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We study ¯ne properties of currents in the framework of geometric measure theory
on metric spaces developed by Ambrosio and Kirchheim, and we prove a recti¯ability
criterion for ° at currents of ¯nite mass. We apply these tools to study the structure
of the distributional Jacobians of functions in the space BnV, de¯ned by Jerrard and
Soner. We de¯ne the subspace of special functions of bounded higher variation and
we prove a closure theorem.

1. Introduction

In this paper we generalize some tools of geometric measure theory on metric spaces
developed by Ambrosio and Kirchheim in [4] and we apply them to the space BnV.
This space, which has been de ned by Jerrard and Soner in [11], is composed,
roughly speaking, by those functions such that their weak Jacobians are measures.

If u 2 C1(Rm; Rn), with m > n, then the Jacobian of u can be seen as the
di¬erential form ! = du1 ^ ¢ ¢ ¢ ^ dun. Of course, this notion can be easily extended
to functions u 2 W 1;n, but the main idea for a broader extension is based on the fact
that ! = d(u1 du2 ^ ¢ ¢ ¢ ^ dun). Indeed, we need less summability on the derivatives
of u to handle the form ¸ = u1 du2 ^¢ ¢ ¢ ^dun and we can de ne the weak Jacobian
of u as the exterior derivative of ¸ in the distributional sense. A lot of attention has
been devoted to this notion in the last years and we refer to [11] for an account of
its applications and of the main papers on the argument.

In this work we propose to think of u1 du2 ^ ¢ ¢ ¢ ^ dun as a current T via the
natural action

T (dw1 ^ ¢ ¢ ¢ ^ dwm¡n+ 1) =

Z

Rm

u1 det(ru2; : : : ; run; rw1; : : : ; rwm¡n + 1) d L m:

Thus we can de ne the weak Jacobian [Ju] as the boundary of T and the space
BnV can be identi ed with those u such that [Ju] is a normal current. Instead of
working in the framework of classical geometric measure theory, we prefer to use
the `metric currents theory’ of [4], because we think that it is much easier to handle
and provides more powerful tools for studying the structure of weak Jacobians. The
main idea of this approach, suggested by De Giorgi in [7], is to replace the duality
with di¬erential forms with the duality with (k + 1)-ples of Lipschitz functions.
We hope to show that in this way we simplify the notation and proofs. In the last
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section we de ne a new class of functions, called SBnV, that is a generalization
of the space of special functions of bounded variations (see [1, 3]). We prove for
SBnV a closure theorem that is a generalization of the closure theorem for SBV
(see theorems 5.5 and 5.7).

The de nition of SBnV is induced, as a particular case, by a more general decom-
position of ®at currents of  nite mass, which is proposed in x 3. Indeed, we show
that it is possible to decompose every k-dimensional ®at metric current T of  nite
mass into two currents of  nite mass Tl and T u such that

(a) Tl is concentrated on a Hk-recti able set S;

(b) the mass of Tl is absolutely continuous with respect to Hk S;

(c) T u neglects all Hk ¼ - nite sets.

One of the consequences of this decomposition is the following criterion of recti a-
bility for ®at metric currents.

Criterion A. A ®at k-dimensional current T of  nite mass on E is recti able if
and only if, for every Lipschitz function º : E ! Rk, almost every slice of T with
respect to º is composed of atoms (see theorem 3.3).

This criterion has been already proved by Ambrosio and Kirchheim in [4] for
normal metric currents, and by White in [16], with a di¬erent approach, for ®at
currents on Euclidean spaces with coe¯ cients in normed groups.

The paper is organized as follows.
The next section contains the basic de nitions and theorems (available in the

 rst part of [4]) of geometric measure theory on metric spaces. We develop the
main tools for proving criterion A and we introduce the notion of BV functions
that take values in metric spaces ( rst de ned by Ambrosio in [2]).

In the third section we de ne the decomposition of currents and we prove that
the lower-dimensional part of a ®at current is recti able. In order to prove this
fact, we need a basic BV-estimate on the slicing of currents ( rst due to Jerrard
and Soner in the Euclidean case and then developed by Ambrosio and Kirchheim).

In the fourth section we apply to BnV the tools just developed. Taking a function
u 2 BnV, we single out a `lower-dimensional part’ [Ju]l of the Jacobian and we
prove that it is a recti able current. The remaining part of the Jacobian (namely
[Ju] ¡ [Ju]l) can be split further into two currents: one that is absolutely continuous
with respect to the Lebesgue measure and the other that is singular (which we call
the Cantor part, in analogy with the case of functions of bounded variation). Thanks
to its ®atness, the lower-dimensional part of [Ju] can be represented as

h[Ju]l; !i =

Z

Sl

m(x)h ½ (x); !(x)i dHm¡n;

where Sl is a Hk-recti able set, ½ (x) is its approximate tangent space in x and !
is any smooth (m ¡ n)-form.

Then we analyse the structure of the absolutely continuous part of the Jacobian
and, extending a result of M�uller (see [13]), we prove that it can be represented as

[Ju]a = H(du1 ^ ¢ ¢ ¢ ^ dun) L m;
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where H is the Hodge star operator. Thus [Ju]l + [Ju]a can be represented as ¸ d · ,
where ¸ is a simple covector and · is a measure. We conjecture that even the Cantor
part has a similar structure, but we are not able to prove it.

In the last section we de ne the functions of special bounded higher variation as
those BnV functions whose Jacobian has zero Cantor part. Finally, we prove that
under suitable conditions (i.e. equi-integrability of the absolutely continuous part
and equiboundedness of the Hausdor¬ measure of the singular supports), a closure
property holds for SBnV.

2. Metric currents

Throughout the paper, (E; d) is a complete metric space and Lip b (E) is the space
of Lipschitz and bounded real functions on E. We denote by Dk(E) the set of all
(k + 1)-ples (f; g1; : : : ; gk) of functions such that f; g1; : : : ; gk 2 Lip b (E), and we
refer to it as the space of k-dimensional di¬erential forms (or simply k-forms). For
every k-form ! = (f; g1; : : : ; gk), we de ne its exterior derivative as the (k +1)-form

d! = (1; f; g1; : : : ; gk): (2.1)

If ¿ : F ! E is Lipschitz and bounded (and F is a complete metric space), we
de ne the pull-back of ! as the k-form on F given by

¿ # ! = (f ¯ ¿ ; g1 ¯ ¿ ; : : : ; gk ¯ ¿ ): (2.2)

If !1 = (f; g1; : : : ; gn) and !2 = (w; h1; : : : ; hk), then their exterior product is the
(n + k)-form

!1 ^ !2 := (fw; g1; : : : ; gn; h1; : : : ; hk):

Let us  x ! = (f; g1; : : : ; gn) 2 Dn(E). For every i, we de ne

C i := fC open j gi is constant in every connected component of Cg:

After setting Ci := E n (
S

fU 2 C ig), we de ne the closed set

supp(!) = supp(f ) \
n\

i = 1

Ci; (2.3)

and we refer to it as support of !.

Definition 2.1. Let k 2 N. A k-dimensional current in E is a functional

T : Dk(E) ! R

such that

(a) limi T (f; gi
1; : : : ; gi

k) = T (f; g1; : : : ; gk) if gi
k ! gk pointwise and (Lip(gi

k)) is
bounded for every k;

(b) T is multilinear with respect to (f; g1; : : : ; gk);

(c) T (f; g1; : : : ; gk) = 0 if supp((f; g1; : : : ; gk)) = ;.

We denote by Mk(E) the vector space of k-dimensional currents.
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Remark 2.2. We could replace Dk(E) with Dk
c (E), namely the set of di¬erential

forms with compact support, and we could also de ne a k-dimensional `local current’
as a linear functional that satis es conditions (b) and (c) above and condition (a0)
below,

(a0) limi T (f; gi
1; : : : ; gi

k) = T (f; g1; : : : ; gk) if gi
k ! gk pointwise, (Lip(gi

k)) is
bounded for every k and supp((f; gi

1; : : : ; gi
k)) is contained on a compact sub-

set K for every i.

All the de nitions and theorems of this paper also work with slight modi cations.
Moreover, in the applications to distributional Jacobians, we will use local currents.

