitz constant almost 1 in suitable neighborhood of Q. This retraction ρ∗ is not relevant
for the theory of Q-valued functions but will play a crucial role in the approximation of
minimal current in Part IV.

2.1 the bilipschitz embedding ξ and the lipschitz projection ρ

In the following theorem we prove the existence of the biLipschitz embedding ξ and the
simple retraction ρ. Following an observation in [9] attributed to B. White, we modify slightly
the arguments of Almgren to prove the existence of a particular embedding ξ which satisfies
the extra condition (iii) below useful to shorten some arguments later.

Theorem 2.1. There exist N = N(Q,n) and an injective map ξ : AQ(Rn)→ RN such that:

(i) Lip(ξ) = 1;

(ii) if Q = ξ(AQ), then Lip(ξ−1|Q) 6 C(n,Q);

(iii) for every T ∈ AQ(Rn), there exists δ > 0 such that

|ξ(T) − ξ(S)| = G(T ,S) ∀ S ∈ Bδ(T) ⊂ AQ(Rn). (2.1)

Moreover, there exists a Lipschitz map ρ : RN → Q which is the identity on Q.

The existence of ρ is a trivial consequence of the Lipschitz regularity of ξ−1|Q and of the
Extension Theorem 1.7.

Proof of the existence of ρ given ξ. Consider ξ−1 : Q → AQ. Since this map is Lipschitz, by
Theorem 1.7 there exists a Lipschitz extension f of ξ−1 to the entire space. Therefore, ρ = ξ ◦ f
is the desired retraction.

The key of the proof of Theorem 2.1 is the following combinatorial statement.

15
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Lemma 2.2 (Almgren’s combinatorial lemma). There exist α = α(Q,n) > 0 and a set of
h = h(Q,n) unit vectors Λ = {e1, . . . eh} ⊂ Sn−1 with the following property: given any set of Q2

vectors,
{
v1, . . . , vQ2

}
⊂ Rn, there exists el ∈ Λ such that

|vk · el| > α |vk| for all k ∈
{
1, . . . ,Q2

}
. (2.2)

Proof. Choose a unit vector e1 and let α(Q,n) be small enough in order to ensure that the
set E :=

{
x ∈ Sn−1 : |x · e1| < α

}
has sufficiently small measure, that is

Hn−1(E) 6
Hn−1(Sn−1)

8 · 5n−1Q2
. (2.3)

Note that E is just the α-neighborhood of an equatorial (n− 2)-sphere of Sn−1. Next, we
use Vitali’s covering Lemma (see 1.5.1 of [18]) to find a finite set Λ = {e1, . . . , eh} ⊂ Sn−1

and a finite number of radii 0 < ri < α such that

(a) the balls Bri(ei) are disjoint;

(b) the balls B5ri(ei) cover the whole sphere.

We claim that Λ satisfies the requirements of the lemma. Let, indeed, V =
{
v1, . . . , vQ2

}
be a set of vectors. We want to show the existence of el ∈ Λ which satisfies (2.2). Without
loss of generality, we assume that each vi is nonzero. Moreover, we consider the sets
Ck =

{
x ∈ Sn−1 : |x · vk| < α |vk|

}
and we let CV be the union of the Ck’s. Each Ck is

the α-neighborhood of the equatorial sphere given by the intersection of Sn−1 with the
hyperplane orthogonal to vi. Thus, by (2.3),

Hn−1 (CV) 6
Hn−1(Sn−1)

8 · 5n−1
. (2.4)

Note that, due to the bound ri < α,

ei ∈ CV ⇒ Hn−1 (CV ∩Bri(ei)) >
Hn−1(Bri(ei)∩ Sn−1)

2
. (2.5)

By our choices, there must be one el which does not belong to CV , otherwise

Hn−1(Sn−1)

2 · 5n−1

(a) & (b)

6
∑
i

Hn−1
(
Bri(ei)∩ Sn−1

) (2.5)
6 2

∑
i

Hn−1 (CV ∩Bri(ei))

(a)

6 2Hn−1 (CV)
(2.4)
6

Hn−1(Sn−1)

4 · 5n−1
,

which is a contradiction (here we used the fact that, though the sphere is curved, for α
sufficiently small the (n− 1)-volume of Bri(ei)∩ Sn−1 is at least 2−15−n+1 times the volume
of B5ri(ei) ∩ Sn−1). Having chosen el 6∈ CV , we have el 6∈ Ck for every k, which in turn
implies (2.2).

Proof of Theorem 2.1. Let Λ = {e1, . . . eh} be a set satisfying the conclusion of Lemma 2.2. We
consider the enlarged set Γ of nh vectors containing an orthonormal frame for each el ∈ Λ,

Γ =
{
e11, . . . , en1 , . . . , e1h, . . . , enh

}
,
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where, for every l ∈ {1, . . . ,h}, e1l = el and {e1l , . . . , enl } is an orthonormal basis of Rn. Note
that, in principle, the vectors eβl may not be all distinct: this can happen, for example, if there
exist two vectors ej and el which are orthogonal. Nevertheless, we can assume, without loss
of generality, that Γ is made of nh distinct vectors (in passing, this is can always be reached
by perturbing slightly Λ).

Set N = Qnh and fix T ∈ AQ(Rn), T =
∑
i JPiK. For any eβl ∈ Γ , we consider the Q

projections of the points Pi on the eβl direction, that is Pi · eβl . This gives an array of Q
numbers, which we rearrange in increasing order, getting a Q-dimensional vector πβl (T).
The map ξ : AQ → RN is, then, defined by

ξ(T) = h−1/2
(
π11(T), . . . ,π

n
1 (T), . . . ,π1h(T) . . . ,πnh(T)

)
.

The Lipschitz regularity of ξ is a trivial corollary of the following rearrangement inequality:

(Re) if a1 6 . . . 6 an and b1 6 . . . 6 bn, then, for every permutation σ of the indices,

(a1 − b1)
2 + · · ·+ (an − bn)2 6 (a1 − bσ(1))

2 + · · ·+ (an − bσ(n))
2.

Indeed, fix two points T =
∑
i JPiK and S =

∑
i JRiK and assume, without loss of generality,

that

G(T ,S)2 =
∑
i

|Pi − Ri|
2 . (2.6)

Fix l and β. Then, by (Re),
∣∣∣πβl (T) − π

β
l (S)

∣∣∣2 6
∑

((Pi − Ri) · eβl )2. Hence, we get

|ξ(T) − ξ(S)|2 6
1

h

h∑
l=1

n∑
β=1

Q∑
i=1

((Pi − Ri) · eβl )2 =
1

h

h∑
l=1

Q∑
i=1

|Pi − Ri|
2(2.6)

=
1

h

h∑
l=1

G(T ,S)2

= G(T ,S)2.

Next, for T =
∑
i JPiK and S =

∑
i JRiK, we show that

G(T ,S) 6

√
h

α
|ξ(T) − ξ(S)| , (2.7)

where α is the constant in Lemma 2.2. Consider, indeed, the Q2 vectors Pi − Rj, for i, j ∈
{1, . . . ,Q}. By Lemma 2.2, we can select a unit vector e1l = el ∈ Λ ⊂ Γ such that∣∣(Pi − Rj) · el∣∣ > α

∣∣Pi − Rj∣∣ , for all i, j ∈ {1, . . . ,Q}. (2.8)

Let τ and λ be permutations such that

π1l (T) = (Pτ(1) · el, . . . ,Pτ(Q) · el) and π1l (S) = (Rλ(1) · el, . . . ,Rλ(Q) · el).

Then, we conclude (2.7),

G(T ,S)2 6
Q∑
i=1

∣∣Pτ(i) − Rλ(i)

∣∣2 (2.8)
6 α−2

Q∑
i=1

(
(Pτ(i) − Rλ(i)) · el

)2
= α−2 |πl(T) − πl(S)|

2 6 α−2 h |ξ(T) − ξ(S)|2 .
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To conclude the proof we need to verify (2.1). To this aim, we start noticing that, given T =∑
i JPiK ∈ AQ, there exists δ > 0 with the following property: for every S =

∑
i JRiK ∈ Bδ(T)

and every πβl , assuming that G(T ,S)2 =
∑
i |Pi − Ri|

2, there exists a permutation σβl ∈PQ

such that the arrays (Pi · eβl ) and (Ri · eβl ) are ordered increasingly by the same permutation
σ
β
l , i.e.

π
β
l (T) =

(
P
σβl (1)

· eβl , . . . ,P
σβl (Q)

· eβl
)

and π
β
l (S) =

(
R
σβl (1)

· eβl , . . . ,R
σβl (Q)

· eβl
)

.

It is enough to choose 4 δ = minl,β
{

|Pi · eβl − Pj · eβl | : Pi · eβl 6= Pj · eβl
}

. Indeed, let us

assume that Ri · eβl 6 Rj · eβl . Then, two cases occur:

(a) Rj · eβl − Ri · eβl > 2δ,

(b) Rj · eβl − Ri · eβl < 2δ.

In case (a), since S ∈ Bδ(T), we deduce that Pi · eβl 6 Ri · eβl + δ 6 Rj · eβl − δ 6 Pj · eβl . In
case (b), instead, we infer that |Pj · eβl −Pi · eβl | 6 Rj · eβl + δ−Ri · eβl − δ < 4 δ, which, in turn,
by the choice of δ, leads to Pj · eβl = Pi · eβl . Hence, in both cases we have Pi · eβl 6 Pj · eβl ,
which means that Pi · eβl can be ordered in increasing way by the same permutation σβl .

Therefore, exploiting the fact that the vectors πβl (T) and πβl (S) are ordered by the same
permutation σβl , we have that, for T and S as above, it holds

|ξ(T) − ξ(S)|2 = h−1
h∑
l=1

n∑
β=1

|π
β
l (T) − π

β
l (S)|2

= h−1
h∑
l=1

n∑
β=1

Q∑
i=1

|P
σβl (i)

· eβl − R
σβl (i)

· eβl |2

= h−1
h∑
l=1

Q∑
i=1

|Pi − Ri|
2 = h−1

h∑
l=1

G(T ,S)2 = G(T ,S)2.

2.2 the retraction ρ?

In this section we construct the retraction ρ?, which, differently from the simple ρ, has
a controlled Lipschitz constant in a neighborhood of Q. The construction depends on a
parameter µ > 0 determining the size of the neighborhood and the Lipschitz constant.

Proposition 2.3. For every µ > 0, there exists ρ?
µ : RN(Q,n) → Q = ξ(AQ(Rn)) such that:

(i) the following estimate holds for every u ∈W1,2(Ω, RN),
ˆ

|D(ρ?
µ ◦u)|2 6

(
1+Cµ2

−nQ
)ˆ

{dist(u,Q)6µnQ}
|Du|2+C

ˆ
{dist(u,Q)>µnQ}

|Du|2, (2.9)

with C = C(Q,n);
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(ii) for all P ∈ Q, it holds |ρ?
µ(P) − P| 6 Cµ2

−nQ
.

We divide the proof into two part: in the first one we give a detailed description of the set
Q; then, we describe rather explicitly the map ρ?

µ.

2.2.1 Linear simplicial structure of Q

In this subsection we prove that the set Q can be decomposed in a families of sets {Fi}
nQ
i=0,

here called i-dimensional faces of Q, with the following properties:

(p1) Q = ∪nQi=0 ∪F∈Fi F;

(p2) F := ∪Fi is made of finitely many disjoint sets;

(p3) each face F ∈ Fi is a convex open i-dimensional cone, where open means that for every
x ∈ F there exists an i-dimensional disk D with x ∈ D ⊂ F;

(p4) for each F ∈ Fi, F̄ \ F ⊂ ∪j<i ∪G∈Fj G.

In particular, the family of the 0-dimensional faces F0 contains an unique element, the
origin {0}; the family of 1-dimensional faces F1 consists of finitely many lines of the form
lv = {λ v : λ ∈]0, +∞[} with v ∈ SN−1; F2 consists of finitely many 2-dimensional cones
delimited by two half lines lv1 , lv2 ∈ F1; and so on.

To prove this statement, first of all we recall the construction of ξ. After selecting a suitable
finite collection of non zero vectors {el}

h
l=1, we define the linear map L : RnQ → RN given

by

L(P1, . . . ,PQ) :=
(
P1 · e1, . . . ,PQ · e1︸ ︷︷ ︸

w1

,P1 · e2, . . . ,PQ · e2︸ ︷︷ ︸
w2

, . . . ,P1 · eh, . . . ,PQ · eh︸ ︷︷ ︸
wh

)
.

Then, we consider the map O : RN → RN which maps (w1 . . . ,wh) into the vector
(v1, . . . , vh) where each vi is obtained from wi ordering its components in increasing order.
Note that the composition O ◦ L : (Rn)Q → RN is now invariant under the action of the sym-
metric group PQ. ξ is simply the induced map on AQ = RnQ/PQ and Q = ξ(AQ) = O(V)

where V := L(RnQ).
Consider the following equivalence relation ∼ on V :

(w1, . . . ,wh) ∼ (z1, . . . , zh) if

wij = wik ⇔ zij = zik

wij > w
i
k ⇔ zij > z

i
k

∀ i, j,k , (2.10)

where wi = (wi1, . . . ,wiQ) and zi = (zi1, . . . , ziQ) (that is two points are equivalent if the
map O rearranges their components with the same permutation). We let E denote the set of
corresponding equivalence classes in V and C := {L−1(E) : E ∈ E}. The following fact is an
obvious consequence of definition (2.10):

L(P) ∼ L(S) implies L(Pπ(1), . . . ,Pπ(Q)) ∼ L(Sπ(1), . . . ,Sπ(Q)) ∀ π ∈PQ .
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Thus, π(C) ∈ C for every C ∈ C and every π ∈ PQ. Since ξ is injective and is induced by
O ◦ L, it follows that, for every pair E1, E2 ∈ E, either O(E1) = O(E2) or O(E1)∩O(E2) = ∅.
Therefore, the family F := {O(E) : E ∈ E} is a partition of Q.

Clearly, each E ∈ E is a convex cone. Let i be its dimension. Then, there exists a i-
dimensional disk D ⊂ E. Denote by x its center and let y be any other point of E. Then, by
(2.10), the point z = (1+ ε)y− ε x belongs as well to E for any ε > 0 sufficiently small. The
convex envelope of D∪ {z}, which is contained in E, contains in turn an i-dimensional disk
centered in y. This establishes that E is an open convex cone. Since O|E is a linear injective
map, F = O(E) is an open convex cone of dimension i. Therefore, F satisfies (p1)-(p3).

Next notice that, having fixed w ∈ E, a point z belongs to Ē \ E if and only if

(a) wij > wik implies zij > zik for every i, j and k;

(b) there exists r, s and t such that wrs > wrt and zrs = zrt.

Thus, if d is the dimension of E, Ē \ E ⊂ ∪j<d ∪G∈Ej G, where Ed is the family of d-
dimensional classes. Therefore,

O(Ē \ E) ⊂ ∪j<d ∪H∈Fj H, (2.11)

from which (recalling F = O(E)) we infer that

O(Ē \ E)∩ F = O(Ē \ E)∩O(E) = ∅. (2.12)

Now, sinceO(Ē \E) ⊂ O(Ē) ⊂ O(E) = F̄, from (2.12) we deduceO(Ē \E) ⊂ F̄ \ F. On the other
hand, it is simple to show that F̄ ⊂ O(Ē). Hence, F̄ \ F ⊂ O(Ē) \ F = O(Ē) \O(E) ⊂ O(Ē \ E).
This shows that F̄ \ F = O(Ē \ E), which together with (2.11) proves (p4).

2.2.2 Construction of ρ?
µ

The construction is divided into three steps:

1. first we specify ρ?
µ in Q;

2. then we find an extension on a µnQ-neighborhood of Q, QµnQ ;

3. finally we extend the ρ?
µ to all RN.

For the rest of the section, µ > 0 is a fixed number and we write simply ρ? for ρ?
µ.

Step 1. Construction on Q

The construction of ρ? on Q is made through a recursive procedure whose main building
block is the following lemma.

Lemma 2.4. Let b > 2 and D ∈N. There exists a constant C such that the following holds for every
τ ∈]0, 1[. Let Vd ⊂ RD be a d-dimensional cone and let v : ∂Bb ∩Vd → RD satisfy Lip(v) 6 1+ τ

and |v(x) − x| 6 τ. Then, there exists an extension w of v, w : Bb ∩ Vd → RD, such that

Lip(w) 6 1+C
√
τ, |w(x) − x| 6 1+C

√
τ and w(x) = 0 ∀ x ∈ Bτ ∩ Vd.
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Proof. First extend v to Bτ ∩ Vd by setting it identically 0 there. Note that such a function is
still Lipschitz continuous with constant 1+Cτ. Indeed, for x ∈ ∂Bb ∩ Vd and y ∈ Bτ ∩ Vd,
we have that

|v(x) − v(y)| = |v(x)| 6 |x| + τ = b+ τ 6 (1+Cτ)(b− τ) 6 (1+Cτ) |x− y|.

Let w be an extension of v to Bb ∩ Vd with the same Lipschitz constant, whose existence is
guaranteed by the classical Kirszbraun’s Theorem, see [19, Theorem 2.10.43]. We claim that
w satisfies |w(x) − x| 6 1+C

√
τ, thus concluding the lemma.

To this aim, consider x ∈ Bb \Bτ and set y = bx/|x| ∈ ∂Bb. Consider, moreover, the line r
passing through 0 and w(y), let π be the orthogonal projection onto r and set z = π(w(x)).
Note that, if |x| 6 Cτ, then obviously |w(x) − x| 6 |x| + |w(x)| 6 Cτ. Thus, without loss of
generality, we can assume that |x| > Cτ for some constant τ. In this case, the conclusion is
clearly a consequence of the following estimates:

|z−w(x)| 6 C
√
τ, (2.13)

|x− z| 6 Cτ. (2.14)

To prove (2.13), note that Lip(π ◦w) 6 1+Cτ and, hence,

|z−w(y)| 6 (1+Cτ)|x− y| 6 b− |x| +Cτ (2.15)

|z| = |π ◦w(x) − π ◦w(0)| 6 (1+Cτ)|x| 6 |x| +Cτ.

Then, by the triangle inequality,

|z| > |w(y)| − |w(y) − z| > b (1− τ) − b+ |x| −Cτ > |x| −Cτ. (2.16)

Since |x| > Cτ, the left hand side of (2.16) can be supposed nonnegative and we obtain
(2.13),

|z−w(x)|2 = |w(x)|2 − |z|2 6 (1+Cτ)2|x|2 − (|x| −Cτ)2 6 Cτ.

For what concerns (2.14), note that∣∣∣∣x−
|x|

b
w(y)

∣∣∣∣ 6 |x|

b
|y−w(y)| 6 |x|Cτ 6 Cτ. (2.17)

On the other hand, since by (2.15) |z−w(y)| 6 b− |x| +Cτ 6 b− τ 6 |w(y)| and w(y) · z > 0,
we have also∣∣∣∣z−

|x|

b
w(y)

∣∣∣∣ = ∣∣∣∣|z| − |x|

b
|w(y)|

∣∣∣∣ 6 ||z| − |x|| +

∣∣∣∣|x| − |x|

b
|w(y)|

∣∣∣∣ 6 Cτ,

which together with (2.17) gives (2.14).

Now we pass to the construction of the map ρ?. To fix notation, let Sk denote the k-
skeleton of Q, that is the union of all the k-faces, Sk = ∪F∈FkF. For every k = 1 . . . ,nQ− 1

and F ∈ Fk, let F̂a,b denote the set

F̂a,b =
{
x ∈ Q : dist(x, F) 6 a , dist(x,Sk−1) > b

}
,
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where a,b > 0 are given constants. In the case of maximal dimension F ∈ FnQ, for every
a > 0, F̂a denotes the set

F̂a =
{
x ∈ F : dist(x,SnQ−1) > a

}
.

Next we choose constants 1 = cnQ−1 < cnQ−2 < . . . < c0 such that, for every 1 6
k 6 nQ− 1, each family {F̂2ck,ck−1

}F∈Fk is made by pairwise disjoint sets. Note that this is
possible: indeed, since the number of faces is finite, given ck one can always find a ck−1

such that the F̂2ck,ck−1
’s are pairwise disjoint for F ∈ Fk.

Moreover, it is immediate to verify that

nQ−1⋃
k=1

⋃
F∈Fk

F̂2ck,ck−1
∪

⋃
F∈FnQ

F̂cnQ−1
∪B2c0 = Q.

To see this, let Ak = ∪F∈Fk F̂2ck,ck−1
and AnQ = ∪F∈FnQ F̂cnQ−1

: if x /∈ ∪nQk=1Ak, then it turns
out that dist(x,Sk−1) 6 ck−1 for every k = 1, . . . ,nQ, that means in particular that x belongs
to B2c0 .

Now we are ready to define the map ρ? inductively on the Ak’s. On AnQ we consider the
map fnQ = Id . Then, we define the map fnQ−1 on AnQ ∪AnQ−1 starting from fnQ and, in
general, we define inductively the map fk on ∪nQl=kAl knowing fk+1.

The map fk+1 : ∪nQl=k+1Al → Q we start with satisfies the following two properties:

(ak+1) Lip(fk+1) 6 1+Cµ2
−nQ+k+1

and |fk+1(x) − x| 6 Cµ2
−nQ+k+1

;

(bk+1) for every k-dimensional face G ∈ Fk, setting coordinates in G2ckck−1
in such a way

that G∩G2ck,ck−1
⊂ Rk × {0} ⊂ RN, fk+1 factorizes as

fk+1(y, z) = (y,hk+1(z)) ∈ Rk ×RN−k ∀ (y, z) ∈ G2ckck−1
∩

nQ⋃
l=k+1

Al.

The constants involved depend on k but not on the parameter µ.
Note that, fnQ satisfies (anQ) and (bnQ) trivially, because it is the identity map. Given

fk+1 we next show how to construct fk. For every k-dimensional face G ∈ Fk, setting
coordinates as in (bk+1), we note that the set Vy := G2ckck−1

∩
(
{y}×RN−k

)
∩ B2ck(y, 0)

is the intersection of a cone with the ball B2ck(y, 0). Moreover, hk+1(z) is defined on Vy ∩
(B2ck(y, 0) \Bck(y, 0)). Hence, according to Lemma 2.4, we can consider an extension wk of
hk+1|{|z|=2ck} on Vy ∩B2ck (again not depending on y) satisfying Lip(wk) 6 1+Cµ2

−nq+k
,

|z−wk(z)| 6 Cµ2
−nq+k

and wk(z) ≡ 0 in a neighborhood of 0 in Vy.
Therefore, the function fk defined by

fk(x) =

(y,wk(z)) for x = (y, z) ∈ G2ck,ck−1
⊂ Ak,

fk+1(x) for x ∈
⋃nQ
l=k+1Al \ Ak,

(2.18)

satisfies the following properties:
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(ak) |fk+1(x) − x| 6 Cµ2
−nQ+k+1

and Lip(fk) 6 1+ Cµ2
−nQ+k

. Indeed, the first estimate
follows immediately from Lemma 2.4. And, for what concerns the second, we conclude
Lip(fk) 6 1+ Cµ2

−nQ+k+1
on every G2ck,ck−1

by the same lemma. Now, every pair
of points x,y contained, respectively, into two different G2ck,ck−1

and H2ck,ck−1
are

distant apart at least one. Therefore, using the first estimate,

|fk(x) − fk(y)| 6 |x− y| +Cµ2
−nQ+k

6
(
1+Cµ2

−nQ+k
)

|x− y|,

which gives the second.

(bk) for every (k− 1)-dimensional face H ∈ Fk−1, setting coordinates in H2ck−1,ck−2
in such

a way that H∩H2ck−1,ck−2
⊂ Rk−1 × {0} ⊂ RN−k+1, fk factorizes as

fk(y
′, z ′) = (y ′,hk(z ′)) ∈ Rk−1 ×RN−k+1 ∀ (y ′, z ′) ∈ H2ck−1,ck−2

∪
nQ⋃
l=k

Al.

Indeed, when H ⊂ ∂G, with G ∈ Fk+1 and z ′ = (z ′1, z) where (y, z) is the coordinate
system selected in (bk+1) for G, then

hk(z
′) =

(
z ′1,wk(z)

)
.

After nQ steps, we get a function f0 = ρ?
0 : Q→ Q which satisfies

Lip(ρ?
0) 6 1+Cµ2

−nQ
and |ρ?

0(x) − x| 6 Cµ2
−nQ

.

Moreover, since the extensions wk coincide with the projection in balls B
Cµ2

−nQ+k−1 around
the origin, hence, in particular on balls Bµ, it is easy to see that, for every face F ∈ Fk, the
map ρ?

0 coincides with the projection on F for x ∈ Fµ,2ck−1
, that is

ρ?
0(x) = πF(x) ∀ x ∈ Fµ,2ck−1

. (2.19)

Step 2. Extension to QµnQ

Now we need extend the map ρ?
0 : Q → Q to a neighborhood of Q preserving the same

Lipschitz constant.
We start noticing that, since the number of all the faces is finite, when µ is small enough,

there exists a constant C = C(N) such that

dist
(
Fµi+1 \∪j<i ∪G∈Fj Gµj+1 ,Hµi+1 \∪j<i ∪G∈Fj Gµj+1

)
> Cµi, ∀ F 6= H ∈ Fi. (2.20)

The extension ρ?
1 is defined inductively, starting this time from a neighborhood of the

0-skeleton of Q. On the ball Bµ, the extension g0 has the constant value 0 (note that this is
compatible with the ρ?

0 by (2.19)).
Now we come to the inductive step. Suppose we have an extension gk of ρ?

0 defined on
the µk+1-neighborhood of the k-skeleton Sk, that is

(Sk)µk+1 = Q∪Bµ ∪
k⋃
l=1

⋃
F∈Fl

Fµl+1 ,



24 almgren’s extrinsic maps

with the property that Lip(gk) 6 1+Cµ2
−nQ

. Then, we define the extension to the µk+2-
neighborhood of Sk+1 in the following way: for every F ∈ Fk+1,

gk+1 :=

gk in (Sk)µk+1 ∩ Fµk+2 =: A ,

πF in {x ∈ RN : |πF(x)| > 2 ck}∩ Fµk+2 =: B .
(2.21)

Note that, if we consider each connected component C of (Sk+1)µk+2 \ (Sk)µk+1 , gk+1 is
defined on a portion of C̄ which is mapped into the closure K of a single face. Since K is
a convex closed set, we can use Kirszbraun’s Theorem to extend gk+1 to C̄ with optimal
Lipschitz constant, that is always 1+Cµ2

−nQ
.

Next, notice that if x belongs to the boundary of two connected components C1 and
C2, then it belongs to (Sk)µk+1 . Thus, the map gk+1 is continuous. We next bound the
global Lipschitz constant of gk+1. Indeed consider points x ∈ Fµk+2 \ (Sk)µk+1 and y ∈
F ′
µk+2 \ (Sk)µk+1 , with F, F ′ ∈ Fk+1. Since by (2.20) |x− y| > Cµk, we easily see that

|gk+1(x) − gk+1(y)| 6 2µk+1 + |gk(πF(x)) − gk(πF ′(y))|

6 2µk+1 + (1+Cµ2
−nQ

)|πF(x) − πF ′(y)|

6 2µk+1 + (1+Cµ2
−nQ

)
(
|x− y| + 2µk+1

)
6 (1+Cµ2

−nQ
) |x− y|.

Therefore, we can conclude again that Lip(gk+1) 6 1+Cµ2
−nQ

, finishing the inductive step.
After making the step above nQ times we arrive to a map gnQ which extends ρ?

0 and is
defined in a µnQ-neighborhood of Q. We denote this map by ρ?

1.

Step 3. Extension to RN

Finally, we extend ρ?
1 to all of RN with a fixed Lipschitz constant. This step is immediate

recalling the Lipschitz extension theorem for Q-valued functions. Indeed, taken ξ−1 ◦ ρ?
1 :

SµnQ → AQ, we find a Lipschitz extension h : RN → AQ of it with Lip(h) 6 C. Clearly, the
map ρ? := ξ ◦ h fulfills all the requirements of Proposition 2.3.



3
S O B O L E V Q - VA L U E D F U N C T I O N S

Here we introduce the definition of Sobolev Q-valued functions. Our approach follows
Ambrosio [3] and Reshetnyak [48] and allows us to define such classes of functions starting
from the metric properties of AQ, avoiding the biLipschitz embedding ξ used by Almgren.

The two approaches, the metric one and the extrinsic one, turn out to be equivalent. After
some first results on one dimensional domains, we prove the equivalence between our
definition and Almgren’s one and extend some standard properties of Sobolev functions to
the multi-valued case. In doing this, we provide two proofs for each result: one in Almgren’s
framework, using the extrinsic maps ξ and ρ, one using only the metric structure of AQ. It is
worth noticing that some of the properties are actually true for Sobolev spaces taking values
in fairly general metric targets, whereas some others do depend on the specific structure of
AQ.

3.1 sobolev q-valued functions

To our knowledge, metric space-valued Sobolev-type spaces were considered for the first
time by Ambrosio in [3] (in the particular case of BV mappings). The same issue was then
considered later by several other authors in connection with different problems in geometry
and analysis (see for instance [32], [41], [53], [40], [39], [8] and [36]). The definition adopted
here differs slightly from that of Ambrosio and was proposed later, for general exponents,
by Reshetnyak (see [48] and [49]).

Before starting with the definition, re recall that the spaces Lp(Ω, AQ) consists of those
measurable maps u : Ω → AQ such that ‖G(u,Q J0K)‖Lp is finite. Observe that, since Ω is
always bounded for us, this is equivalent to ask that ‖G(u, T)‖Lp is finite for every T ∈ AQ.

Definition 3.1 (Sobolev Q-valued functions). A measurable function f : Ω→ AQ is in the
Sobolev class W1,p (1 6 p 6∞) if there exist m functions ϕj ∈ Lp(Ω, R+) such that

(i) x 7→ G(f(x), T) ∈W1,p(Ω) for all T ∈ AQ;

(ii)
∣∣∂j G(f, T)

∣∣ 6 ϕj almost everywhere in Ω for all T ∈ AQ and for all j ∈ {1, . . . ,m}.

As already remarked by Reshetnyak, this definition is equivalent to the one proposed by
Ambrosio. The proof relies on the observation that Lipschitz maps with constant less than 1
can be written as suprema of translated distances. This idea, already used in [3], underlies
in a certain sense the embedding of separable metric spaces in `∞, a fact exploited first in
the pioneering work [31] by Gromov (see also the works [5], [4] and [37], where this idea
has been used in various situations).

Proposition 3.2. LetΩ ⊂ Rn be open and bounded. AQ-valued function f belongs toW1,p(Ω, AQ)

if and only if there exists a function ψ ∈ Lp(Ω, R+) such that, for every Lipschitz function
φ : AQ → R, the following two conclusions hold:

25
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(a) φ ◦ f ∈W1,p(Ω);

(b) |D (φ ◦ f) (x)| 6 Lip(φ) ψ(x) for almost every x ∈ Ω.

Proof. Since the distance function from a point is a Lipschitz map, with Lipschitz constant
1, one implication is trivial. To prove the opposite, consider a Sobolev Q-valued function
f: we claim that (a) and (b) hold with ψ =

(∑
jϕ
2
j

)1/2, where the ϕj’s are the functions in
Definition 3.1. Indeed, take a Lipschitz function φ ∈ Lip(AQ). By treating separately the
positive and the negative part of the function, we can assume, without loss of generality,
that φ > 0. If {Ti}i∈N ⊂ AQ is a dense subset and L = Lip(ϕ), it is a well known fact that
φ(T) = infi

{
φ(Ti) + LG(Ti, T)

}
. Therefore,

φ ◦ f = inf
i

{
φ(Ti) + LG(Ti, f)

}
=: inf

i
gi. (3.1)

Since f ∈W1,p(Ω, AQ), each gi ∈W1,p(Ω) and the inequality |D(φ ◦ f)| 6 supi |Dgi| holds

a.e. On the other hand, |Dgi| = L |DG(f, Ti)| 6 L
√∑

jϕ
2
j a.e. This completes the proof.

It is not difficult to show the existence of minimal functions ϕj fulfilling (ii) in Defini-
tion 3.1.

Proposition 3.3. For every Sobolev Q-valued function f ∈W1,p(Ω, AQ), there exist gj ∈ Lp, for
j = 1, . . . ,m, with the following two properties:

(i)
∣∣∂jG(f, T)

∣∣ 6 gj a.e. for every T ∈ AQ;

(ii) if ϕj ∈ Lp is such that
∣∣∂jG(f, T)

∣∣ 6 ϕj for all T ∈ AQ, then gj 6 ϕj a.e.

These functions are unique and will be denoted by |∂jf|. Moreover, chosen a countable dense subset
{Ti}i∈N of AQ, they satisfy∣∣∂jf∣∣ = sup

i∈N

∣∣∂j G(f, Ti)
∣∣ almost everywhere in Ω. (3.2)

Proof. The uniqueness of the functions gj is an obvious corollary of their property (ii). It is
enough to prove that gj =

∣∣∂jf∣∣ as defined in (3.2) satisfies (i), because it obviously satisfies
(ii). Let T ∈ AQ and {Tik} ⊆ {Ti} be such that Tik → T . Then, G(f, Tik) → G(f, T) in Lp and,
hence, for every ψ ∈ C∞c (Ω),∣∣∣∣ˆ ∂jG(f, T) ψ

∣∣∣∣ = lim
ik→+∞

∣∣∣∣ˆ G(f, Tik) ∂jψ
∣∣∣∣ = lim

ik→+∞
∣∣∣∣ˆ ∂jG(f, Tik) ψ

∣∣∣∣ 6 ˆ
gj |ψ|. (3.3)

Since (3.3) holds for every ψ, we conclude |∂jG(f, T)| 6 gj a.e.

Remark 3.4. Definition 3.1 can be easily generalized when the domain is a Riemannian
manifold M. In this case we simply ask that f ◦ x−1 is a Sobolev Q-function for every open
set U ⊂ M and every chart x : U → Rn. In the same way, given a vector field X, we can
define intrinsically |∂Xf| and prove the formula corresponding to (3.2) (the details are left to
the reader).

Finally we endow W1,p(Ω, AQ) with a metric.
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Proposition 3.5. Given f and g ∈W1,p(Ω, AQ), define

dW1,p(f,g) = ‖G(f,g)‖Lp +

m∑
j=1

∥∥∥∥sup
i

∣∣∂jG(f, Ti) − ∂jG(g, Ti)
∣∣∥∥∥∥
Lp

. (3.4)

Then,
(
W1,p(Ω, AQ),dW1,p

)
is a complete metric space and

dW1,p(fk, f)→ 0 ⇒ |Dfk|
Lp→ |Df|. (3.5)

Proof. The proof that dW1,p is a metric is a simple computation left to the reader; we prove
its completeness. Let {fk}k∈N be a Cauchy sequence for dW1,p . Then, it is a Cauchy sequence
in Lp(Ω, AQ). There exists, therefore, a function f ∈ Lp(Ω, AQ) such that fk → f in Lp. We
claim that f belongs to W1,p(Ω, AQ) and dW1,p(fk, f) → 0. Since f ∈ W1,p(Ω, AQ) if and
only if dW1,p(f, 0) <∞, it is clear that we need only to prove that dW1,p(fk, f)→ 0. This is a
consequence of the following simple observation:∥∥∥∥sup

i

∣∣∂jG(f, Ti) − ∂jG(fk, Ti)
∣∣∥∥∥∥
Lp

= sup
P∈P

∑
Es∈P

∥∥∂jG(f, Ts) − ∂jG(fk, Ts)
∥∥
Lp(Es)

6 lim
l→+∞dW1,p(fl, fk), (3.6)

where P is the family of finite measurable partitions of Ω. Indeed, by (3.6),

lim
k→+∞dW1,p(fk, f)

(3.6)
6 lim

k→+∞
[
‖G(f, fk)‖Lp +m lim

l→+∞dW1,p(fl, fk)
]

= 0.

We now come to (3.5). Assume dW1,p(fk, f)→ 0 and observe that

∣∣|∂jfk| − |∂jfl|
∣∣ = ∣∣∣∣sup

i

∣∣∂jG(fk, Ti)
∣∣− sup

i

∣∣∂jG(fk, Ti)
∣∣∣∣∣∣ 6 sup

i

∣∣∂jG(fk, Ti) − ∂jG(fk, Ti)
∣∣ .

Hence, one can infer
∥∥|∂jfk| − ∣∣∂jfl∣∣ ∥∥Lp 6 dW1,p(fk, fl). This implies that |Dfk| is a Cauchy

sequence, from which the conclusion follows easily.

3.2 one dimensional w1,p -decomposition

Now we prove some regular decompositions for one dimensional Sobolev maps. In the
what follows I = [a,b] is a closed bounded interval of R and the space of absolutely
continuous functions AC(I, AQ) is defined as the space of those continuous f : I → AQ
such that, for every ε > 0, there exists δ > 0 with the following property: for every
a 6 t1 < t2 < ... < t2N 6 b,∑

i

(t2i − t2i−1) < δ implies
∑
i

G
(
f(t2i), f(t2i−1)

)
< ε.

Proposition 3.6. Let f ∈W1,p(I, AQ). Then,

(a) f ∈ AC(I, AQ) and, moreover, f ∈ C0,1− 1
p (I, AQ) for p > 1;
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(b) there exists a selection f1, . . . , fQ ∈ W1,p(I, Rn) of f such that |Dfi| 6 |Df| almost every-
where.

Remark 3.7. A similar selection theorem holds for continuous Q-functions. This result needs
a subtler combinatorial argument and is proved in Almgren’s big regularity paper [2]
(Proposition 1.10, p. 85). The proof of Almgren uses the Euclidean structure, whereas a more
general argument has been proposed in [14].

Proof. We start with (a). Fix a dense set {Ti}i∈N ⊂ AQ. Then, for every i ∈ N, there is a
negligible set Ei ⊂ I such that, for every x < y ∈ I \ Ei,∣∣G(f(x), Ti) − G(f(y), Ti)

∣∣ 6 ∣∣∣∣ˆ y

x
G(f, Ti)′

∣∣∣∣ 6 ˆ y

x
|Df|.

Fix x < y ∈ I \∪iEi and choose a sequence {Til} converging to f(x). Then,

G(f(x), f(y)) = lim
l→∞

∣∣G(f(x), Til) − G(f(y), Til)
∣∣ 6 ˆ y

x
|Df| . (3.7)

Clearly, (3.7) gives the absolute continuity of f outside ∪iEi. Moreover, f can be redefined in
a unique way on the exceptional set so that the estimate (3.7) holds for every pair x,y. In the
case p > 1, we improve (3.7) to G(f(x), f(y)) 6 ‖ |Df| ‖Lp |x− y|(p−1)/p, thus concluding the
Hölder continuity.

For (b), the strategy is to find f1, . . . , fQ as limit of approximating piecewise linear
functions. To this aim, fix k ∈N and set

∆k :=
b− a

k
and tl := a+ l ∆k, with l = 0, . . . ,k.

By (a), without loss of generality, we assume that f is continuous and we consider the points
f(tl) =

∑
i

q
Pli

y
. Moreover, after possibly reordering each {Pli}i∈{1,...,Q}, we can assume that

G(f(tl−1), f(tl))2 =
∑
i

∣∣Pl−1i − Pli
∣∣2 . (3.8)

Hence, we define the functions fki as the linear interpolations between the points (tl,Pli),
that is, for every l = 1, . . . ,k and every t ∈ [tl−1, tl], we set

fki (t) =
tl − t

∆k
Pl−1i +

t− tl−1
∆k

Pli .

It is immediate to see that the fki ’s are W1,1 functions; moreover, for every t ∈ (tl−1, tl),
thanks to (3.8), the following estimate holds,

∣∣Dfki (t)∣∣ = ∣∣Pl−1i − Pli
∣∣

∆k
6

G(f(tl−1), f(tl))
∆k

6 −

ˆ tl

tl−1

|Df| (τ)dτ =: hk(t). (3.9)

Since the functions hk converge in Lp to |Df| for k → +∞, we conclude that the fki ’s are
equi-continuous and equi-bounded. Hence, up to passing to a subsequence, which we do
not relabel, there exist functions f1, . . . , fQ such that fki → fi uniformly. Passing to the limit,
(3.9) implies that |Dfi| 6 |Df| and it is a very simple task to verify that

∑
i JfiK = f.
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Proposition 3.6 cannot be extended to maps f ∈W1,p(S1, AQ). For example, we identify
R2 with the complex plane C and S1 with the set {z ∈ C : |z| = 1} and we consider the
map f : S1 → AQ(R2) given by f(z) =

∑
ζ2=z JζK. Then, f is Lipschitz (and hence belongs

to W1,p for every p) but it does not have a continuous selection. Nonetheless, we can use
Proposition 3.6 to decompose any f ∈W1,p(S1, AQ) into “irreducible pieces”.

