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Abstract

This thesis aims at shining some new light on the terra incognita of

multi-dimensional hyperbolic systems of conservation laws by means of

techniques new for the field. Our concern focuses in particular on the

isentropic compressible Euler equations of gas dynamics, the oldest but

yet most prominent paradigm for this class of equations. The theory

of the Cauchy problem for hyperbolic systems of conservation laws in

more than one space dimension is still in its dawning and has been

facing some basic issues so far: do there exist weak solutions for any

initial data? how to prove well-posedness for weak solutions? which is a

good space for a well-posedness theory? are entropy inequalities good

selection criteria for uniqueness? Inspired by these interesting ques-

tions, we obtained some new results here collected. First, we present

a counterexample to the well-posedness of entropy solutions to the

multi-dimensional compressible Euler equations: in our construction

the entropy condition is not sufficient as a selection criteria for unique

solutions. Furthermore, we show that such a non-uniqueness theorem

holds also for a classical Riemann datum in two space dimensions. Our

results and constructions build upon the method of convex integration

developed by De Lellis-Székelyhidi [DLS09, DLS10] for the incom-

pressible Euler equations and based on a revisited ”h-principle”.

Finally, we prove existence of weak solutions to the Cauchy problem

for the isentropic compressible Euler equations in the particular case

of regular initial density. This result indicates the way towards a more

general existence theorem for generic initial data. The proof ultimately

relies once more on the methods developed by De Lellis and Székelyhidi

in [DLS09]-[DLS10].

Zusammenfassung
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Introduction

The main topic of this thesis is the study of the compressible Euler

equations of isentropic gas dynamics

(0.1)


∂tρ+ divx(ρv) = 0

∂t(ρv) + divx(ρv ⊗ v) +∇[p(ρ)] = 0

ρ(0, ·) = ρ0

v(0, ·) = v0

whose unknowns are the density ρ and the velocity v of the gas, while

p is the pressure which depends on the density ρ. In particular, we are

concerned with the Cauchy problem (0.1) and with its possible (or not)

well-posedness theory.

The isentropic compressible Euler equations (0.1) are an archetype

for systems of hyperbolic conservation laws. Conservation laws model

situations in which the change of amount of a physical quantity in some

domain is due only to an income or an outcome of that quantity across

the boundary of the domain. Indeed, this is the case also for system

(0.1), where the equations involved state the balance laws for mass and

for linear momentum.

The apparent simplicity of conservation laws, and in particular of

system (0.1), contrasts with the difficulties encountered when solving

the Cauchy problem. To illustrate the mathematical difficulties, let us

say that there has not been so far a satisfactory result concerning the

existence of a solution of the Cauchy problem. The well-posedness the-

ory for hyperbolic conservation laws is presently understood only in the

scalar case (one equation) thanks to seminal work of Kruzkov [Kru70],

and in the one–dimensional case (one space–dimension) via the Glimm

scheme [Gli65] or the more recent vanishing–viscosity method of Bian-

chini and Bressan [BB05]. On the contrary, the general case is very

far from being understood.

For this reason, a wise approach is to tackle some particular examples,

in hope of getting some general insight.

1



2 INTRODUCTION

This motivates our interest on the paradigmatic system of conser-

vation laws (0.1). On the one hand, we can obtain a partial result

on the existence of weak solutions of (0.1) for general initial momenta

and regular initial density, on the other hand, building upon the same

methods (see [DLS09]-[DLS10]), we can prove non–uniqueness for en-

tropy solutions of (0.1) even for Riemann initial data. Our conclusions

provide some answers in the understanding of multi-dimensional hy-

perbolic systems of conservation laws, yet raises and lives open other

ones.

In this introductory chapter, we frame our dissertation presenting

an overview of the theory of hyperbolic systems of conservation laws

and highlighting open problems and challenges of the subject. Finally,

we will present the main results contained in this thesis and we will

outline its structure.

0.1. Hyperbolic systems of conservation laws

Hyperbolic systems of conservation laws are systems of partial dif-

ferential equations of evolutionary type which arise in several problems

of continuum mechanics. One of their characteristics is the appearance

of singularities (known as shock waves) even starting from smooth ini-

tial data. In the last decades a very successful theory has been de-

veloped in one–space dimension but little is known about the general

Cauchy problem in more than one–space dimension after the appear-

ance of singularities. Recently, building on some new advances on the

theory of transport equations, well-posedness for a particular class of

systems has been proved. On the other hand, introducing techniques

which are completely new in this context, it has been possible to estab-

lish an ill-posedness result for bounded entropy solutions of the Euler

system of isentropic gas dynamics (0.1). Connected to these recent

advances, there have been various open questions: how to conjecture

well-posedness for general systems of conservation laws in several space

dimensions? in which functional space? what structural properties of

the Euler system of isentropic gas dynamics underlie the mentioned

ill-posedness result? and in which class of initial data does this result

hold? This thesis was inspired by such challenging questions and at-

tempted to move some steps forward in the process of answering them.
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0.1.1. Survey on the classical theory. The theory of nonlinear

hyperbolic systems of conservation laws traces its origins to the mid

19th century and has developed over the years conjointly with contin-

uum physics. The great number of books on the theoretical and nu-

merical analysis published in recent years is an evidence of the vitality

of the field. But, what does the denomination “hyperbolic systems of

conservation laws” encode? They are systems of nonlinear, divergence

structure first-order partial differential equations of evolutionary type,

which are typically meant to model balance laws. In fact, the vast ma-

jority of noteworthy hyperbolic systems of conservation laws came up in

physics, where differential equations were derived from corresponding

statements of balance of an extensive physical quantity coupled with

constitutive relations for a material body (see for instance [Daf00]).

In the most general framework, the field equation resulting from this

coupling process reads as

(0.1) ∂tU + div[F (U)] = 0

where the unknown is a vector valued function

(0.2) U = U(t, x) = (U1(t, x), ..., Uk(t, x)) ((t, x) ∈ Ω ⊂ Rt × Rm
x ),

the components of which are the densities of some conserved variables

in the physical system under investigation, while the flux function F

controls the rate of loss or increase of U through the spatial boundary

and satisfies suitable “hyperbolicity conditions”, namely that for every

fixed U and ν ∈ Sm−1, the k × k matrix

m∑
α=1

ναDFα(U)

has real eigenvalues and k linearly independent eigenvectors.

Solutions to hyperbolic conservation laws may be visualized as prop-

agating waves. When the system is nonlinear, the profile of compres-

sion waves gets progressively steeper and eventually breaks, generating

jump discontinuites which propagate on as shocks. This behavior is

demonstrated by the simplest example of a nonlinear hyperbolic con-

servation law in one space variable, namely the Burgers equation

(0.3) ∂tU(t, x) + ∂x

(
1

2
U2(t, x)

)
= 0.
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The appearance of singularities, even when starting from regular initial

data, drives the theory to deal with weak solutions. This difficulty is

compounded further by the fact that, in the context of weak solutions,

uniqueness is lost. To see this, one can consider the Cauchy problem

for the Burgers equation (0.3), with initial data

(0.4) u(0, x) =

{
− 1, x < 0

1, x > 0.

The problem (0.3), (0.4) admits infinitely many solutions, including

the family

uβ(t, x) =



− 1, −∞ < x ≤ −t
x
t
, −t < x ≤ −βt

− β, −βt < x ≤ 0

β, 0 < x ≤ βt
x
t
, βt < x ≤ t

1, x > 0,

for any β ∈ [0, 1].

It thus becomes necessary to devise proper criteria for weeding out

unstable, physically irrelevant, or otherwise undesirable solutions, in

hope of singling out admissible weak solutions. The issue of admissi-

bility of weak solutions to hyberbolic systems of conservation laws is

a central question of the theory and stirred up a debate quite early

in the development of the subject. Continuum physics naturally in-

duces such admissibility criteria through the Second Law of Thermo-

dynamics. These may be incorporated in the analytical theory, either

directly, by stipulating outright that admissible solutions should satisfy

“entropy” inequalities, or indirectly, by equipping the system with a

minute amount of diffusion, which has negligible effect on smooth solu-

tions but reacts stiffly in the presence of shocks, weeding out those that

are not thermodynamically admissible. In the framework of the general

theory of hyperbolic systems of conservation laws, the use of entropy

inequalities to characterize admissible solutions was first proposed by

Kruzkov [Kru70] and then elaborated by Lax [Lax71]. The idea of

regarding inviscid gases as viscous gases with vanishingly small viscos-

ity is quite old; there are hints even in the seminal paper by Stokes

[Sto48]. The important contributions of Rankine [Ran70], Hugoniot

[Hug89] and Rayleigh [Ray10] helped to clarify the issue.
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From the standpoint of analysis, a very elegant, definitive theory

is available for the case of scalar conservation laws, in one or several

space dimensions. The special feature that sets the scalar balance law

apart from systems of more than one equation is the size of its family

of entropies: in the scalar case the abundance of entropies induces an

effective characterization of admissible weak solutions as well as very

strong L1-stability and L∞-monotonicity properties. Armed with such

powerful a priori estimates, one can construct admissible solutions in

a number of ways. In the one-dimensional case the qualitative theory

was first developed in the 1950’s by the Russian school, headed by

Oleinik [Ole54, O.A57, O.A59], while the first existence proof in

several space dimensions was established a few years later by Conway

and Smoller [CS96], who recognized the relevance of the space BV .

The definitive treatment in the space BV was later given by Volpert

[Vol67]; building on Volpert’s work, Kruzkov [Kru70] proved the well-

posedness for admissible weak solutions. As a consequence of Kruzkov’s

results when the initial data are functions of locally bounded variation

then so are the solutions. Remarkably, even solutions that are merely

in L∞ exhibit the same geometric structure as BV functions, with

jump discontinuities assembling on “manifolds” of codimension one (see

[DLOW03], [DLR03] and [DLG05])

By contrast, when dealing with systems of conservation laws, it is

still a challenging mathematical problem to develop a theory of well-

posedness for the Cauchy problem of (0.1) which includes the formation

and evolution of shock waves. In one space dimension, namely when

m = 1 in (0.2), this problem has found recently a quite satisfactory and

general answer, thanks to the efforts of generations of mathematicians:

the general mathematical framework of the theory was set in the se-

minal paper of Lax [Lax57]; the first existence result is due to Glimm

[Gli65] in the sixties; Bianchini and Bressan [BB05] finally proved

a well-posedness result. Glimm’s scheme gives the sole result of any

generality concerning Cauchy problems and makes use of functions of

bounded total variation on R. The higher dimensional case is terra

incognita: how to conjecture stability is still an open problem. Indeed,

in several space dimensions, the situation is clearly less favourable: the

success of the spaces L∞ and BV in one–dimensional space is due to the

fact they are algebras allowing for the treatment of the rather strong

non–linearity of the equations; however, the works of Brenner [Bre66]
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and Rauch [Rau86], which are concerned with linear systems, show

that these spaces cannot be adapted to the multi–dimensional case.

We are thus in presence of a paradox which has up to the present not

been resolved: to find a function space which is an algebra, probably

constructed on L2 and which contains enough discontinuous solutions.

Moreover, even a general existence result for weak solutions in more

than one space dimension is missing so far. The theory is in its infancy.

0.1.2. Recent results. Recently, some attention was devoted to

a first “toy example” falling in the class (0.1). This system, called

Keyfitz–Kranzer system, is clearly very peculiar and, compared to the

most relevant systems coming from the physical literature, has many

more features. It reads as

(0.5)

{
∂tu+

∑m
j=1

∂
∂xj

(f j(|u|)u) = 0

u(0, ·) = u0

where for any j = 1, . . . ,m the map f j : R+ → R is assumed to be

smooth. In this case the non–linearity depends only on the modulus of

the solutions. Most notably the system (0.5) decouples into a nonlinear

conservation law for the modulus of ρ := |u|

∂tρ+ div(f(ρ)ρ) = 0

and a system of linear transport equations for the angular part θ :=

u/ |u|
∂tθ + f(ρ)−∇θ = 0.

However, it does develop singularities in finite time and a theory of

well–posedness of singular solutions was still lacking up to few years

ago. Thanks to a groundbreaking paper of Ambrosio (see [Amb04]),

it was possible to solve this problem in a very general and satisfactory

way (see [ADL03]): well posedness of renormalized entropy solutions

in the class of maps u ∈ L∞([0, T ]×Rm;Rk) with |u| inBVloc has been

proven by Ambrosio, Bouchut and De Lellis in [ABDL04]. Moreover,

the problem has been used to show that, even in this very particular

case, there is no hope of getting estimates in some of the classical

function spaces which are used in the one-dimensional theory.

In a recent work De Lellis and Székelyhidi found striking counterex-

amples to the well-posedness of bounded entropy solutions to the isen-

tropic system of gas-dynamics (0.1) (see [DLS10]). These examples
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build on a previous work ([DLS09]) where they introduced techniques

from the theory of differential inclusions to construct very irregular so-

lutions to the incompressible Euler equations. The isentropic system

of gas dynamics in Eulerian coordinates (0.1) is the oldest hyperbolic

system of conservation laws. The hyperbolicity condition for system

(0.1) reduces to the monotonicity of the pressure as a function of the

density: p′(ρ) > 0. In this thesis the pressure p will always satisfy

this assumption. Weak solutions of (0.1) are bounded functions which

solve the system in the sense of distributions. Admissible (or entropy)

solutions can be characterized as those weak solutions which satisfy an

additional inequality, coming from the conservation law for the energy

of the system. In the paper [DLS10], De Lellis and Székelyhidi show

L∞ initial data, with strictly positive piecewise constant density, which

allow for infinitely many admissible solutions of (0.1) in more than one

space dimension, all with strictly positive density:

Theorem 0.1.1 (Theorem from [DLS10]). Let n ≥ 2. Then, for

any given function p, there exist bounded initial data (ρ0, v0) with ρ0 ≥
c > 0 for which there are infinitely many bounded admissible solutions

(ρ, v) of (0.1) with ρ ≥ c > 0.

This result proves that the space L∞ is ill-suited for well-posedness

of entropy solutions; moreover it makes us believe that admissibility

inequalities are not the “right” selection criteria. Of course, from The-

orem 0.1.1 arises a cascade of questions which point in many grey areas;

some of these open questions are at the core of this dissertation.

0.1.3. Motivating problems. In this paragraph, we summarize

the main issues which motivated the research presented in this thesis.

They do not exhaust the immeasurable amount of open problems in the

field of hyperbolic systems of conservation laws but they are indicative

of the topicality of this branch of mathematics. Moreover, as illustrated

by the following motivating questions, our concern is not only for the

novelty of the results such questions could lead to, but also for the

techniques involved.

• Existence results : the lack of satisfactory existence results for

weak solution of multi–dimensional systems of conservation

laws is a glaring symptom of the difficulties underlying the

theory. In particular, for bounded initial data, but of arbi-

trary size, only 2 × 2 systems in one–space dimension have
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been tackled by the method of compensated compactness. Is it

possible to prove some existence result at least for the partic-

ular system of isentropic gas dynamics?

• Well-posedness of admissible solutions : how to separate the

wheat from the chaff, the solutions observed in nature (the

physically admissible ones) from those that are only mathe-

matical artefacts is one of the central questions in the theory

of multi–dimensional systems of conservation laws. In particu-

lar, are entropy (admissibility) inequalities efficient as selection

criteria? Theorem 0.1.1 seems to give a negative answer to the

aforemethioned question. Should this inefficiency of entropy

inequalities believed to be a “universal law”?

• Ill-posedness for the isentropic Euler system: the surprising

result 0.1.1 from [DLS10] left unsolved the question whether

the system (0.1) directly allows for the construction of the

paper [DLS10]. Such a issue is connected not only to the

efficiency of admissible criteria to wheed out non–physical so-

lutions, but also to a development of the techniques on which

[DLS10] bases.

• Ill-initial data: relying only on [DLS10] one could argue that

phenomena of ill-posedness could be restricted to very partic-

ular initial data and that for a large class of them, one could

hope for a uniqueness theorem. We aimed at understanding

better for which initial data such constructions are possible.

In particular we questioned the case of Riemann initial data.

• Further applications : the new method introduced in [DLS09]

has been extended in a quite direct way to the isentropic sys-

tem of gas-dynamics. Another interesting question concerns

possible extensions and further applications of the idea com-

ing from [DLS10]; for instance could it be applied to other

systems of conservation laws?

• Suitable functional spaces : The inadeguacy of the spaces L∞ or

BV for multi–dimensional systems of conservation laws raises
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the issue of finding another functional space for the study of

weak solutions. But no satisfactory space has been suggested

until now.

0.2. Main results and outline of the thesis

This thesis consists of five chapters whose content we are going to

disclose.

The results here presented represent new developments and applica-

tions of the innovative approach introduced by De Lellis and Székelyhidi

in [DLS09]-[DLS11]. Their methods brought in the realm of fluid dy-

namics techniques coming from Gromov’s convex integration [Gro86]

and strategies from the theory for differential inclusions [KMS03] and

remarkably combined these tools to construct non-standard solutions

to the incompressible Euler equations and to the compressible ones as

well. Since our achievements strongly rely on this new approach, we

devote Chapter 1 to a brief compendium on the related background

theory. In Chapter 1 we aim at introducing the reader to the interest-

ing theory lying behind Theorem 0.1.1. In particular, we will explain

how Gromov’s work on partial differential relations and on convex in-

tegration together with Kirchheim, Müller and Sverák’s approach to

study the properties of nonlinear partial differential equations can con-

cur to construct solutions to equations from fluid dynamics. We will

also hint the analogies between problems in differential geometry, where

the idea of convex integration originally arose, and the incompressible

Euler equations. Finally, we will give an overview of the recent results

in fluid dynamics obtained as further advancements of De Lellis and

Székelyhidi’s ideas.

The Introduction together with the first chapter provides a pref-

ace to the core of the thesis: indeed, in the subsequent chapters, the

tools introduced in Chapter 1 will be applied to the compressible Euler

equations (0.1) allowing for new results.

Chapter 2 contains the first important theorem of the thesis:

Theorem 0.2.1 (Non-uniqueness of entropy solutions with arbi-

trary density). Let n ≥ 2. Then, for every periodic ρ0 ∈ C1 with

ρ0 ≥ c > 0 and for any given function p, there exist an initial ve-

locity v0 ∈ L∞ and a time T > 0 such that there are infinitely many
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bounded admissible solutions (ρ, v) of (0.1) on Rn × [0, T [, all with

density bounded away from 0.

This theorem is an improvement of Theorem 0.1.1: using the same

techniques as in Theorem 0.1.1, we can show that the same non-

uniqueness result holds for any choice of the initial density (see also

[Chi11]). This highlights that the main role in the loss of unique-

ness is due to the velocity field. While the proof of Theorem 0.1.1 re-

lies on a non-uniqueness result for the incompressible Euler equations,

and hence yields “piecewise incompressible” solutions, Theorem 0.2.1

is achieved by applying directly to (0.1) De Lellis and Székelyhidi’s

ideas. Yet, the solutions constructed in Theorem 0.2.1 allow for wild

oscillations only in the velocity. The general case which would include

wild oscillations in the density as well is presently under investigation

(cf. [CDLK]).

The initial data v0 in Theorem 0.2.1 are ad hoc constructed and

in principle could be very irregular. A surprising corollary of De Lellis

and Székelyhidi’s result on the incompressible Euler equations is that

a classical Riemann datum follows in the class of initial data allowing

for very wild solutions:

Theorem 0.2.2 (Non-standard solutions of a Riemann problem).

For certain choices of the pressure law p with p′ > 0 and for some

specific Riemann initial data there exist infinitely many bounded en-

tropy solutions of the compressible Euler equations (0.1) in two space

dimensions, all with density bounded away from 0.

The proof of Theorem 0.2.2 is the content of Chapter 3. Theo-

rem 0.2.2 entails that the classical entropy inequality does not ensure

uniqueness of the solutions even for this very natural initial condition.

Though the solutions of Theorem 0.2.2 are very irregular, it is rather

unclear which could be a good space for well-posedness. Let us note

that among the pressure laws for which Theorem 0.2.2 holds, there

is the physically relevant pressure p(ρ) = ρ2. Indeed the quadratic

pressure is predicted from classical kinetic theory in two space dimen-

sions. The inspiration for such a result came from a recent paper by

Székelyhidi [Sz1], where the vortex sheet initial datum for the incom-

pressible Euler system is investigated. In Chapter 3 we also present

an alternative proof of Székelyhidi’s result. However, the different role



0.2. MAIN RESULTS AND OUTLINE OF THE THESIS 11

of the pressure term in the compressible Euler system with respect to

the incompressible one requires new ideas and constructions involved

in the proof of Theorem 0.2.2.

In Chapter 4 we restrict our attention to the 1-dimensional Rie-

mann problem for the compressible Euler equations with the same

choice of initial data allowing for Theorem 0.2.2 (which indeed de-

pend only on one space variable): we show that such a problem admits

unique self-similar solutions (even with the same choice of pressure law

as in Theorem 0.2.2). The uniqueness of self–similar solutions is proven

by direct construction of the admissible wave fun. Theorem 0.2.2 shows

that as soon as the self–similarity assumption runs out, uniqueness is

lost.

Chapter 5 is devoted to the last main result of the thesis:

Theorem 0.2.3 (Existence of weak solution with arbitrary momen-

tum). Let ρ0 ∈ C1 and v0 ∈ L2. Then there exists a weak solution (ρ, v)

(in fact, infinitely many) of the Cauchy problem for the compressible

Euler equations (0.1) with intial data (ρ0,m0).

Theorem 0.2.3 is just a first step towards the most desirable result

of existence of weak solutions of (0.1) starting out from any given

bounded initial density and momentum. Such an outcome would be

of great impact, since so far no existence result for weak solutions of

multi-dimensional hyperbolic systems of conservation laws with generic

initial data is available. Of course Theorem 0.2.3 is able to deal only

with regular initial densities, but the more general result is believed to

hold building on the improvement of Theorem 0.2.1 (see [CDLK]).

The thesis is conceived in such a way that every chapter can be

read both as the continuation of what precedes or independently.





CHAPTER 1

The h–principle and convex integration

The h-principle is an umbrella–concept forged by Gromov in 1969

([Gro86]) to unify a series of counterintuitive results in topology and

differential geometry. This principle is a strong property characterizing

the set of solutions of differential relations : a differential relation is soft

or abides by the h-principle if its solvability can be determined on the

basis of purely homotopic calculus. By differential relation we mean

a constraint on maps between two manifolds and on their derivatives

as well. PDEs are examples of differential relations. It is striking that

many differential relations, mostly rooted in differential geometry and

topology, are soft. Two famous examples of the softness phenomenon

are the Nash-Kuiper C1 isometric embedding theory and the Smale’s

sphere eversion.

Why are we interested in the h–principle? It is surprising how the

results on the isentropic Euler equations of gas dynamics presented in

this thesis are based on a revisited h-principle. This new variant of

h-principle has been first devised by De Lellis and Székelyhidi for the

incompressible Euler equations (see [DLS09]) and lead to new develop-

ments for several equations in fluid dynamics as the ones of this thesis.

Indeed, even if the original h-principle of Gromov pertains to various

problems in differential geometry, De Lellis and Székelyhidi showed in

their groundbreaking paper [DLS09] that the same principle and sim-

ilar methods could be applied to problems in mathematical physics.

The work by De Lellis and Székelyhidi found its breeding ground in

the important paper by Müller and Švérak [MS03], where they ex-

tended the method of convex integration (introduced by Gromov to

prove the h-principle) to Lipschitz mappings and noticed the strong

connections between the existence theory for differential inclusions and

the h-principle.

We do not pretend here to give an account of the extremely wide

literature on this topic, but we rather prefer to illustrate some specific

13
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instances of the h-principle as a jumping off point for a general un-

derstanding of the subject. In particular, we will spend some words

on the method of convex integration which will be recalled in the next

chapters for the arguments of our constructions.

1.1. Partial differential relations and Gromov’s h-principle

In this section we will introduce the idea behind the h-principle by

illustrating Gromov’s original formalism.

A partial differential relation R is any condition imposed on the par-

tial derivatives of an unknwon function. A solution ofR is any function

which satisfies this relation. Any differential relation has an underly-

ing algebraic relation which one gets by substituting derivatives by

new independent variables. A simple example of differential relations

are ordinary differential equations or inequalities. We can consider,

for instance, the differential equation y′(x) = y2(x); then the under-

lying algebraic relation is obtained by introducing the new variable z

in place of the derivative y′: the resulting relation is simply z = y2

seen as a constraint in R3 with coordinates (x, y, z). In this language,

a solution of the corresponding algebraic relation is called a formal so-

lution of the original differential relation R. The difference between

genuine and formal solutions in this specific example becomes clear as

soon as we interpret genuine solutions as functions (in fact sections)

f : R → R3, f(x) = (x, y(x), y′(x)) with y′(x) = y2(x) (this amounts

to using the language of jets which we do not want to get into herein).

Clearly, the existence of a formal solution is a necessary condition for

the solvability of a differential relation R. In the previous example,

formal solutions are functions g : R → R3, g(x) = (x, y(x), z(x)) with

z(x) = y2(x). The philosophy behind the h-principle consists in the

following: before trying to solve R one should check whether R admits

a formal solution. The problem of finding formal solutions is of purely

homotopy-theoretical nature. It could seem, at first thought, that exis-

tence of a formal solution cannot be sufficient for the genuine solvability

of R. Indeed, finding a formal solution is an algebraic problem which

is a dramatical simplification of the original differential problem. Thus

it came as a big surprise when it was discovered in the second half

of the twentieth cetury that there exist large and geometrically inter-

esting classes of differential relations for which the solvability of the

formal problem is sufficient for genuine solvability. Moreover, for many
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of these relations the spaces of formal and genuine solutions turned out

to be much more closely related than one could expect. This property

was formalized by Gromov [Gro86] as the following:

• Homotopy principle (h-principle). A differential relation

R satisfies the h-principle, or the h-principle holds for solutions

of R, if every formal solution of R is homotopic to a genuine

solution of R through a homotopy of formal solutions.

The term “h-principle” was introduced and popularized by M. Gro-

mov in his book [Gro86]. It is now clear that the h-principle does not

hold for the differential equation y′(x) = y2(x) (we consider global so-

lutions), while we could prove the h-principle for the equation y′(x) =

y(x) since every formal solution f(x) = (x, y(x), y(x)) can be joined

via a homotopy Ht of formal solutions to the genuine solution h(x) =

(x, exp(x), exp(x)) simply choosing Ht(x) = (1− t)f(x) + th(x). These

examples are of course trivial and not typical of situations where the

h-principle is useful. In fact, the h-principle is rather useless in the

classical theory of (ordinary or partial) differential equations because

there it fails or holds for some trivial, or at least well known reasons,

as in the above examples.

By contrast, for many differential relations rooted in topology and

geometry the notion of h-principle appeared to be fundamental. There

are several amazing unexpected cases in which the h-priciples holds. A

particular problem which abydes by the h-principle can also be called

soft. As already mentioned, the softness phenomena was first discov-

ered in the fifties by Nash [Nas54] for isometric C1-immersions and

by Smale [Sma58] for differential immersions. However, instances of

the soft problems appeared earlier. In his dissertation and later in his

book [Gro86], Gromov transformed Smale’s and Nash’s ideas into two

powerful methods for solving partial differential relations: continuous

sheaves method and the convex integration method. In the next sec-

tion we will give an overview on Nash’s contruction, where the “spirit”

of convex integration originally arose.

In the language pertainig to Gromov, the idea lying behind con-

vex integration can be illustrated through an easy example which is

suggested in [EM02]. Let us call a path

r : I = [0, 1]→ R2, r(t) := (x(t), y(t)),
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short if x′(t)2 + y′(t)2 < 1 a.e. t ∈ I. The inequality defining a short

path is nothing else that a particular instance of partial differential

relation. It easy to prove that any short path can be C0-approximated

by a solution of the equation x′(t)2 + y′(t)2 = 1 a.e. t ∈ I, which is

another differential relation. This implies that the space of solutions

I → R2 of the differential equation x′(t)2 + y′(t)2 = 1 is C0-dense in

the space of solutions of the differential inequality x′(t)2 + y′(t)2 < 1.