Definition 2.3. Let T be a k-dimensional current. If there exists a  nite positive
measure · such that

T (f; g1; : : : ; gk) 6
kY

i = 1

Lip(gi)

Z

E

jf j d · ; (2.4)

then we say that T is of ¯nite mass. We call the mass of the current T the minimal
· that satis es (2.4), and we denote it by kT k. We say that T is concentrated on a
Borel set B if kT k(E n B) = 0.

We denote by Mk(E) the vector space of k-dimensional currents of  nite mass.

From now on, given a current T of  nite mass, we will denote by M (T ) the total
variation of kT k in E. If T has not  nite mass, we set M (T ) = 1.

Remark 2.4. We will always assume that kT k is concentrated on a ¼ -compact
set. However, as observed in [4], this fact can be proved if E is separable or if the
cardinality of E is a Ulam number. The assumption that the cardinality of any set
E is a Ulam number is consistent with the standard ZFC theory.

Definition 2.5. Given a sequence (Tn) » Mk(E), we say that

Tn * T 2 Mk(E) (2.5)

if Tn(!) ! T (!) for every ! 2 Dk(E).

Sometimes we will write hT; !i for T (!). As we can see in [4], from the assump-
tions of de nition 2.1, it follows that a k-dimensional current is always alternating
in (g1; : : : ; gk); hence we use, for di¬erential forms, the usual notation,

f dg1 ^ ¢ ¢ ¢ ^ dgn:

Sometimes, for the sake of simplicity, we will denote by g the n-tuple (g1; : : : ; gn)
and we will write f dg for f dg1 ^ ¢ ¢ ¢ ^ dgn. A trivial computation shows that if
! 2 Dn(E), ¸ 2 Dk(E) and T 2 Mn+ k(E), then

T (d(! ^ ¸ )) = T (d! ^ ¸ ) + ( ¡ 1)nT (! ^ d ¸ ):

Moreover, every current satis es the usual chain rule,

T (f dg1 ^ ¢ ¢ ¢ ^ dgn) + T (g1 df ^ ¢ ¢ ¢ ^ dgn) = T (1 d(fg1) ^ ¢ ¢ ¢ ^ dgn):
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If T 2 Mk(Rk), then, for every g 2 C1
c (Rk; Rk) and f 2 Lip(Rk), we have

T (f dg1 ^ ¢ ¢ ¢ ^ dgn) = T (f det(rg) dx1 ^ ¢ ¢ ¢ ^ dxn)

(with xi, we denote the projection on the ith coordinate of the canonical system
of Rk).

We can de ne a boundary operator @ : Mk ! Mk¡1 with the duality relation
@T (!) := T (d!); it is not di¯ cult to see that @T satis es conditions (a), (b) and (c)
of de nition 2.1, but it can fail to be of  nite mass, even if T itself has  nite mass.

Definition 2.6. If T and @T are currents of  nite mass, then we call T normal.
We denote by N k(E) the vector space of normal currents.

Remark 2.7. Given T 2 N k(E), we can de ne

kT kN := kT k(E) + k@T k(E):

It is easy to check that N k(E), endowed with the norm k ¢ kN , is a Banach space.

Definition 2.8. Let T be a k-dimensional current on E. We de ne the ®at norm
F (T ) as

inffM (T ¡ @S) + M (@S) j S is a (k + 1)-dimensional currentg:

Definition 2.9. Let T be a k-dimensional current. We say that T is a ®at current
if there exists a sequence of normal currents (Tn) such that

lim
n ! 1

F (Tn ¡ T ) = 0:

It is easy to see that a current T of  nite mass is ®at if and only if there exists a
sequence of normal currents (Tn) such that M (Tn ¡ T ) ! 0. Indeed, one implication
is trivial because, for every current S, we have F (S) 6 M (S). Moreover, if T is a ®at
current of  nite mass, then, for every n, there exist Tn 2 N k(E) and Sn 2 Mk(E)
such that

M (T ¡ Tn ¡ @Sn) + M (@Sn) 6 1

n
:

So we have that T 0
n := Tn + @Sn is a normal current and M (T ¡ T 0

n) 6 1=n. A
useful consequence of the last statement is that, for every current T , we can  nd a
sequence of normal current Tn such that

lim
n! 1

M

µ
T ¡

nX

i = 1

Tn

¶
= 0 (2.6)

and
1X

i = 1

M (Tn) < 1: (2.7)

If (2.6) and (2.7) hold, we simply write

T =

1X

i= 1

Tn:
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Definition 2.10. We say that a k-dimensional current T of  nite mass is recti able
if it is concentrated on a k-dimensional recti able set and kT k ½ Hk.

As for the notion of boundary, we can de ne by duality the push-forward of cur-
rents. Indeed, given a Lipschitz and bounded map ¿ : E ! F and a k-dimensional
current T on E, it is not di¯ cult to check that ¿ # T , de ned by

h ¿ # T; !i := T ( ¿ # !); (2.8)

is a k-dimensional current. Moreover, if T is a current of  nite mass, then ¿ # T has
 nite mass and

k ¿ # (T )k 6 ¿ # kT k:

(We recall that if · is a measure, then its push-forward ¿ # · is de ned by ¿ # · (U ) =
· ( ¿ ¡1(U )).)

From these de nitions, one can develop a self-contained theory of normal currents
in E that is equivalent to the classical theory in the Euclidean case. Hereafter, we
study the aspects that are useful for our purposes. We begin with the de nitions of
restriction and slicing.

Definition 2.11. Let T 2 Mk(E) and ! 2 Dh(E), with h 6 k. We de ne the
restriction of T to ! as the (k ¡ h)-dimensional current given by

T !( ¸ ) := T (! ^ ¸ ):

Remark 2.12. If T is a current of  nite mass, then we can extend its action to
the (k + 1)-ples (f; g1; : : : ; gk) such that gi 2 Lip b (E) and f is bounded and Borel
measurable. Indeed, T dg is a 0-dimensional current of  nite mass, and so there
exists a  nite measure · g such that

hT; w dgi = hT dg; wi =

Z

E

w d · g for every w 2 Lip b (E) (2.9)

and

k · gkvar 6 kT dgk(E) 6
µ kY

i= 1

Lip(gi)

¶
kT k(E):

Using equation (2.9), the action of T dg can be easily extended to every Borel
measurable and bounded function. Of course, if f k ! f uniformly, gk

i ! gi point-
wise and (Lip(gk

i )) is bounded for every i, then

hT; f idgi
1 ^ ¢ ¢ ¢ ^ dgi

ki ! hT; f dg1 ^ ¢ ¢ ¢ ^ dgki:

From this last remark it follows that if T is a current of  nite mass, then, for
every Borel set A, we can de ne the current T A,

hT A; f dgi := hT À A; f dgi = hT; f À A dgi:

Moreover, kT À Ak 6 kT k.

Theorem 2.13. Let T be a k-dimensional normal current in E and º a Lipschitz
function from E to Rh, with h 6 k. Then there exist normal (k ¡ h)-dimensional
currents hT; º ; xi such that
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(i) hT; º ; xi and @hT; º ; xi are concentrated on E \ º ¡1(x);

(ii) for every Á 2 Cc(Rh),
Z

Rh

hT; º ; xiÁ(x) d L h = T (Á ¯ º ) d º ; (2.10)

(iii) Z

Rh

khT; º ; xik d L h = kT d º k: (2.11)

We refer to [4] for the proof. Such a map hT; º ; xi is called a slicing of T with
respect to º . The previous theorem can be easily extended to ®at currents.