Definition 3.8. f ∈W1,p(S1, AQ) is called irreducible if there is no decomposition of f into 2
simpler W1,p functions.

Proposition 3.9. For every Q-function g ∈ W1,p(S1, AQ(Rn)), there exists a decomposition
g =
∑J
j=1

q
gj

y
, where each gj is an irreducible W1,p map. A function g is irreducible if and only if

(i) card (supp (g(z))) = Q for every z ∈ S1 and

(ii) there exists a W1,p map h : S1 → Rn with the property that f(z) =
∑
ζQ=z Jh(ζ)K .

Moreover, for every irreducible g, there are exactly Q maps h fulfilling (ii).

The existence of an irreducible decomposition in the sense above is an obvious conse-
quence of the definition of irreducible maps. The interesting part of the proposition is the
characterization of the irreducible pieces, a direct corollary of Proposition 3.6.

Proof. The decomposition of g into irreducible maps is a trivial corollary of the definition
of irreducibility. Moreover, it is easily seen that a map satisfying (i) and (ii) is necessarily
irreducible.

Let now g be an irreducible W1,p Q-function. Consider g as a function on [0, 2π] with
the property that g(0) = g(2π) and let h1, . . . ,hQ in W1,p([0, 2π], Rn) be a selection as
in Proposition 3.6. Since we have g(0) = g(2π), there exists a permutation σ such that
hi(2π) = hσ(i)(0). We claim that any such σ is necessarily a Q-cycle. If not, there is a
partition of {1, . . . ,Q} into two disjoint nonempty subsets IL and IK, with cardinality L and
K respectively, such that σ(IL) = IL and σ(IK) = IK. Then, the functions

gL =
∑
i∈IL

JhiK and gK =
∑
i∈IK

JhiK

would provide a decomposition of f into two simpler W1,p functions.
The claim concludes the proof. Indeed, for what concerns (i), we note that, if the support

of g(0) does not consist of Q distinct points, there is always a permutation σ such that
hi(2π) = hσ(i)(0) and which is not a Q-cycle. For (ii), without loss of generality, we can
order the hi in such a way that σ(Q) = 1 and σ(i) = i+ 1 for i 6 Q− 1. Then, the map
h : [0, 2π]→ Rn defined by

h(θ) = hi(Qθ− 2(i− 1)π), for θ ∈ [2(i− 1)π/Q, 2iπ/Q],

fulfils (ii). Finally, if a map h̃ ∈W1,p(S1, Rn) satisfies

g(θ) =
∑
i

q
h̃((θ+ 2iπ)/Q)

y
for every θ, (3.10)
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then there is j ∈ {1, . . . ,Q} such that h̃(0) = h(2jπ/Q). By (i) and the continuity of h and h̃,
the identity h̃(θ) = h(θ+ 2jπ/Q) holds for θ in a neighborhood of 0. Therefore, since S1 is
connected, a simple continuation argument shows that h̃(θ) = h(θ+ 2jπ/Q) for every θ. On
the other hand, all the h̃ of this form are different (due to (i)) and enjoy (3.10): hence, there
are exactly Q distinct W1,p functions with this property.

3.3 almgren’s extrinsic theory

It is clear that, using ξ, one can identify measurable, Lipschitz and HölderQ-valued functions
f with the corresponding maps ξ ◦ f into RN, which are, respectively, measurable, Lipschitz,
Hölder functions taking values in Q a.e. We now show that the same holds for the Sobolev
classes of Definition 3.1, thus proving that the definition adopted by Almgren is equivalent
to the one we introduced.

Theorem 3.10. A Q-valued function f belongs to the Sobolev space W1,p(Ω, AQ) according to
Definition 3.1 if and only if ξ ◦ f belongs to W1,p(Ω, RN). Moreover, there exists a constant
C = C(n,Q) such that

|D(ξ ◦ f)| 6 |Df| 6 C |D(ξ ◦ f)|.

Proof. Let f be a Q-valued function such that g = ξ ◦ f ∈ W1,p(Ω, RN). Note that the
map ΥT : Q 3 y 7→ G(ξ−1(y), T) is Lipschitz, with a Lipschitz constant C that can be
bounded independently of T ∈ AQ. Therefore, G(f, T) = ΥT ◦ g is a Sobolev function
and

∣∣∂j (ΥT ◦ g)∣∣ 6 C|∂jg| for every T ∈ AQ. So, f fulfills the requirements (i) and (ii) of
Definition 3.1, with ϕj = C

∣∣∂jg∣∣, from which, in particular, |Df| 6 C |D(ξ ◦ f)|.
Vice versa, assume that f is in W1,p(Ω, AQ) and let ϕj be as in Definition 3.1. Choose a

countable dense subset {Ti}i∈N of AQ, and recall that any Lipschitz real-valued function Φ
on AQ can be written as

Φ(·) = sup
i∈N

{
Φ(Ti) − Lip (Φ) G(·, Ti)

}
.

This implies that ∂j (Φ ◦ f) ∈ Lp with
∣∣∂j (Φ ◦ f)∣∣ 6 Lip(Φ)ϕj. Therefore, sinceΩ is bounded,

Φ ◦ f ∈ W1,p(Ω). Being ξ a Lipschitz map with Lip(ξ) 6 1, we conclude that ξ ◦ f ∈
W1,p(Ω, RN) with |D(ξ ◦ f)| 6 |Df|.

We now use the theorem above to transfer in a straightforward way several classical
properties of Sobolev spaces to the framework of Q-valued mappings. In particular, in the
subsequent subsections we deal with Lusin type approximations, trace theorems, Sobolev and
Poincaré inequalities, and Campanato–Morrey estimates. Finally subsection 3.3.4 contains a
useful technical lemma estimating the energy of interpolating functions on spherical shells.

3.3.1 Lipschitz approximation and approximate differentiability

We start with the Lipschitz approximation property for Q-valued Sobolev functions.
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Proposition 3.11 (Lipschitz approximation). Let f be in W1,p(Ω, AQ). For every λ > 0, there
exists a Lipschitz Q-function fλ such that Lip (fλ) 6 λ and∣∣{x ∈ Ω : f(x) 6= fλ(x)

}∣∣ 6 C

λp

ˆ
Ω

(
|Df|p + G(f,Q J0K)p

)
, (3.11)

where the constant C depends only on Q, m and Ω.

Proof. Consider ξ ◦ f: by the Lusin-type approximation theorem for classical Sobolev func-
tions (see, for instance, 6.6.3 of [18]), there exists a Lipschitz function hλ : Ω→ RN such that
|{x ∈ Ω : ξ ◦ f(x) 6= hλ(x)}| 6 (C/λp) ‖ξ ◦ f‖p

W1,p . Clearly, the function fλ = ξ−1 ◦ ρ ◦ hλ has
the desired property.

A direct corollary of the Lipschitz approximation and of Theorem 1.13 is that any Sobolev
Q-valued map is approximately differentiable almost everywhere.

Definition 3.12 (Approximate Differentiability). A Q-valued function f is approximately
differentiable in x0 if there exists a measurable subset Ω̃ ⊂ Ω containing x0 such that Ω̃ has
density 1 at x0 and f|Ω̃ is differentiable at x0.

Corollary 3.13. Any f ∈W1,p(Ω, AQ) is approximately differentiable a.e.

Proof. For every k ∈ N, choose a Lipschitz function fk such that Ω \Ωk := {f 6= fk} has
measure smaller than k−p. By Rademacher’s Theorem 1.13, fk is differentiable a.e. on
Ω. Thus, f is approximately differentiable at a.e. point of Ωk. Since |Ω \ ∪kΩk| = 0, this
completes the proof.

The approximate differential of f at x0 can then be defined as D(f|Ω̃) because it is
independent of the set Ω̃. With a slight abuse of notation, we will denote it by Df, as
the classical differential. Similarly, we can define the approximate directional derivatives.
Moreover, for these quantities we use the notation of Section 1.3, that is

Df =
∑
i

JDfiK and ∂νf =
∑
i

J∂νfiK ,

with the same convention as in Remark 1.11, i.e. the first-order approximation is given by
Tx0f =

∑
i Jfi(x0) +Dfi(x0) · (x− x0)K.

Finally, observe that the chain-rule formulas of Proposition 1.12 have an obvious extension
to approximate differentiable functions.

Proposition 3.14. Let f : Ω → AQ(Rn) be approximate differentiable at x0. If Ψ and F are as in
Proposition 1.12, then (1.13) and (1.14) holds. Moreover, (1.12) holds when Φ is a diffeomorphism.

Proof. The proof follows trivially from Proposition 1.12 and Definition 3.12.

3.3.2 Sobolev and Poincaré inequalities

As usual, for p < m we set 1
p∗ = 1

p − 1
m .

Proposition 3.15 (Sobolev Embeddings). The following embeddings hold:
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(i) if p < m, thenW1,p(Ω, AQ) ⊂ Lq(Ω, AQ) for every q ∈ [1,p∗], and the inclusion is compact
when q < p∗;

(ii) if p = m, then W1,p(Ω, AQ) ⊂ Lq(Ω, AQ), for every q ∈ [1, +∞), with compact inclusion;

(iii) if p > m, then W1,p(Ω, AQ) ⊂ C0,α(Ω, AQ), for α = 1− m
p , with compact inclusion.

Proof. Since f is a Lq (resp. Hölder) Q-function if and only if ξ ◦ f is Lq (resp. Hölder), the
proposition follows trivially from Theorem 3.10 and the Sobolev embeddings for ξ ◦ f (see,
for example, [1] or [64]).

Proposition 3.16 (Poincaré inequality). Let M be a connected bounded Lipschitz open set of an
m-dimensional Riemannian manifold and let p < m. There exists a constant C = C(p,m,n,Q,M)

with the following property: for every f ∈W1,p(M, AQ), there exists a point f ∈ AQ such that(ˆ
M

G
(
f, f
)p∗) 1

p∗

6 C

(ˆ
M

|Df|p
) 1
p

. (3.12)

Remark 3.17. Note that the point f in the Poincaré inequality is not uniquely determined.
Nevertheless, in analogy with the classical setting, we call it a mean for f.

Proof. Set h := ξ ◦ f : M → Q ⊂ RN. By Theorem 3.10, h ∈ W1,p(M, RN). Recalling
the classical Poincaré inequality (see, for instance, [1] or [64]), there exists a constant
C = C(p,m,M) such that, if h = −́M h, then(ˆ

M

∣∣h(x) − h
∣∣p∗ dx) 1

p∗

6 C

(ˆ
M

|Dh|p
) 1
p

. (3.13)

Let now v ∈ Q be such that
∣∣h− v

∣∣ = dist
(
h, Q

)
(v exists because Q is closed). Then, since h

takes values in Q almost everywhere, by (3.13) we infer(ˆ
M

∣∣h− v
∣∣p∗ dx) 1

p∗

6

(ˆ
M

∣∣h− h(x)
∣∣p∗ dx) 1

p∗

6 C

(ˆ
M

|Dh|p
) 1
p

. (3.14)

Therefore, using (3.13) and (3.14), we end up with

‖h− v‖Lp∗ 6
∥∥h− h

∥∥
Lp
∗ +

∥∥h− v
∥∥
Lp
∗ 6 2C ‖Dh‖Lp .

Hence, it is immediate to verify, using the biLipschitz continuity of ξ, that (3.12) is satisfied
with f = ξ−1(v) and a constant C(p,m,n,Q,M).

3.3.3 Campanato–Morrey estimates

We prove next the Campanato–Morrey estimates for Q-functions, a crucial tool in the proof
of the Hölder regularity for Dir-minimizing functions.
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Proposition 3.18. Let f ∈W1,2(B1, AQ) and α ∈ (0, 1] be such that
ˆ
Br(y)

|Df|2 6 A rm−2+2α for every y ∈ B1 and a.e. r ∈]0, 1− |y|[.

Then, for every 0 < δ < 1, there is a constant C = C(m,n,Q, δ) with

sup
x,y∈Bδ

G(f(x), f(y))
|x− y|α

=: [f]C0,α(Bδ)
6 C
√
A. (3.15)

Proof. Consider ξ ◦ f: as shown in Theorem 3.10, there exists a constant C depending on
Lip(ξ) and Lip(ξ−1) such that

ˆ
Br(y)

|D(ξ ◦ f)(x)|2dx 6 CArm−2+2α

Hence, the usual Campanato–Morrey estimates (see, for example, 3.2 in [33]) provide the
existence of a constant C = C(m,α, δ) such that

|ξ ◦ f(x) − ξ ◦ f(y)| 6 C
√
A |x− y|α for every x,y ∈ Bδ.

Thus, composing with ξ−1, we conclude the desired estimate (3.15).

3.3.4 A technical Lemma

Finally we prove a technical lemma which estimates the Dirichlet energy of an interpolation
between two functions defined on concentric spheres. The lemma is particularly useful to
construct competitors for Dir-minimizing maps.

Lemma 3.19 (Interpolation Lemma). There is a constant C = C(m,n,Q) with the following
property. Let r > 0, g ∈ W1,2(∂Br, AQ) and f ∈ W1,2(∂Br(1−ε), AQ). Then, there exists h ∈
W1,2(Br \Br(1−ε), AQ) such that h|∂Br = g, h|∂Br(1−ε) = f and

Dir(h,Br \Br(1−ε)) 6 Cε r
[
Dir(g,∂Br) + Dir(f,∂Br(1−ε))

]
+

+
C

ε r

ˆ
∂Br

G (g(x), f ((1− ε) x))2 dx. (3.16)

Proof. By a scaling argument, it is enough to prove the lemma for r = 1. As usual, we
consider ψ = ξ ◦ g and ϕ = ξ ◦ f. For x ∈ ∂B1 and t ∈ [1− ε, 1], we define

Φ(t x) =
(t− 1+ ε)ψ(x) + (1− t)ϕ ((1− ε) x)

ε
,
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and Φ = ρ ◦Φ. It is straightforward to verify that Φ belongs to W1,2(B1 \B1−ε, Q). Moreover,
the Lipschitz continuity of ρ and an easy computation yield the following estimate,

ˆ
B1\B1−ε

∣∣DΦ∣∣2 6 C

ˆ
B1\B1−ε

|DΦ|
2

6 C

ˆ 1

1−ε

ˆ
∂B1

(
|∂τϕ(x)|2 + |∂τψ(x)|2 +

∣∣∣∣ψ(x) −ϕ ((1− ε)x)

ε

∣∣∣∣2
)

= Cε {Dir(ψ,∂B1) + Dir(ϕ,∂B1−ε)} +

+Cε−1
ˆ
∂B1

|ψ(x) −ϕ ((1− ε)x)|2 dx,

where ∂τ denotes the tangential derivative. Consider, finally, h = ξ−1 ◦Φ: (3.16) follows
easily from the biLipschitz continuity of ξ.

The following is a straightforward corollary.

Corollary 3.20. There exists a constant C = C(m,n,Q) with the following property. For every
g ∈W1,2(∂B1, AQ), there is h ∈W1,2(B1, AQ) with h|∂B1 = g and

Dir(h,B1) 6 CDir(g,∂B1) +C

ˆ
∂B1

G(g,Q J0K)2.

3.4 metric theory

The theory of Sobolev Q-valued functions as developed in the previous section is indepen-
dent from the extrinsic maps ξ and ρ. To show this, we provide here a second proofs of all
the results already proved in the framework of the metric theory of Q-valued functions.

3.4.1 Lipschitz approximation

In this subsection we prove a strengthened version of Proposition 3.11. The proof uses, in the
metric framework, a standard truncation technique and the Lipschitz extension Theorem 1.7
(see, for instance, 6.6.3 in [18]). This last ingredient is a feature of AQ(Rn) and, in general, the
problem of whether or not general Sobolev mappings can be approximated with Lipschitz
ones is a very subtle issue already when the target is a smooth Riemannian manifold (see
for instance [52], [7], [34] and [35]). The truncation technique is, instead, valid in a much
more general setting, see for instance [37].

Proposition 3.21 (Lipschitz approximation). There exists a constant C = C(m,Ω,Q) with the
following property. For every f ∈W1,p(Ω, AQ) and every λ > 0, there exists a Q-function fλ such
that Lip (fλ) 6 Cλ,

|Eλ| =
∣∣{x ∈ Ω : f(x) 6= fλ(x)

}∣∣ 6 C‖|Df|‖pLp
λp

(3.17)

and dW1,p(f, fλ) 6 CdW1,p(f,Q J0K). Moreover, dW1,p(f, fλ) = o(1) and |Eλ| = o(λ−p).
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Proof. We consider the case 1 6 p <∞ (p =∞ is immediate) and we set

Ωλ =
{
x ∈ Ω : M(|Df|) 6 λ

}
,

where M is the Maximal Function Operator (see [57] for the definition). By rescaling, we
can assume ‖|Df|‖Lp = 1. As a consequence, we can also assume λ > C(m,Ω,Q), where
C(m,Ω,Q) will be chosen later.

Notice that, for every T ∈ AQ and every j ∈ {1, . . . ,m},

M
( ∣∣∂jG(f, T)

∣∣ ) 6 M(|Df|) 6 λ in Ωλ.

By standard calculation (see, for example, 6.6.3 in [18]), we deduce that, for every T , G(f, T)
is (Cλ)-Lipschitz in Ωλ, with C = C(m). Therefore,∣∣G(f(x), T) − G(f(y), T)

∣∣ 6 Cλ |x− y| ∀ x,y ∈ Ωλ and ∀ T ∈ AQ. (3.18)

From (3.18), we get a Lipschitz estimate for f|Ωλ by setting T = f(x). We can therefore use
Theorem 1.7 to extend f|Ωλ to a Lipschitz function fλ with Lip(fλ) 6 Cλ.

The standard weak (p− p) estimate for maximal functions (see [57]) yields

|Ω \Ωλ| 6
C

λp

ˆ
Ω\Ωλ/2

|Df|p 6
C

λp
o(1), (3.19)

which implies (3.17) and |Eλ| = o(λ−p). Observe also that, from (3.19), it follows thatˆ
Ω\Ωλ

|Dfλ|
p 6 C

ˆ
Ω\Ωλ/2

|Df|p. (3.20)

It remains to prove dW1,p(f, fλ) 6 CdW1,p(f,Q J0K) and dW1,p(fλ, f) → 0. By (3.20), it
suffices to show

‖G(fλ,Q J0K)‖Lp 6 CdW1,p(f,Q J0K) and ‖G(fλ, f)‖Lp → 0 .

We first choose the constant C(m,Ω,Q) 6 λ so to guarantee that 2|Ωλ| > |Ω|. Set g :=

G(f,Q J0K), gλ := G(fλ,Q J0K) and h = g− gλ. Let h̄ be the average of h over Ω and use the
Poincaré inequality and the fact that h vanishes on Ωλ to conclude that

|Ω|

2
|h̄|p 6 |Ωλ||h̄|p 6

ˆ
|h− h̄|p 6 C‖Dh‖pLp 6 C

ˆ
Ω\Ωλ

(|Df|p + |Dfλ|
p) 6 C

ˆ
Ω\Ωλ/2

|Df|p.

Therefore,

‖h‖pLp 6 C

ˆ
Ω\Ωλ/2

|Df|p .

So, using the triangle inequality, we conclude that

‖G(fλ,Q J0K)‖Lp 6 ‖G(f,Q J0K)‖Lp +C‖|Df|‖Lp 6 CdW1,p(f,Q J0K)

and

‖G(f, fλ)‖)Lp = ‖G(f,Q J0K)‖Lp(Ω\Ωλ) + ‖h‖Lp
6 ‖G(f,Q J0K)‖Lp(Ω\Ωλ) +C‖|Df|‖Lp(Ω\Ωλ/2). (3.21)

Since |Ω \Ωλ| ↓ 0, the right hand side of (3.21) converges to 0 as λ ↓ 0.
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3.4.2 Sobolev embeddings

The following proposition is an obvious consequence of the definition and holds under
much more general assumptions.

Proposition 3.22 (Sobolev Embeddings). The following embeddings hold:

(i) if p < m, then W1,p(Ω, AQ) ⊂ Lq(Ω, AQ) for every q ∈ [1,p∗], where p∗ = mp
m−p , and the

inclusion is compact when q < p∗;

(ii) if p = m, then W1,p(Ω, AQ) ⊂ Lq(Ω, AQ), for every q ∈ [1, +∞), with compact inclusion.

Remark 3.23. In Proposition 3.15 we have also shown that

(iii) if p > m, then W1,p(Ω, AQ) ⊂ C0,α(Ω, AQ), for α = 1− m
p , with compact inclusion.

It is not difficult to give an intrinsic proof of it. However, in the regularity theory of Chapters
3 and 5, (iii) is used only in the case m = 1, which has already been shown in Proposition 3.6.

Proof. Recall that f ∈ Lp(Ω, AQ) if and only if G(f, T) ∈ Lp(Ω) for some (and, hence, any) T .
So, the inclusions in (i) and (ii) are a trivial corollary of the usual Sobolev embeddings for
real-valued functions, which in fact yields the inequality

‖G(f,Q J0K)‖Lq(Ω) 6 C(n,Ω,Q)dW1,p(f,Q J0K) . (3.22)

As for the compactness of the embeddings when q < p∗, consider a sequence {fk}k∈N of
Q-valued Sobolev functions with equi-bounded dW1,p-distance from a point:

dW1,p(fk,Q J0K) = ‖G(fk,Q J0K)‖Lp +
∑
j

∥∥|∂jfk|∥∥Lp 6 C < +∞.

For every l ∈N, let fk,l be the function given by Proposition 3.21 choosing λ = l.
From the Ascoli–Arzelà Theorem and a diagonal argument, we find a subsequence (not

relabeled) fk such that, for any fixed l, {fk,l}k is a Cauchy sequence in C0. We now use this
to show that fk is a Cauchy sequence in Lq. Indeed,

‖G(fk, fk′)‖Lq 6 ‖G(fk, fk,l)‖Lq + ‖G(fk,l, fk′,l)‖Lq + ‖G(fk′,l, fk′)‖Lq . (3.23)

We claim that the first and third terms are bounded by C l1/q−1/p∗ . It suffices to show it for
the first term. By Proposition 3.21, there is a constant C such that dW1,p(fk,l,Q J0K) 6 C for
every k and l. Therefore, we infer

‖G(fk, fk,l)‖qLq 6 C

ˆ
{fk 6=fk,l}

[
G(fk,Q J0K)q + G(fk,l,Q J0K)q

]
6
(
‖G(fk, J0K)‖q

Lp
∗ + ‖G(fk,l, J0K)‖qLp∗

)
|{fk 6= fk,l}|

1−q/p∗ 6 Clq/p
∗−1,

where in the last line we have used (3.22) (in the critical case p∗) and the Hölder inequality.
Let ε be a given positive number. Then we can choose l such that the first and third term in

(3.23) are both less than ε/3, independently of k. On the other hand, since {fk,l}k is a Cauchy
sequence in C0, there is an N such that ‖G(fk,l, fk ′,l)‖Lq 6 ε/3 for every k,k ′ > N. Clearly,
for k,k ′ > N, we then have ‖G(fk, fk ′)‖ 6 ε. This shows that {fk} is a Cauchy sequence in Lq

and hence completes the proof of (i). The compact inclusion in (ii) is analogous.
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3.4.3 Campanato–Morrey estimate

Here we give another proof of the Campanato–Morrey estimate in Proposition 3.18.

Proof of Proposition 3.18: metric point of view. Let T ∈ AQ be given. Then,
ˆ
Br

|DG(f, T)|2 6
ˆ
Br

|Df|2 6 A rm−2+2α for a.e. r ∈]0, 1].

By the classical estimate (see 3.2 in [33]), G(f, T) is α-Hölder with

sup
x,y∈Bδ

|G(f(x), T) − G(f(y), T)|
|x− y|α

6 C
√
A,

where C is independent of T . This implies easily (3.15).

3.4.4 Poincaré inequality

A proof of (a variant of) this Poincaré-type inequality appears already, for the case p = 1

and a fairly general target, in the work of Ambrosio [3]. Here we use, however, a different
approach, based on the existence of an isometric embedding of AQ(Rn) into a separable
Banach space. We then exploit the linear structure of this larger space to take averages.
This idea, which to our knowledge appeared first in [37], works in a much more general
framework, but, to keep our presentation easy, we will use all the structural advantages of
dealing with the metric space AQ(Rn).

Proposition 3.24 (Poincaré inequality). Let M be a connected bounded Lipschitz open set of a
Riemannian manifold. Then, for every 1 6 p < m, there exists a constant C = C(p,m,n,Q,M)

with the following property: for every function f ∈W1,p(M, AQ), there exists a point f ∈ AQ such
that (ˆ

M
G(f, f)p

∗
) 1
p∗

6 C

(ˆ
M

|Df|p
) 1
p

, (3.24)

where p∗ = mp
m−p .

The key ingredients of the proof are the lemmas stated below. The first one is an elementary
fact, exploited first by Gromov in the context of metric geometry (see [31]) and used later to
tackle many problems in analysis and geometry on metric spaces (see [5], [4] and [37]). The
second is an extension of a standard estimate in the theory of Sobolev spaces. Both lemmas
will be proved at the end of the subsection.

Lemma 3.25. Let (X,d) be a complete separable metric space. Then, there is an isometric embedding
i : X→ B into a separable Banach space.

Lemma 3.26. For every 1 6 p < m and r > 0, there exists a constant C = C(p,m,n,Q) such that,
for every f ∈W1,p(Br, AQ)∩ Lip (Br, AQ) and every z ∈ Br,ˆ

Br

G(f(x), f(z))pdx 6 Crp+m−1

ˆ
Br

|Df|(x)p |x− z|1−m dx. (3.25)
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Proof of Proposition 3.24. Step 1. We first assume M = Br ⊂ Rm and f Lipschitz. We regard
f as a map taking values in the Banach space B of Lemma 3.25. Since B is a Banach space,
we can integrate B-valued functions on Riemannian manifolds using the Bochner integral.
Indeed, being f Lipschitz and B a separable Banach space, in our case it is straightforward to
check that f is integrable in the sense of Bochner (see [16]; in fact the theory of the Bochner
integral can be applied in much more general situations).

Consider therefore the average of f on M, which we denote by Sf. We will show that
ˆ
Br

‖f− Sf‖pB 6 Crp
ˆ
Br

|Df|p. (3.26)

First note that, by the usual convexity of the Bochner integral,

‖f(x) − Sf‖B 6 −

ˆ
‖f(z) − f(x)‖B dz = −

ˆ
G(f(z), f(x))dz.

Hence, (3.26) is a direct consequence of Lemma 3.26:
ˆ
Br

‖f(x) − Sf‖pB dx 6
ˆ
Br

−

ˆ
Br

G(f(x), f(z))p dzdx

6 Crp+m−1 −

ˆ
Br

ˆ
Br

|w− z|1−m|Df|(w)p dwdz

6 Crp
ˆ
Br

|Df|(w)p dw.

Step 2. Assuming M = Br ⊂ Rm and f Lipschitz, we find a point f such that
ˆ
Br

G
(
f, f
)p

6 Crp
ˆ
Br

|Df|p. (3.27)

Consider, indeed, f ∈ AQ a point such that

‖Sf − f‖B = min
T∈AQ

‖Sf − T‖B. (3.28)

Note that f exists because AQ is locally compact. Then, we have
ˆ
Br

G
(
f, f
)p

6 C

ˆ
Br

‖f− Sf‖pB +

ˆ
Br

‖Sf − f‖pB
(3.26), (3.28)

6 Crp
ˆ
Br

|Df|p +C

ˆ
Br

‖Sf − f‖pB
(3.26)
6 Crp

ˆ
Br

|Df|p.

Step 3. Now we consider the case of a generic f ∈ W1,p(Br, AQ). From the Lipschitz
approximation Theorem 3.21, we find a sequence of Lipschitz functions fk converging to f,
dW1,p(fk, f)→ 0. Fix, now, an index k such that

ˆ
Br

G(fk, f)p 6 rp
ˆ
Br

|Df|p and
ˆ
Br

|Dfk|
p 6 2

ˆ
Br

|Df|p, (3.29)
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and set f = fk, with the fk found in the previous step. With this choice, we conclude

ˆ
Br

G
(
f, f
)p

6 C

ˆ
Br

G(f, fk)p +

ˆ
Br

G
(
fk, fk

)p (3.27), (3.29)
6 Crp

ˆ
Br

|Df|p. (3.30)

Step 4. Using classical Sobolev embeddings, we prove (3.24) in the case of M = Br. Indeed,
since G(f, f) ∈W1,p(Br), we conclude

∥∥G(f, f)
∥∥
Lp
∗ 6

∥∥G(f, f)
∥∥
W1,p

(3.30)
6 C

(ˆ
Br

|Df|p
) 1
p

.

Step 5. Finally, we drop the hypothesis of M being a ball. Using the compactness and
connectedness of M, we cover M by finitely many domains A1, . . . ,AN biLipschitz to a ball
such that Ak ∩∪i<kAi 6= ∅. This reduces the proof of the general statement to that in the
case M = A ∪ B, where A and B are two domains such that A ∩ B 6= ∅ and the Poincaré
inequality is valid for both. Under these assumptions, denoting by fA and fB two means for
f over A and B, we estimate

G(fA, fB)p
∗

= −

ˆ
A∩B

G(fA, fB)p
∗

6 C−

ˆ
A

G(fA, f)p
∗
+C−

ˆ
B

G(f, fB)p
∗

6 C

(ˆ
M

|Df|p
)p∗

p

.

Therefore,
ˆ
A∪B

G(f, fA)p
∗

6
ˆ
A

G(f, fA)p
∗
+

ˆ
B

G(f, fA)p
∗

6
ˆ
A

G(f, fA)p
∗
+C

ˆ
B

G(f, fB)p
∗
+CG(fA, fB)p

∗
|B|

6 C

(ˆ
M

|Df|p
)p∗

p

.

Proof of Lemma 3.25. We choose a point x ∈ X and consider the Banach space A := {f ∈
Lip(X, R) : f(x) = 0} with the norm ‖f‖A = Lip(f). Consider the dual A ′ and let i : X→ A ′

be the mapping that to each y ∈ X associates the element [y] ∈ A ′ given by the linear
functional [y](f) = f(y). First of all we claim that i is an isometry, which amounts to prove
the following identity:

d(z,y) = ‖[y] − [z]‖A ′ = sup
f(x)=0, Lip(f)61

|f(y) − f(z)| ∀x,y ∈ X. (3.31)

The inequality |f(y) − f(z)| 6 d(y, z) follows from the fact that Lip(f) = 1. On the other
hand, consider the function f(w) := d(w,y) − d(y, x). Then f(x) = 0, Lip(f) = 1 and
|f(y) − f(z)| = d(y, z).

Next, let C be the subspace generated by finite linear combinations of elements of i(X).
Note that C is separable and contains i(X): its closure in A ′ is the desired separable Banach
space B.
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Proof of Lemma 3.26. Fix z ∈ Br. Clearly the restriction of f to any segment [x, z] is Lipschitz.
Using Rademacher, it is easy to justify the following inequality for a.e. x:

G(f(x), f(z)) 6 |x− z|

ˆ 1

0
|Df|(z+ t(x− z))dt. (3.32)

Hence, one has
ˆ
Br∩∂Bs(z)

G(f(x), f(z))p dx
(3.32)
6
ˆ
Br∩∂Bs(z)

ˆ 1

0
|x− z|p |Df|(z+ t(x− z))p dtdx

6 sp
ˆ 1

0

ˆ
Br∩∂Bts(z)

t1−n|Df|(w)p dwdt

= sp+m−1

ˆ 1

0

ˆ
Br∩∂Bts(z)

|w− z|1−m|Df|(w)p dwdt

6 sp+m−2

ˆ
Br

|w− z|1−m|Df|(w)p dw. (3.33)

Integrating in s the inequality (3.33), we conclude (3.25),ˆ
Br

G(f(x), f(z))p dx 6 Crp+m−1

ˆ
Br

|w− z|1−m|Df|(w)p dw.

3.4.5 Calderon–Zygmund property

The following lemma, not proved in the previous section, will be used later in the proof of
the semicontinuity result in Chapter 11.

Lemma 3.27. Let u ∈W1,p(Ω, AQ). Then, for Lm-a.e. x0 ∈ Ω it holds

lim
ρ→0

ρ−p−m

ˆ
Cρ(x0)

Gp(u, Tx0u) = 0. (3.34)

Proof. By the Lipschitz approximation, there exists a family (uλ) with Lip(uλ) 6 λ such
that dW1,p(u,uλ) = o(1) as λ → +∞. Denote by Ωλ = {x0 : Tx0u = Tx0uλ}. Then it holds
Ωλ ⊂ Ωλ ′ for λ < λ ′ and Lm(Ω \Ωλ) = o(1).

We prove (3.34) for all x0 ∈ Ωλ Lebesgue point for χΩλ and |Du|pχΩ\Ωλ , for some λ ∈N,
i.e.

lim
ρ→0

 
Cρ(x0)

χΩλ = lim
ρ→0

ρ−mLm(Cρ(x0)∩Ωλ) = 1 and lim
ρ→0

 
Cρ(x0)

|Du|pχΩ\Ωλ = 0.

(3.35)

Let, indeed, x0 be such a point for a fixed Ωλ: we estimate as follows 
Cρ(x0)

Gp(u, Tx0u) 6 2p−1

 
Cρ(x0)

Gp(uλ, Tx0uλ) + 2p−1

 
Cρ(x0)

Gp(uλ,u)

6 o(ρp) +Cρp−m

ˆ
Cρ(x0)\Ωλ

|D(G(uλ,u))|p, (3.36)
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where in the latter inequality we used Rademacher’s theorem for Q-functions and a Poincaré
inequality for the classical Sobolev function G(u,uλ) which satisfies

Ωλ ⊆
{
G(u,uλ) = 0

}
and ρ−mLm(Cρ(x0)∩Ωλ) > 1/2 for small ρ.

Since G(u,uλ) = supTi |G(u, Ti) − G(Ti,uλ)| and

D|G(u, Ti) − G(Ti,uλ)| 6 |DG(u, Ti)| + |DG(Ti,uλ)| 6 |Du| + |Duλ| Lm-a.e. on Ω,

it holds (recall that λ 6 C|Du| on Ω \Ωλ)

ρp−m

ˆ
Cρ(x0)\Ωλ

|D(G(u,uλ))|p 6 ρp−m

ˆ
Cρ(x0)\Ωλ

sup
i

(
D|G(u, Ti) − G(Ti,uλ)|

)p
6 Cρp−m

ˆ
Cρ(x0)\Ωλ

|Du|p
(3.35)
= o(ρp).

3.4.6 Interpolation Lemma

We prove in this section Lemma 3.19 (the statement below is, in fact, slightly simpler:
Lemma 3.19 follows however from elementary scaling arguments). In this case, the proof
relies in an essential way on the properties of AQ(Rn) and we believe that generalizations
are possible only under some structural assumptions on the metric target.

Lemma 3.28 (Interpolation Lemma). There exists a constant C = C(m,n,Q) with the following
property. For any g, g̃ ∈W1,2(∂B1, AQ), there is h ∈W1,2(B1 \B1−ε, AQ) such that

h (x) = g(x), h ((1− ε) x) = g̃(x), for x ∈ ∂B1,

and

Dir(h,B1 \B1−ε) 6 C

{
εDir(g,∂B1) + εDir(g̃,∂B1) + ε−1

ˆ
∂B1

G (g, g̃)2
}

.

Proof. For the sake of clarity, we divide the proof into two steps: in the first one we prove
the lemma in a simplified geometry (two parallel hyperplanes instead of two concentric
spheres); then, we adapt the construction to the case of interest.

Step 1. Interpolation between parallel planes. We let A = [−1, 1]m−1, B = A × [0, ε] and
consider two functions g, g̃ ∈ W1,2(A, AQ). We then want to find a function h : B → AQ
such that

h(x, 0) = g(x) and h(x, ε) = g̃(x); (3.37)

Dir(h,B) 6 C

(
εDir(g,A) + εDir(g̃,A) + ε−1

ˆ
A

G(g, g̃)2
)

, (3.38)

where the constant C depends only on m, n and Q.
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For every k ∈ N+, set Ak = [−1− k−1, 1+ k−1]m−1, and decompose Ak in the union
of (k+ 1)m−1 cubes {Ck,l}l=1,...,(k+1)m−1 with disjoint interiors, side length equal to 2/k
and faces parallel to the coordinate hyperplanes. We denote by xk,l their centers. Therefore,
Ck,l = xk,l +

[
−1k , 1k

]m−1
. Finally, we subdivide A into the cubes {Dk,l}l=1,...,km−1 of side

2/k and having the points xk,l as vertices, (so {Dk,l} is the decomposition “dual” to {Ck,l};
see Figure 2).

Ck,l

Dk,l

xk,l

Figure 2: The cubes Ck,l and Dk,l.

On each Ck,l take a mean gk,l of g on Ck,l ∩A. On Ak we define the piecewise constant
functions gk which takes the constant value gk,l on each Ck,l:

gk ≡ gk,l in Ck,l, with
ˆ
Ck,l∩A

G(g,gk,l)
2 6

C

k2

ˆ
Ck,l∩A

|Dg|2.

In an analogous way, we define g̃k from g̃ and denote by g̃k,l the corresponding averages.
Note that gk → g and g̃k → g̃ in L2(A, AQ).

We next define a Lipschitz function fk : B→ AQ. We set fk(xk,l, 0) = ḡk,l and fk(xk,l, ε) =

g̃k,l. We then use Theorem 1.7 to extend fk on the 1-skeleton of the cubical decomposition
given by Dk,l × [0, ε]. We apply inductively Theorem 1.7 to extend fk to the j-skeletons.

If Vk,l and Zk,l denote, respectively, the set of vertices of Dk,l× {0} and Dk,l× {ε}, we then
conclude that

Lip(fk|Dk,l×{ε}) 6 CLip(fk|Zk,l) and Lip(fk|Dk,l×{0}) 6 CLip(fk|Vk,l). (3.39)

Let (xk,i, 0) and (xk,j, 0) be two adjacent vertices in Vk,l. Then,

G(fk(xk,i, 0), fk(xk,j, 0))2 = G(gk(xk,i),gk(xk,j))
2 = −

ˆ
Ck,i∩Ck,j∩A

G(gk(xk,i),gk(xk,j))
2

6 C−

ˆ
Ck,i∩A

G(gk,i,g)
2 +C−

ˆ
Ck,j∩A

G(g,gk,j)
2

6
C

km+1

ˆ
Ck,i∪Ck,j

|Dg|2. (3.40)
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In the same way, if (xk,i, ε) and (xk,j, ε) are two adjacent vertices in Zk,l, then

G(fk(xk,i, ε), fk(xk,j, ε))2 6
C

km+1

ˆ
Ck,i∪Ck,j

|Dg̃|2.

Finally, for (xk,i, 0) and (xk,i, ε), we have

G
(
fk(xk,i, 0), fk(xk,i, ε)

)2
= ε−2 G(gk,i, g̃k,i)

2 6 −

ˆ
Ck,i∩A

ε−2 G(gk, g̃k)2.

Hence, if {Ck,α}α=1,...,2m−1 are all the cubes intersecting Dk,l, we conclude that the Lipschitz
constant of fk in Dk,l × [0, ε] is bounded in the following way:

Lip(fk|Dk,l×[0,ε])
2 6

C

km−1

ˆ
∪αCk,α

(
|Dg|2 + |Dg̃|2 + ε−2G(gk, g̃k)2

)
.

Observe that each Ck,α intersects at most N cubes Dk,l, for some dimensional constant N.
Thus, summing over l, we conclude

Dir(fk,A× [0, ε]) 6 C

(
ε

ˆ
A

|Dg|2 + ε

ˆ
A

|Dg̃|2 + ε−1
ˆ
A

G(gk, g̃k)2
)

. (3.41)

Next, having fixed Dk,l, consider one of its vertices, say x ′. By (3.39) and (3.40), we conclude

max
y∈Dk,l

G(fk(y, 0), fk(x ′, 0))2 6
C

km+1

ˆ
∪αCk,α

|Dg|2.

For any x ∈ Dk,l, gk(x) is equal to fk(x ′, 0) for some vertex x ′ ∈ Dk,l. Thus, we can estimate
ˆ
A

G(fk(x, 0),gk(x))2 dx 6
C

k2

ˆ
A

|Dg|2. (3.42)

Recalling that gk → g in L2, we conclude, therefore, that fk(·, 0) converges to g. A similar
conclusion can be inferred for fk(·, ε).

Finally, from (3.41) and (3.42), we conclude a uniform bound on ‖|fk|‖L2(B). Using the
compactness of the embedding W1,2 ⊂ L2, we conclude the existence of a subsequence
converging strongly in L2 to a function h ∈W1,2(B). Obviously, h satisfies (3.38). We now
want to show that (3.37) holds.

