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Abstract

We give a shorter proof of the existence of nontrivial closed minimal hy-
persurfaces in closed smooth (n+1)-dimensional Riemannian manifolds, a
theorem proved first by Pitts for 2 ≤ n ≤ 5 and extended later by Schoen
and Simon to any n.

Our proof follows Pitts’ original idea to implement a min-max construc-
tion. We introduce some new ideas that allow us to shorten parts of Pitts’
proof – a monograph of about 300 pages – dramatically.

Pitts and Rubinstein announced an index bound for the minimal surface
obtained by the min-max construction. To our knowledge a proof has
never been published. We refine the analysis of our interpretation of the
construction to draw some conclusions that could be helpful to prove the
index bound.

Zusammenfassung

Wir geben einen kürzeren Beweis für die Existenz nicht-trivialer, geschlos-
sener minimaler Hyperflächen in geschlossenen, glatten (n+ 1)-dimensio-
nalen Riemannschen Mannigfaltigkeiten. Dieses Resultat wurde erstmals
von Pitts für 2 ≤ n ≤ 5 und später von Schoen und Simon für beliebige n
bewiesen.

Unser Beweis folgt Pitts’ ursprünglicher Idee, eine Min-Max Konstruk-
tion durchzuführen. Wir führen einige neue Ideen ein, die es uns er-
lauben, Teile von Pitts’ Beweis – einem Monographen von etwa 300 Seiten
– dramatisch zu verkürzen.

Pitts und Rubinstein kündigten eine Indexschranke für die Minimal-
fläche, die man mit der Min-Max Konstruktion erhält, an. Unseres Wis-
sens wurde ein Beweis nie veröffentlicht. Wir vertiefen die Analyse un-
serer Interpretation der Konstruktion, um einige Schlüsse zu ziehen, die
bei einem Beweis der Indexschranke hilfreich sein könnten.
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1 Introduction

1.1 Historical introduction

Minimal surfaces have been the object of interest and investigation ever
since the beginning of the calculus of variations. The first examples (apart
from the trivial one, the plane), namely the catenoid, a rotated catenary,
and the helicoid, a kind of double helix, have been discovered in the 18th
century by Euler and Meusnier. A more systematic study was triggered
by Lagrange’s ideas that lead to the indirect method of the calculus of
variations. Minimal surfaces from that point of view are critical points of
the area functional. This approach – to Lagrange merely another instance
to prove the power of his method – gave a way to study minimal surfaces
via PDEs. A more geometric description of the Euler-Lagrange equations
of the area functional was later given by Meusnier: a minimal surface is
characterized by the vanishing of its mean curvature, i.e. H = 0. Fol-
lowing these two points of view, the analytic and the geometric, minimal
surfaces have proven to be a prototypical object of study in the field of
geometric analysis.

In the early 19th century the theory received a new boost of popular-
ity that was due to the soap film experiments by the Belgian physicist
Plateau. By dipping a wire frame into a soap solution and removing it he
produced loads of soap films that can be viewed as models for minimal
surfaces. The soap film spanned by the wire frame was assumed to take
a shape that minimizes the surface energy (which is proportional to the
surface area). Encouraged by the experiments Plateau claimed that every
wire frame bounds a soap film. Formulated in a more mathematical way
this statement was later known as the famous Plateau problem.

Problem 1. Every simple closed curve γ in R3 bounds a surface of least
area among all the surfaces with boundary γ.

This formulation is still a bit vague since it does not specify the concept
of surface. In the classical theory people studied regularly parametrized
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1 Introduction

surfaces and graphs (sometimes referred to as non-parametric surfaces).
Even though there was experimental evidence, a rigorous proof of the
claim turned out to be very difficult and lead to many new developments
in the calculus of variations. It was not until the early 1930s that Douglas
and Radó independently provided a proof of the existence of a disk-type
solution [29], [59]. For his achievement Douglas was awarded one of the
inaugural Fields medals. The idea of his proof is an implementation of
the so-called direct method of the calculus of variations. This abstract
method to find minimizers of functionals can be sketched as follows: take
a minimizing sequence and use some compactness arguments to extract
a converging subsequence. If the functional is semicontinuous, the limit
yields the desired minimizer. This method cannot be applied directly
to the area functional for parametrized surfaces. There are basically two
aspects of this problem. On the one hand there is the functional (semicon-
tinuity), on the other hand there is the space of definition (compactness),
usually a function space. Douglas – and Courant, who some years later
gave a simpler proof along the same lines – studied functionals with better
functional analytic properties – such as the Dirichlet energy in Courant’s
proof [23], [24]. Using the fact that for conformally parametrized disks the
Dirichlet energy equals the area, the problem can be reduced to finding
a minimizer of the Dirichlet energy and showing that it is conformally
parametrized. These close connections between the area functional and
the Dirichlet energy, or on a PDE level the minimal surface equation and
the Laplace equation, have been very fruitful in the theory.

Even though the results of Douglas and Radó were fundamental they
had certain flaws. First of all, the theory is purely two-dimensional. At-
tacking the generalized problem for higher dimensional surfaces requires
different tools. Moreover, the approach sketched above fixes from the
start the topology of the solution by the parametrization, disk-type in
this case. Douglas later also studied surfaces of higher topology and with
several boundary curves, a problem known as Douglas’ problem [30]. But
the topology has to be fixed there, too. In general, the topology of the
absolute minimizer is not known in advance. Even more, Fleming gave
an example of a boundary curve where the corresponding minimizer does
not have finite topology [34]. A third issue concerns the regularity of the
solution. Even with smooth boundary curves the Douglas solution is in
general only immersed. Only in the 1970s, Osserman, Gulliver and Alt
could exclude interior branch points of the Douglas solution in R3, whereas

2



1.1 Historical introduction

selfintersections are possible and often necessary due to the a priori choice
of the topology [8], [9], [39], [52].

To overcome all these difficulties another approach had to be taken.
Whereas in Douglas’ solution the study of a different functional than the
area functional lead to the goal, from the 1950s to the 1970s several con-
cepts of generalized surfaces have been introduced by various people such
as De Giorgi, Reifenberg, Federer, Fleming, Almgren and Allard to make
the direct method of the calculus of variations work [1], [2], [3], [25], [33],
[60]. In this thesis we will use some of those concepts, most notably the
theory of Caccioppoli sets and the theory of varifolds, and therefore intro-
duce them in detail later. These different concepts, such as Caccioppoli
sets, currents or varifolds, have been developed to attack various varia-
tional problems related to Plateau’s problem or minimal surfaces. In spite
of their differences there is an important common feature. The spaces of
currents or varifolds are compact with respect to certain weak topologies.
Similarly to the study of weak solutions of PDEs in Sobolev spaces, weak
solutions to Plateau’s problem and related questions can be found by very
abstract functional analytical arguments such as the direct method of the
calculus of variations or, more relevant for this thesis, mountain-pass-type
arguments. The main difficulty therefore lies in the regularity theory that
investigates to what extent these weak objects are in fact classical surfaces
or embedded manifolds. For the generalized Plateau problem this strat-
egy has been very successful. In the 1960s, within the framework of the
rectifiable currents of Federer and Fleming, the codimension 1 case could
be settled quite completely in the works of De Giorgi, Fleming, Almgren,
Simons, Federer and Simon [4], [25], [32], [35], [70], [71].

Up to dimension 7 the minimizers found by geometric measure theory
methods are in fact embedded. In dimension 8 the first singular solution
occurs, for instance the famous Simons’ cone that was shown to be the
absolute minimizer in a celebrated paper by Bombieri, De Giorgi and
Giusti [15]. However, this regularity comes at the cost of a loss of control
over the topology. In the special situation of a two-dimensional surface
with a boundary curve lying on the boundary of a convex set, Almgren
and Simon showed the existence of an embedded minimal disk [7], see
also a result of Meeks and Yau [47]. The case of higher codimension is
considerably harder and could be solved by Almgren in his Big Regularity
Paper [5].
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1 Introduction

1.2 Unstable minimal surfaces

Another fundamental question that arose after the solution of Douglas
and Radó and that lies in the core of this thesis is the question of the ex-
istence of unstable minimal surfaces. Plateau’s problem asks to find the
absolute minimizer among all suitable surfaces sharing a common given
boundary. By definition, any critical point of the area functional, not only
minimizers, is a minimal surface. Clearly, in Plateau’s experiments un-
stable surfaces could barely be studied since the soap films sought stable
configurations and did not persist in the unstable shape. A very classi-
cal example of an unstable minimal surface is the catenoid. Given two
coaxial unit circles as boundary curves, there are different minimal sur-
faces spanned by them. First of all, there are of course the two plane
disks which give a surface with two connected components. In addition,
there are – depending on the distance of the two circles – zero, one or two
catenoids, one of which is unstable in the latter case.

The general theory to study critical points of higher index, that is,
unstable critical points, is Morse theory [49]. In the late 1930s Morse
studied the applicability of his general theory to minimal surfaces [51], see
also [68] for a similar result of Shiffman. The so-called Morse inequalities
that relate the numbers of critical points of different indices provide a
crucial tool. A particularly simple instance of the type of conclusions that
can be drawn can also be achieved by mountain-pass-type arguments.
We will give a precise and detailed description of this argument for the
case of our primary interest later. Here, we only sketch the main ideas
of the strategy. The statement of the mountain pass lemma, or min-
max argument, is roughly the following: given two strict local minimizers
(in the same connected component) of a functional F , there is a third
critical point that is not a local minimizer, but unstable. To see this, one
considers paths connecting the two local minimizers. Along each of these
paths F takes a maximum point. Among all these paths one chooses a
sequence such that the maxima of F converge to infγ maxt∈[0,1] F (γ(t)),
a minimizing sequence. Exhibiting a converging subsequence one finds as
limit the desired critical point. Again there is a compactness argument
involved. The condition that is usually needed is the so-called condition
C, also known as Palais-Smale condition, that requires that all critical
sequences, i.e., sequences satisfying ‖DF (xn)‖ → 0, contain a converging
subsequence. The length functional for curves satisfies the condition (on a
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1.2 Unstable minimal surfaces

suitable space of maps), whereas the area functional for higher dimensional
surfaces or manifolds does not. This can be viewed as an indication that
Morse theory for curves or geodesics is much more successful than for
minimal surfaces.

The early results about unstable minimal surfaces by Morse-Tompkins
and Shiffman still considered minimal surfaces bounded by curves. There
is, however, another setting in which one might try to apply these tech-
niques that is particularly interesting from a geometric point of view.

Problem 2. Given a closed Riemannian manifold. Are there closed min-
imal submanifolds?

As for the Plateau problem, one can distinguish various cases regarding
dimension, codimension or topology. A very classical result in global dif-
ferential geometry is the existence of closed geodesics in arbitrary closed
Riemannian manifolds of dimension 2 by Lyusternik and Fet [43]. A fa-
mous result by Lyusternik and Shnirelman asserts that there are always
at least three such closed geodesics on any manifold homeomorphic to the
sphere [44]. The ellipsoid shows that this result is optimal. The min-max
method has first been applied to produce closed geodesics by Birkhoff in
1917 [14]. He proved the existence of closed geodesics in manifolds that
are homeomorphic to the sphere. In this setting the paths of the moun-
tain pass argument correspond to 1-parameter families {γt} of maps from
S1 into the manifold, where γ0 and γ1 are assumed to be constant maps
(corresponding to the local minimizers). There are certain topological
conditions and extra arguments involved to assure that the min-max crit-
ical point is not trivial (the minimizers are not strict), but the strategy
that we have sketched above works very well since the condition C holds
on a suitable choice of the space of maps.

Since the condition C does not hold for the area functional, a direct ap-
plication of this method is not possible to produce closed minimal subman-
ifolds. Nevertheless, there have been two successful attempts to implement
the strategy in the early 1980s. Similarly to the discussion of Plateau’s
problem one attempt is studying conformal harmonic maps, whereas the
other one uses geometric measure theory. In dimension 2 there has been
a very influential work by Sacks and Uhlenbeck [61]. As in Courant’s
solution of Plateau’s problem, minimal spheres can be characterized as
conformal harmonic maps from a standard sphere into a manifold. The
conformal invariance of the Dirichlet energy and the non-compactness of
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1 Introduction

the conformal group lead to the failure of condition C. There is, however,
a way to partially overcome this difficulty. The exponent 2 in the Dirichlet
energy is critical in the sense that for any exponent α > 2 the functional
Eα(u) =

∫
|∇u|α will satisfy the condition C on a suitable Sobolev space.

Therefore the strategy of Sacks and Uhlenbeck was to apply the moun-
tain pass argument to the functionals Eα to find critical maps uα and
then study the behaviour of the sequences {uα} as α → 2. Either a sub-
sequence converges to a harmonic sphere or there is a concentration of
energy. In the latter case, a blowup provides the harmonic sphere. This
phenomenon, sometimes referred to as bubbling, occurs in many other
geometric variational problems with conformal invariance, such as the
Yamabe problem or the study of Yang-Mills connections (see for instance
[74], [67]).

Similarly to the Douglas solution of the Plateau problem, there are cer-
tain drawbacks of the solution of Sacks and Uhlenbeck. Again, the theory
is two-dimensional and does not apply to higher dimensions. Moreover,
the resulting minimal sphere is merely immersed and cannot be shown to
be embedded in general. In a later work Sacks and Uhlenbeck extended
their results to surfaces of higher genus [62]. But again, the genus has to
be specified in advance, which on the bright side also gives a control of
the genus.

1.3 Geometric measure theory and
min-max arguments

To meet these problems, starting with works of Almgren and then most
notably one of his students, Pitts, there was a second attempt to prove the
existence of closed minimal submanifolds that used tools from geometric
measure theory [56]. In the case of the generalized Plateau problem the
theory of currents (or in the codimension 1 case the subclass of Caccioppoli
sets) turned out to provide the correct setting as there is a natural notion
of boundary and the space has the functional analytic properties needed to
apply the direct method of the calculus of variations. There is, however,
a feature of the theory that makes currents unsuitable for a min-max
argument, namely the fact that cancellation of mass can happen. Roughly
speaking this is due to the fact that currents are oriented. In the min-
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1.3 Geometric measure theory and min-max arguments

max argument this could lead to trivial solutions if in the limit two copies
of a surface with opposite orientations collapse. The theory of varifolds,
developed by Almgren and Allard (first ideas in the direction date back to
Young), can be seen as an unoriented version that avoids these problems.

In his monograph, Pitts implemented a version of the min-max argu-
ment to prove the existence of closed embedded minimal hypersurfaces.
In a first step, he showed the existence of stationary varifolds (weak min-
imal surfaces) in arbitrary Riemannian manifolds. This result goes back
to Almgren who showed it in arbitrary codimension [3]. The hard part of
the proof is once again the regularity of these stationary varifolds. Unlike
for area-minimizing currents, there is no general strong regularity result
for stationary varifolds as simple counterexamples show. The best general
result is the regularity in an open dense subset for rectifiable stationary
varifolds due to Allard [1]. In general, examples show that the singular set
might have codimension 1. In fact, even the rectifiability is not clear a pri-
ori. But in the case of the min-max argument there is more information
about the stationary varifold since it has certain variational properties.
Pitts used this information to find a clever local approximation by stable
minimal hypersurfaces. Together with the curvature estimates for stable
minimal hypersurfaces (and the subsequent compactness results) this was
enough to establish the required regularity. A variant of this proof will be
given in this thesis. Therefore we will describe the strategy in more detail
later. Pitts’ proof applies for hypersurfaces in manifolds of dimension less
than or equal to 6, as he used a version of the curvature estimates due to
Schoen, Simon and Yau [66] that holds in those dimensions. Later Schoen
and Simon gave the final result by extending the curvature estimates to
arbitrary dimensions (outside of a possible singular set, see [65]).

With these results the story in principle comes to an end. The mono-
graph of Pitts, however, is very difficult and quite long. It is the main
goal of this thesis to provide a proof that is considerably shorter and more
accessible.

In the case of surfaces in 3-manifolds there has been an alternative
proof by Simon and Smith, also reported in a survey by Colding and
De Lellis [18], [72]. In the work of Simon and Smith the second goal
was the proof of a genus bound that was recently completed by De Lellis
and Pellandini [27]. The genus bounds have been claimed by Pitts and
Rubinstein in [57] (these bounds are, however, stronger than the ones
proved by De Lellis and Pellandini). This topological information was used
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1 Introduction

to establish an analogous result to the Lyusternik-Shnirelman theorem
about minimal surfaces: Jost proved that every metric on S3 admits at
least four embedded minimal 2-spheres. Examples of White show that
this result is optimal [42], [76].

Since the existence parts in all these works essentially use a famous
result due to Meeks, Simon and Yau [45] that is not available in dimensions
(of the ambient manifold) higher than 3, the proofs cannot be transferred
to higher dimensions. In this thesis we nevertheless follow in many aspects
the arguments of the proofs in [18] to give a simplified version of Pitts’
proof in the general case.

Seeing this result in the spirit of Morse theory, there is the natural
question about the index of the embedded minimal surface found by the
min-max argument. In the abstract setting of the mountain pass lemma
the critical point has index 1 and the proof is quite simple, but relies
heavily on the condition C [10]. Thus a straightforward conclusion cannot
be drawn for the case at hand. For the approach of Sacks and Uhlenbeck
there has been an important work by Micallef and Moore who proved index
bounds [48]. As an important application they proved an improved version
of the classical sphere theorem introducing a new curvature condition that
was used by Brendle and Schoen in their recent proof of the differentiable
sphere theorem [16]. Pitts and Rubinstein claimed that, for a generic
metric of the ambient manifold, the surface obtained by Pitts’ version of
the min-max argument has index 1 (there is a more precise formulation
of the claim in [57], see Claim 1 in Chapter 9). No proof of this claim
has been published so far. The matter seems not so simple since the
approximation by the critical sequence is merely in the varifold sense that
is too weak to allow any direct conclusions about the index of the limit.
It is a second goal of this thesis to make a further analysis of the (two-
dimensional) embedded minimal hypersurface and its approximation with
regard to index bounds.