Theorem 2.14. Let T be a k-dimensional ° at current of ¯nite mass on E and
º : E ! Rh a Lipschitz function (with h 6 k). Then there exist (k ¡ h)-dimensional
° at currents hT; º ; xi of ¯nite mass such that

(i) hT; º ; xi is concentrated on E \ º ¡1(x);

(ii) for every Á 2 Cc(Rh),
Z

Rh

hT; º ; xiÁ(x) d L h = T (Á ¯ º ) d º ; (2.12)

(iii) Z

Rh

khT; º ; xik d L h = kT d º k: (2.13)

Proof. Let Tn be a sequence of normal currents such that

T =
1X

i= 1

Tn:

From theorem 2.13, we have that there exist normal (k ¡ h)-dimensional currents
hTn; º ; xi that verify conditions (a), (b) and (c) above. Let us think of hTn; º ; xi
as an L1 function of x that takes values on the Banach space Mk¡h(E) (endowed
with the norm M ). Condition (c) and inequality (2.7) imply that

1X

i = 1

hTn; º ; ¢i (2.14)

is a totally convergent series in L1(Rh; Mk¡h(E)). We de ne hT; º ; ¢i as the sum
of (2.14). It is easy to check that T veri es conditions (i), (ii) and (iii). Moreover,
we can extract a subsequence Tj(n) such that, for L h a.e. x 2 Rh,

lim
n! 1

M

µ
hT; º ; xi ¡

nX

i = 1

hTj(n); º ; xi
¶

= 0:

We conclude that, for L h a.e. x, hT; º ; xi is a ®at current of  nite mass.
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As we will see at the end of this section, the slicing map of a normal current
has a remarkable property. In order to state it, we need the de nition of a map
of bounded variation from an open set of Rn to a weakly separable metric space
(M; d) (see [2,4]).

Definition 2.15. We say the metric space (M; d) is weakly separable if there exists
a countable family F » Lip b (M ) such that

d(x; y) = sup
’ 2 F

j’(x) ¡ ’(y)j for every x; y 2 M: (2.15)

Weakly separable metric spaces can be seen as a suitable generalization of sepa-
rable Banach spaces. Indeed, if E is a separable Banach space, then we can choose
as F in (2.15) a family of linear functionals; in particular, in the case E = Rn, one
can choose the projections on the coordinates of some coordinate system. Hence
a natural de nition for a map of bounded variation that take values in a weakly
separable metric space would be the following:

u : Rn ! E is MBV if, for every ’ 2 F ,

the function ’ ¯ u is a function of bounded variation:
(A)

In particular, this is one of the possible de nitions of BV functions when E = Rn.
However, another very natural requirement on a map of bounded variation would
be that the measures kD(’ ¯ u)k enjoy some kind of `global control’, independent
of the choice of ’ 2 F . In the Euclidean space, this property is a byproduct of (A)
because we can choose  nite families F satisfying (2.15), but in more general cases
this is not true. Hence we require this `global control’ in the de nition. But  rst we
need to introduce the concept of supremum of a family of measures.

Definition 2.16. Let f · igi2 I be a family of positive measures · on E. Then, for
every Borel subset of E, we de ne

_

i2 I

· i(B) := sup

½X

i 2 J

· i(Bi) j Bi are pairwise disjoint and
[

i 2 J

Bi = B

¾
;

where J runs through all countable subsets of I .

Definition 2.17. Let U » Rk be an open set, (M; d) a weakly separable metric
space and u : U ! M . We say that u is of metric bounded variation if

(a) ’ ¯ u is of locally bounded variation for every ’ 2 F ;

(b) kDuk M BV :=
_

’ 2 F

jD(’ ¯ u)j( « ) < 1.

We remark that this de nition does not depend on the choice of F and that

kDuk M BV =
_

’ 2 L ip b(M)

jD(’ ¯ u)j( « )

(see [4] for the proofs). From now on, we will denote the measure
W

jD(’ ¯ u)j by
kDuk.
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The key of the proof of theorem 3.2 in the next section is the fact that the slicing
map of a k-dimensional normal current T with respect to º 2 Lip b (E; Rk) is a map
of metric bounded variation if we endow M0(E) with the ®at norm

F (T ) = supfhT; ¿ i j ¿ 2 Lip b (E); Lip( ¿ ) 6 1g:

This observation, due to Jerrard and Soner in the case of weak Jacobians [11],
has been developed by Ambrosio and Kirchheim [4] in the framework of normal
currents. (With a little e¬ort, one can see that the last de nition of ®at norms
coincide with that given in de nition 2.9 when E = Rn.)

Theorem 2.18. Let E be a weak separable metric space, T a normal n-dimensional
current in E and º : E ! Rn a Lipschitz map. Then the slicing map

S : Rn 3 x ! hT; º ; xi 2 M0(E)

is metric bounded variation if we endow M0(E) with the ° at norm. Moreover, the
MBV seminorm of hT; º ; xi is bounded by the norm of T in N k(E).

Proof. With a little e¬ort, one can see that there is a countable family F » Lip b (E)
such that

F (T ) = supfhT; ¿ i j ¿ 2 Fg

and Lip( ¿ ) 6 1 for every ¿ 2 F . We can think of ¿ 2 F as a Lipschitz real function
de ned on M0. Then (recall de nition 2.17) we will show that

(a) for every such ¿ , ¿ ¯ S(x) = hS(x); ¿ i is a function of a locally bounded
variation (as a real-valued function of x);

(b)
_

¿ 2 F

jD(S ¯ ¿ )j 6 nº # kT k + nº # k@T k.

Indeed, let us  x a bounded ¿ such that Lip( ¿ ) 6 1. If we consider a test function
Á 2 C1

c (Rn), then

( ¡ 1)i¡1

Z

Rn

S( ¿ (x))@iÁ(x) dx = ( ¡ 1)i¡1T d º ( ¿ @iÁ ¯ º )

= T ( ¿ d(Á ¯ º ) ^ d~º i)

= @T ( ¿ (Á ¯ º ) d~º i) ¡ T (Á ¯ º d ¿ ^ d~º i)

6 k@T k(Á ¯ º ) + kT k(Á ¯ º );

where d~º = d º 1 ^ ¢ ¢ ¢ ^ d º i¡1 ^ d º i + 1 ^ ¢ ¢ ¢ ^ d º m¡n. Then ¿ ¯ S is a function of
locally bounded variation and

jD( ¿ ¯ S)j 6 nº # kT k + nº # k@T k:

3. Decomposition of currents and the recti¯ability theorem

Given a k-dimensional current T of  nite mass, we can  nd a Hk ¼ - nite set LT

such that kT k(F ) = 0 whenever Hk(F ) < 1 and LT \ F = ;.
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We construct this set a follows. Let us consider

K = supfkT k(L) j L is Hk ¼ - niteg:

We choose a sequence (Ln) of Hk ¼ - nite sets such that kT k(Ln) " K and we put
LT = [Ln. Then we have that LT is Hk ¼ - nite and kT k(LT ) = K. Hence LT has
the desired properties.

Definition 3.1. Let T be a k-dimensional current of  nite mass and LT be de ned
as above. Then we de ne

T u := T (E n LT ); Tl := T (LT ) (3.1)

and we refer to Tl as the lower-dimensional part of T .

Of course, kT u k and kTlk are mutually singular and T u + Tl = T . Moreover,
kT u k 6 kT k and kTlk 6 kT k. If E is Hp ¼ - nite for some p > k, then we de ne
kT ka as the absolutely continuous part of kT k with respect to Hp. Of course, kT ka

and kTlk are mutually singular, and so there exists a Borel set AT , disjoint from
LT , such that kT k AT = kT ka. Therefore, we can de ne

Ta = T u AT ; Tc = T u (E n AT ); (3.2)

and we refer to Ta and Tc as, respectively, the absolutely continuous part and the
cantor part of T . Notice that Ta + Tc + Tl = T .

When T is a ®at current of  nite mass, it is easy to see that there is a Borel set
RT such that kTlk is absolutely continuous with respect to the measure Hk RT .
The main result of this section is that, in this case, Tl is a recti able current. To
prove this, we need only check that RT is recti able.

Theorem 3.2. If E is separable and T is a k-dimensional ° at current of ¯nite
mass on E, then Tl is a recti¯able current.

A consequence of this fact is the following criterion of recti ability, obtained in
another framework by White [16].

Theorem 3.3. Let T be a k-dimensional ° at current of ¯nite mass on a separable
metric space E. Then T is recti¯able if and only if, for every Lipschitz function
º : E ! Rk and for L k a.e. x 2 Rk, the sliced current hT; º ; xi is supported on a
¯nite number of points.

We remark that one implication is trivial: if T is recti able and º : E ! Rk is
Lipschitz, then hT; º ; xi is concentrated on º ¡1(fxg), which, for almost every x,
consists of a  nite number of points.

Before proving theorem 3.2 and the other implications of theorem 3.3, we need
some tools.