Let δ ∈]0, ε[ and assume that fk(·, δ)→ f(·, δ) in L2 (which in fact holds for a.e. δ). Then, a
standard argument shows that

ˆ
A

G(f(x, δ),g(x))2 dx = lim
k↑∞

ˆ
A

G(fk(x, δ),gk(x))2 dx 6 lim sup
k↑∞ δ‖|Dfk|‖2L2(B) 6 Cδ.

Clearly, this implies that f(·, 0) = g. An analogous computation shows f(·, ε) = g̃.

Step 2. Interpolation between two spherical shells. In what follows, we denote by D the closed
(m− 1)-dimensional ball and assume that φ+ : D → ∂B1 ∩ {xm > 0} is a diffeomorphism.
Define φ− : D→ ∂B1 ∩ {xm 6 0} by simply setting φ−(x) = −φ+(x). Next, let φ : A→ D be
a biLipschitz homeomorphism, where A is the set in Step 1, and set

ϕ± = φ± ◦φ, gk,± = g ◦ϕ± and g̃k,± = g̃ ◦ϕ±.
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Consider the Lipschitz approximating functions constructed in Step 1, fk,+ : A× [0, ε]→ AQ
interpolating between gk,+ and g̃k,−.

Next, to construct fk,−, we use again the cell decomposition of Step 1. We follow the
same procedure to attribute the values fk,−(xk,l, 0) and fk,−(xk,l, ε) on the vertices xk,l 6∈ ∂A.
We instead set fk,−(xk,l, 0) = fk,+(xk,l, 0) and fk,−(xk,l, ε) = fk,+(xk,l, ε) when xk,l ∈ ∂A.
Finally, when using Theorem 1.7 as in Step 1, we take care to set fk,+ = fk,− on the skeletons
lying in ∂A and we define

fk(x) =

fk,+(ϕ−1
+ (x/|x|), 1− |x|) if xm > 0

fk,−(ϕ−1
− (x/|x|), 1− |x|) if xm 6 0 .

Then, fk is a Lipschitz map. We want to use the estimates of Step 1 in order to conclude the
existence of a sequence converging to a function h which satisfies the requirements of the
proposition. This is straightforward on {xm > 0}. On {xm 6 0} we just have to control the
estimates of Step 1 for vertices lying on ∂A. Fix a vertex xk,l ∈ ∂A.

In the procedure of Step 1, fk,−(xk,l, 0) and fk,−(xk,l, ε) are defined by taking the averages
hk,l and h̃k,l for g ◦ϕ− and g̃ ◦ϕ− on the cell Ck,l ∩A. In the procedure specified above the
values of fk,−(xk,l, 0) and fk,−(xk,l, ε) are given by the averages of g ◦ϕ+ and g̃ ◦ϕ+, which
we denote by gk,l and g̃k,l. However, we can estimate the difference in the following way

|gk,l − hk,l| 6
C

km+2

ˆ
Ek,l

|Dg|2,

where Ek,l is a suitable cell in ∂B1 containing ϕ+(Ck,l) and ϕ−(Ck,l). Since these two cells
have a face in common and ϕ± are biLipschitz homeomorphisms, we can estimate the
diameter of Ek,l with C/k (see Figure 3). Therefore the estimates (3.41) and (3.42) proved in
Step 1 hold with (possibly) worse constants.

A
ϕ+

ϕ−
Ek,l

Figure 3: The maps ϕ± and the cells Ek,l.



4
D I R - M I N I M I Z I N G Q - VA L U E D F U N C T I O N S

In this chapter we define a suitable Dirichlet energy (where suitable means capable to
approximate the area functional for multi-valued graphs) and prove the existence of Q-
valued functions minimizing it. In passing, we prove that the energy we define is the same
considered by Almgren, thus leading to the perfect correspondence between the metric
theory we developed and the extrinsic theory of Almgren.

4.1 dirichlet energy

We start fixing the following notation: given a function f ∈W1,2(Ω, AQ), we set

|Df|2 :=

m∑
j=1

∣∣∂jf∣∣2 (4.1)

and, in the same way, on a general Riemannian manifold M, we choose an orthonormal
frame X1, . . . Xm and set |Df|2 =

∑
|∂Xif|

2 (this definition is independent of the choice of
coordinates and frames, as it can be seen from Proposition 4.2). The Dirichlet energy is hence
defined as follows.

Definition 4.1. For every f ∈ W1,2(U, AQ), where U is an open subset of a Riemannian
manifold, the Dirichlet energy is given by Dir(f,U) :=

´
U |Df|2.

It is not difficult to see that, when f can be decomposed into finitely many regular
single-valued functions, i.e. f(x) =

∑
i Jfi(x)K for some differentiable functions fi, then

Dir(f,U) =
∑
i

ˆ
U

|Dfi|
2 =
∑
i

Dir(fi,U).

Almgren introduces a different definition of Dirichlet energy. More precisely, using our
notations, Almgren’s definition reads simply asˆ

Ω

∑
i=1,...,Q
j=1,...,m

|∂jfi(x)|
2 dx, (4.2)

where ∂jfi are the approximate partial derivatives of Definition 3.12, which exist almost
everywhere thanks to Corollary 3.13. Moreover, (4.2) makes sense because the integrand
does not depend upon the particular selection chosen for f. The two energies turn out to be
equivalent.

Proposition 4.2 (Equivalence of the definitions). For every f ∈ W1,2(Ω, AQ) and every j =

1, . . . ,m, we have

|∂jf|
2 =
∑
i

|∂jfi|
2 a.e. (4.3)

45
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Therefore the Dirichlet energy Dir(f,Ω) of Definition 4.1 coincides with (4.2).

Proof. We recall the definition of |∂jf| and |Df| given in (3.2) and (4.1): chosen a countable
dense set {Tl}l∈N ⊂ AQ, we define

∣∣∂jf∣∣ = sup
l∈N

∣∣∂jG(f, Tl)
∣∣ and |Df|2 :=

m∑
j=1

∣∣∂jf∣∣2 .

By Proposition 3.11, we can consider a sequence gk =
∑Q
i=1

q
gki

y
of Lipschitz functions

with the property that |{gk 6= f}| 6 1/k. Note that |∂jf| = |∂jg
k| and

∑
i |∂jg

k
i |
2 =
∑
i |∂jfi|

2

almost everywhere on {gk = f}. Thus, it suffices to prove the proposition for each Lipschitz
function gk.

Therefore, we assume from now on that f is Lipschitz. Note next that on the set El = {x ∈
Ω : f(x) = Tl} both |∂jf| and

∑
i |∂jfi|

2 vanish a.e. Hence, it suffices to show (4.3) on any
point x0 where f and all G(f, Tl) are differentiable and f(x0) 6∈ {Tl}l∈N.

Fix such a point, which, without loss of generality, we can assume to be the origin, x0 = 0.
Let T0f be the first oder approximation of f at 0. Since G(·, Tl) is a Lipschitz function, we
have G(f(y), Tl) = G(T0f(y), Tl) + o(|y|). Therefore, g(y) := G(T0f(y), Tl) is differentiable at 0
and ∂jg(0) = ∂jG(f, Tl)(0).

We assume, without loss of generality, that G(f(0), Tl)2 =
∑
i |fi(0) − Pi|

2, where Tl =∑
i JPiK. Next, we consider the function

h(y) :=

√∑
i

|fi(0) +Dfi(0) · y− Pi|2.

Then, g 6 h. Since h(0) = g(0), we conclude that h− g has a minimum at 0. Recall that both
h and g are differentiable at 0 and h(0) = g(0). Thus, we conclude ∇h(0) = ∇g(0), which in
turn yields the identity

∂j G(f, Tl)(0) = ∂jg(0) = ∂jh(0) =
∑
i

(fi(0) − Pi) · ∂jfi(0)√∑
i |fi(0) − Pi|2

. (4.4)

Using the Cauchy-Schwartz inequality and (4.4), we deduce that

|∂jf|(0)
2 = sup

l∈N

∣∣∂jG(f, Tl)(0)
∣∣2 6

∑
i

∣∣∂jfi(0)∣∣2 . (4.5)

If the right hand side of (4.5) vanishes, then we clearly have equality. Otherwise, let Qi =

fi(0) + λ ∂jfi(0), where λ is a small constant to be chosen later, and consider T =
∑
i JQiK.

Since {Tl} is a dense subset of AQ, for every ε > 0 we can find a point Tl =
∑
i JPiK such that

Pi = fi(0) + λ ∂jfi(0) + λRi, with |Ri| 6 ε for every i.

Now we choose λ and ε small enough to ensure that G(f(0), Tl)2 =
∑
i |fi(0) − Pi|

2 (indeed,
recall that, if fi(0) = fk(0), then ∂jfi(0) = ∂jfk(0)). So, we can repeat the computation above
and deduce that

∂j G(f, Tl)(0) =
∑
i

(fi(0) − Pi) · ∂jfi(0)√∑
i |fi(0) − Pi|2

=
∑
i

(∂jfi(0) + Ri) · ∂jfi(0)√∑
i |∂jfi(0) + Ri|2

.



4.1 dirichlet energy 47

Hence,

|∂jf|(0) >
∑
i

(∂jfi(0))
2 + ε|∂jfi(0)|√∑

i(|∂jfi(0)| + ε)
2

.

Letting ε→ 0, we obtain the inequality |∂jf|(0) >
∑
j(∂jfi(0))

2.

Remark 4.3. Fix a point x0 of approximate differentiability for f and consider its first order
approximation at x0, Tx0(x) =

∑
Jfi(x0) +Dfi(x0) · (x− x0)K. Note that the integrand in (4.2)

coincides with
∑
i |Dfi(x0)|

2 (where |L| denotes the Hilbert-Schmidt norm of the matrix L)
and it is independent of the orthonormal coordinate system chosen for Rm. Thus, Proposition
4.2 (and its obvious counterpart when the domain is a Riemannian manifold) implies that
Dir(f,Ω) is as well independent of this choice.

Remark 4.4. In the sequel, we will often use the following notation: given a Q-point T ∈
AQ(Rn), T =

∑
i JPiK, we set

|T |2 := G(T ,Q J0K)2 =
∑
i

|Pi|
2.

In the same fashion, for f : Ω → AQ, we define the function |f| : Ω → R by setting
|f|(x) = |f(x)|. Then, Proposition 4.2 asserts that, since we understand Df and ∂jf as maps
into, respectively, AQ(Rn×m) and AQ(Rn), this notation is consistent with the definitions
of |Df| and |∂jf| given in (4.1) and (3.2).

Exploiting White’s observation in (iii) of Theorem 2.1, the Dirichlet energy of a function
f ∈W1,2 can be recovered, moreover, as the energy of the composition ξ ◦ f.

Proposition 4.5. For every f ∈ W1,2(Ω, AQ), it holds |Df| = |D(ξ ◦ f)| a.e. In particular,
Dir(f,Ω) =

´
Ω |D(ξ ◦ f)|2.

Proof. As for Proposition 4.2, it is enough to show the proposition for a Lipschitz function f.
We prove that the functions |Df| and |D(ξ ◦ f)| coincide on each point of differentiability of f.

Let x0 be such a point and let Tx0f(x) =
∑
i Jfi(x0) +Dfi(x0) · (x− x0)K be the first order

expansion of f in x0. Since G(f(x), Tx0f(x)) = o(|x− x0|) and locally Lip(ξ) = 1, it is enough
to prove that |Df|(x0) = |D(ξ ◦ Tx0f)(x0)|.

Using the fact that Dfi(x0) = Dfj(x0) when fi(x0) = fj(x0), it follows easily that, for
every x with |x− x0| small enough,

G(Tx0f(x), f(x0))
2 =
∑
i

|Dfi(x0) · (x− x0)|
2.

Hence, since ξ is an isometry in a neighborhood of each point, for |x− x0| small enough, we
infer that

|ξ(Tx0f(x)) − ξ(f(x0))|
2 =
∑
i

|Dfi(x0) · (x− x0)|
2. (4.6)

For x = t ej + x0 in (4.6), where the ej’s are the canonical basis in Rm, taking the limit as t
goes to zero, we obtain that

|∂j(ξ ◦ Tx0f)(x0)|
2 =
∑
i

|∂jfi|
2(x0).
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Summing in j and using Proposition 4.2, we conclude that |Df|(x0) = |D(ξ ◦ Tx0f)(x0)|, which
concludes the proof.

4.2 trace theory

The usual notion of trace at the boundary can be easily generalized to the setting of Q-valued
functions.

Definition 4.6 (Trace of Sobolev Q-functions). Let Ω ⊂ Rm be a Lipschitz bounded open
set and f ∈W1,p(Ω, AQ). A function g belonging to Lp(∂Ω, AQ) is said to be the trace of f
at ∂Ω (and we denote it by f|∂Ω) if, for every T ∈ AQ, the trace of the real-valued Sobolev
function G(f, T) coincides with G(g, T).

It is straightforward to check that this notion of trace coincides with the restriction of f to
the boundary when f is a continuous function which extends continuously to Ω. We show
here the existence of the trace of a Q-valued Sobolev function. Moreover, we prove that
the space of functions with given trace W1,p

g (Ω, AQ) defined below is closed under weak
convergence. A suitable trace theory can be build in a much more general setting. Here,
instead, we prefer to take advantage of Proposition 3.21 to give a fairly short proof.

Definition 4.7 (Weak convergence). Let fk, f ∈ W1,p(Ω, AQ). We say that fk converges
weakly to f for k→∞, (and we write fk ⇀ f) in W1,p(Ω, AQ), if

(i)
´

G(fk, f)p → 0, for k→∞;

(ii) there exists a constant C such that
´

|Dfk|
p 6 C <∞ for every k.

Proposition 4.8. Let f ∈W1,p(Ω, AQ). Then, there exists an unique g ∈ Lp(∂Ω, AQ) such that

(ϕ ◦ f)|∂Ω = ϕ ◦ g for all ϕ ∈ Lip (AQ). (4.7)

We denote g by f|∂Ω. Moreover, f|∂Ω = ξ−1((ξ ◦ f)|∂Ω) and the following set is closed under weak
convergence:

W1,2
g (Ω, AQ) :=

{
f ∈W1,2(Ω, AQ) : f|∂Ω = g

}
.

Proof. Consider a sequence of Lipschitz functions fk with dW1,p(fk, f)→ 0 (whose existence
is ensured from Proposition 3.21). We claim that fk|∂Ω is a Cauchy sequence in Lp(∂Ω, AQ).
To see this, notice that, if {Ti}i∈N is a dense subset of AQ,

G(fk, fl) = sup
i

|G(fk, Ti) − G(fl, Ti)| .

Moreover, recalling the classical estimate for the trace of a real-valued Sobolev functions,
‖f|∂Ω‖Lp 6 C ‖f‖W1,p , we conclude that

‖G(fk, fl)‖pLp(∂Ω) 6 C

ˆ
Ω

G(fk, fl)p +
∑
j

ˆ
Ω

|∂jG(fk, fl)|p

6 C

ˆ
Ω

G(fk, fl)p +
∑
j

ˆ
Ω

sup
i

∣∣∂jG(fk, Ti) − ∂jG(fl, Ti)
∣∣p

6 C dW1,p(fk, fl)p, (4.8)
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(where we used the identity
∣∣∂j (supi gi

)∣∣ 6 supi |∂jgi|, which holds true if there exists an
h ∈ Lp(Ω) with |gi|, |Dgi| 6 h ∈ Lp(Ω)).

Let, therefore, g be the Lp-limit of fk. For every ϕ ∈ Lip(AQ), we clearly have that
(ϕ ◦ fk)|∂Ω → ϕ ◦ g in Lp. But, since ϕ ◦ fk → ϕ ◦ f in W1,p(Ω), the limit of (ϕ ◦ fk)|∂Ω is
exactly (ϕ ◦ f)|∂Ω. This shows (4.7). We now come to the uniqueness. Assume that g and ĝ
satisfy (4.7). Then, G(g, Ti) = G (ĝ, Ti) almost everywhere on ∂Ω and for every i. This implies

G (g, ĝ) = sup
i

|G(g, Ti) − G (ĝ, Ti)| = 0 a.e. on Ω,

i.e. g = ĝ a.e.
Note that fk⇀ f in the sense of Definition 4.7 if and only if ϕ ◦ fk⇀ϕ ◦ f for any Lipschitz

function ϕ. Therefore, the proof that the set W1,2
g is closed is a direct consequence of the

corresponding fact for classical Sobolev spaces of real-valued functions.
Now we come to the last assertion of the proposition. Set h = ξ−1((ξ ◦ f)|∂Ω). Since

ξ ◦ h = (ξ ◦ f)|∂Ω, then, for every Lipschitz real-valued map Φ on Q, we have Φ(ξ ◦ h) =

Φ((ξ ◦ f)|∂Ω) = (Φ ◦ ξ ◦ f)|∂Ω. Using the Lipschitz maps ΥT (·) := G(ξ−1(·), T) defined on Q

for every T ∈ AQ, we conclude that f|∂Ω = h.

4.3 existence of dir-minimizing functions

We can now formulate a Dirichlet problem for Q-valued functions as follows: a map
f ∈W1,2(Ω, AQ) is said to be Dir-minimizing if

Dir(f,Ω) 6 Dir(g,Ω) for all g ∈W1,2(Ω, AQ) with f|∂Ω = g|∂Ω.

The main result of this chapter is the following theorem.

Theorem 4.9 (Existence for the Dirichlet Problem). Let g ∈W1,2(Ω, AQ). Then, there exists a
Dir-minimizing function f ∈W1,2(Ω, AQ) such that f|∂Ω = g|∂Ω.

Proof. Let g ∈W1,2(Ω, AQ) be given. Thanks to Propositions 4.8 and 3.15, it suffices to verify
the sequential weak lower semicontinuity of the Dirichlet energy. To this aim, let fk ⇀ f in
W1,2(Ω, AQ): we want to show that

Dir(f,Ω) 6 lim inf
k→∞ Dir(fk,Ω). (4.9)

Let {Tl}l∈N be a dense subset of AQ and recall that |∂jf|
2 = supl

(
∂jG(f, Tl)

)2. Thus, if we set

hj,N = max
l∈{1,...,N}

(
∂jG(f, Tl)

)2,

we conclude that hj,N ↑ |∂jf|
2. Next, for every N, denote by PN the collections P = {El}

N
l=1

of N disjoint measurable subsets of Ω. Clearly, it holds

hj,N = sup
P∈P

∑
El∈P

(
∂jG(f, Tl)

)2 1El .
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By the Monotone Convergence Theorem, we conclude

Dir(f,Ω) =

m∑
j=1

sup
N

ˆ
h2j,N =

m∑
j=1

sup
N

sup
P∈PN

∑
El∈P

ˆ
El

(
∂jG(f, Tl)

)2.

Fix now a partition {F1, . . . , FN} such that, for a given ε > 0,∑
l

ˆ
Fl

(
∂jG(f, Tl)

)2
> sup
P∈PN

∑
El∈P

ˆ
El

(
∂jG(f, Tl)

)2
− ε.

Then, we can find compact sets {K1, . . . ,KN} with Kl ⊂ Fl and∑
l

ˆ
Kl

(
∂jG(f, Tl)

)2
> sup
P∈PN

∑
El∈P

ˆ
El

(
∂jG(f, Tl)

)2
− 2ε.

Since the Kl’s are disjoint compact sets, we can find disjoint open sets Ul ⊃ Kl. So, denote
by ON the collections of N pairwise disjoint open sets of Ω. We conclude

Dir(f,Ω) =

m∑
j=1

sup
N

ˆ
h2j,N =

m∑
j=1

sup
N

sup
P∈ON

∑
Ul∈P

ˆ
Ul

(
∂jG(f, Tl)

)2. (4.10)

Note that, since G(fk, Tl)→ G(f, Tl) strongly in L2(Ω), then ∂jG(fk, Tl) ⇀ ∂jG(f, Tl) in L2(U)

for every open U ⊂ Ω. Hence, for every N and every P ∈ ON, we have∑
Ul∈P

ˆ
Ul

(
∂jG(f, Tl)

)2
6 lim inf
k→+∞

∑
Ul∈P

ˆ
Ul

(
∂jG(fk, Tl)

)2
6 lim inf

k→∞
ˆ
Ω

|∂jfk|
2.

Taking the supremum in ON and in N, and then summing in j, in view of (4.10), we achieve
(4.9).

Remark 4.10. The lower semicontinuity of the Dirichlet energy is a special case of the more
general semicontinuity result in Part III Chapter 11.
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P R E L I M I N A RY R E S U LT S

In this chapter we prove some preliminary results which will be useful for the regularity
theory. In particular, we are going to derive the variation formulas and a kind of maximum
principle for Dir-minimizing functions. The chapter is closed by a concentration-compactness
result which will be used in Part IV.

5.1 first variations

There are two natural types of variations that can be used to perturb Dir-minimizing Q-
valued functions. The first ones, which we call inner variations, are generated by right
compositions with diffeomorphisms of the domain. The second, which we call outer varia-
tions, correspond to “left compositions” as defined in Subsection 1.3.1. More precisely, let f
be a Dir-minimizing Q-valued map.

(IV) Given ϕ ∈ C∞c (Ω, Rm), for ε sufficiently small, x 7→ Φε(x) = x+ εϕ(x) is a diffeomor-
phism of Ω which leaves ∂Ω fixed. Therefore,

0 =
d

dε

∣∣∣∣
ε=0

ˆ
Ω

|D(f ◦Φε)|2. (5.1)

(OV) Given ψ ∈ C∞(Ω×Rn, Rn) such that supp (ψ) ⊂ Ω ′×Rn for some Ω ′ ⊂⊂ Ω, we set
Ψε(x) =

∑
i Jfi(x) + εψ(x, fi(x))K and derive

0 =
d

dε

∣∣∣∣
ε=0

ˆ
Ω

|DΨε|
2. (5.2)

The identities (5.1) and (5.2) lead to the following proposition.

Proposition 5.1 (First variations). For every ϕ ∈ C∞c (Ω, Rm), we have

2

ˆ ∑
i

〈
Dfi : Dfi ·Dϕ

〉
−

ˆ
|Df|2 divϕ = 0. (5.3)

For every ψ ∈ C∞(Ωx ×Rnu, Rn) such that

supp (ψ) ⊂ Ω ′ ×Rn for some Ω ′ ⊂⊂ Ω,

and

|Duψ| 6 C <∞ and |ψ| + |Dxψ| 6 C (1+ |u|) , (5.4)

we haveˆ ∑
i

〈
Dfi(x) : Dxψ(x, fi(x))

〉
dx+

ˆ ∑
i

〈
Dfi(x) : Duψ(x, fi(x)) ·Dfi(x)〉dx = 0. (5.5)

53
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Proof. We apply formula (1.12) of Proposition 3.14 to compute

D(f ◦Φε)(x) =
∑
i

JDfi(x+ εϕ(x)) + ε[Dfi(x+ εϕ(x))] ·Dϕ(x)K . (5.6)

For ε sufficiently small, Φε is a diffeomorphism. We denote by Φ−1
ε its inverse. Then,

inserting (5.6) in (5.3), changing variables in the integral (x = Φ−1
ε (y)) and differentiating in

ε, we get

0 =
d

dε

∣∣∣∣
ε=0

ˆ
Ω

∑
i

|Dfi(y) + εDfi ·Dϕ(Φ−1
ε (y))|2 det (DΦ−1

ε (y))dy

= 2

ˆ ∑
i

〈
Dfi(y) : Dfi(y) ·Dϕ(y)

〉
dy−

ˆ ∑
i

|Dfi(y)|
2divϕ(y)dy.

This shows (5.3). As for (5.5), using (1.13) and then differentiating in ε, the proof is straight-
forward (the hypotheses in (5.4) ensure the summability of the various integrands involved
in the computation).

Testing (5.3) and (5.5) with suitable ϕ and ψ, we get two key identities. In what follows, ν
will always denote the outer unit normal on the boundary ∂B of a given ball.

Proposition 5.2. Let x ∈ Ω. Then, for a.e. 0 < r < dist(x,∂Ω), we have

(m− 2)

ˆ
Br(x)

|Df|2 = r

ˆ
∂Br(x)

|Df|2 − 2 r

ˆ
∂Br(x)

∑
i

|∂νfi|
2, (5.7)

ˆ
Br(x)

|Df|2 =

ˆ
∂Br(x)

∑
i

〈∂νfi, fi〉. (5.8)

Remark 5.3. The identities (5.7) and (5.8) are classical facts for Rn-valued harmonic maps f,
which can be derived from the Laplace equation ∆f = 0.

Proof. Without loss of generality, we assume x = 0. We test (5.3) with a function ϕ of the form
ϕ(x) = φ(|x|) x, where φ is a function in C∞([0,∞)), with φ ≡ 0 on [r,∞), r < dist(0,∂Ω),
and φ ≡ 1 in a neighborhood of 0. Then,

Dϕ(x) = φ(|x|) Id +φ ′(|x|) x⊗ x

|x|
and divϕ(x) = mφ(|x|) + |x|φ ′(|x|), (5.9)

where Id denotes the m×m identity matrix. Note that

∂νfi(x) = Dfi(x) ·
x

|x|
.

Then, inserting (5.9) into (5.3), we get

0 = 2

ˆ
|Df(x)|2φ(|x|)dx+ 2

ˆ Q∑
i=1

|∂νfi(x)|
2φ ′(|x|) |x|dx

−m

ˆ
|Df(x)|2φ(|x|)dx−

ˆ
|Df(x)|2φ ′(|x|) |x|dx.
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By a standard approximation procedure, it is easy to see that we can test with

φ(t) = φn(t) :=

{
1 for t 6 r− 1/n,

n (r− t) for r− 1/n 6 t 6 r.
(5.10)

With this choice we get

0 = (2−m)

ˆ
|Df(x)|2φn(|x|)dx−

2

n

ˆ
Br\Br−1/n

Q∑
i=1

|∂νfi(x)|
2 |x|dx

+
1

n

ˆ
Br\Br−1/n

|Df(x)|2 |x|dx.

Let n ↑ ∞. Then, the first integral converges towards (2−m)
´
Br

|Df|2. As for the second
and third integral, for a.e. r, they converge, respectively, to

−r

ˆ
∂Br

Q∑
i=1

|∂νfi|
2 and r

ˆ
∂Br

|Df|2.

Thus, we conclude (5.7).

Similarly, test (5.5) with ψ(x,u) = φ(|x|)u. Then,

Duψ(x,u) = φ(|x|) Id and Dxψ(x,u) = φ ′(|x|)u⊗ x

|x|
. (5.11)

Inserting (5.11) into (5.5) and differentiating in ε, we get

0 =

ˆ
|Df(x)|2φ(|x|)dx+

ˆ Q∑
i=1

〈fi(x),∂νfi(x)〉φ ′(|x|)dx.

Therefore, choosing φ as in (5.10), we can argue as above and, for n ↑ ∞, we conclude
(5.8).

5.2 a maximum principle for q-valued functions

The two propositions of this section play a key role in the proof of the Hölder regularity for
Dir-minimizing Q-functions when the domain has dimension strictly larger than two. Before
stating them, we introduce two important functions on AQ(Rn).

Definition 5.4 (Diameter and separation). Let T =
∑
i JPiK ∈ AQ. The diameter and the

separation of T are defined, respectively, as

d(T) := max
i,j

|Pi − Pj| and s(T) := min
{
|Pi − Pj| : Pi 6= Pj

}
,

with the convention that s(T) = +∞ if T = Q JPK.

The following proposition is an elementary extension of the usual maximum principle for
harmonic functions.
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Proposition 5.5 (Maximum Principle). Let f : Ω → AQ be Dir-minimizing, T ∈ AQ and
r < s(T)/4. Then, G(f(x), T) 6 r for Hm−1-a.e. x ∈ ∂Ω implies that G(f, T) 6 r almost everywhere
on Ω.

The next proposition allows to decompose Dir-minimizing functions and, hence, to argue
inductively on the number of values. Its proof is based on Proposition 5.5 and a simple
combinatorial lemma.

Proposition 5.6 (Decomposition for Dir-minimizers). There exists a positive constant α(Q) > 0

with the following property. If f : Ω→ AQ is Dir-minimizing and there exists T ∈ AQ such that
G(f(x), T) 6 α(Q)d(T) for Hm−1-a.e. x ∈ ∂Ω, then there exists a decomposition of f = JgK + JhK
into two simpler Dir-minimizing functions.

5.2.1 Proof of Proposition 5.5

The proposition follows from the next lemma.

Lemma 5.7. Let T and r be as in Proposition 5.5. Then, there exists a retraction ϑ : AQ → Br(T)

such that

(i) G(ϑ(S1), ϑ(S2)) < G(S1,S2) if S1 /∈ Br(T),

(ii) ϑ(S) = S for every S ∈ Br(T).

We assume the lemma for the moment and argue by contradiction for Proposition 5.5. We
assume, therefore, the existence of a Dir-minimizing f with the following properties:

(a) f(x) ∈ Br(T) for a.e. x ∈ ∂Ω;

(b) f(x) 6∈ Br(T) for every x ∈ E ⊂ Ω, where E is a set of positive measure.

Therefore, there exist ε > 0 and a set E ′ with positive measure such that f(x) 6∈ Br+ε(T) for
every x ∈ E ′. By (ii) of Lemma 5.7 and (a), ϑ ◦ f has the same trace as f. Moreover, by (i) of
Lemma 5.7, |D(ϑ ◦ f)| 6 |Df| a.e. and, by (i) and (b), |D(ϑ ◦ f)| < |Df| a.e. on E ′. This implies
Dir(ϑ ◦ f,Ω) < Dir(f,Ω), contradicting the minimizing property of f.

Proof of Lemma 5.7. First of all, we write

T =

J∑
j=1

kj
q
Qj

y
,

where |Qj −Qi| > 4 r for every i 6= j.
If G(S, T) < 2r, then S =

∑J
j=1

q
Sj

y
with Sj ∈ B2r(kj

q
Qj

y
) ⊂ Akj . If, in addition,

G(S, T) > r, then we set

Sj =

kj∑
l=1

q
Sl,j

y
,
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and we define

ϑ(S) =

J∑
j=1

kj∑
l=1

s
2r− G(T ,S)

G(T ,S)
(Sl,j −Qj) +Qj

{
.

We then extend ϑ to AQ by setting

ϑ(S) =

T if S /∈ B2r(T),

S if S ∈ Br(T).

It is immediate to verify that ϑ is continuous and has all the required properties.

5.2.2 Proof of Proposition 5.6

The key idea is simple. If the separation of T were not too small, we could apply directly
Proposition 5.5. When the separation of T is small, we can find a point S which is not too far
from T and whose separation is sufficiently large. Roughly speaking, it suffices to “collapse”
the points of the support of T which are too close.

Lemma 5.8. For every 0 < ε < 1, we set β(ε,Q) = (ε/3)3
Q

. Then, for every T ∈ AQ, there exists
a point S ∈ AQ such that

β(ε,Q)d(T) 6 s(S) < +∞, (5.12)

G(S, T) 6 ε s(S). (5.13)

Assuming Lemma 5.8, we conclude the proof of Proposition 5.6. Set ε = 1/8 and α(Q) =

εβ(ε,Q) = 24−3Q/8. From Lemma 5.8, we deduce the existence of an S satisfying (5.12) and
(5.13). Then, there exists δ > 0 such that, for almost every x ∈ ∂Ω,

G(f(x),S) 6 G(f(x), T) + G(T ,S)
(5.13)
6 α(Q)d(T) +

s(S)

8
− δ

(5.12)
6

s(S)

4
− δ.

So, we may apply Proposition 5.5 and infer that G(f(x),S) 6 s(S)
4 − δ for almost every x in Ω.

The decomposition of f in simpler Dir-minimizing functions is now a simple consequence of
the definitions. More precisely, if S =

∑J
j=1 kj

q
Qj

y
∈ AQ, with the Qj’s all different, then

f(x) =
∑J
j=1

q
fj(x)

y
, where the fj’s are Dir-minimizing kj-valued functions with values in

the balls B s(S)
4 −δ

(kj
q
Qj

y
).

Proof of Lemma 5.8. For Q 6 2, we have d(T) 6 s(T) and it suffices to choose S = T . We now
prove the general case by induction. Let Q > 3 and assume the lemma holds for Q− 1. Let
T =
∑
i JPiK ∈ AQ. Two cases can occur:

(a) either s(T) > (ε/3)3
Q
d(T);

(b) or s(T) < (ε/3)3
Q
d(T).
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In case (a), since the separation of T is sufficiently large, the point T itself, i.e. S = T , fulfills
(5.13) and (5.12). In the other case, since the points Pi are not all equal (s(T) <∞), we can
take P1 and P2 realizing the separation of T , i.e.

|P1 − P2| = s(T) 6
(ε
3

)3Q
d(T). (5.14)

Moreover, since Q > 3, we may also assume that, suppressing P1, we do not reduce the
diameter, i.e. that

d(T) = d
(
T̃
)
, where T̃ =

Q∑
i=2

JPiK . (5.15)

For T̃ , we are now in the position to use the inductive hypothesis (with ε/3 in place of ε).
Hence, there exists S̃ =

∑Q−1
j=1

q
Qj

y
such that(ε

9

)3Q−1

d
(
T̃
)

6 s
(
S̃
)

and G
(
S̃, T̃
)

6
ε

3
s
(
S̃
)

. (5.16)

Without loss of generality, we can assume that

|Q1 − P2| 6 G
(
S̃, T̃
)
. (5.17)

Therefore, S = JQ1K + JS̃K ∈ AQ satisfies (5.12) and (5.13). Indeed, since s(S) = s(S̃), we infer

(ε
3

)3Q
d(T)

(5.15)
6

ε

3

(ε
9

)3Q−1

d
(
T̃
) (5.16)

6
ε

3
s
(
S̃
)

=
ε

3
s(S), (5.18)

and

G(S, T) 6 G
(
S̃, T̃
)
+ |Q1 − P1| 6 G

(
S̃, T̃
)
+ |Q1 − P2| + |P2 − P1|

(5.14), (5.17)
6 2G

(
S̃, T̃
)
+
(ε
3

)3Q
d(T)

(5.16), (5.18)
6

2 ε

3
s(S) +

ε

3
s(S) = ε s(S).

5.3 concentration-compactness

The aim of this section is to show the following result.

Proposition 5.9. Let (gl)l∈N be a sequence in W1,2(Ω, AQ) with suplDir(gl,Ω) < +∞. Then,
there are maps ζj ∈ W1,2(Ω, AQj), with Q =

∑J
j=1Qj and J > 1, and points ylj ∈ Rn, with

|ylj − yli| → +∞ for i 6= j, such that, up to a subsequence (note relabeled), the Q-valued maps
ωl =

∑J
j=1Jτylj ◦ ζjK satisfy

lim
l→+∞ ‖G(gl,ωl)‖L2(Ω) = 0 . (5.19)

Moreover, if Ω ′ is an open subset of Ω and Jl a sequence of Borel sets with |Jl|→ 0, then

lim inf
l

(ˆ
Ω ′\Jl

|Dgl|
2 −

ˆ
Ω ′

|Dωl|
2

)
> 0, (5.20)

and lim infl
´ (

|Dgl|
2 − |Dωl|

2
)

= 0 holds, if and only if lim infl
´

(|Dgl| − |Dωl|)
2 = 0.
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Proof. First of all, by Proposition 3.16, we can find ḡl ∈ AQ(Rn) such thatˆ
G(gl, ḡl)2 6 c

ˆ
|Dgl|

2 6 C,

where c and C are constants independent of l. We prove (5.19) by induction on Q and
distinguish two cases.

Case 1: lim infl d(ḡl) <∞. After passing to a subsequence, we can then find yl ∈ Rn such
that the functions τyl ◦ gl are equi-bounded in the W1,2-distance. Hence, by Proposition
3.15, there exists a Q-valued ζ such that τyl ◦ gl converges to ζ in L2. Note that, when Q = 1,
we are always in this case.

Case 2: liml d(ḡl) = +∞. By Lemma 5.8 there are points Sl ∈ AQ such that

s(Sl) > β1/8 d(ḡl) and G(Sl, ḡl) 6 s(Sl)/8.

Set rl = s(Sl)/4 and let θl be the retraction into Brl(Sl) provided by Lemma 5.7. Thus,
Sl =

∑J
i=1 ki

q
Pil

y
, with mini 6=j |Pil − P

j
l| = s(Sl). In principle, the numbers I and ki depend

on l but, up to a subsequence, we can assume that they do not depend on l.
Clearly, the functions hl = θl ◦ gl satisfy Dir(hl,Ω) 6 Dir(gl,Ω) and can be decomposed

as the superposition of ki-valued functions zil, with ki < Q,

hl =

J∑
i=1

q
zil

y
, with ‖G(zil,ki

q
Pil

y
)‖∞ 6 rl.

The existence of ωl such that ‖G(hl,ωl)‖L2 → 0 follows, hence, by induction and, with-
out loss of generality, we also can assume that liml |yli − ylj | = +∞ for i 6= j. Showing
‖G(hl,gl)‖L2 → 0, therefore, completes the proof of (5.19).

To this aim, recall first that | {gl 6= hl} | = {G (gl,Sl) > rl} ⊆ {G (gl, ḡl) > rl/2}. Thus,

{gl 6= hl} 6 | {G (gl, ḡl) > rl/2} | 6
C

r2l

ˆ
{G(gl,ḡl)>

rl
2 }

G (gl, ḡl) 6
C

(d(ḡl))2
.

Since d(ḡl)→ +∞, we conclude |{gl 6= hl}|→ 0. Next, since θl(ḡl) = ḡl and Lip(θl) = 1, we
have G(hl, ḡl) 6 G(gl, ḡl). Therefore, by Sobolev embedding, for m > 3 we inferˆ

B2

G(hl,gl)2 =

ˆ
{gl 6=hl}

G(hl,gl)2 6 2

ˆ
{hl 6=gl}

G(hl, ḡl)2 + 2

ˆ
{hl 6=gl}

G(ḡl,gl)2

6 4

ˆ
{hl 6=gl}

G(ḡl,gl)2 6 ‖G (gl, ḡl)‖2L2∗ |{hl 6= gl}|
1− 2

2∗

6
C

d(ḡl)
4

m−2

(ˆ
B2

|Dgl|
2

)m+2
m−2

.

Recalling again that d(ḡl) diverges, this shows ‖G(hl,gl)‖L2 → 0. The obvious modification
when m = 2 is left to the reader.

Now we come to the proof of (5.20). Arguing as in case 2, we find hl =
∑
i

q
zil

y
such that

‖G(hl,gl)‖L2 → 0, ‖G(τ−yil
◦ zil, ζi)‖L2 → 0 and |Dhl| 6 |Dgl|. Therefore, we conclude that

D(ξ ◦ τ−yli
◦ zil)⇀∗D(ξ ◦ ζi), (5.21)
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and hence

Dir(ζi,Ω ′) =

ˆ
Ω ′

|D(ξ ◦ ζi)|2 6 lim inf
l

ˆ
Ω ′\Jl

|D(ξ ◦ τ−yli
◦ zil)|2 = lim inf

l

ˆ
Ω ′\Jl

|Dzil|
2.

(5.22)

Summing over i, we obtain (5.20). As for the final claim of the lemma, let ω =
∑
i JζiK and

assume Dir(gl,Ω)→ Dir(ω,Ω). Set Jl := {gl 6= hl} and recall that |Jl|→ 0. Thus, by (5.20),
we conclude that

´
Jl

|Dgl|
2 → 0 and hence, that

(
|Dgl| − |Dhl|

)
→ 0 strongly in L2. On the

other hand, we also infer

lim sup
l

∑
i

ˆ
|D(ξ ◦ τ−yli

◦ zil)|2 = lim sup
l

ˆ
|Dhl|

2 6
ˆ
Ω

|Dω|2 .

In conjunction with (5.22), this estimate leads to liml
´

|D(ξ ◦ τ−yli
◦ zil)|2 =

´
|D(ξ ◦ ζi)|2,

which, in turn, by (5.21), implies D(ξ ◦ τ−yli
◦ zil) → D(ξ ◦ ζi) strongly in L2. Therefore,

|Dhl|→ |Dω| in L2, thus concluding the proof.
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Here we prove the first main regularity result of Almgren’s Dir-minimizing Q-valued
functions theory, the Hölder regularity.

Theorem 6.1 (Hölder regularity). There exists a positive constant α = α(m,Q) > 0 with
the following property. If f ∈ W1,2(Ω, AQ) is Dir-minimizing, then f ∈ C0,α(Ω ′) for every
Ω ′ ⊂⊂ Ω ⊂ Rm. For two-dimensional domains, we have the explicit constant α(2,Q) = 1/Q.

After rescaling and translation, it is clear that all we need to prove is the following theorem,
which clearly implies Theorem 6.1.