1.4 Overview of the thesis

The main result of this thesis is a simplified proof of the following

Theorem 1. Let M be an (n+1)-dimensional smooth closed Riemannian
manifold. Then there is a nontrivial embedded minimal hypersurface Σ ⊂
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1.4 Overview of the thesis

M without boundary with a singular set Sing Σ of Hausdorff dimension at
most n− 7.

More precisely, Σ is a closed set of finite Hn-measure and Sing Σ ⊂
Σ is the smallest closed set S such that M \ S is a smooth embedded
hypersurface (Σ\Sing Σ is in fact analytic if M is analytic). In this thesis
smooth will always mean C∞. In fact, the result remains true for any C4

Riemannian manifold M , Σ then will be of class C2 (see [65]). Moreover∫
Σ\Sing Σ

ω = 0 for any exact n-form on M . The case 2 ≤ n ≤ 5 was
proved by Pitts in his groundbreaking monograph [56], an outstanding
contribution which triggered all the subsequent research in the topic. The
general case was proved by Schoen and Simon in [65], building heavily
upon the work of Pitts.

The monograph [56] can be ideally split into two parts. The first half
of the book implements a complicated existence theory for suitable “weak
generalizations” of global minimal submanifolds, which is a version of the
classical min-max argument introduced by Birkhoff for n = 1 (see [14]).
The second part contains the regularity theory needed to prove Theorem
1. The curvature estimates of [66] for stable minimal surfaces are a key
ingredient of this part: the core contribution of [65] is the extension of
these fundamental estimates to any dimension, which enabled the authors
to complete Pitts’ program for n > 5.

[65] gives also a quite readable account of parts of Pitts’ regularity
theory. To our knowledge, there is instead no contribution to clarify other
portions of the monograph, at least in general dimension. As discussed
above, for n = 2 there has been a powerful variant of Pitts’ approach,
reported in [18].

This thesis gives a much simpler proof of Theorem 1. Our contribution
draws heavily on the existing literature and follows Pitts in many aspects.
However we introduce some new ideas which, in spite of their simplicity,
allow us to shorten the proof dramatically.

As mentioned before, the second goal of the thesis is a refined study
of the case n = 2 with regard to index bounds. In fact, we have no final
result that would settle the issue. We prove the following theorem (this
is Theorem 9.12, see Chapters 2 and 9 for the relevant definitions).

Theorem. Consider (S3, g). Let Λ be a family of regular sweepouts of
type S2. Then one of the following two cases holds:
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1 Introduction

(i) There is an embedded minimal 2-sphere with Area ≤ m0(Λ)
2 .

(ii) There is an embedded minimal 2-sphere with Area ≤ m0(Λ) and
Index + Nullity ≥ 1.

The ambiguity in the statement comes from the fact that the surface
of Theorem 1 might have a multiplicity higher than one (coming from its
construction). Hence the approximating critical sequence might consist
of multiple coverings of the surface. Since the surface of Theorem 1 is
obtained as the limit of a sequence that is defined in variational terms,
we will derive most of its properties (regularity, index bound) as a conse-
quence of properties of the approximating critical sequence.

The convergence of the critical sequence is only in the varifold sense
(see [18], [27]). This convergence is too weak to prove an index bound
with multiplicity or the genus bound with multiplicity (claimed by Pitts
and Rubinstein, indeed the difference between the bounds of [27] and
the bounds of [57] occurs only for multiplicity larger than 1). Therefore
we study some improvements of the convergence of the critical sequence.
For instance, we prove that suitable modifications allow us to deform
the sequence into a new one that converges in the Hausdorff sense, but
still carries the relevant variational information. In order to obtain a
sequence that converges even smoothly, it seems that curvature estimates
for stable surfaces up to the boundary would be needed (the regularity
of area minimizing currents up to the boundary has been proved in [40]).
To our knowledge no such estimates have been proved so far. General
estimates at the boundary seem to be quite a delicate issue. In this thesis
we study a simple situation, in which we can prove boundary estimates.

The thesis is organized as follows. Chapter 2 introduces the setting
of our proof and necessary preliminaries. In Chapter 3 we recall some
important curvature estimates for stable minimal surfaces. Usually, these
estimates are interior estimates. We prove a curvature estimate up to the
boundary for a particularly simple, but nevertheless interesting situation.
Chapter 4 gives an overview of our proof of Theorem 1. We prefer to give
a complete proof even though some parts are already clarified in the liter-
ature. The only major step we do not include is a proof of the curvature
estimates. Chapters 5-8 contain the proof where our main contributions
are contained in Chapters 6 and 7. Finally, in Chapter 9 we consider
the case of surfaces in 3-manifolds. We discuss some improvements of
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1.4 Overview of the thesis

the convergence of the critical sequence and a consequence concerning the
index of the minimal min-max surface in a simple situation. Chapters 4,
6 (except Section 6.3), 7, 8 and parts of Chapter 2 are contained in our
publication [28] (to appear in Journal of Differential Geometry). Chapter
5 is taken from [18] and we include it for the sake of completeness. Finally,
Chapters 3 and 9 contain further unpublished results.

The research leading to this thesis was supported by the DFG Sonder-
forschungsbereich / Transregio 71.
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2 Setting and Preliminaries

In this chapter we introduce the setting of our interpretation of Pitts’
approach. Since the overall strategy of our proof will be quite similar, the
correct setting is an important ingredient. In the first section we discuss
both our setting and the corresponding setting of [18] for the case n = 2.
We will need the latter in Chapter 9. At this stage the differences are
technical and not well motivated. We will discuss their significance later.
In the second section we collect the necessary preliminaries from geometric
measure theory.

2.1 Min-max surfaces

In what follows M will denote an (n + 1)-dimensional compact smooth
Riemannian manifold without boundary. First of all we need to generalize
slightly the standard notion of a 1-parameter family of hypersurfaces,
allowing for some singularities.

Definition 2.1. A family {Γt}t∈[0,1]k of closed subsets of M with finite
Hn-measure is called a generalized smooth family if

(s1) For each t there is a finite set Pt ⊂ M such that Γt is a smooth
hypersurface in M \ Pt;

(s2) Hn(Γt) depends smoothly on t and t 7→ Γt is continuous in the
Hausdorff sense;

(s3) on any U ⊂⊂M \ Pt0 , Γt
t→t0−→ Γt0 smoothly in U .

{Γt}t∈[0,1] is a sweepout of M if there exists a family {Ωt}t∈[0,1] of open
sets such that

(sw1) (Γt \ ∂Ωt) ⊂ Pt for any t;

(sw2) Ω0 = ∅ and Ω1 = M ;

12



2.1 Min-max surfaces

(sw3) Vol(Ωt \ Ωs) + Vol(Ωs \ Ωt) → 0 as t→ s.

Remark 2.2. The convergence in (s3) means, as usual, that, if U ⊂⊂
M \ Pt0 , then there is δ > 0 such that, for |t − t0| < δ, Γt ∩ U is the
graph of a function gt over Γt0 ∩ U . Moreover, given k ∈ N and ε > 0,
‖gt‖Ck < ε provided δ is sufficiently small.

We introduce the singularities Pt for two important reasons. They allow
for the change of topology which, for n > 2, is a fundamental tool of the
regularity theory. Moreover, it is easy to exhibt sweepouts as in Definition
2.1 as it is witnessed by the following proposition.

Proposition 2.3. Let f : M → [0, 1] be a smooth Morse function. Then
{{f = t}}t∈[0,1] is a sweepout.

The obvious proof is left to the reader. For any generalized family {Γt}
we set

F({Γt}) := max
t∈[0,1]

Hn(Γt). (2.1)

A key property of sweepouts is an obvious consequence of the isoperimetric
inequality.

Proposition 2.4. There exists C(M) > 0 such that F({Γt}) ≥ C(M)
for every sweepout.

Proof. Let {Ωt} be as in Definition 2.1. Then, there is t0 ∈ [0, 1] such
that Vol(Ωt0) = Vol(M)/2. We then conclude

Hn(Γt0) ≥ c−1
0 (2−1Vol (M))

n
n+1 ,

where c0 is the isoperimetric constant of M .

For any family Λ of sweepouts we define

m0(Λ) := inf
Λ

F = inf
{Γt}∈Λ

[
max
t∈[0,1]

Hn(Γt)
]
. (2.2)

By Proposition 2.4, m0(Λ) ≥ C(M) > 0. A sequence {{Γt}k} ⊂ Λ is
minimizing if

lim
k→∞

F({Γt}k) = m0(Λ) .

13



2 Setting and Preliminaries

A sequence of surfaces {Γktk} is a min-max sequence if {{Γt}k} is min-
imizing and Hn(Γktk) → m0(Λ). The min-max construction is applied
to families of sweepouts which are closed under a very natural notion of
homotopy.

Definition 2.5. Two sweepouts {Γ0
s} and {Γ1

s} are homotopic if there is
a generalized family {Γt}t∈[0,1]2 such that Γ(0,s) = Γ0

s and Γ(1,s) = Γ1
s.

A family Λ of sweepouts is called homotopically closed if it contains the
homotopy class of each of its elements.

Ultimately, in this thesis we give a proof of the following theorem, which,
together with Proposition 2.3, implies Theorem 1 for n ≥ 2 (recall that
Morse functions exist on every smooth compact Riemannian manifold
without boundary; see Corollary 6.7 of [49]).

Theorem 2. Let n ≥ 2. For any homotopically closed family Λ of sweep-
outs there is a min-max sequence {Γktk} converging (in the sense of var-
ifolds) to an embedded minimal hypersurface Σ as in Theorem 1. Multi-
plicity is allowed.

The smoothness assumption on the metric g can be relaxed easily to
C4. The ingredients of the proof where this regularity is needed are:
the regularity theory for Plateau’s problem, the unique continuation for
classical minimal surfaces and the Schoen-Simon compactness theorem.
C4 suffices for all of them.

2.1.1 The case n = 2

For n = 2 there is a variant of the above that is even more powerful.
Following [27] we have

Definition 2.6. A family {Σt}t∈[0,1] of surfaces of M is said to be con-
tinuous if

(c1) H2(Σt) is a continuous function of t;

(c2) Σt → Σt0 in the Hausdorff topology whenever t→ t0.

A family {Σt}t∈[0,1] of subsets of M is said to be a generalized family
of surfaces if there are a finite subset T of [0, 1] and a finite set of points
P in M such that

14



2.1 Min-max surfaces

(g1) (c1) and (c2) hold;

(g2) Σt is a surface for every t 6∈ T ;

(g3) for t ∈ T , Σt is a surface in M \ P .

In [18] this definition was used to prove the analogon of Theorem 2 (see
also Theorem 9.3). For the genus bound that we will use in Chapter 9, in
[27] there is still a narrower concept needed.

Definition 2.7. A generalized family {Σt} as in Definition 2.6 is said to
be smooth if:

(s1) Σt varies smoothly in t on [0, 1] \ T ;

(s2) For t ∈ T , Στ → Σt smoothly in M \ P .

Here P and T are the sets of requirements (g2) and (g3) of Definition 2.6.
We assume further that Σt is orientable for any t 6∈ T .

With a small abuse of notation, we shall use the word “surface” even
for the sets Σt with t ∈ T .

Remark 2.8. The term generalized smooth family has been used twice (in
Definition 2.1 and in Definition 2.7) to denote different concepts. Since
it will always be clear in the context which definition is used, we keep the
ambiguous name.

Given a generalized family {Σt} we can generate new generalized fam-
ilies via the following procedure. Take an arbitrary map ψ ∈ C∞([0, 1] ×
M,M) such that ψ(t, ·) ∈ Diff0 (the identity component of the diffeomor-
phism group) for each t and define {Σ′

t} by Σ′
t = ψ(t,Σt). We will say

that a set Λ of generalized families is saturated if it is closed under this
operation. Note that, if a set Λ consists of smooth generalized families,
then the elements of its saturation are still smooth generalized families.

Remark 2.9. For technical reasons we require an additional property for
any saturated set Λ considered in [18]: the existence of some N = N(Λ) <
∞ such that for any {Σt} ∈ Λ, the set P in Definition 2.6 consists of at
most N points.

The argument of Proposition 2.4 applies also in this situation. More-
over, we can argue analogously as above to find Λ with m0(Λ) > 0.
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2 Setting and Preliminaries

Remark 2.10. At this point there are two crucial differences between the
case n = 2 and the general situation to be pointed out. First of all, sweep-
outs in the sense of Definition 2.1 allow for finitely many singularities at
each time t, whereas smooth generalized families in the sense of Defini-
tion 2.7 only allow finitely many points on the manifold where singularities
might occur at a finite number of times t. So far these singularities were
only used to find sweepouts. We will see later that in the higher dimen-
sional situation these singularities are crucial for the regularity theory (see
Chapter 7).

The second difference is in the definition of the set Λ. In both cases it
is defined as the closure under some class of deformations. In the higher
dimensional case deformations with the same regularity assumptions as
the original family itself are allowed. In the two-dimensional case only
deformations by isotopies are admissible. This is crucial for the two-
dimensional regularity theory using [45]. In Chapter 9, we will consider
a situation where in dimension 2 not only the deformations, but also the
original family is induced by an isotopy. The existence of sets Λ with
m0(Λ) > 0 of such families is not covered by the discussion in this chapter.
But in the special situations that we will study the same argument can be
applied (the ambient manifold will be a 3-sphere and the sweepouts by 2-
spheres or tori). In [57] Pitts and Rubinstein claimed that such Λ should
always exist.

Remark 2.11. In [56] Pitts studies families of much less regular objects,
namely currents. To prove that a critical sequence converges in area (or
mass) to a strictly positive value, he uses an isomorphism of Almgren [6]
between homotopy groups of integral cycle groups (currents) and homology
groups of the manifold. In view of the simplicity of Proposition 2.4, here
a first advantage of our approach is evident.

2.2 Preliminaries

2.2.1 Notation

Throughout this thesis our notation will be consistent with the one intro-
duced in Section 2 of [18]. We summarize it in the following table.
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Inj (M) the injectivity radius of M ;
Bρ(x), Bρ(x), ∂Bρ(x) the open and closed ball,

the distance sphere in M ;
diam(G) the diameter of G ⊂M ;
d(G1, G2) infx∈G1,y∈G2 d(x, y) ;
Bρ the ball of radius ρ and

centered in 0 in Rn+1;
expx the exponential map in M at x ∈M ;
An(x, τ, t) the open annulus Bt(x) \Bτ (x);
AN r(x) the set {An(x, τ, t) with 0 < τ < t < r};
X (M), Xc(U) smooth vector fields, smooth vector

fields compactly supported in U .

Remark 2.12. In [18] the authors erroneously define d as the Hausdorff
distance. However, for the purposes of both this thesis and that paper,
the correct definition of d is the one given here, since in both cases the
following fact plays a fundamental role: d(A,B) > 0 =⇒ A ∩ B = ∅ (see
also Lemma 6.3). Note that, unlike the Hausdorff distance, d is not a
distance on the space of compact sets.

2.2.2 Caccioppoli sets and Plateau’s problem

We give here a brief account of the theory of Caccioppoli sets. A standard
reference is [38]. Let E ⊂M be a measurable set and consider its indicator
function 1E (taking the value 1 on E and 0 on M \E). The perimeter of
E is defined as

Per (E) := sup
{∫

M

1E divω : ω ∈ X (M), ‖ω‖C0 ≤ 1
}
.

A Caccioppoli set is a set E for which Per (E) < ∞. In this case the
distributional derivative D1E is a Radon measure and PerE corresponds
to its total variation. As usual, the perimeter of E in an open set U ,
denoted by Per (E,U), is the total variation of D1E in the set U .

We follow De Giorgi and, given a Caccioppoli set Ω ⊂ M and an open
set U ⊂M , we consider the class

P(U,Ω) := {Ω′ ⊂M : Ω′ \ U = Ω \ U} . (2.3)

The theorem below states the fundamental existence and interior regular-
ity theory for De Giorgi’s solution of Plateau’s problem, which summarizes
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results of De Giorgi, Fleming, Almgren, Simons and Federer (see [38] for
the case M = Rn+1 and Section 37 of [69] for the general case).

Theorem 2.13. Let U,Ω ⊂M be, respectively, an open and a Caccioppoli
set. Then there exists a Caccioppoli set Ξ ∈ P(U,Ω) minimizing the
perimeter. Moreover, any such minimizer is, in U , an open set whose
boundary is smooth outside of a singular set of Hausdorff dimension at
most n− 7.

2.2.3 Theory of varifolds

We recall here some basic facts from the theory of varifolds; see for instance
Chapters 4 and 8 of [69] for further information. Varifolds are a convenient
way of generalizing surfaces to a category that has good compactness
properties. An advantage of varifolds, over other generalizations (like
currents), is that they do not allow for cancellation of mass. This last
property is fundamental for the min-max construction. If U is an open
subset ofM , any Radon measure on the GrassmannianG(U) of unoriented
n-planes on U is said to be an n-varifold in U . The space of n-varifolds
is denoted by V(U) and we endow it with the topology of the weak∗

convergence in the sense of measures. Therefore, a sequence {V k} ⊂ V(U)
converges to V if

lim
k→∞

∫
ϕ(x, π) dV k(x, π) =

∫
ϕ(x, π) dV (x, π)

for every ϕ ∈ Cc(G(U)). Here π denotes an n-plane of TxM . If U ′ ⊂ U
and V ∈ V(U), then V U ′ is the restriction of the measure V to G(U ′).
Moreover, ‖V ‖ is the nonnegative measure on U defined by∫

U

ϕ(x) d‖V ‖(x) =
∫
G(U)

ϕ(x) dV (x, π) ∀ϕ ∈ Cc(U) .