Theorem 3.4. Let E be a separable metric space and let us endow M0(E) with the
norm

F (T ) = supfhT; ¿ i j ¿ 2 Lip b (E); Lip( ¿ ) 6 1g:
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If S 2 MBV(Rk; E) and K » E is a compact set, then there exists an L k-negligible
set A 2 Rk such that

S := fy 2 K j kS(x)k(fyg) > 0 for some x 2 Rk n Ag

is countably Hk-recti¯able.

Before proving this theorem, we introduce the notion of maximal functions for
MBV mappings. Given a function u 2 MBV(Rk; M ), where M is a weakly separable
metric space, we set

MDu(x) := sup
» >0

kDuk(B» (x))

!k » k

(MDu is known in the literature as the maximal function of the measure kDuk;
see, for example, [15]). It is not di¯ cult to see that this function is  nite for almost
every x. In fact, we can estimate L k(fMDu > ¶ g) from above with a constant times
kDuk(Rk)=¶ . As happens for classical real-valued functions of bounded variation,
MDu provides a Lipschitz property for u.

Lemma 3.5. Let (M; d) be weakly separable and let S : Rk ! M be a map of metric
bounded variation. Then there exists N » Rk of measure zero such that

d(S(x); S(y)) 6 c(MDS(x) + MDS(y))jx ¡ yj 8x; y 2 Rk n N; (3.3)

where c depends only on k

Proof. Let us choose a family F of weakly dense Lipschitz functions. Then, for
every ’ 2 F , we de ne L’ as the set of Lebesgue points of ’ ¯ S (which is a real
function on Rk). For every x; y 2 L’, we claim that inequality (3.3) holds, with
w = ’ ¯ S in place of S.

Indeed, let us choose a ball B of radius R = 1
2
jx ¡ yj centred at 1

2 (x ¡ y). We
obtain

jw(x) ¡ w(y)j =
1

!kRk

Z

B

jw(x) ¡ w(y)j
jx ¡ yj dz

6 1

!kRk

Z

B

jw(x) ¡ w(z)j
jx ¡ zj dz +

1

!kRk

Z

B

jw(z) ¡ w(y)j
jz ¡ yj dz

6 1

!kRk

µZ

B2R(x)

jw(x) ¡ w(z)j
jx ¡ zj dz +

Z

B2R(y)

jw(y) ¡ w(z)j
jy ¡ zj dz

¶
:

Moreover, we have

1

!k(2R)k

Z

B2R(x)

jw(x) ¡ w(z)j
jx ¡ zj dz 6

Z 1

0

jDwj(BtR(x))

!k(tR)k
dt 6 MDw(x);

and the claim easily follows.
Now, if we consider

T
’ 2 F L’¯S , recalling that

d(S(x); S(y)) = sup
’ 2 F

j’ ¯ S(x) ¡ ’ ¯ S(y)j
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and

MDS(x) = sup
» >0

kDSk(B » (x))

!k » k

> sup
» >0

kD(’ ¯ S)k(B» (x))

!k » k

= MD(’ ¯ S)(x);

we obtain (3.3).

Proof of theorem 3.4. First of all, we set

A := N1 [ fx 2 Rk j MDS(x) = 1g;

where N1 is the set of measure zero that plays the role of N in lemma 3.5. Of
course, Hk(A) = 0.

Following [4], we de ne Z";¯ as the set of points z 2 Rk n A such that

(a) MDS(z) 6 1=(2");

(b) for every x 2 K such that kS(z)k(fxg) > ", there holds

kS(z)k(B3̄ (x) n fxg) 6 1
3 ":

Next we de ne

R";̄ := fx 2 E j kS(z)k(fxg) > " for any z 2 Z";¯ g:

Observing that
S =

[

";¯

R";¯ ;

we will prove that, for each ", ¯ , the set R";¯ is Hk-recti able. Indeed, for every
x; x0 2 R":¯ and every z; z0 2 Z";¯ such that

(i) kS(z)k(fxg) > ", kS(z)k(fx0g) > ";

(ii) d(x; x0) 6 ¯ ,

we have

d(x; x0) 6 3c( ¯ + 1)

"2
jz ¡ z0j: (3.4)

Before proving this estimate, we that remark it implies that R";¯ \ B is the image
of a Lipschitz function whenever diam(B) 6 ¯ . Indeed, for any z 2 Z";̄ \ B, there
is only one x = f (z) 2 R";¯ such that kSk(x) > ". Moreover, f is Lipschitz and, if
D is the domain of f , f (D) = B \ R";¯ .

Now we complete the proof by showing that (3.4) holds. Let us set d = d(x; x0)
and consider a Lipschitz function ¿ : E ! R such that

(a0) ¿ (y) = d(y; x) for every y 2 Bd(x);

(b0) ¿ ² 0 in Rm n B2 ¯ (x);

(c0) sup j¿ j = d and Lip( ¿ ) 6 1.
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We have j(S(z))( ¿ )j 6 1
3
"¯ and j(S(z0))( ¿ )j > "¯ ¡ 1

3
"¯ , so we get

1
3"d(x; x0)j 6 j(S(z0))( ¿ ) ¡ (S(Z))( ¿ )j

6 ( ¯ + 1)F (S(z) ¡ S(z0))

6 c( ¯ + 1)(MDS(z) + MDS(z0))jz ¡ z0j:

Recalling that MDS(z) 6 1=(2"), we obtain the desired estimate.

Proof of theorem 3.2. We need only prove that Tl is concentrated on a Hk ¼ -
recti able set. First let us  x a Lipschitz function º : E ! Rk. We want to prove
that Tl d º is concentrated on a recti able set. We set S º (x) = hT; d º ; xi and we
make the following claim.

Claim S. There exists a set N » Rk such that L k(N) = 0 and

S º := fy 2 E j kSº (x)k(fyg) > 0 for some x 2 Rk n Ng

is countably recti able.

To prove it, let us choose a sequence Tn of normal currents such that

(i) M (T ¡ Tn) ! 0;

(ii) there exists a set N 1 » Rk such that L k(N 1 ) = 0 and

lim
n ! 1

M (S(x) ¡ hTn; º ; xi) = 0

for every x 2 Rk n N 1 .

To simplify the notation, we write Sn(x) = hTn; º ; xi. We remark that if ( · n) is a
sequence of  nite measures and there exists a measure · such that k · n ¡ · kvar ! 0,
then the set of atoms of · is contained in the union of the sets of atoms of · n.
Recalling that M0(E) can be represented as the space of  nite measures on E, we
conclude that, for almost every x 2 Rk n N 1 ,

fz j kSº (x)k(z) > 0g »
[

n

fz j kSn(x)k(z) > 0g:

Using theorem 3.4, we infer that for every i, there exists a set N i » Rk of measure
zero such that

Si := fz 2 E j kSi(x)k(z) > 0 for some x 2 Rk n Nig

is countably recti able. If, in criterion A, we set

N = N 1 [
[

i

Ni;

then we have

Sº »
1[

i = 1

Si:

We conclude that S º is countably recti able.
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Now let us prove that
kTl d º k(E n Sº ) = 0: (3.5)

Recalling de nition 3.1 we must only check that kT d º k(A) = 0 for every Hk

¼ - nite set A such that A \ Sº = ;.
Since A is Hk ¼ - nite for a.e. x 2 Rk, ( º ¡1fxg) \A contains at most a countable

number of points. This fact, combined with A\Sº = ;, implies that, for a.e. x 2 Rk,
kSº (x)k(A) = 0. Then we have

kT d º k(A) =

Z

Rn

kSº (x)k(A) d L k(x) = 0;

and this proves (3.5).
Now we recall that kT k is concentrated on a ¼ -compact set. Because of this

fact, it can be proved (see [4, lemma 5.4]) that there exists a countable set D »
Lip1(E) \ Lip b (E) such that

kT k =
_

fkT d º k j º 1; : : : ; º k 2 Dg: (3.6)

If we take the countably recti able set

S :=
[

fS º j º 1; : : : ; º k 2 Dg;

then, from (3.6), it follows that kTlk(E=S) = 0.

Notice that if we are in the hypotheses of theorem 3.3, then we can reason as
in the previous case. In fact, we have that, for every º , T d º is concentrated on
a Hk recti able set. Then it follows that T is concentrated on a Hk recti able set
and coincides with Tl.

Remark 3.6. Assuming that every set has a cardinality that is a Ulam number,
we can drop the assumption that E is separable (see remark 2.4).