Theorem 6.2. There exist constants α = α(m,Q) ∈]0, 1[ (with α = 1
Q when m = 2) and

C = C(m,n,Q, δ) with the following property. If f : B1 → AQ is Dir-minimizing, then

[f]C0,α(Bδ) = sup
x,y∈Bδ

G(f(x), f(y))
|x− y|α

6 CDir(f,Ω)
1
2 for every 0 < δ < 1.

6.1 proof of the hölder regularity

The proof of Theorem 6.2 consists of two parts: the first is stated in the following proposition
which gives the crucial estimate; the second is a standard application of the Campanato–
Morrey estimates in Proposition 3.18.

Proposition 6.3 (Basic estimate). Let f ∈W1,2(Br, AQ) be Dir-minimizing and suppose that

g = f|∂Br ∈W
1,2(∂Br, AQ).

Then, we have that

Dir(f,Br) 6 C(m) rDir(g,∂Br), (6.1)

where C(2) = Q and C(m) < (m− 2)−1.

The minimizing property of f enters heavily in the proof of this last proposition, where the
estimate is achieved by exhibiting a suitable competitor. This is easier in dimension 2 because
we can use Proposition 3.9 for g. In higher dimension the argument is more complicated
and relies on Proposition 5.6 to argue by induction on Q. Now, assuming Proposition 6.3,
we proceed with the proof of Theorem 6.2.

Proof of Theorem 6.2. Set

γ(m) :=

{
2Q−1 for m = 2,

C(m)−1 −m+ 2 for m > 2,

61



62 hölder regularity

where C(m) is the constant in (6.1). We want to prove that
ˆ
Br

|Df|2 6 rm−2+γ

ˆ
B1

|Df|2 for every 0 < r 6 1. (6.2)

Define h(r) =
´
Br

|Df|2. Note that h is absolutely continuous and that

h′(r) =

ˆ
∂Br

|Df|2 > Dir(f,∂Br) for a.e. r, (6.3)

where, according to Definitions 3.1 and 4.1, Dir(f,∂Br) is given by

Dir(f,∂Br) =

ˆ
∂Br

|∂τf|
2,

with |∂τf|
2 = |Df|2 −

∑Q
i=1 |∂νfi|

2. Here ∂τ and ∂ν denote, respectively, the tangential and
the normal derivatives. We remark further that (6.3) can be improved for m = 2. Indeed, in
this case the outer variation formula (5.7), gives an equipartition of the Dirichlet energy in
the radial and tangential parts, yielding

h′(r) =

ˆ
∂Br

|Df|2 =
Dir(f,∂Br)

2
. (6.4)

Therefore, (6.3) (resp. (6.4) when m = 2) and (6.1) imply

(m− 2+ γ)h(r) 6 r h′(r). (6.5)

Integrating this differential inequality, we obtain (6.2):
ˆ
Br

|Df|2 = h(r) 6 rm−2+γ h(1) = rm−2+γ

ˆ
B1

|Df|2.

Now we can use the Campanato–Morrey estimates for Q-valued functions given in
Proposition 3.18 in order to conclude the Hölder continuity of f with exponent α = γ

2 .

6.2 basic estimate: the planar case

It is enough to prove (6.1) for r = 1, because the general case follows from an easy scaling
argument. We first prove the following simple lemma.

Remark 6.4. In this subsection we introduce a complex notation which will be also useful
later. We identify the plane R2 with C and therefore we regard the unit disk as

D = {z ∈ C : |z| < 1} = {r eiθ : 0 6 r < 1, θ ∈ R}

and the unit circle as

S1 = ∂D = {z ∈ C : |z| = 1} = {eiθ : θ ∈ R}.
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Lemma 6.5. Let ζ ∈W1,2(D, Rn) and consider the Q-valued function f defined by

f(x) =
∑
zQ=x

Jζ(z)K .

Then, the function f belongs to W1,2(D, AQ) and

Dir(f, D) =

ˆ
D

|Dζ|
2 . (6.6)

Moreover, if ζ|S1 ∈W1,2(S1, Rn), then f|S1 ∈W1,2(S1, AQ) and

Dir(f|S1 , S1) =
1

Q

ˆ
S1

|∂τζ|
2 . (6.7)

Proof. Define the following subsets of the unit disk,

Dj =
{
r eiθ : 0 < r < 1, (j− 1) 2π/Q < θ < j 2π/Q

}
and C =

{
r eiθ : 0 < r < 1, θ 6= 0

}
,

and let ϕj : C→ Dj be determinations of the Qth-root, i.e.

ϕj
(
reiθ

)
= r

1
Q ei(

θ
Q+(j−1) 2πQ ).

It is easily recognized that f|C =
∑
j

q
ζ ◦ϕj

y
. So, by the invariance of the Dirichlet energy

under conformal mappings, one deduces that f ∈W1,2(C, AQ) and

Dir(f, C) =

Q∑
i=1

Dir(ζ ◦ϕi, C) =

ˆ
D

|Dζ|
2 . (6.8)

From the above argument and from (6.8), it is straightforward to infer that f belongs to
W1,2(D, AQ) and (6.6) holds. Finally, (6.7) is a simple computation left to the reader.

We now prove Proposition 6.3. Let g =
∑J
j=1

q
gj

y
be a decomposition into irreducible

kj-functions as in Proposition 3.9. Consider, moreover, the W1,2 functions γj : S1 → Rn

“unrolling” the gj as in Proposition 3.9 (ii):

gj(x) =
∑
z
kj=x

q
γj(z)

y
.

We take the harmonic extension ζl of γl in D, and consider the kl-valued functions fl
obtained “rolling” back the ζl: fl(x) =

∑
zkl=x Jζl(z)K. The Q-function f̃ =

∑J
l=1 JflK is an

admissible competitor for f, since f̃|S1 = f|S1 . By a simple computation on planar harmonic
functions, it is easy to see thatˆ

D

|Dζl|
2 6

ˆ
S1

|∂τγl|
2 . (6.9)

Hence, from (6.6), (6.7) and (6.9), we easily conclude (6.1):

Dir(f, D) 6 Dir
(
f̃, D

)
=

J∑
l=1

Dir(fl, D)
(6.6)
=

J∑
l=1

ˆ
D

|Dζl|
2

(6.9)
6

J∑
l=1

ˆ
S1

|∂τγl|
2 (6.7)

=

J∑
l=1

klDir(gl, S1) 6 QDir(g, S1).
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6.3 basic estimate: case m > 3

To understand the strategy of the proof, fix a Dir-minimizing f and consider the “radial”
competitor h(x) = f(x/|x|). An easy computation shows the inequality Dir(h,B1) 6 (m−

2)−1Dir(f,∂B1). In order to find a better competitor, set f̃(x) =
∑
i Jϕ(|x|)fi(x/|x|)K. With a

slight abuse of notation, we will denote this function by ϕ(|x|)f(x/|x|). We consider moreover
functions ϕ which are 1 for t = 1 and smaller than 1 for t < 1. These competitors are,
however, good only if f|∂B1 is not too far from Q J0K.

Of course, we can use competitors of the form

∑
i

s
v+ϕ(|x|)

(
fi

(
x

|x|

)
− v

){
, (6.10)

which are still suitable if, roughly speaking,

(C) on ∂B1, f(x) is not too far from Q JvK, i.e. from a point of multiplicity Q.

A rough strategy of the proof could then be the following. We approximate f|∂B1 with a
f̃ = Jf1K + . . .+ JfJK decomposed into simpler W1,2 functions fj each of which satisfies (C).
We interpolate on a corona B1 \B1−δ between f and f̃, and we then use the competitors of
the form (6.10) to extend f̃ to B1−δ. In fact, we shall use a variant of this idea, arguing by
induction on Q.

Without loss of generality, we assume that

Dir(g,∂B1) = 1. (6.11)

Moreover, we recall the notation |T | and |f| introduced in Remark 1.11 and fix the following
one for the translations:

if v ∈ Rn, then τv(T) :=
∑
i

JTi − vK , for every T =
∑
i

JTiK ∈ AQ.

Step 1. Radial competitors. Let g =
∑
i JPiK ∈ AQ be a mean for g, so that the Poincaré

inequality in Proposition 3.16 holds, and assume that the diameter of ḡ (see Definition 5.4)
is smaller than a constant M > 0,

d(g) 6 M. (6.12)

Let P = Q−1
∑Q
i=1 Pi be the center of mass of g and consider f̃ = τP ◦ f and h = τP ◦ g. It

is clear that h = f̃|∂B1 and that h = τP(g) is a mean for h. Moreover, by (6.12),∣∣h∣∣2 =
∑
i

|Pi − P|
2 6 QM2.

So, using the Poincaré inequality, we get

ˆ
∂B1

|h|2 6 2

ˆ
∂B1

G
(
h,h

)2
+ 2

ˆ
∂B1

∣∣h∣∣2 6 CDir(g,∂B1) +CM2
(6.11)
6 CM, (6.13)
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where CM is a constant depending on M.
We consider the Q-function f̂(x) := ϕ(|x|)h

(
x
|x|

)
, where ϕ is a W1,2([0, 1]) function with

ϕ(1) = 1. From (6.13) and the chain-rule in Proposition 1.12, one can infer the following
estimate:

ˆ
B1

∣∣Df̂∣∣2 =

(ˆ
∂B1

|h|2
)ˆ 1

0
ϕ′(r)2 rm−1dr+

(ˆ
∂B1

|Dh|2
)ˆ 1

0
ϕ(r)2 rm−3dr

6
ˆ 1

0

(
ϕ(r)2 rm−3 +CMϕ

′(r)2 rm−1
)
dr =: I(ϕ).

Since τ−P

(
f̂
)

is a suitable competitor for f, one deduces that

Dir(f,B1) 6 inf
ϕ∈W1,2([0,1])
ϕ(1)=1

I(ϕ).

We notice that I(1) = 1
m−2 , as pointed out at the beginning of the section. On the other

hand, ϕ ≡ 1 cannot be a minimum for I because it does not satisfy the corresponding
Euler–Lagrange equation. So, there exists a constant γM > 0 such that

Dir(f,B1) 6 inf
ϕ∈W1,2([0,1])
ϕ(1)=1

I(ϕ) =
1

m− 2
− 2 γM. (6.14)

In passing, we note that, when Q = 1, d(T) = 0 and hence this argument proves the first
induction step of the proposition (which, however, can be proved in several other ways).

Step 2. Splitting procedure: the inductive step. Let Q be fixed and assume that the proposition
holds for every Q∗ < Q. Assume, moreover, that the diameter of g is bigger than a constant
M > 0, which will be chosen later:

d(g) > M

Under these hypotheses, we want to construct a suitable competitor for f. As pointed out
at the beginning of the proof, the strategy is to decompose f in suitable pieces in order to
apply the inductive hypothesis. To this aim:

(a) let S =
∑J
j=1 kj

q
Qj

y
∈ AQ be given by Lemma 5.8 applied to ε = 1

16 and T = g, i.e. S
such that

βM 6 βd(g) < s(S) = min
i 6=j

|Qi −Qj|, (6.15)

G(S,g) <
s(S)

16
, (6.16)

where β = β(1/16,Q) is the constant of Lemma 5.8;

(b) let ϑ : AQ → Bs(S)/8(S) be given by Lemma 5.7 applied to T = S and r =
s(S)
8 .
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We define h ∈ W1,2(∂B1−η) by h ((1− η)x) = ϑ (g(x)), where η > 0 is a parameter to be
fixed later, and take ĥ a Dir-minimizing Q-function on B1−η with trace h. Then, we consider
the following competitor,

f̃ =

ĥ on B1−η

interpolation between ĥ and g as in Lemma 3.19,

and we pass to estimate its Dirichlet energy.
By Proposition 5.6, since ĥ has values in Bs(S)/8(S), ĥ can be decomposed into two Dir-

minimizing K and L-valued functions, with K,L < Q. So, by inductive hypothesis, there
exists a positive constant ζ such that

Dir
(
ĥ,B1−η

)
6

(
1

m− 2
− ζ

)
(1− η) Dir(h,∂B1−η) 6

(
1

m− 2
− ζ

)
Dir(g,∂B1), (6.17)

where the last inequality follows from Lip(ϑ) = 1.
Therefore, combining (6.17) with Lemma 3.19, we can estimate

Dir
(
f̃,B1

)
6

(
1

m− 2
− ζ+Cη

)
Dir(g,∂B1) +

C

η

ˆ
∂B1

G
(
g, ϑ(g)

)2, (6.18)

with C = C(n,m,Q). Note that

G (g, ϑ(g(x))) 6 G (g(x),g) for every x ∈ ∂B1,

because, by (6.16), ϑ(g) = g. Hence, if we define

E :=
{
x ∈ ∂B1 : g(x) 6= ϑ(g(x))

}
=
{
x ∈ ∂B1 : g(x) /∈ Bs(S)/8(S)

}
,

the last term in (6.18) can be estimated as follows:
ˆ
∂B1

G
(
g, ϑ(g)

)2
=

ˆ
E

G
(
g, ϑ(g)

)2
6 2

ˆ
E

[
G
(
g,g
)2

+ G
(
g, ϑ(g)

)2]
6 4

ˆ
E

G
(
g,g
)2
dx 6 4 ‖G

(
g,g
)2‖Lq |E|(q−1)/q

6 CDir(g,∂B1) |E|(q−1)/q = C |E|(q−1)/q, (6.19)

where the exponent q can be chosen to be (m− 1)/(m− 3) if m > 3, otherwise any q <∞ if
m = 3.

We are left only with the estimate of |E|. Note that, for every x ∈ E,

G(g(x),g) > G(g(x),S) − G(g,S)
(6.16)
>

s(S)

8
−
s(S)

16
=
s(S)

16
.

So, we deduce that

|E| 6

∣∣∣∣{G(g,g) >
s(S)

16

}∣∣∣∣ 6 C

s(S)2

ˆ
∂B1

G(g,g)2
(6.15)
6

C

M2
Dir(g,∂B1). (6.20)
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Hence, collecting the bounds (6.17), (6.19) and (6.20), we conclude that

Dir
(
f̃,B1

)
6

(
1

m− 2
− ζ+Cη+

C

ηMν

)
, (6.21)

where C = C(n,m,Q) and ν = ν(m).

Step 3. Conclusion. We are now ready to conclude. First of all, note that ζ is a fixed positive
constant given by the inductive assumption that the proposition holds for Q∗ < Q. We then
choose η so that Cη < ζ/2 and M so large that C/(ηMν) < ζ/4, where C is the constant in
(6.21). Therefore, the constants M, γM and η depend only on n,m and Q. With this choice,
Step 2 shows that

Dir(f,B1) 6 Dir
(
f̃,B1

) (6.21)
6

(
1

m− 2
−
ζ

4

)
Dir(g,∂B1), if d(g) > M;

whereas Step 1 implies

Dir(f,B1)
(6.14)
6

(
1

m− 2
− 2 γM

)
Dir(g,∂B1), if d(g) 6 M.

This concludes the proof.





7
E S T I M AT E O F T H E S I N G U L A R S E T

In this chapter we prove second main Almgren’s regularity result, the estimate on the
dimension of the singular set of a Dir-minimizing function. In order to state the theorem,
we introduce the following definition of singular set.

Definition 7.1 (Regular and singular points). A Q-valued function f is regular at a point
x ∈ Ω if there exists a neighborhood B of x and Q analytic functions fi : B→ Rn such that

f(y) =
∑
i

Jfi(y)K for almost every y ∈ B

and either fi(x) 6= fj(x) for every x ∈ B or fi ≡ fj. The singular set Σf of f is the complement
of the set of regular points.

The result is the following.

Theorem 7.2 (Estimate of the singular set). Let f be a Dir-minimizing function. Then, the singular
set Σf of f is relatively closed in Ω. Moreover, if m = 2, then Σf is at most countable, and if m > 3,
then the Hausdorff dimension of Σf is at most m− 2.

To prove this regularity theorem, Almgren developed one of his main idea of the paper,
the so called Frequency Function, which turned out to be the right quantity to look in order
to perform a blow-up analysis of Dir-minimizing functions. In the first section, we prove
Almgren’s celebrated estimate on the frequency function. Then, following Almgren, we show
the convergence of the blow-up of Dir-minimizing function and use a modified Federer’s
reduction argument to prove Theorem 7.2.

7.1 frequency function

The following is the quantity considered by Almgren.

Definition 7.3 (The frequency function). Let f be a Dir-minimizing function, x ∈ Ω and
0 < r < dist(x,∂Ω). We define the functions

Dx,f(r) =

ˆ
Br(x)

|Df|2, Hx,f(r) =

ˆ
∂Br

|f|2 and Ix,f(r) =
rDx,f(r)

Hx,f(r)
. (7.1)

Ix,f is called the frequency function.

When x and f are clear from the context, we will often use the shorthand notation D(r),
H(r) and I(r).

Remark 7.4. Note that, by Theorem 6.2, |f|2 is a continuous function. Therefore, Hx,f(r) is a
well-defined quantity for every r. Moreover, if Hx,f(r) = 0, then, by minimality, f|Br(x) ≡ 0.
So, except for this case, Ix,f(r) is always well defined.

69
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The principal result about the frequency function is the following monotonicity estimate.

Theorem 7.5. Let f be Dir-minimizing and x ∈ Ω. Either there exists ρ such that f|Bρ(x) ≡ 0 or
Ix,f(r) is an absolutely continuous nondecreasing positive function on ]0, dist(x,∂Ω)[.

A simple corollary of Theorem 7.5 is the existence of the limit

Ix,f(0) = lim
r→0

Ix,f(r),

when the frequency function is defined for every r.

Proof. We assume, without loss of generality, that x = 0. D is an absolutely continuous
function and

D′(r) =

ˆ
∂Br

|Df|2 for a.e. r. (7.2)

As for H(r), note that |f| is the composition of f with a Lipschitz function, and therefore
belongs to W1,2. It follows that |f|2 ∈W1,1 and hence that H ∈W1,1.

In order to compute H ′, note that the distributional derivative of |f|2 coincides with the
approximate differential a.e. Therefore, Proposition 3.14 justifies (for a.e. r) the following
computation:

H′(r) =
d

dr

ˆ
∂B1

rm−1 |f(ry)|2dy = (m− 1)rm−2

ˆ
∂B1

|f(ry)|2dy+

ˆ
∂B1

rm−1 ∂

∂r
|f(ry)|2 dy

=
m− 1

r

ˆ
∂Br

|f|2 + 2

ˆ
∂Br

∑
i

〈∂νfi, fi〉.

Using (5.7), we then conclude

H′(r) =
m− 1

r
H(r) + 2D(r). (7.3)

Note, in passing, that, since H and D are continuous, H ∈ C1 and (7.3) holds pointwise.
If H(r) = 0 for some r, then, as already remarked, f|Br ≡ 0. In the opposite case, we

conclude that I ∈ C ∩W1,1
loc. To show that I is nondecreasing, it suffices to compute its

derivative a.e. and prove that it is nonnegative. Using (7.2) and (7.3), we infer that

I ′(r) =
D(r)

H(r)
+
rD′(r)

H(r)
− rD(r)

H′(r)

H(r)2

=
D(r)

H(r)
+
rD′(r)

H(r)
− (m− 1)

D(r)

H(r)
− 2r

D(r)2

H(r)2

=
(2−m)D(r) + rD′(r)

H(r)
− 2 r

D(r)2

H(r)2
for a.e. r. (7.4)

Recalling (5.7) and (5.8) and using the Cauchy–Schwartz inequality, from (7.4) we conclude
that, for almost every r,

I′(r) =
r

H(r)2


ˆ
∂Br(x)

|∂νf|
2 ·

ˆ
∂Br(x)

|f|2 −

(ˆ
∂Br(x)

∑
i

〈∂νfi, fi〉

)2 > 0. (7.5)
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Now we pass to prove two corollaries of Theorem 7.5.

Corollary 7.6. Let f be Dir-minimizing in Bρ. Then, I0,f(r) ≡ α if and only if f is α-homogeneous,
i.e.

f(y) = |y|αf

(
yρ

|y|

)
. (7.6)

Remark 7.7. In (7.6), with a slight abuse of notation, we use the following convention (already
adopted in Subsection 6.3). If β is a scalar function and f =

∑
i JfiK a Q-valued function, we

denote by βf the function
∑
i Jβ fiK.

Proof. Let f be a Dir-minimizing Q-valued function. Then, I(r) ≡ α if and only if equality
occurs in (7.5) for almost every r, i.e. if and only if there exist constants λr such that

fi(y) = λr ∂νfi(y), for almost every r and a.e. y with |y| = r. (7.7)

Recalling (5.8) and using (7.7), we infer that, for such r,

α = I(r) =
rD(r)

H(r)
=
r
´
∂Br

∑
i〈∂νfi, fi〉´

∂Br

∑
i |fi|

2

(7.7)
=
rλr

´
∂Br

∑
i |fi|

2´
∂Br

∑
i |fi|

2
= rλr.

So, summarizing, I(r) ≡ α if and only if

fi(y) =
α

|y|
∂νfi(y) for almost every y. (7.8)

Let us assume that (7.6) holds. Then, (7.8) is clearly satisfied and, hence, I(r) ≡ α. On the
other hand, assuming that the frequency is constant, we now prove (7.6). To this aim, let
σy = {r y : 0 6 r 6 ρ} be the radius passing through y ∈ ∂B1. Note that, for almost every
y, f|σy ∈W1,2; so, for those y, recalling the W1,2-selection in Proposition 3.6, we can write
f|σy =

∑
i

q
fi|σy

y
, where fi|σy : [0, ρ]→ Rn are W1,2 functions. By (7.8), we infer that fi|σy

solves the ordinary differential equation

(fi|σy)
′(r) =

α

r
fi|σy(r), for a.e. r.

Hence, for a.e. y ∈ ∂B1 and for every r ∈ (0, ρ], fi|σy(r) = rα f (y), thus concluding (7.6).

Corollary 7.8. Let f be Dir-minimizing in Bρ. Let 0 < r < t 6 ρ and suppose that I0,f(r) = I(r)

is defined for every r (i.e. H(r) 6= 0 for every r). Then, the following estimates hold:

(i) for almost every r 6 s 6 t,

d

dτ

∣∣∣
τ=s

[
ln
(
H(τ)

τm−1

)]
=
2 I(r)

r
(7.9)

and (r
t

)2I(t) H(t)

tm−1
6
H(r)

rm−1
6
(r
t

)2I(r) H(t)

tm−1
; (7.10)
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(ii) if I(t) > 0, then

I(r)

I(t)

(r
t

)2I(t) D(t)

tm−2
6
D(r)

rm−2
6
(r
t

)2I(r) D(t)

tm−2
. (7.11)

Proof. The proof is a straightforward consequence of equation (7.3). Indeed, (7.3) implies,
for almost every s,

d

dτ

∣∣∣
τ=s

(
H(τ)

τm−1

)
=
H′(s)

sm−1
−

(m− 1)H(s)

sm
(7.3)
=
2D(s)

sm−1
,

which, in turn, gives (7.9). Integrating (7.9) and using the monotonicity of I, one obtains
(7.10). Finally, (7.11) follows from (7.10), using the identity I(r) =

rD(r)
H(r) .

7.2 blow-up of dir-minimizing q-valued functions

Let f be a Q-function and assume f(y) = Q J0K and Dir(f,Bρ(y)) > 0 for every ρ. We define
the blow-ups of f at y in the following way,

fy,ρ(x) =
ρ
m−2
2 f(ρ x+ y)√
Dir(f,Bρ(y))

. (7.12)

The main result of this section is the convergence of blow-ups of Dir-minimizing functions
to homogeneous Dir-minimizing functions, which we call tangent functions.

To simplify the notation, we will not display the subscript y in fy,ρ when y is the origin.

Theorem 7.9. Let f ∈W1,2(B1, AQ) be Dir-minimizing. Assume f(0) = Q J0K and Dir(f,Bρ) > 0
for every ρ 6 1. Then, for any sequence {fρk} with ρk ↓ 0, a subsequence, not relabeled, converges
locally uniformly to a function g : Rm → AQ(Rn) with the following properties:

(a) Dir(g,B1) = 1 and g|Ω is Dir-minimizing for any bounded Ω;

(b) g(x) = |x|α g
(
x
|x|

)
, where α = I0,f(0) > 0 is the frequency of f at 0.

Theorem 7.9 is a direct consequence of the estimate on the frequency function and of the
following convergence result for Dir-minimizing functions.

Proposition 7.10. Let fk ∈ W1,2(Ω, AQ) be Dir-minimizing Q-functions weakly converging to
f. Then, for every open Ω′ ⊂⊂ Ω, f|Ω′ is Dir-minimizing and it holds moreover that Dir(f,Ω′) =

limkDir(fk,Ω′).

Remark 7.11. In fact, a suitable modification of our proof shows that the property of being
Dir-minimizing holds on Ω. However, we never need this stronger property in the sequel.

Assuming Proposition 7.10, we prove Theorem 7.9.

Proof of Theorem 7.9. We consider any ball BN of radius N centered at 0. It follows from
estimate (7.11) that Dir(fρ,BN) is uniformly bounded in ρ. Hence, the functions fρ are all
Dir-minimizing and Theorem 6.2 implies that the fρk ’s are locally equi-Hölder continuous.
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Since fρ(0) = Q J0K, the fρ’s are also locally uniformly bounded and the Ascoli–Arzelà
theorem yields a subsequence (not relabeled) converging uniformly on compact subsets
of Rm to a continuous Q-valued function g. This implies easily the weak convergence (as
defined in Definition 4.7), so we can apply Proposition 7.10 and conclude (a) (note that
Dir(fρ,B1) = 1 for every ρ). Observe next that, for every r > 0,

I0,g(r) =
rDir(g,Br)´
∂Br

|g|2
= lim
ρ→0

rDir(fρ,Br)´
∂Br

|fρ|2
= lim
ρ→0

ρ rDir(f,Bρr)´
∂Bρr

|f|2
= I0,f(0). (7.13)

So, (b) follows from Corollary 7.6, once we have shown that I0,f(0) > 0. Assume, by
contradiction, that I0,f(0) = 0. Then, by what shown so far, the blowups fρ converge to
a continuous 0-homogeneous function g, with g(0) = Q J0K. This implies that g ≡ Q J0K,
against conclusion (a), namely Dir(g,B1) = 1.

Proof of Proposition 7.10. We consider the case of Ω = B1: the general case is a routine
modification of the arguments (and, besides, we never need it in the sequel). Since the
fk’s are Dir-minimizing and, hence, locally Hölder equi-continuous, and since the fk’s
converge strongly in L2 to f, they actually converge to f uniformly on compact sets. Set
Dr = lim infkDir(fk,Br) and assume by contradiction that f|Br is not Dir-minimizing or
Dir(f,Br) < Dr for some r < 1. Under this assumption, we can find r0 > 0 such that, for
every r > r0, there exist a g ∈W1,2(Br, AQ) with

g|∂Br = f|∂Br and γr := Dr − Dir(g,Br) > 0. (7.14)

Fatou’s Lemma implies that lim infkDir(fk,∂Br) is finite for almost every r,
ˆ 1

0
lim inf
k→+∞ Dir(fk,∂Br)dr 6 lim inf

k→+∞
ˆ 1

0
Dir(fk,∂Br)dr 6 C < +∞.

Passing, if necessary, to a subsequence, we can fix a radius r > r0 such that

Dir(f,∂Br) 6 lim
k→+∞Dir(fk,∂Br) 6 M < +∞. (7.15)

We now show that (7.14) contradicts the minimality of fk in Br for large n. Let, indeed,
0 < δ < r/2 to be fixed later and consider the functions f̃k on Br defined by

f̃k(x) =

g
(
rx
r−δ

)
for x ∈ Br−δ,

hk(x) for x ∈ Br \Br−δ,

where the hk’s are the interpolations provided by Lemma 3.19 between fk ∈W1,2(∂Br, AQ)

and g
(
rx
r−δ

)
∈ W1,2(Br−δ, AQ). We claim that, for large k, the functions f̃k have smaller

Dirichlet energy than fk, thus contrasting the minimizing property of fk, and concluding
the proof. Indeed, recalling the estimate in Lemma 3.19, we have

Dir
(
f̃k,Br

)
6Dir

(
f̃k,Br−δ

)
+Cδ

[
Dir
(
f̃k,∂Br−δ

)
+ Dir

(
fk,∂Br

)]
+
C

δ

ˆ
∂Br

G
(
fk, f̃k

)2
6 Dir(g,Br) +CδDir(g,∂Br) +CδDir(fk,∂Br) +

C

δ

ˆ
∂Br

G(fk,g)2.
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Choose now δ such that 4C δ (M+ 1) 6 γr, where M and γr are the constants in (7.15) and
(7.14). Using the uniform convergence of fk to f, we conclude, for k large enough,

Dir
(
f̃k,Br

)(7.14), (7.15)
6 Dr − γr +CδM+Cδ (M+ 1) +

C

δ

ˆ
∂Br

G(fk, f)2,

6 Dr −
γr

2
+
C

δ

ˆ
∂Br

G(fk, f)2 < Dr −
γr

4
.

This gives the contradiction.

7.3 estimate of the singular set

In this section we estimate the Hausdorff dimension of the singular set of Dir-minimizing Q-
valued functions as in Theorem 7.2. The main point of the proof is contained in Proposition
7.12, estimating the size of the set of singular points with multiplicity Q. Theorem 7.2 follows
then by an easy induction argument on Q.

Proposition 7.12. Let Ω be connected and f ∈W1,2(Ω, AQ(Rn)) be Dir-minimizing. Then, either
f = Q JζK with ζ : Ω→ Rn harmonic in Ω, or the set

ΣQ,f = {x ∈ Ω : f(x) = Q JyK , y ∈ Rn}

(which is relatively closed in Ω) has Hausdorff dimension at most m− 2 and it is locally finite for
m = 2.

We will make a frequent use of the function σ : Ω→N given by the formula

σ(x) = card(supp f(x)). (7.16)

Note that σ is lower semicontinuous because f is continuous. This implies, in turn, that ΣQ,f

is closed.

7.3.1 Preparatory Lemmas

We first state and prove two lemmas which will be used in the proof of Proposition 7.12.
The first reduces Proposition 7.12 to the case where all points of multiplicity Q are of the
form Q J0K. In order to state it, we introduce the map η : AQ(Rn)→ Rn which takes each
measure T =

∑
i JPiK to its center of mass,

η(T) =

∑
i Pi

Q
.

Lemma 7.13. Let f : Ω→ AQ(Rn) be Dir-minimizing. Then,

(a) the function η ◦ f : Ω→ Rn is harmonic;

(b) for every ζ : Ω→ Rn harmonic, g :=
∑
i Jfi + ζK is as well Dir-minimizing.
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Proof. The proof of (a) follows from plugging ψ(x,u) = ζ(x) ∈ C∞c (Ω, Rn) in the variations
formula (5.5) of Proposition 5.1. Indeed, from the chain-rule (1.14), one infers easily that
QD(η ◦ f) =

∑
iDfi and hence, from (5.5) we get

´
〈D(η ◦ f) : Dζ〉 = 0. The arbitrariness of

ζ ∈ C∞c (Ω, Rn) gives (a).
To show (b), let h be any Q-valued function with h|∂Ω = f|∂Ω: we need to verify that, if

h̃ :=
∑
i Jhi + ζK, then Dir(g,Ω) 6 Dir(h̃,Ω). From Almgren’s form of the Dirichlet energy

(see (4.2)), we get

Dir(g,Ω) =

ˆ
Ω

∑
i,j

|∂jgi|
2 =

ˆ
Ω

∑
i,j

{
|∂jfi|

2 + |∂jζ|
2 + 2 ∂jfi ∂jζ

}
min. of f

6
ˆ
Ω

∑
i,j

{
|∂jhi|

2 + |∂jζ|
2
}

+ 2

ˆ
Ω
D(η ◦ f) ·Dζ

= Dir(h̃,Ω) + 2

ˆ
Ω

{D(η ◦ f) −D(η ◦ h)} ·Dζ. (7.17)

Since η ◦ f and η ◦ h have the same trace on ∂Ω and ζ is harmonic, the last integral in (7.17)
vanishes.

The second lemma characterizes the blow-ups of homogeneous functions and is the
starting point of the reduction argument used in the proof of Proposition 7.12.

Lemma 7.14 (Cylindrical blow-up). Let g : B1 → AQ(Rn) be an α-homogeneous and Dir-
minimizing function with Dir(g,B1) > 0 and set β = Iz,g(0). Suppose, moreover, that g(z) = Q J0K
for z = e1/2. Then, the tangent functions h to g at z are β-homogeneous with Dir(h,B1) = 1 and
satisfy:

(a) h(s e1) = Q J0K for every s ∈ R;

(b) h(x1, x2, . . . , xm) = ĥ(x2, . . . , xm), where ĥ : Rm−1 → AQ(Rn) is Dir-minimizing on any
bounded open subset of Rm−1.

Proof. The first part of the proof follows from Theorem 7.9, while (a) is straightforward.
We need only to verify (b). To simplify notations, we pose x′ = (0, x2, . . . , xm): we show
that h(x′) = h(s e1 + x′) for every s and x′. This is an easy consequence of the homogeneity
of both g and h. Recall that h is the local uniform limit of gz,ρk for some ρk ↓ 0 and set
Ck := Dir(g,Bρk(z))

−1/2, β = Iz,g(0) and λk := 1
1−2ρk s

, where z = e1/2. Hence, we have

h(s e1 + x′)
hom. of h

= lim
k↑∞Ck

gz,ρk (sλk e1 + λkx
′)

λ
β
k

= lim
k↑∞Ck g

(λk z+ λk ρk x
′)

λ
β
k

hom. of g
= lim

ρ→0
Ck

λk
α gz,ρk (x′)

λ
β
k

= h(x′),

where we used λkz+ λk ρk x
′ = z+ sλk ρk e1 + λk ρk x

′ and limk↑∞ λk = 1.
The minimizing property of ĥ is a consequence of the Dir-minimality of h. It suffices

to show it on every ball B ⊂ Rm−1 for which ĥ|∂B ∈ W1,2. To fix ideas, assume B to be
centered at 0 and to have radius R. Assume the existence of a competitor h̃ ∈W1,2(B) such
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that Dir(h̃,B) 6 D(ĥ,B) − γ and h̃|∂B = ĥ|∂B. We now construct a competitor h ′ for h on a
cylinder CL = [−L,L]×BR. First of all we define

h ′(x1, x2, . . . , xn) = h̃(x2, . . . , xn) for |x1| 6 L− 1.

It remains to “fill in” the two cylinders C1L =]L− 1,L[×BR and C2L =] − L, −(L− 1)[×BR. Let
us consider the first cylinder. We need to define h ′ in C1L in such a way that h ′ = h on the
lateral surface ]L− 1,L[×∂BR and on the upper face {L}×BR and h ′ = h̃ on the lower face
{L− 1}×BR. Now, since the cylinder C1L is biLipschitz to a unit ball, recalling Corollary 3.20,
this can be done with a W1,2 map.

Denote by u and v the upper and lower “filling” maps in the case L = 1 By the x1-
invariance of our construction, the maps

uL(x1, . . . , xm) := u(x1 − L, . . . , xm) and vL(x1, . . . , xm) = u(x1 + L, . . . , xm)

can be taken as filling maps for any L > 1. Therefore, we can estimate

Dir(h ′,CL) −D(h,CL) 6
(
Dir

(
h ′,C1L ∪C2L

)
− Dir

(
h,C1L ∪C2L

))
− 2 (L− 1)γ

=: Λ− 2 (L− 1)γ,

where Λ is a constant independent of L. Therefore, for a sufficiently large L, we have
D(h ′,CL) < D(h,CL) contradicting the minimality of h in CL.

7.3.2 Proof of Proposition 7.12

With the help of these two lemmas we conclude the proof of Proposition 7.12. First of all
we notice that, by Lemma 7.13, it suffices to consider Dir-minimizing function f such that
η ◦ f ≡ 0. Under this assumption, it follows that ΣQ,f = {x : f(x) = Q J0K}. Now we divide
the proof into two parts, being the case m = 2 slightly different from the others.

The planar case m = 2. We prove that, except for the case where all sheets collapse, ΣQ,f

consists of isolated points. Without loss of generality, let 0 ∈ ΣQ,f and assume the existence of
r0 > 0 such that Dir(f,Br) > 0 for every r 6 r0 (note that, when we are not in this case, then
f ≡ Q J0K in a neighborhood of 0). Suppose by contradiction that 0 is not an isolated point
in ΣQ,f, i.e. there exist xk → 0 such that f(xk) = Q J0K. By Theorem 7.9, the blow-ups f|xk|
converge uniformly, up to a subsequence, to some homogeneous Dir-minimizing function g,
with Dir(g,B1) = 1 and η ◦g ≡ 0. Moreover, since f(xk) are Q-multiplicity points, we deduce
that there exists w ∈ S1 such that g(w) = Q J0K. Up to rotations, we can assume that w = e1.
Considering the blowup of g in the point e1/2, by Lemma 7.14, we find a new tangent
function h with the property that h(0, x2) = ĥ(x2) for some function ĥ : R → AQ which
is Dir-minimizing on every interval. Moreover, since Dir(h,B1) = 1, clearly Dir

(
ĥ, I
)
> 0,

where I = [−1, 1]. Note also that η ◦ ĥ ≡ 0 and ĥ(0) = Q J0K. From the 1-d selection criterion
in Proposition 3.9, this is clearly a contradiction. Indeed, by a simple comparison argument,
it is easily seen that every Dir-minimizing 1-d function ĥ is an affine function of the form
ĥ(x) =

∑
i JLi(x)K with the property that either Li(x) 6= Lj(x) for every x or Li(x) = Lj(x)

for every x. Since ĥ(0) = Q J0K, we would conclude that ĥ = Q JLK for some linear L. On the
other hand, by η ◦ ĥ ≡ 0 we would conclude L = 0, contradicting Dir(ĥ, I) > 0.
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We conclude that, if x ∈ ΣQ,f, either x is isolated, or U ⊂ ΣQ,f for some neighborhood of x.
Since Ω is connected, we conclude that, either ΣQ,f consists of isolated points, or ΣQ,f = Ω.

The case m > 3. In this case we use the so-called Federer’s reduction argument (following
closely the exposition in Appendix A of [54]). We denote by Ht the Hausdorff t-dimensional
measure and by Ht∞ the Hausdorff pre-measure defined by

Ht∞(A) = inf

{∑
k∈N

diam(Ek)
t : A ⊂ ∪k∈NEk

}
. (7.18)

We use this simple property of the Hausdorff pre-measures Ht∞: if Kl are compact sets
converging to K in the sense of Hausdorff, then

lim sup
l→+∞ Ht∞(Kl) 6 Ht∞(K). (7.19)

To prove (7.19), note first that the infimum on (7.18) can be taken over open coverings.
Next, given an open covering of K, use its compactness to find a finite subcovering and the
convergence of Kl to conclude that it covers Kl for l large enough (see the proof of Theorem
A.4 in [54] for more details).

Step 1. Let t > 0. If Ht∞ (ΣQ,f
)
> 0, then there exists a function g ∈ W1,2(B1, AQ) with the

following properties:

(a1) g is a homogeneous Dir-minimizing function with Dir(g,B1) = 1;

(b1) η ◦ g ≡ 0;

(c1) Ht∞ (ΣQ,g
)
> 0.

We note that Ht∞-almost every point x ∈ ΣQ,f is a point of positive t density (see Theorem
3.6 in [54]), i.e.

lim sup
r→0

Ht∞ (ΣQ,f ∩Br(x)
)

rt
> 0.

So, since Ht∞ (ΣQ,f
)
> 0, from Theorem 7.9 we conclude the existence of a point x ∈ ΣQ,f

and a sequence of radii ρk → 0 such that the blow-ups fx,2ρk converge uniformly to a
function g satisfying (a1) and (b1), and

lim sup
k→+∞

Ht∞ (ΣQ,f ∩Bρk(x)
)

ρkt
> 0. (7.20)

From the uniform convergence of fx,2ρk to g, we deduce easily that, up to subsequence,
the compact sets Kk = B 1

2
∩ ΣQ,fx,2ρk

converge in the sense of Hausdorff to a compact set
K ⊆ ΣQ,g. So, from the semicontinuity property (7.19), we infer (c1),

Ht∞(ΣQ,g) > Ht∞(K) > lim sup
k→+∞ Ht∞(Kk) > lim sup

k→+∞ Ht∞(B 1
2
∩ ΣQ,fx,2ρk

)

= lim sup
k→+∞

Ht∞ (ΣQ,f ∩Bρk(x)
)

ρkt

(7.20)
> 0.
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Step 2. Let t > 0 and g satisfying (a1)-(c1) of Step 1. Suppose, moreover, that there exists
1 6 l 6 m− 2, with l− 1 < t, such that

g(x) = ĝ(xl, . . . , xm). (7.21)

Then, there exists a function h ∈W1,2(B1, AQ) with the following properties:

(a2) h is a homogeneous Dir-minimizing function with Dir(h,B1) = 1;

(b2) η ◦ h ≡ 0;

(c2) Ht∞ (ΣQ,h
)
> 0;

(d2) h(x) = ĥ(xl+1, . . . , xm).