The support of ‖V ‖, denoted by supp (‖V ‖), is the smallest closed set
outside which ‖V ‖ vanishes identically. The number ‖V ‖(U) will be called
the mass of V in U .

Recall also that an n-dimensional rectifiable set is the countable union
of closed subsets of C1 surfaces (modulo sets of Hn-measure 0). If R ⊂ U
is an n-dimensional rectifiable set and h : R → R+ is a Borel function,
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then the varifold V induced by R is defined by∫
G(U)

ϕ(x, π) dV (x, π) =
∫
R

h(x)ϕ(x, TxR) dHn(x) (2.4)

for all ϕ ∈ Cc(G(U)). Here TxR denotes the tangent plane to R in x. If
h is integer-valued, then we say that V is an integer rectifiable varifold.
If Σ =

∪
niΣi, then by slight abuse of notation we use Σ for the varifold

induced by Σ via (2.4).
If ψ : U → U ′ is a diffeomorphism and V ∈ V(U), ψ]V ∈ V(U ′) is the

varifold defined by∫
ϕ(y, σ) d(ψ]V )(y, σ) =

∫
Jψ(x, π)ϕ(ψ(x), dψx(π)) dV (x, π) ,

where Jψ(x, π) denotes the Jacobian determinant (i.e. the area element)
of the differential dψx restricted to the plane π; cf. equation (39.1) of [69].
Obviously, if V is induced by a C1 surface Σ, V ′ is induced by ψ(Σ).

Given χ ∈ Xc(U), let ψ be the isotopy generated by χ, i.e. ∂ψ
∂t = χ(ψ).

The first and second variation of V with respect to χ are defined as

[δV ](χ) =
d

dt
(‖ψ(t, ·)]V ‖)(U)

∣∣∣∣
t=0

and [δ2V ](χ) =
d2

dt2
(‖ψ(t, ·)]V ‖)(U)

∣∣∣∣
t=0

,

cf. Sections 16 and 39 of [69]. V is said to be stationary (resp. stable)
in U if [δV ](χ) = 0 (resp. [δ2V ](χ) ≥ 0) for every χ ∈ Xc(U). If V is
induced by a surface Σ with ∂Σ ⊂ ∂U , V is stationary (resp. stable) if
and only if Σ is minimal (resp. stable, see Section 3.1).

Stationary varifolds in a Riemannian manifold satisfy the monotonicity
formula, i.e. there exists a constant Λ (depending on the ambient manifold
M) such that the function

f(ρ) := eΛρ
‖V ‖(Bρ(x))

ωnρn
(2.5)

is nondecreasing for every x (see Theorem 17.6 of [69]; Λ = 0 if the metric
of M is flat). This property allows us to define the density of a stationary
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varifold V at x, by

θ(x, V ) = lim
r→0

‖V ‖(Br(x))
ωnrn

.
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3 Curvature estimates

In this chapter we discuss stable minimal surfaces and curvature esti-
mates. In the first section we introduce the stability operator and some
consequences for stable surfaces. In the second section we collect differ-
ent versions of curvature estimates that we will need in later chapters.
In the third section we study curvature estimates at the boundary. To
our knowledge this situation has not been studied in the literature so far.
We follow an idea of Brian White to prove curvature estimates up to the
boundary in a special situation.

3.1 Stable surfaces

In this section we assume that Σ ⊂ M is an orientable minimal hyper-
surface of dimension n. The second variation along a normal vectorfield
X = Ft (for a variation F ; w.l.o.g. F>

t ≡ 0) is given by

d2

dt2
Area(F (Σ, t))

∣∣∣∣
t=0

= −
∫

Σ

g(Ft, LFt) .

Here L is the stability operator that can be written as an operator on
functions in the case of orientable hypersurfaces, namely, for Ft = ηN ,
where N is the unit normal vectorfield defined by the orientation,

Lη = ∆Ση + |A|2η + RicM (N,N)η .

In particular, for M = Rn+1 we have L = ∆ + |A|2.

Definition 3.1. A minimal hypersurface Σ ⊂ M is called stable if for
all variations F with fixed boundary

d2

dt2
Area(F (Σ, t))

∣∣∣∣
t=0

= −
∫

Σ

g(Ft, LFt) ≥ 0 .
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Moreover, the Morse index of a compact minimal surface is the number
of negative eigenvalues of the stability operator. In particular, Σ is stable
if and only if the Morse index is zero.

For this definition the assumptions of codimension one and orientability
are not needed. However, under these assumptions we have (see Section
1.8 in [19])

Lemma 3.2. Suppose that Σ ⊂M is an orientable stable minimal hyper-
surface. Then for all Lipschitz functions η with compact support∫

Σ

(inf
M

RicM + |A|2)η2 ≤
∫

Σ

|∇Ση|2 . (3.1)

This inequality indicates that for stable minimal hypersurfaces a certain
a priori control of the (total) curvature is possible.

Examples of stable minimal surfaces are given by minimal graphs or
the solutions of Plateau’s problem.

3.2 Curvature estimates

In this section we collect various versions of curvature estimates. In the
regularity theory in the proof of Theorem 1 the curvature estimate for
stable minimal surfaces of Schoen-Simon will be crucial. On the other
hand, for surfaces of dimension 2 there are also versions where stability
is not required. These results will be needed in Chapter 9. A standard
consequence of curvature estimates are compactness results for the corre-
sponding spaces of (stable) surfaces.

3.2.1 Schoen-Simon curvature estimates

Consider an orientable U ⊂ M . We look here at closed sets Γ ⊂ M of
codimension 1 satisfying the following regularity assumption:

(SS) Γ ∩ U is a smooth embedded hypersurface outside a closed set S
with Hn−2(S) = 0.

Γ induces an integer rectifiable varifold V . Thus Γ is said to be minimal
(resp. stable) in U with respect to the metric g of U if V is stationary
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(resp. stable). The following compactness theorem, a consequence of the
Schoen-Simon curvature estimates (see Theorem 2 of Section 6 in [65]), is
a fundamental tool in this thesis.

Theorem 3.3. Let U be an orientable open subset of a manifold and
{gk} and {Γk}, respectively, sequences of smooth metrics on U and of
hypersurfaces {Γk} satisfying (SS). Assume that the metrics gk converge
smoothly to a metric g, that each Γk is stable and minimal relative to the
metric gk and that supHn(Γk) < ∞. Then there are a subsequence of
{Γk} (not relabeled), a stable stationary varifold V in U (relative to the
metric g) and a closed set S of Hausdorff dimension at most n − 7 such
that

(a) V is a smooth embedded hypersurface in U \ S;

(b) Γk → V in the sense of varifolds in U ;

(c) Γk converges smoothly to V on every U ′ ⊂⊂ U \ S.

Remark 3.4. The precise meaning of (c) is as follows: fix an open U ′′ ⊂
U ′ where the varifold V is an integer multiple N of a smooth oriented
surface Σ. Choose a normal unit vector field on Σ (in the metric g) and
corresponding normal coordinates in a tubular neighborhood. Then, for k
sufficiently large, Γk∩U ′′ consists of N disjoint smooth surfaces Γki which
are graphs of functions fki ∈ C∞(Σ) in the chosen coordinates. Assuming,
w.l.o.g., fk1 ≤ fk2 ≤ . . . ≤ fkN , each sequence {Γki }k converges to Σ in the
sense of Remark 2.2.

Note the following obvious corollary of Theorem 3.3: if Γ is a stationary
and stable surface satisfying (SS), then the Hausdorff dimension of Sing Γ
is, in fact, at most n − 7. Since we will deal very often with this type of
surfaces, we will use the following notational convention.

Definition 3.5. Unless otherwise specified, a hypersurface Γ ⊂ U is a
closed set of codimension 1 such that Γ\Γ ⊂ ∂U and Sing Γ has Hausdorff
dimension at most n−7. The words “stable” and “minimal” are then used
as explained at the beginning of this subsection. For instance, the surface
Σ of Theorem 1 is a minimal hypersurface.
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3.2.2 Curvature estimates in 3-manifolds

In 3-manifolds there are curvature estimates for minimal surfaces with
small total curvature, small area or small excess, where there is no require-
ment regarding stability (see Chapter 2 of [19]). On the other hand there
is a curvature estimate for stable minimal surfaces without any further as-
sumptions (the Schoen-Simon curvature estimate related to the discussion
of the previous subsection needs some extra conditions, see Theorem 3 of
[65]). Many of these curvature estimates were used extensively by Colding
and Minicozzi in their study of the space of embedded minimal surfaces
in 3-manifolds (see [22] for an overview and the references therein).

Notation 3.6. In the remaining sections of this chapter we use the nota-
tion Br(p) for the intrinsic ball on the surfaces Σ, Γ, . . . . In the rest of the
thesis this notation is used for the geodesic ball in the ambient manifold
M . In this section the ambient manifold is R3 and we can use our usual
notation Br(x) for Euclidean balls.

We will need the following theorem by Schoen (see [63]) in the next
section. There is a corresponding version for arbitrary 3-manifolds with
bounded sectional curvature, but we only need and state the version for
M = R3.

Theorem 3.7 (Schoen). Let Σ ⊂ R3 be a stable, immersed, orientable
minimal surface with Br0(x) ⊂ Σ \ ∂Σ. Then there is a constant C > 0
such that

sup
y∈Br0−σ(x)

|A|2(y) ≤ C

σ2
. (3.2)

Note that one immediately gets distΣ(x, ∂Σ)|A|2(x) ≤ C.

Remark 3.8. Since intrinsic balls are contained in extrinsic balls, the
same estimate holds for extrinsic balls and distance d, with a slightly dif-
ferent constant.

In Chapter 9 we will need the following compactness theorem that is a
consequence of the curvature estimate for minimal surfaces with small to-
tal curvature, a version of a theorem by Choi-Schoen [17], see also Section
5.5 in [19].
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Theorem 3.9 (Choi-Schoen). Let M be a closed Riemannian 3-manifold
and let {Σj} be a sequence of varifolds. Assume there is J ∈ N such that,
for j ≥ J , Σj satisfies the following

(i) Σj is a smooth embedded minimal surface;

(ii) supj≥J g(Σj) <∞;

(iii) supj≥J H2(Σj) <∞.

Then there is a subsequence of {Σj} (not relabeled) and a varifold Σ such
that

(a) Σ is a smooth embedded minimal surface;

(b) g(Σ) ≤ lim infj→∞ g(Σj);

(c) Σj → Σ in the sense of varifolds.

In fact, the convergence in (c) is much better, namely smooth except in
finitely many points.

3.3 Curvature estimates at the boundary:
a toy problem

We will see in later chapters that the curvature estimates of Schoen-
Simon, Theorem 3.3, will be a crucial ingredient of the regularity the-
ory in the proof of Theorem 2. It will allow us to deform the critical
sequence (min-max sequence) locally to obtain a stronger approximation
and subsequently a better regularity of the limit.

If one wishes to deduce some more information about the min-max sur-
face, such as genus bounds (n = 2) or index bounds, it would be useful to
perform these deformations globally. One strategy could be to paste to-
gether local deformations in such a way that the critical sequence becomes
a multiple cover of the limit. In order to do that a decomposition of stable
surfaces into graphs (see Remark 3.4) up to the boundary could be helpful.
This motivates the study of curvature estimates up to the boundary in
this context. The problem, however, is of independent interest.

25



3 Curvature estimates

In this section we study a toy problem and prove curvature estimates up
to the boundary in this situation. We start by looking at a very classical
example, the catenoid. The standard catenoid is defined by

C =
{
x ∈ R3 |

√
x2

1 + x2
2 = cosh(x3)

}
.

Let Ct = {x ∈ R3 | tx ∈ C} denote rescalings of C by t > 0. Then, for
t → ∞, Ct ∩ (D1 × R) converges in the sense of varifolds to the disk
D1 × {0} with multiplicity two. On the boundary of the solid cylinder,
S1 ×R, the rescaled catenoids converge smoothly to twice the circle. But
the curvature of the rescalings blows up near the origin, along the neck (see
Figure 3.1). As a consequence, we can note that by Schoen’s curvature
estimate, Theorem 3.7, for t large enough, the rescaled catenoid Ct is not
stable. In fact, more precise statements about the stability of catenoids are
possible (see for instance [13] and the references therein). On the other
hand, Theorem 3.7 is an interior estimate. Thus, in principle, it could
be possible that a sequence of stable surfaces with the same boundary
behaviour as the rescaled catenoids have curvature blowing up towards
the boundary (e.g. a sequence of necks pinching off at the boundary, see
Figure 3.1).

rescaling

Figure 3.1: Above we see the curvature blowing up near the neck when
we rescale the catenoid. Below a neck is pinching off at the
boundary.

In this particular example, where the boundary curves on the cylinder
are two coaxial circles that converge to twice S1 × {0}, this situation can
be excluded. It is known that the only possible minimal surfaces spanned
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by these two circles are either catenoids or pairs of disks (see Corollary 3
in [64]). For more general boundary curves lying on the cylinder, however,
no such classification is known. Therefore the blowing up of curvature at
the boundary cannot be excluded in a similar way.

The main result of this section is the following

Theorem 3.10. Let D1 := {x ∈ R2 : |x| ≤ 1}. Assume that fk1 ,fk2 :
∂D1 → R are two sequences of functions such that fk1 (x) > fk2 (x) for all
x and ‖fki ‖C2,α → 0 as k → ∞ for some α > 0. Let σki be the graphs of
fki in ∂D1 × R ⊂ R3 and let Σk be orientable embedded stable minimal
surfaces in D1 × R such that

• ∂Σk = σk1 ∪ σk2 ;

• Σk → 2[[D1 × {0}]] in the sense of varifolds.

Then, for k large enough, Σk is the union of two disks. More precisely,
there are two sequences of C2,β (for β < α) functions gki : D1 → R with
gki |∂D1 = fki such that Σk is the union of the graphs of gk1 and gk2 , and
‖gki ‖C2,β → 0.

Clearly, a similar result for more than two boundary curves would be
desirable. Our proof however, does not work for this situation anymore.
Nevertheless we discuss it in Section 3.3.6.

The convergence result of Theorem 3.10 can be reduced to the following
curvature estimate.

Theorem 3.11. Assume that Σk are as above. Then

max
x∈Σk

|A| ≤ C, for all k , (3.3)

where C > 0 is a constant not depending on k.

It is a by now fairly standard consequence of the uniform curvature
estimates as in (3.3) that the sequence Σk is compact in the smooth (C2,β ,
for β < α) category yielding the statement of the first theorem. A proof
of this fact can be found in [19] (see Lemma 2.4 and the second part of the
proof of Proposition 5.17). Note that in that book the results are proved
in the interior. Due to the regularity of the boundary in our case, the
proofs can be adjusted to give the result up to the boundary.
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3.3.1 Proof of Theorem 3.11: Setup

We argue by contradiction and consider a sequence xk ∈ Σk such that

ak := max
x∈Σk

|A|(x) = |A|(xk).

Then, by assumption, up to subsequences ak → ∞. By the interior curva-
ture estimates for stable minimal surfaces, Theorem 3.7 and Remark 3.8,
we have

ak d(xk, ∂Σk) ≤ C (3.4)

for some C > 0 not depending on k. Thus, for some i ∈ {1, 2}, there is a
subsequence, not relabeled, such that

ak d(xk, σki ) ≤ C . (3.5)

After possibly making a reflection, we can assume that i = 1 in (3.5). Let
therefore yk ∈ σk1 such that |yk − xk| = d(xk, σk1 ). After a translation
(along the vertical axis) and a rotation (around the vertical axis) we can
assume that yk = (−1, 0, 0) for all k. Next consider the rescaled surfaces

Γk := ak(Σk − yk) = ak(Σk − (−1, 0, 0)) .

First of all, observe that

max
x∈Γk

|A|(x) = 1 .

With the same kind of arguments as in the reduction of Theorem 3.10 to
Theorem 3.11 we can assume (after the extraction of a subsequence) that
Γk converges locally in C2,β for all β < α to a surface Γ. Note that the
boundary regularity can only be improved in the blowup, so again this
convergence is up to the boundary. The strategy of the proof will be to
show that a blowup like Γ cannot exist. There is one minor case that has
to be excluded in advance, namely when Γ is the empty set. This will be
done in the next subsection.

3.3.2 Exclusion of the empty set

Assume that the two curves of ∂Γk collapse to a single line in the limit
(see Lemma 3.15 for a proof that the boundary of the blowup consists of
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3.3 Curvature estimates at the boundary: a toy problem

parallel lines), but Γk converges to the empty set. We show that in this
case the curvature of the original sequence {Σk} does not blow up. To see
this we rescale the sequence {Σk} by the distance of the curves σki , i.e.
ρk = 1/d(σk1 , σ

k
2 ) and

∆k := ρk(Σk − ȳk) = ρk(Σk − (−1, 0, 0)) .

Here we choose the points ȳk in such a way that (after the rotation and
translation that brings them all to (−1, 0, 0)) in these rescalings the points
x̄k corresponding to the points xk of maximal curvature lie in the half-
plane {x1 > 0, x2 = 0}. Up to subsequence we have ∆k → ∆ in C2,β .

We have the following information

• |A∆k | = d(σk1 , σ
k
2 )|AΣk | → 0 ;

• d(∂∆k
1 , ∂∆k

2) ≥ 1 .

Moreover, ∆k is squeezed between the rescalings of the two area minimiz-
ing disks (graphs) spanned by the σki (note that these curves lie on the
cylinder above a convex set). These rescaled disks are very flat for k large
and almost parallel to the plane {x3 = 0}.