4. Distributional Jacobians and BnV functions

In this section we are going to transpose some de nitions and concepts from [11] in
the language introduced above. We will work with di¬erential forms with compact
support and local currents, but this does not create any problems, as observed in
remark 2.2. Finally, we recall that what we call di¬erential forms in this paper are
not the usual Lipschitz di¬erential forms; in terms of classical theory, Dk

c (Rn) is
the set of Lipschitz simple di¬erential forms with compact support.

Definition 4.1. We de ne the k-dimensional local current Hk in Rk as

Hk(f dg) =

Z

Rk

f det(rg1; : : : ; rgk) d L k:

The continuity axiom (de nition 2.1, condition (c)) is satis ed because the Jaco-
bian determinant is weakly¤ continuous in W 1; 1 . We remark that the classical
Hodge star-operator assigns to every ! 2 Dk

c (Rn) the local (n ¡ k)-dimensional
current given by Hn !.
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In the de nition of Hn !, the regularity assumptions on ! can be weakened. In
particular, let us suppose that ! = f dg satis es

(1) f 2 Lp;

(2) g 2 W 1;q(Rn; Rk);

(3)
1

p
+

k

q
=

1

r
< 1.

Then it is well known (see, for example, [9,12]) that the map

F : W 1; 1 (Rn; Rn¡k) ! Lr(Rn)

given by

F (u) = f det(rg1; : : : ; rgk; ru1; : : : ; run¡k)

is continuous if we endow Lr(Rn) with the weak topology and W 1; 1 (Rn; Rn¡k)
with the weak ¤ one. Even in this case, with a slight abuse of notation, we de ne
Hn ! as the k-dimensional local current T given by

T (f dg) =

Z

Rn

f det(rg1; : : : ; rgk; ru1; : : : ; run¡k) d L n:

We will see below that this is a crucial point in the de nition of weak Jacobians.
In the rest of this section, U will denote an open set.

Definition 4.2. Let u 2 W 1;p
loc (U; Rn) \ L 1 , with U » Rm, p > n ¡ 1 and m > n

(or u 2 W 1;mn=(m + 1)). We de ne j(u) as the (m ¡ n + 1)-dimensional local current
( ¡ 1)nHm (u1 ^ du2 ^ ¢ ¢ ¢ ^ dun).

Definition 4.3. Let u be as in the previous de nition. Then we de ne

[Ju] := @j(u):

We say that u 2 BnV(U; Rn) if j(u) is a normal local current.

The last de nition is motivated as follows. Let us put ¸ = u1 du2 ^ ¢ ¢ ¢ ^ dun and
suppose that u is su¯ ciently regular (i.e. Lipschitz). Then we have

h[Ju]; !i = hj(u); d!i
= ( ¡ 1)nHm( ¸ ^ d!)

= ( ¡ 1)nHm(( ¡ 1)n¡1(d( ¸ ^ !) ¡ d ¸ ^ !))

= ¡ @Hm( ¸ ^ !) + Hm(d ¸ ^ !)

= Hm d ¸ (!):

We remark that, in view of this fact, we could have de ned j(u) as

sgn( º )Hm (u º (1)du º (2) ^ ¢ ¢ ¢ ^ du º (n));
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where º is any permutation of the set f1; : : : ; ng. Indeed, if u is a smooth function,
then

( ¡ 1)n@(Hm u1 du2 ^ ¢ ¢ ¢ ^ dun)

= Hm d(u1 du2 ^ ¢ ¢ ¢ ^ dun)

= Hm (du1 ^ du2 ^ ¢ ¢ ¢ ^ dun)

= Hm sgn(º )(du º (1) ^ du º (2) ^ ¢ ¢ ¢ ^ du º (n))

= ( ¡ 1)n sgn(º )Hm d(u º (1)duº (2) ^ ¢ ¢ ¢ ^ du º (n))

= ( ¡ 1)n) sgn( º )@(Hm u º (1)du º (2) ^ ¢ ¢ ¢ ^ duº (n)): (4.1)

These equalities follows from the fact that if T is a k-dimensional local current and
! is an h-dimensional form with k 6 h ¡ 1, then

@T ! = (@T ) ! ¡ T d!:

Now, approximating every u 2 BnV by convolutions with standard molli ers, we
obtain the identity (4.1) in its full generality. Indeed, it is easy to see that if un ! u
in the strong Sobolev topology and kunk 1 6 c, then j(un) converges to j(u) as
local current.

Actually, j(u) satis es a stronger continuity result: appropriate weak convergence
of the functions induces weak convergence on the Jacobians. More precisely, we have
the following.

Theorem 4.4. Suppose that (un); u satisfy the conditions of de¯nition 4.2 and

(a) uk * u weakly in W 1;p1

loc ;

(b) uk ! u strongly in Lp2

loc;

(c) (n ¡ 1)=p1 + 1=p2 < 1

(or uk * u in W 1;n¡1
loc , uk 2 C(U ) and uk ! u uniformly on compact sets).

Then j(un) * j(u) as local current.

(For the proof of this theorem, we refer to the weak continuity of Jacobian deter-
minant maps [9,12].) If the hypotheses of the previous theorem hold, then we have

h[Jun]; !i = h@j(un); !i = hj(un); d!i ! hj(u); d!i = h[Ju]; !i:

Now let us see how the local current [Ju] behaves with respect to slicing when
u 2 BnV. Let us consider a projection º of Rm onto a subspace of dimension
m ¡ k 6 m ¡ n. For the sake of simplicity, we choose a system of coordinates and
we suppose that º is the projection on the  rst m ¡ k coordinates. We will adopt
the notation Rm 3 z = (x; y) 2 Rm¡k £ Rk.

We notice that, for a.e. x 2 Rm¡k, j(u(x; ¢)) is a (k ¡ n + 1)-dimensional local
current in Rk. Indeed, because of the Fubini{Tonelli theorem, for a.e. x, the map
u(x; ¢) belongs to the appropriate Sobolev space that allows us to de ne

j(u(x; ¢)) := ( ¡ 1)nHk u1(x; ¢) dyu(x; ¢):
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Definition 4.5. We denote by ix the natural identi cation between Rk and the
a¯ ne subspace fxg £ Rk of Rm.

Theorem 4.6. Let u be as in de¯nition 4.2 and º : Rm¡k £ Rk ! Rm¡k a projec-
tion, with k > n. Then we have

hj(u); d º ; xi = ( ¡ 1)l(ix)# j(u(x; ¢)); (4.2)

h[Ju]; d º ; xi = ( ¡ 1)r(ix)# [Ju(x; ¢)]; (4.3)

with l = (m ¡ k)(n ¡ 1) and r = (m ¡ k)n.

Proof. We use the notation of the previous paragraph to simplify the calculations.
We observe that

j(u) d º = Hm (u1 du2 ^ ¢ ¢ ¢ ^ dun ^ dx1 ^ ¢ ¢ ¢ ^ dxm¡k):

So, for every f dg 2 Dk¡n+ 1
c , we have

Hm (u1 du2 ^ ¢ ¢ ¢ ^ dun ^ d º )(f dg)

=

Z

Rm

fu1 det(ru2; : : : ; run; e1; : : : ; em¡krg1; : : : ; rgk¡n+ 1) dz

= ( ¡ 1)(m¡k)(n¡1)

Z

Rm

fu1 det(e1; : : : ; em¡k; r~u; rg) dz; (4.4)

where e1; : : : ; ek are the  rst m ¡ k vectors of the canonical basis and ~u denotes the
vector (u2; : : : ; un).

We remark that the matrix (e1; : : : ; em¡k; r~u; rg) can be written as
µ

Id rx ~u rxg

0 ry ~u ryg

¶

(where Id is the identical k £ k matrix and 0 is the (m ¡ k) £ k null matrix).
Therefore, (ry ~u; ryg) is a (k £ k) matrix and

det(e1; : : : ; em¡k; r~u; rg) = det(ry ~u; ryg):

This means that (4.4) is equal to

( ¡ 1)l

Z

Rm ¡ k

Z

Rk

f (x; y)u1(x; y) det(ry ~u(x; y); ryg(x; y)) dydx: (4.5)

Then the expression
Z

Rk

f (x; y)u1(x; y) det(ry ~u(x; y); ryg(x; y)) dy

can be read as
h(ix)# j(u(x; ¢)); f dgi:

We conclude from (4.5) that

Rk 3 x ! S(x) = ( ¡ 1)l(ix)# j(u(x; ¢))

is the slicing for j(u) with respect to d º .
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Notice that

[Ju] d º = ( ¡ 1)m¡k(@(j(u) d º ) ¡ j(u) d(d º )) = ( ¡ 1)m¡k@(j(u) d º ):

Hence ( ¡ 1)r(ix)# [Ju(x; ¢)] is a slicing map for [Ju].