We notice that Ht∞ (Rl−1 × {0}
)

= 0, being t > l− 1. So, since Ht∞ (ΣQ,g
)
> 0, we can find

a point 0 6= x = (0, . . . , 0, xl, . . . , xm) ∈ ΣQ,g of positive density for Ht∞ ΣQ,g. By the same
argument of Step 1, we can blow-up at x obtaining a function h with properties (a2), (b2)

and (c2). Moreover, using Lemma 7.14, one immediately infers (d2).

Step 3. Conclusion: Federer’s reduction argument.
Let now t > m− 2 and suppose Ht

(
ΣQ,f

)
> 0. Then, up to rotations, we may apply

Step 1 once and Step 2 repeatedly until we end up with a Dir-minimizing function h with
properties (a2)-(c2) and depending only on two variables, h(x) = ĥ(x1, x2). This implies
that ĥ is a planar Q-valued Dir-minimizing function such that η ◦ ĥ ≡ 0, Dir(ĥ,B1) = 1 and
Ht−m+2

(
ΣQ,ĥ

)
> 0. As shown in the proof of the planar case, this is impossible, since

t−m+ 2 > 0 and the singularities are at most countable. So, we deduce that Ht
(
ΣQ,f

)
= 0,

thus concluding the proof.

7.3.3 Proof of Theorem 7.2

Let σ be as in (7.16). It is then clear that, if x is a regular point, then σ is continuous at x.
On the other hand, let x be a point of continuity of σ and write f(x) =

∑J
j=1 kj

q
Pj

y
, where

Pi 6= Pj for i 6= j. Since the target of σ is discrete, it turns out that σ ≡ J in a neighborhood
U of x. Hence, by the continuity of f, in a neighborhood V ⊂ U of x, there is a continuous
decomposition f =

∑J
j=1{fj} in kj-valued functions, with the property that fj(y) 6= fi(y)

for every y ∈ V and fj = kj
q
gj

y
for each j. Moreover, it is easy to check that each gj must

necessarily be a harmonic function, so that x is a regular point for f. Therefore, we conclude

Σf = {x : σ is discontinuous at x}. (7.22)

The continuity of f implies easily the lower semicontinuity of σ, which in turn shows,
through (7.22), that Σ is relatively closed.

In order to estimate the Hausdorff dimension of Σf, we argue by induction on the number
of values. For Q = 1 there is nothing to prove, since Dir-minimizing Rn-valued functions are
classical harmonic functions. Next, we assume that the theorem holds for every Q∗-valued
functions, with Q∗ < Q, and prove it for Q-valued functions. If f = Q JζK with ζ harmonic,
then Σf = ∅ and the proposition is proved. If this is not the case, we consider first ΣQ,f the
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set of points of multiplicity Q: it is a subset of Σf and we know from Proposition 7.12 that it
is a closed subset of Ω with Hausdorff dimension at most m− 2 and at most countable if
m = 2. Then, we consider the open set Ω′ = Ω \ ΣQ,f. Thanks to the continuity of f, we can
find countable open balls Bk such that Ω′ = ∪kBk and f|Bk can be decomposed as the sum
of two multiple-valued Dir-minimizing functions:

f|Bk =
q
fk,Q1

y
+

q
fk,Q2

y
, with Q1 < Q, Q2 < Q,

and

supp (fk,Q1(x))∩ supp (fk,Q2(x)) = ∅ for every x ∈ Bk.

Clearly, it follows from this last condition that

Σf ∩Bk = Σfk,Q1
∪ Σfk,Q2

.

Moreover, fk,Q1 and fk,Q2 are both Dir-minimizing and, by inductive hypothesis, Σfk,Q1
and

Σfk,Q2
are closed subsets of Bk with Hausdorff dimension at most m− 2. We conclude that

Σf = ΣQ,f ∪
⋃
k∈N

(
Σfk,Q1

∪ Σfk,Q2

)
has Hausdorff dimension at most m− 2 and it is at most countable if m = 2.





8
T W O D I M E N S I O N A L I M P R O V E D E S T I M AT E

Following in part ideas of [9], we are able to improve Almgren’s estimate of the singular set
for two dimensional Dir-minimizing functions. The new estimate is the following.

Theorem 8.1 (Improved estimate of the singular set). Let f be Dir-minimizing and m = 2. Then,
the singular set Σf of f consists of isolated points.

To prove this result, we give in the first section a more stringent description of 2-d tangent
functions to Dir-minimizing functions. In the second section, we use a comparison argument
to show a certain rate of convergence for the frequency function of f. This rate implies the
uniqueness of the tangent function. In Section 8.3, we use this uniqueness to get a better
description of a Dir-minimizing functions around a singular point: an induction argument
on Q yields finally Theorem 8.1.

8.1 characterization of 2-d tangent q-valued functions

In this section we analyze further the Dir-minimizing functions f : D→ AQ(Rn) which are
homogeneous, that is

f(r, θ) = rα g(θ) for some α > 0. (8.1)

Recall that, for T =
∑
i JTiK we denote by η(T) the center of mass Q−1

∑
i Ti.

Proposition 8.2. Let f : D → AQ(Rn) be a nontrivial, α-homogeneous function which is Dir-
minimizing. Assume in addition that η ◦ f = 0. Then,

(a) α = n∗

Q∗ ∈ Q, with MCD (n∗,Q∗) = 1;

(b) there exist injective (R-)linear maps Lj : C→ Rn and kj ∈N such that

f(x) = k0 J0K +

J∑
j=1

kj
∑
zQ
∗
=x

r
Lj · zn

∗
z

=: k0 J0K +

J∑
j=1

kj
q
fj(x)

y
. (8.2)

Moreover, J > 1 and kj > 1 for all j > 1. If Q∗ = 1, either J > 2 or k0 > 0.

(c) For any i 6= j and any x 6= 0, the supports of fi(x) and fj(x) are disjoint.

Proof. Let f be a homogeneous Dir-minimizing Q-valued function. We decompose g = f|S1

into irreducible W1,2 pieces as described in Proposition 3.9. Hence, we can write g(θ) =

k0 J0K +
∑J
j=1 kj

q
gj(x)

y
, where

(i) k0 might vanish, while kj > 0 for every j > 0,
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(ii) the gj’s are all distinct, Qj-valued irreducible W1,2 maps such that gj(x) 6= Q J0K for
some x ∈ S1.

By the characterization of irreducible pieces, there are W1,2 maps γj : S1 → Rn such that

gj(x) =
∑
z
Qj=x

q
γj(z)

y
. (8.3)

Recalling (8.1), we extend γj to a function βj on the disk by setting βj(r, θ) = rαQjγj(θ) and
we conclude that

f(x) = k0 J0K +

J∑
j=1

∑
z
Qj=x

q
βj(z)

y
=: k0 J0K +

J∑
j=1

kj
q
fj(x)

y
.

It follows that each fj is an α-homogeneous, Dir-minimizing function which assumes
values different from Q J0K somewhere. By Lemma 6.5, βj is necessarily a Dir-minimizing
Rn-valued function. Since βj is (αQj)-homogeneous, its coordinates must be homogeneous
harmonic polynomials. Moreover, βj does not vanish identically. Therefore, we conclude that
nj = αQj is a positive integer. Thus, the components of each βj are linear combinations of
the harmonic functions (r, θ) 7→ rnj cos(njθ) and (r, θ) 7→ rnj sin(njθ). It follows that there
are (nonzero) R-linear map Lj : C→ Rn such that βj(z) = Lj · znj .

Next, let n∗ and Q∗ be the two positive integers such that α = n∗/Q∗ and MCD (n∗,Q∗) =

1. Since nj/Qj = α = n∗/Q∗, we necessarily have Qj = mjQ
∗ for some integer mj =

nj
n∗ > 1.

Hence,

gj(x) =
∑

z
mjQ

∗
=x

r
Lj · zmjn

∗
z

.

However, ifmj > 1, then supp (gj) ≡ Q∗ 6= Qj, so that gj would not be irreducible. Therefore,
Qj = Q∗ for every j.

Next, since Dir(f, D) > 0, J > 1. If Q∗ = 1, J = 1 and k0 = 0, then f = Q Jf1K and f1 is an
Rn-valued function. But then f1 = η ◦ f = 0, contradicting Dir(f, D) > 0. Moreover, again
using the irreducibility of gj, for all x ∈ S1, the points

Lj · zn
∗

with zQ
∗

= x

are all distinct. This implies that Lj is injective. Indeed, assume by contradiction that Lj · v = 0

for some v 6= 0. Then, necessarily Q∗ > 2 and, without loss of generality, we can assume that
v = e1. Let x = eiθ/n

∗ ∈ S1, with θ/Q∗ = π/2− π/Q∗, and let us consider the set

R := {zn
∗ ∈ S1 : zQ

∗
= x} = {ei(θ+2πk)/Q∗}.

Therefore w1 = eiθ/Q
∗

and w2 = ei(θ+2π)/Q∗ = eiπ−iθ/Q∗ are two distinct elements of R.
However, it is easy to see that w1 −w2 = 2 cos(θ/Q∗)e1. Therefore, Ljw1 = Ljw2, which is
a contradiction. This shows that Lj is injective and concludes the proof of (b).

Finally, we argue by contradiction for (c). If (c) were false, up to rotation of the plane
and relabeling of the gi’s, we assume that supp (g1(0)) and suppg2(0) have a point P in
common. We can, then, choose the functions γ1 and γ2 of (8.3) so that

γ1(0) = γ1(2π) = γ2(0) = γ2(2π) = P.
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We then define ξ : D→ Rn in the following way:

ξ(r, θ) =

{
r2αQ

∗
γ1(2θ) if θ ∈ [0,π],

r2αQ
∗
γ2(2θ) if θ ∈ [π, 2π].

Then, it is immediate to verify that

Jf1(x)K + Jf2(x)K =
∑

z2Q
∗
=x

Jξ(z)K . (8.4)

Therefore, f can be decomposed as

f(x) =
∑

z2Q
∗
=x

Jξ(z)K +

k0 J0K + (k1 − 1) Jf1(x)K + (k2 − 1) Jf2(x)K +
∑
j>J

kj Jfi(x)K

 .

It turns out that the map in (8.4) is a Dir-minimizing function, and, hence, that ξ is a (2αQ∗)-
homogeneous Dir-minimizing function. Since 2αQ∗ = 2n∗ we conclude the existence of a
linear L : C→ Rn such that

Jf1(x)K + Jf2(x)K =
∑

z2Q
∗
=x

r
L · z2n∗

z
= 2

∑
zQ
∗
=x

r
L · zn∗

z
.

Hence, for any x ∈ S1, the cardinality of the support of Jg1(x)K + Jg2(x)K is at most Q∗. Since
each gi is irreducible, the cardinality of the support of Jgi(x)K is everywhere exactly Q∗. We
conclude thus that g1(x) = g2(x) for every x, which is a contradiction to assumption (ii) in
our decomposition.

8.2 uniqueness of 2-d tangent functions

The key point of this section is the rate of convergence for the frequency function, as stated
in Proposition 8.3. We use here the functions Hx,f, Dx,f and Ix,f introduced in Definition 7.3
and drop the subscripts when f is clear from the context and x = 0.

Proposition 8.3. Let f ∈ W1,2(D, AQ) be Dir-minimizing, with Dir(f, D) > 0 and set α =

I0,f(0) = I(0). Then, there exist constants γ > 0, C > 0, H0 > 0 and D0 > 0 such that, for every
0 < r 6 1,

0 6 I(r) −α 6 Crγ, (8.5)

0 6
H(r)

r2α+1
−H0 6 Crγ and 0 6

D(r)

r2α
−D0 6 Crγ. (8.6)

The proof of this result follows computations similar to those of [9]. A simple corollary of
(8.5) and (8.6) is the uniqueness of tangent functions.

Theorem 8.4. Let f : D→ AQ(Rn) be a Dir-minimizing Q-valued functions, with Dir(f, D) > 0

and f(0) = Q J0K. Then, there exists a unique tangent map g to f at 0 (i.e. the maps f0,ρ defined in
(7.12) converge locally uniformly to g).

In the first subsection we prove Theorem 8.4 assuming Proposition 8.3, which will be then
proved in the second subsection.
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8.2.1 Proof of Theorem 8.4

Set α = I0,f(0) and note that, by Theorem 7.9 and Proposition 8.3, α = D0/H0 > 0, where
D0 and H0 are as in (8.6). Without loss of generality, we might assume D0 = 1. So, by (8.6),
recalling the definition of blow-up fρ, it follows that

fρ(r, θ) = ρ−αf(r ρ, θ) (1+O(ργ/2)). (8.7)

Our goal is to show the existence of a limit function (in the uniform topology) for the
blow-up fρ. From (8.7), it is enough to show the existence of a uniform limit for the functions
hρ(r, θ) = ρ−αfρ(r ρ, θ). Since hρ(r, θ) = rαhrρ(1, θ), it suffices to prove the existence of a
uniform limit for hρ|S1 . On the other hand, the family of functions {hρ}ρ>0 is equi-Hölder
(cp. with Theorem 7.9 and (8.6) in Proposition 8.3). Therefore, the existence of an uniform
limit is equivalent to the existence of an L2 limit.

So, we consider r/2 6 s 6 r and estimate

ˆ 2π

0
G (hr,hs)

2 =

ˆ 2π

0
G

(
f(r, θ)
rα

,
f(s, θ)
sα

)2
dθ 6

ˆ 2π

0

(ˆ r

s

∣∣∣∣ ddt
(
f(t, θ)
tα

)∣∣∣∣dt)2 dθ
6 (r− s)

ˆ 2π

0

ˆ r

s

∣∣∣∣ ddt
(
f(t, θ)
tα

)∣∣∣∣2 dtdθ. (8.8)

This computation can be easily justified because r 7→ f(r, θ) is a W1,2 function for a.e. θ.
Using the chain rule in Proposition 1.12 and the variation formulas (5.7), (5.8) in Proposition
5.2, we estimate (8.8) in the following way:

ˆ 2π

0
G (hr,hs)

2 6 (r− s)

ˆ 2π

0

ˆ r

s

∑
i

{
α2

|fi|
2

t2α+2
+

|∂νfi|
2

t2α
− 2α

〈∂νfi, fi〉
t2α+1

}
(5.7), (5.8)

= (r− s)

ˆ r

s

{
α2

H(t)

t2α+3
+

D′(t)

2 t2α+1
− 2α

D(t)

t2α+2

}
dt

= (r− s)

ˆ r

s

{
1

2t

(
D(t)

t2α

)′
+α2

H(t)

2 t2α+3
−α

D(t)

t2α+2

}
dt

= (r− s)

ˆ r

s

{
1

2t

(
D(t)

t2α

)′
+α

H(t)

2 t2α+3

(
α− I0,f(t)

)}
dt

6 (r− s)

ˆ r

s

1

2t

(
D(t)

t2α

)′
dt = (r− s)

ˆ r

s

1

2t

(
D(t)

t2α
−D0

)′
dt (8.9)

where the last inequality follows from the monotonicity of the frequency function, which
implies, in particular, that α 6 I0,f(t) for every t. Integrating by parts the last integral of
(8.9), we get

ˆ 2π

0
G (hr,hs)

2 6 (r− s)

[
1

2 r

(
D(r)

r2α
−D0

)
−
1

2 s

(
D(s)

s2α
−D0

)]
+

+ (r− s)

ˆ r

s

1

2t2

(
D(r)

r2α
−D0

)
.
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Recalling that 0 6 D(r)/r2α −D0 6 Crγ and s = r/2 we estimate
ˆ 2π

0
G (hr,hs)

2 6
r− s

s
rγ + (r− s)

ˆ r

s

1

2t2−γ
6 Crγ. (8.10)

Let now s 6 r and choose L ∈N such that r/2L+1 < s 6 r/2L. Iterating (8.10), we reach

‖G (hr,hs)‖L2 6
L−1∑
l=0

∥∥∥G(hr/2l ,hr/2l+1)∥∥∥
L2

+
∥∥∥G(hr/2L ,hs

)∥∥∥
L2

6
L∑
l=0

rγ/2(
2γ/2

)l 6 Crγ/2.

This shows that hρ|S1 is a Cauchy sequence in L2 and, hence, concludes the proof.

8.2.2 Proof of Proposition 8.3

The key of the proof is the following estimate:

I′(r) >
2

r
(α+ γ− I(r)) (I−α) . (8.11)

We will prove (8.11) in a second step. First we show how to conclude the various statements
of the proposition.

Step 1. (8.11)=⇒ Proposition 8.3. Since I is monotone nondecreasing (as proved in Theorem
7.5), there exists r0 > 0 such that α+ γ− I(r) > γ/2 for every r 6 r0. Therefore,

I′(r) >
γ

r
(I(r) −α) ∀ r 6 r0. (8.12)

Integrating the differential inequality (8.12), we get the desired conclusion:

I(r) −α 6 rγ (I(r0) −α) = Crγ.

From the computation of H′ in (7.3), we deduce easily that(
H(r)

r

)′
=
2D(r)

r
. (8.13)

This implies the following identity:(
log

H(r)

r2α+1

)′
=

(
log

H(r)

r
− log r2α

)′
=

(
H(r)

r

)′
−
2α

r

(8.13)
=

2

r
(I(r) −α) > 0. (8.14)

So, in particular, we infer the monotonicity of log H(r)
r2α+1 and, hence, of H(r)

r2α+1 . We can, therefore,
integrate (8.14) and use (8.5) in order to achieve that, for 0 < s < r 6 1 and for a suitable
constant Cγ, the function

log
H(r)

r2α+1
−Cγ r

γ = log
(
H(r) e−Cγ r

γ

r2α+1

)
is decreasing. So, we conclude the existence of the following limits:

lim
r→0

H(r) e−Cγ r
γ

r2α+1
= lim
r→0

H(r)

r2α+1
= H0 > 0,
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with the bounds, for r small enough,

H(r)

r2α+1
(1−Crγ) 6

H(r) e−Cγ r
γ

r2α+1
6 H0 6

H(r)

r2α+1
.

This easily concludes the first half of (8.6). The rest of (8.6) follows from the following
identity:

D(r)

r2α
−D0 = (I(r) − I0)

H(r)

r2α+1
+ I0

(
H(r)

r2α+1
−H0

)
.

Indeed, both addendum are positive and bounded by Crγ.

Step 2. Proof of (8.11). Recalling the computation in (7.4), (8.11) is equivalent to

rD′(r)

H(r)
−
2 I(r)2

r
>
2

r

(
α+ γ− I(r)

)
(I(r) −α) ,

which, in turn, reduces to

(2α+ γ)D(r) 6
rD′(r)

2
+
α(α+ γ)H(r)

r
. (8.15)

To prove (8.15), we exploit once again the harmonic competitor constructed in the proof of
the Hölder regularity for the planar case in Proposition 6.3. Let r > 0 be a fixed radius and
f(reiθ) = g(θ) =

∑J
j=1

q
gj(θ)

y
be an irreducible decomposition as in Proposition 3.9. For

each irreducible gj, we find γj ∈W1,2(S1, Rn) and Qj such that

gj(θ) =

Qj∑
i=1

s
γj

(
θ+ 2πi

Qj

){
.

We write now the different quantities in (8.15) in terms of the Fourier coefficients of the γj’s.
To this aim, consider the Fourier expansions of the γj’s,

γj(θ) =
aj,0

2
+

+∞∑
l=1

rl
{
aj,l cos(l θ) + bj,l sin(l θ)

}
,

and their harmonic extensions

ζj(ρ, θ) =
aj,0

2
+

+∞∑
l=1

ρl
{
aj,l cos(l θ) + bj,l sin(l θ)

}
.

Recalling Lemma 6.5, we infer the following equalities:

D′(r) = 2
∑
j

Dir(gj, r S1) =
∑
j

2Dir(γj, r S1)

Qj
= 2 π

∑
j

∑
l

r2l−1 l2

Qj

(
a2j,l + b2j,l

)
, (8.16)

H(r) =
∑
j

ˆ
r S1

∣∣gj∣∣2 =
∑
j

Qj

ˆ
r S1

∣∣γj∣∣2 = π
∑
j

Qj

{
r a2j,0

2
+
∑
l

r2l+1
(
a2j,l + b2j,l

)}
. (8.17)
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Finally, using the minimality of f,

D(r) 6
∑
j

Dir(ζj,Br) = π
∑
j

∑
l

r2l l
(
a2j,l + b2j,l

)
. (8.18)

We deduce from (8.16), (8.17) and (8.18) that, to prove (8.15), it is enough to find a γ such
that

(2α+ γ) l 6
l2

Qj
+α (α+ γ)Qj, for every l ∈N and every Qj,

which, in turn, is equivalent to

γQj (l−αQj) 6 (l−αQj)
2. (8.19)

Note that the Qj’s depend on r, the radius we fixed. However, they are always natural
numbers less or equal than Q. It is, hence, easy to verify that the following γ satisfies (8.19):

γ = min
16k6Q

{
bαkc+ 1−αk

k

}
. (8.20)

8.3 the singularities of 2-d dir-minimizing functions are isolated

We are finally ready to prove Theorem 8.1.

Proof of Theorem 8.1. Our aim is to prove that, if f : Ω → AQ is Dir-minimizing, then the
singular points of f are isolated. The proof is by induction on the number of values Q. The
basic step of the induction procedure, Q = 1, is clearly trivial, since Σf = ∅. Now, we assume
that the claim is true for any Q′ < Q and we will show that it holds for Q as well.

So, we fix f : R2 ⊃ Ω → AQ Dir-minimizing. Since the function f −Q Jη ◦ fK is still
Dir-minimizing and has the same singular set as f (notations as in Lemma 7.13), it is not
restrictive to assume η ◦ f ≡ 0.

Next, let ΣQ,f = {x : f(x) = Q J0K} and recall that, by the proof of Theorem 7.2, either
ΣQ,f = Ω or ΣQ,f consists of isolated points. Assuming to be in the latter case, on D \ ΣQ,f,
we can locally decompose f as the sum of a Q1-valued and a Q2-valued Dir-minimizing
function with Q1,Q2 < Q. We can therefore use the inductive hypothesis to conclude that
the points of Σf \ ΣQ,f are isolated. It remains to show that no x ∈ ΣQ,f is the limit of a
sequence of points in Σf \ ΣQ,f.

Fix x0 ∈ ΣQ,f. Without loss of generality, we may assume x0 = 0. Note that 0 ∈ ΣQ,f

implies D(r) > 0 for every r such that Br ⊂ Ω. Let g be the tangent function to f in 0 . By
the characterization in Proposition 8.2, we have

g = k0 J0K +

J∑
j=1

kj
q
gj

y
,

where the gj’s are Q∗-valued functions satisfying (a)-(c) of Proposition 8.2 (in particular
α = n∗/Q∗ is the frequency in 0). So, we are necessarily in one of the following cases:
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(i) max{k0, J− 1} > 0;

(ii) J = 1, k0 = 0 and k1 < Q.

If case (i) holds, we define

di,j := min
x∈S1

dist
(
supp (gi(x)), supp (gj(x))

)
and ε = min

i 6=j

di,j

4
. (8.21)

By Proposition 8.2(c), we have ε > 0. From the uniform convergence of the blow-ups to g,
there exists r0 > 0 such that

G (f(x),g(x)) 6 ε |x|α for every |x| 6 r0. (8.22)

The choice of ε in (8.21) and (8.22) easily implies the existence of fj, with j ∈ {0, . . . , J}, such
that f0 is a W1,2 k0-valued function, each fj is a W1,2 (kjQ

∗)-valued function for j > 0, and

f|Br0 =

J∑
j=0

q
fj

y
. (8.23)

It follows that each fj is a Dir-minimizing function. The sum (8.23) contains at least two
terms: so each fj take less thanQ values and we can use our inductive hypothesis to conclude
that Σf ∩Br0 =

⋃
j Σfj ∩Br0 consists of isolated points.

If case (ii) holds, then kQ∗ = Q, with k < Q, and g is of the form

g(x) =
∑
zQ
∗
=x

k
r
L · zn∗

z
,

where L is injective. In this case, set

d(r) := min
zQ
∗

1 =zQ
∗

2 ,z1 6=z2, |zi|=r1/Q
∗
|L · zn∗1 − L · zn∗2 |.

Note that

d(r) = c rα and max
|x|=r

dist
(
supp (f(x)), supp (g(x))

)
= o(rα).

This implies the existence of r > 0 and ζ ∈ C(Br, Ak(Rn)) such that

f(x) =
∑
zQ
∗
=x

Jζ(z)K for |x| < r.

Set ρ = rQ
∗
. If x 6= Bρ \ 0 and σ < min{|x|, ρ− |x|}, then obviously ζ ∈ W1,2(Bσ(x)). Thus,

ζ ∈ W1,2(Bρ \ Bσ) for every σ > 0. On the other hand, after the same computations as
in Lemma 6.5, it is easy to show that Dir(ζ,Bρ \ Bσ) is bounded independently of ρ. We
conclude that ζ ∈W1,2(Bρ \ {0}). This implies that ζ ∈W1,2(Bρ) (see below) and hence we
can apply the same arguments of Lemma 6.5 to show that ζ is Dir-minimizing. Therefore, by
inductive hypothesis, Σζ consists of isolated points. So, ζ is necessarily regular in a punctured
disk Bσ(0) \ {0}, which implies the regularity of f in the punctured disk Bσ1/Q∗ \ {0}.
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For the reader’s convenience, we give a short proof of the claim ζ ∈W1,2(Bρ). This is in
fact a consequence of the identity W1,2(Bρ \ {0}) = W1,2(Bρ) for classical Sobolev spaces, a
byproduct of the fact that 2-capacity of a single point in the plain is finite.

Indeed, we claim that, for every T ∈ Ak(R
n), the function hT := G(ζ, T) belongs to

W1,2(Bρ). Fix a test function ϕ ∈ C∞c (Bρ) and denote by Λi the distributional derivative
∂xihT in Bρ \ {0}. For every σ ∈ (0, ρ) let ψσ ∈ C∞c (Bσ) be a cutoff function with the
properties:

(i) 0 6 ψσ 6 1;

(ii) ‖Dψσ‖C0 6 Cσ−1, where C is a geometric constant independent of σ.

Then,
ˆ
hT ∂xiϕ =

ˆ
hT ∂xi(ϕψσ) +

ˆ
hT ∂xi((1−ψσ)ϕ)

=

ˆ
Bσ

hT ∂xi(ϕψσ)︸ ︷︷ ︸
(I)

−

ˆ
Λi((1−ψσ)ϕ)︸ ︷︷ ︸

(II)

.

Letting σ ↓ 0, (II) converges to
´
Λiϕ. As for (I), we estimate it as follows:

|(I)| 6 ‖∂xi(ϕψσ)‖L2(Bσ) ‖hT‖L2(Bσ).

By the absolute continuity of the integral, ‖hT‖L2(Bσ) → 0 as σ ↓ 0. On the other hand,
we have the pointwise inequality |∂xi(ϕψσ)| 6 C(1+ σ−1). Therefore, ‖∂xi(ϕψσ)‖L2(Bσ) is
bounded independently of σ. This shows that (I) ↓ 0 and hence we conclude the identity´
hT ∂xiϕ = −

´
Λiϕ. Thus, Λ is the distributional derivative of hT in Bρ.
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H I G H E R I N T E G R A B I L I T Y O F D I R - M I N I M I Z I N G F U N C T I O N S

In this chapter we prove another new regularity theorem for Dir-minimizing Q-valued
functions. This result concerns the higher integrability of the gradient which, rather than
merely square summable, turns out to be p summable for some p > 2.

Theorem 9.1. There exists p = p(n,m,Q) > 2 such that, for every Ω ⊆ Rm open and u ∈
W1,2(Ω, AQ(Rn)) Dir-minimizing, |Du| ∈ Lploc(Ω).

This theorem is closely related to the higher integrability estimate for minimal currents
presented in Chapter 12 and plays a crucial role in the proof of Almgren’s approximation
theorem given in Chapter 13. Here, we propose two different proofs: one uses the biLipschitz
embedding ξ, the other is based only on the metric theory of Q-valued functions. For what
concerns the case m = 2, we found an explicit integrability exponent: using the examples
provided by complex varieties in the next Chapter 10, we can show that this upper bound is
in fact optimal.

9.1 two dimensional case

We here give a simple proof for the two dimensional case, which in addition provides the
optimal integrability exponent. This proof relies on the following proposition, because by
Theorem 8.1 the singular points are isolated in dimension two.

Proposition 9.2. Let u ∈ W1,2(B2, AQ) be Dir-minimizing and assume that Σu = {0}. Then,
|Du| ∈ Lp(B1) for every p < 2Q

Q−1 .

Proof. Let x ∈ B1 \ {0} and set r = |x|. Then, by Σu = {0}, in Br(x) there exists an analytic
selection of u, u|Br(x) =

∑
i JuiK, where ui : Br(x)→ Rn are harmonic functions. Using the

mean value inequality for Dui, one infers that

|Dui(x)| 6
 
Br(x)

|Dui| 6
1√
π r

(ˆ
Br(x)

|Dui|
2

) 1
2

,

from which

|Du|(x)2 =
∑
i

|Dui(x)|
2 6

1

π r2

∑
i

ˆ
Br(x)

|Du2i | =
Dir(u,Br(x))

π r2
. (9.1)

Using the decay estimate in 6.2 obtained in the proof of the Hölder regularity with r = 1

together with (9.1), we deduce that

|Du|(x) 6
Dir(u,B2)
√
π r1−

1
Q

,

91



92 higher integrability of dir-minimizing functions

which in turn implies the conclusion,ˆ
B1

|Du|p 6 C

ˆ
B1

1

|x|p− p
Q

< +∞, ∀ p < 2Q

Q− 1
.

Remark 9.3. The range
[
2, 2QQ−1

)
for the integrability exponent is optimal. Consider, indeed,

the complex variety VQ = {(z,w) : wQ = z} ⊆ C2. By Theorem 10.1 in Chapter 10, the Q-
valued function u(z) =

∑
wQ=z JwK is Dir-minimizing in B2. Moreover, |Du|(z) = Q |z|

1
Q−1.

Hence, |Du| ∈ Lp for every p < 2Q
Q−1 and |Du| /∈ L

2Q
Q−1 .

9.2 general case

Now we pass to the proof of Theorem 9.1 for m > 3. We present here the intrinsic proof. The
first step is a Caccioppoli’s inequality for Dir-minimizing functions. For P ∈ Rn, we denote
by τP the following map: τP : AQ(Rn)→ AQ(Rn),

τP(T) :=
∑
i

JTi − PK , for every T =
∑
i

JTiK .

Lemma 9.4 (Caccioppoli’s inequality). Let u ∈W1,2(Ω, AQ) be Dir-minimizing. Then, for every
P ∈ Rn and every η ∈ C∞c (Ω),ˆ

Ω
|Du|2 η2 6

ˆ
Ω

|τPu|
2

|Dη|2. (9.2)

In particular, in the case Ω = B2r,ˆ
B 3r
2

|Du|2 6
4

r2

ˆ
B2r

|τPu|
2 . (9.3)

Proof. Recall the outer variation for Dir-minimizing functions in Proposition 5.1, and apply
it to ψ(x,y) = η(x)2 (y − P), where P and η are as in the statement. Since Dxψ(x,y) =

2 η(x)Dη(x)⊗ (y− P) and Dyψ(x,y) = η(x)2 Idn, this leads to

0 =

ˆ
Ω

∑
i

〈
Dui(x) : 2 ηDη⊗ (ui − P)

〉
+

ˆ
Ω

∑
i

〈
Dui(x) : η2Dui(x)〉. (9.4)

Applying Hölder’s inequality in (9.4), we conclude (9.2):ˆ
Ω
η2 |Du|2 = −

∑
i

ˆ
Ω

〈
Dui · (ui − P),ηDη

〉
6
ˆ
Ω

∑
i

|Dui| |ui − P| |η| |Dη|

6
ˆ
Ω

(∑
i

|Dui|
2 |η|2

) 1
2
(∑

i

|ui − P||Dη|
2

) 1
2

6

(ˆ
Ω
η2 |Du|2

) 1
2
(ˆ
Ω

|τP(u)|2 |Dη|2
) 1
2

.

The last conclusion of the lemma follows from (9.2) choosing η ≡ 1 in B3r/2 and |Dη| 6 2
r .
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In the same way of the semicontinuity of the Dirichlet energy, one can prove the semicon-
tinuity of

´
|Df|p. Also this lemma is a special case of the more general semicontinuity result

in Part III Chapter 11.

Lemma 9.5 (Semicontinuity). Let fk, f ∈W1,p(Ω, AQ), p <∞, be such that fk ⇀ f (according
to Definition 4.7). Then,

ˆ
Ω

|Df|p 6 lim inf
k→+∞

ˆ
Ω

|Dfk|
p. (9.5)

Proof. The proof of this result is very similar to the proof of the semicontinuity for the
Dirichlet energy given in Section 4.3. Let {Tl}l∈N be any dense subset of AQ and recall that
|Df| is the monotone limit of hN with

h2N = max
lj6N

∑
j

(
∂jG(f, Tlj)

)2.

By the Monotone Convergence Theorem,
´

|Df|p = supN
´
h
p
N. Therefore, denoting by PNm

the collections P = {El̄}l̄={l1,...,lm}∈Nm of Nm disjoint open subsets of Ω, we conclude that

ˆ
Ω

|Df|p = sup
N

ˆ
Ω
h
p
N = sup

N

sup
P∈PNm

∑
El̄∈P

ˆ
El̄

∑
j

(
∂jG(f, Tlj)

)2
p
2

. (9.6)

It follows easily from the hypotheses that, for every l̄ = {l1, . . . , lm} and every open set El̄,
the vector-valued maps (∂1G(fk, Tl1), . . . ,∂mG(fk, Tlm)) converge weakly in Lp(El̄) to the
map (∂1G(f, Tl1), . . . ,∂mG(f, Tlm)). Hence, by the semicontinuity of the norm,

ˆ
El̄

∑
j

(
∂jG(f, Tlj)

)2
p
2

6 lim inf
k→+∞

ˆ
El̄

∑
j

(
∂jG(fk, Tlj)

)2
p
2

.

Summing in El ∈ P, in view of (9.6), we achieve (11.13).

The following reverse Hölder inequality is the basic estimate for the higher integrability.

Proposition 9.6. Let 2m
m+2 < s < 2. Then, there exists C > 0 such that, for every u : Ω → AQ

Dir-minimizing, x ∈ Ω and r < min
{
1, dist(x,∂Ω)/2

}
,( 

Br(x)
|Du|2

) 1
2

6 C

( 
B2r(x)

|Du|s
) 1
s

. (9.7)

Proof. The proof is divided into two steps.
Step 1: we assume that u has average 0, η ◦ u =

∑
iui
Q = 0.

The proof is by induction on the number of values Q. The basic step Q = 1 is clear: indeed,
in this case η ◦ u = u = 0. Now, we assume that (9.7) holds for every Q ′ < Q and, by
contradiction, it does not hold for Q.
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Then, up to translations and dilations of the domain, there exists (ul)l ⊂W1,2(B4, AQ) of
Dir-minimizing functions such that η ◦ ul = 0 and

( 
B4

|Dul|
s

) 1
s

<

(ffl
B2

|Dul|
2
) 1
2

l
. (9.8)

Moreover, without loss of generality, we may also assume that
´
B4

|ul|
2 = 1. Using Cacciop-

poli’s inequality (9.3), we have that Dir(ul,B3) 6 4, which in turn, by (9.8), implies

‖G(ul,Q J0K)‖W1,s(B4)
6 C < +∞.

Since s∗ > 2, we can apply the compact Sobolev embedding to deduce that there exists a
subsequence (not relabeled) ul converging to some u in L2(B4). From (9.8) and Lemma 9.5,
we deduce thatˆ

B4

|u|2 = 1 and
ˆ
B4

|Du|s = 0, (9.9)

which implies that u is constant, u ≡ T ∈ AQ. Since by Theorem 6.1 the ul’s are equi-
bounded and equi-Hölder in B2, always up to a subsequence (again not relabeled), the u ′ls
converge uniformly to T in B2. This implies, in particular, that

η ◦ T = lim
l→+∞η ◦ ul = 0. (9.10)

From (9.9) and (9.10), one infers that T is not a point of multiplicity Q. Therefore, since
ul → T uniformly in B2, for l large enough the un’s must split in the sum of two Dir-
minimizing functions ul = JvlK + JwlK, where the vl’s are Q1-valued functions and the
wl’s are Q2-valued, with Q1, Q2 positive and Q1 +Q2 = Q. Applying now the inductive
hypothesis to vl and wl we contradict (9.8) for l large enough,( 

B1(x)
|Dul|

2

) 1
2

6

( 
B1(x)

|Dvl|
2

) 1
2

+

( 
B1(x)

|Dwl|
2

) 1
2

6 C

( 
B2(x)

|Dvl|
s

) 1
s

+C

( 
B2(x)

|Dwl|
s

) 1
s

6 2C

( 
B2(x)

|Dul|
s

) 1
s

.

Step 2: generic Dir-minimizing function u.
Let u be Dir-minimizing and ϕ = η ◦ u: then, by Lemma 7.13, ϕ : Ω→ Rn is harmonic

and Dϕ =
∑
iDui, from which

|Dϕ|2 6 Q
∑
i

|Dui|
2 = Q |Du|2. (9.11)

Moreover, again by Lemma 7.13, the Q-valued function v =
∑
i Jui −ϕK is Dir-minimizing

as well. Note that

|Du|2 6 2 |Dv|2 + 2Q |Dϕ|2 and |Dv|2 6 2 |Du|2 + 2Q |Dϕ|2. (9.12)
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Using the inequality
√∑

j aj 6
∑
j
√
aj for positive aj, we deduce

( 
Br(x)

|Du|2
) 1
2

6

( 
Br(x)

2 |Dv|2 + 2Q |Dϕ|2
) 1
2

6 2

( 
Br(x)

|Dv|2
) 1
2

+ 2Q

( 
Br(x)

|Dϕ|2
) 1
2

. (9.13)

For the first term in the right hand side of (9.13), we use Step 1, since η ◦ v = 0, to get( 
Br(x)

|Dv|2
) 1
2

6 C

( 
B2r(x)

|Dv|s
) 1
s (9.12)

6 C

( 
B2r(x)

(
2 |Du|2 + 2Q |Dϕ|2

) s
2

) 1
s

6 C

( 
B2r(x)

2 |Du|s + 2Q |Dϕ|s
) 1
s (9.11)

6 C

( 
B2r(x)

|Du|s
) 1
s

. (9.14)

For the remaining term in (9.13), we use the standard estimate for harmonic functions,

|Dϕ(x)| 6
C

rn
‖Dϕ‖L1(B2r) ∀ x ∈ Br, (9.15)

and infer( 
Br(x)

|Dϕ|2
) 1
2 (9.15)

6
C

rn
‖Dϕ‖L1(B2r) 6

C

rn

(ˆ
B2r(x)

|Dϕ|s
) 1
s

rn(1− 1
s )

6 C

( 
B2r(x)

|Dϕ|s
) 1
s (9.11)

6 C

( 
B2r(x)

|Du|s
) 1
s

. (9.16)

Clearly, (9.13), (9.14) and (9.16) finish the proof.

The proof of Theorem 9.1 is now an easy consequence of the following reverse Hölder
inequality with increasing supports proved by Giaquinta and Modica in [26, Proposition
5.1].

Theorem 9.7 (Reversed Hölder inequality). Let Ω ⊆ Rm be open and g ∈ Lqloc(Ω), with q > 1
and g > 0. Assume that there exist positive constants b and R such that( 

Br(x)
gq
) 1
q

6 b

 
B2r(x)

g, ∀ x ∈ Ω, ∀ r < min
{
R, dist(x,∂Ω)/2

}
. (9.17)

Then, there exist p = p(q,b) > q and c = c(m,q,b) such that g ∈ Lploc(Ω) and( 
Br(x)

gp
) 1
p

6 c

( 
B2r(x)

gq
) 1
q

, ∀ x ∈ Ω, ∀ r < min
{
R, dist(x,∂Ω)/2

}
.

Proof of Theorem 9.1. Consider the function g = |Du|s, where s < 2 is the exponent in
Proposition 9.6. Estimate (9.7) implies that hypothesis (9.17) of Theorem 9.7 is satisfied
with q = 2

s > 1. Hence, there exists an exponent p ′ > q, such that g belongs to Lp
′

loc(Ω),
i.e. |Du| ∈ Lploc(Ω) for p = p ′ · s > 2.
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9.3 extrinsic proof

In this section we prove Proposition 9.6 using the biLipschitz embedding ξ.

Proof of Proposition 9.6. Let u : Ω → AQ(Rn) be a Dir-minimizing map and let ϕ = ξ ◦ u :

Ω→ Q ⊂ RN. Since the estimate is invariant under translations and rescalings, it is enough
to prove it for x = 0 and r = 1. We assume, therefore Ω = B2. Let ϕ̄ ∈ RN be the average of
ϕ on B2. By Fubini’s theorem, there exists ρ ∈ [1, 2] such that

ˆ
∂Bρ

(|ϕ− ϕ̄|s + |Dϕ|s) 6 C

ˆ
B2

(|ϕ− ϕ̄|s + |Dϕ|s) 6 C‖Dϕ‖sLs(B2).