This elementary example illuminates the following idea at the core of

convex integration: given a first order differential relation for maps

I → Rq, it is useful to consider a “relaxed” differential relation which

is the pointwise convex hull of the original relation

1.2. The h-principle for isometric embeddings

1.2.1. Isometric embedding problem. Let Mn be a smooth

compact manifold of dimension n ≥ 2, equipped with a Riemann-

ian metric g. An isometric immersion of (Mn, g) into Rm is a map

u ∈ C1(Mn;Rm) such that the induced metric agrees with g. In local

coordinates this amounts to the system

(1.1) ∂iu · ∂ju = gij

consisting of n(n + 1)/2 equations in m unknowns. If in addition u

is injective, it is an isometric embedding. Analougously, one defines a

short embedding as a map u : Mn → Rm such that the metric induced

on M by u is shorter than g. In coordinates this translates into (∂iu ·
∂ju) ≤ (gij) in the sense of quadratic forms. Geometrically being short

means that the embedding shrinks the length of curves. Equally, being

isometric means that the length of curves is preserved.

The well-known result of Nash and Kuiper says that any short em-

bedding in codimension one can be uniformly approximated by C1

isometric embeddings.

Theorem 1.2.1 (Nash-Kuiper theorem). If m ≥ n + 1, then any

short embedding can be uniformely approximated by isometric embed-

dings of class C1.

Note that Theorem 1.2.1 is not merely an existence theorem, but it

shows that there exists a huge (essentially C0-dense) set of solutions.

Such a density of solutions is reminiscent of the example on short paths

presented in the previous section. This type of abundance of solutions
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is a central aspect of Gromov’s h-principle, for which the isometric em-

bedding problem is a primary example. Indeed, we could ask whether

there exists a regular homotopy ft : S2 → R3 which begins with the

inclusion f0 of the unit sphere and ends with an isometric immersion f1

into the ball of radius 1/2. One of the many counterintuitive implica-

tions of Nash and Kuiper’s theorem is that we can answer positively to

this question in case of C1-immersions: S2 can be C1 isometrically em-

bedded into an arbitrarily small ε-ball in Euclidean 3-space (for small

ε there is no such C2). The h-principle for isometric embeddings is

rather striking, especially when compared to the classical rigidity re-

sult concerning the Weyl problem: if (S2, g) is a compact Riemannian

surface with positive Gauss curvature and u ∈ C2 is an isometric im-

mersion into R3, then u is uniquely determined up to a rigid motion.

Thus it is clear that isometric immersions have a completely different

qualitative behaviour at low and high regularity (i.e. below and above

C2).

The proof of Theorem 1.2.1 involves an iteration technique called

convex integration.

1.2.2. Nash-Kuiper’s general scheme. The general scheme of

the construction upon which the main results of this thesis build are

strongly inspired by the method of Nash and Kuiper. It is then in-

teresting to sketch here the Nash-Kuiper scheme. For simplicity we

assume g to be smooth. Let us set some notation: given an immersion

u : Mn → Rm, we denote by u]e the pullback of the standard Euclidean

metric e through u, so that in local coordinates

(u]e)ij = ∂iu · ∂ju.

Moreover we define

n∗ =
n(n+ 1)

2
.

A Riemannian metric g on Rn is said to be primitive if g = α(x)(dl)2,

where l = l(x) is a linear function on Rn and α is a non-negative

function with compact support. A Riemannian metric g on a manifold

M is called primitive if there exists a local parametrization φ : Rn →
U ⊂M such that supp g ⊂ U and φ]g is a primitive metric on Rn.

For the sake of clarity, we will give the ideas for the proof of the

following simplified version of Theorem 1.2.1
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Theorem 1.2.2. Let Ω be an open bounded subset of Rn equipped

with the Riemannian metric g and let u be a smooth strictly short

immersion of (Ω, g) into (Rm, e), with m ≥ n + 2. Then, for every

ε > 0 there exists a C1 isometric immersion ũ : Ω ↪→ Rm such that

‖u− ũ‖C0(Ω) < ε, i.e.

• ũ ∈ C1(Ω);

• ∂iũ · ∂jũ = gij in Ω;

• ‖u− ũ‖C0(Ω) < ε.

The proof of Theorem 1.2.2 is based on an iteration of stages, and

each stage consists of several steps whose purpose we are going to

unravel.

Starting from u one defines a first perturbation as follows

u1(x) := u(x) +
a(x)

λ
(sin(λx · ξ)ζ(x) + cos(λx · ξ)η(x)) ,

where λ ∈ R, ξ ∈ Rn and ζ, η are unit normal vectors to u(Ω), i.e.

• ζ ⊥ η and |ζ| = |η| = 1;

• ζ ⊥ ∂iu & η ⊥ ∂iu for i = 1, . . . , n.

Let us note that the condition of isometry ∂iũ · ∂jũ = gij can be equiv-

alently written in terms of the matrix differential ∇u = (∂ju
i)ij as

∇ũT∇ũ = g. Now, by easy computations one obtains:

∇u1(x) = ∇u(x)

+ a(x) (cos(λx · ξ)ζ(x)⊗ ξ − sin(λx · ξ)η(x)⊗ ξ)

+ O

(
1

λ

)
,

and hence

(∇u1)T∇u1 = (∇u)T∇u+ a2(x)ξ ⊗ ξ + O

(
1

λ

)
.

Picture 1 gives a geometric intuition of the perturbation introduced in

u1 in the case n = 1.

u

Figure 1. Geometric picture
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Now, the purpose of a stage is to correct the error g − u]e =

u − (∇u)T∇u. In order to achieve this correction, the error is locally

decomposed into a sum of primitive metrics as follows

g − (∇u)T∇u =
n∗∑
k=1

a2
kξk ⊗ ξk (locally).

Therefore, by iterating the procedure illustrated in the construction of

u1, i.e. by adding repeatedly ”spirally perturbations” to u it should be

possible to achieve uN such that

• (∇uN)T∇uN = g + O
(

1
λ

)
;

• ‖∇uN −∇u‖C0(Ω) =
∑

k ‖ak‖C0(Ω)+O
(

1
λ

)
∼
∥∥g − (∇u)T∇u

∥∥1/2

C0(Ω)
;

• ‖uN − u‖C0(Ω) = O
(

1
λ

)
.

Let us draw the attention to the fact that, when introducing a per-

turbation as in u1, a, ζ and η may vary as x varies but that is not

the case for ξ which is a fixed vector: this prevents us from correcting

the error simply by taking the eigenvectors of g(x) − ∇u(x)T∇u(x).

This involves the use of a “partition of unity” of the set of positive

definite matrices. which we will not expound here. The previous con-

siderations show which kind of estimates are involved when adding a

primitive metric. Hence, the general Nash-Kuiper’s scheme lies in the

following iterations:

• step: a step involves adding one primitive metric; in other

words the goal of a step is the metric change

u]e→ u]e+
∑

a2ξ ⊗ ξ;

• stage: a stage consists in decomposing the error into primitive

metrics and adding them successively in steps.

The number of steps in a stage equals the number of primitive metrics

in the above decomposition which interact. This equals n∗ for the

local construction and (n+ 1)n∗ for the global construction. Therefore

iterating the estimates for one step over a single stage and then over

the stages leads to the desired result.

1.2.3. Connection to the Euler equations. There is an inter-

esting analogy between isometric immersions in low codimension and

the incompressible and compressible Euler equations. In [DLS09] a

method, which is very closely related to convex integration, was intro-

duced to construct highly irregular energy-dissipating solutions of the
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incompressible Euler equations. In general the regularity of solutions

obtained using convex integration agrees with the highest derivatives

appearing in the equations. Being in conservation form, the “expected”

regularity space for convex integration for the incompressible Euler

equations should be C0. In [DLS09] a weaker version of convex inte-

gration was applied, to produce solutions in L∞ (see also [DLS10] for a

slightly better space) and to show that a weak version of the h-principle

holds (even if there is no homotopy there). Recently, De Lellis and

Székelyhidi have proved the existence of continuous and even Hölder

continuous solutions which dissipate the kinetic energy. Moreover the

same method devised in [DLS10] led to new developments in fluid

dynamics in particular for the Euler system of isentropic compressible

gas dynamics. When comparing the Euler equations (both compress-

ible and incompressible) and the Nash-Kuiper result, the reader should

take into account that, in this analogy, the velocity field of the Euler

equations corresponds to the differential of the embedding in the iso-

metric embedding problem. All these aspects are surveyed in the note

[DLS11].

The understanding of Nash’s construction is in a way a starting

point for the approach developed by De Lellis and Székelyhidi in [DLS09].

As in the case of Nash, the solution of the incompressible Euler equa-

tions is generated by an iteration scheme: at each stage of this iteration

a subsolution is produced from the previous one by adding some special

perturbations, which oscillate quite fast. Hence, the final result of the

iteration scheme is the superposition of infinitely many perturbations

which converge suitably to an exact solution.

1.3. The h-principle and the equations of fluid dynamics

In a recent note [DLS11], De Lellis and Székelyhidi disclosed the

analogy between recent outcomes in fluid dynamics (included the ones

presented in this thesis) and some h-principle-type results in differen-

tial geometry, as the previously presented Nash-Kuiper Theorem. More

precisely, the survey by De Lellis and Székelyhidi aims at showing how

the theorems in fluid mechanics represent a suitable variant of Gro-

mov’s h-principle. In this section, we will retrace the main points of

[DLS11] so to place the results of this thesis in a more general context.



1.3. THE H -PRINCIPLE AND THE EQUATIONS OF FLUID DYNAMICS 21

1.3.1. The general framework. Kirchheim, Müller and Šverák

in [KMS03] outlined an approach to study the properties of nonlinear

partial differential equations through the geometric properties of a set

in the space of m × n matrices which is naturally associated to the

equation. This approach draws heavily on Tartar’s work on oscillations

in nonlinear PDEs and compensated compactness and on Gromov’s

work on partial differential relations and convex integration.

What does this method consist of? Following Tartar’s framework

[Tar79], many nonlinear systems of PDEs for a map u : Ω ⊂ Rn → Rd

can be naturally espressed as a combination of a linear system of PDEs

of the form

(1.2)
n∑
i=1

Ai∂iz = 0 in Ω

and a pointwise nonlinear constraint

(1.3) z(x) ∈ K a.e. x ∈ Ω,

where

• z : Ω ⊂ Rn → Rd is the unknown state variable;

• Ai are constant m× d matrices;

• K ⊂ Rd is a closed set.

Plane waves are solutions of (1.2) of the form

(1.4) z(x) = ah(x · ξ),

where h : R → R. Then, one defines the wave cone Λ related to one–

dimensional solutions and given by the states a ∈ Rd such that for any

choice of the profile h the function (1.4) solves (1.2):

(1.5) Λ :=

{
a ∈ Rd : ∃ξ ∈ Rn \ {0} with

n∑
i=1

ξiAia = 0

}
.

Equivalently Λ characterizes the directions of one–dimensional oscilla-

tions compatible with (1.2). Given a cone Λ we say that a set S is

Λ-convex if for any two points A,B ∈ S with B − A ∈ Λ the whole

segment [A,B] belongs to S. The Λ-convex hull of K, KΛ, is the small-

est Λ-convex set containing K. In some sense the Λ-convex hull KΛ

constitutes a relaxation of the initial set K. Then one defines subsolu-

tions as solutions of the relaxed system, i.e. as solutions z of the linear

relations (1.2) which satisfy the relaxed condition z ∈ KΛ. Already
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at this stage, the concept of subsolutions is reminiscent of the previ-

ously introduced concept of short maps for the isometric embedding

problem. More precisely, equations (1.1) which define an isometric im-

mersion u can be formulated for the deformation gradient A := ∇u as

the coupling of the linear constraint

curlA = 0

with the nonlinear relation

ATA = g.

With this interpretation, short maps are “subsolutions” to the isometric

embedding problem.

The method of convex integration introduced by Gromov repre-

sents a generalization of Nash-Kuiper’s result and is based on the up-

shot that (1.2)-(1.3) admit many interesting solutions if KΛ is “big

enough”. Indeed, the key point of convex integration is to reintroduce

oscillations by adding suitable localized versions of (1.4) to the subso-

lutions and to recover a solution of (1.2)-(1.3) iterating this process.

The idea of adding oscillatory perturbations can be implemented either

in an “implicite” way by the so called Baire category method or in a

more constructive way. Both approaches provide the key to prove some

h-principle-type results for systems of nonlinear evolutionary partial

differential equations: they allow to show that, under suitable assump-

tions on the relaxed set KΛ, the existence of subsolutions leads to the

existence of solutions.

1.3.1.1. Baire category method. The Baire category method is a

method of enforcing the idea of convex integration and relies on the

surprising fact that, in a Baire generic sense, most solutions of the

“relaxed system”, i.e. most subsolutions, are actually solutions of the

original system. Here, we recall the main steps underlying this ap-

proach following the “jargon” introduced by Kirchheim in [Kir03] (see

also [DLS11]). In Kirchheim’s formalisation, the space of subsolutions

arises from a nontrivial open set U ⊂ Rd (U plays the role of KΛ in the

previous section) satisfying the following perturbation property.

Perturbation Property (P): There is a continuous function ε :

R+ → R+ with ε(0) = 0 with the following property: for every z ∈ U
there is a sequence of solutions zj ∈ C∞c (B1) of (1.2) such that
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• zj ⇀ 0 weakly in L2(Rn);

• z + zj(x) ∈ U ∀x ∈ Rn;

•
∫
|zj(x)|2 dx ≥ ε(dist(z,K)).

The set U should be thought of as a relaxation of the initial set K,

which, according to Kirchheim’s jargon, “is stable only near K”. Next,

define X0 as follows

X0 := {z ∈ C∞c (Ω) : z satisfies (1.2) and z(x) ∈ U for all x ∈ Ω} ,

so that X0 is the set of smooth compactly supported subsolutions of

(1.2)-(1.3). Thanks to the perturbation property, X0 consists of func-

tions which are perturbable in an open subdomain O ⊂ Ω. Then let X

be the closure of X0 with respect to the weak L2-topology. Assuming

that K is bounded, the set X0 is bounded in L2 and the topology of

weak L2 convergence is metrizable on X, making it into a complete

space. Denote its metric by dX(·, ·). An easy covering argument, to-

gether with property (P), results in the following lemma:

Lemma 1.3.1. There is a continuous function ε̃ : R+ → R with

ε̃(0) = 0 such that for every z ∈ X0 there is a sequence zj ∈ X0 with

zj
dX→ z in X and∫

Ω

|zj − z|2 dx ≥ ε̃

(∫
Ω

dist(z(x), K)dx

)
.

Since the map I : z 7→
∫

Ω
|z|2 dx is a Baire 1-function on X, an easy

application of the Baire category theorem gives that the set

Y := {z ∈ X : I is continuous at z}

is residual in X. By virtue of the previous lemma we can prove that

z ∈ Y implies z(x) ∈ K for almost every x ∈ Ω:

Theorem 1.3.2. Assuming the perturbation property to hold, the

set

Z := {z ∈ X : z(x) ∈ K a.e. x ∈ Ω}
is residual in X.

Proof . In order to prove Theorem 1.3.2 it suffices to show that

Y ⊂ Z. We will proceed by contradiction. So, let z ∈ Y and let

zj ∈ X0 such that zj
dX→ z in X. Now, let us assume by absurd that∫

Ω
dist(z(x), K)dx =: δ > 0. Thanks to lemma 1.3.1 we can pass (up
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to a diagonal argument) to a new sequence z̃j with z̃j
dX→ z and such

that

(1.6)

∫
Ω

|zj − z̃j|2 dx ≥ ε̃

(∫
Ω

dist(zj(x), K)dx

)
.

Since z is a point of continuity of I, it follows that zj → z strongly in

L2 as well as z̃j → z strongly in L2. This implies in particular that

(1.7)

∫
Ω

|zj − z̃j|2 dx→ 0 as j → +∞.

Moreover the strong convergence in L2 of the sequence zj to z together

with the hypothesis of absurd, allow us assume to that, from a certain

j on,
∫

Ω
dist(zj(x), K)dx > δ/2 > 0 whence ε̃

(∫
Ω

dist(zj(x), K)dx
)
>

α > 0 for every j > j and for some α. This inequality together with

(1.7) contradicts (1.6).

�

1.3.1.2. Constructive convex integration. In the previous section we

presented the so called Baire category method, which is in some sense

non contructive. However, the same idea of adding oscillatory pertur-

bations can be implemented in a constructive way as well. In a nutshell

the idea is to define a sequence of subsolutions zk ∈ KΛ recursively as

(1.8) zk+1(x) = zk(x) + Zk(x, λkx),

where

Zk(x, ξ)

is a periodic plane-wave (see (1.4)) solution of (1.2) in the variable ξ,

parametrized by x and λk is a large frequency to be chosen. The aim

is to choose the plane-wave Zk and the frequency λk iteratively in such

a way that

• zk continues to satisfy (1.2) (strictly speaking this requires an

additional corrector term in the scheme (1.8));

• zk belongs to the relaxed constitutive set KΛ;

• zk → z in L2(Ω) with z ∈ K a.e..

The convergence of this constructive scheme is improved by choosing

the frequencies λk higher and higher. On the other hand clearly any

(fractional) derivative or Hölder norm of zk gets worse by such a choice

of λk. The best regularity corresponds to the slowest rate at which the

frequencies λk tend to infinity while still leading to convergence.
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1.3.2. Non–standard solutions in fluid dynamics.

1.3.2.1. Incompressible Euler equations: non-uniqueness results. The

first and leading example of the h-principle in the realm of fluid dy-

namics is due to De Lellis and Székelyhidi and pertains to the incom-

pressible Euler equations:

(1.9)


divxv = 0

∂tv + divx (v ⊗ v) +∇xp = 0

v(·, 0) = v0

.

Here the unknowns v and p are, respectively, a vector field and a

scalar field defined on Rn × [0, T ). These fundamental equations were

derived 250 years ago by Euler and since then have played a major role

in fluid dynamics. There are several outstanding problems connected to

(1.9). In particular, weak solutions are known to be badly behaved in

the sense of Hadamard’s well-posedness: in the groundbreaking paper

[Sch93] proved the existence of a nontrivial weak solution compactly

supported in time. Thanks to the intuition of De Lellis and Székelyhidi

such a nonuniqueness result has been explained as a suitable variant

of the original h-principle by use of the method of convex integration.

Moreover, such an approach allowed them to go way beyond the result

of Scheffer and it has lead to new developments for several equations

in fluid dynamics included the one presented in this work.

As already mentioned, the first nonuniqueness result for weak so-

lutions of (1.9) is due to Scheffer in [Sch93]. The main theorem of

[Sch93] states the existence of a nontrivial weak solution in L2(R2×R)

with compact support in space and time. Later on Shnirelman in

[Shn97] gave a different proof of the existence of a nontrivial weak

solution in space-periodic setting and with compact support in time.

In these constructions it is not clear wheter the solution belongs to

the energy space. In the paper [DLS09], De Lellis and Székelyhidi

provided a relatively simple proof of the following stronger statement.

Theorem 1.3.3 (Non-uniqueness of weak solutions to the incom-

pressible Euler equations). There exist infinitely many compactly sup-

ported weak solutions of the incompressible Euler equations (1.9) in any

space dimension greater or equal to 2. In particular there are infinitely

many solutions v ∈ L∞ ∩ L2 to (1.9) for v0 = 0 and arbitrary n ≥ 2.

The proof of Theorem 1.3.3 is based on the notion of subsolution.

The spirit behind the notion of subsolutions in this context is the same
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as the one outlined in the previous sections for general evolutionary par-

tial differential equations. On the other hand, the definition of subsolu-

tion for the incompressible Euler system (1.9) can be made explicit and

can be motivated in terms of the Reynold stress (see [DLS11] for more

details on the connection between Reynold stress and subsolutions). In

particular, if one writes (1.9) as the coupling of a linear system of PDEs

and a pointwise non-linear constraint (as in (1.2)-(1.3)), then subsolu-

tions are solutions of this linear system which belong pointwise to the

convex hull of the non-linear constraint set. In other words:

Definition 1.3.4 (Subsolution of incompressible Euler). Let e ∈
L1
loc(Rn× (0, T )) with e ≥ 0. A subsolution to the incompressible Euler

equations with given kinetic energy density e is a triple

(v, u, q) : Rn × (0, T )→ Rn × Sn×n0 × R

with the following properties:

• v ∈ L2
loc, u ∈ L1

loc, q is a distribution;

•

(1.10)

{
divxv = 0

∂tv + divxu+∇xq = 0

in the sense of distributions;

•
v ⊗ v − u ≤ 2

n
eId a.e.

Observe that subsolutions automatically satisfy 1
2
|v|2 ≤ e a.e. If in

addition, the equality sign 1
2
|v|2 = e a.e. holds true, then the v compo-

nent of the subsolution is in fact a weak solution of the incompressible

Euler equations. From the previous definition we can grasp even better

the analogy between the velocity field of the Euler equations and the

differential of the embedding in the isometric embedding problem and

hence between subsolutions and short maps. Also the heuristic behind

the two results shows striking similarities. The key point in De Lellis

and Székelyhidi’s approach to prove Theorem 1.3.3 is that, starting

from a subsolution, an appropriate iteration process reintroduce the

high frequencies oscillations. In the limit of this process one obtains

weak solutions to (1.9). However, since the oscillations are reintroduced

in a very non-unique way, in fact this generates several solutions from

the same subsolution. The relevant iteration scheme has been already
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outlined in the general setting in Section 1.3.1. The following theorem

comes from Proposition 2 in [DLS10] and is a precise formulation of

the previous discussion.

Theorem 1.3.5 (Subsolution criterion). Let e ∈ C(Rn × (0, T ))

and (v, u, q) a smooth, strict subsolution, i.e.

(v, u, q) ∈ C∞(Rn × (0, T )) satisfies (1.10)

and

(1.11) v ⊗ v − u < 2

n
eId a.e. on Rn × (0, T ).

Then there exist infinitely many weak solutions v ∈ L∞loc(Rn× (0, T )) of

the incompressible Euler equations (1.9) with pressure p = q − 2
n
e and

such that
1

2
|v|2 = e

for a.e. (x, t). Infinitely many among these belong to C((0, T ), L2). If

in addition

v(·, t) ⇀ v0(·) in L2
loc(Rn) as t→ 0,

then all the v’s so constructed solve (1.9).

The previous results show that weak solutions of the Euler equa-

tions are in general highly non-unique. Moreover the kinetic energy

density 1
2
|v|2 can be prescribed as an independent quantity. Since

classical C1 solutions of the incompressible Euler equations are char-

acterized by conservation of the total kinetic energy

d

dt

∫
Rn

|v|2

2
(x, t)dx = 0,

one can complement the notion of weak solution to (1.9) with several

admissibility criteria defined as “relaxations” (in a proper sense) of

the energy conservation. Let us denote by L2
w(Rn) the space L2(Rn)

endowed with the weak topology. We recall that any weak solution

of (1.9) can be modified on a set of measure zero so to get v ∈
C([0, T ), L2

w(Rn)). Consequently v has a well-defined trace at every

time. This allows to introduce the following admissibility criteria for

weak solutions:

(a) ∫
|v|2 (x, t)dx ≤

∫
|v0|2 (x)dx for every t.
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(b) ∫
|v|2 (x, t)dx ≤

∫
|v|2 (x, s)dx for every t > s.

(c) If in addition v ∈ L3
loc, then

∂t
|v|2

2
+ div

((
|v|2

2
+ p

)
v

)
≤ 0

in the sense of distributions.

The first two criteria are of course suggested by the conservation of

kinetic energy of classical solutions, while condition (c) has been pro-

posed for the first time by Duchon and Robert in [DR00] and it re-

sembles the admissibility criteria which are popular in the literature on

hyperbolic conservation laws. However, none of these criteria restore

the uniqueness of weak solutions.

Theorem 1.3.6 (Non-uniqueness of admissible weak solutions to

the incompressible Euler equations). There exist initial data v0 ∈ L∞∩
L2 for which there are infinitely many bounded solutions of (1.9) which

are strongly L2-continuous and satisfy (a), (b) and (c).

The conditions (a), (b) and (c) hold with the equality sign for in-

finitely many of these solutions, whereas for infinitely many other they

hold as strict inequalities.

This theorem has been stated and proved in [DLS10]. The sec-

ond part of the statement generalizes the intricate construction of

Shnirelman in [Shn97], which produced the first example of a weak

solution in 3d of (1.9) with strict inequalities in (a) and (b).

1.3.2.2. Incompressible Euler equations: h-principle. De Lellis and

Székelyhidi in [DLS12] were able to extend the previous results: they

devised a new iteration scheme which produces continuous and even

Hölder continuous solutions on T3. Indeed, for the incompressible Euler

equations, the natural space for convex integration is C0. The method

used in [DLS09] producing solutions in L∞ was a weak form of convex

integration. The new iteration scheme of [DLS12] is closer to the

approach of Nash [Nas54] for the isometric embedding problem.

Recently, A. Choffrut [Cho12] established optimal h-principles in

two and three space dimensions. More specifically he identifies all
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subsolutions (defined in a suitable sense) which can be approximated in

the H1-norm by exact solutions of the incompressible Euler equations.

For the precise statement we refer the reader directly to [Cho12].

1.3.2.3. Incompressible Euler equations: Wild initial data. The ini-

tial data v0 constructed in Theorem 1.3.6 are obviously not regular,

since for regular initial data the local existence theorems and the weak-

strong uniqueness (see [BDLS11]) ensure local uniqueness under con-

dition (a). One might therefore ask how large is the set of these “wild”

initial data. A consequence of De Lellis and Székelyhidi’s method is

the following density theorem proved by Székelyhidi and Wiedemann

in [SW11].

Theorem 1.3.7 (Density of wild initial data). The set of initial

data v0 for which the conclusions of Theorem 1.3.6 holds is dense in

the space of L2 solenoidal vectorfields.

Another surprising corollary is that the usual shear flow is a “wild

initial datum”. More precisely, if we consider the following solenoidal

vector field in R2

(1.12) v0(x) :=

{
(1, 0) if x2 > 0,

(−1, 0) if x2 < 0,

then:

Theorem 1.3.8 (Wild vortex sheet). For v0 as in (1.12), there are

infitely many weak solutions of (1.9) on R2 × [0,∞) which satisfy (c).

This theorem has been proven in [Sz1] using Proposition 1.3.5 and

hence the proof amounts to showing the existence of a suitable subso-

lution. We will further discuss this result in Chapter 3.

1.3.2.4. Incompressible Euler equations: global existence of weak so-

lutions. A further application of Theorem (1.3.5) is due to Wiedemann

[Wie11]. E. Wiedemann considered an arbitrary initial datum v0 ∈
L2
loc(Rn) and constructed a smooth triple (v, u, q) ∈ C∞(Rn × (0, T ))

which solves (1.10) with initial datum v0 and is a subsolution for a

proper choice of the profile of e. In particular, by constructing a subso-

lution with bounded energy, Wiedemann in [Wie11] recently obtained

the following:
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Corollary 1.3.9 (Global existence for weak solutions). Let v0 ∈
L2(Tn) be a solenoidal vector field. Then there exist infinitely many

global weak solutions of (1.9) with bounded energy.

1.3.2.5. Active scalar equations. Active scalar equations are a class

of systems of evolutionary partial differential equations in n space di-

mensions. The unknowns are the “active” scalar function θ and the

velocity field v, which, for simplicity, is a divergence-free vector field.

The equations are

(1.13)

{
divxv = 0

∂tθ + v · ∇xθ = 0

and v and θ are coupled by an integral operator, namely

(1.14) v = T [θ].

Several systems of partial differential equations in fluid dynamics fall

into this class. One can rewrite (1.13)-(1.14) in the spirit of Section

1.3.1, as a system of linear relations

(1.15)


divxv = 0

∂tθ + divx q = 0

v = T [θ]

coupled with the nonlinear constraint

(1.16) q = θv.