Now, by the assumptions on the sequence Γk, we can fix a point z =
(ζ, 0, 0) and conclude that B ζ

2
(z) ∩ Γk = ∅ for k large enough. In the

rescalings this ball is travelling to ∞. Next, choose a catenoid centered at
the center of the ball and such that the part of it lying between the two
area minimizing disks is contained in the ball. Letting move the catenoid
in x1-direction, we can conclude with the maximum principle that ∂∆
consists of two lines {x1 = 0, x3 = hi} with h1 6= h2 and ∆ is the flat strip
between these two lines. Therefore, in a slab {x2 ∈ (−γ, γ)}, ∆k is (in
the right system of coordinates) a graph of a function uk satisfying the
minimal surface equation (see Figure 3.2). Note that the width 2γ of the
slab does not depend on k.

By Schauder estimates and interpolation inequalities we have

|A∆k | ≤ C‖ηk1‖C2,α ≤ C(‖(ηk1 )′′‖C0 + [(ηk1 )′′]0,α) . (3.6)

Here ηki are the rescalings of the parametrizations fki of σki . Moreover we
have assumed that the point x̄k is closer to ηk1 (therefore this part of the
boundary appears in the estimate). Now we scale back inequality (3.6)
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and obtain
|AΣk |
ρk

≤ C

(
‖(fk1 )′′‖C0

ρk
+

[(fk1 )′′]0,α
ρ1+α
k

)
. (3.7)

Now we multiply (3.7) by ρk and invoke the uniform bound on the C2,α

norms of fk1 to get a uniform bound on |AΣk |, which is what we have
claimed (recall that ρk → ∞). Therefore in the rest of this chapter we
can assume that Γ is not empty.

∂∆

∂∆k
1

∂∆k
2

x̄k

∆k

∆

2γ

Figure 3.2: The surfaces ∆k are graphical over the plane {x1 = 0}. The
boundary ∂∆k consists of two parts which are both graphs
over the lines {x1 = 0, x3 = hi} with small C2,α norms. The
point x̄k corresponds to the point of maximal curvature and
lies always in the slab.

3.3.3 Properties of Γ

Lemma 3.12. (a) Γ is a stable minimal surface;

(b) Γ is contained in the region {x3 ≤ 0} ∩ {x1 ≥ 0}.

Proof. (a) is a direct consequence of the smooth convergence and the
stability and minimality of the surfaces Γk. So, we only need to prove (b).
Note that Σk is contained in the cylinder {x2

1 + x2
2 ≤ 1}. Therefore Σk −

(−1, 0, 0) ⊂ {x1 ≥ 0} and consequently also Γk = ak(Σk − (−1, 0, 0)) ⊂
{x1 ≥ 0}. And so Γ ⊂ {x1 ≥ 0}.
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3.3 Curvature estimates at the boundary: a toy problem

Consider next the curve σk1−(−1, 0, 0). For k → ∞, this curve converges
in C2 to the curve {(x1 − 1)2 + x2

2 = 1}. Thus we can find a sequence of
numbers αk > 0 converging to 0 such that σk1 − (−1, 0, 0) ⊂ {x3 ≤ αkx1}.
Obviously, since σk2 lies below σk1 on the cylinder ∂D1 × R, we conclude
that

∂Γk = ak
(
(σk1 − (−1, 0, 0)) ∪ (σk2 − (−1, 0, 0))

)
⊂ {x3 ≤ αkx1} .

By the maximum principle Γk ⊂ {x3 ≤ αkx1}. Letting k → ∞, we
conclude Γ ⊂ {x3 ≤ 0}.

Lemma 3.13. There is a point p ∈ Γ such that

1 = |A|(p) = sup
x∈Γ

|A|(x) .

Proof. The inequality supx∈Γ |A|(x) ≤ 1 follows from maxx∈Γk
|A|(x) = 1

and the C2,β convergence of the surfaces Γk. Recall the scaling of the
second fundamental form

|AΓk |(ak(xk − (−1, 0, 0))) =
|AΣk |(xk)

ak
= 1 .

On the other hand, set pk = ak(xk − (−1, 0, 0)). Then

|pk| = ak|xk − yk| = ak d(xk, ∂Σk) ≤ C ,

where the last inequality follows from (3.4). So, up to subsequences, we
can assume pk → p for some p ∈ Γ and by the C2,β convergence

|AΓ|(p) = lim
k→∞

|AΓk |(pk) = 1 .

Lemma 3.14. Γ has quadratic area growth, i.e. there is a constant C > 0
such that

Area(Γ ∩ Br(p)) ≤ Cr2, ∀ p ∈ Γ, ∀ r ≥ 0 .

Proof. By the varifold convergence of Σk, for every ε > 0 there is k large
enough such that

Area(Σk) ≤ 4π + ε . (3.8)
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Using (3.8), the regularity of the boundary ∂Σk and the monotonicity
formula for minimal surfaces with boundary we conclude

Area(Σk ∩ Br(p)) ≤ Cr2, ∀ p ∈ Σk, ∀ r ≥ 0 . (3.9)

Here C > 0 is a constant that does not depend on k. Since Γk is obtained
from Σk by rotations, translations and scaling, this area bound continues
to hold and we have

Area(Γk ∩ Br(p)) ≤ Cr2, ∀ p ∈ Γk, ∀ r ≥ 0 . (3.10)

Now fix a point p ∈ Γ. Then there is a sequence pk ∈ Γk such that pk → p.
By the C2,β convergence of Γk, for all r ≥ 0, we conclude

Area(Γ ∩ Br(p)) = lim
k→∞

Area(Γk ∩ Br(pk)) ≤ Cr2 .

Lemma 3.15. ∂Γ is

(a) either {x3 = x1 = 0};

(b) or {x1 = x3 = 0} ∪ {x1 = 0, x3 = h} for some negative h.

In the latter case we have

Γ ⊂ {x3 ≥ h} . (3.11)

Proof. Consider the point zk := (−1, 0, h′k) ∈ σk2 . Note that there is a
unique such point due to the graphicality assumption about the curve σk2 .
Let ζk := ak(zk − yk) =: (0, 0, hk). Clearly hk < 0. We distinguish three
cases, covering (up to subsequences) all possibilities.

(i) hk → −∞;

(ii) hk → h < 0;

(iii) hk → 0.

(i) and (ii) will lead to (a) and (b) of the claim, respectively, whereas (iii)
will be excluded.
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Case (i). Observe that

∂Γk = ak
(
(σk1 − (−1, 0, 0)) ∪ (σk2 − (−1, 0, 0))

)
=: γk1 ∪ γk2 .

For each i, k we letDk := {(x1−ak)2+x2
2 ≤ a2

k, x3 = 0} and gki : ∂Dk → R
be the functions such that γki = Graph(gki ) ⊂ ∂Dk × R. If we regard gki
as functions on R with period 2πak and fki as functions on R with period
2π, we have

‖(gki )′‖C0 = ‖(fki )′‖C0 → 0 k → ∞ . (3.12)

Taking into account that gk1 (0) = 0 and gk2 (0) = hk → −∞ we can
conclude that

∂Γk → {x1 = x3 = 0} (3.13)

in the Hausdorff sense in any compact subset of R3.
We want to show that ∂Γ = {x1 = x3 = 0}. Therefore, let q ∈ Γ\{x1 =

x3 = 0}. Again, there is a sequence qk ∈ Γk with qk → q. By (3.13) there
is a constant c > 0 such that Bc(qk)∩ ∂Γk = ∅ for k large enough. By the
C2,β convergence of Γk to Γ we conclude that Bc(q)∩∂Γ = ∅. This implies
∂Γ ⊂ {x1 = x3 = 0}. On the other hand, {x1 = x3 = 0} ⊂ Γ and, by (b)
in Lemma 3.12 and the maximum principle, a point q ∈ {x1 = x3 = 0}
cannot be an interior point of Γ.

Cases (ii)-(iii). As in the proof of Lemma 3.12 (b) we find a vanishing
sequence of negative numbers αk such that Γk ⊂ {x3 ≥ hk + αkx1}. Let
h := limk→∞ hk. Then we conclude Γ ⊂ {x3 ≥ h}. This proves the last
claim in situation (b) and rules out (iii). Indeed, if (iii) holds, then Γ
is contained in {x3 = 0, x1 ≥ 0}. On the other hand, arguing as in case
(i) we obtain ∂Γ ⊂ {x1 = x3 = 0}. Thus, Γ must be the half-plane
{x3 = 0, x1 ≥ 0} (Γ is not empty by assumption). But then |AΓ| ≡ 0,
contradicting Lemma 3.13.

It remains the case (ii). If h < 0, we can argue as in case (i) to conclude
that ∂Γk converges to {x1 = x3 = 0}∪{x1 = 0, x3 = h}. In the same way
we can also deduce ∂Γ = {x1 = x3 = 0} ∪ {x1 = 0, x3 = h}.

3.3.4 Classification of blowups

With this information on the boundary of Γ we can get a complete picture
of all possible blowups. In order to do so, let Γ̃ be a connected component
of Γ. First of all we point out that, by the unique continuation for smooth
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minimal surfaces (see Theorem 8.3), the multiplicity of Γ is constant on
Γ̃. Moreover, the multiplicity at the boundary components cannot be less
than on the corresponding interiors. Therefore we can conclude that, if Γ̃
has multiplicity 2 and ∂Γ̃ 6= ∅, then it can only be bounded by a single
line with multiplicity 2 since the total multiplicity of the boundary curves
cannot exceed 2. In this case we can disregard the multiplicity and assume
without loss of generality that Γ̃ has multiplicity 1 if ∂Γ̃ 6= ∅.

Next we can show that ∂Γ̃ 6= ∅. We argue by contradiction and assume
that this is not the case. Then Γ̃ is a complete stable minimal surface in R3

without boundary and with quadratic area growth. By Proposition 1.34
and Corollary 1.36 in [19], Γ̃ must be a plane. Since Γ̃ ⊂ {x1 ≥ 0, x3 ≤ 0}
by Lemma 3.12 (b), this is a contradiction.

Based on Lemma 3.15 and the above remarks we can summarize the
possible blowups:

(a) Γ is connected, has multiplicity 1 and is bounded by a single line
with multiplicity 1;

(b1) Γ has two connected components with multiplicity 1 each of them
bounded by a single line with multiplicity 1;

(b2) Γ is connected, has multiplicity 1 and is bounded by two lines with
multiplicity 1.

Since (b1) reduces to (a), we are left with two cases.

Remark 3.16. The strategy of the proof will be to show that both these
situations lead to contradictions. The argument for both cases is very
similar and consists in making reflections along certain boundary lines
to produce immersed complete minimal surfaces. The contradiction will
be achieved by finding that the image of the Gauss map leaves out a big
enough set to conclude that the surface needs to be a plane – which cannot
be true due to the fact that |A| is not zero everywhere. The key observation
will be that the normal along the boundary lines can only take certain
directions using Lemma 3.12 (b) and (3.11). For (a) we will give two
proofs – with and without using Lemma 3.12 (b).

With the previous remark, we can note, summarizing Lemmas 3.12,
3.13, 3.14 and 3.15, that the assumption that the statement of Theorem
3.11 is false leads to one of the following two possibilities.
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3.3 Curvature estimates at the boundary: a toy problem

(A) This corresponds to the case (a).

There is an orientable analytic surface Γ in R3 such that

(A1) Γ is a connected stable minimal surface;
(A2) Γ ⊂ {x1 ≥ 0} ∩ {x3 ≤ 0} and ∂Γ = {x1 = x3 = 0};
(A3) Γ has quadratic area growth,

Area(Γ ∩ Br(p)) ≤ Cr2, ∀ p ∈ Γ, ∀ r ≥ 0 ;

(A4) there is q ∈ Γ such that |A|(q) = maxx∈Γ |A|;
(A5) |A|(q) > 0.

(B) This corresponds to case (b2) (after a translation and rescaling).

There is an orientable analytic surface Γ in R3 such that (A1), (A3),
(A4) and (A5) hold and (A2) is replaced by

(B2) Γ ⊂ {x1 ≥ 0, −1 ≤ x3 ≤ 1} and ∂Γ = {x1 = 0, x3 ∈ {−1, 1}}.

The proof of Theorem 3.11 is completed if we can exclude the existence
of surfaces as in (A) and (B). We have the following two propositions.

Proposition 3.17. A surface satisfying (A1)−(A4) must be a half-plane.
In particular, there is no surface as in (A) since (A5) cannot hold.

Proof. This is a direct consequence of a theorem of Perez (see Theorem 1.1
in [55]) that says that the only properly embedded orientable stable mini-
mal surfaces bounded by a straight line and having quadratic area growth
are the half-plane and half of Enneper’s surface. Note that orientability
in our case follows from the orientability of the Γk and the smooth con-
vergence. Since in our case the surface also has to lie in a half-space, it
must be the half-plane.

As mentioned before, we will give a second proof of this result using
Lemma 3.12 (b) (note that the proof above only used that Γ is contained
in a half-space). This will not require much extra work and clarifies the
proof of

Proposition 3.18. There is no surface as in (B).
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3.3.5 Proofs of Propositions 3.17 and 3.18

Preliminary results

Proposition 3.19. Let Γ be as in (A) or (B) and let v := (0, 1, 0). If N
is the Gauss map, then{

either N · v ≤ 0 everywhere ,
or N · v ≥ 0 everywhere .

Proof. First of all note that it is well-known that for any constant vector
w the function ϕ = N · w on a minimal surface Σ satisfies the Jacobi
equation ∆Σϕ+|A|2ϕ = 0. In order to see this, we introduce the following
notation: ∆ = ∆Σ, D is the Euclidean connection on R3, ∇ is the Levi-
Civita connection on Σ. Let E1, E2 be an orthonormal frame in normal
coordinates. Then with the Einstein summation convention

∆ϕ = Ei(Ei(N · w)) −D∇Ei
Ei(N · w)

= Ei(DEiN · w)
= −Ei(a(Ei, w>)) + Ei(DEiN · wN ) ,

where we have used that ∇EiEi = 0 in normal coordinates. Moreover,
since DEiN is tangential, the second term vanishes. The first one equals

−(∇Eia)(Ei, w
>) − a(∇EiEi, w

>) − a(Ei,∇Eiw
>) .

The first term vanishes by minimality and the Codazzi equations, whereas
the second one again because of the normal coordinates. The last one we
can write as

−a(Ei,∇Ei
(Ej · w)Ej) = −a(Ei, (DEi

Ej · w)Ej)
−a(Ei, Ej · w∇EiEj)

= −a(Ei, Ej)
(
(∇EiEj) · w> + (DEiEj) ·Nϕ

)
= −|A|2ϕ ,

where we used the normal coordinates several times. Note that, for w = v,
we have moreover ϕ|∂Γ = 0 since v is tangential to ∂Γ.

If Γ were compact, the claim would follow from the stability and the
fact that the eigenvectors for the smallest eigenvalue cannot change sign
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(see Section 1.8 in [19]). However, this argument cannot be applied to
our situation. Using logarithmic cut-off functions and the quadratic area
growth the result can still be achieved. We only sketch here the argument,
a detailed computation can be found in the proof of Theorem 4.1 in [75]
whose argument we follow (see also Proposition 5.1 in [55]).

Assume ϕ is not constantly equal to zero. Moreover, assume that ϕ
changes sign in Γ ∩ B, where B is some ball (without loss of generality
assume that the radius is 1). Denote by ϕ+ the positive part of ϕ. For
R > 1 define the logarithmic cut-off function

φ(x) =


1 if |x| ≤ 1 ,
1 − log |x|

logR if 1 ≤ |x| ≤ R ,

0 if |x| ≥ R .

Then one computes with Q(η) =
∫
Γ
|∇η|2 − |A|2η2

Q(φϕ+) =
∫

Γ

(ϕ+)2|∇φ|2 ≤
∫

Γ∩{ϕ+ 6=0}
|∇φ|2 ≤ C

log2R
+

C

logR
,

where the last inequality is justified in the reference given above. A key
information used there is the quadratic area growth, Lemma 3.14. Note
that φϕ+ is compactly supported on Γ since ϕ = 0 on ∂Γ.

Let now ϕ′ minimize Q among all Lipschitz functions that coincide with
φϕ+ outside B. Since, by assumption, ϕ changes sign in B, that is, ϕ+

vanishes on an open ball contained in B, φϕ+ 6= ϕ′. Thus

Q(φϕ+) −Q(ϕ′) = ε > 0

and
Q(ϕ′) = Q(φϕ+) − ε ≤ C

log2R
+

C

logR
− ε .

Since ϕ′ and therefore also ε is independent of R, we can choose R so large
that Q(ϕ′) < 0, contradicting the stability of Γ (see Lemma 3.2).

Proposition 3.20. Let Γ be as in (A) or (B) and v = (0, 1, 0). Let N be
the Gauss map, then{

either N · v < 0 on Γ \ ∂Γ ,
or N · v > 0 on Γ \ ∂Γ .
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Proof. As above set ϕ := N ·v. Then from Proposition 3.19 (after possibly
changing the orientation) we can assume ϕ ≥ 0 and ∆ϕ + |A|2ϕ = 0.
Thus, ∆ϕ ≤ 0. Assume now that p ∈ Γ \ ∂Γ and ϕ(p) = 0. Then clearly
p is a minimum and, by the strong maximum principle, ϕ vanishes in a
neighborhood of p. On the other hand, iterating this argument we can
conclude that{

either ϕ > 0 on Γ \ ∂Γ ,
or ϕ ≡ 0 on a connected component of Γ \ ∂Γ .

We want to exclude the second alternative. Since Γ \ ∂Γ is connected,
the second alternative implies ϕ ≡ 0 on Γ. Consider the circle γ := {ν ∈
S2 : ν · v = 0} ⊂ S2. Thus, ϕ ≡ 0 implies N(Γ) ⊂ γ. Let p ∈ Γ \ ∂Γ
and denote by k1 and k2 the principal curvatures of Γ at p. Then, by
minimality, k1 + k2 = H = 0 and hence |A|2 = 2k2

1 = −2KG, where KG

is the Gauss curvature of Γ at p. Assume now that KG(p) < 0, then the
Gauss map N : U → S2 is injective for some neighborhood U of p by
the inverse function theorem (recall that KG is the Jacobian of the Gauss
map). Using the area formula this gives |N(U)| =

∫
U
|KG| > 0 which is a

contradiction to N(Γ) ⊂ γ. Summarizing, this means that ϕ ≡ 0 implies
|A| ≡ 0. This however, contradicts (A5). Thus, ϕ > 0 on Γ \ ∂Γ which
proves the claim.