Consider ϕ|∂Bρ . Since 12 >
1
s − 1

2 (m−1) , we can use the embedding W1,s(∂Bρ) ↪→ H1/2(∂Bρ)

(see, for example, [1]). Hence, we infer that∥∥ϕ|∂Bρ − ϕ̄
∥∥
H
1
2 (∂Bρ)

6 C ‖Dϕ‖Ls(B2) , (9.18)

where ‖ · ‖H1/2 = ‖ · ‖L2 + | · |H1/2 and | · |H1/2 is the usual H1/2-seminorm. Let ϕ̂ be the
harmonic extension of ϕ|∂Bρ in Bρ. It is well known (one could, for example, use the result
in [1] on the half-space together with a partition of unity) that

ˆ
Bρ

|Dϕ̂|2 6 C(m) |ϕ|2
H
1
2 (∂Bρ)

. (9.19)

Therefore, using (9.18) and (9.19), we conclude ‖Dϕ̂‖L2(Bρ) 6 C ‖Dϕ‖Ls(B2). Now, since
ρ ◦ ϕ̂|∂Bρ = u|∂Bρ and ρ ◦ ϕ̂ takes values in Q, by the the minimality of u and the Lipschitz
properties of ξ, ξ−1 and ρ, we conclude

(ˆ
B1

|Du|2
) 1
2

6 C

(ˆ
Bρ

|Dϕ̂|2

) 1
2

6 C

(ˆ
B2

|Dϕ|s
) 1
s

6 C

(ˆ
B2

|Du|s
) 1
s

.
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In this chapter we show that complex varieties are locally graphs of Dir-minimizing functions.

Theorem 10.1. Let V ⊆ Cµ ×Cν ' R2µ ×R2ν be an irreducible holomorphic variety which is a
Q : 1-cover of the ball B2 ⊆ Cµ under the orthogonal projection. Then, there exists a Dir-minimizing
Q-valued function f ∈W1,2(B1, AQ(R2ν)) such that graph(f) = V ∩ (B1 ×Cν).

Theorem 10.1 provides many examples of Dir-minimizing functions and, in particular,
shows that the regularity results for Dir-minimizing functions proved in Theorem 6.1,
Theorem 7.2, Theorem 8.1 and Proposition 9.2 are optimal.

Theorem 10.1 has been proved by Almgren in his big regularity paper [2, Theorem
2.20] using the deep and complicated approximation theorem of minimal currents via
graphs of Lipschitz Q-functions reproved in Chapter 13. Here we give a more elementary
proof avoiding this approximation result. For the planar case, moreover, we also provide
an alternative argument which exploits the equality between the area and the energy of
conformal maps. We hope that this approach can be extended to the study of regularity
issues for more complicated calibrated geometries.

10.1 push-forward of currents under q-functions

In the first section we collect some results on the push-forward of rectifiable currents under
Q-valued functions, among which, in particular, a characterization the boundary of the
graph of a Lipschitz Q-function.

Given a Q-valued function f : Rm → AQ(Rn), we set f̄ =
∑
i J(x, fi(x))K, f̄ : Rm →

AQ(Rm+n). If R ∈ Dk(R
m) is a rectifiable current associated to a k-rectifiable set M with

multiplicity θ, R = τ(M, θ, ξ), where ξ is a borel simple k-vector field orienting M (we use
the notation in [54]), and if f is a proper Lipschitz Q-valued function, we can define the
push-forward of T under f as follows.

Definition 10.2. Given R = τ(M, θ, ξ) ∈ Dk(R
m) and f ∈ Lip(Rm, AQ(Rn)) as above, we

denote by Tf,R the current in Rm+n defined by

〈Tf,R,ω〉 =

ˆ
M
θ
∑
i

〈
ω ◦ f̄i,DMf̄i#ξ

〉
dHk ∀ ω ∈ Dk(Rm+n), (10.1)

where
∑
i

q
DMf̄i(x)

y
is the differential of f̄ restricted to M.

Remark 10.3. Note that, by Rademacher’s Theorem 1.13 the derivative of a Lipschitz Q-
function is defined a.e. on smooth manifolds and, hence, also on rectifiable sets.

97



98 examples of dir-minimizing maps: complex varieties

As a simple consequence of the Lipschitz decomposition in Proposition 1.6, there exist
{Ej}j∈N closed subsets of Ω, positive integers kj,l, Lj ∈N and Lipschitz functions fj,l : Ej →
Rn, for l = 1, . . . ,Lj, such that

Hk(M \∪jEj) = 0 and f|Ej =

Lj∑
l=1

kj,l
q
fj,l

y
. (10.2)

From the definition, Tf,R =
∑
j,l kj,lf̄j,l#(R Ej) is a sum of rectifiable currents defined by

the push-forward under single-valued Lipschitz functions. Therefore, it follows that Tf,R is
rectifiable and coincides with τ

(
f̄(M), θf,~Tf

)
, where

θf(x, fj,l(x)) = kj,lθ(x) and ~Tf(x, fj,l(x)) =
DMf̄j,l#ξ(x)

|DMf̄j,l#ξ(x)|
∀ x ∈ Ej.

By the standard area formula, using the above decomposition of Tf,R, we get an explicit
expression for the mass of Tf,R:

M (Tf,R) =

ˆ
M

|θ|
∑
i

√
det
(
DMf̄i · (DMf̄i)T

)
dHk. (10.3)

10.1.1 Boundaries of Lipschitz Q-valued graphs

With a slight abuse of notation, when R = JΩK ∈ Dm(Rm) is given by the integration over
a Lipschitz domain Ω ⊂ Rm of the standard m-vector ~e = e1 ∧ · · ·∧ em, we write simply
Tf,Ω for Tf,R. The same we do for Tf,∂Ω, understanding that ∂Ω is oriented as the boundary
of JΩK. The main result for what concerns the push-forward under Q-valued functions is
given in the following theorem.

Theorem 10.4. For every Ω Lipschitz domain and f ∈ Lip(Ω, AQ), ∂ Tf,Ω = Tf,∂Ω.

In order to prove this theorem, we need the following slight variant of the homotopy
Lemma 1.8.

Lemma 10.5. There exists a constant cQ with the following property. For every C ⊂ Rm closed
cube centered at x0 and u ∈ Lip(C, AQ) Lipschitz, there exists h ∈ Lip(C, AQ) with the following
properties:

(i) h|∂C = u|∂C, Lip(h) 6 cQ Lip(u) and ‖G(u,h)‖L∞ 6 cQ Lip(u) diam(C);

(ii) u =
∑J
j=1

q
uj

y
and h =

∑J
j=1

q
hj

y
, for some J > 1, and Thj,C is a cone over Tuj,∂C,

Thj,C =
q
(x0,aj)

y
××Tuj,∂C, for some aj ∈ Rn.

Proof. The proof is essentially contained the same of Lemma 1.8. Indeed, (i) follows straight-
forwardly from the conclusions there. For what concerns (ii), following the inductive
argument in Lemma 1.8, due to the obvious invariances it is enough to prove that, for the
cone-like extension of u, h(x) =

∑
i J‖x‖ui (x/‖x‖)K, where ‖x‖ = supi |xi| is the uniform
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norm, Th,C1 = J0K××Tu,∂C1 , with C1 = [−1, 1]m. This follows easily from the decomposition
Tu,∂C1 =

∑
j,l kj,lūj,l#(R Ej) described in the previous subsection. Indeed, setting

Fj = {tx : x ∈ Ej, 0 6 t 6 1},

clearly h decomposes in Fj as u in Ej and h̄j,l#(R Fj) = J0K××ūj,l#(R Ej).

Proof of Theorem 10.4. Observe that we can reduce to the case the domain Ω is the unit
cube [0, 1]m. Indeed, by a partition of unity argument, we can assume that there exists
φ : Ω → [0, 1]m biLipschitz homeomorphism. Set g : [0, 1]m → AQ such that g ◦ φ = f

and φ̃(x,y) = (φ(x),y), φ̃ : Ω×Rn → [0, 1]m ×Rn. Hence, following [54, Remark 27.2 (3)]
and using the characterization Tf,Ω = τ(f(Ω), θf,~Tf), it is simple to verify that φ̃#Tf,Ω =

Tg,[0,1]m and analogously φ̃#Tf,∂Ω = Tg,∂[0,1]m . So, since the boundary and the push-forward
commute, from now on, without loss of generality, we can assume Ω = [0, 1]m.

The proof is by induction on the dimension of the domain m. For m = 1, by the Lipschitz
selection principle in Proposition 3.6 there exist single-valued Lipschitz functions fi such
that f =

∑
i JfiK. Hence, it is immediate to verify that

∂Tf,Ω =
∑
i

∂Tfi,Ω =
∑
i

(
δfi(1) − δfi(0)

)
= Tf|∂Ω .

For the inductive argument, consider the dyadic decompositions of scale 2−l of Ω,

Ω =
⋃

k∈{0,...,2l−1}m
Qk,l, with Qk,l = 2−l (k+ [0, 1]m) .

In each Qk,l, set hk,l the cone-like extension given by Lemma 10.5 and

Tl =
∑
k

Thk,l,Qk,l = Thl ,

with hl theQ-function which coincides with hk,l inQk,l. Note that the hl’s are equi-Lipschitz
and converge uniformly to f by Lemma 1.8 (i).

By inductive hypothesis, since each face F of ∂Qk,l is a (m− 1)-dimensional cube, ∂Tf,F =

Tf,∂F. Taking into account the orientation of ∂F for each face, it follows immediately that

∂Tf,∂Qk,l = 0. (10.4)

Moreover, by Lemma 10.5, each Thk,l,Qk,l is a sum of cones. Therefore, using (10.4) and ∂(J0K×
×T) = T − J0K××∂T (see [54, Section 26]), ∂(Tl Qk,l) = ∂Thk,l,Qk,l = Tf,∂Qk,l . Considering
the different orientations of the boundary faces of adjacent cubes, it follows that all the
contributions cancel except those at the boundary of Ω, thus giving ∂Tl = Tf,∂Ω.

The integer m-rectifiable currents Tl, hence, have all fix boundary and equi-bounded
mass (from (10.3), being the hl’s equi-Lipschitz). By the compactness theorem for integral
currents (see [54, Theorem 27.3]), there exists an integral current S which is the weak limit
for a subsequence of the Tl (not relabeled). Clearly, ∂S = liml→∞ ∂Tl = Tf,∂Ω. We claim that
Tf,Ω = S, thus concluding the proof.

To show the claim, notice that, since hl → f in L∞, then supp (S) ⊆ graph(f). So, we need
only to show that the multiplicity of the currents S and Tf,Ω coincide almost everywhere.
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Consider a point x ∈ Ej, for some Ej in (10.2). From the Lipschitz continuity of f and hl, in a
neighborhood U of x, hl and S can be decomposed in the same way as f,

hl|U =

Lj∑
p=1

q
hl,p

y
and S (U×Rn) =

Lj∑
p=1

Sp,

where the hl,p’s are kj,p-valued and the Sp are integer rectifiable m-currents with disjoint
supports. By definition, the density of Tf,Ω in (x, fj,p(x)) is kj,p. On the other hand, since

π]Sp = lim
l
π]Thl,p,U = kj,l JUK and supp (Sp)∩ ({x}×Rn) = (x, fj,p(x)),

it follows that the density of Sp (and hence of S) in (x, fj,p(x)) equals kj,p. Since |Ω \∪jEj| = 0,
this implies S = Tf,Ω.

10.1.2 First order expansion of the mass

Up to now we have defined push-forward under Lipschitz maps. Nevertheless, thanks to the
approximate differentiability property of Sobolev Q-functions, for full dimensional current
R = JΩK, the definition of Tf,Ω in (10.1) makes sense for Sobolev functions as soon as the
action is finite for every differential form ω ∈ Dm(Rm+n). It is easy to verify that this
condition is satisfied if

M(Tf,Ω) =

ˆ
Ω

∑
i

√
det
(
DMf̄i · (DMf̄i)T

)
< +∞.

For such functions, we have the following Taylor expansion of the mass of Tf,Ω.

Lemma 10.6. Let f ∈W1,2(Ω, AQ) such that M (Tf,Ω) < +∞. Then,

M (Tλf,Ω) = Q |Ω| +
λ2

2
Dir(f,Ω) + o

(
λ2
)

as λ→ 0. (10.5)

Proof. For every λ > 0, set Aλ =
{
|Df| 6 λ− 1

2

}
and Bλ =

{
|Df| > λ− 1

2

}
. Since f ∈

W1,2(Ω, AQ), for λ→ 0, we have that

Dir(λ f,Ω) = Dir(λ f,Aλ) + λ2
ˆ
Bλ

|Df|2 = Dir(λ f,Aλ) + o
(
λ2
)

. (10.6)

Using the inequality
√
1+ x2 > 1+ x2

2 − x4

4 for |x| 6 2, since λ |Df| 6
√
λ in Aλ, for λ 6 4 we

infer that

M (Tλf,Ω) >
∑
i

ˆ
Ω

√
1+ λ2 |Dfi|2 > Q |Bλ| +

ˆ
Aλ

(
1+

λ2 |Df|2

2
−Cλ4 |Df|4

)
> Q |Ω| +

λ2

2
Dir(f,Aλ) −

ˆ
Aλ

Cλ3 |Df|2

(10.6)
= Q |Ω| +

λ2

2
Dir(f,Ω) + o

(
λ2
)

. (10.7)
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For what concerns the reversed inequality, we argue as follows. In Aλ, since for every
multi index α with |α| > 2 we have

λ2|α||Mα
fi

|2 6 Cλ2|α||Dfi|
2|α| 6 Cλ3|Dfi|

2,

we use the inequality
√
1+ x2 6 1+ x2

2 and get

M
(
Tλf,Aλ

)
6
∑
i

ˆ
Aλ

√
1+ λ2 |Dfi|2 +Cλ3 |Dfi|2

= Q |Aλ| +
λ2

2
Dir(f,Aλ) + o

(
λ2
)

. (10.8)

In Bλ, instead, we use the same inequality and the condition M(Tf,Ω) < +∞ to infer

M
(
Tλf,Bλ

)
6
∑
i

ˆ
Bλ

√
1+ λ2 |Dfi|2 +

√∑
|α|>2

λ2|α|Mα
fi
2

6 Q |Bλ| +
λ2

2
Dir(f,Bλ) +

∑
i

ˆ
Bλ

λ2
√∑

|α|>2

Mα
fi
2

(10.6)
6 Q |Bλ| + o(λ

2) + λ2M(Tf,Bλ) = Q |Bλ| + o
(
λ2
)

. (10.9)

From (10.7), (10.8) and (10.9), the proof follows.

10.2 complex varieties as minimal currents

In the following we consider irreducible holomorphic varieties V ⊆ Cµ+ν of dimension µ.
Following Federer [20], we associate to V the integer rectifiable current of real dimension
2µ denoted by JV K given by the integration over the manifold part of V , Vreg. Recall that
the singular part Vsing = V \ Vreg is a complex variety of dimension at most (µ− 1). A
well-known result by Federer asserts that JV K is a mass-minimizing cycle.

Theorem 10.7. Let V be an irreducible holomorphic variety. Then, the integer rectifiable current
JV K has locally finite mass and is a locally mass-minimizing cycle, that means ∂ JV K = 0 and
M(JV K) 6 M(S) for every integer current S with ∂S = 0 and supp (S− JV K) compact.

We consider domains Ω ⊆ R2µ ' Cµ with the usual identification (xl,yl) ' zl =

(xl + iyl) for l = 1, . . . ,µ. Moreover, V ⊆ Ω×R2ν ⊆ R2µ+2ν ' Cµ+ν is always supposed
to be a Q : 1-cover of Ω under the orthogonal projection π onto Ω, that is π# JV K = Q JΩK.

Clearly, under this hypothesis, there exists a Q-valued function f : Ω → AQ(R2ν) such
that V = graph(f). From Definition 7.1, we readily deduce Σf ⊆ π(Vsing), which in particular
implies dimH(Σf) 6 2µ− 2. Therefore, locally in Ω \ Σf ×R2ν, V is the superposition of
graphs of holomorphic functions, that is, for every w ∈ Ω \ Σf, there exist a radius r and Q
holomorphic functions fi : Br(w)→ Cν such that f|Br(w) =

∑
i JfiK. The following are the

main properties of f.

Proposition 10.8. Let V ⊆ Ω ×R2ν be a holomorphic variety as above and f the associated
Q-valued function. Then, the following hold:
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(i) f ∈W1,2(Ω, AQ) and, for µ = 1, M(JV K Ω) = Q+
Dir(f,Ω)
2 ;

(ii) JV K Ω = Tf,Ω and ∂(JV K Br(x)) = Tf,∂Br(x) for every x and a.e. r > 0 with Br(x) ⊆ Ω.

Proof. Note that, for every smooth h : R2 → R2ν and, as usual, h̄(w) = (w,h(w)),√
det
(
Dh̄ ·Dh̄T

)
6 1+

|Dh|2

2
, (10.10)

with equality if and only if h is conformal, i.e. |∂xh| = |∂yh| and ∂xh · ∂yh = 0. Indeed,
(10.10) reads as

det
(
Dh̄ ·Dh̄T

)
= det

(
1+ |∂xh| ∂xh · ∂yh
∂xh · ∂yh 1+ |∂yh|

)
6

(
1+

|∂xh|2 + |∂yh|2

2

)2
,

which in turn is equivalent to 0 6
(
|∂xh|2 − |∂yh|2

)2
+ 4(∂xh · ∂yh)2.

In the case µ = 1, applying (10.10) to the local holomorphic, hence conformal, selection of
f, from (10.3) we get

M(JV K (Ω \ Σf)) = Q+
Dir(f,Ω \ Σf)

2
. (10.11)

In the case µ > 1 and g : R2µ → R2ν smooth, (10.10) together with Binet–Cauchy’s formula
(see [18, Section 3.2 Theorem 4]), for every l = 1, · · · ,µ, we infer

det
(
Dḡ ·DḡT

)
= 1+ |Dg|2 +

∑
|α|=|β|>2

Mαβ(Dg)2

> 1+ |∂xlg|
2 + |∂ylg|

2 +

2ν∑
i,j=1

(∂xlg
i∂ylg

j − ∂xlg
j∂ylg

i)2

= det
(
∇lḡ · ∇lḡT

)
, (10.12)

where Mαβ stands for the α,β minors of a matrix and ∇l denotes the derivative with
respect to xl and yl. Hence, if fi is a local holomorphic, consequently conformal, selection
for f : Ω ⊂ R2µ → AQ, we infer that

µQ+
|Df|2

2
=

Q∑
i=1

µ∑
l=1

(
1+

|∇lfi|2

2

)
(10.10)

=

Q∑
i=1

µ∑
l=1

√
det
(
∇lf̄i · ∇lf̄Ti

)
(10.12)

6 µ

Q∑
i=1

√
det
(
Df̄i ·Df̄Ti

)
.

Integrating, we conclude, for µ > 1,

M(JV K (Ω \ Σf)) > Q+
Dir(f,Ω \ Σf)

2µ
. (10.13)

Now since the mass of JV K is finite, by (10.11) and (10.13) the energy of f is finite in Ω \ Σf.
Being dimH(Σf) 6 m− 2, Lemma 10.9 below gives (i).
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Being JV K defined by the integration over Vreg and Hm(π(Vsing)) = 0, it follows straight-
forwardly that Tf,Ω is well-defined by (10.1) and coincides with JV K. For the same reason,
since also Hm−1(π(Vsing)) = 0, ∂(JV K Br(x)) = Tf,∂Br(x) for every Br(x) ⊆ Ω such that
f|∂Br(x) ∈ W1,2 and M(∂(JV K Br(x))) is finite, that is for every x and a.e. r > 0, thus
concluding the proof of (ii).

We say that a function f : Ω ⊂ Rm → AQ(Rn) has a smooth local selection in Ω ′ ⊆ Ω
if, for every x ∈ Ω ′, there exist r > 0 and fi : Br(x) → Rn smooth functions such that
f|Br(x) =

∑Q
i=1 JfiK. Note that, in this case, |Df|2 =

∑
i |Dfi|

2 is well defined on the whole
Ω ′. The following is a simple consequence of the definition.

Lemma 10.9. Let f : Ω ⊂ Rm → AQ have a smooth local selection inΩ ′ ⊆ Ω. If dimH(Ω \Ω ′) 6
m− 2 and

´
Ω ′ |Df|

2 < +∞, then f belongs to W1,2(Ω, AQ).

Proof. The proof follows from the characterization of classical Sobolev functions via the
slice property. Indeed, for every T ∈ AQ, the function x 7→ G(f(x), T) is smooth and satisfies
|D(G(f(·), T))| 6 |Df| in Ω ′. Therefore, since the projection of Ω \Ω ′ on each coordinate
hyperplane is a set of Hm−1 measure zero, for Hm−1-a.e. line parallel to the axes, the
restriction of G(f(·), T) belongs toW1,2. Recalling [18, Section 4.9.2], it follows that G(f(·), T) ∈
W1,2(Ω) with |D(G(f(·), T))| 6 |Df| a.e. in Ω. By Definition 3.1, we, hence, conclude.

10.3 complex varieties as dir-minimizing q-valued functions

We divide the proof of Theorem 10.1 into two parts: in the first one we give an argument for
the planar case which is particularly simple and exploit the equality between the area and
the energy functionals; in the second part we give a proof valid in every dimension.

10.3.1 Planar case µ = 1

In view of Proposition 10.8, we need only to show that f is Dir-minimizing in B1. Choose a
radius r ∈ [1, 2] such that ∂Br ∩Σf = ∅ and set g = f|∂Br . Note that g is Lipschitz continuous.
For every h ∈ Lip(Br, AQ) with h|∂Br = g, from the Taylor expansion of the mass and from
(10.10), we infer that

M(Th,Br) −Q 6
Dir(h,Br)

2
. (10.14)

By Theorem 10.4, ∂Th,Br = Tf,∂Br = ∂(JV K Br). So, using Theorem 10.7 we infer

Dir(f,Br)
(10.11)

= 2 (M(Tf,Br) −Q) 6 2 (M(Th,Br) −Q)
(10.14)

6 Dir(h,Br).

Since the set of Lipschitz functions with trace g is dense in W1,2
g (Br, AQ) (as can be deduce

easily from the Lipschitz approximation in Proposition 3.21), this implies that f is Dir-
minimizing in Br and, a fortiori, in B1.

Remark 10.10. The planar result provides examples of Dir-minimizing functions with singular
set of dimension m− 2 for every m, thus proving the optimality of the regularity Theorem
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7.2. Indeed, if g : B1 ⊆ R2 → AQ is Dir-minimizing and Σg 6= ∅, then f : B1 ×Rm−2 → AQ
with f(x1, x2, . . . , xm) = g(x1, x2) is also Dir-minimizing (see the arguments in Lemma 7.14)
and dimH(Σf) = m− 2.

10.3.2 General case µ > 1

Here we exploit the expansion of the mass given in Lemma 10.6. The reason why this can be
done without the strong approximation theory developed by Almgren in [2] and reproved
with different methods in [13] is that, given as above a complex variety which is the graph
of a multi-valued function, the rescaled current Lλ# JV K = Tλf, where Lλ : Cµ+ν → Cµ+ν is
given by Lλ(x,y) = (x, λy), is also a complex variety (being the Lλ’s linear complex maps),
and, hence, it is also area-minimizing.

The proof is by contradiction. Assume f is not Dir-minimizing in B1. Then, there exists
u ∈W1,2(B1, AQ) and η > 0 such that Dir(u,B1) 6 Dir(f,B1) − η and u|∂B1 = f|∂B1 . Set

w =

u in B1,

f in B2 \B1.

We want to use w in order to construct competitor currents for Lλ# JV K. To this aim,
consider first its Lipschitz approximations wε, for every ε > 0, such that (see Proposition
3.21):

(a) |Eε| = o
(
ε2
)

as ε→ 0, where Eε =
{
wε 6= w

}
;

(b) Lip(wε) 6 ε−1;

(c) ‖|Dwε| − |Dw|‖L2 = o(1) as ε→ 0.

By Proposition 10.8 and Lemma 10.6, for every open A such that Eε ⊆ A and |A| 6 2|Eε|,

M
(
Lλ #

(
JV K (Eε ×R2ν)

))
= M (Tλf,Eε) 6 M (Tλf,A)

(10.5)
= Q |A| +

λ2

2

ˆ
A

|Df|2 + o
(
λ2
)

= o
(
ε2
)
+O

(
λ2
)

.

Using Fubini and again Proposition 10.8, we can find radii rλ,ε such that∣∣Eε ∩ ∂Brλ,ε

∣∣ = o
(
ε2
)

, (10.15)

∂
(
Lλ # JV K Br

)
= Tλf,∂Br and M (Tλf,Eε∩∂Br) = o

(
ε2
)
+O

(
λ2
)

. (10.16)

Set Sλε = Tλf,∂Brλ,ε
− Tλwε,∂Brλ,ε

. Note that, by Theorem 10.4, being wε Lipschitz,

∂Sλε = ∂Tλf,∂Brλ,ε
− ∂Tλwε,∂Brλ,ε

(10.16)
= ∂∂

(
Lλ# JV K Br

)
= 0.
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Moreover, since Lip(λwε) 6 λ ε−1 and Tλf,∂Brλ,ε\Eε
= Tλwε,∂Brλ,ε\Eε

, the mass of Sλε can be
estimated in the following way:

M (Sλε) = M
(
Tλf,Eε∩∂Brλ,ε

)
+ M

(
Tλwε,Eε∩∂Brλ,ε

)
(10.16)

6 o
(
ε2
)
+O

(
λ2
)
+C

λ |Eε|

ε

(10.15)
6 o

(
ε2
)
+O

(
λ2
)
+ o (λ ε) . (10.17)

For ε = λ, M (Sλλ) = O
(
λ2
)

and, by the isoperimetric inequality [54, Theorem 30.1], there
exists an integer current Rλ such that

∂Rλ = Sλλ and M (Rλ) 6 M (Sλλ)
m
m−1 = o

(
λ2
)

. (10.18)

The current Tλ = Tλwλ,Brλ
+ Rλ contradicts now the minimality of the complex current

Lλ #(JV K Brλ). Indeed, it is easy to verify that ∂Tλ = ∂(Lλ # JV K Brλ) and, for small λ,

M (Tλ) − M
(
Lλ # JV K

(
Brλ ×R2ν

))
=Q |Brλ | +

λ2

2
Dir(wλ,Brλ)+

−Q |Brλ | −
λ2

2
Dir(f,Brλ) + o

(
λ2
)

6 −
λ2 η

4
+ o

(
λ2
)
< 0.
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Q - Q U A S I C O N V E X I T Y A N D Q - P O LY C O N V E X I T Y

In this part of the thesis we investigate systematically the semicontinuity properties of func-
tionals defined on Sobolev spaces of Q-valued maps. In particular, we consider functionals
which are expressed as integrals of what we call Q-integrands.

Definition 11.1 (Q-integrands). A measurable map g : (Rn)Q ×
(
Rm×n

)Q → R is a Q-
integrand if, for every π ∈PQ,

g(a1, . . . ,aQ,A1, . . . ,AQ) = g(aπ(1), . . . ,aπ(Q),Aπ(1), . . . ,Aπ(Q)).

When g is a Q-integrand and u : Ω → AQ(Rn) is differentiable at some point x0, the
value

g
(
u(x0),Du(x0)

)
:= g

(
u1(x0), . . . ,uQ(x0),Du1(x0), . . . ,DuQ(x0)

)
is well defined (compare with Remark 1.11). If u =

∑J
j=1

q
wj

y
, with wj : Ω→ Aqj(R

n) and
q1 + · · ·+ qJ = Q, we write also g(w1, . . . ,wJ,Dw1, . . . ,DwJ). Note also that, for vectors
{a1, . . . ,aJ} in Rn, and wj as above, the following expression is well defined,

f
(
a1, . . . ,a1︸ ︷︷ ︸

q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

,Dw1(x0), . . . ,DwJ(x0)
)
.

It turns out that the correct notion to be considered for the semicontinuity of such
functionals is the analog of the quasiconvexity (see Definition 11.8 and Theorem 11.9 below).
Clearly, the semicontinuity result proved by Mattila in [44] is contained in this analysis.

We generalize also the related notion of polyconvexity to the case of Q-valued maps and
prove that any policonvex Q-integrand is quasiconvex. This answer partially to an open
question posed by Mattila in [44].

11.1 equi-integrability

We start collecting several results concerning equi-integrable sequences. Our aim is to prove
Corollary 11.5 which will be used in the proof of Theorem 11.9. Let us first recall some
definitions and introduce some notation. As usual, in the following Ω ⊂ Rm denotes a
bounded Lipschitz set.

Definition 11.2. A sequence (gk) in L1(Ω) is equi-integrable if one of the following equivalent
conditions holds:

(a) for every ε > 0 there exists δ > 0 such that, for every Lm-measurable set E ⊆ Ω with
Lm(E) 6 δ, we have supk

´
E |gk| 6 ε;

(b) the distribution functions ϕk(t) :=
´
{|gk|>t}

|gk| satisfy limt→+∞ supkϕk(t) = 0;

109
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(c) (De la Vallée Poissin’s criterion) if there exists a Borel function ϕ : [0, +∞)→ [0, +∞]

such that

lim
t→+∞ ϕ(t)

t
= +∞ and sup

k

ˆ
Ω
ϕ(|gk|)dx < +∞. (11.1)

Note that, since Ω has finite measure, a equi-integrable sequence is also equi-bounded.
We prove now Chacon’s biting lemma.

Lemma 11.3. Let (gk) be a bounded sequence in L1(Ω). Then, there exist a subsequence (kj) and a
sequence (tj) ⊂ [0, +∞) with tj → +∞ such that (gkj ∨ (−tj) ∧ tj) is equi-integrable.

Proof. Without loss of generality, assume gk > 0 and consider for every j ∈N the functions
h
j
k := gj ∧ j. Since (h

j
k)k is equi-bounded in L∞, up to passing to a subsequence (not

relabeled) there exists the L∞ weak* limit fj of hjk for every j. Clearly the limits fj have the
following properties:

(a) fj 6 fj+1 for every j (since hjk 6 h
j+1
k for every k);

(b)
∥∥fj∥∥L1 = limk

∥∥∥hjk∥∥∥L1 ;
(c) supj

∥∥fj∥∥L1 = supj limk
∥∥∥hjk∥∥∥L1 6 supk ‖gk‖L1 < +∞.

By the Lebesgue monotone convergence theorem, (a) and (c), it follows that (fj) converges in
L1 to a function f. Moreover, from (b), for every j we can find a kj such that |

´
h
j
kj

−
´
fj| 6

j−1.
We claim that hjkj = gkj ∧ j fulfills the conclusion of the lemma (with tj = j). To see this, it

is enough to show that hjkj weakly converges to f in L1, from which the equi-integrability

follows. Let a ∈ L∞ be a test function. Since hlkj 6 h
j
kj

for l 6 j, we have that

ˆ (
‖a‖L∞ − a

)
hlkj 6

ˆ (
‖a‖L∞ − a

)
h
j
kj

. (11.2)

Taking the limit as j goes to infinity in (11.2), we obtain (by (b) and fj
L1→ f)

ˆ (
‖a‖L∞ − a

)
fl 6 ‖a‖L∞

ˆ
f− lim sup

j

ˆ
ah

j
kj

.

From which, passing to the limit in l, we conclude

lim sup
j

ˆ
ah

j
kj

6
ˆ
af. (11.3)

Using −a in place of a, one obtain as well the inequality
ˆ
af 6 lim inf

j

ˆ
ah

j
kj

. (11.4)

(11.3) and (11.4) together concludes the proof of the weak convergence of hjkj to f in L1.
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Next we show that concentration effects for critical Sobolev embedding do not show up if
equi-integrability of functions and gradients is assumed.

Lemma 11.4. Let p ∈ [1,m) and (gk) ⊂ W1,p(Ω) be such that (|gk|
p) and (|∇gk|p) are both

equi-integrable. Then (|gk|
p∗) is equi-integrable as well.

Proof. Since (gk) is bounded in W1,p(Ω), Chebychev’s inequality implies

sup
j

jpLm({|gk| > j}) 6 C < +∞. (11.5)

For every fixed j ∈ N, consider the sequence gjk := gk − (gk ∨ (−j) ∧ j). Then, (g
j
k) ⊂

W1,p(Ω) and ∇gjk = ∇gk in {|gk| > j} and ∇gjk = 0 otherwise. The Sobolev embedding
yields

‖gjk‖
p

Lp
∗
(Ω)

6 c‖gjk‖
p
W1,p(Ω)

6 c

ˆ
{|gk|>j}

(
|gk|

p + |∇gk|p
)
dx. (11.6)

Therefore, the equi-integrability assumptions imply that for every ε > 0 there exists jε ∈N

such that for every j > jε

sup
k

‖gjk‖Lp∗(Ω) 6 ε/2. (11.7)

Let δ > 0 and consider a generic Lm-measurable sets E ⊆ Ω with Lm(E) 6 δ. Then, since
we have

‖gk‖Lp∗(E) 6 ‖gk − g
jε
k ‖Lp∗(E) + ‖gjεk ‖Lp∗(E) 6 jε (Lm(E))1/p

∗
+ ‖gjεk ‖Lp∗(Ω),

by (11.7), to conclude it suffices to choose δ such that jεδ1/p
∗

6 ε/2.

From Lemma 11.3 and Lemma 11.4, we get the following result reminiscent of Lemma 2.3
in [23]. Our proof does not rely on Young measure theory.

Corollary 11.5. Let (vk) ⊂ W1,p(Ω, AQ) be weakly converging to u. Then, there exists a subse-
quence (vkj) and a sequence (uj) ⊂W1,∞(Ω, AQ) such that

(i) Lm({vkj 6= uj}) = o(1) and uj⇀u in W1,p(Ω, AQ);

(ii) (|Duj|
p) is equi-integrable;

(iii) if p ∈ [1,m), (|uj|
p∗) is equi-integrable and, if p = m, (|uj|

q) is equi-integrable for any q > 1.

Proof. Define gk := Mp(|Dvk|) and notice that (gk) ⊂ L1(Ω) is a bounded by the standard
weak (p− p) estimate for maximal functions (see [57] for example). Applying Lemma 11.3
to (gk), we find a subsequence (kj) and a sequence (tj) ⊂ [0, +∞) with tj → +∞ such
that (gkj ∧ tj) is equi-integrable. Let Ωj := {x ∈ Ω : gkj(x) 6 tj} and uj be the Lipschitz

extension of vkj |Ωj with Lipschitz constant c t1/pj (see Proposition 3.21), which satisfies
|Ω \Ωj| = o(t−1j ) and dW1,p(uj, vkj) = o(1).

Clearly, (i) follows from these properties. Furthermore, since by construction we have

|Duj|
p = |Dvkj |

p 6 gkj = gkj ∧ tj on Ωj and |Duj|
p 6 c tj = c(gkj ∧ tj) on Ω \Ωj,
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(ii) is established as well. As for (iii), note that the functions fj := |uj| = G(uj,Q J0K) are
in W1,p(Ω), with |Dfj| 6 |Duj| by the definition of metric space valued Sobolev maps.
Moreover, by (i) fj converge weakly to |u|, since ‖|u| − fj‖Lp 6 ‖G(u,uj)‖Lp . Hence, (|fj|

p)

and (|Dfj|
p) are equi-integrable, which in turn, in case p ∈ [1,m), imply the equi-integrability

of (|uj|
p∗) by Lemma 11.4. In case p = m, the property follows from Hölder inequality and

Sobolev embedding (we leave the simple details to the reader).

Finally, we prove the following averaged version of the equi-integrability which will be
used later in this chapter. Here Cr denotes a cube with parallel to the axes edges with length
r.

Lemma 11.6. Let gk ∈ L1(Ω) with gk > 0 and supk
ffl
Cρk

ϕ(gk) < +∞, where ρk ↓ 0 and ϕ is
superlinear at infinity. Then, it holds

lim
t→+∞

(
sup
k

ρ−m
k

ˆ
{gk>t}

gk

)
= 0 (11.8)

and, for sets Ak ⊆ Cρk such that Lm(Ak) = o(ρ−m
k ),

lim
k→+∞ ρ−m

k

ˆ
Ak

gk = 0. (11.9)

Proof. Using the superlinearity of ϕ, for every ε > 0 there exists R > 0 such that t 6 εϕ(t)

for every t > R, so that

lim sup
t→+∞

(
sup
k

ρ−m
k

ˆ
{gk>t}

gk

)
6 ε sup

k

 
Cρk

ϕ(gk) 6 Cε. (11.10)

Then, (11.8) follows as ε ↓ 0. For what concerns (11.9), we have

ρ−m
k

ˆ
Ak

gk = ρ−m
k

ˆ
Ak∩{gk6t}

gk + ρ−m
k

ˆ
Ak∩{gk>t}

gk

6 tρ−m
k Lm(Ak) + sup

k

ρ−m
k

ˆ
{gk>t}

gk.

By the hypothesis Lm(Ak) = o(ρ−m
k ), taking the limit as k tends to +∞ and then as t tends

to +∞, by (11.8) the right hand side above vanishes.

11.2 q-quasiconvexity and semicontinuity

In this section we characterize all the semicontinuous functionals defined on the space of
Q-valued functions. We start recalling the definition of affine Q-function and introducing
the notion of Q-quasiconvexity.

Definition 11.7 (Affine Q-functions). A map u : Ω → AQ(Rn) is called affine if there are
constants a1, . . . ,aQ ∈ Rn and linear maps L1, . . . ,LQ ∈ Rm×n with the properties that

(i) u(x) =
∑
i Jai + Li · xK;
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(ii) Li = Lj if ai = aj.

Definition 11.8 (Quasiconvex Q-integrands). A locally bounded Q-integrand f : (Rn)Q ×(
Rm×n

)Q → R is quasiconvex if the following holds. Let:

(i) u be any given affine Q-function

u(x) =

J∑
j=1

qj
q
aj + Lj · x

y
,

where ai 6= aj for i 6= j.

(ii) wj ∈W1,∞(C1, Aqj) be any given Lipschitz map withwj|∂C1 = qj
q
aj + Lj|∂C1

y
, where

C1 = [−1/2, 1/2]m is the unit cube.

Then,

f
(
a1, . . . ,a1︸ ︷︷ ︸

q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

,L1, . . . ,L1︸ ︷︷ ︸
q1

, . . . ,LJ, . . . ,LJ︸ ︷︷ ︸
qJ

)
6
ˆ
C1

f
(
a1, . . . ,a1︸ ︷︷ ︸

q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

,Dw1, . . . ,DwJ
)
. (11.11)

The following is the main result of this chapter.

Theorem 11.9. Let Ω ⊂ Rm be a bounded open set, f : Ω× (Rn)Q×
(
Rm×n

)Q → R continuous
and p ∈ [1, +∞[. Assume that:

(In) f(x0, ·, ·) is a quasiconvex Q-integrand for every x0 ∈ Ω;

(Gr) there is a constant C > 0 such that

0 6 f(x0,a,A) 6 C(1+ |a|q + |A|p),

where q = 0 if p > m, q = p∗ if p < m and q > 1 any exponent if p = m.

Then the functional

u 7→ F(u) :=

ˆ
Ω
f(x,u(x),Du(x))dx

is weakly lower semicontinuous in W1,p(Ω, AQ(Rn)).
Conversely, f(x0, ·, ·) is a Q-integrand for every x0 ∈ Ω and F is weakly∗ lower semicontinuous

in W1,∞(Ω, AQ(Rn)), then f(x0, ·, ·) is quasiconvex for every x0 ∈ Ω.

Remark 11.10. Following Mattila, a quadratic integrand is a function of the form

E(u) :=

ˆ
Ω

∑
i

〈ADui,Dui〉,
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where Rn×m 3 M 7→ AM ∈ Rn×m is a linear symmetric map. This integrand is called
Q-semielliptic if

ˆ m

R

∑
i

〈ADfi,Dfi〉 > 0 ∀ f ∈ Lip(Rm, AQ) with compact support. (11.12)

Obviously a Q-semielliptic quadratic integrand is k-semielliptic for every k 6 Q. We now
show that Q-semiellipticity and quasiconvexity coincide. Indeed, consider a linear map
x 7→ L · x and a Lipschitz k-valued function g(x) =

∑k
i=1 Jfi(x) + L · xK, where f =

∑
i JfiK is

compactly supported in C1 and k 6 Q. Recall the notation η ◦ f = k−1
∑
i fi and the chain

rule formulas in [12, Section 1.3.1]. Then,

E(g) = E(f) + k |C1| 〈AL,L〉+ 2
ˆ
C1

∑
i

〈AL,Dfi〉

= E(f) + k |C1| 〈AL,L〉+ 2 k
ˆ
C1

〈AL,D(η ◦ f)〉 = E(f) + k |C1| 〈AL,L〉,

where the last equality follows integrating by parts. This equality obviously implies the
equivalence of Q-semiellipticity and quasiconvexity.