The initial value problem for the system (1.15)-(1.16) amounts to pre-

scribing θ(x, 0) = θ0(x). As described in Section 1.3.1 a key point is

that the linear relations (1.15) admit a large set of plane wave solu-

tions. Note that these linear relations are not strictly speaking of the

form (1.2) and in order to define a suitable analogue of the plane waves

in this setting, the linear operator T can be assumed to be transla-

tion invariant. Let m(ξ) be its corresponding Fourier multiplier. Then

one requires in addition that m(ξ) is 0−homogeneous so that (1.15)

has the same scaling invariance as (1.2). Furthermore, the constraint

divx v = 0 implies that ξ · m(ξ) = 0. In spite of this restriction,

several interesting equations fall into this category. Perhaps the best
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known examples are the surface quasi geostrophic and the incompress-

ible porous medium equations, corresponding respectively to

m(ξ) = i |ξ|−1 (−ξ2, ξ1) and(1.17)

m(ξ) = |ξ|−2 (ξ1ξ2,−ξ2
1).(1.18)

In [CFG09] Cordoba, Faraco and Gancedo proved the following theo-

rem.

Theorem 1.3.10. Assume m is given by (1.18). Then there exist

infinitely many weak solutions of (1.15) and (1.16) in L∞(T2×[0,+∞[)

with θ0 = 0.

This was generalized by Shvydkoy to all even m(ξ) satisfying a

mild additional regularity assumption. We refer to the original paper

[Shv11] for the details.

The proof of Theorem 1.3.10 in [CFG09], as well as the proof by

Shvydkoy in [Shv11], relies on some refined tools which were devel-

oped in the theory of laminates and differential inclusions and they

present some substantial differences with the methods of De Lellis and

Székelyhidi in [DLS09] and [DLS10]. Indeed, the method used in

[CFG09] is still based on understanding the equation as a differen-

tial inclusion in the spirit of Tartar [Tar79], but in the context of

the porous media equation the situation differs from the setting of

[DLS09]-[DLS10] and the authors had to take different routes in sev-

eral steps. First, we would like to recall that a central point is to find

an open set U satisfying the perturbation property (P). One possible

candidate would be to take the largest open set Umax satisfying (P).

Obviously this set is particularly meaningful since it gives the largest

possible space X for which genericity conclusions holds. Moreover, this

has the advantage that - at least in many relevant cases - the set Umax
coincides with the interior of the Λ–convex hull KΛ, which in turn can

be characterized by separation arguments. For instance, in Theorem

1.3.5 condition (1.11) characterizes precisely the interior of KΛ. Fur-

thermore, in this case the interior of KΛ is the interior of the convex

hull Kco.

In [CFG09] and [Shv11] the authors avoid calculating the full Λ–

convex hull and instead restrict themselves to exhibiting a nontrivial

(but possibly much smaller) open set U satisfying (P). Opposite to
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the incompressible Euler equations, in [CFG09] and [Shv11] the Λ–

convex hull does not agree with the convex hull and more relevant

K ⊂ ∂KΛ. This is of course an obstruction for the available versions

of convex integration as presented in Section 1.3.1 (the ones based

on Baire category and the direct constructions). So the argument in

[CFG09] and [Shv11] suggests a more systematic approach: instead

of fixing a set and computing the hull, they pick a reasonable matrix A

and compute (A+ Λ)∩K. Then by the results in [Kir03] it is enough

to find a set K̃ ⊂ (A + Λ) ∩ K such that A ∈ K̃co to find what are

called degenerate T4 configurations (see [KMS03]) supported in K̃co).

However, in exchange they are forced to use much more complicated

sequences zj. Indeed, the zj’s used in [DLS10] are localizations of

simple plane waves, whereas the ones used in [CFG09] and [Shv11]

arise as an infinite nested sequence of repeated plane waves.

The obvious advantage of the method introduced in [CFG09] and

used in [Shv11] is that it seems to be fairly robust and general. It is

useful in cases where an explicit computation of the hull KΛ is out of

reach due to the high complexity and high dimensionality. Anyway, the

constructions carried out in this dissertation are analogue to the ones

by De Lellis and Székelyhidi and they do not require any understanding

of the ideas by [CFG09] and [Shv11].



CHAPTER 2

Non–uniqueness with arbitrary density

In this chapter we present and prove the first result stated in the

Introduction of the thesis, i.e. Theorem 0.2.1: given any continuosly

differentiable initial density, we can construct bounded initial momenta

for which admissible solutions to the isentropic compressible Euler

equations are not unique in more than one space dimension.

The content of this chapter corresponds to the subject of the paper

[Chi11] written by the author during the PhD studies. In particular

the structure of the chapter is as follows. In the first section, we in-

troduce the problem and the setting we will work with and we state

the main result: even if the equations under investigation have already

been presented in the Introduction of the thesis, we chose to recall

them herein so that the chapter will be self-contained. Section 2 is

an overview on the definitions of weak and admissible solutions and

gives a first glimpse on how Theorem 0.2.1 is achieved. Section 3 is

devoted to the reformulation of a simplified version of the isentropic

compressible Euler equations as a differential inclusion and to the cor-

responding geometrical analysis. In Section 4 we state and prove a

criterion (Proposition 2.4.1) to select initial momenta allowing for in-

finitely many solutions. The proof builds upon a refined version of the

Baire category method for differential inclusions developed in [DLS10]

and aimed at yielding weakly continuous in time solutions. Section 5

and 6 contain the proofs of the main tools used to prove Proposition

2.4.1. In Section 7, we show initial momenta satisfying the require-

ments of Proposition 2.4.1. Finally, in Section 8 we prove Theorem

0.2.1 (here stated in the first section as Theorem 2.1.1) by applying

Proposition 2.4.1.

2.1. Introduction

We deal with the Cauchy Problem for the isentropic compressible

Euler equations in the space-periodic setting.

33
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We first introduce the isentropic compressible Euler equations of gas

dynamics in n space dimensions, n ≥ 2 (cf. Section 3.3 of [Daf00]).

They are obtained as a simplification of the full compressible Euler

equations, by assuming the entropy to be constant. The state of the

gas will be described through the state vector

V = (ρ,m)

whose components are the density ρ and the linear momentum m. In

contrast with the formulation of the problem given in the Introduction

of the thesis, here the equations are written in terms of the linear

momentum field which allows to write the equations in the canonical

form (see [Daf00]). The balance laws in force are for mass and linear

momentum. The resulting system, which consists of n + 1 equations,

takes the form (cf. (0.1)):

(2.1)


∂tρ+ divxm = 0

∂tm+ divx

(
m⊗m
ρ

)
+∇x[p(ρ)] = 0

ρ(·, 0) = ρ0

m(·, 0) = m0

.

The pressure p is a function of ρ determined from the constitutive

thermodynamic relations of the gas in question. A common choice is

the polytropic pressure law

p(ρ) = kργ

with constants k > 0 and γ > 1. The set of admissible values is

P = {ρ > 0} (cf. [Daf00] and [Ser99]). As already explained, the

system is hyperbolic if

p′(ρ) > 0.

In addition, thermodynamically admissible processes must also satisfy

an additional constraint coming from the energy inequality

(2.2) ∂t

(
ρε(ρ) +

1

2

|m|2

ρ

)
+ divx

[(
ε(ρ) +

1

2

|m|2

ρ2
+
p(ρ)

ρ

)
m

]
≤ 0

where the internal energy ε : R+ → R is given through the law p(r) =

r2ε′(r). The physical region for (2.1) is {(ρ,m)| |m| ≤ Rρ}, for some

constant R > 0. For ρ > 0, v = m/ρ represents the velocity of the

fluid.
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We will consider, from now on, the case of general pressure laws

given by a function p on [0,∞[, that we always assume to be continu-

ously differentiable on [0,∞[. The crucial requirement we impose upon

p is that it has to be strictly increasing on [0,∞[. Such a condition is

meaningful from a physical viewpoint since it is a consequence of the

principles of thermodynamics.

Using some techniques introduced by De Lellis-Székelyhidi (cf. [DLS09]

and [DLS10]) we can consider any continuously differentiable periodic

initial density ρ0 and exhibit suitable periodic initial momenta m0 for

which space-periodic weak admissible solutions of (2.1) are not unique

on some finite time-interval.

Theorem 2.1.1. Let n ≥ 2. Then, for any given function p and

any given continuously differentiable periodic initial density ρ0, there

exist a bounded periodic initial momentum m0 and a positive time T

for which there are infinitely many space-periodic admissible solutions

(ρ,m) of (2.1) on Rn × [0, T [ with ρ ∈ C1(Rn × [0, T [).

Remark 2.1.2. Indeed, in order to prove Theorem 2.1.1, it would

be enough to assume that the initial density is a Hölder continuous

periodic function: ρ0 ∈ C0,α(Rn) (cf. Proof of Proposition 2.7.1).

Some connected results are obtained in [DLS10] (cf. Theorem 2

therein) as a further consequence of their analysis on the incompressible

Euler equations. Inspired by their approach, we adapt and apply di-

rectly to (2.1) the method of convex integration combined with Tartar’s

programme on oscillation phenomena in conservation laws (see [Tar79]

and [KMS03]). In this way, we can show failure of uniqueness of ad-

missible solutions to the compressible Euler equations starting from

any given continuously differentiable initial density.

2.2. Weak and admissible solutions to

the isentropic Euler system

The deceivingly simple-looking system of first-order partial differ-

ential equations (2.1) has a long history of important contributions over

more than two centuries. We recall a few classical facts on this system

(see for instance [Daf00] for more details).

• If ρ0 and m0 are “smooth” enough (see Theorem 5.3.1 in

[Daf00]), there exists a maximal time interval [0, T [ on which
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there exists a unique “smooth” solution (ρ,m) of (2.1) (for

0 ≤ t < T ). In addition, if T < ∞, and this is the case in

general, (ρ,m) becomes discontinuous as t goes to T .

• If we allow for discontinuous solutions, i.e., for instance, solu-

tions (ρ,m) ∈ L∞ satisfying (2.1) in the sense of distributions,

then solutions are neither unique nor stable. More precisely,

one can exhibit sequences of such solutions which converge

weakly in L∞ − ∗ to functions which do not satisfy (2.1).

• In order to restore the stability of solutions and (possibly) the

uniqueness, one may and should impose further restrictions

on bounded solutions of (2.1), restrictions which are known as

(Lax) entropy inequalities.

In this chapter we address the problem of better understanding

the efficiency of entropy inequalities as selection criteria among weak

solutions.

Here, we have chosen to emphasize the case of the flow with space

periodic boundary conditions. For space periodic flows we assume that

the fluid fills the entire space Rn but with the condition that m, ρ are

periodic functions of the space variable. The space periodic case is

not a physically achievable one, but it is relevant on the physical side

as a model for some flows. On the mathematical side, it retains the

complexities due to the nonlinear terms (introduced by the kinematics)

and therefore it includes many of the difficulties encountered in the

general case. However the former is simpler to treat because of the

absence of boundaries. Furthermore, using Fourier transform as a tool

simplifies the analysis.

Let Q = [0, 1]n, n ≥ 2 be the unit cube in Rn. We denote by

Hm
p (Q), m ∈ N, the space of functions which are in Hm

loc(Rn) and

which are periodic with period Q:

m(x+ l) = m(x) for a.e. x ∈ Rn and every l ∈ Zn.

For m = 0, H0
p (Q) coincides simply with L2(Q). Analogously, for every

functional space X we define Xp(Q) to be the space of functions which

are locally (over Rn) in X and are periodic of period Q. The functions

in Hm
p (Q) are easily characterized by their Fourier series expansion

(2.3)

Hm
p (Q) =

{
m ∈ L2

p(Q) :
∑
k∈Zn

|k|2m |m̂(k)|2 <∞ and m̂(0) = 0

}
,
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where m̂ : Zn → Cn denotes the Fourier transform of m. We will use

the notation H(Q) for H0
p (Q) and Hw(Q) for the space H(Q) endowed

with the weak L2 topology.

Let T be a fixed positive time. By a weak solution of (2.1) on

Rn × [0, T [ we mean a pair (ρ,m) ∈ L∞([0, T [;L∞p (Q)) satisfying

(2.4)

|m(x, t)| ≤ Rρ(x, t) for a.e. (x, t) ∈ Rn × [0, T [ and some R > 0,

and such that the following identities hold for every test functions ψ ∈
C∞c ([0, T [;C∞p (Q)), φ ∈ C∞c ([0, T [;C∞p (Q)):

(2.5)

∫ T

0

∫
Q

[ρ∂tψ +m · ∇xψ] dxdt+

∫
Q

ρ0(x)ψ(x, 0)dx = 0

∫ T

0

∫
Q

[
m · ∂tφ+

〈
m⊗m
ρ

,∇xφ

〉
+ p(ρ) divx φ

]
dxdt

+

∫
Q

m0(x) · φ(x, 0)dx = 0.(2.6)

For n ≥ 2 the only non-trivial entropy is the total energy η =

ρε(ρ)+1
2
|m|2
ρ

which corresponds to the flux Ψ =
(
ε(ρ) + 1

2
|m|2
ρ2

+ p(ρ)
ρ

)
m.

Then a bounded weak solution (ρ,m) of (2.1) satisfying (3.21) in

the sense of distributions, i.e. satisfying the following inequality∫ T

0

∫
Q

[(
ρε(ρ) +

1

2

|m|2

ρ

)
∂tϕ+

(
ε(ρ) +

1

2

|m|2

ρ2
+
p(ρ)

ρ

)
m · ∇xϕ

]

+

∫
Q

(
ρ0ε(ρ0) +

1

2

|m0|2

ρ

)
ϕ(·, 0) ≥ 0,

(2.7)

for every nonnegative ϕ ∈ C∞c ([0, T [;C∞p (Q)), is said to be an entropy

(or admissible) solution of (2.1).

The lack of entropies is one of the essential reasons for a very limited

understanding of compressible Euler equations in dimensions greater

than or equal to 2.

The recent paper [DLS10] by De Lellis-Székelyhidi gives an ex-

ample in favour of the conjecture that entropy solutions to the multi-

dimensional compressible Euler equations are in general not unique:

see Theorem 0.1.1 in the Introduction of the thesis. Showing that this

conjecture is true has far-reaching consequences. The entropy condition
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is not sufficient as a selection principle for physical/unique solutions.

The non-uniqueness result by De Lellis-Székelyhidi is a byproduct of

their new analysis of the incompressible Euler equations based on its

formulation as a differential inclusion. They first show that, for some

bounded compactly supported initial data, none of the classical admis-

sibility criteria singles out a unique solution to the Cauchy problem for

the incompressible Euler equations. As a consequence, by construct-

ing a piecewise constant in space and independent of time density ρ,

they look at the compressible isentropic system as a “piecewise incom-

pressible” system (i.e. still incompressible in the support of the veloc-

ity field) and thereby exploit the result for the incompressible Euler

equations to exhibit bounded initial density and bounded compactly

supported initial momenta for which admissible solutions of (2.1) are

not unique (in more than one space dimension).

Inspired by their techniques, we give a further counterexample to

the well-posedeness of entropy solutions to (2.1). Our result differs in

two main aspects: here the initial density can be any given “regular”

function and remains “regular” forward in time while in [DLS10] the

density allowing for infinitely many admissible solutions must be chosen

as piecewise constant in space; on the other hand we are not able to deal

with compactly supported momenta (indeed we work in the periodic

setting), hence our non-unique entropy solutions are only locally L2 in

contrast with the global-L2-in-space property of solutions obtained in

[DLS10]. Moreover, we have chosen to study the case of the flow in

a cube of Rn with space periodic boundary conditions. This case leads

to many technical simplifications while retaining the main structure of

the problem.

More precisely, we are able to analyze the compressible Euler equa-

tions in the framework of convex integration introduced in Chapter

1. We recall that this method works well with systems of nonlinear

PDEs such that the convex envelope (in an appropriate sense) of each

small domain of the submanifold representing the PDE in the jet-space

(see [EM02] for more details) is big enough. In our case, we consider

a simplification of system (2.1), namely the semi-stationary associated

problem, whose submanifold allows a convex integration approach lead-

ing us to recover the result of Theorem 2.1.1.

We are interested in the semi-stationary Cauchy problem associated

with the isentropic Euler equations (simply set to 0 the time derivative
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of the density in (2.1) and drop the initial condition for ρ):

(2.8)


divxm = 0

∂tm+ divx

(
m⊗m
ρ

)
+∇x[p(ρ)] = 0

m(·, 0) = m0.

A pair (ρ,m) ∈ L∞p (Q)×L∞([0, T [;L∞p (Q)) is a weak solution on Rn×
[0, T [ of (2.8) if m(·, t) is weakly-divergence free for almost every 0 <

t < T and satisfies the following bound

(2.9)

|m(x, t)| ≤ Rρ(x) for a.e. (x, t) ∈ Rn × [0, T [ and some R > 0,

and if the following identity holds for every φ ∈ C∞c ([0, T [;C∞p (Q)):∫ T

0

∫
Q

[
m · ∂tφ+

〈
m⊗m
ρ

,∇xφ

〉
+ p(ρ) divx φ

]
dxdt

+

∫
Q

m0(x) · φ(x, 0)dx = 0.(2.10)

A general observation suggests us that a non-uniqueness result for

weak solutions of (2.8) whose momentum’s magnitude satisfies some

suitable constraint could lead us to a non-uniqueness result for entropy

solutions of the isentropic Euler equations (2.1). Indeed, the entropy

solutions we construct in Theorem 2.1.1 come from some weak solutions

of (2.8).

Theorem 2.2.1. Let n ≥ 2. Then, for any given function p, any

given density ρ0 ∈ C1
p(Q) and any given finite positive time T , there

exists a bounded initial momentum m0 for which there are infinitely

many weak solutions (ρ,m) ∈ C1
p(Q) × C([0, T ];Hw(Q)) of (2.8) on

Rn × [0, T [ with density ρ(x) = ρ0(x).

In particular, the obtained weak solutions m satisfy

|m(x, t)|2 = ρ0(x)χ(t) a.e. in Rn × [0, T [,(2.11) ∣∣m0(x)
∣∣2 = ρ0(x)χ(0) a.e. in Rn,(2.12)

for some smooth function χ.

An easy computation shows how, by properly choosing the function

χ in (2.11)-(2.12), the solutions (ρ0,m) of (2.8) obtained in Theorem

2.2.1 satisfy the admissibility condition (3.26).
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Theorem 2.2.2. Under the same assumptions of Theorem 2.2.1,

there exists a maximal time T > 0 such that the weak solutions (ρ,m) of

(2.8) (coming from Theorem 2.2.1) satisfy the admissibility condition

(3.26) on [0, T [.

Our construction yields initial data m0 for which the nonunique-

ness result of Theorem 2.1.1 holds on any time interval [0, T [, with

T ≤ T . However, as pointed out before, for sufficiently regular initial

data, classical results give the local uniqueness of smooth solutions.

Thus, a fortiori, the initial momenta considered in our examples have

necessarily a certain degree of irregularity.

2.3. Geometrical analysis

This section is devoted to a qualitative analysis of the isentropic

compressible Euler equations in a semi-stationary regime (i.e. (2.8)).

As in [DLS09] we will interpret the system (2.8) in terms of a differ-

ential inclusion, so that it can be studied in the framework combining

the plane wave analysis of Tartar, the convex integration of Gromov

and the Baire’s arguments. For a complete description of this general

framework we refer to Chapter 1, Section 1.3.1. In Section 2.3.2 we

will recall only the tools needed for our construction.

2.3.1. Differential inclusion. The system (2.8) can indeed be

naturally expressed as a linear system of partial differential equations

coupled with a pointwise nonlinear constraint, usually called differen-

tial inclusion.

The following Lemma, based on Lemma 2 in [DLS10], gives such

a reformulation. We will denote by Sn the space of symmetric n × n
matrices, by Sn0 the subspace of Sn of matrices with null trace, and by

In the n× n identity matrix.

Lemma 2.3.1. Let m ∈ L∞([0, T ];L∞p (Q;Rn)), U ∈ L∞([0, T ];L∞p (Q;Sn0 ))

and q ∈ L∞([0, T ];L∞(Q;R+)) such that

divxm = 0

∂tm+ divx U +∇xq = 0.(2.13)
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If (m,U, q) solve (2.13) and in addition there exists ρ ∈ L∞p (Rn;R+)

such that (5.7) holds and

U =
m⊗m
ρ

− |m|
2

nρ
In a.e. in Rn × [0, T ],

q = p(ρ) +
|m|2

nρ
a.e. in Rn × [0, T ],(2.14)

then m and ρ solve (2.8) distributionally. Conversely, if m and ρ are

weak solutions of (2.8), then m, U = m⊗m
ρ
− |m|

2

nρ
In and q = p(ρ) + |m|2

nρ

solve (2.13)-(2.14).

In Lemma 2.3.1 we made clear the distinction between the aug-

mented system (2.13), whose linearity allows a plane wave analysis,

and the nonlinear pointwise constraint (2.14), which leads us to study

the graph below.

For any given ρ ∈]0,∞[, we define the following graph

Kρ :=

{
(m,U, q) ∈ Rn × Sn0 × R+ : U =

m⊗m
ρ

− |m|
2

nρ
In,

q = p(ρ) +
|m|2

nρ

}
.(2.15)

The key of the forthcoming analysis is the behaviour of the graph

Kρ with respect to the wave vectors associated with the linear system

(2.13): are differential and algebraic constraints in some sense compat-

ible?

For our purposes, it is convenient to consider “slices” of the graph

Kρ, by considering vectors m whose modulus is subject to some ρ-

depending condition. Thus, for any given χ ∈ R+, we define:

Kρ,χ :=

{
(m,U, q) ∈ Rn × Sn0 × R+ : U =

m⊗m
ρ

− |m|
2

nρ
In,

q = p(ρ) +
|m|2

nρ
, |m|2 = ρχ

}
.(2.16)

2.3.2. Wave cone. For the sake of completeness, we remind the

notions of planewave solutions and wave cone, previously introduced in
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Section 1.3.1. According to Tartar’s framework [Tar79], we consider a

system of first order linear PDEs (see (1.2))

(2.17)
∑
i

Ai∂iz = 0

where z is a vector valued function and the Ai are matrices. Then,

planewave solutions to (2.17) are solutions of the form

(2.18) z(x) = ah(x · ξ),

with h : R → R. In order to find such solutions, we have to solve

the relation
∑

i ξiAia = 0, where ξi is the oscillation frequency in the

direction i. The set of directions a for which a solution ξ 6= 0 exists is

called wave cone Λ of the system (2.17): equivalently Λ characterizes

the directions of one dimensional oscillations compatible with (2.17).

The system (2.13) can be analyzed in this framework. Consider the

(n+ 1)× (n+ 1) symmetric matrix in block form

(2.19) M =

(
U + qIn m

m 0

)
.

Note that, with the new coordinates y = (x, t) ∈ Rn+1, the system

(2.13) can be easily rewritten as divyM = 0 (the divergence of M in

space-time is zero). Thus, the wave cone associated with the system

(2.13) is equal to

(2.20) Λ =

{
(m,U, q) ∈ Rn × Sn0 × R+ : det

(
U + qIn m

m 0

)
= 0

}
.

Indeed, the relation
∑

i ξiAia = 0 for the system (2.13) reads simply

as M · (ξ, c) = 0, where (ξ, c) ∈ Rn × R (ξ is the space-frequency and

c the time-frequency): this equation admits a non-trivial solution if M

has null determinant, hence (2.20).

2.3.3. Convex hull and geometric setup. Since it will be of

great importance in this chapter, we formulate once more the definition

of Λ-convex hull already given in Section 1.3.1.

Given a cone Λ, we say that a set S is convex with respect to Λ (or

Λ-convex) if, for any two points A,B ∈ S with B − A ∈ Λ, the whole

segment [A,B] belongs to S. The Λ-convex hull of Kρ,χ is the smallest

Λ-convex set KΛ
ρ,χ containing Kρ,χ, i.e. the set of states obtained by

mixture of states of Kρ,χ through oscillations in Λ-directions (Gromov

[Gro86], who works in the more general setting of jet bundles, calls
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this the P - convex hull). The key point in Gromov’s method of convex

integration (which is a far reaching generalization of the work of Nash

[Nas54] and Kuiper [Kui95] on isometric immersions) is that (2.17)

coupled with a pointwise nonlinear constraint of the form z ∈ K a.e.

admits many interesting solutions provided that the Λ-convex hull of

K, KΛ, is sufficiently large. In applications to elliptic and parabolic

systems we always have KΛ = K so that Gromov’s approach does not

directly apply. For other applications to partial differential equations it

turns out that one can work with the Λ-convex hull defined by duality.

More precisely, a point does not belong to the Λ- convex hull defined by

duality if and only if there exists a Λ-convex function which separates

it from K. A crucial fact is that the second notion is much weaker.

This surprising fact is illustrated in [KMS03].

In our case, the wave cone is quite large, therefore it is sufficient to

consider the stronger notion of Λ-convex hull, indeed it coincides with

the whole convex hull of Kρ,χ.

Lemma 2.3.2. For any S ∈ Sn let λmax(S) denote the largest eigen-

value of S. For (ρ,m,U) ∈ R+ × Rn × Sn0 let

(2.21) e(ρ,m,U) := λmax

(
m⊗m
ρ

− U
)
.

Then, for any given ρ, χ ∈ R+, the following holds

(i) e(ρ, ·, ·) : Rn × Sn0 → R is convex;

(ii) |m|
2

nρ
≤ e(ρ,m,U), with equality if and only if U = m⊗m

ρ
−

|m|2
nρ
In;

(iii) |U |∞ ≤ (n − 1)e(ρ,m,U), with |U |∞ being the operator norm

of the matrix;

(iv) the χ
n

-sublevel set of e defines the convex hull of Kρ,χ, i.e.

Kco
ρ,χ =

{
(m,U, q) ∈ Rn × Sn0 × R+ : e(ρ,m,U) ≤ χ

n
,

q = p(ρ) +
χ

n

}
(2.22)

and Kρ,χ = Kco
ρ,χ ∩ {|m|

2 = ρχ}.

For the proof of (i)-(iv) we refer the reader to the proof of Lemma

3.2 in [DLS10]: the arguments there can be easily adapted to our case.
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We observe that, for any ρ, χ ∈ R+, the convex hull Kco
ρ,χ lives

in the hyperplane H of Rn × Sn0 × R+ defined by H :=
{

(m,U, q) ∈

Rn×Sn0 ×R+ : q = p(ρ)+ χ
n

}
. Therefore, the interior of Kco

ρ,χ as a subset

of Rn × Sn0 × R+ is empty. This seems to prevent us from working in

the classical framework of convex integration, but we can overcome this

apparent obstacle.

For any ρ, χ ∈ R+, we define the hyperinterior of Kco
ρ,χ, and we

denote it with “hint Kco
ρ,χ”, as the following set

hint Kco
ρ,χ :=

{
(m,U, q) ∈ Rn × Sn0 × R+ : e(ρ,m,U) <

χ

n
,

q = p(ρ) +
χ

n

}
.(2.23)

In the framework of convex integration, the larger the Λ-convex hull

of Kρ,χ is, the bigger the breathing space will be. How to “quantify”

the meaning of a “large” Λ-convex hull in our context? The previous

definition provides an answer: the Λ-convex hull of Kρ,χ will be “large”

if its hyperinterior is nonempty. The wave cone of the semi-stationary

Euler isentropic system is wide enough to ensure that the Λ-convex

hull of Kρ,χ coincides with the convex hull of Kρ,χ and has a nonempty

hyperinterior. As a consequence, we can construct irregular solutions

oscillating along any fixed direction. For our purposes, it will be conve-

nient to restrict to some special directions in Λ, consisting of matrices

of rank 2, which are not stationary in time, but are associated with a

constant pressure.

Lemma 2.3.3. Let c, d ∈ Rn with |c| = |d| and c 6= d, and let

ρ ∈ R+.

Then
(
c− d, c⊗c

ρ
− d⊗d

ρ
, 0
)
∈ Λ.