In the proofs of Proposition 3.17 and Proposition 3.18 we will need the
notion of logarithmic capacity. We follow [41] (see p. 280) and give the
following

Definition 3.21. Let E ⊂ C. Let P(E) := {probability measures on E}
and define

I[µ] := lim
n→∞

∫
E

∫
E

min
{

log
1

|z1 − z2|
, n

}
dµ(z1) dµ(z2) ;

V (E) := inf
µ∈P(E)

I[µ] ;

c(E) := e−V (E) .

c(E) is called logarithmic capacity. Moreover, we define the logarithmic
capacity of a subset of S2 to be the logarithmic capacity of its image under
stereographic projection.
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Note that c(E) > 0 if and only if there is µ ∈ P(E) with I[µ] <∞.

Lemma 3.22. Let E be a bounded interval. Then c(E) > 0.

Proof. We have to show that there is µ ∈ P(E) with I[µ] < ∞. We can
assume without loss of generality that E = (0, 1) ⊂ R. Let µ be the
uniform measure on E. We can compute

I[µ] =
∫ 1

0

∫ 1

0

− log |s− t| ds dt

= −2
∫ 1

0

∫ 1

t

log(s− t) ds dt

= −2
∫ 1

0

[(s− t) log(s− t) − (s− t)] |1t dt

= −2
∫ 1

0

t log t− t dt

=
(
−t2 log t+

3
2
t2

) ∣∣∣1
0

=
3
2
<∞ .

Proof of Proposition 3.17

Consider the normal N on the line ∂Γ = {x1 = x3 = 0}. By Lemma 3.12
(b) the tangent plane π(p) to Γ at any p ∈ ∂Γ is of the form {cos θx1 +
sin θx3 = 0} for some θ ∈ [0, π/2]. So, N(p) is of the form (cos θ, 0, sin θ)
for some θ ∈ [0, π/2] or for some θ ∈ [π, 3π/2]. Since ∂Γ is connected and
N is continuous, we are either for all p ∈ ∂Γ in the first situation or always
in the second situation. Thus, after possibly changing the orientation of
Γ, we can assume that we are in the first case. Thus, by Proposition 3.20,

N(Γ) = N(∂Γ) ∪N(Γ \ ∂Γ)

⊂ {(cos θ, 0 sin θ) : θ ∈ [0, π/2]} ∪ {(ν1, ν2, ν3) ∈ S2 : ν2 > 0} .

Next, we construct from Γ a complete surface in R3 by a Schwarz reflec-
tion. More precisely, we define the map

S : R3 → R3, (x1, x2, x3) 7→ (−x1, x2,−x3)
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and set Σ := Γ ∪ S(Γ). Observe that,

N(p) = (ν1, ν2, ν3) ⇒ N(S(p)) = (ν1,−ν2, ν3) .

Therefore N(Σ) ⊂ S2 \ α, where α is the arc

{(cos θ, 0, sin θ) : θ ∈ (π/2, 2π)} .

On the other hand, Σ is a complete minimal surface in R3. By the
results of [53] (see (3) in the introduction and Section 2, see also Theorem
8.2 in [54]) we have{

either S2 \N(Σ) has zero logarithmic capacity ,
or Σ is a plane .

The first alternative implies that the logarithmic capacity of α is 0. But
note that the image of α under stereographic projection is a bounded
interval. Hence, by Lemma 3.22 we get a contradiction. Therefore we see
that the only surface with (A1) − (A4) is the half-plane. Clearly, (A5) in
that case does not hold, which gives the second part of the claim.

Proof of Proposition 3.18

We argue in a similar way and start by considering p ∈ ∂Γ. Let θ(p) ∈
[0, 2π] be such that N(p) = (cos θ(p), 0, sin θ(p)). There are the following
possibilities:

θ(∂Γ) ⊂ [0, π/2] ∪ [0, π] ;
θ(∂Γ) ⊂ [0, π/2] ∪ [π, 2π] ;
θ(∂Γ) ⊂ [π, 3π/2] ∪ [0, π] ;
θ(∂Γ) ⊂ [π, 3π/2] ∪ [π, 2π] .

As in the previous proof we construct from Γ a complete minimal surface
Σ using inifitely many Schwarz reflections (see Figure 3.3).

Arguing as before, S2\N(Σ) contains at least an open interval of length
π/2 which is a quarter of the equator {(cos θ, 0, sin θ) : θ ∈ [0, 2π)} ⊂ S2.
Again by the results in [53] and Lemma 3.22 we conclude that Σ is a
plane, contradicting (A5).
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3.3 Curvature estimates at the boundary: a toy problem

Figure 3.3: Γ is the part bounded by the two dashed lines on the bottom.
Two Schwarz reflections have been made along the second and
third dashed line.

3.3.6 About Theorem 3.10 with more than two
boundary curves

The fact that originally we had only two boundary curves was used in the
proof in the following way: we needed that, if we blow up by curvature, the
blowup has a component that is either bounded by a single line (Case (a))
and lies in a half-space or the normals along all the boundary components
have to leave out a non-trivial interval.

As soon as there are more than two boundary lines, in general, the
above arguments do not apply anymore. We discuss here what happens
for three boundary lines.

Blowing up by curvature in the case of three lines produces a wider
variety of possible blowups. Two boundary lines could collapse or (if we
rescale by the distance to the middle curve) there could be one single
boundary line and the two outer curves diverge to ±∞ so that we only
know that Γ is contained in a half-space, but no further information as in
Lemma 3.12 (b) is known. In fact, the first situation does not cause any
additional difficulty (at least in the case of three curves) and the latter is
covered by our first proof of Proposition 3.17. In the situation of four (or
more) curves, where the two middle ones stay at comparable distance and
the two outer ones diverge, our argument does not work any more.

In the case of three curves there is, however, a new case that we could
not exclude: if the blowup has three boundary lines (with multiplicity
one). We collect here some of the properties of this blowup (without
proofs). Denote by li = {(0, t, hi)} the three boundary lines.

(1) Generalizing the proof of Proposition 3.3 in [55], one can show that
Γ is a graph over {x1 > 0, x3 ∈ (h1, h3)}.
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3 Curvature estimates

(2) Defining ΓR as the translation by R in x2-direction, one finds that
by the curvature estimates ΓR → Γ∞ in C2,β (similarly, one defines
Γ−∞). Morever, one can show that the asymptotic behaviour es-
sentially can be reduced to the situation where Γ∞ is the half-plane
{x1 ≥ 0, x3 = l1} and the strip in {x1 = 0} between l2 and l3,
and Γ−∞ is the half-plane at l3 and the strip between l1 and l2 (see
Figure 3.4).

(3) Using the fact that Γ is a disk and the quadratic area growth, one
can show that it has finite total curvature (note that the boundary
components are geodesics). With the Gauss-Bonnet theorem one
can even show that the total curvature is 2π. As a consequence
(degree theory) one can see that the normal covers a hemisphere
injectively.

A possible model for such a surface – outside of a large ball – could be the
helicoid. We do not expect such a surface to exist, but we were not able to
exclude it. In fact, already the situation of Proposition 3.18 could be seen
as the two-line analogon. One faces the same kind of difficulties if one
wishes to prove the proposition without using the reflection argument.

Figure 3.4: On the left there are the components of Γ−∞ and on the right
the components of Γ∞. The arrows indicate the normals com-
ing from a choice of the orientation.
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4 Proof of Theorem 2

In this chapter we discuss the various steps in the proof of Theorem 2. As
already remarked, our proof follows in many aspects the corresponding
proof of the case n = 2 in [18] (see also Theorem 9.3). Therefore we
indicate where our proof differs from that one. In Section 2.1 we discussed
the differences in the setup. In this chapter it will be apparent why in
higher dimensions the narrower concept of Definition 2.6 is not sufficient.

4.1 Isotopies and stationarity

It is easy to see that not all min-max sequences converge to stationary
varifolds (see Figure 4.1).

stationary

far from stationary

Figure 4.1: All the curves have the same length. Picking the wrong slice
of the sweepout, one could construct a min-max sequence that
does not come close to a stationary varifold.

In general, for any minimizing sequence {{Γt}k} there is at least one
min-max sequence converging to a stationary varifold. For technical rea-
sons, it is useful to consider minimizing sequences {{Γt}k} with the ad-
ditional property that any corresponding min-max sequence converges to
a stationary varifold. The existence of such a sequence, which roughly
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4 Proof of Theorem 2

speaking follows from “pulling tight” the surfaces of a minimizing se-
quence, is an important conceptual step and goes back to Birkhoff in the
case of geodesics and to the fundamental work of Pitts in the general case
(see also [20] and [21] for other applications of these ideas). In order to
state it, we need some terminology.

Definition 4.1. Given a smooth map F : [0, 1] → X (M), for any t ∈ [0, 1]
we let Ψt : [0, 1] × M → M be the 1-parameter family of diffeomor-
phisms generated by the vectorfield F (t). If {Γt}t∈[0,1] is a sweepout, then
{Ψt(s,Γt)}(t,s)∈[0,1]2 is a homotopy between {Γt} and {Ψt(1,Γt)}. These
will be called homotopies induced by ambient isotopies.

We recall that the weak∗ topology on the space V (varifolds with mass
bounded by 4m0) is metrizable and we choose a metric D which induces
it. Moreover, let Vs ⊂ V be the (closed) subset of stationary varifolds.

Proposition 4.2. Let Λ be a family of sweepouts which is closed under
homotopies induced by ambient isotopies. Then there exists a minimizing
sequence {{Γt}k} ⊂ Λ such that, if {Γktk} is a min-max sequence, then
D(Γktk ,Vs) → 0.

This proposition is Proposition 4.1 of [18]. Though stated for the case
n = 2, this assumption, in fact, is never used in the proof given in that
paper. For the sake of completeness we will include the proof in Chapter
5.

4.2 Almost minimizing varifolds

It is well-known that a stationary varifold can be far from regular. To
overcome this issue, we introduce the notion of almost minimizing vari-
folds.

Definition 4.3. Let ε > 0 and U ⊂ M open. A boundary ∂Ω in M
is called ε-almost minimizing (ε-a.m.) in U if there is NO 1-parameter
family of boundaries {∂Ωt}, t ∈ [0, 1] satisfying the following properties:

(s1), (s2), (s3), (sw1) and (sw3) of Definition 2.1 hold; (4.1)
Ω0 = Ω and Ωt \ U = Ω \ U for every t; (4.2)
Hn(∂Ωt) ≤ Hn(∂Ω) + ε

8 for all t ∈ [0, 1]; (4.3)
Hn(∂Ω1) ≤ Hn(∂Ω) − ε. (4.4)

44



4.2 Almost minimizing varifolds

A sequence {∂Ωk} of hypersurfaces is called almost minimizing in U if
each ∂Ωk is εk-a.m. in U for some sequence εk → 0.

Roughly speaking, ∂Ω is a.m. if any deformation which eventually
brings down its area is forced to pass through some surface which has
substantially larger area (see Figure 4.2). A similar notion was introduced
for the first time in the pioneering work of Pitts and a corresponding one
is given in [72] using isotopies (see Section 3.2 of [18]). Following in
part Section 5 of [18] (which uses a combinatorial argument inspired by
a general one of [3] reported in [56]), we prove in Chapter 6 the following
existence result.

minimizing almost minimizing

Figure 4.2: The length of the almost minimizing curve can only be de-
creased by a certain amount if the curve is slid over one of the
“spheres”. In this process the length first has to be increased
substantially.

Proposition 4.4. Let Λ be a homotopically closed family of sweepouts.
There are a function r : M → R+ and a min-max sequence Γk = Γktk such
that

(a) {Γk} is a.m. in every An ∈ AN r(x)(x) with x ∈M ;

(b) Γk converges to a stationary varifold V as k → ∞.

In this part we introduce, however, a new ingredient. The proof of
Proposition 4.4 has a variational nature: assuming the nonexistence of
such a min-max sequence we want to show that on an appropriate mini-
mizing sequence {{Γt}k}, the energy F({Γt}k) can be lowered by a fixed
amount, contradicting its minimality. Note, however, that we have 1-
parameter families of surfaces, whereas the variational notion of Definition
4.3 focuses on a single surface. Pitts (who in turn has a stronger notion of
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4 Proof of Theorem 2

almost minimality) avoids this difficulty by considering discretized fam-
ilies and this, in our opinion, makes his proof quite hard. Instead, our
notion of almost minimality allows us to stay in the smooth category: the
key technical point is the “freezing” presented in Section 6.2 (see Lemma
6.1). In [18] this issue is much simpler since the almost minimality is
defined in terms of isotopies. Therefore this “freezing” can be achieved
simply by composing the isotopy with a cut-off function in the parameter
t.

4.3 Replacements

We complete the program in Chapters 7 and 8 showing that our notion
of almost minimality is still sufficient to prove regularity. As a starting
point, as in the theory of Pitts, we consider replacements.

Definition 4.5. Let V ∈ V(M) be a stationary varifold and U ⊂ M be
an open set. A stationary varifold V ′ ∈ V(M) is called a replacement for
V in U if V ′ = V on M \ Ū , ‖V ′‖(M) = ‖V ‖(M) and V U is a stable
minimal hypersurface Γ.

We show in Chapter 7 that almost minimizing varifolds do posses re-
placements.

Proposition 4.6. Let {Γj}, V and r be as in Proposition 4.4. Fix x ∈M
and consider an annulus An ∈ AN r(x)(x). Then there are a varifold Ṽ ,
a sequence {Γ̃j} and a function r′ : M → R+ such that

(a) Ṽ is a replacement for V in An and Γ̃j converges to Ṽ in the sense
of varifolds;

(b) Γ̃j is a.m. in every An′ ∈ AN r′(y)(y) with y ∈M ;

(c) r′(x) = r(x).

The strategy of the proof is the following. Fix an annulus An. We
would like to substitute Γj = ∂Ωj in An with the surface minimizing the
area among all those which can be continuously deformed into Γj accord-
ing to our homotopy class: we could appropriately call it a solution of the
(8j)−1 homotopic Plateau problem. As a matter of fact, we do not know
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4.4 Regularity of V

any regularity for this problem. However, if we consider a correspond-
ing minimizing sequence {∂Ωj,k}k, we will show that it converges, up to
subsequences, to a varifold V j which is regular in An. This regularity
is triggered by the following observation: on any sufficiently small ball
B ⊂ An, V j B is the boundary of a Caccioppoli set Ωj which solves the
Plateau problem in the class P(Ωj , B) (in the sense of Theorem 2.13).

In fact, by standard blowup methods of geometric measure theory, V j

is close to a cone in any sufficiently small ball B = Br(y). For k large,
the same property holds for ∂Ωj,k. Modifying suitably an idea of [72],
this property can be used to show that any (sufficiently regular) competi-
tor Ω̃ ∈ P(Ωj,k, B) can be homotopized to Ωj,k without passing through
a surface of large energy. In other words, minimizing sequences of the
homotopic Plateau problem are in fact minimizing for the usual Plateau
problem at sufficiently small scales.

This step is basically the main reason why the proof of [18] does not
work in higher dimensions. In [18] it is shown that the competitor can be
homotopized to Ωj,k by isotopies. The important (and hard) result that
is needed to achieve this is a theorem by Meeks, Simon and Yau [45] that
roughly says that the minimizer in the isotopy class of a two-dimensional
surface is smooth. No such result is known in higher dimensions.

Having shown the regularity of V j in An, we use the Schoen-Simon
compactness theorem to show that V j converges to a varifold Ṽ which in
An is a stable minimal hypersurface. A suitable diagonal sequence Γj,k(j)

gives the surfaces Γ̃j .

4.4 Regularity of V

One would like to conclude that, if V ′ is a replacement for V in an annulus
contained in a convex ball, then V = V ′ (and hence V is regular in An).
However, two stationary varifolds might coincide outside of a convex set
and be different inside: the standard unique continuation property of
classical minimal surfaces fails in the general case of stationary varifolds
(see the appendix of [18] for an example). We need more information
to conclude the regularity of V . Clearly, applying Proposition 4.6 three
times we conclude

Proposition 4.7. Let V and r be as in Proposition 4.4. Fix x ∈M and
An ∈ AN r(x)(x). Then:
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4 Proof of Theorem 2

(a) V has a replacement V ′ in An such that

(b) V ′ has a replacement V ′′ in any

An′ ∈ AN r(x)(x) ∪
∪
y 6=x

AN r′(y)(y)

such that

(c) V ′′ has a replacement V ′′′ in any An′′ ∈ AN r′′(y)(y) with y ∈M .

r′ and r′′ are positive functions (which might depend on V ′ and V ′′).

In fact, the process could be iterated infinitely many times. However, it
turns out that three iterations are sufficient to prove regularity, as stated
in the following proposition. Its proof is given in Chapter 8, where we
basically follow [65] (see also [18]).

Proposition 4.8. Let V be as in Proposition 4.7. Then V is induced by
a minimal hypersurface Σ (in the sense of Definition 3.5).
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5 The existence of
stationary varifolds

In this chapter we prove Proposition 4.2. We give the proof of [18] (adding
a few details) that is valid literally in our situation even though stated
for n = 2 in that paper. In particular, we do not need the specific setting
of Definition 2.1. The same argument works for the narrower concepts
discussed in Section 2.1.1. Note that the homotopically closed family of
sweepouts Λ of Theorem 2 is larger than the family of sweepouts that is
closed under homotopies induced by ambient isotopies in Proposition 4.2.