For the sake of simplicity, from now on we will identify the local current [Ju(x; ¢)]
and its push-forward via ix.

Using the decomposition de ned in the previous section, when u 2 BnV, we can
consider [Ju]a, [Ju]c and [Ju]l. Moreover, from theorem 3.2, it follows that [Ju]l is
a recti able local current. From now on, we de ne S u as the set on which [Ju]l is
concentrated.

From classical theory, we know that there exists a Borel function ¸ from Rm to
the linear space of m ¡ n covectors ¤ m¡n(Rm) such that

h[Ju]; !i =

Z

Rm

h ¸ (x); !(x)i dkJuk (4.6)

(where kJuk is the mass of [Ju]). Of course, similar representations hold for the
three parts of [Ju],

h[Ju]a; !i =

Z

Rm

h ¸ a(x); !(x)i dkJuka;

h[Ju]c; !i =

Z

Rm

h ¸ c(x); !(x)i dkJukc;

h[Ju]l; !i =

Z

Su

h ¸ l(x); !(x)i dHm¡n:

In fact, we can say a little more. From the fact that [Ju] is a ®at current, it follows
that

¸ l(x) = m(x) ½ (x) for Hm¡n a.e. x;

where ½ (x) is the approximate tangent plane to S u in x and m is a Borel measurable
real-valued function.

Even for the absolutely continuous part, we have a similar property. Indeed, let
us suppose that u 2 BnV(U; Rn), with U » Rn. Then we can de ne a notion of a
`pointwise determinant’ of ru as follows. We choose a Borel function M , which is
a pointwise representative of ru, and we de ne the pointwise Jacobian det(ru) as
the class of measurable functions f such that det M (x) = f (x) for L n a.e. x. Then,
from a result of M�uller [13], we know that det(ru) 2 L1

loc and [Ju]a = det(ru) L n.
In the following theorem we will prove a slight generalization of this result.

Theorem 4.7. Let u be a BnV function and let us choose a pointwise representative
~u of u. Then there exists a Borel function ¸ a : Rm ! ¤ m¡n(Rm) such that

h[Ju]a; !i =

Z

Rm

h ¸ a(x); !(x)i d L m (4.7)

and
¸ a(x) = d~u1(x) ^ ¢ ¢ ¢ ^ d~un(x) for L k a.e. x 2 Rm; (4.8)

where d~ui(x) is the approximate di® erential of ui at x.
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Before proving the theorem, we address the special case when m = n.

Lemma 4.8. Let u 2 BnV(U; Rn), with U » Rn, and let us choose a pointwise
representative ~u of u. Then det(ru) is summable and

h[Ju]a; !i =

Z

Rm

!(x) det(ru(x)) d L m: (4.9)

Proof. We follow the proof of M�uller in [13] and, to simplify the notation, we identify
u and ~u.

We know that [Ju]a acts on 0-dimensional forms, i.e. on bounded measurable
functions (recall remark 2.12 and the fact that [Ju]a has  nite mass). So we can
write

h[Ju]a; f i =

Z

Rn

¸ (x)f(x) d L n;

where ¸ 2 L1
loc(Rn). We only have to check

¸ (x) = det(ru(x)) for a.e. x:

Therefore, let us  x x0 2 Rn such that

(a) x0 is a Lebesgue point for ¸ , jrujp and u (where p depends on the Sobolev
space chosen in de nition 4.2);

(b) lim
" ! 0

1

"n
kJuks(B"(x0)) = 0

(we recall that kJuks is the singular part of kJuk).
Without loss of generality, we can suppose that x0 = 0 and u(x0) = 0, and we

de ne the rescaled functions

u" :=
1

"
u("x):

We observe that they are BnV and they converge strongly (in the appropriate
Sobolev space) to the linear function given by ru(0), which we denote by u1 . So
we have that [Ju"] converges to [Ju1 ] as local current, and this implies that

lim
" ! 0

h[Ju"]; !i = h[Ju 1 ]; !i =

Z

Rm

! det(ru(0)) d L m (4.10)

for every Lipschitz function ! with compact support.
On the other hand, for every f dg = ! 2 D1

c , we also have

hj(u"); f dgi =

Z

Rm

1

"
f (x)u1("x) det(ru2("x); : : : ; run("x); rg(x)) d L m

and, by a change of variables,

=
1

"n+ 1

Z

Rm

u1(y)f

µ
y

"

¶
det

µ
ru2(y); : : : ; run(y); rg

µ
y

"

¶¶
dy:

Thus we have obtained

hj(u"); !i =
1

"n

¿
j(u); !

µ
y

"

¶À
;
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from which it follows that

h[Ju"]; !i = hj(u"); d!i

=
1

"n + 1

¿
j(u); (d!)

µ
y

"

¶À

=
1

"n

¿
j(u); d

µ
!

µ
y

"

¶¶À

=
1

"n

¿
[Ju]; !

µ
y

"

¶À
:

From condition (b), we have

lim
" ! 0

¯̄
¯̄ 1

"n

¿
[Ju]s; !

µ
y

"

¶À¯̄
¯̄ 6 lim

" ! 0

Lip(!)

"n
kJuks(" supp(!)) = 0:

So we can write

lim
" ! 0

h[Ju"]; !i = lim
"! 0

1

"n

¿
[Ju]a; !

µ
y

"

¶À

= lim
"! 0

1

"n

Z

Rn

¸ (y)!

µ
y

"

¶
dy

= lim
"! 0

Z

Rn

¸ ("x)!(x) dx:

Since 0 is a Lebesgue point for ¸ , ¸ ("y) converges in L1
loc to the function ¸ (0).

Recalling (4.10), we have
Z

Rn

¸ (0)! dx =

Z

Rn

det(ru(0))! dx

for every Lipschitz function ! with compact support. Then we conclude that

¸ (0) = det(ru(0)):

Now we remark that L n a.e. x satis es (a) and (b), and this completes the
proof.

Before proving theorem 4.7 in its full generality, we put on the space of covectors
¤ m¡n(Rm) the norm

j̧ j = supfḩ ; f1 ^ ¢ ¢ ¢ ^ fni j fi 2 Rm and jfij 6 1g:

From the classical theory of currents, we know that j ¸ a(x)j 2 L1(Rm). This fact
and equation (4.8) imply that

det(ru1; : : : ; run; rg1; : : : ; rgm¡n) 2 L1(Rm)

for every (m ¡ n)-tuple of Lipschitz functions (g1; : : : ; gm¡n).

Proof. First we choose a Borel function ¸ 0
a such that

h[Ju]a; !i =

Z

Rm

h ¸ 0
a(x); !(x)i dkJuka:



Some ¯ne properties of currents 835

Recalling that kJuka is absolutely continuous with respect to L m, we set

¸ a :=
dkJuka

d L m
¸ 0

a:

Using lemma 4.8 and the slicing techniques introduced above, we will prove that ¸ a

satis es equation (4.8). To simplify the notation, we identify u and ~u and we put
m = n + k.