Proof . Since the vector
(
c+ d,−

(
|c|2+c·d

ρ

))
is in the kernel of the

matrix

C =

(
c⊗c
ρ
− d⊗d

ρ
c− d

c− d 0

)
,

C has indeed determinant zero, hence
(
c− d, c⊗c

ρ
− d⊗d

ρ
, 0
)
∈ Λ. �
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Now, we introduce some important tools: they allow us to prove

that KΛ
ρ,χ = Kco

ρ,χ is sufficiently large, thus providing us room to find

many solutions for (2.13)-(2.14).

As first, we define the admissible segments as segments in Rn×Sn0 ×
R+ whose directions belong to the wave cone Λ for the linear system

of PDEs (2.13) and are indeed special directions in the sense specified

by Lemma 2.3.3.

Definition 2.3.4. Given ρ, χ ∈ R+ we call σ an admissible segment

for (ρ, χ) if σ is a line segment in Rn×Sn0 ×R+ satisfying the following

conditions:

• σ is contained in the hyperinterior of Kco
ρ,χ;

• σ is parallel to
(
c− d, c⊗c

ρ
− d⊗d

ρ
, 0
)

for some c, d ∈ Rn with

|c|2 = |d|2 = ρχ and c 6= ±d.

The admissible segments defined above correspond to suitable plane-

wave solutions of (2.13). The following Lemma ensures that, for any

ρ, χ ∈ R+, the hyperinterior of Kco
ρ,χ is “ sufficiently round ” with re-

spect to the special directions: given any point in the hyperinterior of

Kco
ρ,χ, it can be seen as the midpoint of a sufficiently large admissible

segment for (ρ, χ).

Lemma 2.3.5. There exists a constant F = F (n) > 0 such that for

any ρ, χ ∈ R+ and for any z = (m,U, q) ∈ hint Kco
ρ,χ there exists an

admissible line segment for (ρ, χ)

(2.24) σ =
[
(m,U, q)− (m,U, 0), (m,U, q) + (m,U, 0)

]
such that

|m| ≥ F
√
ρχ

(
ρχ− |m|2

)
.

The proof rests on a clever application of Carathéodory’s theorem

for convex sets and can be carried out, with minor modifications, as in

[DLS10] (cf. Lemma 6 therein).

As an easy consequence of the previous Lemma, we can finally

establish that the Λ-convex hull of Kρ,χ coincides with Kco
ρ,χ.

Proposition 2.3.6. For all given ρ, χ ∈ R+, the Λ-convex hull of

Kρ,χ coincides with the convex hull of Kρ,χ.
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Proof . Recall that, given ρ, χ ∈ R+, we denote the Λ-convex hull

of Kρ,χ with KΛ
ρ,χ. Of course KΛ

ρ,χ ⊂ Kco
ρ,χ, hence we have to prove

the opposite inclusion, i.e. Kco
ρ,χ ⊂ KΛ

ρ,χ. For every z ∈ Kco
ρ,χ we can

follow the procedure in the proof of Lemma 2.3.5 (cf. [DLS10]) and

write it as z =
∑

j λjzj, with (zj)1≤j≤N+1 in Kρ,χ, (λj)1≤j≤N+1 in [0, 1]

and
∑

j λj = 1. Again, we can assume that λ1 = maxj λj. In case

λ1 = 1 then z = z1 ∈ Kρ,χ ⊂ KΛ
ρ,χ and we can already conclude.

Otherwise (i.e. when λ1 ∈ (0, 1)) we can argue as in Lemma 2.3.5 so

to find an admissible segment σ for (ρ, χ) of the form (2.24). Since we

aim at writing z as a Λ-barycenter of elements of Kρ,χ, we “play” with

these admissible segments by prolongations and iterative constructions

until we get segments with extremes lying in Kρ,χ. More precisely: we

extend the segment σ until we meet ∂ hintKco
ρ,χ thus obtaining z as the

barycenter of two points (w0, w1) with (w0 − w1) ∈ Λ and such that

every wi = (mi, Ui, qi), i = 0, 1, satisfies either |mi|2 = ρχ or |mi|2 < ρχ

and e(ρ,mi, Ui) = χ/n.

In the first case, Ui −
(
mi⊗mi

ρ
− |mi|2

nρ
In

)
≥ 0, and since it is a null-

trace-matrix it is identically zero, whence wi ∈ Kρ,χ

(
note that in

the construction of σ the q-direction remains unchanged, hence qi =

p(ρ) + χ
n

)
.

In the second case, i.e. when |mi|2 < ρχ and e(ρ,mi, Ui) = χ/n,

we apply again Lemma 2.3.5 and a limit procedure to express wi as

barycentre of (wi,0, wi,1) with (wi,0 − wi,1) ∈ Λ and such that every

wi,k = (mi,k, Ui,k, qi,k), k = 0, 1, will satisfy either |mi,k|2 = ρχ or

λ2(ρ,mi,k, Ui,k) = e(ρ,mi,k, Ui,k) = χ/n, where λ1(ρ,m,U) ≥ λ2(ρ,m,U) ≥
...... ≥ λn(ρ,m,U) denote the ordered eigenvalues of the matrix m⊗m

ρ
−

U (note that λ1(ρ,m,U) = e(ρ,m,U)). Now, we iterate this procedure

of constructing suitable admissible segments for (ρ, χ) until we have

written z as Λ-barycenter of points (m,U, q) satisfying either |m|2 = ρχ

or λn(ρ,m,U) = χ/n and therefore all belonging to Kρ,χ as desired. �

2.4. A criterion for the existence of infinitely many solutions

The following Proposition provides a criterion to recognize initial

data m0 which allow for many weak admissible solutions to (2.1). Its

proof relies deeply on the geometrical analysis carried out in Section

2.3. The underlying idea comes from convex integration. The general
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principle of this method, developed for partial differential equations by

Gromov [Gro86] and for ordinary differential equations by Filippov

[Fil67], consists in the following steps (cf. with Section 1.3.1.2): given

a nonlinear equation E(z),

• (i) we rewrite it as (L(z)∧z ∈ K) where L is a linear equation;

• (ii) we introduce a strict subsolution z0 of the system, i.e.

satisfying a relaxed system (L(z0) ∧ z0 ∈ U);

• (iii) we construct a sequence (zk)k∈N approaching K but stay-

ing in U ;

• (iv) we pass to the limit, possibly modifying the sequence (zk)

in order to ensure a suitable convergence.

Step (i) has already been done in Section 2.1. The choice of z0 will

be specified in Sections 2.7-2.8. Here, we define the notion of subsolu-

tion for an appropriate set U , we construct an improving sequence and

we pass to the limit. The way how we construct the approximating

sequence will be described in Section 2.6 using some tools from Section

2.5.

One crucial step in convex integration is the passage from open

sets K to general sets. This can be done in different ways, e.g. by the

Baire category theorem (cf. [Oxt90]), a refinement of it using Baire-1

functions or the Banach-Mazur game [Kir03] or by direct construction

[Syc01]. Whatever approach one uses the basic theme is the same: at

each step of the construction one adds a highly oscillatory correction

whose frequency is much larger and whose amplitude is much smaller

than those of the previous corrections.

In this section, we achieve our goals following some Baire category

arguments as in [DLS09]: they are morally close to the methods de-

veloped by Bressan and Flores in [BF94] and by Kirchheim in [Kir03]

(see Section 1.3.1.1).

In our framework the initial data will be constructed starting from

solutions to the convexified (or relaxed) problem associated to (2.8),

i.e. solutions to the linearized system (2.13) satisfying a “relaxed”

nonlinear constraint (2.14) (i.e. belonging to the hyperinterior of the

convex hull of the “constraint set”), which we will call subsolutions.

As in [DLS09], our application shows that the Baire theory is com-

parable in terms of results to the method of convex integration and they
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have many similarities: they are both based on an approximation ap-

proach to tackle problems while the difference lies only in the limit

arguments, i.e. on the way the exact solution is obtained from bet-

ter and better approximate ones. These similarities are clarified by

Kirchheim in [Kir03], where the continuity points of a first category

Baire function are considered; a comparison between the two methods

is drawn by Sychev in [Syc01].

Here, the topological reasoning of Baire theory is preferred to the

iteration technique of convex integration, since the first has the advan-

tage to provide us directly with infinitely many different solutions.

Proposition 2.4.1. Let ρ0 ∈ C1
p(Q;R+) be a given density function

and let T be any finite positive time. Assume there exist (m0, U0, q0)

continuous space-periodic solutions of (2.13) on Rn×]0, T [ with

(2.25) m0 ∈ C([0, T ];Hw(Q)),

and a function χ ∈ C∞([0, T ];R+) such that

e(ρ0(x),m0(x, t), U0(x, t)) <
χ(t)

n
for all (x, t) ∈ Rn×]0, T [,

(2.26)

q0(x, t) = p(ρ0(x)) +
χ(t)

n
for all (x, t) ∈ Rn×]0, T [.

(2.27)

Then there exist infinitely many weak solutions (ρ,m) of the system

(2.8) in Rn × [0, T [ with density ρ(x) = ρ0(x) and such that

m ∈ C([0, T ];Hw(Q)),(2.28)

m(·, t) = m0(·, t) for t = 0, T and for a.e. x ∈ Rn,(2.29)

|m(x, t)|2 = ρ0(x)χ(t) for a.e. (x, t) ∈ Rn×]0, T [.(2.30)

2.4.1. The space of subsolutions. We define the space of sub-

solutions as follows. Let ρ0 and χ be given as in the assumptions of

Proposition 2.4.1. Let m0 be a vector field as in Proposition 2.4.1 with

associated modified pressure q0 and consider space-periodic momentum

fields m : Rn × [0, T ]→ Rn which satisfy

(2.31) divm = 0,
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the initial and boundary conditions

m(x, 0) = m0(x, 0),(2.32)

m(x, T ) = m0(x, T ),(2.33)

(2.34)

and such that there exists a continuous space-periodic matrix field U :

Rn×]0, T [→ Sn0 with

(2.35)
e(ρ0(x),m(x, t), U(x, t)) <

χ

n
for all (x, t) ∈ Rn×]0, T [,

∂tm+ divx U +∇xq0 = 0 in Rn × [0, T ].

Definition 2.4.2. Let X0 be the set of such linear momentum

fields, i.e.

X0 =

{
m ∈ C0(]0, T [;C0

p(Q)) ∩ C([0, T ];Hw(Q)) :

(2.31)− (2.35) are satisfied

}
(2.36)

and let X be the closure of X0 in C([0, T ];Hw(Q). Then X0 will be the

space of strict subsolutions.

As ρ0 is continuous and periodic on Rn and χ is smooth on [0, T ],

there exists a constant G such that χ(t)
∫
Q
ρ0(x)dx ≤ G for all t ∈

[0, T ]. Since for any m ∈ X0 with associated matrix field U we have

that (see Lemma 2.3.2- (ii))∫
Q

|m(x, t)|2 dx ≤
∫
Q

nρ0(x)e(ρ0(x),m(x, t), U(x, t))dx

< χ(t)

∫
Q

ρ0(x)dx for all t ∈ [0, T ],

we can observe that X0 consists of functions m : [0, T ]→ H(Q) taking

values in a bounded subset B of H(Q). Without loss of generality, we

can assume that B is weakly closed. Then, B in its weak topology

is metrizable and, if we let dB be a metric on B inducing the weak

topology, we have that (B, dB) is a compact metric space. Moreover,

we can define on Y := C([0, T ], (B, dB)) a metric d naturally induced

by dB via

(2.37) d(f1, f2) := max
t∈[0,T ]

dB(f1(·, t), f2(·, t)).



50 2. NON–UNIQUENESS WITH ARBITRARY DENSITY

Note that the topology induced on Y by d is equivalent to the topol-

ogy of Y as a subset of C([0, T ];Hw). In addition, the space (Y, d) is

complete. Finally, X is the closure in (Y, d) of X0 and hence (X, d) is

as well a complete metric space.

Lemma 2.4.3. If m ∈ X is such that |m(x, t)|2 = ρ0(x)χ(t) for

almost every (x, t) ∈ Rn×]0, T [, then the pair (ρ0,m) is a weak solution

of (2.8) in Rn × [0, T [ satisfying (2.28)-(2.29)-(2.30).

Proof . Let m ∈ X be such that |m(x, t)|2 = ρ0(x)χ(t) for almost

every (x, t) ∈ Rn×]0, T [. By density of X0, there exists a sequence

{mk} ⊂ X0 such that mk
d→ m in X. For any mk ∈ X0 let Uk be

the associated smooth matrix field enjoying (2.35). Thanks to Lemma

2.3.2 (iii) and (2.35), the following pointwise estimate holds for the

sequence {Uk}

|Uk|∞ ≤ (n− 1)e(ρ0,mk, Uk) <
(n− 1)− χ

n
.

As a consequence, {Uk} is uniformly bounded in L∞([0, T ];L∞p (Q)); by

possibly extracting a subsequence, we have that

Uk
∗
⇀ U in L∞([0, T ];L∞p (Q)).

Note that hintKco
ρ0,χ

= Kco
ρ0,χ

is a convex and compact set by Lemma

2.3.2-(i)-(ii)-(iii). Hence, m ∈ X with associated matrix field U solves

(2.13) on Rn × [0, T ] for q = q0 and (m,U, q0) takes values in Kco
ρ0,χ

al-

most everywhere. If, in addition, |m(x, t)|2 = ρ0(x)χ(t), then (m,U, q0)(x, t) ∈
Kρ,χ a.e. in Rn × [0, T ] (cf. Lemma 2.3.2-(iv)). Lemma 2.3.1 allows

us to conclude that (ρ0,m) is a weak solution of (2.8) in Rn × [0, T [.

Finally, since mk → m in C([0, T ];Hw(Q)) and |m(x, t)|2 = ρ0(x)χ(t)

for almost every (x, t) ∈ Rn×]0, T [, we see that m satisfies also (2.28)-

(2.29)-(2.30). �

Now, we will argue as in [DLS09] exploiting Baire category tech-

niques to combine weak and strong convergence (see also [Kir03]).

Lemma 2.4.4. The identity map I : (X, d) → L2([0, T ];H(Q)) de-

fined by m → m is a Baire-1 map, and therefore the set of points of

continuity is residual in (X, d).

Proof . Let φr(x, t) = r−(n+1)φ(rx, rt) be any regular spacetime

convolution kernel. For each fixed m ∈ X, we have

φr ∗m→ m strongly in L2(H) as r → 0.
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On the other hand, for each r > 0 and mk ∈ X,

mk
d→ m implies φr ∗mk → φr ∗m in L2(H).

Therefore, each map Ir : (X, d) → L2(H), m → φr ∗m is continuous,

and I(m) = limr→0 Ir(m) for all m ∈ X. This shows that I : (X, d)→
L2(H) is a pointwise limit of continuous maps; hence it is a Baire-1

map. As a consequence, the set of points of continuity of I is residual

in (X, d) (cf. [Oxt90]). �

2.4.2. Proof of Proposition 2.4.1. We aim to show that all

points of continuity of the identity map correspond to solutions of (2.8)

enjoying the requirements of Proposition 2.4.1: Lemma 2.4.4 will then

allow us to prove Proposition 2.4.1 once we know that the cardinality

of X is infinite. In light of Lemma 2.4.3, for our purposes it suffices to

prove the following claim:

CLAIM. If m ∈ X is a point of continuity of I, then

(2.38) |m(x, t)|2 = ρ0(x)χ(t) for almost every (x, t) ∈ Rn×]0, T [.

�

Note that proving (2.38) is equivalent to prove that ‖m‖L2(Q×[0,T ]) =(∫
Q

∫ T
0
ρ0(x)χ(t)dtdx

)1/2

, since for any m ∈ X we have |m(x, t)|2 ≤
ρ0(x)χ(t) for almost all (x, t) ∈ Rn× [0, T ]. Thanks to this remark, the

claim is reduced to the following lemma (cf. Lemma 4.6 in [DLS09]),

which provides a strategy to move towards the boundary of X0: given

m ∈ X0, we will be able to approach it with a sequence inside X0 but

closer than m to the boundary of X0.

Lemma 2.4.5. Let ρ0, χ be given functions as in Proposition 2.4.1.

Then, there exists a constant β = β(n) such that, given m ∈ X0, there

exists a sequence {mk} ⊂ X0 with the following properties

‖mk‖2
L2(Q×[0,T ]) ≥‖m‖

2
L2(Q×[0,T ])

+ β

(∫
Q

∫ T

0

ρ0(x)χ(t)dtdx− ‖m‖2
L2(Q×[0,T ])

)2

(2.39)

and

(2.40) mk → m in C([0, T ], Hw(Q)).



52 2. NON–UNIQUENESS WITH ARBITRARY DENSITY

The proof is postponed to Section 2.6. Let us show how Lemma

2.4.5 implies the claim. As in the claim, assume that m ∈ X is a

point of continuity of the identity map I. Let {mk} ⊂ X0 be a fixed

sequence that converges to m in C([0, T ], Hw(Q)). Using Lemma 2.4.5

and a standard diagonal argument, we can find a second sequence {m̃k}
yet converging to m in X and satisfying

lim inf
k→∞

‖m̃k‖2
L2(Q×[0,T ]) ≥ lim inf

k→∞

(
‖mk‖2

L2(Q×[0,T ])

+ β

(∫
Q

∫ T

0

ρ0(x)χ(t)dtdx− ‖mk‖2
L2(Q×[0,T ])

)2
)
.

According to the hypothesis, I is continuous at m, therefore both mk

and m̃k converge strongly to m and

‖m‖2
L2(Q×[0,T ]) ≥ ‖m‖

2
L2(Q×[0,T ])

+ β

(∫
Q

∫ T

0

ρ0(x)χ(t)dtdx− ‖m‖2
L2(Q×[0,T ])

)2

.

Hence ‖m‖L2(Q×[0,T ]) =
(∫

Q

∫ T
0
ρ0(x)χ(t)dtdx

)1/2

and the claim holds

true. Finally, since the assumptions of Proposition 2.4.1 ensure that

X0 is nonempty, by Lemma 2.4.5 we can see that the cardinality of X

is infinite whence the cardinality of any residual set in X is infinite.

In particular, the set of continuity points of I is infinite: this and the

claim conclude the proof of Proposition 2.4.1.

2.5. Localized oscillating solutions

The wild solutions are made by adding one dimensional oscillating

functions in different directions λ ∈ Λ. For that it is needed to lo-

calize the waves. More precisely, the proof of Lemma 2.4.5 relies on

the construction of solutions to the linear system (2.13), localized in

space-time and oscillating between two states in Kco
ρ0,χ

along a given

special direction λ ∈ Λ. Aiming at compactly supported solutions, one

faces the problem of localizing vector valued functions: this is bypassed

thanks to the construction of a “localizing” potential for the conser-

vation laws (2.13). This approach is inherited from [DLS10]. As in

[DLS09] it could be realized for every λ ∈ Λ, but in our framework it is
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convenient to restrict only to special Λ-directions (cf. [DLS10]): this

restriction will allow us to localize the oscillations at constant pressure.

Why oscillations at constant pressure are meaningful for us and

needed in the proof of Lemma 2.4.5?

Owing to Section 2.3, in the variables y = (x, t) ∈ Rn+1, the system

(2.13) is equivalent to divyM = 0, where M ∈ Sn+1 is defined via the

linear map

(2.41) Rn × Sn0 × R 3 (m,U, q) 7−→M =

(
U + qIn m

m 0

)
.

More precisely, this map builds an identification between the set of

solutions (m,U, q) to (2.13) and the set of symmetric (n+ 1)× (n+ 1)

matrices M with M(n+1)(n+1) = 0 and tr(M) = q.

Therefore, solutions of (2.13) with q ≡ 0 correspond to matrix fields

M : Rn+1 → R(n+1)×(n+1) such that

(2.42) divyM = 0, MT = M, M(n+1)(n+1) = 0, tr(M) = 0.

Moreover, given a density ρ and two states (c, Uc, qc), (d, Ud, qd) ∈ Kρ

with non collinear momentum vector fields c and d having same mag-

nitude (|c| = |d|), and hence same pressure (qc = qd), then the corre-

sponding matrices Mc and Md have the following form

Mc =

(
c⊗c
ρ

+ p(ρ)In c

c 0

)
and Md =

(
d⊗d
ρ

+ p(ρ)In d

d 0

)
and satisfy

Mc −Md =

(
c⊗c
ρ
− d⊗d

ρ
c− d

c− d 0

)
.

Finally note that tr(Mc −Md) = 0 and Mc −Md ∈ Λ corresponds to a

special direction.

The following Proposition provides a potential for solutions of (2.13)

oscillating between two states Mc and Md at constant pressure. It is

an easy adaptation to our framework of Proposition 4 in [DLS10].

Proposition 2.5.1. Let c, d ∈ Rn such that |c| = |d| and c 6= d.

Let also ρ ∈ R. Then there exists a matrix-valued, constant coefficient,

homogeneous linear differential operator of order 3

A(∂) : C∞c (Rn+1)→ C∞c (Rn+1;R(n+1)×(n+1))

such that M = A(∂)φ satisfies (2.42) for all φ ∈ C∞c (Rn+1). Moreover

there exists η ∈ Rn+1 such that
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• η is not parallel to en+1;

• if φ(y) = ψ(y · η), then

A(∂)φ(y) = (Mc −Md)ψ
′′′(y · η).

We also report Lemma 7 from [DLS10]: it ensures that the oscil-

lations of the planewaves generated in proposition 2.5.1 have a certain

size in terms of an appropriate norm-type-functional.

Lemma 2.5.2. Let η ∈ Rn+1 be a vector which is not parallel to

en+1. Then for any bounded open set B ⊂ Rn

lim
N→∞

∫
B

sin2(Nη · (x, t))dx =
1

2
|B|

uniformly in t ∈ R.

For the proof we refer the reader to [DLS10].

2.6. The improvement step

We are now about to prove one of the cornerstones of the costruc-

tion. Before moving forward, let us resume the plan. We have already

identified a relaxed problem by introducing subsolutions. Then, we

have proved a sort of “h-principle” (even if there is no homotopy here)

according to which, the space of subsolutions can be “reduced” to the

space of solutions or, equivalently, the typical (in Baire’s sense) subso-

lution is a solution. Once assumed that a subsolution exists, the proof

of our “h-principle” builds upon Lemma 2.4.5 combined with Baire

category arguments. Indeed, we could also prove Proposition 2.4.1 by

applying iteratively Lemma 2.4.5 and thus constructing a converging

sequence of subsolutions approaching Kρ,χ: this would correspond to

the constructive convex integration approach (see Section 1.3.1). So

two steps are left in order to conclude our argument: showing the ex-

istence of a “starting” subsolution and prove Lemma 2.4.5.

This section is devoted to the second task, the proof of Lemma

2.4.5, while in next section we will exhibit a “concrete” subsolution.

What follows will be quite technical, therefore we first would like

to recall the plan: we will add fast oscillations in allowed directions

so to let |m|2 increase in average. The proof is inspired by [DLS09]-

[DLS10].



2.6. THE IMPROVEMENT STEP 55

Proof . [Proof of Lemma 2.4.5] Let us fix the domain Ω := Q ×
[0, T ]. We look for a sequence {mk} ⊂ X0, with associated matrix

fields {Uk}, which improves m in the sense of (2.39) and has the form

(2.43) (mk, Uk) = (m,U) +
∑
j

(m̃k,j, Ũk,j)

where every zk,j = (m̃k,j, Ũk,j) is compactly supported in some suitable

ball Bk,j(xk,j, tk,j) ⊂ Ω. We proceed as follows.

Step 1. Let m ∈ X0 with associated matrix field U . By Lemma

2.3.5, for any (x, t) ∈ Ω we can find a line segment σ(x,t) := [(m(x, t), U(x, t), q0(x))−
λ(x,t), (m(x, t), U(x, t), q0(x)) + λ(x,t)] admissible for (ρ0(x), χ(t)) and

with direction

λ(x,t) = (m(x, t), U(x, t), 0)

such that

(2.44) |m(x, t)| ≥ F√
ρ0(x)χ(t)

(
ρ0(x)χ(t)− |m(x, t)|2

)
.

Since z := (m,U) and Kco
ρ0,χ

are uniformly continuous in (x, t), there

exists an ε > 0 such that for any (x, t), (x0, t0) ∈ Ω with |x− x0| +
|t− t0| < ε, we have

(2.45) (z(x, t), q0(x))± (m(x0, t0), U(x0, t0), 0) ⊂ hintKco
ρ0,χ

.

Step 2. Fix (x0, t0) ∈ Ω for the moment. Now, let 0 ≤ φr0 ≤ 1

be a smooth cutoff function on Ω with support contained in a ball

Br0(x0, t0) ⊂ Ω for some r0 > 0, identically 1 on Br0/2(x0, t0) and

strictly less than 1 outside. Thanks to Proposition 2.5.1 and the iden-

tification (m,U, q)→M , for the admissible line segment σ(x0,t0), there

exist an operator A0 and a direction η0 ∈ Rn+1 not parallel to en+1,

such that for any k ∈ N

A0

(
cos(kη0 · (x, t))

k3

)
= λ(x0,t0) sin(kη0 · (x, t)),

and such that the pair (m̃k,0, Ũk,0) defined by

(m̃k,0, Ũk,0)(x, t) := A0

[
φr0(x, t)k

−3 cos(kη0 · (x, t))
]
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satisfies (2.13) with q ≡ 0. Note that (m̃k,0, Ũk,0) is supported in the

ball Br0(x0, t0) and that∥∥∥(m̃k,0, Ũk,0)− φr0
(
m(x0, t0), U(x0, t0)

)
sin(kη0 · (x, t))

∥∥∥
∞

≤ const (A0, η0, ‖φ0‖C3)
1

k
(2.46)

since A0 is a linear differential operator of homogeneous degree 3. Fur-

thermore, for all (x, t) ∈ Br0/2(x0, t0), we have

|m̃k,0(x, t)|2 = |m(x0, t0)|2 sin2(kη0 · (x, t)).

Since η0 ∈ Rn+1 is not parallel to en+1, from Lemma 2.5.2 we can see

that

lim
k→∞

∫
Br0/2

(x0,t0)

|m̃k,0(x, t)|2 dx =
1

2

∫
Br0/2

(x0,t0)

|m(x0, t0)|2 dx

uniformly in t. In particular, using (2.44), we obtain

lim
k→∞

∫
Br0/2

(x0,t0)

|m̃k,0(x, t)|2 dxdt ≥

F 2

2ρ0(x0)χ(t0)

(
ρ0(x0)χ(t0))− |m(x0, t0)|2

)2 ∣∣Br0/2(x0, t0)
∣∣ .(2.47)

Step 3. Next, observe that since m is uniformly continuous, there

exists an r̄ > 0 such that for any r < r̄ there exists a finite family of

pairwise disjoint balls Brj(xj, tj) ⊂ Ω with rj < r such that∫
Ω

(
ρ0(x)χ(t)− |m(x, t)|2

)2
dxdt ≤

2
∑
j

(
ρ0(xj)χ(tj)− |m(xj, tj)|2

)2 ∣∣Brj(xj, tj)
∣∣ .(2.48)

Fix s > 0 with s < min{r̄, ε} and choose a finite family of pairwise

disjoint balls Brj(xj, tj) ⊂ Ω with radii rj < s such that (2.48) holds.

In each ball B2rj(xj, tj) we apply the construction of Step 2 to obtain,

for every k ∈ N, a pair (m̃k,j, Ũk,j).