Proof. Sufficiency of quasiconvexity. We prove that, given a sequence (vk) ⊂ W1,p(Ω, AQ)

weakly converging to u ∈W1,p(Ω, AQ) and f as in the statement of Theorem 11.9, then

F(u) 6 lim inf
k→∞ F(vk). (11.13)

Up to extracting a subsequence, we may assume that the inferior limit in (11.13) is actually
a limit (in what follows, for the sake of convenience, subsequences will never be relabeled).
Moreover, using Corollary 11.5, again up to a subsequence, there exists (uk) such that (i)-(iii)
in Corollary 11.5 hold. If we prove

F(u) 6 lim
k→∞ F(uk), (11.14)

then (11.13) follows, since, by the equi-integrability properties (ii) and (iii),

F(uk) =

ˆ
{vk=uk}

f(x, vk,Dvk) +

ˆ
{vk 6=uk}

f(x,uk,Duk)

6 F(vk) +C

ˆ
{vk 6=uk}

(1+ |uk|
q + |Duk|

p) = F(vk) + o(1).

For the sequel, we will fix a function ϕ : [0, +∞) → [0, +∞] superlinear at infinity such
that

sup
k

ˆ
Ω

(
ϕ(|uk|

q) +ϕ(|Duk|
p)
)
dx < +∞. (11.15)

In order to prove (11.14), it suffices to show that there exists a subset of full measure Ω̃ ⊆ Ω
such that for x0 ∈ Ω̃ we have

f(x0,u(x0),Du(x0)) 6
dµ

dLm
(x0), (11.16)
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where µ is the weak∗ limit in the sense of measure of any converging subsequence of(
f(x,uk,Duk)Lm Ω

)
. We choose Ω̃ to be the set of points x0 which satisfy (3.34) in

Lemma 3.27 and, for a fixed subsequence with
(
ϕ(|uk|

q) +ϕ(|Duk|
p)
)
Lm Ω⇀∗ ν, satisfy

dν

dLm
(x0) < +∞. (11.17)

Note that such Ω̃ has full measure by the standard Lebesgue differentiation theory of
measure and Lemma 3.27.

We prove (11.16) by a blow-up argument following Fonseca and Müller [22]. Since in the
space AQ translations make sense only for Q multiplicity points, blow-ups of Q-valued
functions are not well-defined in general. Hence, to carry on this approach, we need first
to decompose the approximating functions uk according to the structure of the first order-
approximation Tx0u of the limit, in such a way to reduce to the case of full multiplicity
tangent planes.

Claim 1. Let x0 ∈ Ω̃ and u(x0) =
∑J
j=1 qj

q
aj

y
, with ai 6= aj for i 6= j. Then, there exist ρk ↓ 0

and (wk) ⊆W1,∞(Cρk(x0), AQ) such that:

(a) wk =
∑J
j=1

r
w
j
k

z
with wjk ∈ W

1,∞(Cρk(x0), Aqj), ‖G(wk,u(x0))‖L∞(Cρk(x0))
= o(1)

and G(wk(x),u(x0))
2 =
∑J
j=1 G(w

j
k(x),qj

q
aj

y
)2 for every x ∈ Cρk(x0);

(b)
ffl
Cρk(x0)

Gp(wk, Tx0u) = o(ρ
p
k);

(c) limk↑+∞ ffl
Cρk(x0)

f
(
x0,u(x0),Dwk

)
= dµ
dLm (x0).

Proof. We choose radii ρk which satisfy the following conditions:

sup
k

 
Cρk(x0)

(
ϕ(|uk|

q) +ϕ(|Duk|
p)
)
< +∞, (11.18)

 
Cρk(x0)

f
(
x,uk,Duk

)
→ dµ

dLm
(x0), (11.19)

 
Cρk(x0)

Gp(uk,u) = o(ρ
p
k) and

 
Cρk(x0)

Gp(uk, Tx0u) = o(ρ
p
k). (11.20)

As for (11.18) and (11.19), since

(ϕ(|uk|
q) +ϕ(|Duk|

p)) Lm Ω⇀∗ ν and f(x,uk,Duk)Lm Ω⇀∗ µ ,

we only need to check that ν(∂Cρk(x0)) = µ(∂Cρk(x0)) = 0 (see for instance Proposition 2.7
of [11]). Fixed such radii, for every k we can choose a term in the sequence (uk) in such a
way that the first half of (11.20) holds (because of the strong convergence of (uk) to u): the
second half is, hence, consequence of (3.34).

Set rk = 2 |Du|(x0) ρk and consider the retraction maps ϑk : AQ → Brk(u(x0)) ⊂ AQ
constructed in [12, Lemma 3.7] (note that for k sufficiently large, these maps are well defined).
The functions wk := ϑk ◦ uk satisfy the conclusions of the claim.
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Indeed, since ϑk takes values in Brk(u(x0)) ⊂ AQ and rk → 0, (a) follows straightforwardly.
As for (b), the choice of rk implies that ϑk ◦ Tx0u = Tx0u on Cρk(x0), because

G(Tx0u(x),u(x0)) 6 |Du(x0)| |x− x0| 6 |Du(x0)| ρk =
rk

2
. (11.21)

Hence, being Lip(ϑk) 6 1, from (11.20) we conclude
 
Cρk(x0)

Gp(wk, Tx0u) =

 
Cρk(x0)

Gp(ϑk ◦ uk, ϑk ◦ Tx0u) 6
 
Cρk(x0)

Gp(uk, Tx0u) = o(ρ
p
k).

To prove (c), set Ak =
{
wk 6= uk

}
= {G(uk,u(x0)) > rk} and note that, by Chebychev’s

inequality, we have

r
p
k Lm(Ak) 6

ˆ
Ak

Gp(uk,u(x0)) 6 2p−1

ˆ
Ak

Gp(uk, Tx0u) + 2p−1

ˆ
Ak

Gp(Tx0u,u(x0))

(11.20), (11.21)
6 o(ρ

m+p
k ) +

r
p
k

2
Lm(Ak),

which in turn implies

Lm(Ak) = o(ρmk ). (11.22)

Using Lemma 11.6, we prove that

lim
k→+∞

( 
Cρk(x0)

f (x0,u(x0),Dwk) −

 
Cρk(x0)

f (x,wk,Dwk)

)
= 0. (11.23)

Indeed, for every t > 0,∣∣∣∣∣
 
Cρk(x0)

f (x0,u(x0),Dwk) −

 
Cρk(x0)

f (x,wk,Dwk)

∣∣∣∣∣
6 ρ−m

k

ˆ
Cρk(x0)∩{|Dwk|>t}

(
f (x0,u(x0),Dwk) + f (x,wk,Dwk)

)
+ ρ−m

k

ˆ
Cρk(x0)∩{|Dwk|<t}

|f (x0,u(x0),Dwk) − f (x,wk,Dwk) |

6 sup
k

C

ρmk

ˆ
Cρk(x0)∩{|Dwk|>t}

(
1+ |wk|

q + |Dwk|
p
)
+ωf,t(ρk + ‖G(wk,u(x0)‖L∞),

(11.24)

where ωf,t is a modulus of continuity for f restricted to the compact set Cρ1(x0) ×
B|u(x0)|+1×Bt ⊂ Ω× (Rn)Q× (Rm+n)Q. To fully justify the last inequality we remark that
we choose the same order of the gradients in both integrands so that the order for u(x0) and
for wk is the one giving the L∞ distance between them. Then, (11.23) follows by passing
to the limit in (11.24) first as k→ +∞ and then as t→ +∞ thanks to (11.8) in Lemma 11.6
applied to 1+ |wk|

q (which is equi-bounded in L∞(Cρk(x0)) and, hence, equi-integrable)
and to |Dwk|

p.
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Thus, in order to show item (c), it suffices to prove

lim
k→+∞

( 
Cρk(x0)

f (x,uk,Duk) −

 
Cρk(x0)

f (x,wk,Dwk)

)
= 0 . (11.25)

By the definition of Ak, we have∣∣∣∣∣
 
Cρk(x0)

f (x,uk,Duk) −

 
Cρk(x0)

f (x,wk,Dwk)

∣∣∣∣∣
6 ρ−m

k

ˆ
Ak

(
f (x,uk,Duk) + f (x,wk,Dwk)

)
6
C

ρmk

ˆ
Ak

(
1+ |wk|

q + |uk|
q + |Dwk|

p + |Duk|
p
)
.

Hence, by the equi-integrability of uk, wk and their gradients, and by (11.22), we can
conclude from (11.9) of Lemma 11.6

Using Claim 1, we can now “blow-up” the functions wk and conclude the proof of (11.16).
More precisely we will show:

Claim 2. For every γ > 0, there exist (zk) ⊂ W1,∞(C1, AQ) such that zk|∂C1 = Tx0u|∂C1 for
every k and

lim sup
k→+∞

ˆ
C1

f
(
x0,u(x0),Dzk

)
6

dµ

dLm
(x0) + γ. (11.26)

Assuming the claim and testing the definition of quasiconvexity of f(x0, ·, ·) through the
zk’s, by (11.26), we get

f
(
x0,u(x0),Du(x0)

)
6 lim sup
k→+∞

ˆ
C1

f
(
x0,u(x0),Dzk

)
6

dµ

dLm
(x0) + γ,

which implies (11.16) by letting γ ↓ 0 and concludes the proof.

Proof of Claim 2. We consider the functions wk of Claim 1 and, since they have full multiplic-
ity at x0, we can blow-up. Let ζk :=

∑J
j=1

r
ζ
j
k

z
with the maps ζjk ∈W

1,∞(C1, Aqj) defined

by ζjk(y) := τ−aj

(
ρ−1
k τaj(w

j
k)(x0 + ρk·)

)
(y). Clearly, a simple change of variables gives

ζ
j
k → qj

q
aj + Lj·

y
in Lp(C1, Aqj) (11.27)

and, by Claim 1 (c),

lim
k→+∞

ˆ
C1

f
(
x0,u(x0),Dζk

)
=

dµ

dLm
(x0). (11.28)

Now, we modify the sequence (ζk) into a new sequence (zk) in order to satisfy the boundary
conditions and (11.26). For every δ > 0, we find r ∈ (1− δ, 1) such that

lim inf
k→+∞

ˆ
∂Cr

|Dζk|
p 6

C

δ
and lim

k→+∞
ˆ
∂Cr

Gp(ζk, Tx0u) = 0. (11.29)
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Indeed, by using Fatou’s lemma, we have

ˆ 1

1−δ
lim inf
k→+∞

ˆ
∂Cs

|Dζk|
pds 6 lim inf

k→+∞
ˆ
C1\C1−δ

|Dζk|
p 6 C,

ˆ 1

1−δ
lim
k→+∞

ˆ
∂Cs

Gp(ζk, Tx0u)ds 6 lim inf
k→+∞

ˆ
C1\C1−δ

Gp(ζk, Tx0u)
(11.27)

= 0,

which together with the mean value theorem gives (11.29). Then we fix ε > 0 such that
r(1+ ε) < 1 and we apply the interpolation result [12, Lemma 2.15] to infer the existence of
a function zk ∈W1,∞(C1, AQ) such that zk|Cr = ζk|Cr , zk|C1\Cr(1+ε) = Tx0u|C1\Cr(1+ε) and

ˆ
Cr(1+ε)\Cr

|Dzk|
p 6 Cε r

(ˆ
∂Cr

|Dζk|
p +

ˆ
∂Cr

|DTx0u|p
)

+
C

ε r

ˆ
∂Cr

Gp(ζk, Tx0u)

6 Cε(1+ δ−1) +
C

ε

ˆ
∂Cr

Gp(ζk, Tx0u). (11.30)

Therefore, by (11.30), we infer
ˆ
C1

f
(
x0,u(x0),Dzk

)
=

ˆ
Cr

f
(
x0,u(x0),Dζk

)
+

+

ˆ
Cr(1+ε)\Cr

f
(
x0,u(x0),Dzk

)
+

ˆ
C1\Cr(1+ε)

f
(
x0,u(x0),Du(x0)

)
6

ˆ
C1

f
(
x0,u(x0),Dζk

)
+

+Cε(1+ δ−1) +
C

ε

ˆ
∂Cr

Gp(ζk, Tx0u) +Cδ.

Choosing δ > 0 and ε > 0 such that Cε(1+ δ−1) +Cδ 6 γ, and taking the superior limit as
k goes to +∞ in the latter inequality, we get (11.26) thanks to (11.28) and (11.29).

11.2.1 Necessity of quasiconvexity

We now prove that, if F is weak∗-W1,∞ lower semicontinuous, then f(x0, ·, ·) isQ-quasiconvex
for every x0 ∈ Ω. Without loss of generality, assume x0 = 0 and fix an affine Q-function
u and functions wj as in Definition 11.8. Set zj(y) :=

∑qj
i=1

q
(wj(y))i − aj − Lj · y

y
, so that

zj|∂C1 = qj J0K, and extend it by C1-periodicity.
We consider vjk(y) =

∑qj
i=1

q
k−1(zj(ky))i + aj + Lj · y

y
and, for every r > 0 such that

Cr ⊆ Ω, we define uk,r(x) =
∑J
j=1 τ(1−r)aj

(
r v
j
k

(
r−1x

))
. Note that:

(a) for every r, uk,r → u in L∞(Cr, AQ) as k→ +∞;

(b) uk,r|∂Cr = u|∂Cr for every k and r;

(c) for every k, uk,r(0) =
∑J
j=1 τaj

(
r/k zj(0)

)
→ u(0) as r→ 0;



11.3 q-polyconvexity 119

(d) for every r, supk ‖|Duk,r|‖L∞(Cr)
< +∞, since

|Duk,r|
2(x) =

J∑
j=1

|Dv
j
k|
2
(
r−1x

)
=

J∑
j=1

qj∑
i=1

∣∣∣Dzji (k r−1x)+ Lj

∣∣∣2 .

From (a) and (d) it follows that, for every r, uk,r⇀
∗ u in W1,∞(Cr(x0), AQ) as k → +∞.

Then, by (b), setting uk,r = u on Ω \Cr, the lower semicontinuity of F implies that

F
(
u,Cr

)
:=

ˆ
Cr

f
(
x,u,Du

)
6 lim inf
k→+∞ F

(
uk,r,Cr

)
. (11.31)

By the definition of uk,r, changing the variables in (11.31), we get
ˆ
C1

f
(
ry,a1 + r L1 · y︸ ︷︷ ︸

q1

, . . . ,aJ + r LJ · y︸ ︷︷ ︸
qJ

,L1, . . . ,LJ
)
dy

6 lim inf
k→∞

ˆ
C1

f
(
ry, τ(1−r)a1(r v

1
k(y)), . . . , τ(1−r)aJ(r v

J
k(y)),Dv

1
k(y), . . . ,Dv

J
k(y)

)
dy.

(11.32)

Noting that τ(1−r)aj(r v
j
k(y)) → qj

q
aj

y
in L∞(C1, Aqj) as r tends to 0 and Dv

j
k(y) =

τLj(Dz
j(ky)), (11.32) leads to

f
(
0,a1, . . . ,a1︸ ︷︷ ︸

q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

,L1, . . . ,LJ
)

6 lim inf
k→∞

ˆ
C1

f
(
0,a1, . . . ,a1︸ ︷︷ ︸

q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

, τL1(Dz
1(ky)), . . . , τLJ(Dz

J(ky))
)
dy.

(11.33)

Using the periodicity of zj, the integral on the right hand side of (11.33) equals
ˆ
C1

f
(
x0,a1, . . . ,a1︸ ︷︷ ︸

q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

, τL1(Dz
1(y)), . . . , τLJ(Dz

J(y))
)
dy.

Since τLj(Dz
j) = Dwj, we conclude (11.11).

11.3 q-polyconvexity

Definition 11.8, although it gives the right condition for semicontinuity, is difficult to verify
in practice. For this reason, in order to provide explicit examples of semicontinuous Q-
functional, we introduce the following generalization of the standard notion of policonvexity.
First we fix the following notation. If A ∈ Rn×m and k 6 min{m,n} =: N, then

(a) α = (α1, . . . ,αk), β = (β1, . . . ,βk) are multi-indices of order k, i.e.

1 6 α1 < α2 < . . . < αk 6 n 1 6 β1 < β2 < . . . < βk 6 m .
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(b) |α| = |β| := k;

(c)

Mαβ(A) := det


Aα1β1 . . . Aα1βk
...

. . .
...

Aαkβ1 . . . Aαkβk

 ;

(d) if τ(n,m) =
∑N
k=1

(
m
k

)(
n
k

)
, M : Rn×m → Rτ(m,n) is the map

M(A) :=
(
A, adj2A, . . . , adjNA

)
,

where adjkA, k ∈ {2, . . . ,N}, stands for the matrix of all the k× k minors of the n×m
matrix A. The scalar product in Rτ(m,n) is indicated by 〈·, ·〉.

Definition 11.11. A map P : Rn×m → R is polyaffine if there are constants c0, clαβ (for
l ∈ {1, . . . ,N} and α,β multi-indices) such that

P(A) = c0 +

N∑
l=1

∑
|α|=|β|=l

clαβMαβ(A). (11.34)

Equivalently, there is some ζ ∈ Rτ(m,n) such that (11.34) rewrites as

P(A) = c0 + 〈ζ,M(A)〉. (11.35)

Definition 11.12 (Polyconvex Q-integrands). A Q-integrand f : (Rn)Q ×
(
Rn×m

)Q → R is

polyconvex if there exists a map g : (Rn)Q ×
(
Rτ(m,n)

)Q → R such that:

(i) the function g(a1, . . . ,aQ, ·) :
(
Rτ(m,n)

)Q → R is convex for every a1, . . . ,aQ ∈ Rn,

(ii) for every a1, . . . ,aQ ∈ Rn and (L1, . . . ,LQ) ∈ (Rn×m)Q it holds

f
(
a1, . . . ,aQ,L1, . . . ,LQ

)
= g

(
a1, . . . ,aQ,M(L1), . . . ,M(LQ)

)
. (11.36)

The important fact about Q-policonvexity is that it implies Q-quasiconvexity.

Theorem 11.13. Every locally bounded polyconvex Q-integrand f is quasiconvex.

In order to prove Theorem 11.13 we represent polyconvex functions as supremum of a
family of polyaffine functions retaining some symmetries from the invariance of f under the
action of PQ.

Proposition 11.14. Let f be a Q-integrand, then the following are equivalent:

(i) f is a polyconvex Q-integrand,
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(ii) for every choice of vectors a1, . . . ,aQ ∈ Rn and matrices A1, . . . AQ ∈ Rn×m, with Ai = Aj
if ai = aj, there exist polyaffine functions Pj : Rn×m → R, with Pi = Pj if ai = aj, such
that

f
(
a1, . . . ,aQ,A1, . . . ,AQ

)
=

Q∑
j=1

Pj(Aj), (11.37)

and

f
(
a1, . . . ,aQ,L1, . . . ,LQ

)
>

Q∑
j=1

Pj(Lj) for every L1, . . . ,LQ ∈ Rn×m. (11.38)

Proof. (i)⇒(ii). Let g be a function representing f according to Definition 11.12. Convexity
of the subdifferential of g(a1, . . . ,aQ, ·), condition (11.36) and the invariance of f under the
action of permutations yield that there exists ζ ∈ ∂g

(
a1, . . . ,aQ,M(A1), . . . ,M(AQ)

)
, with

ζi = ζj if ai = aj, such that for every X ∈ (Rτ(m,n))Q we have

g(a1, . . . ,aQ,X1, . . . ,XQ) > g
(
a1, . . . ,aQ,M(A1), . . . ,M(AQ)

)
+

Q∑
j=1

〈ζj,Xj −M(Aj)〉.

(11.39)

Hence, the maps Pj : Rn×m → R given by

Pj(L) := Q−1g
(
a1, . . . ,aQ,M(A1), . . . ,M(AQ)

)
+ 〈ζj,M(L) −M(Aj)〉 (11.40)

are polyaffine and such that (11.37) and (11.38) follow.
(ii)⇒(i). By (11.37) and (11.38), there exists ζj, satisfying ζi = ζj if ai = aj, such that

f
(
a1, . . . ,aQ,L1, . . . ,LQ

)
> f
(
a1, . . . ,aQ,A1, . . . ,AQ

)
+

Q∑
j=1

〈ζj,M(Lj) −M(Aj)〉. (11.41)

Then setting,

g
(
a1, . . . ,aQ,X1, . . . ,XQ

)
:= sup

{
f
(
a1, . . . ,aQ,A1, . . . ,AQ

)
+

Q∑
j=1

〈ζj,Xj −M(Aj)〉
}

,

(11.42)

where the supremum is taken over allA1, . . . ,AQ ∈ Rn×m withAi = Aj if ai = aj, it follows
clearly that g

(
a1, . . . ,aQ, ·

)
is a convex function and (11.36) holds thanks to (11.41). In turn,

these remarks and the equality co
(
(M(Rn×m))Q

)
= (Rτ(m,n))Q imply that g

(
a1, . . . ,aQ, ·

)
is everywhere finite.

We are now ready for the proof of Theorem 11.13.
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Proof of Theorem 11.13. Assume that f is a polyconvex Q-integrand and consider aj,Lj and
wj as in Definition 11.8. Corresponding to this choice, by Proposition 11.14, there exit
polyaffine functions Pj satisfying (11.37) and (11.38), which now read as

f
(
a1, . . . ,a1︸ ︷︷ ︸

q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

,L1, . . . ,L1︸ ︷︷ ︸
q1

, . . . LJ, . . . ,LJ︸ ︷︷ ︸
qJ

)
=

J∑
j=1

qjPj(Lj) (11.43)

and, for every B1, . . . ,BQ ∈ Rm×n,

f(a1, . . . ,a1︸ ︷︷ ︸
q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

,B1, . . . ,BQ) >
J∑
j=1


∑
l6j ql∑

i=
∑
l<j ql+1

Pj(Bi)

 . (11.44)

To prove the theorem it is enough to show that

J∑
j=1

qj Pj(Lj) =

ˆ
C1

J∑
j=1

qj∑
i=1

Pj(Dw
j
i). (11.45)

Indeed, then the quasiconvexity of f follows easily from

f
(
a1, . . . ,a1︸ ︷︷ ︸

q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

,L1, . . . ,L1︸ ︷︷ ︸
q1

, . . . LJ, . . . ,LJ︸ ︷︷ ︸
qJ

) (11.37)
=

J∑
j=1

qj Pj(Lj)

(11.45)
=

ˆ
C1

J∑
j=1

qj∑
i=1

Pj(Dw
j
i)

(11.38)
6

ˆ
C1

f
(
a1, . . . ,a1︸ ︷︷ ︸

q1

, . . . ,aJ, . . . ,aJ︸ ︷︷ ︸
qJ

,Dw1, . . . ,DwJ
)
.

To prove (11.45), consider the current Twj,C1 associated to the graph of the qj-valued
map wj. It is easy to verify from the definition that the current associated to the graph of a
LipschitzQ-valued function u acts on formsω(x,y) =

∑N
l=1

∑
|α|=|β|=lω

l
αβ(x,y)dxᾱ∧dyβ

in the following way:

〈Tu,Ω,ω〉 =

ˆ
Ω

Q∑
i=1

N∑
l=1

∑
|α|=|β|=l

σαω
l
αβ

(
x,ui(x)

)
Mαβ

(
Dui(x)

)
dx. (11.46)

Hence, by (11.46), for the exact, constant coefficient m-form

dωj = c
j
0 dx+

N∑
l=1

∑
|α|=|β|=l

σα c
j,l
αβ dxᾱ ∧ dyβ,

it holds

ˆ
C1

qj∑
i=1

Pj(Dw
j
i) = 〈Twj,C1 ,dω

j〉, (11.47)

where Pj(A) = c
j
0 +
∑N
l=1

∑
|α|=|β|=l c

j,l
αβMαβ(A).
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Since u|∂C1 = w|∂C1 , from Theorem 10.4 it follows that ∂Tw,C1 = ∂Tu,C1 . Then, (11.45) is
an easy consequence of (11.47): for uj(x) = qj

q
aj + Lj · x

y
, one has, indeed,

J∑
j=1

qj Pj(Lj) =

ˆ
C1

J∑
j=1

qj∑
i=1

Pj(Du
j
i) =

J∑
j=1

〈Tuj,C1 ,dω
j〉 =

J∑
j=1

〈∂Tuj,C1 ,ω
j〉

=

J∑
j=1

〈∂Twj,C1 ,ω
j〉 =

J∑
j=1

〈Twj,C1 ,dω
j〉 =

ˆ
C1

J∑
j=1

qj∑
i=1

Pj(Dw
j
i).

This finishes the proof.

Explicit examples of polyconvex functions are collected below (the elementary proof is
left to the reader).

Proposition 11.15. The following class of functions are polyconvex Q-integrands:

(a) f(a1, . . . ,aQ,L1, . . . ,LQ) := g
(
G(L,Q J0K)

)
with g : R → R convex and increasing;

(b) f(a1, . . . ,aQ,L1, . . . ,LQ) :=
∑Q
i,j=1 g(Li − Lj) with g : Rn×m → R convex;

(c) f(a1, . . . ,aQ,L1, . . . ,LQ) :=
∑Q
i=1 g(ai,Li) with g : Rm ×Rn×m → R measurable and

polyconvex.

Remark 11.16. Consider as in Remark 11.10 a linear symmetric map Rn×m 3M 7→ AM ∈
Rn×m. As it is well-known, for classical single valued functions, the functional

´
〈ADf,Df〉

is quasiconvex if and only if it is rank-1 convex. If min{m,n} 6 2, quasiconvexity is equivalent
to polyconvexity as well (see [60]). Hence, in this case, by Theorem 11.13, every 1-semielliptic
integrand is quasiconvex and therefore Q-semielliptic.

We stress that for min{m,n} > 3 there exist 1-semielliptic integrands which are not
polyconvex (see always [60]).
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In this and in the next chapter, we give a new proof of the approximation of minimal
current provided in Almgren’s big regularity paper. In particular here we prove the higher
integrability estimate which is the new, main ingredient in this new proof. Its proof depends
heavily on the higher integrability of Dir-minimizing functions proved in Chapter 9.

In order to do that, we develop a standard Lipschitz approximation technique based on
a modification of the by now well-known Jerrard–Soner’s BV estimate, and prove a first
weaker approximation result where the errors are infinitesimal with the Excess.

12.1 higher integrability estimate

The principal quantities which are involved in this estimate are the excess and the density
excess. In what follows, we consider integer rectifiable m-currents T supported in some open
cylinder Cr(y) = Br(y)×Rn ⊂ Rm ×Rn and satisfying the following assumption:

π#T = Q JBr(y)K and ∂T = 0, (H)

where π : Rm ×Rn → Rm is the orthogonal projection and m,n,Q are fixed positive
integers. For such currents, we denote by eT the excess measure and by Ex(T , Cr(y)) the
cylindrical excess, respectively defined by

eT (A) := M
(
T (A×Rn)

)
−Q |A| for every Borel A ⊂ Br(y),

Ex(T , Cr(y)) :=
eT (Bs(x))

|Bs(x)|
=
eT (Bs(x))

ωmsm
.

We denote, moreover, by dT the density of the excess measure eT and we call it the excess
density,

dT (x) := lim sup
s→0

eT (Bs(x))

ωm sm
.

The higher integrability estimate can be then formulated as follows.

Theorem 12.1. There exist constants p > 1 and C, ε > 0 such that, for every mass-minimizing,
integer rectifiable m-current T satisfying (H) and E = Ex(T , C4) < ε0, it holds

ˆ
{d61}∩B2

dp 6 CEp. (12.1)

In the case Q = 1, we know a posteriori that T coincides with the graph of a C1,α function
over B2 (see [10], for instance). However, for Q > 2 this conclusion does not hold and
Theorem 12.1 has, therefore, an independent interest.

We pass now to the proof of Theorem 12.1 which is carried over the next sections.

127
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12.2 lipschitz approximation of currents

Given a normal m-current T , following [5] we can view the slice map x 7→ 〈T ,π, x〉 as a BV
function taking values in the space of 0-dimensional currents (endowed with the flat metric).
Indeed, by a key estimate of Jerrard and Soner (see [5] and [38]), the total variation of the
slice map is controlled by the mass of T and ∂T .

Combining this point of view with the metric theory of Q-valued functions and a standard
truncation arguments, we develop a powerful and simple Lipschitz approximation technique,
which gives a systematic tool to find graphical approximations of integer rectifiable currents.
For this purpose we introduce the maximal function of the excess measure of a current T
satisfying (H):

MT (x) := sup
Bs(x)⊂Br(y)

eT (Bs(x))

ωm sm
= sup
Bs(x)⊂Br(y)

Ex(T , Cs(x)).

Our main approximation result is the following and relies on an improvement of the usual
Jerrard–Soner estimate.

Proposition 12.2 (Lipschitz approximation). There exist constants c,C > 0 with the following
property. Let T be an integer rectifiable m-current in C4s(x) satisfying (H) and, set K :=

{
MT <

η
}
∩B3s(x), for η ∈ (0, c). Then, there exists u ∈ Lip(B3s(x), AQ(Rn)) such that graph(u|K) =

T (K×Rn), Lip(u) 6 Cη
1
2 and

|B3s(x) \K| 6
C

η
eT
(
{MT > η/2}

)
. (12.2)

In order to prove this proposition, we show first a modified BV estimate for the slice of
integer currents.

12.2.1 The modified Jerrard-Soner estimate

For the sake of brevity, we do not introduce the machinery of metric space valued BV
functions, developed by Ambrosio in [3], which nevertheless remains the most elegant
framework for this theory – cp. to [5]. We adopt the definitions and the standard notation
due to Federer, see [19] and [54]. An integer rectifiable 0-current S in Rn with finite mass is
simply a finite sum of Dirac’s deltas: S =

∑h
i=1 σi δxi , where h ∈N, σi ∈ {−1, 1} for every i

and the xi’s are (not necessarily distinct) points in Rn. The space of such measures, denoted
by I0(R

n), is a Banach space when endowed with the flat norm

F(S) := sup
{
〈S,ψ〉 : ψ ∈ C1(Rn), ‖ψ‖∞ , ‖Dψ‖∞ 6 1

}
,

where 〈S,ψ〉 =
∑
i σiψ(xi). Note that F(δx, δy) = |x− y| if |x− y| 6 1.

Let T be an integer rectifiable m-dimensional normal current on C4. The slicing map
x 7→ 〈T ,π, x〉 takes values in I0(R

m+n) and is characterized by (see Section 28 of [54])
ˆ
B4

〈
〈T ,π, x〉 ,φ(x, ·)

〉
dx = 〈T ,φdx〉 for every φ ∈ C∞c (C4).
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Note that, in particular, supp (〈T ,π, x〉) ⊆ π−1({x}). Moreover, (H) implies that, if we write
〈T ,π, x〉 =

∑
i σiδ(x,yi), then

∑
i σi = Q.

Our estimates concerns the push-forwards of the slices 〈T ,π, x〉 into the vertical direction,

Tx := q]

(
〈T ,π, x〉

)
∈ I0(R

n), (12.3)

where q : Rm+n → Rn is the orthogonal projection on the last n components. Tx is
characterized through the identity

ˆ
B4

〈Tx,ψ〉ϕ(x)dx = 〈T ,ϕ(x)ψ(y)dx〉 for every ϕ ∈ C∞c (B4), ψ ∈ C∞c (Rn).

Proposition 12.3 (Modified BV estimate). Let T be an integer rectifiable current in C4 with
∂T = 0 and satisfying (H). For every ψ ∈ C∞c (Rn), set Φψ(x) := 〈Tx,ψ〉. If ‖ψ‖∞ , ‖Dψ‖∞ 6 1,
then Φψ ∈ BV(B4) and satisfies(

|DΦψ|(A)
)2

6 2 eT (A) M (T (A×Rn)) for every Borel A ⊂ B4. (12.4)

Note that (12.4) is a refined version of the usual Jerrard-Soner estimate, where the right
hand side would rather be M (T (A×Rn))2 (cp. to [5]). Note also that assumption (H) can
be dropped if in (12.4) eT is replaced by its total variation.

Proof. It is enough to prove (12.4) for every open set A ⊆ B4. To this aim, recall that

|DΦψ|(A) = sup
{ˆ
A
Φψ(x) divϕ(x)dx : ϕ ∈ C∞c (A, Rm), ‖ϕ‖∞ 6 1

}
. (12.5)

For any vector field ϕ as in (12.5), (divϕ(x))dx = dα, where

α =
∑
j

ϕj dx̂
j and dx̂j = (−1)j−1dx1 ∧ · · ·∧ dxj−1 ∧ dxj+1 ∧ · · ·∧ dxm.

Moreover, by the characterization of the slice map, we have
ˆ
A
Φψ(x) divϕ(x)dx =

ˆ
B4

〈Tx,ψ(y)〉divϕ(x)dx = 〈T ,ψ(y) divϕ(x)dx〉

= 〈T ,ψdα〉 = 〈T ,d(ψα)〉− 〈T ,dψ∧α〉 = − 〈T ,dψ∧α〉 , (12.6)

where in the last equality we used the hypothesis ∂T C4 = ∅.
Observe that the m-form dψ∧α has no dx component, since

dψ∧α =

m∑
j=1

n∑
i=1

(−1)j−1
∂ψ

dyi
(y)ϕj(x)dy

i ∧ dx̂j.

Let ~e be the m-vector orienting Rm and write ~T = (~T ·~e)~e+ ~S (see Section 25 of [54] for the
scalar product on m-vectors). We then conclude that 〈T ,dψ∧α〉 = 〈~S · ‖T‖ ,dψ∧α〉 and

ˆ
A×Rn

|~S|2 d ‖T‖ =

ˆ
A×Rn

(
1−

(
~T ·~e

)2)
d ‖T‖ 6 2

ˆ
A×Rn

(
1−

(
~T ·~e

))
d ‖T‖ = 2 eT (A).
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Since |dψ∧α| 6 ‖Dψ‖∞ ‖ϕ‖∞ 6 1, Cauchy–Schwartz yields
ˆ
A
Φψ(x) divϕ(x)dx 6 | 〈T ,dψ∧α〉 | = |〈~S · ‖T‖ ,dψ∧α〉| 6 |dψ∧α|

ˆ
A×Rn

|~S|d ‖T‖

6

(ˆ
A×Rn

|~S|2 d ‖T‖
) 1
2 √

M(T (A×Rn))

6
√
2
√
eT (A)

√
M(T (A×Rn)).

Taking the supremum over all such ϕ’s, we conclude estimate (12.4).

12.2.2 The Lipschitz approximation technique

We are now ready for the proof of Proposition 12.2. Before, we recall the following notation.
For a vector measure ν in B4r, |ν| denotes its total variation and M(ν) its local maximal
function:

M(ν)(x) := sup
0<s<4r−|x|

|ν|(Bs(x))

ωm sm
.

We recall moreover the following proposition (see for instance Section 6.6.2 of [18], up to the
necessary elementary modifications), a fundamental ingredient in the proof of Proposition
12.2.

Proposition 12.4. There is a dimensional constant C with the following property. If ν is a vector
measure in B4r, θ ∈]0,∞[ and Jθ := {x ∈ B3r : M(ν) 6 θ}, then

|Jθ| 6
C

θ
|ν|(B4r). (12.7)

If in addition ν = Df for some f ∈ BV(B4r), then

|f(x) − f(y)| 6 Cθ |x− y| for a.e. x,y ∈ Jθ. (12.8)

Proof of Proposition 12.2. Since the statement is invariant under translations and dilations,
without loss of generality we assume x = 0 and s = 1. Consider the slices Tx ∈ I0(R

n) of T
(as defined in (12.3)). Recall that M(T A×Rn) =

´
AM(Tx) for every open set A (cp. to [54,

Lemma 28.5]). Therefore,

M(Tx) 6 lim
r→0

M(T Cr(x))

ωm rm
6 MT (x) +Q for almost every x.

Without loss of generality, we can assume c < 1. Hence, for almost every point in K,
being η < 1, we have that M(Tx) < Q + 1. On the other hand, M(Tx) > Q for every x,
because π]T = Q JB4K. Thus, Tx is the sum of Q positive Dirac’s delta for every x ∈ K,
that is, Tx =

∑
i δgi(x) for some measurable functions gi. We set g :=

∑
i JgiK, so that

g : K→ AQ(Rn).
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For every ψ ∈ C∞c (Rn), by Proposition 12.3 we deduce that

M(|DΦψ|)(x)2 = sup
0<r64−|x|

(
|DΦψ|(Br(x))

|Br|

)2
6 sup
0<r64−|x|

2eT (Br(x)) M(T , Cr(x))
|Br|2

6 sup
0<r64−|x|

2eT (Br(x))
(
eT (Br(x)) +Q |Br|

)
|Br|2

6 2MT (x)2 + 2QMT (x) 6 CMT (x).

Hence, by Proposition 12.4, this implies the existence of a constant C > 0 such that

|Φψ(x) −Φψ(y)| =

∣∣∣∣∣∑
i

ψ(gi(x)) −
∑
i

ψ(gi(y))

∣∣∣∣∣ 6 Cη
1
2 |x− y| for a.e. x,y ∈ K.

Taking the supremum over all the ψ ∈ C∞c (Rn) with ‖ψ‖∞ , ‖Dψ‖∞ 6 1, we deduce that

F(g(x) − g(y)) 6 Cη1/2 |x− y|. (12.9)

It is well-known that there is a constant C such that G(T1, T2) 6 CF(T1 − T2), for every
T1, T2 ∈ AQ(Rn) ⊂ I0(R

n), if F(T1 − T2) is small enough. Therefore, from (12.9), since
η < c and s = 1, for c small enough, we infer that g can be viewed as a Lipschitz map
to (AQ(Rn), G). Recalling Theorem 1.7, we can extend g to a map u : B3 → (AQ(Rn), G)

with constant Cη1/2. Clearly, u(x) = Tx for almost every point x ∈ K, which implies
graph(u|K) = T (K×Rn). Finally, (12.2) follows directly from Proposition 12.4.

Remark 12.5. In what follows, we will always choose η = Ex(T , C4s(x))2α, for some α ∈
(0, (2m)−1). The map u given by Proposition 12.2 will then be called the Eα-Lipschitz (or
briefly the Lipschitz) approximation of T in C3s(x). Note that, if x /∈ K, then there exists rx
such that, for E = Ex(T , C4s(x)),

E2α 6
eT (Brx(x))

ωm rmx
6 E

(4 s)m

rmx
.

This implies that rx 6 4 s E
1−2α
m . Hence, following the proof of Proposition 12.4, one deduces

that the Lipschitz approximation u satisfies the following estimates:

Lip(u) 6 CEα, |Br(x) \K| 6 CE−2α eT

(
{MT > E

2α/2}∩B
r+4sE

1−2α
m

(x)
)

,ˆ
Br(x)\K

|Du|2 6 eT
(
{MT > E

2α/2}∩B
r+4sE

1−2α
m

(x)
)

.
(12.10)

12.2.3 Taylor expansion of the area of Lipschitz multi graph

We conclude this section with the following technical result on the Taylor expansion of the
area functional for Lipschitz Q-valued maps.

Proposition 12.6. There is a constant C > 1 such that, for every g ∈ Lip(Ω, AQ(Rn)) with
Lip(g) 6 1 and for every Borel set A ⊂ Ω, it holds

1−C−1Lip(g)2

2

ˆ
A

|Dg|2 6 egraph(g)(A) 6
1+C Lip(g)2

2

ˆ
A

|Dg|2. (12.11)
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Proof. Note that det(Df̄i ·Df̄Ti )2 = 1 + |Dfi|
2 +
∑

|α|>2(M
α
i )2, where α is a multi-index

and Mα
i the corresponding minor of order |α| of Dfi. Since

√
1+ x2 6 1+ x2

2 and Mα
fi

6

C |Df||α| 6 C |Df|2 Lip(f)|α|−2 6 C |Df|2 when |α| > 2, we conclude

M (graph(f|A)) =
∑
i

ˆ
A

(
1+ |Dfi|

2 +
∑

|α|>2

(Mα
fi

)2
) 1
2

6 Q |A| +

ˆ
A

(
1
2 |Df|

2 +C |Df|4
)

6 Q |A| + 1
2

(
1+CLip(f)2

) ´
A |Df|2.

On the other hand, exploiting the lower bound 1+ x2

2 − x4

4 6
√
1+ x2,

M (graph(f|A)) >
∑
i

ˆ
A

√
1+ |Dfi|2 >

∑
i

ˆ
A

(
1+ 1

2 |Dfi|
2 − 1

4 |Dfi|
4
)

>
∑
i

ˆ
A

(
1+ 1

2 |Dfi|
2 − 1

4 Lip(f)2|Dfi|
2

)
= Q |A| + 1

2

(
1− 1

4Lip(f)2
) ´
A |Df|2.