First we choose an orthogonal system x1; : : : ; xn+ k and a particular partition
of f1; : : : ; n + kg into two disjoint sets I = fi1; : : : ; ikg and J = fik + 1; : : : ; ik + ng.
We call y1; : : : ; yk the k coordinates xi1 ; : : : ; xik and z1; : : : ; zn the remaining n.
Moreover, we denote by º I be the projection on the coordinates y1; : : : ; yk. From
lemma 4.8 we know that equation (4.8) holds when m = n. Hence, for a.e. y 2 Rk,
we have

h[Ju(y; ¢)]a; f (y; ¢)i =

Z

Rn

det(rzu(y; z))f (y; z) d L n(z): (4.11)

Then, from the slicing property of the Jacobians applied to º I , it follows that

h[Ju]a d º I ; f i = ( ¡ 1)nk

Z

Rk

h[Ju(y; ¢)]a; f (y; ¢)i d L k(y)

=

Z

Rk

Z

Rn

( ¡ 1)nk det(rzu(y; z))f (y; z) d L n(z) d L k(y)

=

Z

Rn+k

f det(ru1; : : : ; run; ei1 ; : : : eik ) d L n + k:

Of course, this means that det(ru1; : : : ; run; ei1 ; : : : eik ) is an L1 function. More-
over, this fact is true for every choice of I and, from the multilinearity of the
determinant, we argue that

det(ru1; : : : ; run; rg1; : : : ; rgk)

is summable for every Lipschitz and bounded k-tuple (g1; : : : ; gk). The continuity
of [Ju]a d º I for every choice of I and the multilinearity of the determinant give
the continuity (as a k-dimensional local current) of Hn + k du, which is de ned by

hHn+ k du; f dgi =

Z

Rn+k

f det(ru1; : : : ; run; rg1; : : : ; rgk) d L n+ k:

Of course, Hn + k du is the same local current as [Ju]a.

Unfortunately, we are not able to prove that something similar holds for the
Cantor part, i.e. that ¸ c(x) is a simple covector for kJukc a.e. x.

5. SBnV

In analogy with the case of SBV functions (see [1,3]), we can de ne the space SBnV
of special functions of bounded higher variation.

Definition 5.1. We say that a map u 2 BnV(U; Rn) is a `special function of
bounded higher variation’ if [Ju]c = 0.
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The next proposition provides an equivalent de nition of SBnV functions.

Proposition 5.2. Let Ind be the collection of all subsets I of f1; : : : ; mg such that
the cardinality of I is m ¡ n. For every I 2 Ind, we denote by º I the projection on
the coordinates fxi j i 2 Ig. A function u 2 BnV(U; Rn) is in SBnV if and only if

for every set of indices I := fi1; : : : ; im¡ng 2 Ind

and for L m¡n a.e. x, u(xi1 ; : : : ; xim ¡ n ; y) is an SBnV function of y:
(A)

Proof. The `only if’ part is an easy consequence of the slicing of currents. So, let
us suppose that (A) holds. Then, for every I 2 Ind, we have [Ju]c d º = 0. If ! is
an n-form, we can write

! =
X

I 2 In d

gI d º I ;

and so we obtain [Ju]c ! = 0. We conclude that [Ju]c = 0.

An interesting fact is that the special functions of bounded higher variation satisfy
a closure theorem similar to that proved in [1] for SBV.

Remark 5.3. From now on, when ¸ is a k-covector, we denote by j̧ j the standard
norm induced by its action on k-vectors (see the proof of theorem 4.6).

First of all, we prove the closure theorem in a particular case.

Theorem 5.4. Let us consider (uk) » BnV(U; Rn) and u 2 BnV(U; Rn), with
U » Rn. Let us suppose that

(a) uk * u weakly in W 1;p1

loc , uk ! u strongly in Lp2

loc and

n ¡ 1

p1
+

1

p2
< 1

(or uk * u in W 1;n¡1
loc , uk 2 C(U ) and uk ! u uniformly on compact sets);

(b) if we write

[Juk] = mk(x)H0 Ek + Hn ¸ k(x);

then j ¸ kj are equi-integrable and H0(Ek) 6 C < 1.

Then u 2 SBnV(U; Rn) and

[Juk]a * [Ju]a; [Juk]l * [Ju]l:

Proof. We follow the ideas of the proof of SBV closure in [1]. First we notice that,
in this particular case, the weak Jacobians [Jun] are distributions. From the fact
that the functions ¸ k are equi-integrable, we can  nd a subsequence that converges
weakly in L1 to a function ¸ . To simplify the notation, we will suppose that the
whole sequence ( ¸ k) converges to ¸ .

We recall that, from the continuity of the Jacobians, [Juk] * [Ju] (which means

lim
k ! 1

h[Juk]; !i = h[Ju]; !i
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for every Lipschitz function ! with compact support). We notice that

[Juk]l = [Juk] ¡ [Juk]a * [Ju] ¡ ¸ L n

in the sense of distributions. Moreover, we can write, for some integer N ,

[Juk]l =

NX

i = 1

ak
N ¯ xk

N
:

Then we can  nd a subsequence uk(r) such that (possibly reordering each set
fx

k(r)
1 ; : : : ; x

k(r)
N g in a proper way)

for every j 2 f1; : : : ; Ng, either x
k(r)
j converges to xj 2 ·U

or jxk(r)
j j tends to in nity.

(B)

Recalling that [Ju] ¡ ¸ L n is the limit of [Juk(r)]l, we obtain that its support is a
 nite number of points. But we know that [Ju] ¡ ¸ L n is a measure, so it is the
sum of a  nite number of Dirac masses. We can conclude that [Ju] is the sum of
an absolutely continuous measure and a  nite number of Dirac masses.

Moreover, we have that
[Juk]a * [Ju]a (5.1)

and
[Juk]l = [Juk]s * [Ju]s = [Ju]l: (5.2)

(Actually, we have proved these last statements only for a subsequence. However,
we notice that from every subsequence of uk we can choose another subsequence
such that (5.1) and (5.2) hold. Then (5.1) and (5.2) hold for the whole sequence
(uk).)

From the slicing property of [Ju], we are now able to prove the next theorem.

Theorem 5.5. Let us consider (uk) » BnV(U; Rn) and u 2 BnV (U; Rn), with
U » Rm. Moreover, suppose that

(a) uk * u weakly in W 1;p1

loc , uk ! u strongly in Lp2

loc and

n ¡ 1

p1
+

1

p2
< 1

(or uk * u in W 1;n¡1
loc , uk 2 C(U ) and uk ! u uniformly on compact sets);

(b) if we write
[Juk] = mk(x) ½ k(x)Hm¡n Ek + Hm ¸ k(x);

then j ¸ kj are equi-integrable and Hm¡n(Ek) 6 C < 1.

Then u is of special higher bounded variation.

During the proof, we will use the representations of the previous section. So the
restriction of [Ju]a to dg becomes

h[Ju]a dg; !i =

Z

Rm

h ¸ a(z); !(w) ^ dg(w)i d L m(w)
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and the slicing map with respect to the projection º on the  rst m ¡ n coordinates
is given by

hS(x); !i =

Z

fxg£Rn

h ¸ a(x; y); !(x; y) ^ d º (x; y)i d L n(y):

From the slicing property of Jacobians, we argue that for a.e. x we can  nd a
0-covector-valued function ¹ (x; ¢) (i.e. a real function ) such that

h[J(u(x; ¢))]a; !i =

Z

Rn

h ¹ (x; y); !(y)i d L n(y):

We denote ¹ (x; y) by ¸ a(x; y) d º and we remark that j ¹ (x; y)j 6 j̧ (x; y)j for a.e.
(x; y).

Proof. We will prove that statement (A) in proposition 5.2 holds.
Let us  x I 2 Ind. Without loss of generality, we can suppose that

I = f1; : : : ; m ¡ ng:

We denote by z the projection on the  rst m ¡ n coordinates. Then we can write,
for a.e. x 2 Rm¡n,

[J(uk(x; ¢))]a = ( ¸ k(x; ¢) dz)Hn x £ Rn; (5.3)

[J(uk(x; ¢))]l = mk(x; ¢)H0 (Su \ z¡1fxg); (5.4)

and, of course, [Juk(x; ¢)]c = 0.
We split the proof into several steps.

Step 1. First we suppose that uk ! u strongly in Lp2

loc and weakly in W 1;p1

loc . Let
us  x an open set V »» U and set Vx = V \ z¡1fxg. Let us extract a subsequence
uk of un such that

1X

k = 1

Z

Rm ¡ n

kuk(x; ¢) ¡ u(x; ¢)kLp2 (Vx) dx < 1:

From the monotone convergence theorem, we infer that, for a.e. x,
X

k

kuk(x; ¢) ¡ u(x; ¢)kLp2 (Vx)

is a convergent series. This implies that uk(x; ¢) ! u(x; ¢) in Lp2 (Vx) for a.e. x. Let
us choose a family of open sets Vn " V such that Vn »» V . We reason as above
for every Vn and we apply a diagonalization argument to conclude that there is a
subsequence (uk) such that uk(x; ¢) ! u(x; ¢) strongly in Lp2

loc for a.e. x.