Final step. Letting (mk, Uk) be as in (2.43), we observe that the

sum therein consists of finitely many terms. Therefore from (2.45) and

(2.46) we deduce that there exists k0 ∈ N such that

(2.49) mk ∈ X0 for all k ≥ k0.
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Moreover, owing to (2.47) and (2.48) we can write

lim
k→∞

∫
Ω

|mk(x, t)−m(x, t)|2 dxdt = lim
k→∞

∑
j

∫
Ω

|m̃k,j(x, t)|2 dxdt

≥
∑
j

F 2

2ρ0(xj)χ(tj)

(
ρ0(xj)χ(tj))− |m(xj, tj)|2

)2 ∣∣Brj(xj, tj)
∣∣

≥ C

∫
Ω

(
ρ0(x)χ(t)− |m(x, t)|2

)2
dxdt.(2.50)

Since mk
d→ m, due to (2.50) we have

lim inf
k→∞

‖mk‖2
L2(Ω) = ‖m‖2

2 + lim inf
k→∞

‖mk −m‖2
2

≥ ‖m‖2
2 + C

∫
Ω

(
ρ0(x)χ(t)− |m(x, t)|2

)2
dxdt,(2.51)

which gives (2.39) with β = β(n) = β(F (n)). �

2.7. Construction of suitable initial data

In this section we show the existence of a subsolution in the sense

of Definition 3.4.1. Since the subsolution we aim to construct has to

be space-periodic, it will be enough to work on the building brick Q

and then extend the costruction periodically to Rn.

The idea to work in the space-periodic setting has been recently

adopted by Wiedemann [Wie11] in order to construct global solutions

to the incompressible Euler equations, i.e. to prove Theorem 1.3.9.

Proposition 2.7.1. Let ρ0 ∈ C1
p(Q;R+) be a given density function

as in Proposition 2.4.1 and let T be any given positive time. Then, there

exist a smooth function χ̃ : R→ R+, a continuous periodic matrix field

Ũ : Rn → Sn0 and a function q̃ ∈ C1(R;C1
p(Rn)) such that

(2.52) divx Ũ +∇xq̃ = 0 on Rn × R

and

e(ρ0(x), 0, Ũ(x)) <
χ̃(t)

n
for all (x, t) ∈ Rn × [0, T [(2.53)

q̃(x, t) = p(ρ0(x)) +
χ̃(t)

n
for all x ∈ Rn × R.(2.54)
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Proof . [Proposition 2.7.1] Let us define Ũ componentwise by its

Fourier transform as follows:

̂̃
U ij(k) :=

(
nkikj

(n− 1) |k|2

)
̂p(ρ0(k)) if i 6= j,

̂̃
U ii(k) :=

(
nk2

i − |k|
2

(n− 1) |k|2

)
̂p(ρ0(k)).(2.55)

for every k 6= 0, and
̂̃
U(0) = 0. Clearly

̂̃
U ij thus defined is symmetric

and trace-free. Moreover, since p(ρ0) ∈ C1
p(Rn), standard elliptic regu-

larity arguments allow us to conclude that Ũ is a continuous periodic

matrix field. Next, notice that

(2.56)
∥∥∥e(ρ0(x), 0, Ũ(x))

∥∥∥
∞

=
∥∥∥λmax(−Ũ)

∥∥∥
∞

= λ̃

for some positive constant λ̃. Therefore, we can choose any smooth

function χ̃ on R such that χ̃ > nλ̃ on [0, T ] in order to ensure (2.53).

Now, let q̃ be defined exactly as in (2.54) for the choice of χ̃ just done.

It remains to show that (2.52) holds. In light of (2.54), we can write

equation (2.52) in Fourier space as

(2.57)
n∑
j=1

kj
̂̃
U ij = kip̂(ρ0)

for k ∈ Zn. It is easy to check that
̂̃
U as defined by (2.55) solves (2.57)

and hence Ũ and q̃ satisfy (2.52)

�

Remark 2.7.2. We note that the Hölder continuity of ρ0 would be

enough to argue as in the previous proof in order to infer the continuity

of Ũ .

Proposition 2.7.3. Let ρ0 ∈ C1
p(Q;R+) be a given density function

as in Proposition 2.4.1 and let T be any given positive time. There exist

triples (m,U, q) solving (2.13) distributionally on Rn ×R enjoying the
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following properties:

(m,U, q) is continuous in Rn × (R\{0}) and m ∈ C(R;Hw(Rn)),

(2.58)

U(·, t) = Ũ(·) for t = −T, T
(2.59)

and

q(x) = p(ρ0(x)) +
χ̃(t)

n
for all (x, t) ∈ Rn × R,

(2.60)

e(ρ0(x),m(x, t), U(x, t)) <
χ̃(t)

n
for all (x, t) ∈ Rn × ([−T, 0[∩]0, T ]).

(2.61)

Moreover

(2.62) |m(x, 0)|2 = ρ0(x)χ(0) a.e. in Rn.

Proof . [Proposition 2.7.3] We first choose q := q̃ given by Propo-

sition 2.7.1. This choice already yields (2.60).

Now, in analogy with Definition 3.4.1 we consider the space X0

defined as the set of continuous vector fields m : Rn×]− T, T [→ Rn in

C0(]− T, T [;C0
p(Q)) to which there exists a continuous space-periodic

matrix field U : Rn×]− T, T [→ Sn0 such that

divxm = 0,

∂tm+ divx U +∇xq = 0,(2.63)

supp(m) ⊂ Q× [−T/2, T/2[(2.64)

U(·, t) = Ũ(·) for all t ∈ [−T, T [\[−T/2, T/2](2.65)

and

(2.66) e(ρ0(x),m(x, t), U(x, t)) <
χ̃(t)

n
for all (x, t) ∈ Rn×]− T, T [.

As in Section 2.4.1, X0 consists of functions m :] − T, T [→ H taking

values in a bounded set B ⊂ H. On B the weak topology of L2 is

metrizable, and correspondingly we find a metric d on C(]− T, T [;B)

inducing the topology of C(]− T, T [;Hw(Q)).
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Next we note that with minor modifications the proof of Lemma

2.4.5 leads to the following claim:

Claim: Let Q0 ⊂ Q be given. Let m ∈ X0 with associated matrix

field U and let α > 0 such that∫
Q0

[
|m(x, 0)|2 − (ρ0(x)χ̃(0))

]
dx < −α

Then, for any δ > 0 there exists a sequence mk ∈ X0 with associated

smooth matrix field Uk such that

supp(mk −m,Uk − U) ⊂ Q0 × [−δ, δ],

mk
d→ m,

and

lim inf
k→∞

∫
Q0

|mk(x, 0)|2 ≥
∫
Q0

|m(x, 0)|2 dx+ βα2.

Fix an exhausting sequence of bounded open subsets Qk ⊂ Qk+1 ⊂
Q, each compactly contained in Ω, and such that |Qk+1\Qk| ≤ 2−k.

Let also γε be a standard mollifying kernel in Rn (the unusual notation

γε for the standard mollifying kernel is aimed at avoiding confusion be-

tween it and the density function). Using the claim above we construct

inductively a sequence of momentum vector fields mk ∈ X0, associated

matrix fields Uk and a sequence of numbers ηk < 2−k as follows.

First of all let m1 ≡ 0, U1(x, t) = Ũ(x) for all (x, t) ∈ Rn+1 and

having obtained (m1, U1), ..., (mk, Uk), η1, ..., ηk−1 we choose ηk < 2−k

in such a way that

(2.67) ‖mk −mk ∗ γηk‖L2 < 2−k.

Then, we set

αk = −
∫
Qk

[|mk(x, 0)|2 − ρ0(x)χ̃(0))]dx.

Note that (2.66) ensures αk > 0. Then, we apply the claim with

Qk, α = αk and δ = 2−kT to obtain mk+1 ∈ X0 and associated smooth

matrix field Uk+1 such that

(2.68) supp(mk+1 −mk, Uk+1 − Uk) ⊂ Qk × [−2−kT, 2−kT ],

(2.69) d(mk+1,mk) < 2−k,
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(2.70)

∫
Qk

|mk+1(x, 0)|2 dx ≥
∫
Qk

|mk(x, 0)|2 dx+ βα2
k.

Since d induces the topology of C(]−T, T [;Hw(Ω)) we can also require

that

(2.71)
∥∥(mk −mk+1) ∗ γηj

∥∥
L2(Ω)

< 2−k for all j ≤ k for t = 0.

From (2.7) we infer the existence of a function m ∈ C(]−T, T [, Hw(Ω))

such that

mk
d→ m.

Besides, (2.68) implies that for any compact subset S ofQ×]−T, 0[∪]0, T [

there exists k0 such that (mk, Uk)|S = (mk0 , Uk0)|S for all k > k0.

Hence (mk, Uk) converges in C0
loc(Q×] − T, 0[∪]0, T [) to a continuous

pair (m,U) solving equations (2.63) in Rn×] − T, 0[∪]0, T [ and such

that (2.58)-(2.61) hold. In order to conclude, we show that also (2.62)

holds for m.

As first, we observe that (2.70) yields

αk+1 ≤ αk − βα2
k + |Qk+1\Qk| ≤ αk − βα2

k + 2−k,

from which we deduce that

αk → 0 as k →∞.

This, together with the following inequality

0 ≥
∫
Q

[
|mk(x, 0)|2 − ρ0(x)χ(0)

]
dx ≥ −(αk+C |Q\Qk|) ≥ −(αk+C2−k),

implies that

(2.72) lim
k↑∞

∫
Ω

[
|mk(x, 0)|2 − ρ0(x)χ(0)

]
dx = 0.
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On the other hand, owing to (2.67) and (2.71), we can write for t = 0

and for every k

‖mk −m‖L2

≤ ‖mk −mk ∗ γηk‖L2 + ‖mk ∗ γηk −m ∗ γηk‖L2 + ‖m ∗ γηk −m‖L2

≤ 2−k +
∞∑
j=0

‖mk+j ∗ γηk −mk+j+1 ∗ γηk‖L2 + 2−k

≤ 2−(k−2).

(2.73)

Finally, (2.73) implies that mk(·, 0) → m(·, 0) strongly in H(Q) as

k →∞, which together with (2.72) gives

|m(x, 0)|2 = ρ0(x)χ(0) for almost every x ∈ Rn.

�

2.8. Proof of the main Theorems

Proof . [Proof of Theorem 2.2.1] Let T be any finite positive time

and ρ0 ∈ C1
p(Q) be a given density function. Let also (m,U, q) be as

in Proposition 2.7.3. Then, define χ(t) := χ̃(t), q0(x) := q(x),

(2.74) m0(x, t) =

{
m(x, t) for t ∈ [0, T ]

m(x, t− 2T ) for t ∈ [T, 2T ],

(2.75) U0(x, t) =

{
U(x, t) for t ∈ [0, T ]

U(x, t− 2T ) for t ∈ [T, 2T ].

For this choices, the quadruple (m0, U0, q0, χ) satisfies the assump-

tions of Proposition 2.4.1. Therefore, there exist infinitely many solu-

tions m ∈ C([0, 2T ], Hw(Q)) of (2.8) in Rn × [0, 2T [ with density ρ0,

such that

m(x, 0) = m(x, 0) = m(x, 2T ) for a.e. x ∈ Ω

and

(2.76) |m(·, t)|2 = ρ0(·)χ(0) for almost every (x, t) ∈ Rn×]0, 2T [.

Since |m0(·, 0)|2 = ρ0(·)χ(0) a.e. in Rn as well, it is enough to define

m0(x) = m0(x, 0) to satisfy also (2.12) and hence conclude the proof.

�
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Proof . [Proof of Theorem 2.2.2] Under the assumptions of Theo-

rem 2.2.1, we have proven the existence of a bounded initial momentum

m0 allowing for infinitely many solutions m ∈ C([0, T ];Hw(Q)) of (2.8)

on Rn×[0, T [ with density ρ0. Moreover, the proof (see Proof of Propo-

sition 2.7.1) showed that for any smooth function χ : R → R+ with

χ > nλ̃ > 0 the following holds

|m(x, t)|2 = ρ0(x)χ(t) a.e. in Rn × [0, T [,(2.77) ∣∣m0(x)
∣∣2 = ρ0(x)χ(0) a.e. in Rn.(2.78)

Now, we claim that there exist constants C1, C2 > 0 such that choos-

ing the function χ(t) > nλ̃ on [0, T [ among solutions of the following

differential inequality

(2.79) χ′(t) ≤ −C1χ
1/2(t)− C2χ

3/2(t),

then the weak solutions (ρ0,m) of (2.8) obtained in Theorem 2.2.1 will

also satisfy the admissibility condition (3.26) on Rn× [0, T [. Of course,

there is an issue of compatibility between the differential inequality

(2.79) and the condition χ > nλ̃: this motivates the existence of a time

T > 0 defining the maximal time-interval in which the admissibility

condition indeed holds.

Let T be any finite positive time. As first, we aim to prove the claim.

Since m ∈ C([0, T ];Hw(Q)) is divergence-free and fulfills (2.77)-(2.78)

and ρ0 is time-independent, (3.26) reduces to the following inequality

(2.80)
1

2
χ′(t)+m ·∇

(
ε(ρ0(x))+

p(ρ0(x))

ρ0(x)

)
+
χ(t)

2
m ·∇

(
1

ρ0(x)

)
≤ 0,

intended in the sense of (space-periodic) distributions on Rn × [0, T ].

As ρ0 ∈ C1
p(Q), there exists a constant c2

0 with ρ0 ≤ c2
0 on Rn, whence

(see (2.77)-(2.78) )

(2.81) |m(x, t)| ≤ c0

√
χ(t) a.e. on Rn × [0, T [.

Similarly we can find constants c1, c2 > 0 with∣∣∣∣∣∇
(
ε(ρ0(x)) +

p(ρ0(x))

ρ0(x)

)∣∣∣∣∣ ≤ c1 a.e. in Rn(2.82) ∣∣∣∣∇( 1

ρ0(x)

)∣∣∣∣ ≤ c2 a.e. in Rn.(2.83)
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As a conseguence of (2.81)-(2.83), (2.80) holds as soon as χ satisfies

χ′(t) ≤ −2c1c0χ
1/2(t)− c2c0χ

3/2(t) on [0, T [.

Therefore, by choosing C1 := 2c1c0 and C2 := c2c0 we can conclude the

proof of the claim.

Now, it remains to show the existence of a function χ as in the

claim, i.e. that both the differential inequality (2.79) and the condition

χ > nλ̃ can hold true on some suitable time-interval. To this aim, we

can consider the equality in (2.79), couple it with the initial condition

χ(0) = χ0 for some constant χ0 > nλ̃ and then solve the resulting

Cauchy problem. For the obtained solution χ, there exists a positive

time T such that χ(t) > nλ̃ on [0, T [.

Finally, applying the claim on the time-interval [0, T [ we conclude

that the admissibility condition holds on Rn × [0, T [ as desired. �

Proof . [Proof of Theorem 2.1.1] The proof of Theorem 2.1.1 strongly

relies on Theorems 2.2.1-2.2.2. Given a continuously differentiable ini-

tial density ρ0 we apply Theorems 2.2.1-2.2.2 for ρ0(x) := ρ0(x) thus

obtaining a positive time T and a bounded initial momentum m0 al-

lowing for infinitely many solutions m ∈ C([0, T ];Hw(Q)) of (2.8) on

Rn × [0, T [ with density ρ0 and such that the following holds

|m(x, t)|2 = ρ0(x)χ(t) a.e. in Rn × [0, T [,(2.84) ∣∣m0(x)
∣∣2 = ρ0(x)χ(0) a.e. in Rn,(2.85)

for a suitable smooth function χ : [0, T ] → R+. Now, define ρ(x, t) =

ρ0(x)1[0,T [(t). This shows that (3.25) holds. To prove (3.24) observe

that ρ is independent of t and m is weakly divergence-free for almost

every 0 < t < T . Therefore, the pair (ρ,m) is a weak solution of

(2.1) with initial data (ρ0,m0). Finally, we can also prove (3.26): each

solution obtained is also admissible. Indeed, for ρ(x, t) = ρ0(x)1[0,T [(t),

(3.26) is ensured by Theorem 2.2.2. �



CHAPTER 3

Non–standard solutions to the compressible Euler

equations with Riemann data

3.1. Introduction

In this chapter, we will focus on the Cauchy problem for the isen-

tropic compressible Euler equations of gas dynamics in two space space

dimensions: we will consider Riemann data having a specific form and

we will prove the following surprising result which corresponds to The-

orem 0.2.2 in the Introduction of the thesis.

Theorem 3.1.1. For some choices of the pressure law p with p′ > 0

(among which p(ρ) = ρ2) and for some specific Riemann initial data,

there exist infinitely many bounded entropy solutions of the isentropic

compressible Euler equations in two space dimensions, all with density

bounded away from zero.

The proof builds upon the methods of [DLS09]-[DLS10] where

De Lellis and Székelyhidi had already shown that the admissibility

(entropy) condition does not imply uniqueness of L∞ solutions of the

Cauchy problem and upon the developments achieved in [Chi11] and

illustrated in Chapter 2. However, the examples in the papers [DLS10]

and [Chi11] had very rough initial data and it was not at all clear

whether more regular data could be achieved.

The previous result was inspired by the recent work of Székelyhidi,

who in [Sz1] recasts the vortex-sheet problem of incompressible fluid

dynamics in the framework of [DLS11].

We therefore chose to review the construction of Székelyhidi in [Sz1]

in next section (Section 3.2) before illustrating the new ideas and strate-

gies devised to prove Theorem 3.1.1.

The rest of the chapter is organized as follows. In Section 3.3 we

give the precise statement of Theorem 3.1.1 by describing the form of

the initial data allowing for such a result and by characterizing the set

65
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of allowed pressure laws. In Section 3.4 we overview the basic defini-

tions and the main ingredients of our setting. Section 3.5 explains how

the convex integration approach introduced by De Lellis-Székelyhidi

applies to our framework and allows us to prove Theorem 3.1.1. Sec-

tion 3.6 and 3.7 are devoted to the final argument for the proof of

Theorem 3.1.1: the construction of a subsolution.

3.2. Weak solutions to the incompressible Euler equations

with vortex sheet initial data

Recently Székelyhidi constructed infinitely many admissible weak

solutions to the incompressible Euler equations with initial data given

by the classical vortex sheet. He considered the Cauchy problem for

the incompressible Euler equations (see Section 1.3.2),

(3.1)


divxv = 0

∂tv + divx (v ⊗ v) +∇xp = 0

v(·, 0) = v0

.

where the unknowns v and p are the velocity vector and the pressure.

His construction is based on the “convex integration” method intro-

duced recently in [DLS10]. His result inspired us and in particular

suggested that a similar approach could be of interest also for the com-

pressible Euler system thus leading to Theorem 3.1.1.

The starting point of Székelyhidi’s construction lies in the approach

of [DLS09]-[DLS10] towards the construction of weak solutions to the

incompressible Euler equations (3.1) in order to recover the celebrated

non–uniqueness results of Scheffer [Sch93] and Shnirelman [Shn97]

(see Section 1.3.2.1). The method in [DLS09]-[DLS10] is a revisita-

tion of convex integration and Baire category arguments. In particu-

lar, in [DLS10] the strategy behind the construction of “admissible”

weak solutions to the initial value problem was based on the notion of

subsolution. Thanks to this strategy, in [DLS10] it was shown that

admissibility by itself does not imply uniqueness for the incompress-

ible Euler system (3.1). In other words there exist initial data v0, for

which there exist infinitely many distinct admissible weak solutions of

the incompressible Euler equations (3.1). Such initial data are called

wild initial data in [DLS10]. In particular, one can show the exis-

tence of infinitely many weak solutions satisfying the Duchon-Robert
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admissibility condition (see section 1.3.2)

(3.2) ∂t
|v|2

2
+ div

((
|v|2

2
+ p

)
v

)
≤ 0.

Obviously, wild initial data have to possess a certain amount of ir-

regularity. This follows from the weak- strong uniqueness and classical

local existence results. From the construction of wild initial data in

[DLS10] it was not clear how bad this irregularity needs to be. In

[Sz1] Székelyhidi showed that the classical vortex-sheet with a flat in-

terface is a wild initial data. More precisely, consider the following

solenoidal vector field in R2

(3.3) v0(x) :=

{
v+ := (1, 0) if x2 > 0,

v− := (−1, 0) if x2 < 0,

then the following theorem holds:

Theorem 3.2.1 (The vortex sheet is wild). For v0 as in (3.3) there

are infinitely many weak solutions of (3.1) on R2× [0,∞) which satisfy

the admissibility condition (3.2).

As already explained in section 1.3.2, Theorem 3.2.1 is proved in

[Sz1] using an adapted version of Proposition 1.3.5: hence the proof

essentially consisted in finding a suitable subsolution for the incom-

pressible Euler system which takes the right initial values. For the

sake of completeness, we recall the relevant definitions and results in

the case of two space-dimensions:

Definition 3.2.2 (Incompressible subsolutions). A subsolution to

the incompressible Euler equations with respect to the kinetic energy e

is a triple (ṽ, ũ, q̃) : R2×]0,∞[→ (R2,S2×2
0 ,R+) with ṽ ∈ L2

loc, ũ ∈ L1
loc,

q̃ ∈ D′ and such that

(3.4)

{
∂tṽ + divxũ+∇xq̃ = 0

divxṽ = 0

in the sense of distributions and

(3.5) ṽ ⊗ ṽ − ũ ≤ eId a.e..

Proposition 1.3.5 is here recasted as follows:

Theorem 3.2.3 (Proposition 2 in [DLS10]). Let (ṽ, ũ, q̃) be a sub-

solution to the incompressible Euler equations on R2×]0, T [. Assume
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that W ⊂ R2×]0, T [ is an open set such that (ṽ, ũ, q̃) are continuous

on W and

(3.6) ṽ ⊗ ṽ − ũ < eId on W .

Then, there exist infinitely many (v, u) ∈ L∞loc(R2×R) with v ∈ C(R;L2
w(R2))

such that (v, u, 0) satisfies (3.4), (v, u) = 0 a.e. on Wc, and

(3.7) (ṽ + v)⊗ (ṽ + v)− (ũ+ u) = eId a.e. in W .

In particular, if v := ṽ + v in the above theorem, then v satisfies

the incompressible Euler equations in the space-time region W with

pressure q, where

(3.8) |v|2 = 2e, q = q̃ − e.

In other words, if the subsolution is a continuous, strict subsolution in

some subregion, then it is possible (in a highly non-unique way) to add

a perturbation so that the sum is a solution of the incompressible Euler

equations (3.1) with prescribed kinetic energy density. This theorem

is essentially the content of Proposition 2 in [DLS10] with an almost

identical proof, except that in the proof one needs to perform the cov-

ering inside the region W rather than in all of space-time. Theorem

3.2.3 leads to the following criterion for the initial datum (3.3) to be a

wild datum. In what follows we will work in the simple case of e = 1
2
.

Theorem 3.2.4. Let v0 be as in (3.3). Assume that there exists a

subsolution (v, u, q) for the incompressible Euler equations with

(3.9) v ∈ C([0, T ];L2
w(R2)), v(0) = v0.

Furthermore, assume that there exists an open set W ⊂ R2×]0, T [ such

that (v, u, q) is continuous on W and

v ⊗ v − u < 1

2
Id in W .(3.10)

v ⊗ v − u =
1

2
Id a.e. in Wc.(3.11)

Then, there exist infinitely many weak solutions to the incompressible

Euler equations on R2×]0, T [ satisfying (3.2) and with initial data v0.

In [Sz1] the construction of a subsolution as required by Theo-

rem 3.2.4 follows an idea introduced in [Szé11] for the incompressible

porous media equation. Here we will show that the existence of such a
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subsolution can be achieved also in a more direct way which will be of

use in the compressible case as well.

3.2.1. Direct proof of Theorem 3.2.1. The aim of this section

is to apply Theorem 3.2.4 in order to prove Theorem 3.2.1. Clearly

we need to find a triple (v, u, q) satisfying (3.4), (3.9) and (3.10) for

some open set W ⊂ R2×]0, T [. We will denote the space variable as

x = (x1, x2) ∈ R2. To this aim, we consider potential subsolutions of

the following form:

(v, u, q) = (v−, u−, q−)1R−

+ (v, u, q)1R

+ (v+, u+, q+)1R+ ,(3.12)

with

R− :=

{
0 < t <

x2

ν1

}
,

R :=

{
t >

x2

ν1

and t >
x2

ν2

}
,

R+ :=

{
0 < t <

x2

ν2

}
and

(3.13) v = (α, 0),

(3.14) u− = u+ =

(
1
2

0

0 −1
2

)
,

(3.15) q− = q+ =
1

2
,

(3.16) u =

(
β γ

γ −β

)
,

for some constants ν1 < 0 < ν2, α, β, γ and q. Inside each of the

three regions R−, R and R+ the equations defining a subsolution are

trivially satisfied; hence they need to be imposed only along fronts

which do not depend on x1. Moreover condition (3.9) trivially holds.
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Since the divergence free condition is trivially satisfied for our choice

of v, the system (3.4) simply reads as

ν2(α− 1) = γ,(3.17a)

β = q,(3.17b)

ν1(α + 1) = γ.(3.17c)

Finally, if we chooseW to coincide with R, then the requirement (3.10)

amounts to the condition

(3.18)

(
α2 − β −γ
−γ β

)
<

(
1
2

0

0 1
2

)
,

which is equivalent to the following couple of inequalities

α2 ≤ 1,(3.19a)

1

4
− 1

2
α2 + βα2 − β2 − γ2 ≥ 0.(3.19b)

With the choice α = 0, ν1 = −ν2 = γ < 0 and −γ = β = q = 1
4
. all

the conditions (3.17a)-(3.19b) are satisfied. Hence a subsolution as in

the hypothesis of Theorem 3.5.1 exists. Note that for the initial datum

v0 as given by (3.3) we already have: |v0|2 = 2e = 1 for our choice

of e. This together with the fact the pressure does not depend on x1

(since q and e = 1
2

do not depend on x1) justifies why the admissibility

condition (3.2) will be satisfied by the so constructed infinitely many

weak solutions of the incompressible Euler equations.

3.3. The compressible system: main results

The motivation to the results herein presented has already been dis-

closed in the Introduction to the chapter. We emphasize that [DLS10]

inspired the construction carried out in Chapter 2 (see also [Chi11]),

where the compressible Euler equations are analyzed in the framework

of convex integration: by choosing a suitable concept of subsolution, a

similar strategy as in [DLS09, DLS10] can be performed and failure of

uniqueness of admissible weak solutions to the Cauchy problem for the

compressible Euler equations starting from any regular initial density

is shown. This further result confirms the conjecture that admissi-

bility by itself does not imply uniqueness for the compressible Euler

equations and highlights the main role of the velocity in this failure

of uniqueness. As for the incompressible Euler equations, there exist
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initial data with infinitely many distinct admissible weak solutions of

the compressible Euler equations. These initial data can be denomi-

nated as wild initial data, coherently with the incompressible case. As

explained in Chapter 2, wild initial data need to be irregular : if the

initial data are smooth enough, then a classical weak solution exists on

a maximal time interval and is unique within the broader class of weak

solutions (cf. [Daf00]).

A natural question then arises: how bad does this irregularity needs

to be? Here we give a partial answer to this question: we show that

a classical Riemann initial datum is a wild initial datum in the two

dimensional case. More precisely, we consider the Cauchy problem

for the compressible Euler equations in two space dimensions and we

exhibit a Riemann initial datum allowing for infinitely many admissible

weak solutions.

We recall once more in the thesis, for the first time in this chapter,

the isentropic compressible Euler equations of gas dynamics in two

space dimensions. The unknowns of the equations are the density ρ and

the velocity v (see (0.1)). The Cauchy problem for the compressible

Euler system, which consists of 3 scalar equations in the two-space-

dimensional case, takes the form:

(3.20)


∂tρ+ divx(ρv) = 0

∂t(ρv) + divx (ρv ⊗ v) +∇x[p(ρ)] = 0

ρ(·, 0) = ρ0

v(·, 0) = v0

.

The pressure p is a function of ρ whose analytical form depends on the

gas under investigation. A common choice is the polytropic pressure

law

p(ρ) = kργ

with constants k > 0 and γ > 1. The first main result will be concerned

with the case p(ρ) = kρ2. This choice is consistent with classical kinetic

theory which predicts γ = 1 + 2/d where d is the number of degrees

of freedom: indeed in the two space-dimensional case we have exactly

d = 2 hence the chosen value of γ.
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Entropy or admissible solutions are those satisfying an additional

constraint (also called entropy inequality) coming from the energy in-

equality

(3.21) ∂t

(
ρε(ρ) + ρ

|v|2

2

)
+ divx

[(
ρε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v

]
≤ 0

where the internal energy ε : R+ → R is given through the law p(r) =

r2ε′(r).