5.1 Proof of Proposition 4.2

The key idea of the proof is building a continuous map Ψ : V → Is, where
Is is the set of smooth isotopies, such that :

• if V is stationary, then ΨV is the trivial isotopy;

• if V is not stationary, then ΨV decreases the mass of V .

Since each ΨV is an isotopy, and thus is itself a map from [0, 1]×M →M ,
to avoid confusion we use the subscript V to denote the dependence on
the varifold V . The map Ψ will be used to deform a minimizing sequence
{{Σt}k} ⊂ Λ into another minimizing sequence {{Γt}k} such that :

For every ε > 0, there exist δ > 0 and N ∈ N such that

if
{

k > N
and Hn(Γktk) > m0 − δ

}
, then D(Γktk ,Vs) < ε . (5.1)

Such a {{Γt}k} would satisfy the requirement of the proposition.
The map ΨV should be thought of as a natural “shortening process” of

varifolds which are not stationary. If the mass (considered as a functional

49



5 The existence of stationary varifolds

on the space of varifolds) were smoother, then a gradient flow would pro-
vide a natural shortening process like ΨV . However, this is not the case;
even if we start with smooth initial datum, in very short time the motion
by mean curvature, i.e. the gradient flow of the area functional on smooth
submanifolds, gives surfaces which are not isotopic to the initial one.

Step 1: A map from V to the space of vector fields. The isotopies
ΨV will be generated as 1-parameter families of diffeomorphisms satisfying
certain ODEs. In this step we associate to any V a suitable vector field,
which in Step 2 will be used to construct ΨV .

For l ∈ Z we define the annuli

Vl = {V ∈ V : 2−l+1 ≥ D(V,Vs) ≥ 2−l−1} .

These Vl are compact. Therefore there are constants c(l) > 0 only de-
pending on l such that for all V ∈ Vl there is a smooth vector field χV
with

‖χV ‖∞ ≤ 1, δV (χV ) ≤ −c(l) .
For, if not, then there is a sequence {Vj} of varifolds in Vl such that for
all vector fields χ with ‖χ‖∞ ≤ 1

δVj(χ) ≤ 1
j
.

Therefore ‖δVj‖ → 0. Compactness and the lower semi-continuity of the
first variation then yield that a subsequence converges to a stationary
varifold. But this is a contradiction to the definition of Vl. This proves
the existence of the constants c(l).

Next, we want to show that the associated vector fields χV can be
chosen in a continuous dependence on V . For this first note that we have

δW (χV ) ≤ δV (χV ) + δ(W − V )(χV )
≤ −c(l) + ‖δ(W − V )‖ .

Thus, by the lower semicontinuity of the first variation there is r > 0 such
that

δW (χV ) ≤ −c(l)
2
, W ∈ Ur(V ) ,

where Ur(V ) denotes the ball in V. Using again compactness we can find
for any l ∈ Z balls {U li}

N(l)
i=1 and corresponding vector fields χli such that

50



5.1 Proof of Proposition 4.2

• the balls Ũ li , concentric to U li with half the radii, cover Vl;

• for all W ∈ U li we have δW (χli) ≤ − c(l)
2 ;

• the balls U li are disjoint from Vj for |j − l| ≥ 2.

The balls {U li}i,l form a locally finite covering of V \Vs. So we can pick a
continuous partition of the unity {ϕli} subordinate to this covering. Then
we define the vector fields HV :=

∑
i,l ϕ

l
i(V )χli. The map

H : V → C∞(M,TM), V 7→ HV

is continuous and ‖HV ‖∞ ≤ 1 for all V ∈ V.

Step 2: A map from V to the space of isotopies. Let V ∈ Vl.
Then, by the above covering, V is contained in at least one ball Ũ li . We
denote by r(V ) the radius of the smallest such ball. As there are only
finitely many such balls, we can find r(l) only depending on l such that
r(V ) ≥ r(l) > 0. By the properties of the covering, moreover

δW (HV ) ≤ −1
2

min{c(l − 1), c(l), c(l + 1)}

for all W ∈ Ur(V )(V ). Thus, we have two continuous functions g : R+ →
R+ and r : R+ → R+ such that

δW (HV ) ≤ −g(D(V,Vs)) if D(W,V ) ≤ r(D(V,Vs)). (5.2)

The function −g for instance can be obtained by dominating the step
function depending on the c(l) by a continuous function. By the com-
pactness of M and the smoothness of each HV we can construct for all V
a 1-parameter family of diffeomorphisms

ΦV : [0,∞) ×M →M with
∂ΦV
∂t

(t, x) = HV (ΦV (t, x)) .

The key is now to prove that these diffeomorphisms decrease the mass
of a varifold by an amount depending on its distance to the stationary
varifolds. More precisely we claim the following: There are continuous
functions T : R+ → [0, 1] and G : R+ → R+ such that

• if γ = D(V,Vs) > 0 and V ′ is obtained from V by the diffeomorphism
ΦV (T (γ), ·), then ‖V ′‖(M) ≤ ‖V ‖(M) −G(γ);
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5 The existence of stationary varifolds

• G(s) and T (s) both converge to 0 for s→ 0.

For this we fix V ∈ V \ Vs. For all r > 0 there is T > 0 such that the
curve

{V (t) = (ΦV (t, ·))#V, t ∈ [0, T ]}

stays in Ur(V ). This implies the inequality

‖V (T )‖(M)−‖V ‖(M) = ‖V (T )‖(M)−‖V (0)‖(M) ≤
∫ T

0

δV (t)(HV ) dt .

If we choose r = r(D(V,Vs)) as in (5.2), this yields

‖V (T )‖(M) − ‖V ‖(M) ≤ −Tg(D(V,Vs)) ,

or we can rewrite this as

‖V (T )‖(M) − ‖V ‖(M) ≤ −G(D(V,Vs)) .

Moreover T and G are continuous. Clearly T (s) → 0 as s → 0. The
boundedness of g then gives G(s) → 0 as s → 0. Arguing as in the first
step, using a continuous partition of the unity, we can find a choice of T
that is continous in V and depends only on D(V,Vs).

Step 3: Construction of the competitor. Let V ∈ V be such that
D(V,Vs) = γ. We renormalize the diffeomorphisms ΦV , namely we set

ΨV (t, ·) = ΦV (T (γ)t, ·), t ∈ [0, 1] .

Then by the definition of T the varifolds (ΨV (t, ·))#V stay in Uγ(V ) for
all t ∈ [0, 1]. By the second step of this proof we get a strictly increasing
function L : R → R with L(0) = 0 and

‖V ′‖(M) ≤ ‖V ‖(M) − L(γ),

where V ′ is the varifold that is obtained from V by ΨV (1, ·). The function
G above is not necessarily strictly increasing, but all the choices can be
made in such a way that this goal is achieved.

Now choose a sequence of families {{Σt}k} ⊂ Λ such that F({Σt}k) ≤
m0 + 1

k . Then we define a new family by

Γ̃kt = ΨΣk
t
(1,Σkt ), t ∈ [0, 1], k ∈ N .
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5.1 Proof of Proposition 4.2

Clearly the surfaces Γ̃kt are again smooth (apart from at most finitely
many points). But, since the dependence of the vector field ΨΣk

t
in t

is merely continuous, the new family is not necessarily (and in general
not) smooth. Before addressing this problem we simply point out that we
moreover have

Hn(Γ̃kt ) ≤ Hn(Σkt ) − L
(
D(Σkt ,Vs)

)
.

To get a generalized smooth family with the same property we first sim-
plify our notation. We write Ψt for ΨΣk

t
. Then the smooth vector field

ht = T (D(Σkt ,Vs))HΣk
t

generates Ψt. Thus, in other terms, if we endow the space of smooth vector
fields with the topology of the Cm-seminorms, we have a continuous map

h : [0, 1] → X (M) .

We can approximate this continuous map by a smooth map h̃. We denote
the smooth 1-parameter family of diffeomorphisms generated by h̃t by Ψ̃t.
Then we consider the smooth family

Γnt = Ψ̃n
t (1,Σ

n
t ) .

Whenever we have that supt ‖ht− h̃t‖C1 is small enough, the same calcu-
lations as before yield

Hn(Γnt ) ≤ Hn(Σnt ) −
L(D(Σnt ,Vs))

2
. (5.3)

Since {{Σt}k} is minimizing, so is {{Γt}k}. By construction there is an
increasing continuous map λ : R+ → R+ with λ(0) = 0 and

D(Σkt ,Vs) ≥ λ(D(Γkt ,Vs)) . (5.4)

Note that, if D(Σkt ,Vs) = 0, then Σkt = Γkt , and so D(Γkt ,Vs) = 0.
To conclude the proof we fix ε > 0 and choose δ > 0 and N ∈ N such

that
L(λ(ε))

2
− δ >

1
N
.
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5 The existence of stationary varifolds

Assume now that there are k > N and t such that

Hn(Γkt ) > m0 − δ and D(Γkt ,Vs) > ε .

Then by (5.3) and (5.4) we get

Hn(Σkt ) ≥ Hn(Γkt ) + δ +
L(λ(ε))

2
− δ

> m0 +
1
N
.

But this contradicts F({{Σt}k}) ≤ m0 + 1
k . Thus we have the following:

for all ε > 0 there are δ > 0 and N ∈ N such that, if k > N and Hn(Γktk) >
m0 − δ, then D(Γktk ,Vs) < ε. This of course gives the proposition.
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6 The existence of almost
minimizing varifolds

In this chapter we prove Proposition 4.4. At various steps in the reg-
ularity theory we will have to construct comparison surfaces which are
deformations of a given surface. However, each initial surface will be just
a member of a 1-parameter family and in order to exploit our variational
properties we must in fact construct “comparison families”. If we consider
a family as a moving surface, it becomes clear that difficulties arise when
we try to embed the deformation of a single “time-slice” into the dynam-
ics of the family itself. The main new point of this chapter is therefore
the following technical lemma, which allows to use the “static” variational
principle of Definition 4.3 to construct a “dynamic” competitor.

Lemma 6.1. Let U ⊂⊂ U ′ ⊂ M be two open sets and {∂Ξt}t∈[0,1] a
sweepout. Given an ε > 0 and a t0 ∈ [0, 1], assume {∂Ωs}s∈[0,1] is a 1-
parameter family of surfaces satisfying (4.1), (4.2), (4.3) and (4.4), with
Ω = Ξt0 . Then there is η > 0, such that the following holds for every
a, b, a′, b′ with t0 − η ≤ a < a′ < b′ < b ≤ t0 + η. There is a competitor
sweepout {∂Ξ′

t}t∈[0,1] with the following properties:

(a) Ξt = Ξ′
t for t ∈ [0, a] ∪ [b, 1] and Ξt \ U ′ = Ξ′

t \ U ′ for t ∈ (a, b);

(b) Hn(∂Ξ′
t) ≤ Hn(∂Ξt) + ε

4 for every t;

(c) Hn(∂Ξ′
t) ≤ Hn(∂Ξt) − ε

2 for t ∈ (a′, b′).

Moreover, {∂Ξ′
t} is homotopic to {∂Ξt}.

Bulding on Lemma 6.1, Proposition 4.4 can be proved using a clever
combinatorial argument due to Pitts and Almgren. Indeed, for this part
our proof follows literally the exposition of Section 5 of [18]. This chapter
is therefore split into three parts. In the first one we use the Almgren-
Pitts combinatorial argument to show Proposition 4.4 from Lemma 6.1,
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6 The existence of almost minimizing varifolds

which will be proved in the second one. In the third one we discuss a
generalization of these results to multi-parameter families that is proved
in [36] building on our proof in this chapter.

6.1 Almost minimizing varifolds

Before coming to the proof, we introduce some further notation.

Definition 6.2. Given a pair of open sets (U1, U2) we call a hypersurface
∂Ω ε-a.m. in (U1, U2) if it is ε-a.m. in at least one of the two open sets.
We denote by CO the set of pairs (U1, U2) of open sets with

d(U1, U2) ≥ 4min{diam(U1),diam(U2)} .

The following trivial lemma will be of great importance.

Lemma 6.3. If (U1, U2) and (V 1, V 2) are such that

d(U1, U2) ≥ 2min{diam(U1),diam(U2)} ,
d(V 1, V 2) ≥ 2min{diam(V 1),diam(V 2)} ,

then there are indices i, j ∈ {1, 2} with d(U i, V j) > 0.

Proof. Without loss of generality, assume that U1 is, among U1, U2, V1, V2,
the set with the smallest diameter. We claim that either d(U1, V1) > 0
or d(U1, V2) > 0. If this were false, then there would be a point x ∈
U1 ∩ V 1 and a point y ∈ U1 ∩ V 2. But then d(x, y) ≤ diam(U1) ≤
min{diam(V1),diam(V2)}, and hence

d(V1, V2) ≤ d(x, y) ≤ min{diam(V1),diam(V2)} ,

contradicting the assumption on (V1, V2).

We are now ready to state the Almgren-Pitts combinatorial Lemma:
Proposition 4.4 is indeed a corollary of it.

Proposition 6.4 (Almgren-Pitts combinatorial Lemma). Let Λ be a ho-
motopically closed family of sweepouts. There is a min-max sequence
{ΓN} = {∂Ωk(N)

tk(N)
} such that
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6.1 Almost minimizing varifolds

• ΓN converges to a stationary varifold;

• for any (U1, U2) ∈ CO, ΓN is 1/N -a.m. in (U1, U2), for N large
enough.

Proof of Proposition 4.4. We show that a subsequence of the {Γk} in
Proposition 6.4 satisfies the requirements of Proposition 4.4. For this fix
k ∈ N and r > 0 such that Inj (M) > 9r > 0. Then, (Br(x),M \B9r(x)) ∈
CO for all x ∈M . Therefore we have that Γk is (for k large enough) 1/k-
almost minimizing in Br(x) or M \B9r(x). Therefore, having fixed r > 0,

(a) either {Γk} is (for k large) 1/k-a.m. in Br(y) for every y ∈M ;

(b) or there are a (not relabeled) subsequence {Γk} and a sequence
{xkr} ⊂M such that Γk is 1/k-a.m. in M \B9r(xkr ).

If for some r > 0 (a) holds, we clearly have a sequence as in Proposition
4.4. Otherwise there are a subsequence of {Γk}, not relabeled, and a
collection of points {xkj }k,j∈N ⊂M such that

• for any fixed j, Γk is 1/k-a.m. in M \B1/j(xkj ) for k large enough;

• xkj → xj for k → ∞ and xj → x for j → ∞.

We conclude that, for any J , there is KJ such that Γk is 1/k-a.m. in
M \ B1/J(x) for all k ≥ KJ . Therefore, if y ∈ M \ {x}, we choose r(y)
such that Br(y) ⊂⊂M \ {x}, whereas r(x) is chosen arbitrarily. It follows
that An ⊂⊂M \ {x}, for any An ∈ AN r(z)(z) with z ∈M . Hence, {Γk}
is 1/k-a.m. in An, provided k is large enough, which completes the proof
of the proposition.

Proof of Proposition 6.4. First we pick a minimizing sequence {{Γt}k}
satisfying the requirements of Proposition 4.2 and such that F({Γt}k) <
m0 + 1

8k . We then assert the following claim, which clearly implies the
proposition.

Claim. For N large enough, there exists tN ∈ [0, 1] such that ΓN := ΓNtN
is 1

N -a.m. in all (U1, U2) ∈ CO and Hn(ΓN ) ≥ m0 − 1
N .

Define

KN :=
{
t ∈ [0, 1] : Hn(ΓNt ) ≥ m0 −

1
N

}
.
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6 The existence of almost minimizing varifolds

Assume the claim is false. Then there is a sequence {Nk} such that the
assertion of the claim is violated for every t ∈ KNk

. By a slight abuse of
notation, we do not relabel the corresponding subsequence and from now
on we drop the super- and subscripts N .

Thus, for every t ∈ K we get a pair (U1,t, U2,t) ∈ CO and families
{∂Ωi,t,τ}i∈{1,2}

τ∈[0,1] such that

(i) ∂Ωi,t,τ ∩ (Ui,t)c = ∂Ωt ∩ (Ui,t)c;

(ii) ∂Ωi,t,0 = ∂Ωt;

(iii) Hn(∂Ωi,t,τ ) ≤ Hn(∂Ωt) + 1
8N ;

(iv) Hn(∂Ωi,t,1) ≤ Hn(∂Ωt) − 1
N .

For every t ∈ K and every i ∈ {1, 2}, we choose U ′
i,t such that Ui,t ⊂⊂ U ′

i,t

and
d(U ′

1,t, U
′
2,t) ≥ 2min{diam(U ′

1,t),diam(U ′
2,t)}.

Then we apply Lemma 6.1 with Ξt = Ωt, U = Ui,t, U ′ = U ′
i,t and Ωτ =

Ωi,t,τ . Let ηi,t be the corresponding constant η given by Lemma 6.1 and
let ηt = min{η1,t, η2,t}.

Next, cover K with intervals Ii = (ti − ηi, ti + ηi) in such a way that:

• ti + ηi < ti+2 − ηi+2 for every i;

• ti ∈ K and ηi < ηti .

Step 1: Refinement of the covering. We are now going to refine
the covering Ii to a covering Jl such that:

• Jl ⊂ Ii for some i(l);

• there is a choice of a Ul such that U ′
l ∈ {U ′

1,ti(l)
, U ′

2,ti(l)
} and

d(U ′
i , U

′
j) > 0 if J i ∩ Jj 6= ∅ ; (6.1)

• each point t ∈ [0, 1] is contained in at most two of the intervals Jl.
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6.1 Almost minimizing varifolds

The choice of our refinement is in fact quite obvious. We start by choosing
J1 = I1. Using Lemma 6.3 we choose indices r, s such that d(U ′

r,t1 , U
′
s,t2) >

0. For simplicity we can assume r = s = 1. We then set U ′
1 = U ′

1,t1 . Next,
we consider two indices ρ, σ such that d(U ′

ρ,t2 , U
′
σ,t3) > 0. If ρ = 1, we

then set J2 = I2 and U ′
2 = U ′

1,t2 . Otherwise, we cover I2 with two open
intervals J2 and J3 with the property that J2 is disjoint from I3 and J3 is
disjoint from I1. We then choose U ′

2 = U ′
1,t2 and U ′

3 = U ′
2,t2 . From this we

are ready to proceed inductively. Note therefore that, in our refinement of
the covering, each interval Ij with j ≥ 2 is either “split into two halves”
or remains the same (see Figure 6.1, left).