Step 2. From Fatou’s lemma, we have that
Z

Rm ¡ n

lim inf
k ! 1

kuk(x; ¢)kW 1;p1 (Vx) dx 6 lim inf
j ! 1

Z

Rm ¡ n

kuk(x; ¢)kW 1;p1 (Vx) < 1:

We conclude that for a.e. x we can extract a further subsequence (ul) (possibly
depending on x) such that kul(x; ¢)kW 1;p1 (Vx) < 1 for every open set V »» U .
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Then, recalling that, for a.e. x, (uk(x; ¢)) converges strongly in Lp2

loc to u(x; ¢), we
have that ul(x; ¢) converges weakly in W 1;p1

loc to u(x; ¢).
Summarizing, we have proved that, for a.e. x 2 Rn, we can extract a subsequence

(uk) (possibly depending on x) such that

uk(x; ¢) * u(x; ¢) in W 1;p1

loc and uk(x; ¢) ! u(x; ¢) strongly in Lp2

loc,

with (n ¡ 1)=p1 + 1=p2 < 1.

In a similar way, we can treat the case in which uk(x; ¢) * u(x; ¢) in W 1;n¡1
loc

uk(x; ¢) ! u(x; ¢) uniformly on compact sets as continuous functions.

Step 3. From the Dunford{Pettis theorem on L1 weakly compact sequences (see,
for example, [6]), we know that j ¸ kj belongs to some Orlicz space. So there exists a
real convex function ¿ , with superlinear growth, such that

Z

Rm

¿ (j ¸ kj) 6 K < 1:

Then we have

K > lim sup
k ! 1

Z

Rm

¿ (j̧ k dzj)

> lim sup
k ! 1

Z

Rm ¡ n

Z

Rn

¿ (j ¸ k(x; y) dzj) dxdy

>
Z

Rm ¡ n

lim inf
k ! 1

Z

Rn

¿ (j ¸ k(x; y) dzj) dxdy:

This implies that, for a.e. x, we can  nd a subsequence k(r) such that

lim
k ! 1

Z

Rn

¿ (j̧ k(r)(x; y) dzj) dx < 1;

which means that ¸ k(r)(x; ¢) dz are equi-integrable (we remark that the chosen
subsequence depends on x).

Step 4. Reasoning as in the previous cases, we have
Z

Rm ¡ n

lim inf
k ! 1

(H0(Suk
\ z¡1fxg)) dx 6 lim inf

k ! 1

Z

Rn

(H0(Suk
\ z¡1fxg)):

Then, for a.e. x, we can extract a subsequence (ul) (possibly depending on x) such
that

(H0(Sul \ z¡1fxg))

is bounded.

Step 5. Now we want to put together all the information of the previous steps.
We notice that the subsequence extracted on the  rst step does not depend on x,
whereas the choices of the other steps depend on x. However, for a.e. x, we can
extract a subsequence that ful ls all the conditions. Indeed, let us de ne

fk(x) := H0(Suk \ z¡1fxg) +

Z

Rn

¿ (j ¸ k(x; y) dzj) dy + kuk(x; ¢)kW 1;p1 (Vx):



840 C. De Lellis

Then we have
Z

Rm ¡ n

lim inf
k ! 1

fk(x) dx 6 lim inf
k ! 1

Z

Rm ¡ n

fk(x) dx

6 lim inf
k ! 1

µ
Hm¡n(Suk ) + kukkW 1;p1 +

Z

Rm

¿ ( ¸ k)

¶
< 1:

(5.5)

We conclude that, for a.e. x, we can choose a subsequence ur such that (ur(x; ¢))
and u(x; ¢) satisfy all the hypotheses of theorem 5.4. Then, for a.e. x, the Cantor
part of [J(u(x; ¢))] is zero and from statement (A) it follows that u has no Cantor
part.

We end this section by proving that, in the same hypotheses of theorem 5.5, we
have

[Juk]l * [Ju]l; [Juk]a * [Ju]a:

To do this, we need the next lemma.

Lemma 5.6. Let ( « ; F ; · ) be a measure space with · ( « ) < 1 and ( ¸ k) a weakly
compact sequence in L1( « ; · ). Then ¸ k * ¸ if and only if

Z

«

jw + ¸ j d · 6 lim inf
k ! 1

Z

«

jw + ¸ kj d · 8w 2 L1( « ): (5.6)

We refer to [1] for the proof.

Theorem 5.7. Let us consider (uk) » BnV(U; Rn) and ux 2 BnV(U; Rn), with
U » Rm. If conditions (a) and (b) of theorem 5.5 hold, then

[Juk]l * [Ju]l; [Juk]a * [Ju]a (5.7)

Proof. We use the notation of theorem 5.5 and we reduce to prove

[Juk]a d º I * [Ju]a d º I (5.8)

for every I 2 Ind (we recall that Ind is the collection of all subsets of f1; : : : ; ng
that have cardinality (m ¡ n)). Indeed, from this fact, we could conclude that
[Juk]a * [Ju]a and

[Juk]l = [Juk] ¡ [Juk]a * [Ju] ¡ [Ju]a = [Ju]l:

Therefore, we suppose that I = f1; : : : ; m ¡ ng and we split the proof into several
steps. To simplify the notation, we suppose that U = Rn and that global conver-
gence hold on (uk). The proof can be easily adapted to the local case.

Step 1. Let us  x a convex real function ¿ with superlinear growth and a real
number z such that

lim inf
k ! 1

Z

Rm

¿ (jz + ¸ k d º j) d L m < 1:
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For every x 2 Rm¡n, let us put

Jx
1 (u) =

Z

Rn

¿ (jz + ¸ d º (x; y)j) dy;

Jx
2 (u) = ku(x; ¢)kW 1;p1 ;

Jx
3 (u) = H0( º ¡1fxg \ Suk )

and  x a positive real number t. From Fatou’s lemma, we have that

lim inf
k ! 1

Jx
1 (uk) + tJx

2 (uk) + tJx
3 (uk) = K(x) < 1

for almost every x and, reasoning as in the last step of theorem 5.5, we infer that

Jx
1 (u) 6 Jx

1 (u) + tJx
2 (u) + tJx

3 (u) 6 K(x):

Integrating this inequality with respect to x, we obtain

Z

Rm

¿ (jz + ¸ d º j) d L m

6 lim inf
k ! 1

µZ

Rm

¿ (jz + ¸ k d º j) d L m + tkukkW 1;p1 + tHk(Suk )

¶
:

Letting t # 0, we obtain
Z

Rm

¿ (jz + ¸ d º j) d L m 6 lim inf
k ! 1

Z

Rm

¿ (jz + ¸ k d º j) d L m: (5.9)

We notice that the same arguments work if we replace Rm with an open set. Let
us denote by C the class of functions w 2 L1(Rm) that can be written as

w =
hX

i = 1

¬ i À Ai

for some open sets A1; : : : Ah. Hence (5.9) holds for every function z 2 C .

Step 2. We know that there exists a convex real function Á, with superlinear
growth, such that

lim inf
k ! 1

Z

Rm

Á(j ¸ k d º j) < 1:

Let us take a convex real function ¿ with superlinear growth such that ¿ (0) = 0,

lim
t! 1

Á(t)

¿ (t)
= +1:

We can easily conclude that the sequence ¿ (j ¸ k d º j) is equi-integrable. Let us put

¿ n(t) =

µ
1

n
¿ (t)

¶
_ t:

The equi-integrability of Á(j̧ k d º j) and the fact that ¿ n(t) # t imply that

lim inf
k ! 1

Z

Rm

j ¸ k d º j = lim
n! 1

lim inf
k ! 1

Z

Rm

¿ n(j ¸ k d º j):
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From the previous step, we easily conclude that
Z

Rm

jz + ¸ d º j 6
Z

Rm

lim inf
k ! 1

jz + ¸ k d º j (5.10)

for every z 2 C .

Step 3. By a standard approximation argument, we have that (5.10) holds for
every z 2 L1(Rn). Then, applying lemma 5.6, we conclude that

¸ k d º * ¸ d º :
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