If we consider Riemann data ρ0 and v0 having the following very specific

form

(3.22) ρ0(x) :=

{
ρ+ if x2 > 0,

ρ− if x2 < 0,

(3.23) v0(x) :=

{
v+ := (1, 0) if x2 > 0,

v− := (−1, 0) if x2 < 0,

then the following theorems hold (precise statements of Theorem 3.1.1).

Theorem 3.3.1. With the choice of pressure law p(ρ) = ρ2, there

exist constants ρ± for which there exist infinitely many admissible bounded

solutions (ρ, v) of (3.20), (3.22)-(3.23) with inf ρ > 0.

Theorem 3.3.2. For some specific smooth pressure laws p with

p′ > 0, there exist constants ρ± for which there exist infinitely many

admissible bounded solutions (ρ, v) of (3.20), (3.22)-(3.23) with inf ρ >

0.

If we restrict our attention to pairs (ρ, v) which are admissible so-

lutions of (3.20), (3.22)-(3.23) and depend only on (x2, t), then we

will be dealing with a classical Riemann problem for (3.20) in one

space-variable (only x2) which admits self-similar solutions. Since the

pioneering work of Riemann it is known that, under the hypothesis

of “self-similarity” of (ρ, v) (dependence only on x2
t

) and with some

other assumptions, there is a unique solution of (3.20), (3.22)-(3.23)

(see for instance [Ser99]). We will show that, such a uniqueness result

holds also for the choice of pressure law dictated by Theorem 3.3.1:

this will be the content of next chapter. But Theorems 3.3.1 and 3.3.2

show that uniqueness is completely lost if we drop the requirement that

(ρ, v) depends only on x2
t

.
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Moreover, Theorems 3.3.1 and 3.3.2 deserve some further com-

ments. The pressure laws p which allow our constructions are not

a condition sine qua non for the non-uniqueness results to hold. An

interesting question correlated to our result is whether Theorem 3.3.2

might hold for regular initial data: so far the problem is open since the

data of Theorem 3.3.2 cannot be generated by Lipschitz compression

waves.

Finally, though the solutions of Theorems 3.3.1 and 3.3.2 are very

irregular, it is rather unclear where one wishes to set a boundary. On

the one hand the space of BV functions does not seem suitable for an

existence theory in more than one space dimension (see [Rau86]). On

the other hand the recent paper [DLS12] shows the existence of con-

tinuous solutions to the incompressible Euler equations which dissipate

the kinetic energy. This may suggest that the framework of [DLS09]-

[DLS10] is likely to produce “strange” piecewise continuous solutions

to hyperbolic systems of conservation laws.

3.4. Basic definitions

Let T be a fixed positive time. By a weak solution of (3.20) on

R2 × [0, T [ we mean a pair (ρ, v) ∈ L∞(R2 × [0, T [) such that the

following identities hold for every test functions ψ ∈ C∞c (R2 × [0, T [),

φ ∈ C∞c (R2 × [0, T [):

(3.24)

∫ T

0

∫
R2

[ρ∂tψ + ρv · ∇xψ] dxdt+

∫
R2

ρ0(x)ψ(x, 0)dx = 0

∫ T

0

∫
R2

[ρv · ∂tφ+ 〈ρv ⊗ v,∇xφ〉+ p(ρ) divx φ] dxdt

+

∫
R2

ρ0(x)v0(x) · φ(x, 0)dx = 0.(3.25)

For n = 2 the only non-trivial entropy is the total energy η =

ρε(ρ) + ρ|v|2
2

which corresponds to the flux Ψ =
(
ε(ρ) + ρ |v|

2

2
+ p(ρ)

ρ

)
v.
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Then a bounded weak solution (ρ, v) of (3.20) satisfying (3.21) in

the sense of distributions, i.e. satisfying the following inequality∫ T

0

∫
R2

[(
ρε(ρ) + ρ

|v|2

2

)
∂tϕ+

(
ρε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v · ∇xϕ

]

+

∫
R2

(
ρ0ε(ρ0) + ρ0 |v0|2

2

)
ϕ(·, 0) ≥ 0,

(3.26)

for every nonnegative ϕ ∈ C∞c (R2× [0, T [), is said to be an entropy (or

admissible) solution of (3.20).

3.4.1. Subsolutions. In order to prove Theorem 3.3.2 we first

recall the underlying strategy. To start with, we make precise the

definition of subsolution in our context. Here S2×2
0 denotes the set of

symmetric traceless 2× 2 matrices and Id is the identity matrix.

Definition 3.4.1 (Compressible subsolutions). A subsolution to

the compressible Euler equations (3.20) is a triple (ρ, v, u) : R2×]0,∞[→
(R+,R2,S2×2

0 ), with ρ ∈ L∞, v̄ ∈ L2
loc and ū ∈ L1

loc, satisfying the fol-

lowing properties:

(1) (ρ, v, u) =
∑N

i=1(ρi, vi, ui)1Pi
for some partition {P1, ..., PN} of

R2×]0,∞[ in finitely many open sets and for some constants

(ρi, vi, ui);

(2) ∀ 1 ≤ i ≤ N , one of the following two conditions holds on Pi:

either

(3.27) |vi| = 1 and ui = vi ⊗ vi −
|vi|2

2
Id a.e.,

or

(3.28) |vi|2 < Ci and vi ⊗ vi − ui <
Ci
2
Id a.e..

for some positive constant Ci,

and solving

(3.29)
∂tρ+ divx(ρ v) = 0

∂t(ρ v) + divx (ρ u) +∇x

(
p(ρ) +

∑
i∈IC Ci

ρ
2
1Pi

+
∑

i∈I1
ρ
2
1Pi

)
= 0

ρ(·, 0) = ρ0

v(·, 0) = v0

.
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in the sense of distributions, where the sets of indexes I1 and IC are

defined as follows:

I1 := {i ∈ [1, N ] ∩ N such that (3.27) holds on Pi},

IC := {i ∈ [1, N ] ∩ N such that (3.28) holds on Pi}.

Now, we will introduce a completely new definition which will be

the starting point for the convex integration argument.

Definition 3.4.2 (Admissible subsolutions). A subsolution (ρ, v, u) :

R2×]0,∞[→ (R+,R2,S2×2
0 ) to the compressible Euler equations (3.20)

is said to be admissible if it satisfies the following inequality in the sense

of distributions:

∂t (ρε(ρ)) + divx [(ρε(ρ) + p(ρ)) v]

+
∑
i∈IC

[
∂t

(
ρ
Ci − 1

2
1Pi

)]
+
∑
i∈IC

[
divx

(
ρ v

Ci − 1

2
1Pi

)]
≤ 0.

(3.30)

For our purposes we will also make use of “incompressible subsolu-

tions” as defined in Definition 3.2.2 with the particular choice e = C/2

for some positive constant C, i.e.:

Definition 3.4.3 (Incompressible subsolutions 2). A subsolution

to the incompressible Euler equations is a triple (ṽ, ũ, q̃) : R2×]0,∞[→
(R2,S2×2

0 ,R+) with ṽ ∈ L2
loc, ũ ∈ L1

loc, q̃ ∈ D′ and such that

(3.31)

{
∂tṽ + divxũ+∇xq̃ = 0

divxṽ = 0

in the sense of distributions and

(3.32) ṽ ⊗ ṽ − ũ < C

2
Id a.e..

Note that subsolutions to the incompressible Euler equations auto-

matically satisfy |ṽ|2 < C a.e. If, in addition, (3.32) is an equality a.e.

then ṽ is a weak solution of the incompressible Euler equations.

3.5. Convex integration

In this section, we will clarify how convex integration allows to

construct admissible weak solutions to the compressible Euler system

(3.20) with Riemann initial data (ρ0, v0) starting from admissible sub-

solutions. Given an admissible subsolution (ρ, v, u) for the compressible
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Euler system as in definition 3.4.1-3.4.2, the density ρ is constant in

every open set Pi of the partition; therefore, in those open sets Pi
where (3.28) holds, we are indeed dealing with a subsolution for the

incompressible Euler system in the sense of definition 3.4.3. More pre-

cisely, in the open sets Pi where (3.28) holds, the triple (vi, ui, 0) is,

by definition, a subsolution on Pi to the incompressible Euler system.

This observation suggests that, in every open set Pi where (3.28) holds,

we can exploit the results obtained in [DLS10] for the incompressible

Euler equations: in every such open set it is indeed possible to run a

suitable version of convex integration so to construct infinitely many

weak solutions. To this aim we will make use of Proposition 3.2.3 from

[DLS10] with the choice e = C/2. Theorem 3.2.3 leads to the following

criterion for wild initial data for the compressible Euler equations.

Theorem 3.5.1. Let (ρ0, v0) be as in (3.22)-(3.23). Assume that

there exists an admissible subsolution (ρ, v, u) for the compressible Eu-

ler equations with

(3.33) v(0) = v0, ρ(0) = ρ0.

Then, there exist infinitely many admissible weak solutions to the com-

pressible Euler equations on R2×]0, T [ with initial data (ρ0, v0).

Proof . Let (ρ, v, u) be an admissible subsolution for the compress-

ible Euler equations as given by the assumptions of Theorem 3.5.1.

In particular, we can assume that (ρ, v, u) =
∑N

i=1(ρi, vi, ui)1Pi
. For

every open set Pi where (3.28) holds, we apply Theorem 3.2.3 to the

triple (vi, ui, 0) on the open setW = Pi. Then, we find infinitely many

functions (vi, ui) satisfying (3.31) on R2×]0,∞[ with q̃ = 0 and such

that the following holds:

(vi + vi)⊗ (vi + vi)− (ui + ui) =
Ci
2
Id a.e. in Pi,(3.34)

(vi, ui) = 0 a.e. on P c
i .(3.35)

Once Theorem 3.2.3 has been applied to every open set Pi where (3.28)

holds (i.e. for every i ∈ IC), we define v and u in a highly non-unique

way as follows:

v := v +
N∑
i=1

vi,
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u := u+
N∑
i=1

ui

Since ρ is constant on every Pi and thanks to (3.29), (3.30) and (3.34)-

(3.35), the infinitely many couples (ρ, v) are admissible weak solutions

of (3.20) on R2×]0, T [ with initial data (ρ0, v0). �

Thanks to Theorem 3.5.1, in order to prove Theorems 3.3.1 and

3.3.2 it will be enough to exhibit an admissible subsolution to the com-

pressible Euler equations in the sense of Definition 3.4.2. The con-

struction of such a subsolution will be the content of the next sections.

At this point the chapter takes two different routes according to the

theorem we are going to prove.

3.6. Non–standard solutions with quadratic pressure

3.6.1. Construction of the subsolution. In this section, we will

prove the existence of an admissible subsolution for the quadratic pres-

sure law satisfying (3.33).

Theorem 3.6.1. For p(ρ) = ρ2 there are constants ρ± such that

there exists an admissible subsolution (ρ, v, u) : R2×]0,∞[→ (R+,R2,S2×2
0 )

to the compressible Euler equations with

(3.36) v(0) = v0, and ρ(0) = ρ0,

for ρ0 and v0 as in (3.22)-(3.23).

Remark 3.6.2. The admissible subsolution of Theorem 3.6.1 will

have the form

(ρ, v, u) =
3∑
i=1

(ρi, vi, ui)1Pi
,

for some suitably chosen Pi, 1 ≤ i ≤ 3.

What follows is devoted to the proof of Theorem 3.6.1.

3.6.1.1. Subsolutions in three regions. We aim at constructing an

admissible subsolution to the compressible Euler equations of the fol-

lowing form (see Fig. 1):

(ρ, v, u) = (ρ−, v−, u−)1P−

+ (ρ, v, u)1P

+ (ρ+, v+, u+)1P+ ,(3.37)
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with

P− :=

{
0 < t <

x2

ν1

}
,

P :=

{
t >

x2

ν1

and t >
x2

ν2

}
,

P+ :=

{
0 < t <

x2

ν2

}
and

(3.38) v = (a, b),

(3.39) u− = u+ =

(
1
2

0

0 −1
2

)
,

(3.40) u =

(
β γ

γ −β

)
,

for some constants a, b, β, γ.

x2

P+

(ρ+, v+, u+)(ρ−, v−, u−)

P−

P

1

ν1 ν2

t

(ρ, v, u)

Figure 1. Subsolution in three regions

Hence, the condition (3.30) of admissibility for a subsolution takes

the following easier form:

∂t (ρε(ρ)) + divx [(ρε(ρ) + p(ρ)) v]

+ ∂t

(
ρ
C − 1

2
1P

)
+ divx

(
ρ v

C − 1

2
1P

)
≤ 0.(3.41)
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Inside each of the three regions P−, P and P+ the equations defining a

subsolution are trivially satisfied; hence they need to be imposed only

along fronts. If we plug in the choice of pressure law p(ρ) = ρ2, the

system (3.29) then reads as

ν2(ρ+ − ρ) = −bρ,(3.42a)

ν1(ρ− ρ−) = bρ,(3.42b)

ν2(ρ+ − ρa) = −γρ,(3.43a)

ν1(ρa+ ρ−) = γρ,(3.43b)

− ν2ρb = ρ+2 − ρ2 − Cρ

2
+ ρβ,(3.43c)

ν1ρb = ρ2 − ρ−2
+
Cρ

2
− ρβ.(3.43d)

Moreover, the relation between pressure and internal energy dictates

the analytical form of ε(ρ) in case p(ρ) = ρ2: we will simply have ε(ρ) =

ρ. Thus, the admissibility inequality (3.41) originates the following two

inequalities

ν2

(
ρ2 − ρ+2

+ ρ
C − 1

2

)
− b
(

2ρ2 + ρ
C − 1

2

)
≤ 0(3.44a)

ν1

(
ρ−

2 − ρ2 − ρC − 1

2

)
+ b

(
2ρ2 + ρ

C − 1

2

)
≤ 0.(3.44b)

Finally, the subsolution condition (3.28) in P translates into

(3.45)

(
a2 − β ab− γ
ab− γ b2 + β

)
<

(
C
2

0

0 C
2

)
.

3.6.1.2. Reduction of the admissibility condition.

Theorem 3.6.3. Let us suppose that

(3.46) ν1 < 0 < ν2.

Then, for the pressure function p(ρ) = ρ2, the admissibility conditions

(3.44a)-(3.44b) for a subsolution are implied by the following system of
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inequalities:

ρ ≤ ρ+ −
√
ρ+
C − 1

2
,(3.47a)

ρ ≥ ρ− +

√
ρ−
C − 1

2
,(3.47b)

C > 1.(3.47c)

Indeed, the condition of admissibility (3.44a)-(3.44b) for the subso-

lution will be reduced to (3.47a)-(3.47c).

Proof . First, owing respectively to (3.42a) and (3.42b), we can

rewrite (3.44a) and (3.44b) as follows:

ν2

(
ρ2 − ρ+2

+ ρ
C − 1

2

)
+ ν2(ρ+ − ρ)

(
2ρ+

C − 1

2

)
≤ 0(3.48a)

ν1

(
ρ−

2 − ρ2 − ρC − 1

2

)
+ ν1(ρ− ρ−)

(
2ρ+

C − 1

2

)
≤ 0.(3.48b)

From the hypothesis (3.46) we can further reduce (3.48a)-(3.48b) to(
ρ2 − ρ+2

+ ρ
C − 1

2

)
+ (ρ+ − ρ)

(
2ρ+

C − 1

2

)
≤ 0(3.49a) (

ρ−
2 − ρ2 − ρC − 1

2

)
+ (ρ− ρ−)

(
2ρ+

C − 1

2

)
≥ 0.(3.49b)

Now, from (3.49a)- (3.49b), by simple algebra, we get

ρ2 − 2ρ+ρ+ ρ+2 − ρ+C − 1

2
≥ 0(3.50a)

ρ2 − 2ρρ− + ρ−
2 − ρ−C − 1

2
≥ 0.(3.50b)

Clearly (3.50a) is satisfied if and only if

(3.51) ρ ≤ ρ+ −
√
ρ+
C − 1

2
∨ ρ ≥ ρ+ +

√
ρ+
C − 1

2
,

while (3.50b) holds if and only if

(3.52) ρ ≤ ρ− −
√
ρ−
C − 1

2
∨ ρ ≥ ρ− +

√
ρ−
C − 1

2
,

provided that C > 1, i.e. that (3.47c) holds. Observe from (3.42a)-

(3.42b) that

ν2(ρ+ − ρ) = −ν1(ρ− ρ−).
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Hence, in view of (3.46), either

(3.53) ρ− < ρ < ρ+

or

(3.54) ρ+ < ρ < ρ−

have to hold.

We assume to be in the first case, i.e. when (3.53) holds. Then

(3.51)-(3.52) respectively reduce to (3.47a)-(3.47b) as desired. �

3.6.2. Proof of Theorem 3.6.1. This section is devoted to the

proof of Theorem 3.6.1: we will show that the set of all the conditions

required for an admissible subsolution to the compressible Euler system

has a solution. Since a lot of calculations are involved, we prefer to

split the proof in different parts, each of which corresponds to one of

the following subsections.

3.6.2.1. Change of variables. In this section we will rewrite the con-

ditions required to be an admissible subsolution for the compressible

Euler system in a new and more convenient set of variables.

First of all, by Theorem 3.6.3, the conditions of admissibility (3.44a)-

(3.44b) for the subsolution can be replaced with (3.47a)-(3.47b).

Resuming, we are looking for constants (ρ, ρ+, ρ−, ν1, ν2, a, b, β, γ, C)

satisfying (3.42a)-(3.42b), (3.43a)-(3.43d), (3.45), (3.47a)-(3.47c) and

such that

ν1 < 0 < ν2(3.55)

0 < ρ− < ρ < ρ+.(3.56)

Without loss of generality we can assume ρ = 1. Hence, (3.56) simpli-

fies to

(3.57) 0 < ρ− < 1 < ρ+,

while, (3.42a)-(3.43d) become

ν2(ρ+ − 1) = −b,(3.58a)

ν1(1− ρ−) = b,(3.58b)
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ν2(ρ+ − a) = −γ,(3.59a)

ν1(a+ ρ−) = γ,(3.59b)

− ν2b = ρ+2 − 1− C

2
+ β,(3.59c)

ν1b = 1− ρ−2
+
C

2
− β.(3.59d)

Finally, (3.47a)-(3.47b) take the form

ρ− +

√
ρ−
C − 1

2
≤ 1(3.60a)

ρ+ −
√
ρ+
C − 1

2
≥ 1.(3.60b)

Owing to (3.57), the admissibility conditions (3.60a)-(3.60b) change

respectively into:

0 < ρ− ≤ 1

4

{√(
C − 1

2
+ 4

)
−
√
C − 1

2

}2

(3.61a)

ρ+ ≥ 1

4

{√(
C − 1

2
+ 4

)
+

√
C − 1

2

}2

.(3.61b)

For the sake of simplicity, we introduce a new set of variables. We

define:

C := C/2, b := −b, γ := −γ, ν+ := ν2, ν− := −ν1

and

r+ := ρ+ν+, r− := ρ−ν−.
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This allows us to rewrite the ensemble of conditions (3.55), (3.57),

(3.58a)-(3.59d), (3.61a)-(3.61b) for an admissible subsolution as

ν−, ν+, b, r
−, r+ > 0 and C > 1/2,(3.62)

r+ − ν+ = b,(3.63)

r− − ν− = −b,(3.64)

r+ − aν+ = γ,(3.65)

− r− − aν− = −γ,(3.66)

ν+b = ρ+2 − 1− C + β,(3.67)

ν−b = 1− ρ−2
+ C − β,(3.68)

0 < ρ− ≤ 1

4

{√(
C +

7

2

)
−
√
C − 1

2

}2

,(3.69)

ρ+ ≥ 1

4

{√(
C +

7

2

)
+

√
C − 1

2

}2

,(3.70)

while the subsolution condition (3.45) in P translates into

(3.71)

(
C − a2 + β ab− γ
ab− γ C − b2 − β

)
> 0.

To summarize, we are looking for constants (r+, r−, ν+, ν−, a, b, β, γ, C)

satisfying (3.62)-(3.71).

3.6.2.2. Reduction of the equations. In this section, we work on the

system (3.62)-(3.71) so to simplify the conditions for an admissible

subsolution.

From (3.63) and (3.65) we obtain

ν+ =
γ − b
1− a

,(3.72)

r+ =
γ − ab
1− a

.(3.73)

Similarly (3.64) and (3.66) give

ν− =
γ + b

1 + a
,(3.74)

r− =
γ − ab
1 + a

.(3.75)
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Note that r+r− = (γ−ab)2/(1−a2) which together with (3.62) implies

a2 < 1. In view of this, the condition of positivity of ν+ (see (3.62))

entails γ > b. On the other hand, if we assume a2 < 1 and γ > b,

then (3.72)-(3.75) respectively ensure the positivity of ν+, r
+, ν− and

r− required by (3.62). Thereby, (3.62)-(3.70) can be substituted by the

following new systems of conditions:

γ > b > 0, a2 < 1, C > 1/2(3.76) (
γ − b
1− a

)
b = ρ+2 − 1− C + β,(3.77) (

γ + b

1 + a

)
b = 1− ρ−2

+ C − β,(3.78)

0 < ρ− ≤ 1

4

{√(
C +

7

2

)
−
√
C − 1

2

}2

,(3.79)

ρ+ ≥ 1

4

{√(
C +

7

2

)
+

√
C − 1

2

}2

.(3.80)

Finally, we note that for a symmetric 2 × 2-matrix M the condition

M > 0 is equivalent to detM > 0 and trM > 0. Thus, we have reduced
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the conditions for an admissible subsolution to:

γ > b > 0,(3.81)

a2 < 1,(3.82)

C >
1

2
,(3.83)

ρ+2
=

(
γ − b
1− a

)
b+ 1 + C − β,(3.84)

ρ−
2

= −
(
γ + b

1 + a

)
b+ 1 + C − β,(3.85)

0 < ρ− ≤ 1

4

{√(
C +

7

2

)
−
√
C − 1

2

}2

,(3.86)

ρ+ ≥ 1

4

{√(
C +

7

2

)
+

√
C − 1

2

}2

,(3.87)

a2 + b
2
< 2C,(3.88)

(C − a2 + β)(C − b2 − β) > (γ − ab)2.(3.89)

3.6.2.3. Concluding argument. In view of the previous sections, in

order to prove Theorem 3.6.1 is enough to find constants (a, b, β, γ, C)
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satisfying:

γ > b > 0,

(3.90)

a2 < 1,

(3.91)

C >
1

2
,

(3.92)

0 <

√
−
(
γ + b

1 + a

)
b+ 1 + C − β ≤ 1

4

{√(
C +

7

2

)
−
√
C − 1

2

}2

,

(3.93)

√(
γ − b
1− a

)
b+ 1 + C − β ≥ 1

4

{√(
C +

7

2

)
+

√
C − 1

2

}2

,

(3.94)

a2 + b
2
< 2C,

(3.95)

(C − a2 + β)(C − b2 − β) > (γ − ab)2.

(3.96)
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To this aim, we further introduce a new variable λ := γ − ab, so

that (3.90)-(3.96) transform into the equivalent system:

λ > b(1− a) > 0,

(3.97)

a2 < 1,

(3.98)

C >
1

2
,

(3.99)

0 <

√
− λb

1 + a
− b2

+ 1 + C − β ≤ 1

4

{√(
C +

7

2

)
−
√
C − 1

2

}2

,

(3.100)

√
λb

1− a
− b2

+ 1 + C − β ≥ 1

4

{√(
C +

7

2

)
+

√
C − 1

2

}2

,

(3.101)

a2 + b
2
< 2C,

(3.102)

(C − a2 + β)(C − b2 − β) > λ2.

(3.103)

Let us notice that, in view of (3.102) and (3.103), the following two

inequalities must hold

C − a2 + β > 0 and C − b2 − β > 0.
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Armed with the previous considerations, we now set C = 4/5b
2

and

β = −2/5b
2
. Then, (3.97)-(3.103) transform into

λ > b(1− a) > 0,

(3.104)

a2 < 1,

(3.105)

b
2
>

5

8
,

(3.106)

0 <

√
− λb

1 + a
+
b

2

5
+ 1 ≤ 1

4

{√(
4

5
b

2
+

7

2

)
−
√

4

5
b

2 − 1

2

}2

,

(3.107)

√
λb

1− a
+
b

2

5
+ 1 ≥ 1

4

{√(
4

5
b

2
+

7

2

)
+

√
4

5
b

2 − 1

2

}2

,

(3.108)

a2 <
3

5
b

2
,

(3.109)

(
2

5
b

2 − a2

)
b

2

5
> λ2.

(3.110)

In conclusion, we are looking for (a, b, λ) such that (3.104)-(3.110) hold.

Let us make the choice b = 5, so that if there exist a and λ satisfying

the following set of conditions

λ > 5(1− a) > 0,(3.111)

a2 < 1,(3.112)

0 <

√
6− 5λ

1 + a
≤ 1

4

(
43−

√
1833

)
,(3.113) √

6 +
5λ

1− a
≥ 1

4

(
43 +

√
1833

)
,(3.114)

5
(
10− a2

)
> λ2,(3.115)
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then we will obtain an admissible subsolution for the compressible Euler

equations. But it easy to check that conditions (3.111)-(3.115) admit

a solution (a, λ). Indeed, if we set a = 1 − ε for some ε > 0 to be

estimated, then (3.112) is immediately satisfied; on the other end the

remaining inequalities become:

λ > 5ε > 0,(3.116)

0 <

√
6− 5λ

2− ε
≤ 1

4

(
43−

√
1833

)
,(3.117) √

6 +
5λ

ε
≥ 1

4

(
43 +

√
1833

)
,(3.118)

5
(
9 + 2ε− ε2

)
> λ2,(3.119)

Now, it is enough to plug in a small value for ε, for example ε = 1/100,

to check by hands that the region of λ’s satisfying (3.116)-(3.119) is

non empty, hence the proof of Theorem 3.6.1 is concluded.

3.7. Non–standard solutions with specific pressure

3.7.1. Construction of the subsolution. In this section, we

will prove the existence of an admissible subsolution for some specific

smooth pressure laws with p′ > 0, subsolution satisfying (3.33) too.

Theorem 3.7.1. There are a smooth pressure law p with p′ > 0 and

constants ρ± such that there exists an admissible subsolution (ρ, v, u) :

R2×]0,∞[→ (R+,R2,S2×2
0 ) to the compressible Euler equations with

(3.120) v(0) = v0, and ρ(0) = ρ0,

for ρ0 and v0 as in (3.22)-(3.23).

Remark 3.7.2. The admissible subsolution of Theorem 3.6.1 will

have the form

(ρ, v, u) =
3∑
i=1

(ρi, vi, ui)1Pi
,

for some suitably chosen Pi, 1 ≤ i ≤ 3 as in the case of quadratic

pressure law.

What follows is devoted to the proof of Theorem 3.7.1.



90 3. COMPRESSIBLE EULER EQUATIONS WITH RIEMANN DATA

3.7.1.1. Subsolutions in three regions. We aim at constructing an

admissible subsolution to the compressible Euler equations of the fol-

lowing form (see Fig. 1):

(ρ, v, u) = (ρ−, v−, u−)1P−

+ (ρ, v, u)1P

+ (ρ+, v+, u+)1P+ ,(3.121)

with

P− :=

{
0 < t <

x2

ν1

}
,

P :=

{
t >

x2

ν1

and t >
x2

ν2

}
,

P+ :=

{
0 < t <

x2

ν2

}
and

(3.122) v = (a, b),

(3.123) u− = u+ =

(
1
2

0

0 −1
2

)
,

(3.124) u =

(
β γ

γ −β

)
,

for some constants a, b, β, γ.