Next, fixing the notation (ai, bi) = Ji, we choose δ > 0 with the prop-
erty:

(C) Each t ∈ K is contained in at least one segment (ai + δ, bi − δ) (see
Figure 6.1, right).

. . . . . .

M

J1

J2

J3

J5

U ′
1

U ′
2

U ′
3

J4

K

U ′
5

slices Γn
tU ′

4 J2

J1

K

J3

b3a3 + δ

b3 − δa3

Figure 6.1: The left picture shows the refinement of the covering. We split
I2 into J2 ∪ J3 because U ′

4 = U ′
1,t3 intersects U ′

2 = U ′
1,t2 . The

refined covering has the property that U ′
i ∩ U ′

i+1 = ∅. In the
right picture the segments (ak, bk) = Jk and (ak + δ, bk − δ).
Any point τ ∈ K belongs to at least one (ai + δ, bi− δ) and to
at most one Jj \ (aj + δ, bj − δ).

Step 2: Conclusion. We now apply Lemma 6.1 to conclude the
existence of a family {∂Ωi,t} with the following properties:

• Ωi,t = Ωt if t 6∈ (ai, bi) and Ωi,t \ U ′
i = Ωt \ U ′

i if t ∈ (ai, bi);

• Hn(∂Ωi,t) ≤ Hn(∂Ωt) + 1
4N for every t;
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6 The existence of almost minimizing varifolds

• Hn(∂Ωi,t) ≤ Hn(∂Ωt) − 1
2N if t ∈ (ai + δ, bi − δ).

Note that, if t ∈ (ai, bi) ∩ (aj , bj), then j = i + 1 and in fact t 6∈ (ak, bk)
for k 6= i, i + 1. Moreover, d(U ′

i , U
′
i+1) > 0. Thus, we can define a new

sweepout {∂Ω′
t}t∈[0,1]

• Ω′
t = Ωt if t 6∈ ∪Ji;

• Ω′
t = Ωi,t if t is contained in a single Ji;

• Ω′
t =

[
Ωt \ (U ′

i ∪ U ′
i+1)

]
∪[Ωi,t ∩ U ′

i ]∪
[
Ωi+1,t ∩ U ′

i+1

]
if t ∈ Ji∩Ji+1.

In fact, it is as well easy to check that {∂Ω′
t}t∈[0,1] is homotopic to {∂Ωt}

and hence belongs to Λ.
Next, we want to compute F({∂Ω′

t}). If t 6∈ K, then t is contained in
at most two Ji’s, and hence ∂Ω′

t can gain at most 2 · 1
4N in area:

t 6∈ K ⇒ Hn(∂Ω′
t) ≤ Hn(∂Ωt) +

1
2N

≤ m0(Λ) − 1
2N

. (6.2)

If t ∈ K, then t is contained in at least one segment (ai + δ, bi − δ) ⊂ Ji
and in at most a second segment Jl. Thus, the area of ∂Ω′

t looses at least
1

2N in U ′
i and gains at most 1

4N in U ′
l . Therefore we conclude

t ∈ K ⇒ Hn(∂Ω′
t) ≤ Hn(∂Ωt) −

1
4N

≤ m0(Λ) − 1
8N

. (6.3)

Hence F({∂Ω′
t}) ≤ m0(Λ)− (8N)−1, which is a contradiction to m0(Λ) =

infΛ F .

6.2 Proof of Lemma 6.1

The proof consists of two steps.

Step 1: Freezing. First of all we choose open sets A and B such that

• U ⊂⊂ A ⊂⊂ B ⊂⊂ U ′;

• ∂Ξt0 ∩ C is a smooth surface, where C = B \A.

This choice is clearly possible since there are only finitely many singular-
ities of ∂Ξt0 . Next, we fix two smooth functions ϕA and ϕB such that
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6.2 Proof of Lemma 6.1

• ϕA + ϕB = 1;

• ϕA ∈ C∞
c (B), ϕB ∈ C∞

c (M \A).

Now, we fix normal coordinates (z, σ) ∈ ∂Ξt0 ∩ C × (−δ, δ) in a regular
δ-neighborhood of C ∩ ∂Ξt0 . Because of the convergence of Ξt to Ξt0 we
can fix η > 0 and an open C ′ ⊂ C, such that the following holds for every
t ∈ (t0 − η, t0 + η):

• ∂Ξt ∩ C is the graph of a function gt over ∂Ξt0 ∩ C;

• Ξt ∩ C \ C ′ = Ξt0 ∩ C \ C ′;

• Ξt ∩ C ′ = {(z, σ) : σ < gt(z)} ∩ C ′,

(see Figure 6.2). Obviously, gt0 ≡ 0. We next introduce the functions

gt,s,τ := ϕBgt + ϕA((1 − s)gt + sgτ ) (6.4)

for t, τ ∈ (t0 − η, t0 + η), s ∈ [0, 1]. Since gt converges smoothly to gt0 as
t→ t0, by choosing η arbitrarily small, we can make sups,τ ‖gt,s,τ − gt‖C1

arbitrarily small. Next, if we express the area of the graph of a function
g over ∂Ξt0 ∩ C as an integral functional of g, this functional depends
obviously only on g and its first derivatives. Thus, if Γt,s,τ is the graph
of gt,s,τ , then we can choose η so small that

max
s,τ

Hn(Γt,s,τ ) ≤ H(∂Ξt ∩ C) +
ε

16
. (6.5)

Now, given t0 − η < a < a′ < b′ < b < t0 + η, we choose a′′ ∈ (a, a′) and
b′′ ∈ (b′, b) and fix:

• a smooth function ψ : [a, b] → [0, 1] which is identically equal to 0
in a neighborhood of a and b and equal to 1 on [a′′, b′′];

• a smooth function γ : [a, b] → [t0 − η, t0 + η] which is equal to the
identity in a neighborhood of a and b and indentically t0 in [a′′, b′′].

Next, define the family of open sets {∆t} as follows:

• ∆t = Ξt for t 6∈ [a, b];

• ∆t \B = Ξt \B for all t;
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6 The existence of almost minimizing varifolds

• ∆t ∩A = Ξγ(t) ∩A for t ∈ [a, b];

• ∆t ∩ C \ C ′ = Ξt0 ∩ C \ C ′ for t ∈ [a, b];

• ∆t ∩ C ′ = {(z, σ) : σ < gt,ψ(t),γ(t)(z)} for t ∈ [a, b].

Note that {∂∆t} is in fact a sweepout homotopic to ∂Ξt. In addition:

• ∆t = Ξt if t 6∈ [a, b], and ∆t and Ξt coincide outside of B (and hence
outside of U ′) for every t;

• ∆t ∩A = Ξγ(t) ∩A for t ∈ [a, b] (and hence ∆t ∩ U = Ξγ(t) ∩ U).

Therefore, ∆t ∩ U = Ξt0 ∩ U for t ∈ [a′′, b′′], i.e. ∆t ∩ U is frozen in the
interval [a′′, b′′]. Moreover, because of (6.5),

Hn(∂∆t ∩ C) ≤ Hn(∂Ξt ∩ C) +
ε

16
for t ∈ [a, b]. (6.6)

Step 2: Dynamic competitor. Next, fix a smooth function χ :
[a′′, b′′] → [0, 1] which is identically 0 in a neighborhood of a′′ and b′′ and
which is identically 1 on [a′, b′]. We set

• Ξ′
t = ∆t for t 6∈ [a′′, b′′];

• Ξ′
t \A = ∆t \A for t ∈ [a′′, b′′];

• Ξ′
t ∩A = Ωχ(t) ∩A for t ∈ [a′′, b′′].

The new family {∂Ξ′
t} is also a sweepout, obviously homotopic to {∂∆t}

and hence homotopic to {∂Ξt} (see Figure 6.2). Next, we will estimate
Hn(∂Ξ′

t). For t 6∈ [a, b], Ξ′
t ≡ Ξt and hence

Hn(∂Ξ′
t) = Hn(∂Ξt) for t 6∈ [a, b] . (6.7)

For t ∈ [a, b], we anyhow have Ξ′
t = Ξt on M \B and Ξ′

t = ∆t on C. This
shows the property (a) of the lemma. Moreover, for t ∈ [a, b] we have

Hn(∂Ξ′
t) −Hn(∂Ξt) ≤ [Hn(∂∆t ∩ C) −Hn(∂Ξt ∩ C)]

+[Hn(∂Ξ′
t ∩A) −Hn(∂Ξt ∩A)]

(6.6)

≤ ε

16
+ [Hn(∂Ξ′

t ∩A) −Hn(∂Ξt ∩A)] .(6.8)

To conclude, we have to estimate the part in A in the time interval
[a, b]. We have to consider several cases separately.
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t0 − η
a

a′

a′′

b′

b′′

b
t0 + η

C

A

C ′

∂Ξt

∂Ξt0

Figure 6.2: The left picture shows the intervals involved in the construc-
tion. If we focus on the smaller set A, then: the sets Ξ′

t

coincide with ∆t and evolve from Ξa to Ξt0 (resp. Ξt0 to Ξb)
in [a, a′′] (resp. [b′′, b]); they then evolve from Ξt0 to Ω1 (resp.
Ω1 to Ξt0) in [a′′, a′] (resp. [b′, b′′]). On the right picture, the
sets in the region C. Indeed, the evolution takes place in the
region C ′ where we patch smoothly Ξt0 with Ξγ(t) into the sets
∆t.

(i) Let t ∈ [a, a′′]∪ [b′′, b]. Then Ξ′
t ∩A = ∆t ∩A = Ξγ(t) ∩A. However,

γ(t), t ∈ (t0 − η, t0 + η) and, having chosen η sufficiently small, we
can assume

|Hn(∂Ξs ∩A) −Hn(∂Ξσ ∩A)| ≤ ε

16
(6.9)

for every σ, s ∈ (t0−η, t0+η). (Note: this choice of η is independent
of a and b!). Thus, using (6.8), we get

Hn(∂Ξ′
t) ≤ Hn(∂Ξt) +

ε

8
. (6.10)

(ii) Let t ∈ [a′′, a′] ∪ [b′′, b′]. Then ∂Ξ′
t ∩ A = ∂Ωχ(t) ∩ A. Therefore we

can write, using (6.8),

Hn(∂Ξ′
t) −Hn(∂Ξt) ≤ ε

16
+ [Hn(∂Ξt0 ∩A) −Hn(∂Ξt ∩A)]

+ [Hn(∂Ωχ(t) ∩A) −Hn(∂Ξt0 ∩A)]
(4.3),(6.9)

≤ ε

16
+

ε

16
+
ε

8
=

ε

4
. (6.11)
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6 The existence of almost minimizing varifolds

(iii) Let t ∈ [a′, b′]. Then we have Ξ′
t ∩ A = Ω1 ∩ A. Thus, again using

(6.8),

Hn(∂Ξ′
t) −Hn(∂Ξt) ≤ ε

16
+ [Hn(∂Ω1 ∩A) −Hn(∂Ξt0 ∩A)]

+ [Hn(∂Ξt0 ∩A) −Hn(∂Ξt ∩A)]
(4.4),(6.9)

≤ ε

16
− ε+

ε

16
< −ε

2
. (6.12)

Gathering the estimates (6.7), (6.10), (6.11) and (6.12), we finally obtain
the properties (b) and (c) of the lemma. This finishes the proof.

6.3 The multi-parameter situation

The min-max construction of Chapter 2 is based on the notion of 1-
parameter families. The same construction could also be made with k-
parameter families, where k is an arbitrary natural number. One motiva-
tion is the fact that the 1-parameter family construction should produce
a minimal surface of index 1 (see Chapter 9 for more on this). Corre-
spondingly, the construction with k-parameter families should produce a
surface of index k. This might be helpful to prove that there are many non-
trivial minimal surfaces in Riemannian manifolds. However, it is clearly
not enough. One would have to exclude that the higher index is simply
coming from the fact that the k-parameter family approach produces the
same minimal surface as the 1-parameter family approach with a higher
multiplicity. Therefore, some more refined arguments would be necessary
(see [42] for some constructions in this direction).

Large parts of the existence proof do not rely on the choice of k, for
example Chapters 7 and 8. The key step is to show that there is an
almost minimizing min-max sequence. The proofs of this chapter can
be mimicked also in the multi-parameter case. But some arguments get
much more complicated. For instance, Step 1 in the proof of Proposition
6.4 becomes combinatorically far more difficult since the covering is no
longer with intervals, but with k-dimensional cubes. In the master thesis
of Fuchs all these complications are taken care of [36]. Moreover, both
the settings of this thesis and [18] are treated.

The main result of [36] is the following
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6.3 The multi-parameter situation

Proposition 6.5. Let Λ be a homotopically closed set of k-parameter
sweepouts. Then there are a natural number ω = ω(k) and a min-max
sequence {ΓN} such that

• ΓN converges to a stationary varifold;

• for any (U1, . . . , Uω) ∈ COω, ΓN is 1
N -a.m. in (U1, . . . , Uω) for N

large enough.

Here COω is the obvious generalization of CO = CO2. There is an
analogous statement for the setting of [18] in the case n = 2. Moreover,
there is a corresponding generalization of Proposition 4.4 to the multi-
parameter situation.
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7 The existence of
replacements

In this chapter we fix An ∈ AN r(x)(x) and prove the conclusion of Propo-
sition 4.6.

7.1 Setting

For every j, consider the class H(Ωj , An) of sets Ξ such that there is a
family {Ωt} satisfying Ω0 = Ωj , Ω1 = Ξ, (4.1), (4.2) and (4.3) for ε = 1/j
and U = An. Consider next a sequence Γj,k = ∂Ωj,k which is minimizing
for the perimeter in the class H(Ωj , An): this is the minimizing sequence
for the (8j)−1-homotopic Plateau problem mentioned in Section 4.3. Up
to subsequences, we can assume that

• Ωj,k converges to a Caccioppoli set Ω̃j ;

• Γj,k converges to a varifold V j ;

• V j (and a suitable diagonal sequence Γ̃j = Γj,k(j)) converges to a
varifold Ṽ .

The proof of Proposition 4.6 will then be broken into three steps. In the
first one we show

Lemma 7.1. For every j and every y ∈ An there are a ball B = Bρ(y) ⊂
An and a k0 ∈ N with the following property. Every open set Ξ such that

• ∂Ξ is smooth except for a finite set;

• Ξ \B = Ωj,k \B;

• Hn(∂Ξ) < Hn(∂Ωj,k)
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belongs to H(Ωj , An) if k ≥ k0.

In the second step we use Lemma 7.1 and Theorem 2.13 to show:

Lemma 7.2. ∂Ω̃j ∩ An is a stable minimal hypersurface in An and
V j An = ∂Ω̃j An.

Recall that in this chapter we use the convention of Definition 3.5. In
the third step we use Lemma 7.2 to conclude that the sequence Γ̃j and
the varifold Ṽ meet the requirements of Proposition 4.6.

7.2 Proof of Lemma 7.1

The proof of the lemma is achieved by exhibiting a suitable homotopy
between Ωj,k and Ξ. The key idea is:

• First deform Ωj,k to the set Ω̃ which is the union of Ωj,k \B and the
cone with vertex y and base Ωj,k ∩ ∂B;

• then deform Ω̃ to Ξ.

The surfaces of the homotopizing family do not gain too much in area,
provided B = Bρ(y) is sufficiently small and k sufficiently large: in this
case the area of the surface Γj,k∩B will, in fact, be close to the area of the
cone. This “blow down-blow up” procedure is an idea which we borrow
from [72] (see Section 7 of [18]).

Proof of Lemma 7.1. We fix y ∈ An and j ∈ N. Let B = Bρ(y) with
B2ρ(y) ⊂ An and consider an open set Ξ as in the statement of the
lemma. The choice of the radius of the ball Bρ(y) and of the constant k0

(which are both independent of the set Ξ) will be determined at the very
end of the proof.

Step 1: Stretching Γj,k ∩ ∂Br(y). First of all, we choose r ∈ (ρ, 2ρ)
such that, for every k,

Γj,k is regular in a neighborhood of ∂Br(y) (7.1)
and intersects it transversally.

In fact, since each Γj,k has finitely many singularities, Sard’s lemma im-
plies that (7.1) is satisfied by a.e. r. We assume moreover that 2ρ is
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7 The existence of replacements

smaller than the injectivity radius. For each z ∈ Br(y) we consider the
closed geodesic arc [y, z] ⊂ Br(y) joining y and z. As usual, (y, z) denotes
[y, z] \ {y, z}. We let K be the open cone

K =
∪

z∈∂B∩Ωj,k

(y, z) . (7.2)

We now show that Ωj,k can be homotopized through a family Ω̃t to a Ω̃1

in such a way that

• maxtHn(∂Ω̃t) −Hn(∂Ωj,k) can be made arbitrarily small;

• Ω̃1 coincides with K in a neighborhood of ∂Br(y).

First of all consider a smooth function ϕ : [0, 2ρ] → [0, 2ρ] with

• |ϕ(s) − s| ≤ ε and 0 ≤ ϕ′ ≤ 2;

• ϕ(s) = s if |s− r| > ε and ϕ ≡ r in a neighborhood of r.