This concludes the proof.

12.3 harmonic approximation

The second step in the proof of Theorem 12.1 is a suitable compactness argument which
shows that, when T is mass minimizing, the approximation f is close to a Dir-minimizing
function w, with an o(E) error.

Theorem 12.7 (o(E)-improvement). Let α ∈ (0, (2m)−1). For every η > 0, there exists ε1 =

ε1(η) > 0 with the following property. Let T be a rectifiable, area-minimizing m-current in C4s(x)

satisfying (H). If Ex(T , C4s(x)) 6 ε1 and f is the Eα-Lipschitz approximation of T in C3s(x), then
ˆ
B2s(x)\K

|Df|2 6 η eT (B4s(x)), (12.12)

and there exists a Dir-minimizing w ∈W1,2(B2s(x), AQ(Rn)) such that
ˆ
B2s(x)

G(f,w)2 +

ˆ
B2s(x)

(
|Df| − |Dw|

)2
6 η eT (B4s(x)). (12.13)

This theorem is the multi-valued analog of De Giorgi’s harmonic approximation, which
is ultimately the heart of all the regularity theories for minimal surfaces. Our compactness
argument is, to our knowledge, new (even for n = 1) and particularly robust. Indeed, we
expect it to be useful in more general situations.

Proof. Both the arguments for the proof of (12.12) and (12.13) are by contradiction and builds
upon the construction of a suitable comparison current. We divide the proof into different
steps.
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Proof of (12.12). Without loss of generality, assume x = 0 and s = 1. Arguing by contradic-
tion, there exist a constant c1, a sequence of currents (Tl)l∈N and corresponding Lipschitz
approximations (fl)l∈N such that

El := Ex(Tl, C4)→ 0 and
ˆ
B2\Kl

|Dfl|
2 > c1 El.

Set Hl :=
{
MTl 6 E2αl /2

}
⊂ B3. Since Tl and graph(fl) coincide over Kl, the Taylor expan-

sion (12.11) gives
´
Kl\Hl

|Dfl|
2 6 C eTl(Kl \Hl). Together with (12.10), this leads to

c1 El 6
ˆ
B2\Hl

|Dfl|
2 6 C eTl(Bs \Hl), ∀ s ∈

[
5

2
, 3
]

,

which in turn, for 2 c2 = c1/C, implies

eTl(Hl ∩Bs) 6 eTl(Bs) − 2 c2 El. (12.14)

Since Lip(fl) 6 CEαl → 0, the Taylor expansion and (12.14) give, for l big enough,

ˆ
Hl∩Bs

|Dfl|
2

2
6 eTl(Hl ∩Bs) 6 eTl(Bs) − c2 El, ∀ s ∈

[
5

2
, 3
]

. (12.15)

Our aim is to show that (12.15) contradicts the minimality of Tl. To this extent, we construct
a competitor current in different steps.

Step 1: splitting. Consider the maps gl := fl/
√
El. Since suplDir(gl,B3) < ∞ and |B3 \

Hl|→ 0, we can find maps ζj and ωl =
∑J
j=1Jτylj ◦ ζjK as in Lemma 5.9 such that

(a1) βl :=
´
B3

G(gl,ωl)2 → 0;

(b1) lim infl(Dir(gl,Ω∩Hl) − Dir(ωl,Ω)) > 0 for every Ω ⊂ B3.

Let ω :=
∑
j

q
ζj

y
and note that |Dωl| = |Dω|.

Step 2: choice of a suitable radius. From the estimates in (12.10), one gets

M
(
Tl − graph(fl), C3

)
= M

(
Tl, (B3 \Kl)×Rn

)
+ M

(
graph(fl), (B3 \Kl)×Rn

)
6 Q |B3 \Kl| + El +Q |B3 \Kl| +C |B3 \Kl| Lip(fl)

6 El +CE1−2αl 6 CE1−2αl . (12.16)

With a slight abuse of notation, we write (Tl − graph(fl)) ∂Cr for 〈Tl − graph(fl),ϕ, r〉,
where ϕ(z,y) = |z| and introduce the real valued function ψl given by

ψl(r) := E2α−1
l M

(
(Tl− graph(fl)) ∂Cr

)
+ Dir(gl,∂Br)+ Dir(ω,∂Br)+β−1

l

ˆ
∂Br

G(gl,ωl)2.

From (a1), (b1) and (12.16), lim infl
´ 3
2 ψl(r)dr <∞. By Fatou’s Lemma, there is r ∈

(
5
2 , 3
)

and a subsequence, not relabeled, such that limlψl(r) <∞. Hence, it follows that:

(a2)
´
∂Br

G(gl,ωl)2 → 0,
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(b2) Dir(ωl,∂Br) + Dir(gl,∂Br) 6 M for some M <∞,

(c2) M
(
(Tl − graph(fl)) ∂Br

)
6 CE1−2αl .

Step 3: Lipschitz approximation of ωl. We now apply Lemma 3.21 to the ζj’s and find
Lipschitz maps ζ̄j with the following requirements:

(i) Dir(ζ̄j,Br) 6 Dir(ζj,Br) + c2/(2Q),

(ii) Dir(ζ̄j,∂Br) 6 Dir(ζj,∂Br) + 1/Q,

(iii)
´
∂Br

G(ζ̄j,ω)2 6 c22/(2
6CQ (M + 1)), where C is the constant in the interpolation

Lemma 3.19.

The function $l :=
∑

Jτyli ◦ ζ̄iK is, then, a Lipschitz approximation of ωl which, for (i)-(iii),
(b1), (b2) and (12.15), satisfies, for l big enough,

(a3) Dir($l,Br) 6 Dir(ω,Br) + c2/2 6 2 eTl(Br) − c2,

(b3) Dir($l,∂Br) 6 Dir(ω,∂Br) + 1 6 M+ 1,

(c3)
´
∂Br

G($l,ωl)2 6 c22/(2
6C (M+ 1)).

Step 4: patching graph($l) and Tl. Next, apply the interpolation Lemma 3.19 to $l and
gl with ε = c2/(2

4(M+ 1)). We then find maps ξl such that ξl|∂Br = gl|∂Br and, from (a2),
(a3)-(c3), for l large enough,

Dir (ξl,Br) 6 Dir ($l,Br) + εDir ($l,∂Br) + εDir(gl,∂Br) +Cε−1
ˆ
∂Br

G ($l,gl)
2

6 2 E−1
l eTl(Br) − c2 +

c2

8
+
c2

8
+
c2

4
6 2 E−1

l eTl(Br) −
c2

2
. (12.17)

Moreover, from the last estimate in Lemma 3.19, if follows that Lip(ξl) 6 CE
α−1/2
l , since

Lip(gl) 6 CE
α−1/2
l , Lip($l) 6

∑
j

Lip(ζ̄j) 6 C and ‖G($l,gl)‖∞ 6 C+CE
α−1/2
l .

Set zl :=
√
El ξl and consider the current Zl := graph(ξl). Since zl|∂Br = fl|∂Br , ∂Zl =

graph(fl) ∂Br. Therefore, from (c2), M(∂(Tl Br −Zl)) 6 CE1−2αl . From the isoperimetric
inequality (see [54, Theorem 30.1]), there exists an integral current Rl such that ∂Rl =

∂(Tl Cr −Zl) and M(Rl) 6 CE(1−2α)m/(m−1).
Set finally Wl = Tl (C4 \ Cr) + Zl + Rl. By construction, it holds obviously ∂Wl = ∂Tl.

Moreover, since α < 1/(2m), for l large enough, Wl contradicts to the minimality of Tl:

M(Wl) − M(Tl) 6 Q |Br| +
(
1+CE2αl

)ˆ
Br

|Dzl|
2

2
+CE

(1−2α)m
m−1

l −Q|Br| − eTl(Br)

(12.17)
6
(
1+CE2αl

)(
eTl(Br) −

c2 El

4

)
+CE

(1−2α)m
m−1

l − eTl(Br)

6 −c2El +CE1+2αl +CE
(1−2α)m
m−1

l < 0.

Proof of (12.13). The proof is again by contradiction. Let (Tl)l be a sequence with vanishing
El := Ex(Tl, C4) and contradicting (12.13), and perform again Steps 1 and 3. Clearly, since
(12.13) does not hold, up to extraction of a subsequence, we can assume that
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(i) either liml
´
B2

|Dgl|
2 >

´
|Dω|2,

(ii) or, for some j, ζj is not Dir-minimizing in B2.

Indeed, in case one between (i) and (ii) does not hold, it suffices to set w = ωl, because,
when each ζj is harmonic, infx∈B2 G(τyli

◦ ζi(x), τylj ◦ ζj(x)) → ∞ and, by the Maximum
principle in Proposition 5.5, ωl is harmonic for l large enough as well.

In case (i), since, for large l,ˆ
Br

|Dωl|
2 6

ˆ
Br

|Dgl|
2 − 2 c2 6 E−1

l eT (Br) − c2,

for some positive constant c2, we can arguing exactly as in the proof of (12.12).
In case (ii), we find a competitor for ζj and, hence, new functions ω̂l such that ω̂l|∂Br =

ωl|∂Br and

lim
l

ˆ
Br

|Dω̂l|
2 6 lim

l

ˆ
Br

|Dωl|
2 6 lim

l

ˆ
Br

|Dgl|
2 − 2 c2 6 E−1

l eT (Br) − c2.

We then can argue as above with ω̂l in place of ωl, thus concluding the proof.

12.3.1 Weak Almgren’s estimate

Theorems 12.7 and 9.1 imply the following key estimate, which is a weaker form of an
estimate proved by Almgren (see Proposition 13.3) and will lead to Theorem 12.1 via a an
elementary “covering and stopping radius” argument.

Proposition 12.8. For every κ > 0, there exists ε2 = ε2(κ) > 0 with the following property. Let T
be an integer rectifiable, area-minimizing current in C4s(x) satisfying (H). If Ex(T , C4s(x)) 6 ε2,
then

eT (A) 6 κEx(T , C4s(x))sm for every Borel A ⊂ Bs(x) with |A| 6 ε2|B4s(x)|. (12.18)

Proof. Without loss of generality, we can assume s = 1 and x = 0. Let f be the Eα-Lipschitz
approximation in C3, with α ∈ (0, 1/(2m)). Fix η = κ/4 and choose ε2(κ) 6 ε1(η). Arguing
as in Step 4 of the first part of the proof, we find a radius r ∈ (2, 3) and a current R such that

∂R = (T − graph(f)) ∂Br and M(R) 6 CE(1−α)m/(m−1).

Hence, by the minimality of T and using the Taylor expansion in Proposition 12.6, we have

M(T Cr) 6 M(graph(f) Cr + R) 6 M(graph(f) Cr) +CEx(T , C4)
(1−2α)m
m−1

6 Q |Br| +

ˆ
Br

|Df|2

2
+CEx(T , C4)1+ν, (12.19)

where ν is a fixed constant. On the other hand, using again the Taylor expansion for the part
of the current which coincides with the graph of f, we deduce as well that

M(T Cr) > M
(
T ((Br \K)×Rn)

)
+ M

(
T ((Br ∩K)×Rn)

)
> M

(
T ((Br \K)×Rn)

)
+Q |Br ∩K| +

ˆ
Br∩K

|Df|2

2
−CEx(T , C4)1+ν.

(12.20)
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Subtracting (12.20) from (12.19), by the choice of ε2, we deduce from (12.12),

eT (Br \K) 6
ˆ
Br\K

|Df|2

2
+CE1+ν 6

κE

2
+CE1+ν. (12.21)

Let now A ⊂ B1 be such that |A| 6 ε2 |B4|. Combining (12.21) with the Taylor expansion
and Theorem 9.1, we finally get, for some constants C and q > 1 (independent of E) and for
ε2(κ) sufficiently small,

eT (A) 6 eT (A \K) +

ˆ
A

|Df|2

2
+CE1+ν 6 eT (Br \K) +

ˆ
A

|Dw|2

2
+
κE

4
+CE1+ν

6
3 κE

4
+C|A|1−1/qE+CE1+ν 6 κE.

12.4 proof of the higher integrability estimate

The theorem is a consequence of the following estimate: there exists constants γ > 2m and
β > 0 such that, for every c ∈ [1, (γE)−1] and s ∈ [2, 4] with s+ 2/ m

√
c 6 4,

ˆ
{γcE6d61}∩Bs

d 6 γ−β

ˆ
{ cEγ 6d61}∩B

s+ 2
m√c

d . (12.22)

Iterate (12.22) to obtainˆ
{γ2k+1 E6dT61}∩B2

dT 6 γ−kβ

ˆ
{γE6dT61}∩B4

dT 6 γ−kβ 4m E, (12.23)

for every k 6 L := b(logγ(λ/E) − 1)/2c (note that, since γ > 2m, it holds 2
∑
k γ

−2k/m 6 2).
Therefore, setting

Ak = {γ2k−1 E 6 dT < γ
2k+1 E} for k = 1, . . . ,L,

A0 = {dT < γE} and AL+1 = {γ2L+1 E 6 dT 6 1},

for p < 1+β/2, we conclude the theorem:

ˆ
B2

dpT =

L+1∑
k=0

ˆ
Ak∩B2

dpT 6
L+1∑
k=0

γ(2k+1) (p−1) Ep−1

ˆ
Ak∩B2

dT

(12.23)
6 C

L+1∑
k=0

γk (2p−β) Ep 6 CEp.

We now come to the proof of (12.22). Let NB be the constant in Besicovich’s covering
theorem and choose P ∈N so large that NB < 2P−1. Set γ = max{2m, 1/ε2(2−2m−P)} and
β = − logγ(NB/2

P−1), where ε2 is the constant in Proposition 12.8.
Let c and s be any real numbers as above. First of all, we prove that, for a.e. x ∈ {γ cE 6
dT 6 1}∩Bs, there exists rx such that

E(T , C4rx(x)) 6 c E and E(T , Cρ(x)) > c E ∀ρ ∈]0, 4 rx[. (12.24)
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Indeed, since dT (x) = limr→0 E(T , Cr(x)) > γ cE > 2mc E and

E(T , Cρ(x)) =
eT (Bρ(x))

ωm ρm
6
4m E

ρm
6 c E for ρ >

4
m
√
c

,

it suffices to choose 4rx = min{ρ 6 4/ m
√
c : E(T , Cρ(x)) 6 cE}. Note that rx 6 1/ m

√
c.

Consider now the current T restricted to C4rx(x). We note that, for the choice of γ, setting
A = {γ cE 6 dT },

Ex(T , C4rx(x)) 6 c E 6
E

γE
6 ε2

(
2−2m−P

)
,

|A| 6
c E |B4rx(x)|

c Eγ
6 ε2

(
2−2m−P

)
|B4rx(x)|.

Hence, we can apply Proposition 12.8 to T C4rx(x) to get
ˆ
Brx(x)∩{γcE6dT61}

dT 6
ˆ
A
dT 6 eT (A) 6 2−2m−P eT (B4rx(x))

6 2−2m−P (4 rx)
mωm Ex(T , C4rx(x))

(12.24)
6 2−P eT (Brx(x)).

(12.25)

Thus,

eT (Brx(x)) =

ˆ
Brx(x)∩{dT>1}

dT +

ˆ
Brx(x)∩{ cEγ 6dT61}

dT +

ˆ
Brx(x)∩{dT< cEγ }

dT

6
ˆ
A
dT +

ˆ
Brx(x)∩{ cEγ 6dT61}

dT +
c E

γ
ωm r

m
x

(12.24), (12.25)
6

(
2−P + γ−1

)
eT (Brx(x)) +

ˆ
Brx(x)∩{ cEγ 6dT61}

dT . (12.26)

Therefore, recalling that γ > 2m > 4, from (12.25) and (12.26) we infer that

ˆ
Brx(x)∩{γcE6dT61}

dT 6
2−P

1− 2−P − γ−1

ˆ
Brx(x)∩{ cEγ 6dT61}

dT 6 2−P+1

ˆ
Brx(x)∩{ cEγ 6dT61}

dT .

Finally, by Besicovich’s covering theorem, we choose NB families of disjoint balls Brx(x)
whose union covers {γ cE 6 dT 6 1} ∩ Bs and, recalling that rx 6 2/ m

√
c for every x, we

conclude
ˆ

{γcE6dT61}∩Bs
dT 6 NB 2

−P+1

ˆ
{ cEγ 6dT61}∩B

s+ 2
m√c

dT ,

which, for the above defined β, implies (12.22).
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A P P R O X I M AT I O N O F A R E A - M I N I M I Z I N G C U R R E N T S

Here we prove the approximation theorem for minimizing currents. The following theorem,
proved by De Giorgi [10] in the case n = Q = 1, is due in its generality to Almgren, who
spends almost the entire third chapter of his big regularity paper [2] to accomplish it.

For reader’s convenience, before stating the result, we recall hypothesis (H) of the previous
chapter: T will always denote an integer rectifiable m-current such that

π#T = Q JBr(y)K and ∂T = 0, (H)

Theorem 13.1. There exist positive constants C, δ, ε0 with the following property. For every
mass-minimizing, integer rectifiable m-current T in the cylinder C4 which satisfies (H) and E =

Ex(T , C4) < ε0, there exist a Q-valued function f ∈ Lip(B1, AQ(Rn)) and a closed set K ⊂ B1 such
that

Lip(f) 6 CEδ, (13.1a)

graph(f|K) = T (K×Rn) and |B1 \K| 6 CE1+δ, (13.1b)∣∣∣∣M(T C1
)
−Qωm −

ˆ
B1

|Df|2

2

∣∣∣∣ 6 CE1+δ. (13.1c)

The most interesting aspects of Theorem 13.1 are the use of multiple-valued functions
(necessary when n > 1, as for the case of branched complex varieties) and the gain of a
small power Eδ in the three estimates (13.1). Observe that the usual approximation theorems,
which cover the case Q = 1 and stationary currents, are stated with δ = 0.

Remark 13.2. The careful reader will notice two important differences between the most
general approximation theorem of Almgren’s book and Theorem 13.1.

First of all, though the smallness hypothesis Ex(T , C4) < ε0 is the same, the estimates
corresponding to (13.1) are stated in terms of the “varifold excess”, a quantity smaller than
Ex. An additional argument, which we report in the last section, shows that Ex and the
varifold excess are indeed comparable. This is obtained from a strengthened version of
Theorem 13.1, which to our knowledge is new and has an independent interest (compare
with Theorem 13.5).

Second, the most general result of Almgren is stated for currents in Riemannian manifolds.
However, we believe that such generalization follows from standard modifications of our
arguments and do not address this issue in the present work.

13.1 almgren’s estimate

The first step in the proof is represented by the following estimate due to Almgren. We
prove it using Theorem 12.1.

139
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Theorem 13.3. There exist constants σ,C > 0 such that, for every mass-minimizing, integer
rectifiable m-current T in C4 satisfying (H) and E = Ex(T , C4) < ε0, it holds

eT (A) 6 CE
(
Eσ + |A|σ

)
for every Borel A ⊂ B4/3. (13.2)

Here we follow partially Almgren’s strategy. The main point is to estimate the size of
the set over which the graph of the Lipschitz approximation f differs from T . As in many
standard references, in the case Q = 1 this is achieved comparing the mass of T with the
mass of graph (f ∗ ρEω), where ρ is a smooth convolution kernel and ω > 0 a suitably chosen
constant.

However, for Q > 1, the space AQ(Rn) is not linear and we cannot regularize f by
convolution. To bypass this problem, we use Almgren’s biLipschitz embedding ξ, convolving
the map ξ ◦ f and projecting the convolution back on the set ξ(AQ) via the retraction ρ?

µ

which is very little expensive in terms of energy in the µ neighborhoods of ξ(AQ(Rn)).
At this point our Theorem 12.1 enters in a crucial way in estimating the size of the set

where the regularization of ξ ◦ f is far from ξ(AQ(Rn)), leading to a much clearer and direct
proof.

13.1.1 Convolution procedure

Let α ∈ (0, (2m)−1) and fix the Eα-Lipschitz approximation f. The strategy here is to consider
a suitable convolution of the approximation f in order to find a competitor with energy over
B3/2 \K which is a superlinear power of the excess.

One of the main point in the convolution procedure is the following consequence of
Theorem 12.1: since |Df|2 6 C dT and dT 6 E2α 6 1 in K, there exists q = 2 p > 2 such that(ˆ

K
|Df|q

) 1
q

6 CE
1
2 . (13.3)

Proposition 13.4. Let T be as in Theorem 13.1 and let f be its Eα-Lipschitz approximation. Then,
there exist constants δ,C > 0 and a subset B ∈ [1, 2] with |B| > 1/2 such that, for every s ∈ B, there
exists a Q-valued function g ∈ Lip(Bs, AQ) which satisfies g|∂Bs = f|∂Bs , Lip(g) 6 CEα andˆ

Bs

|Dg|2 6
ˆ
Bs∩K

|Df|2 +CE1+δ. (13.4)

Proof. We give an explicit construction of g ′ := ξ ◦ g starting from f ′ := ξ ◦ f and the
projection ρ?

µ given in Proposition 2.3 with a constant µ > 0 to be fixed later: then, composing
with ξ−1, we recover g. In order to simplify the notation, we simply write ρ? in place of ρ?

µ.
To this aim, let µ > 0 and ε > 0 be parameters and 1 < r1 < r2 < r3 < 2 be radii to

be fixed later. Let ϕ ∈ C∞c (B1) be a standard mollifier in RN and, for the sake of brevity,
let lin(h1,h2) denote the linear interpolation in Br \ B̄s between two functions h1|∂Br and
h2|∂Bs . The function g ′ is defined as follows:

g ′ :=


√
E lin

(
f ′√
E

,ρ?
(
f ′√
E

))
in Br3 \Br2 ,

√
E lin

(
ρ?
(
f ′√
E

)
,ρ?

(
f ′√
E
∗ϕε

))
in Br2 \Br1 ,

√
Eρ?

(
f ′√
E
∗ϕε

)
in Br1 .

(13.5)
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Clearly g ′|∂Br3 = f ′|∂Br3 . We pass now to estimate its energy.
Step 1. Energy in Br3 \Br2 . By the estimate on the linear interpolation, it follows directly

that ˆ
Br3\Br2

|Dg ′|2 6 C

ˆ
Br3\Br2

|Df ′|2 +C

ˆ
Br3\Br2

|D(ρ? ◦ f ′)|2+

+
CE

(r3 − r2)
2

ˆ
Br3\Br2

∣∣∣∣ f ′√
E

− ρ?

(
f ′√
E

)∣∣∣∣2
6 C

ˆ
Br3\Br2

|Df ′|2 +
CEµ2

−nQ+1

r3 − r2
, (13.6)

where we used |ρ?(P) − P| 6 Cµ2
−nQ

for all P ∈ Q.
Step 2. Energy in Br2 \ Br1 . Here, using the same interpolation inequality and the L2

estimate on convolution, we getˆ
Br2\Br1

|Dg ′|2 6 C

ˆ
Br2\Br1

|Df ′|2 +
C

(r2 − r1)2

ˆ
Br2\Br1

|f ′ −ϕε ∗ f ′|2

6C
ˆ
Br2\Br1

|Df ′|2 +
Cε2

(r2 − r1)2

ˆ
B1

|Df ′|2 = C

ˆ
Br2\Br1

|Df ′|2 +
Cε2 E

(r2 − r1)2
. (13.7)

Step 3. Energy in Br1 . For this estimate we use the fine bounds on the projection ρ?. (see
Proposition 2.3). To this aim, consider the set Z :=

{
x ∈ Br1 : dist

(
f ′√
E
∗ϕε, Q

)
> µnQ

}
.

Then, one can estimateˆ
Br1

|Dg ′|2 6
(
1+Cµ2

−nQ
)ˆ
Br1\Z

∣∣D (f ′ ∗ϕε)∣∣2+C

ˆ
Z

∣∣D (f ′ ∗ϕε)∣∣2 =: I1+ I2. (13.8)

We consider I1 and I2 separately. For the first we have

I1 6
(
1+Cµ2

−nQ
)ˆ
Br1

(|Df ′| ∗ϕε)2

6
(
1+Cµ2

−nQ
)ˆ
Br1

(
(|Df ′|χK) ∗ϕε

)2
+
(
1+Cµ2

−nQ
)ˆ
Br1

(
(|Df ′|χB1\K) ∗ϕε

)2
+

+ 2
(
1+Cµ2

−nQ
)(ˆ

Br1

(
(|Df ′|χK) ∗ϕε)

)2) 1
2
(ˆ

Br1

(
(|Df ′|χB1\K) ∗ϕε

)2) 1
2

.

(13.9)

Next we notice that the following two estimates hold for the convolutions:ˆ
Br1

(
(|Df ′|χK) ∗ϕε

)2
6
ˆ
Br1+ε

(
|Df ′|χK

)2
6
ˆ
Br1∩K

|Df ′|2 +

ˆ
Br1+ε\Br1

|Df ′|2 (13.10)

and, using Lip(f ′) 6 CEα and |B1 \K| 6 CE1−2α,ˆ
Br1

(
(|Df ′|χBr1\K) ∗ϕε)

)2
6 CE2α

∥∥∥χBr1\K ∗ϕε
∥∥∥2
L2

6 CE2α
∥∥∥χBr1\K

∥∥∥2
L1
‖ϕε‖2L2 6

CE2−2α

εN
. (13.11)
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Hence, putting (13.10) and (13.11) in (13.9), we get

I1 6
(
1+Cµ2

−nQ
)ˆ
Br1∩K

|Df ′|2 +C

ˆ
Br1+ε\Br1

|Df ′|2 +
CE2−2α

εN
+CE

1
2

(
CE2−2α

εN

) 1
2

6
ˆ
Br1∩K

|Df ′|2 +Cµ2
−nQ

E+C

ˆ
Br1+ε\Br1

|Df ′|2 +
CE2−2α

εN
+
CE

3
2−α

εN/2
. (13.12)

For what concerns I2, first we argue as for I1, splitting in K and B1 \K, to deduce that

I2 6 C

ˆ
Z

(
(|Df ′|χK) ∗ϕε

)2
+
CE2−2α

εN
+
CE

3
2−α

εN/2
. (13.13)

Then, regarding the first addendum in (13.13), we note that

|Z|µ2nQ 6
ˆ
Br1

∣∣∣∣ f ′√
E
∗ϕε −

f ′√
E

∣∣∣∣2 6 Cε2. (13.14)

Hence, using the higher integrability of |Df| in K, that is (13.3), we obtain

ˆ
Z

(
(|Df ′|χK) ∗ϕε

)2
6 |Z|

q−2
q

(ˆ
Br1

(
(|Df ′|χK) ∗ϕε

)q) 2
q

6 CE

(
ε

µnQ

) 2 (q−2)
q

.

(13.15)

Hence, putting all the estimates together, (13.8), (13.12), (13.13) and (13.15) give

ˆ
Br1

|Dg ′|2 6
ˆ
Br1∩K

|Df ′|2 +C

ˆ
Br1+ε\Br1

|Df ′|2+

+CE

µ2−nQ
+
E1−2α

εN
+
E
1
2−α

εN/2
+

(
ε

µnQ

) 2 (q−2)
q

 . (13.16)

Now we are ready to estimate the total energy of g ′ and conclude the proof of the
proposition. We start fixing r2 − r1 = r3 − r2 = λ. With this choice, summing (13.6), (13.7)
and (13.16),

ˆ
Br3

|Dg ′|2 6
ˆ
Br3∩K

|Df ′|2 +C

ˆ
Br1+3λ\Br1

|Df ′|2+

+CE

µ2−nQ+1

λ
+
ε2

λ2
+ µ2

−nQ
+
E
1
2−α

εN/2
+

(
ε

µnQ

) 2 (q−2)
q

 .

We set ε = Ea, µ = Eb and λ = Ec choosing

a =
1− 2α

2N
, b =

1− 2α

4NnQ
and c =

1− 2α

2nQ+2NnQ
.
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Now, for a choice of a constant C > 0 sufficiently large, there is a set B ⊂ [1, 2] with |B| > 1/2

such that, for every r1 ∈ B, it holds
ˆ
Br1+3λ\Br1

|Df ′|2 6 Cλ

ˆ
Br1

|Df ′|2 6 CE
1+ 1−α

2nQ+2 NnQ .

Then, for a suitable δ = δ(α,n,N,Q) and for s = r3, we conclude (13.4).
For what concerns the Lipschitz constant of g ′, we notice that it is bounded by

Lip(g ′) 6 CLip(f ′ ∗ϕε) 6 CLip(f ′) 6 CEα in Br1 ,

Lip(g ′) 6 CLip(f ′) +C
‖f ′−f ′∗ϕε‖L∞

λ 6 C(1+ ε
λ) Lip(f ′) 6 CEα in Br2 \Br1 ,

Lip(g ′) 6 CLip(f ′) +CE1/2 µ
2−nQ

λ 6 CEα +CE1/2 6 CEα in Br3 \Br2 .

13.1.2 Proof of Theorem 13.3

Consider the set B ⊂ [1, 2] given in Proposition 13.4 and, as done in subsection 12.3.1, choose
r ∈ B and a integer rectifiable current R such that

∂R =
(
T − graph(f)

)
∂Br and M(R) 6 CE(1−2α)m/(m−1).

Since g|∂Bs = f|∂Bs , we use graph(g) + R as competitor for the current T . In this way we
obtain, for a suitable σ,

M (T Cs) 6 Q |Bs| +

ˆ
Bs

|Dg|2

2
+CE1+α

(13.4)
6 Q |Bs| +

ˆ
Bs∩K

|Df|2

2
+CE1+σ. (13.17)

On the other hand, again using Taylor’s expansion (12.11),

M (T Cs) = M (T (Bs \K)×Rn) + M (graph(f|Bs∩K))

> M (T (Bs \K)×Rn) +Q |K∩Bs| +
ˆ
K∩Bs

|Df|2

2
−CE1+σ. (13.18)

Hence, from (13.17) and (13.18), we get eT (Bs \K) 6 CE1+σ.
This is enough to conclude the proof. Indeed, for A ⊂ B1, using the higher integrability of

|Df| in K, possibly changing σ, we get

eT (A) 6 eT (A∩K) + eT (A \K) 6
ˆ
A∩K

|Df|2

2
+CE1+σ

6 C |A∩K|
q−2
q

(ˆ
A∩K

|Df|q
) 2
p

+CE1+σ 6 CE
(
|A|

q−2
q + Eσ

)
.
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13.2 proof of the approximation theorem

Finally we come to the proof of the main result.
Choose α < min{(2m)−1, (2(1+ σ))−1σ}, where σ is the constant in Theorem 9.1 and let f

be the Eα-Lipschitz approximation of T C4/3.
Clearly (13.1a) follows directly from (12.10) for δ < α. Set A =

{
MT > E

2α/2
}
⊂ B4/3.

Applying (13.2) to A, since by (12.7) |A| 6 CE1−2α, we get (13.1b), for some positive δ,

|B1 \K| 6 CE−2α eT (A) 6 CE1+σ−2α +CE1+σ−2(1+σ)α 6 CE1+δ.

On the other hand, (13.1c) is consequence of (13.2) and (12.11). Indeed, if we set Γ = graph(f):∣∣∣∣M(T C1
)
−Qωm −

ˆ
B1

|Df|2

2

∣∣∣∣ 6 eT (B1 \K) + eΓ (B1 \K) +

∣∣∣∣eΓ (B1) −

ˆ
B1

|Df|2

2

∣∣∣∣
(13.2), (12.11)

6 CE1+σ +C |B1 \K| +CLip(f)2
ˆ
B1

|Df|2

6 C
(
E1+σ + E1+2α

)
= CE1+δ.

13.3 complementary results

In this section we prove two side results.

13.3.1 A variant of Theorem 13.1

Theorem 13.5. There are constants C,α, ε1 > 0 such that the following holds. Assume T satifes the
assumptions of Theorem 13.1 with E4 := Ex(T , C4) < ε1 and set Er := Ex(T , Cr). Then there exist a
radius s ∈]1, 2[, a set K ⊂ Bs and a map f : Bs → AQ(Rn) such that:

Lip(f) 6 CEαs , (13.19a)

graph(f|K) = T (K×Rn) and |Bs \K| 6 CE1+αs , (13.19b)∣∣∣∣M(T Cs
)
−Qωms

m −

ˆ
Bs

|Df|2

2

∣∣∣∣ 6 CE1+αs . (13.19c)

The theorem will be derived from the following lemma, which in turn follows from
Theorem 13.1 through a standard covering argument.

Lemma 13.6. There are constants C,β, ε2 > 0 such that the following holds. Assume T is an
area-minimizing, integer recitifiable current in Cρ, satisfying (H) and E := Ex(T , Cρ) < ε2. Set
r = ρ(1− 4 Eβ). Then there exist a set K ⊂ Br and a map f : Br → AQ(Rn) such that:

Lip(f) 6 CEβ, (13.20a)

graph(f|K) = T (K×Rn) and |Br \K| 6 CE1+βrm, (13.20b)∣∣∣∣M(T Cr
)
−Qωmr

m −

ˆ
Br

|Df|2

2

∣∣∣∣ 6 CE1+βrm. (13.20c)
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Proof. Without loss of generality we prove the lemma for ρ = 1. Fix β > 0 and ε2 > 0

and assume T as in the statement. We choose a family of balls Bi = BEβ(ξi) satisfying the
following conditions:

(i) the numer N of such balls is bounded by CE−mβ;

(ii) B4Eβ(ξi) ⊂ B1 and {BEβ/2(ξi)} covers Br = B1−4Eβ ;

(iii) each Bi intersects at most M balls Bj.

The constants C and M are dimensional and do not depend on E, β and ε2. Moreover,
observe that

Ex(T , C4Eβ(ξi)) 6 4−mE−mβEx(T , C1) 6 CE1−mβ.

Fix now ε2 such that ε1−mβ2 6 ε0, with ε0 the constant in Theorem 13.1. Applying (the
obvious scaled version of) Theorem 13.1, for each Bi we obtain a set Ki ⊂ Bi and a map
fi : Bi → AQ(Rn) such that

Lip(fi) 6 CE(1−mβ)δ, (13.21)

graph(fi|Ki) = T (Ki ×Rn) and |Bi \Ki| 6 CE(1−mβ)(1+δ)Emβ, (13.22)∣∣∣∣M(T CEβ(ξi)
)
−QωmE

mβ −

ˆ
Bi

|Df|2

2

∣∣∣∣ 6 CE(1−mβ)(1+δ)Emβ. (13.23)

Set next I(i) := {j : Bj ∩Bi 6= ∅} and Ji := Ki ∩
⋂
j∈I(i) Kj. By (iii) and (13.22), we have

|Bi \ Ji| 6 CE(1−mβ)(1+δ)+mβ. (13.24)

Define K :=
⋃
Ji. Since fi|Ji∩Jj = fj|Jj∩Ji , there is a function f : K → AQ(Rn) such that

f|Ji = fi. Choose β so small that (1−mβ)(1+ δ) > 1+β. Then, (13.20b) holds because of (i)
and (13.24).

We claim next that f satisfies the Lipschitz bound (13.20a). First take x,y ∈ K such that
|x− y| 6 Eβ/2. Then, by (ii), x ∈ BEβ/2(ξi) for some i and hence x,y ∈ Bi. By the definition
of K, x ∈ Jj ⊂ Kj for some j. On the other hand, Bj ∩Bi 6= ∅ and thus, by the definition of Jj,
we necessarily have x ∈ Ki. For the same reason we conclude y ∈ Ki. It follows from (13.21)
and the choice of β 6 (1−mβ) δ that

|f(x) − f(y)| = |fi(x) − fi(y)| 6 CEβ|x− y|.

Next, assume that x,y ∈ K and |x−y| > Eβ/2. On the segment σ = [x,y], fixN 6 8E−β|x−y|

points ζi with ζ0 = x, ζN = y and |ζi+1 − ζi| 6 Eβ/4. We can choose ζi so that, for each
i ∈ {1,N− 1}, B̂i := BEβ/8(ζi) ⊂ Br. Obviously, if β and ε2 are chosen small enough, (13.20b)
implies that B̂i ∩K 6= ∅ and we can select zi ∈ B̂i ∩K 6= ∅. But then |zi+1 − zi| 6 Eβ/2 and
hence |f(zi+1) − f(zi)| 6 CE2β. Setting zN = ζN = y and z0 = ζ0 = x, we conclude the
estimate

|f(x) − f(y)| 6
N∑
i=0

|f(i+ 1) − f(i)| 6 CNE2β 6 CEβ|x− y| .

Thus, f can be extended to Br with the Lipschitz bound (13.20a). Finally, a simple argument
using (13.20a), (13.20b), (13.23) and (i) gives (13.20c) and concludes the proof.
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Proof of Theorem 13.5. Let β be the constant of Lemma 13.6 and choose α 6 β/(2+ β). Set
r0 := 2 and E0 := Ex(T , Cr0), r1 := 2(1 − 4E

β
0 ) and E1 := Ex(T , Cr1). Obviously, if ε1 is

sufficiently small, we can apply Lemma 13.6 to T in Cr0 . We also assume of having chosen
ε1 so small that 2(1− 4E

β
0 ) > 1. Now, if E1 > E

1+β/2
0 , then f satisfies the conclusion of the

theorem. Otherwise we set r2 = r1(1− 4E
β
1 ) and E2 := Ex(T , Cr2). We continue this process

and stop only if

(a) either rN < 1;

(b) or EN > E
1+β/2
N−1 .

First of all, notice that, if ε1 is chosen sufficiently small, (a) cannot occur. Indeed, we have

Ei 6 E
(1+β/2)i

0 6 ε
1+iβ/2
1 and thus

log
ri

2
=
∑

log(1− 4E
β
i ) > −8

∑
E
β
i > −8

∑
ε
β+iβ2/2
1 > −8 ε

β
1

ε
β2/2
1

1− ε
β2/2
1

. (13.25)

Clearly, for ε1 sufficiently small, the right and side of (13.25) is larger than log(2/3), which
gives ri > 4/3.

Thus, the process can stop only if (b) occurs and in this case we can apply Lemma 13.6
to T in CrN−1

and conclude the theorem for the radius s = rN. If the process does not
stop, we conclude that Ex(T , CrN) → 0. If s := limN rN, we then conclude that s > 1 and
that Ex(T , Cs) = 0. But then, because of (H), this implies that there are Q points qi ∈ Rn

(not necessarily distinct) such that T Cs =
∑
i JBs × {qi}K. Thus, if we set K = Bs and

f ≡
∑
i JqiK, the conclusion of the theorem holds trivially.

13.4 the varifold excess

As pointed out in Remark 13.2, though the approximation theorems of Almgren have
(essentially) the same hypotheses of Theorem 13.1, the main estimates are stated in terms
of the “varifold excess” of T in the cylinder C4. More precisely, consider the representation
of the rectifiable current T as ~T ‖T‖. As it is well-known, ~T(x) is a simple vector of the
form v1 ∧ . . .∧ vm with 〈vi, vj〉 = δij. Let τx be the m-plane spanned by v1, . . . , vm and
let πx : Rm+n → τx be the orthogonal projection onto τx. Finally, for any linear map
L : Rm+n → Rm, denote by ‖L‖ the operator norm of L. Then, the varifold excess is defined
by

VEx(T , Cr(x0)) =

ˆ
Cr(x0)

‖πx − π‖2 d‖T‖(x) , (13.26)

whereas

Ex(T , Cr(x0)) =

ˆ
Cr(x0)

|~T(x) −~em|2 d‖T‖(x) . (13.27)

The two quantities differ. If on the one hand VEx 6 CEx for trivial reasons (indeed, ‖πx −

π‖ 6 C‖~T(x) −~em‖ for every x), VEx might, for general currents, be much smaller than Ex.
However, Almgren’s statements can be easily recovered from Theorem 13.1 thanks to the
following proposition.
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Proposition 13.7. There are constants ε3,C > 0 with the following properties. Assume T is
as in Theorem 13.5 and consider the radius s given by its conclusion. If Ex(T , C2) 6 ε3, then
Ex(T , Cr) 6 CVEx(T , Cr).

Proof. Note that there are constants c0, C1 such that |~T(x) − ~em| 6 C1 and |~T(x) − ~em| 6
C1‖πx − π‖ if |~T(x) −~em| < c0. Let now D := {x ∈ Cr : |~T(x) −~em| > c0}. We can then write

Ex(T , Cr) 6 C1VEx(T , Cr) + 2M(T D).

On the other hand, from the bounds (13.19), it follows immediately that M(T D) 6
CEx(T , Cr)1+α. If ε3 is chosen sufficiently small, we conclude

2−1Ex(T , Cr) 6 Ex(T , Cr) −CEx(T , Cr)1+α 6 C1VEx(T , Cr) .
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