Hence, the condition (3.30) of admissibility for a subsolution takes

the following easier form:

∂t (ρε(ρ)) + divx [(ρε(ρ) + p(ρ)) v]

+ ∂t

(
ρ
C − 1

2
1P

)
+ divx

(
ρv

C − 1

2
1P

)
≤ 0.(3.125)

Inside each of the three regions P−, P and P+ the equations defining a

subsolution are trivially satisfied; hence they need to be imposed only

along fronts. The system (3.29) then reads as

ν2(ρ+ − ρ) = −bρ,(3.126a)

ν1(ρ− ρ−) = bρ,(3.126b)
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ν2(ρ+ − ρa) = −γρ,(3.127a)

ν1(ρa+ ρ−) = γρ,(3.127b)

− ν2ρb = p(ρ+)− p(ρ)− Cρ

2
+ ρβ,(3.127c)

ν1ρb = p(ρ)− p(ρ−) +
Cρ

2
− ρβ.(3.127d)

The admissibility inequality (3.125) originates the following two in-

equalities

ν2

(
ρε(ρ)− ρ+ε(ρ+) + ρ

C − 1

2

)
− b
(
ρε(ρ) + p(ρ) + ρ

C − 1

2

)
≤ 0

(3.128a)

ν1

(
ρ−ε(ρ−)− ρε(ρ)− ρC − 1

2

)
+ b

(
ρε(ρ) + p(ρ) + ρ

C − 1

2

)
≤ 0.

(3.128b)

Finally, the subsolution condition (3.28) in P translates into

(3.129)

(
a2 − β ab− γ
ab− γ b2 + β

)
<

(
C
2

0

0 C
2

)
.

3.7.1.2. Reduction of the admissibility condition.

Theorem 3.7.3. Let us suppose that

(3.130) ν1 < 0 < ν2.

Then, there exist pressure functions p ∈ C∞([0,+∞[) with p(0) =

p′(0) = 0 and p′ > 0 on ]0,+∞[ such that the admissibility conditions

(3.128a)-(3.128b) for a subsolution are implied by the following system

of inequalities: (
p(ρ+)− p(ρ)

) (
ρ+ − ρ

)
≥ C − 1

2
ρ+ρ(3.131a) (

p(ρ)− p(ρ−)
) (
ρ− ρ−

)
≥ C − 1

2
ρ−ρ.(3.131b)

The pressures p given by Theorem 3.7.3 will be chosen in Theorem

3.7.1 as the pressure law allowing room for the existence of an admissi-

ble subsolution. Indeed, thanks to the choice of such pressure laws the

condition of admissibility (3.128a)-(3.128b) for the subsolution will be

reduced to (3.131a)-(3.131b).
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Proof . First, let us define g(ρ) := ρε(ρ). In view of the relation

p(r) = r2ε′(r), we obtain

g′(ρ) = ε(ρ) +
p(ρ)

ρ
.

Thus, owing respectively to (3.126a) and (3.126b), we can rewrite

(3.128a) and (3.128b) as follows:

ν2(g(ρ)− g(ρ+)) + ν2(ρ+ − ρ)g′(ρ) + ν2ρ
+C − 1

2
≤ 0(3.132a)

ν1(g(ρ−)− g(ρ)) + ν1(ρ− ρ−)g′(ρ)− ν1ρ
−C − 1

2
≤ 0.(3.132b)

From the hypothesis (3.130) we can further reduce (3.132a)-(3.132b)

to

(g(ρ+)− g(ρ))− (ρ+ − ρ)g′(ρ) ≥ C − 1

2
ρ+(3.133a)

−(g(ρ)− g(ρ−)) + (ρ− ρ−)g′(ρ) ≥ C − 1

2
ρ−.(3.133b)

Moreover, we observe from (3.126a)-(3.126b) that

ν2(ρ+ − ρ) = −ν1(ρ− ρ−).

Hence, in view of (3.130), either

(3.134) ρ− < ρ < ρ+

or

(3.135) ρ+ < ρ < ρ−

have to hold.

We assume to be in the first case, i.e. when (3.134) holds. Let us

note that

(g(σ)− g(s))− (σ − s)g′(s) =

∫ σ

s

∫ τ

s

g′′(r)drdτ

for every s < σ. On the other hand, by simple algebra, we can compute

g′′(r) = p′(r)/r. Hence, the following equalities hold for every s < σ:

(g(σ)− g(s))− (σ − s)g′(s) =

∫ σ

s

∫ τ

s

p′(r)

r
drdτ

and

(g(s)− g(σ)) + (σ − s)g′(σ) =

∫ σ

s

∫ σ

τ

p′(r)

r
drdτ.
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As a consequence, and in view of (3.134), we can rewrite (3.133a) and

(3.133b) equivalently as∫ ρ+

ρ

∫ τ

ρ

p′(r)

r
drdτ ≥ C − 1

2
ρ+,(3.136a) ∫ ρ

ρ−

∫ ρ

τ

p′(r)

r
drdτ ≥ C − 1

2
ρ−.(3.136b)

Now, we introduce two new variables q+ and q− defined by

q+ := p(ρ+)− p(ρ),

q− := p(ρ)− p(ρ−).

Proving the Theorem is then equivalent to show the existence of a

pressure law p satisfying p(ρ+)− p(ρ) = q+, p(ρ)− p(ρ−) = q− and for

which the two inequalities (see (3.131a)-(3.131b))

q+
(
ρ+ − ρ

)
≥ C − 1

2
ρ+ρ(3.137a)

q−
(
ρ− ρ−

)
≥ C − 1

2
ρ−ρ.(3.137b)

imply (3.136a)-(3.136b) (which are equivalent to (3.128a)-(3.128b) as

just shown). In the following we will prove that such a choice of pressure

is possible. To this aim, we will introduce a measure theoretic setting.

First, we define the set of functions

L := {f ∈ C∞([0,+∞[) such that f(0) = 0, f(r) > 0∀r ≥ 0 and∫ ρ

ρ−
f = q−,

∫ ρ+

ρ

f = q+

}
and the two functional defined on L

L+(f) :=

∫ ρ+

ρ

∫ τ

ρ

f(r)

r
drdτ,

L−(f) :=

∫ ρ

ρ−

∫ ρ

τ

f(r)

r
drdτ.

Note that L is the set of derivatives of the possible pressure functions.

A necessary condition to find a pressure function p with the properties

above is that

l+ := sup
f∈L

L+(f) >
C − 1

2
ρ+
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and

l− := sup
f∈L

L−(f) >
C − 1

2
ρ−.

Let us generalize the space L as follows. We introduce

M+ :=
{

positive Radon measures µ on [ρ, ρ+] : µ([ρ, ρ+]) = q+
}
,

M− :=
{

positive Radon measures µ on [ρ−, ρ] : µ([ρ−, ρ]) = q−
}
.

Consistently, we extend the functionals L+ and L− defined on L to new

functionals L+ and L− respectively defined on M+ and on M−. We

define

L+(µ) :=

∫ ρ+

ρ

∫ τ

ρ

1

r
dµ(r)dτ for µ ∈M+,

L−(µ) :=

∫ ρ

ρ−

∫ ρ

τ

1

r
dµ(r)dτ for µ ∈M−.

Once introduced

m+ := max
µ∈M+

L+(µ)

and

m− := max
µ∈M−

L−(µ),

it is clear that

l+ ≤ m+ and l− ≤ m−.

Moreover, let us remark the existence of m± (i.e. that the maxima are

achieved) due to the compactness of M± with respect to the weak-∗
topology. By a simple Fubini’s type argument, we write

L+(µ) =

∫ ρ+

ρ

ρ+ − r
r

dµ(r).

Hence, defining the function h ∈ C([ρ, ρ+]) as h(r) := (ρ+−r)/r allows

us to express the action of the linear functional L+ as a duality pairing;

more precisely we have:

L+(µ) =< h, µ > for µ ∈M+.

Analougously, if we define g ∈ C([ρ−, ρ]) as g(r) := (r− ρ−)/r, we can

express L− as a duality pairing as well:

L−(µ) =< g, µ > for µ ∈M−.

By standard functional analysis, we know that m± must be achieved

at the extrem points ofM±. The extreme points ofM± are the single-

point measures, i.e. weighted Dirac masses. ForM+ the set of extrem
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points is then given by E+ := {q+δσ for σ ∈ [ρ, ρ+]} while for M− the

set of extrem points is then given by E− := {q−δσ for σ ∈ [ρ−, ρ]} In

order to find m±, it is enough to find the maximum value of L± on E±.

Clearly, we obtain

m+ = max
σ∈[ρ,ρ+]

{
q+ ρ+ − σ

σ

}
= q+ ρ+ − ρ

ρ

and

m− = max
σ∈[ρ−,ρ]

{
q−

σ − ρ−

σ

}
= q−

ρ− ρ−

ρ
.

Furthermore, for every ε > 0 there exists a function f ∈ L such that

L+(f) > q+ ρ+ − ρ
ρ
− ε

and

L−(f) > q−
ρ− ρ−

ρ
− ε.

Such a function f is the derivative of the desired pressure function p.

Indeed, since f ∈ L, for p′(ρ) := f(ρ) we have: p(ρ+)− p(ρ) = q+ and

p(ρ) − p(ρ−) = q−. Finally, if (3.137a)-(3.137b) hold, then for every

ε > 0

L+(p′) ≥ C − 1

2
ρ+ − ε

and

L−(p′) ≥ C − 1

2
ρ− − ε,

whence (3.128a)-(3.128b). �

3.7.2. Proof of Theorem 3.6.1. This section is devoted to the

proof of Theorem 3.7.1: we will show that the pressure law suggested

by Theorem 3.7.3 enable us to solve all the conditions required for an

admissible subsolution to the compressible Euler system. Since a lot

of calculations are involved, we will divide the proof in different parts

corresponding to different subsections.

3.7.2.1. Change of variables. In this section we will rewrite the con-

ditions required to be an admissible subsolution for the compressible

Euler system in a new and more convenient set of variables.

First of all, by Theorem 3.7.3, there is a choice of pressure law such

that the conditions of admissibility (3.128a)-(3.128b) for the subsolu-

tion can be replaced with (3.131a)-(3.131b).
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Resuming, we are looking for constants (ρ, ρ+, ρ−, ν1, ν2, a, b, β, γ, q+, q−, C)

satisfying (3.126a)-(3.126b), (3.127a)-(3.127d), (3.129), (3.131a)-(3.131b)

and such that

ν1 < 0 < ν2(3.138)

0 < ρ− < ρ < ρ+(3.139)

q+, q− > 0.(3.140)

Without loss of generality we can assume ρ = 1. Hence, (3.139) sim-

plifies to

(3.141) 0 < ρ− < 1 < ρ+,

while, (3.126a)-(3.127d) become

ν2(ρ+ − 1) = −b,(3.142a)

ν1(1− ρ−) = b,(3.142b)

ν2(ρ+ − a) = −γ,(3.143a)

ν1(a+ ρ−) = γ,(3.143b)

− ν2b = q+ − C

2
+ β,(3.143c)

ν1b = q− +
C

2
− β.(3.143d)

Finally, (3.131a)-(3.131b) take the form

q+
(
ρ+ − 1

)
≥ C − 1

2
ρ+(3.144a)

q−
(
1− ρ−

)
≥ C − 1

2
ρ−.(3.144b)

From equations (3.142a)-(3.142b) we infer that

ρ+ − 1 = − b

ν2

,

(1− ρ−) =
b

ν1

.
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Owing to previous equalities, the admissibility conditions (3.144a)-

(3.144b) change respectively into:

− b

ν2

q+ ≥ C − 1

2
ρ+(3.145a)

b

ν1

q− ≥ C − 1

2
ρ−.(3.145b)

For the sake of simplicity, we introduce a new set of variables. We

define:

C := C/2, b := −b, γ := −γ, ν+ := ν2, ν− := −ν1

and

r+ := ρ+ν+, r− := ρ−ν−.

This allows us to rewrite the ensemble of conditions (3.138), (5.22),

(3.141), (3.142a)-(3.143d), (3.145a)-(3.145b) for an admissible subsolu-

tion as

ν−, ν+, b, q
−, q+, r−, r+ > 0,(3.146)

r+ − ν+ = b,(3.147)

r− − ν− = −b,(3.148)

r+ − aν+ = γ,(3.149)

− r− − aν− = −γ,(3.150)

ν+b = q+ − C + β,(3.151)

ν−b = q− + C − β,(3.152)

bq+ ≥
(
C − 1

2

)
r+,(3.153)

bq− ≥
(
C − 1

2

)
r−,(3.154)

while the subsolution condition (3.45) in P translates into

(3.155)

(
C − a2 + β ab− γ
ab− γ C − b2 − β

)
> 0.

To summarize, we are looking for constants (r+, r−, ν+, ν−, a, b, β, γ, q
+, q−, C)

satisfying (3.146)-(3.155).
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3.7.2.2. Reduction of the equations. In this section, we work on the

system (3.146)-(3.155) so to simplify the conditions for an admissible

subsolution.

From (3.147) and (3.149) we obtain

ν+ =
γ − b
1− a

,(3.156)

r+ =
γ − ab
1− a

.(3.157)

Similarly (3.148) and (3.150) give

ν− =
γ + b

1 + a
,(3.158)

r− =
γ − ab
1 + a

.(3.159)

Note that r+r− = (γ−ab)2/(1−a2) which together with (3.146) implies

a2 < 1. In view of this, the condition of positivity of ν+ (see (3.146))

entails γ > b. On the other hand, if we assume a2 < 1 and γ > b, then

(3.156)-(3.159) respectively ensure the positivity of ν+, r
+, ν− and r−

required by (3.146). Thereby, (3.146)-(3.154) can be substituted by the

following new systems of conditions:

γ > b > 0, a2 < 1,(3.160)

q−, q+ > 0,(3.161) (
γ − b
1− a

)
b = q+ − C + β,(3.162) (

γ + b

1 + a

)
b = q− + C − β,(3.163)

bq+ ≥
(
C − 1

2

)(
γ − ab
1− a

)
,(3.164)

bq− ≥
(
C − 1

2

)(
γ − ab
1 + a

)
.(3.165)

Note that, if C > 1/2, then (3.160) and (3.164)-(3.165) guarantee the

positivity of q± (i.e. (3.161)). Hence, we can derive q± from (3.162)-

(3.163) and substitute them in (3.164)-(3.165). Finally, we note that

for a symmetric 2× 2-matrix M the condition M > 0 is equivalent to

detM > 0 and trM > 0. Thus, we have finally reduced the conditions
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for an admissible subsolution to:

γ > b > 0,(3.166)

a2 < 1,(3.167)

C >
1

2
,(3.168)

b

[
b(γ − b)

1− a
+ C − β

]
≥
(
C − 1

2

)(
γ − ab
1− a

)
,(3.169)

b

[
b(γ + b)

1 + a
− C + β

]
≥
(
C − 1

2

)(
γ − ab
1 + a

)
,(3.170)

a2 + b
2
< 2C,(3.171)

(C − a2 + β)(C − b2 − β)− (ab− γ)2 > 0.(3.172)

3.7.2.3. Concluding argument. In view of the previous sections, in

order to prove Theorem 3.7.1 is enough to find constants (a, b, β, γ, q+, q−, C)

satisfying (3.166)-(3.172). To this aim, we further introduce a new vari-

able λ := γ − ab, so that (3.166)-(3.172) transform into the equivalent

system:

λ > b(1− a) > 0,(3.173)

a2 < 1,(3.174)

C >
1

2
,(3.175)

b(1− a)
(
C − b2 − β

)
≥
(
C − 1

2
− b2

)
λ,(3.176)

b(1 + a)
(
−C + b

2
+ β

)
≥
(
C − 1

2
− b2

)
λ,(3.177)

a2 + b
2
< 2C,(3.178)

(C − a2 + β)(C − b2 − β) > λ2.(3.179)

Now, from (3.178)-(3.179) follows that (C − b2− β) > 0; hence (3.177)

and (3.173) imply that (C − 1/2− b2
) < 0, which automatically guar-

antees (3.176).
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Let us notice that if there exists a quadruple (a, b, C, β) satisfying

b > 0(3.180)

C >
1

2
(3.181)

a2 < 1,(3.182)

C − a2 + β > 0(3.183)

C − b2 − β > 0(3.184) (
b

2
+

1

2
− C

)√
C − a2 + β > b(1 + a)

√
C − b2 − β(3.185) √(

C − a2 + β
) (
C − b2 − β

)
> (1− a)b,(3.186)

then choosing λ :=

√(
C − a2 + β

) (
C − b2 − β

)
− δ for δ > 0 small

enough, the quintuple (a, b, C, β, λ) satisfies (3.173)-(3.179).

Furthermore if (b, C, β) satisfy (3.180), (3.181), (3.184) and

C − 1 + β > 0(3.187) (
b

2
+

1

2
− C

)√
C − 1 + β > 2b

√
C − b2 − β,(3.188)

then choosing a := 1− ε for ε > 0, they will satisfy (3.180)-(3.186).

Armed with the previous considerations, we now set C = 4/5b
2

and

β = −2/5b
2
. Then (3.184) is automatically satisfied. The remaining

conditions (3.180), (3.181) and (3.187) are satisfied as soon as

(3.189) b >

√
5

2
.

Finally, with this choice of C and β, the inequality (3.188) is equivalent

to:

(3.190)

(
b

2

5
+

1

2

)√
2b

2

5
− 1 >

2b
2

√
5
,

which holds surely in the limit for b → +∞. In conclusion, by choos-

ing b >
√

5/3 big enough, C = 4/5b
2
, β = −2/5b

2
, a = 1 − ε and

λ =

√(
C − a2 + β

) (
C − b2 − β

)
− δ, for δ > 0 small enough, all the

conditions (3.173)-(3.179) are satisfied: we have proven the existence
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of an admissible subsolution for a particular choice of the pressure law

given by Theorem 3.7.3.





CHAPTER 4

Study of a classical Riemann problem for the

compressible Euler equations

This chapter is a complement to Chapter 3. Here we restrict our

attention to the 1-dimensional Riemann problem for the compressible

Euler equations with the same choice of initial data allowing for the

non–uniqueness theorems proven in Chapter 3 (see Theorem 0.2.2 or

Theorem 3.1.1) (such data indeed depend only on one space variable):

we show that such a problem admits unique self-similar solutions. In

particular we will investigate more deeply the case of quadratic pressure

law (as in Theorem 3.3.1) which is of easier treatise. The uniqueness of

self–similar solutions is proven by direct construction of the admissible

wave fun. Theorem 0.2.2 shows that as soon as the self–similarity

assumption runs out, uniqueness is lost.

4.1. Solution of the Riemann problem via wave curves

The property of first order conservation laws in one space-dimension

to be invariant under uniform stretching of the space-time coordinates

induces the existence of self-similar solutions, which stay constant along

straight-line rays emanating from the origin in space-time. This obser-

vation is at the core of the study of Riemann problems via wave fans.

Let us rewrite the isentropic Euler system (3.20) in canonical form,

i.e. in terms of the state variables (ρ,m) where m denotes the linear

momentum as was done in Chapter 2:

(4.1)


∂tρ+ divx(m) = 0

∂tm+ divx

(
m⊗m
ρ

)
+∇xp(ρ) = 0

ρ(·, 0) = ρ0

m(·, 0) = m0.

103
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With the new variables, the energy inequality (3.21) takes the following

form:

(4.2) ∂t

(
ρε(ρ) +

1

2

|m|2

ρ

)
+ divx

[(
ε(ρ) +

1

2

|m|2

ρ2
+
p(ρ)

ρ

)
m

]
≤ 0.

Similarly, we can rewrite the initial data (3.22)-(3.23) used in Chapter

3 for (ρ,m) and obtain

(4.3) ρ0(x) :=

{
ρ+ if x2 > 0,

ρ− if x2 < 0,

(4.4) m0(x) :=

{
m+ := (ρ+, 0) if x2 > 0,

m− := (−ρ−, 0) if x2 < 0.

If we restrict our attention to pairs (ρ, v) which are admissible solu-

tions of (4.1), (4.3)-(4.4) and depend only on (x2, t), then we will be

dealing with a classical Riemann problem for (4.1) substantially in one

space-variable (only x2) which admits self-similar solutions. Since the

pioneering work of Riemann it is known that, under the hypothesis of

“self-similarity” of (ρ, v) (dependence only on x2
t

), there is a unique

solution of (4.1), (4.3)-(4.4) (see for instance [Ser99]). Surprisingly,

Theorem 3.3.1 of Chapter 3 shows that uniqueness is completely lost

if we drop the requirement that (ρ, v) depends only on x2
t

.

This section aims at investigating the Riemann problem (4.1), (4.3)-

(4.4), whose object is the resolution of the initial jump discontinuity

into wave fans: the solution will be constructed by the classical method

of piecing together elementary centered solutions, i.e., constant states,

shocks joining constant states, and centered rarefaction waves bordered

by constant states or contact discontinuities. The wave fan which will

be constructed will also satisfy the admissibility condition (3.26).

Now, the plan is to construct weak admissible solutions (ρ,m) to

the Riemann problem (4.1)-(4.3)-(4.4) which depend only on the space

variable x2:

(ρ(x, t),m(x, t)) = (ρ(x2, t),m(x2, t)).

As already anticipated, we observe that (4.1) is invariant under coor-

dinates stretching (x, t) 7→ (αx, αt). Hence (4.1) admits self-similar

solutions defined on the x2 − t plane. Under our assumptions, it is

convenient to make explicit the divergence operators in (4.1) and (4.2).
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Indeed, for ρ(x, t) = ρ(x2, t) and m(x, t) = (m1(x2, t),m2(x2, t)), we

can write the system (4.1) as

(4.5)



∂tρ+ ∂x2(m2) = 0

∂tm1 + ∂x2

(
m1m2

ρ

)
= 0

∂tm2 + ∂x2

(
m2

2

ρ
+ p(ρ)

)
= 0

ρ(·, 0) = ρ0

m(·, 0) = m0,

while the energy inequality (4.2) becomes

(4.6) ∂t

(
ρε(ρ) +

1

2

|m|2

ρ

)
+ ∂x2

[(
ε(ρ) +

1

2

|m|2

ρ2
+
p(ρ)

ρ

)
m2

]
≤ 0.

If (ρ,m) is a self-similar solution of (4.5), focused at the origin, its

restriction to t > 0 admits the representation

(4.7) (ρ,m)(x, t) = (R,M)
(x2

t

)
, −∞ < x <∞, 0 < t <∞,

where (R,M) is a bounded measurable function on (−∞,∞), which

satisfies the ordinary differential equations

[M2(ξ)− ξR(ξ)]· +R(ξ) = 0[
M1(ξ)M2(ξ)

R(ξ)
− ξM1(ξ)

]·
+M1(ξ) = 0[

M2(ξ)2

R(ξ)
+ p(R(ξ))− ξM2(ξ)

]·
+M2(ξ) = 0,

in the sense of distributions.

Before describing the structure of the solution to the Riemann prob-

lem, let us illustrate some general concepts concerning system (4.5). If

we define the state vector U := (ρ,m1,m2), we can recast the system

(4.5) in the general form

∂tU + ∂x2F (U) = 0,

where

F (U) :=

 m2
m1m2

ρ
m2

2

ρ
+ p(ρ)

 .
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By definition (cf. [Daf00]) the system (4.5) is hyperbolic since the

Jacobian matrix DF (U)

DF (U) =

 0 0 1
−m1m2

ρ2
m2

ρ
m1

ρ
−m2

2

ρ2
+ p′(ρ) 0 2m2

ρ


has real eigenvalues

(4.8) λ1 =
m2

ρ
−
√
p′(ρ), λ2 =

m2

ρ
, λ3 =

m2

ρ
+
√
p′(ρ)

and 3 linearly independent eigenvectors

(4.9)

R1 =

 1
m1

ρ
m2

ρ
−
√
p′(ρ)

 , R2 =

 0

1

0

 , R3 =

 1
m1

ρ
m2

ρ
+
√
p′(ρ)

 .

The eigenvalue λi of DF , i = 1, 2, 3, is called the i-characteristic speed

of the system (4.5). On the part of the state space of our interest, with

ρ > 0, the system (4.5) is indeed strictly hyperbolic. Finally, one can

easily verify that the functions

(4.10)

w1 =
m2

ρ
+

∫ ρ

0

√
p′(τ)

τ
dτ, w2 =

m1

ρ
, w3 =

m2

ρ
−
∫ ρ

0

√
p′(τ)

τ
dτ

are, respectively, 1− and 2−, 1− and 3−, 2− and 3− Riemann in-

variants of the system (4.5) (for the relevant definitions see [Daf00]).

In other words there exist two 1−Riemann invariants w1 and w2, two

2−Riemann invariants w1 and w3 and two 3−Riemann invariants w2

and w3.

We close this section with a key observation: note that the state

variable m1 appears only in the second equation of the system (4.5).

We can thus “decouple” the study of the first and third equations in

(4.5) from the study of the second one: this is possible by performing a

sort of “projection” operation on the ρ−m2-plane. More precisely, we

will first construct solutions (ρ,m2) and then analyze the behaviour of

m1 determined by the second equation in (4.5).
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4.2. The Hugoniot locus

We focus our attention on the reduced system

(4.11)


∂tρ+ ∂x2(m2) = 0

∂tm2 + ∂x2

(
m2

2

ρ
+ p(ρ)

)
= 0

ρ(·, 0) = ρ0

m2(·, 0) = (m0)2,

obtained by discarding the second equation in (4.5). Note that, if we

define the state variable Ũ = (ρ,m2) and we formally recast the system

(4.11) in the form ∂tŨ + ∂x2G(Ũ) = 0 for Ũ = P1,3U , then we have

G(Ũ) = P1,3F (U) and D̃G(Ũ) = P1,3DF (U)P T
1,3 (D̃ = DŨ), where P1,3

is the following matrix:

P1,3 =

(
1 0 0

0 0 1

)
.

Hence, the characteristic speeds of the system (4.11) are λ1 and λ3

with associated eigenvectors P1,3 ·R1 and P1,3 ·R3 (see (4.8)-(4.9)). The

Hugoniot locus of the reduced system (4.11) is the set of points Ũ2 =

(ρ,m2) that may be joined to a fixed point Ũ1 = (ρ,m2) by a shock. In

view of the previous remark, we can observe that Hugoniot loci of the

reduced system (4.11) correspond to projections on the ρ−m2- plane

of Hugoniot loci of the full system (4.5). In our case, we can describe

the Hugoniot locus for (4.11) explicitly by computing the Rankine-

Hugoniot jump conditions:

G(Ũ2)−G(Ũ1) = σ(Ũ2 − Ũ1),

which can be written, for U1, U2 such that Ũ1 = P1,3U1 and Ũ2 = P1,3U2,

as

P1,3[F (U2)− F (U1)] = P1,3σ(U2 − U1).

Note, that the set of equations [F (U2)−F (U1)] = σ(U2−U1) describes

indeed the Hugoniot locus of the full system (4.5).

Now, we would like to investigate the Hugoniot locus of the state

(ρ−,m−). We start by studying its projection on the ρ − m2-plane,

i.e. by computing the Hugoniot locus of system (4.11). The state

(ρ−, (m−)2) = (ρ−, 0) on the left is joined to the state (ρ,m2) on the
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right, by a shock of speed σ if the following equations hold:

(4.12)

{
−σ(ρ− ρ−) +m2 = 0

−σm2 + m2
2

ρ
+ p(ρ)− p(ρ−) = 0.

We can now restrict ourselves to the case of a polytropic pressure law,

with adiabatic exponent γ = 2 for which the non-uniqueness result

3.3.1 stated in Chapter 3 holds. Thus, from now on we will assume

that

p(r) = kr2

for some positive constant k. As a consequence, the Rankine-Hugoniot

conditions (4.12) take the form

(4.13)

{
−σ(ρ− ρ−) +m2 = 0

−σm2 + m2
2

ρ
+ kρ2 − k(ρ−)

2
= 0.

From (4.13) we infer that

(4.14) σ = ±

√
kρ(ρ+ ρ−)

ρ−
.

Recalling the characteristic speeds λ1 and λ3 for the system (4.11), it is

natural to call shocks propagating to the left (σ1 = −
√
kρ(ρ+ ρ−)/ρ− <

0) 1-shocks and shocks propagating to the right (σ3 =
√
kρ(ρ+ ρ−)/ρ− >

0) 3-shocks. Combining (4.13) with (4.14) we deduce that the Hugoniot

locus of the point (ρ−, 0) in state space consists of two curves:

(4.15) m2 = ±

√
kρ (ρ+ ρ−)

ρ−
(
ρ− ρ−

)
,

defined on the whole range of ρ > 0. Moreover a 1-shock joining

(ρ−, 0) on the left to (ρ,m2) on the right is admissible, i.e. it satisfies

the entropy condition (4.2) if and only if ρ− < ρ. While a 3-shock

joining the state (ρ,m2) on the left with the state (ρ+, 0) on the right

is admissible if and only if ρ > ρ+.

4.3. Rarefaction waves

In order to characterize rarefaction waves of the reduced system

(4.11), we can refer to Theorem 7.6.6 from [Daf00]: every i-Riemann

invariant is constant along any i-rarefaction wave curve of the system

(4.11) and conversely the i- rarefaction wave curve, through a state
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(ρ,m2) of genuine nonlinearity of the i-characteristic family, is deter-

mined implicitly by the system of equations wi(ρ,m2) = wi(ρ,m2) for

every i−Riemann invariant wi. As an application of this Theorem, we

obtain that the 1- and 3-rarefaction wave curves of the system (4.11)

through the point (ρ−, 0) are determined respectively in terms of the

Riemann invariants w1 and w3 by the equations

(4.16) m2 = 2ρ
√

2k(
√
ρ− −√ρ), m2 = 2ρ

√
2k(
√
ρ−

√
ρ−).

Similarly, we can obtain the rarefaction waves through the point (ρ+, 0).

As already discussed for the Hugoniot locus, the rarefaction waves here

obtained for the reduced system (4.11) correspond to projections on the

ρ −m2-plane of rarefaction waves of (4.5). In order to determine the

first component of the linear momentum along the rarefaction waves

we will make use of the second Riemann invariant w2 for the complete

system (4.5).

4.4. Contact discontinuity

It is easy to verify that the 2-characteristic family of the system

(4.5) is linearly degenerate, i.e. Dλ2 · R2 = 0. As a consequence, no

centered 2-rarefaction waves for the system (4.5) exist and hence any 2-

wave is necessarily a 2-contact discontinuity. A 2-contact discontinuity

is a shock traveling at characteristic speed λ2 (see (4.8)) and such that

the only variable which experiences a jump is the first component of

the linear momentum. The entropy condition holds trivially across the

contact discontinuity, for the rate of production of entropy is indeed

zero.

4.5. Solution of the Riemann problem

According to Theorem 9.3.1 in [Daf00] any self-similar solution of

the Riemann problem (4.5), (4.3)-(4.4), with shocks satisfying the en-

tropy inequality, comprises 4 constant states U0 = (ρ0,m0) = (ρ−,m−),

U1, U2, U3 = (ρ+,m+). For i = 1, 2, 3, Ui−1 is joined to Ui by an i-wave.

In the following we will construct such a self-similar solution by

piecing together shocks, rarefaction waves and contact discontinuities

obtained in the previous sections. As in the literature, we will call for-

ward (or backward) i-wave fan curve through (ρ,m) the Lipschitz curve

Φi(·, (ρ,m)) (or Ψi(·, (ρ,m))) describing the locus of states that may
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be joined on the right (or left) of the fixed state (ρ,m) by an admis-

sible i-wave fan. Clearly, we could obtain a solution of our Riemann

problem starting from (ρ−,m−) and computing successively the states

(ρi,mi) = Φi(·, (ρi,mi)) until we reach (ρ+,m+). In our circumstances,

a “mixed” strategy proves to be advantageous. We will first consider

the system (4.11) of two conservation laws in the two variables (ρ,m2),

then we will draw for it the forward 1-wave curve through the left state

(ρ−, 0) and the backward 3-wave curve through the right state (ρ+, 0)

and finally we will determine the intermediate state as the intersec-

tion of these two curves. In order to complete the picture, we will

introduce a 2-contact discontinuity accounting for the jump in the first

component of the linear momentum.

Recalling the form of the Hugoniot locus (4.15) and rarefaction wave

curves (4.16) for system (4.11), we deduce that we can parametrize the

wave curves employing ρ as the parameter. Thus, the forward 1-wave

curve m2 = Φ1(ρ; (ρ−, 0)) through the point (ρ−, 0) consists of a 1-

rarefaction wave for ρ− ≥ ρ and an admissible 1-shock for ρ− < ρ:

(4.17) m2 = Φ1(ρ; (ρ−, 0)) =

2ρ
√

2k(
√
ρ− −√ρ) if ρ− ≥ ρ

−
√

kρ(ρ+ρ−)
ρ−

(ρ− ρ−) if ρ− < ρ.

On the other hand, the backward 3-wave curve through the point

(ρ+, 0) is composed of a 3-rarefaction wave for ρ+ ≥ ρ and an ad-

missible 3-shock for ρ+ < ρ:

(4.18) m2 = Ψ3(ρ; (ρ+, 0)) =

−2ρ
√

2k(
√
ρ+ −√ρ) if ρ+ ≥ ρ√

kρ(ρ+ρ+)
ρ+

(ρ− ρ+) if ρ+ < ρ.

The intermediate constant state (ρM ,mM) is determined on the ρ−m2

plane as the intersection of the forward 1-wave curve Φ1(ρ; (ρ−, 0))

with the backward 3-wave curve Ψ3(ρ; (ρ+, 0)) (see Fig. 1), namely by

solving the equation

mM = Φ1(ρM ; (ρ−, 0)) = Ψ3(ρM ; (ρ+, 0)).

Note that such intersection is unique (if ρ > 0), since Φ1 is a strictly

decreasing function in ρ for ρ > 4/9ρ− with Φ1 > 0 for 0 < ρ < ρ−,

while Ψ3 is a strictly increasing function of ρ for ρ > 4/9ρ+, always

strictly convex and negative for every 0 < ρ < ρ+.
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(ρ−, 0)
ρ

(ρ+, 0)

1-rarefaction wave

Φ1(ρ; (ρ−, 0))

m2

Ψ3(ρ; (ρ+, 0))

3-shock

(ρM ,mM )

1-shock

3-rarefaction wave

Figure 1. ρ−m2 plane

So far, we have discussed the resolution of the reduced system

(4.11), thus obtaining a complete description of the behavior of the den-

sity and of the second component of the linear momentum. Now, also

the second equation of (4.5) governing the first component of the linear

momentum has to come into play. By imposing the Rankine-Hugoniot

condition corresponding to the second equation of (4.5) across the 1-

shock traveling at speed σ1, we can compute the uniquely determined

value of the first component of the linear momentum of the second

constant state U1 and we obtain

U1 = (ρM , (−ρM ,mM)).

The second state U1 is then joined to the third state U2 by a 2-contact

discontinuity traveling at speed σ2 = mM/ρM . Note that σ2 ≥ σ1. The

entropy condition for the 2-contact discontinuity is always satisfied

since across it the rate of production of entropy is zero. Moreover, the

only variable which jumps across the 2-contact discontinuity is the first

component of the linear momentum. Hence, U2 has the form

U2 = (ρM , (n,mM)),

with n to be determined later. Finally, the third state U2 will be joined

to U3 = (ρ+,m+) by a 3- rarefaction wave. As previously explained,

along a 3-rarefaction wave all the 3−Riemann invariants have to stay
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constant. So far we have only considered the 3−Riemann invariant w3.

Now, in order to determine the behavior of the first component of the

linear momentum along the 3−rarefaction wave, we can impose the

condition w2(U2) = w2(U3) which yields

n

ρM
= 1,

whence n = ρM . Finally, the intermediate state U2 will have the form

U2 = (ρM , (ρM ,mM)).

According to the analysis carried out, the unique solution to the

Riemann problem (4.5)-(4.3)-(4.4), with end-states (ρ−,m−) and (ρ+,m+),

comprises a compressive 1-shock joining (ρ−,m−) with the state (ρM , (−ρM ,mM)),

followed by a 2-contact discontinuity that joins the state (ρM , (−ρM ,mM))

with the state (ρM , (ρM ,mM)), and a 3-rarefaction wave , joining (ρM , (ρM ,mM))

with (ρ+,m+) (see Fig. 2).

x2

(ρM , (−ρM ,mM ))

(ρ+, (ρ+, 0))

(ρM , (ρM ,mM ))

(ρ−, (−ρ−, 0))

Figure 2. Solution

4.6. The case of general pressure

The same analysis carried out in the previous sections for the qua-

dratic pressure law, can be done for general pressure laws. In this

section, we present the relative computations.
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4.6.1. The Hugoniot locus. As before, we deal with the reduced

system (4.11). From (4.13) we infer that for general pressure p:

(4.19) σ = ±

√
ρ(p(ρ)− p(ρ−))

ρ−(ρ− ρ−)
.

Recalling the characteristic speeds λ1 and λ3 for the system (4.11), it is

natural to call shocks propagating to the left
(
σ1 = −

√
ρ(p(ρ)−p(ρ−))
ρ−(ρ−ρ−)

< 0
)

1-shocks and shocks propagating to the right
(
σ3 =

√
ρ(p(ρ)−p(ρ−))
ρ−(ρ−ρ−)

> 0
)

3-shocks. Combining (4.13) with (4.19) we deduce that the Hugoniot

locus of the point (ρ−, 0) in state space consists of two curves:

(4.20) m2 = ±

√
ρ(p(ρ)− p(ρ−))

ρ−(ρ− ρ−)

(
ρ− ρ−

)
,

defined on the whole range of ρ > 0. Moreover a 1-shock joining

(ρ−, 0) on the left to (ρ,m2) on the right is admissible, i.e. it satisfies

the entropy condition (4.2) if and only if ρ− < ρ. While a 3-shock

joining the state (ρ,m2) on the left with the state (ρ+, 0) on the right

is admissible if and only if ρ > ρ+.

4.6.2. Rarefaction waves. By use of Theorem 7.6.6 from [Daf00]

the i- rarefaction wave curve, through a state (ρ,m2) of genuine non-

linearity of the i-characteristic family, is determined implicitly by the

system of equations wi(ρ,m2) = wi(ρ,m2). As an application of this

Theorem, we obtain that the 1- and 3-rarefaction wave curves of the

system (4.11) through the point (ρ−, 0) are respectively determined in

terms of the Riemann invariants w1 and w3 by the equations

(4.21) m2 = ρ

∫ ρ−

ρ

√
p′(τ)

τ
dτ, m2 = ρ

∫ ρ

ρ−

√
p′(τ)

τ
dτ.

The rarefaction waves through the point (ρ+, 0) can be obtained in a

similar way.

4.6.3. Contact discontinuity. As already pointed out, the 2-

characteristic family of the system (4.5) is linearly degenerate, i.e. Dλ2·
R2 = 0. Any 2-wave is a 2-contact discontinuity, i.e. a shock traveling

at characteristic speed λ2. Along the 2-contact discontinuity a jump

in the first component of the linear momentum occurs. The entropy
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condition holds trivially across the contact discontinuity, for the rate

of production of entropy is indeed zero.

4.6.4. Solution of the Riemann problem. As done in Section

4.5, we will apply Theorem 9.3.1 in [Daf00]. The definitions as well as

the strategies introduced in Section 4.5 are valid also herein.

Recalling the form of the Hugoniot locus (4.20) and rarefaction wave

curves (4.21) for system (4.11) with general pressure laws, we deduce

that we can parametrize the wave curves employing ρ as the parameter.

Thus, the forward 1-wave curve m2 = Φ1(ρ; (ρ−, 0)) through the point

(ρ−, 0) consists of a 1-rarefaction wave for ρ− ≥ ρ and an admissible

1-shock for ρ− < ρ:

(4.22) m2 = Φ1(ρ; (ρ−, 0)) =

ρ
∫ ρ−
ρ

√
p′(τ)

τ
dτ if ρ− ≥ ρ

−
√

ρ(p(ρ)−p(ρ−))
ρ−(ρ−ρ−)

(ρ− ρ−) if ρ− < ρ.

On the other hand, the backward 3-wave curve through the point

(ρ+, 0) is composed of a 3-rarefaction wave for ρ+ ≥ ρ and an ad-

missible 3-shock for ρ+ < ρ:

(4.23) m2 = Ψ3(ρ; (ρ+, 0)) =

−ρ
∫ ρ+
ρ

√
p′(τ)

τ
dτ if ρ+ ≥ ρ√

ρ(p(ρ)−p(ρ+))
ρ+(ρ−ρ+)

(ρ− ρ+) if ρ+ < ρ.

The intermediate constant state (ρM ,mM) is determined on the ρ−m2

plane as the intersection of the forward 1-wave curve Φ1(ρ; (ρ−, 0)) with

the backward 3-wave curve Ψ3(ρ; (ρ+, 0)), namely by the equation

mM = Φ1(ρM ; (ρ−, 0)) = Ψ3(ρM ; (ρ+, 0)).

We argue that such intersection is unique for the choice of pressure

functions as in Theorem 3.7.3 of Chapter 3. Indeed mM is uniquely

determined, since Φ1 is a strictly decreasing function in ρ with Φ1 > 0

for 0 < ρ < ρ−, while Ψ3 is negative for every 0 < ρ < ρ+ with Ψ3

convex for ρ < ρ̃ and concave for ρ > ρ̃, where ρ̃ is a density-value in

a small neighborhood of 1 (recall from Section 3.7.2 of Chapter 3 that

in the construction of the subsolution we chose ρ = 1).

By imposing the Rankine-Hugoniot condition corresponding to the

second equation of (4.5) across the 1-shock traveling at speed σ1, we

can compute the uniquely determined value of the first component of
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the linear momentum of the second constant state U1 and we obtain

U1 = (ρM , (−ρM ,mM)).

The second state U1 is then joined to the third state U2 by a 2-contact

discontinuity traveling at speed σ2 = mM/ρM . Note that σ2 ≥ σ1. The

entropy condition for the 2-contact discontinuity is always satisfied

since across it the rate of production of entropy is zero. Moreover, the

only variable which jumps across the 2-contact discontinuity is the first

component of the linear momentum. Hence, U2 has the form

U2 = (ρM , (n,mM)),

with n to be determined later. Finally, the third state U2 will be joined

to U3 = (ρ−,m−) by a 3- rarefaction wave along which the Riemann

invariant w2 has to stay constant: w2(U2) = w2(U3), i.e.
n

ρM
= 1.

This implies that n = ρM , whence

U2 = (ρM , (ρ
+,mM)).

The unique solution to the Riemann problem (4.5)-(4.3)-(4.4) for

pressure laws as in Theorem ??, with end-states (ρ−,m−) and (ρ+,m+),

comprises a compressive 1-shock joining (ρ−,m−) with the state (ρM , (−ρM ,mM)),

followed by a 2-contact discontinuity that joins the state (ρM , (−ρM ,mM))

with the state (ρM , (ρ
+,mM)), and a 3-rarefaction wave , joining (ρM , (ρ

+,mM))

with (ρ+,m+) (see Fig. 2), as in the case of quadratic pressure.





CHAPTER 5

Existence of weak solutions

5.1. Introduction

The result presented in this Chapter stems from an idea recently ex-

plored by Emil Wiedemann for the incompressible Euler equations. In

[Wie11] Wiedemann shows existence of weak solutions to the Cauchy

problem for the incompressible Euler equations with general initial data

(see Chapter 1). His proof combines some Fourier analysis with a clever

application of the methods developed by De Lellis and Székelyhidi in

[DLS09]-[DLS10] for the construction of non-standard solutions to the

incompressible Euler equations. The conclusions achieved in [Chi11]

and presented in Chapter 2 for the compressible Euler system gave hope

that such an existence result could hold also for isentropic compressible

gas dynamics in several space dimensions.

The existence of entropy solutions for the Cauchy problem asso-

ciated with the isentropic compressible Euler equations in one space

dimension was established, in the case of polytropic perfect gases first

by DiPerna [DP85], Ding, Chen & Luo [DCL85], and Chen [Che86]

based on compensated compactness arguments, and then, motivated

by a kinetic formulation of hyperbolic conservation laws, by Lions,

Perthame & Tadmor [LPT94], and Lions, Perthame & Souganidis

[LPS96]. General pressure laws were covered first by Chen & LeFloch

[CL00]. Unlike in the one-dimensional case, the existence problem

for weak solutions of multi-dimensional isentropic gas dynamics has

remained open so far.

The outcome of [Wie11] hints that the powerful approach by De

Lellis and Székelyhidi is not only a “generator” of nonuniqueness, but

can actually be exploited to construct weak solutions starting out from

any initial data (see also [DLS11])! Here, we will follow such a hint and

building upon results from [Chi11]-[DLS10]-[Wie11] we will show ex-

istence of weak solutions to the compressible Euler equations for any

117
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Lipschitz continuous initial density and any bounded initial momen-

tum.

Theorem 5.1.1. Let ρ0 ∈ C1
p(Q;R+) and m0 ∈ H(Q). Then there

exists a weak solution (ρ,m) (in fact, infinitely many) of the Cauchy

problem for the compressible Euler equations with intial data (ρ0,m0).

Of course, the optimal result would be existence of weak solutions

starting out from any bounded initial data: Theorem 5.1.1 is a just a

first step towards this.

5.2. The problem

In this section, we formulate the isentropic compressible Euler equa-

tions of gas dynamics in n space dimensions, n ≥ 2 (cf. Section 3.3 of

[Daf00]) and in canonical form (as in Chapter 2). The system, which

consists of n+ 1 equations, takes the form:

(5.1)


∂tρ+ divxm = 0

∂tm+ divx

(
m⊗m
ρ

)
+∇x[p(ρ)] = 0

ρ(·, 0) = ρ0

m(·, 0) = m0

,

where ρ is the density and m the linear momentum field. The pressure

p is a function of ρ determined from the constitutive thermodynamic

relations of the gas in question. The system is hyperbolic if

p′(ρ) > 0.

We will consider, from now on, the case of general pressure laws given

by a function p on [0,∞[, that we always assume to be continuously

differentiable on [0,∞[ and strictly increasing on [0,∞[.

Here, as in Chapter 2, we work with space periodic boundary condi-

tions. For space periodic flows we assume that the fluid fills the entire

space Rn but with the condition that m, ρ are periodic functions of the

space variable.

Let Q = [0, 1]n, n ≥ 2 be the unit cube in Rn. We denote by

Hm
p (Q), m ∈ N, the space of functions which are in Hm

loc(Rn) and

which are periodic with period Q:

m(x+ l) = m(x) for a.e. x ∈ Rn and every l ∈ Zn.

For m = 0, H0
p (Q) coincides simply with L2(Q). Analogously, for every

functional space X we define Xp(Q) to be the space of functions which
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are locally (over Rn) in X and are periodic of period Q. The functions

in Hm
p (Q) are easily characterized by their Fourier series expansion

(5.2)

Hm
p (Q) =

{
m ∈ L2

p(Q) :
∑
k∈Zn

|k|2m |m̂(k)|2 <∞ and m̂(0) = 0

}
,

where m̂ : Zn → Cn denotes the Fourier transform of m. We will use

the notation H(Q) for H0
p (Q) and Hw(Q) for the space H(Q) endowed

with the weak L2 topology.

Let T be a fixed positive time. By a weak solution of (5.1) on

Rn × [0, T [ we mean a pair (ρ,m) ∈ L∞([0, T [;L∞p (Q)) satisfying

(5.3)

|m(x, t)| ≤ Rρ(x, t) for a.e. (x, t) ∈ Rn × [0, T [ and some R > 0,

and such that the following identities hold for every test functions ψ ∈
C∞c ([0, T [;C∞p (Q)), φ ∈ C∞c ([0, T [;C∞p (Q)):

(5.4)

∫ T

0

∫
Q

[ρ∂tψ +m · ∇xψ] dxdt+

∫
Q

ρ0(x)ψ(x, 0)dx = 0

∫ T

0

∫
Q

[
m · ∂tφ+

〈
m⊗m
ρ

,∇xφ

〉
+ p(ρ) divx φ

]
dxdt

+

∫
Q

m0(x) · φ(x, 0)dx = 0.(5.5)

In the following, we will be dealing also with the semi-stationary

Cauchy problem associated with the isentropic Euler equations (simply

set to 0 the time derivative of the density in (5.1) and drop the initial

condition for ρ):

(5.6)


divxm = 0

∂tm+ divx

(
m⊗m
ρ

)
+∇x[p(ρ)] = 0

m(·, 0) = m0.

A pair (ρ,m) ∈ L∞p (Q)×L∞([0, T [;L∞p (Q)) is a weak solution on Rn×
[0, T [ of (2.8) if m(·, t) is weakly-divergence free for almost every 0 <

t < T and satisfies the following bound

(5.7)

|m(x, t)| ≤ Rρ(x) for a.e. (x, t) ∈ Rn × [0, T [ and some R > 0,

and if the identity (3.25) holds for every φ ∈ C∞c ([0, T [;C∞p (Q)).
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5.3. Existence of weak solutions

5.3.1. Background results. Before stating and proving the main

theorem, we recall a Proposition from [Chi11] which represents the

building block of our argument. For the sake of completeness of the

chapter, we report Proposition 4.1 from [Chi11] which is Proposition

2.4.1 in Chapter 2. A similar criterion was proposed by De Lellis and

Székelyhidi for the incompressible Euler equations (see [DLS10]) and

used by Wiedemann in his proof of existence of weak solutions for

incompressible Euler in [Wie11].

Proposition 5.3.1. Let ρ ∈ C1
p(Q;R+) be any given density func-

tion and let T be any positive time.

Assume there exist (m,U, q) continuous space-periodic solutions of

divxm = 0

∂tm+ divx U +∇xq = 0.(5.8)

on Rn×]0, T [ with

(5.9) m ∈ C([0, T ];Hw(Q)),

and a function χ ∈ C∞([0, T ];R+) such that

λmax

(
m(x, t)⊗m(x, t)

ρ(x)
− U(x, t)

)
<
χ(t)

n
f.e. (x, t) ∈ Rn×]0, T [,

(5.10)

q(x, t) = p(ρ(x)) +
χ(t)

n
for all (x, t) ∈ Rn×]0, T [.

(5.11)

Then there exist infinitely many weak solutions (ρ,m) of the system

(5.6) in Rn × [0, T [ with density ρ(x) = ρ(x) and such that

m ∈ C([0, T ];Hw(Q)),(5.12)

m(·, t) = m(·, t) for t = 0, T and for a.e. x ∈ Rn,(5.13)

|m(x, t)|2 = ρ(x)χ(t) for a.e. (x, t) ∈ Rn×]0, T [.(5.14)

Let us remark that, according to the terminology used so far, a

triple (m,U, q) satisfying the hypotesis of Proposition 5.3.1 is called a

subsolution of (5.6).

In the arguments of [Chi11], and hence of Chapter 2, the previous

Proposition represents a criterion to recognize initial data m0 allowing
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for many weak admissible solutions to (5.1). In our context it will play

a different role: first, starting from any initial data (ρ0,m0) we will

be able to construct a subsolution (m,U, q) with the properties stated

in the assumptions of Proposition 5.3.1 (with ρ := ρ0) and such that

m(·, 0) = m0(·), then it will be enough to apply Proposition 5.3.1 in

order to prove existence of weak solutions (in fact, infinitely many) to

the compressible Euler equations (5.1). Indeed, the solutions of (5.6)

provided by Proposition 5.3.1 are also solutions of the full system (5.1).

5.3.2. Proof of Theorem 5.1.1. This section is devoted to the

proof of Theorem 5.1.1, the main result of this note. For the sake of

completeness we report here the statement.

Theorem 5.3.2. Let ρ0 ∈ C1
p(Q;R+) and m0 ∈ H(Q). Then there

exists a weak solution (ρ,m) (in fact, infinitely many) of the Cauchy

problem for the compressible Euler equations (5.1).

Proof . The idea behind the proof is to choose suitably a subso-

lution (m,U, q) satisfying the assumptions of Proposition 5.3.1 (with

ρ := ρ0) and such that m(·, 0) = m0(·), so that it will be enough to

apply Proposition 5.3.1 in order to prove Theorem 5.1.1: indeed the

conclusions of Proposition 5.3.1 and in particular (5.13) will yield our

claim.

We first define via Fourier transform the following functions:

m̂(k, t) = e−|k|tm̂0(k),(5.15)

Û i,j(k, t) = −i
(
kj
|k|
m̂i(k, t) +

ki
|k|
m̂j(k, t)

)
(5.16)

for every k 6= 0, and Û(0, t) = 0. Clearly, for t > 0, m and U are

smooth. Moreover, U is symmetric and trace-free. The definition of m̂

and Û is taken from the construction of Wiedemann in [Wie11]. Let

us note that the couple (m̂, Û) defined by (5.15)-(5.16) satisfies the

following system of equations in Fourier space:

(5.17)

{
∂tm̂i + i

∑n
j=1 kjÛ i,j = 0

k · m̂ = 0,

for k ∈ Zn, i = 1, . . . , n. Hence (m,U) satisfies the system:

(5.18)

{
divxm = 0

∂tm+ divxU = 0.
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Next, inspired by the proof of Proposition 7.1 in [Chi11], we define

Ũ componentwise by its Fourier transform as follows:

̂̃
U ij(k) :=

(
nkikj

(n− 1) |k|2

)
̂p(ρ0(k)) if i 6= j,

̂̃
U ii(k) :=

(
nk2

i − |k|
2

(n− 1) |k|2

)
̂p(ρ0(k)).(5.19)

for every k 6= 0, and
̂̃
U(0) = 0. Also Ũ thus defined is symmetric and

trace-free. Moreover, since p(ρ0) ∈ C1
p(Rn), standard elliptic regularity

arguments allow us to conclude that Ũ is a continuous periodic matrix

field. Next, notice that, by continuity of m, ρ0, U and Ũ , we have

(5.20)

∥∥∥∥λmax(m⊗mρ0
− U − Ũ

)∥∥∥∥
∞

= λ̃

for some positive constant λ̃. Therefore, we can choose any smooth

function χ̃ on R such that χ̃ > nλ̃ on [0, T ] in order to ensure

(5.21) λmax

(
m⊗m
ρ0

− U − Ũ
)
<
χ̃(t)

n
for all (x, t) ∈ Rn × [0, T [.

Now, let q̃ be defined exactly as

(5.22) q̃(x, t) = p(ρ0(x)) +
χ̃(t)

n
for all x ∈ Rn × R

for the choice of χ̃ just done. In light of (5.22), we can write the

equation

(5.23) divx Ũ +∇xq̃ = 0 on Rn × R

in Fourier space as

(5.24)
n∑
j=1

kj
̂̃
U ij = kip̂(ρ0)

for k ∈ Zn, i = 1, . . . , n. It is easy to check that
̂̃
U as defined by (5.19)

solves (5.24) and hence Ũ and q̃ satisfy (5.23).

Now, given ρ := ρ0, we are ready to choose (m,U, q). We set:

m(x, t) := m(x, t),(5.25)

U(x, t) := U(x, t) + Ũ(x),(5.26)

q(x, t) := q̃(x, t).(5.27)
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It remains to show that the subsolution defined by (??)-(??)-(??) sat-

isfies the assumptions of Proposition 5.3.1.

First, we notice that system (5.8) is trivially satisfied by (m,U, q) as

a consequence of (5.18) and (5.23). Finally, with the choice χ := χ̃, the

subsolution (m,U, q) will satisfy also (??)-(??) thanks to the definition

of q̃ in (5.22) and to the property (5.21) of χ̃. By Proposition 2.4.1

we find infinitely many solutions m ∈ C([0, T ];Hw(Q)) of (5.6) on

Rn × [0, T [ with density ρ0. Now, define ρ(x, t) = ρ0(x)1[0,T [(t). This

shows that (??) holds. To prove (5.4) observe that ρ is independent of t

and m is weakly divergence-free for almost every 0 < t < T . Therefore,

the pair (ρ,m) is a weak solution of (5.1) with initial data (ρ0,m0) as

desired. �
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