Set Φ(t, s) := (1 − t)s + tϕ(s). Moreover, for every λ ∈ [0, 1] and every
z ∈ Br(y) let τλ(z) be the point w ∈ [y, z] with d(y, w) = λd(y, z). For
1 < λ < 2, we can still define τλ(z) to be the corresponding point on the
geodesic that is the extension of [y, z]. (Note that by the choice of ρ this
is well defined.) We are now ready to define Ω̃t (see Figure 7.1, left).

• Ω̃t \An(y, r − ε, r + ε) = Ωj,k \An(y, r − ε, r + ε);

• Ω̃t ∩ ∂Bs(y) = τs/Φ(t,s)(Ωj,k ∩ ∂BΦ(t,s)) for every s ∈ (r − ε, r + ε).

Thanks to (7.1), for ε sufficiently small, Ω̃t has the desired properties.
Moreover, since Ξ coincides with Ωj,k on M \ Bρ(y), the same argument
can be applied to Ξ. This shows that

w.l.o.g. we can assume K = Ξ = Ωk,j (7.3)
in a neighborhood of ∂Br(y).

Step 2: The homotopy. We then consider the following family of
open sets {Ωt}t∈[0,1] (see Figure 7.1, right):

• Ωt \Br(y) = Ωj,k \Br(y) for every t;
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7.2 Proof of Lemma 7.1

• Ωt ∩An(y, |1 − 2t|r, r) = K ∩An(y, |1 − 2t|r, r) for every t;

• Ωt ∩B(1−2t)r(y) = τ1−2t(Ωk,j ∩Br(y)) for t ∈ [0, 1
2 ];

• Ωt ∩B(2t−1)r(y) = τ2t−1(Ξ ∩Br(y)) for t ∈ [12 , 1].

∂Br+ε(y)
∂Br−ε(y)

∂Br(y)

∂B(1−2t)r(y)

Figure 7.1: The left picture illustrates the stretching of Γj,k into a cone-
like surface in a neighborhood of ∂Br(y). The right picture
shows a slice Ωt ∩Br(y) for t ∈ (0, 1/2).

Because of (7.3), this family satisfies (s1)-(s3), (sw1) and (sw3). It
remains to check,

max
t

Hn(∂Ωt) ≤ Hn(∂Ωj,k) +
1
8j

∀k ≥ k0 (7.4)

for a suitable choice of ρ, r and k0.
First of all we observe that, by the smoothness ofM , there are constants

µ and ρ0, depending only on the metric, such that the following holds for
every r < 2ρ < 2ρ0 and λ ∈ [0, 1]:

Hn(K) ≤ µrHn−1(∂Ωj,k ∩ ∂Br(y)) ; (7.5)
Hn([∂(τλ(Ωj,k ∩Br(y)))] ∩Bλr(y)) ≤ µHn(∂Ωj,k ∩Br(y)) ;(7.6)
Hn([∂(τλ(Ξ ∩Br(y)))] ∩Bλr(y)) ≤ µHn(∂Ξ ∩Br(y)) ; (7.7)∫ 2ρ

0

Hn−1(∂Ωj,k ∩ ∂Bτ (y)) dτ ≤ µHn(∂Ωj,k ∩B2ρ(y)) . (7.8)

In fact, for ρ small, µ will be close to 1. (7.5), (7.6) and (7.7) give the
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7 The existence of replacements

obvious estimate

max
t

Hn(∂Ωt) −Hn(∂Ωj,k) ≤ µHn(∂Ωj,k ∩B2ρ(y)) (7.9)

+µrHn−1(∂Ωj,k ∩ ∂Br(y)) .

Moreover, by (7.8) we can find r ∈ (ρ, 2ρ) which, in addition to (7.9),
satisfies

Hn−1(∂Ωj,k ∩ ∂Br(y)) ≤ 2µ
ρ
Hn(∂Ωj,k ∩B2ρ(y)) . (7.10)

Hence, we conclude

max
t

Hn(∂Ωt) ≤ Hn(∂Ωj,k) + (µ+ 4µ2)Hn(∂Ωj,k ∩B2ρ(y)) . (7.11)

Next, by the convergence of Γj,k = ∂Ωj,k to the stationary varifold V j ,
we can choose k0 such that

Hn(∂Ωj,k ∩B2ρ(y)) ≤ 2‖V j‖(B4ρ(y)) for k ≥ k0. (7.12)

Finally, by the monotonicity formula,

‖V j‖(B4ρ(y)) ≤ CM‖V j‖(M)ρn . (7.13)

We are hence ready to specify the choice of the various parameters.

• We first determine the constants µ and ρ0 < Inj (M) (which depend
only on M) which guarantee (7.5), (7.6), (7.7) and (7.8);

• we subsequently choose ρ < ρ0 so small that

2(µ+ 4µ2)CM‖V j‖(M)ρn < (8j)−1,

and k0 so that (7.12) holds.

At this point ρ and k are fixed and, choosing r ∈ (ρ, 2ρ) satisfying (7.1)
and (7.10), we construct {∂Ωt} as above, concluding the proof of the
lemma.
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7.3 Proof of Lemma 7.2

Fix j ∈ N and y ∈ An and let B = Bρ(y) ⊂ An be the ball given
by Lemma 7.1. We claim that Ω̃j minimizes the perimeter in the class
P(Ω̃j , Bρ/2(y)). Assume, by contradiction, that Ξ is a Caccioppoli set
with Ξ \Bρ/2(y) = Ω̃j \Bρ/2(y) and

Per (Ξ) < Per (Ω̃j) − η . (7.14)

Note that, since 1Ωj,k → 1Ω̃j strongly in L1, up to extraction of a subse-
quence we can assume the existence of τ ∈ (ρ/2, ρ) such that

lim
k→∞

‖1Ω̃j − 1Ωj,k‖L1(∂Bτ (y)) = 0 . (7.15)

We also recall that, by the semicontinuity of the perimeter,

Per (Ω̃j) ≤ lim inf
k→∞

Hn(∂Ωj,k) . (7.16)

Define therefore the set Ξj,k by setting

Ξj,k = (Ξ ∩Bτ (y)) ∪ (Ωj,k \Bτ (y)) .

(7.14), (7.15) and (7.16) imply

lim sup
k→∞

[Per (Ξj,k) −Hn(∂Ωj,k)] ≤ −η . (7.17)

Fix next k and recall the following standard way of approximating Ξj,k

with a smooth set. We first fix a compactly supported convolution kernel
ϕ, then we consider the function gε := 1Ξj,k ∗ ϕε and finally look at a
smooth level set ∆ε := {gε > t} for some t ∈ ( 1

4 ,
3
4 ). Then Hn(∂∆ε)

converges to Per (Ξj,k) as ε → 0 (see [38] in the Euclidean case and [50]
for the general one).

Clearly, ∆ε does not coincide anymore with Ωj,k outside Bρ(y). Thus,
fix (a, b) ⊂ (τ, ρ) with the property that Σ := Ωj,k ∩ Bb(y) \ Ba(y) is
smooth. Fix a regular tubular neighborhood T of Σ and corresponding
normal coordinates (ξ, σ) on it. Since Ξj,k \ Bτ (y) = Ωj,k \ Bτ (y), for ε
sufficiently small ∂∆ε∩Bb(y)\Ba(y) ⊂ T and T∩∆ε is the set {σ < fε(ξ)}
for some smooth function fε. Moreover, as ε→ 0, fε → 0 smoothly.

Therefore, a patching argument entirely analogous to the one of the
freezing construction (see Section 6.2) allows us to modify Ξj,k to a set
∆j,k with the following properties:

71



7 The existence of replacements

• ∂∆j,k is smooth outside of a finite set;

• ∆j,k \B = Ωj,k \B;

• lim supk(Hn(∂∆j,k) −Hn(∂Ωj,k)) ≤ −η < 0.

For k large enough, Lemma 7.1 implies that ∆j,k ∈ H(Ωj , An), which
would contradict the minimality of the sequence Ωj,k.

Next, in order to show that the varifold V j is induced by ∂Ω̃j , it suffices
to show that in fact Hn(∂Ωj,k) converges to Hn(∂Ω̃j) (since we have not
been able to find a precise reference for this well-known fact, we give a
proof in Section 7.3.1; see Proposition 7.3). On the other hand, if this is
not the case, then we have

Hn(∂Ω̃j ∩Bρ/2(y)) < lim sup
k→∞

Hn(∂Ωj,k ∩Bρ/2(y))

for some y ∈ An and some ρ to which we can apply the conclusion of
Lemma 7.1. We can then use Ω̃j in place of Ξ in the argument of the
previous step to contradict, once again, the minimality of the sequence
{Ωj,k}k. The stationarity and stability of the surface ∂Ω̃j is, finally, an
obvious consequence of the variational principle.
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Figure 7.2: On the left, the set Ω̃j , the competitor Ξ, one set of the se-
quence {Ωj,k}k and the corresponding Ξj,k. On the right, the
smoothing ∆ε of Ξj,k and the final set ∆j,k (a competitor for
Ωj,k).
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7.3 Proof of Lemma 7.2

7.3.1 Varifolds and Caccioppoli set limits

Proposition 7.3. Let {Ωk} be a sequence of Caccioppoli sets and U an
open subset of M . Assume that

(i) D1Ωk → D1Ω in the sense of measures in U ;

(ii) Per (Ωk, U) → Per (Ω, U)

for some Caccioppoli set Ω and denote by V k and V the varifolds induced
by ∂∗Ωk and ∂∗Ω. Then V k → V in the sense of varifolds.

Proof. First, we note that by the rectifiability of the boundaries we can
write

V k = Hn ∂∗Ωk ⊗ δTx∂∗Ωk , V = Hn ∂∗Ω ⊗ δTx∂∗Ω , (7.18)

where ∂∗Ω, ∂∗Ωk are the reduced boundaries and Tx∂
∗Ω is the approxi-

mate tangent plane to Ω in x (see Chapter 3 of [38] for the relevant defi-
nitions). With the notation µ⊗ αx we understand, as usual, the measure
ν on a product space X × Y given by

ν(E) =
∫ ∫

1E(x, y) dαx(y) dµ(x) ,

where µ is a Radon measure on X and x 7→ αx is a weak∗ µ-measurable
map from X into M(Y ) (the space of Radon measures on Y ).

By (ii) we have ‖V k‖ → ‖V ‖ and hence there is W ∈ V(U) such
that (up to subsequences) V k → W . In addition, ‖V ‖ = ‖W‖. By
the disintegration theorem (see Theorem 2.28 in [11]) we can write W =
Hn ∂∗Ω ⊗ αx. The proposition is proved, once we have proved

(Cl) αx0 = δTx0∂
∗Ω for Hn-a.e. x0 ∈ ∂∗Ω.

To prove this, we reduce the situation to the case where Ω is a half-space
by a classical blowup analysis. Having fixed a point x0, a radius r and the
rescaled exponential maps T x0

r : B1 → Br(x0) (see Section 8.2), we define

• V kr := (T x0
r )−1

] V k and Wr := (T x0
r )−1

] W ;

• Ωkr := (T x0
r )−1(Ωk) and Ωr := (T x0

r )−1(Ω) .
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7 The existence of replacements

Clearly, V kr and Ωkr are related by the same formulas as in (7.18). Next,
let G be the set of radii r such that

Hn(∂∗Ωk ∩ ∂Br(x0)) = Hn(∂∗Ω ∩ ∂Br(x0)) = 0

for every k and observe that the complement of G is a countable set. De-
note by H the set {x1 < 0}. Then, after a suitable choice of orthonormal
coordinates in B1, we have

(a) D1Ωk
r
→ D1Ωr and Per (Ωkr ,B1) → Per (Ωr,B1) for k → ∞ and

r ∈ G;

(b) D1Ωr → D1H and Per (Ωr,B1) → Per (H,B1) for r → 0, r ∈ G;

(c) T0∂
∗H = Tx0∂

∗Ω;

(d) V kr →Wr for k → ∞ and r ∈ G.

(The assumption r ∈ G is essential: see Proposition 1.62 of [11] or Propo-
sition 2.7 of [26]).

Next, for Hn-a.e. x0 ∈ ∂∗Ω we have in addition

(e) Wr → Hn ∂∗H ⊗ αx0

(in fact, if D ⊂ C(PnR) is a dense set, the claim holds for every x0 which is
a point of approximate continuity for all the functions x 7→

∫
ϕ(y)dαx(y)

with ϕ ∈ D).
By a diagonal argument we get sets Ω̃k = Ωkr(k) such that

(f) D1Ω̃k → D1H and Per (Ω̃k,B1) → Per (H,B1);

(g) Hn ∂∗Ω̃k ⊗ δTx∂∗Ω̃k → Hn ∂∗H ⊗ αx0 .

Let e1 = (1, 0, . . . 0) and ν be the exterior unit normal to ∂∗Ωk. Then (f)
implies

lim
k→∞

∫
∂∗Ω̃k

‖ν − e1‖2 = lim
k→∞

(
2Hn(∂∗Ω̃k) − 2

∫
∂∗Ω̃k

〈ν, e1〉
)

= 0 .

This obviously gives Hn ∂∗Ω̃k ⊗ δTx∂∗Ω̃k → Hn ∂∗H ⊗ δT0∂∗H , which
together with (c) and (g) gives αx0 = δT0∂∗H = δTx0∂

∗Ω, which is indeed
the Claim (Cl).
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7.4 Proof of Proposition 4.6

7.4 Proof of Proposition 4.6

Consider the varifolds V j and the diagonal sequence Γ̃j = Γj,k(j) of Section
7.1. Observe that Γ̃j is obtained from Γj through a suitable homotopy
which leaves everything fixed outside An. Consider An(x, ε, r(x) − ε)
containing An. It follows from the a.m. property of {Γj} that {Γ̃j} is also
a.m. in An(x, ε, r(x) − ε).

Note next that if a sequence is a.m. in an open set U and U ′ is a second
open set contained in U , then the sequence is a.m. in U ′ as well. This
trivial observation and the discussion above implies that Γ̃j is a.m. in any
An ∈ AN r(x)(x).

Fix now an annulus An′ = An(x, ε, r(x) − ε) ⊃⊃ An. Then M =
An′ ∪ (M \ An). For any y ∈ M \ An (and y 6= x) consider r′(y) :=
min{r(y),d(y,An)}. If An′′ ∈ AN r′(y)(y), then Γj ∩ An′′ = Γ̃j ∩ An′′,
and hence {Γ̃j} is a.m. in An′′. If y ∈ An′, then we can set r′(y) =
min{r(y),d(y, ∂An′)}. If An′′ ∈ AN r′(y)(y), then An′′ ⊂ An′ and, since
{Γ̃j} is a.m. in An′ by the argument above, {Γ̃j} is a.m. in An′′.

We next show that Ṽ is a replacement for V in An. By Theorem 3.3,
Ṽ is a stable minimal hypersurface in An. It remains to show that Ṽ is
stationary. Ṽ is obviously stationary in M \An, because it coincides with
V there. Let next An′ ⊃⊃ An. Since {An′,M \ An} is a covering of M ,
we can subordinate a partition of unity {ϕ1, ϕ2} to it. By the linearity of
the first variation, we get [δṼ ](χ) = [δṼ ](ϕ1χ) + [δṼ ](ϕ2χ) = [δṼ ](ϕ1χ).
Therefore it suffices to show that Ṽ is stationary in An′. Assume, by
contradiction, that there is χ ∈ Xc(An′) such that [δṼ ](χ) ≤ −C < 0 and
denote by ψ the isotopy defined by ∂ψ(x,t)

∂t = χ(ψ(x, t)). We set

Ṽ (t) := ψ(t)]Ṽ , Σj(t) = ψ(t, Γ̃j) . (7.19)

By continuity of the first variation there is ε > 0 such that δṼ (t)(χ) ≤
−C/2 for all t ≤ ε. Moreover, since Σj(t) → Ṽ (t) in the sense of varifolds,
there is J such that

[δΣj(t)](χ) ≤ −C
4

for j > J and t ≤ ε . (7.20)

Integrating (7.20) we conclude Hn(Σj(t)) ≤ Hn(Γ̃j) − Ct/8 for every
t ∈ [0, ε] and j ≥ J . This contradicts the a.m. property of Γ̃j in An′, for
j large enough.
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7 The existence of replacements

Finally, observe that Hn(Γ̃j) ≤ Hn(Γj) by construction and

lim inf
n

(Hn(Γ̃j) −Hn(Γj)) ≥ 0 ,

because otherwise we would contradict the a.m. property of {Γj} in An.
We thus conclude that ‖V ‖(M) = ‖Ṽ ‖(M).
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8 The regularity of
varifolds with
replacements

In this chapter we prove Proposition 4.8. We recall that we adopt the
convention of Definition 3.5. We first list several technical facts from
geometric measure theory.

8.1 Maximum principle

The first one is just a version of the classical maximum principle.

Theorem 8.1. (i) Let V be a stationary varifold in a ball Br(0) ⊂ Rn+1.
If supp(V ) ⊂ {zn+1 ≥ 0} and supp(V ) ∩ {zn+1 = 0} 6= ∅, then Br(0) ∩
{zn+1 = 0} ⊂ supp(V ).

(ii) Let W be a stationary varifold in an open set U ⊂ M and K be a
smooth strictly convex closed set. If x ∈ supp(V ) ∩ ∂K, then supp(V ) ∩
Br(x) \K 6= ∅ for every positive r.

(i) is a very special case of the general result of [73]. (ii) is proved for
n = 2 in Appendix B of [18]. The proof can be translated with the obvious
modifications to our situation. For the reader’s convenience we include
the proof in Section 8.5.

8.2 Tangent cones

The second device is a fundamental tool of geometric measure theory.
Consider a stationary varifold V ∈ V(U) with U ⊂ M and fix a point
x ∈ supp(V ) ∩ U . For any r < Inj (M) consider the rescaled exponential
map T xr : B1 3 z 7→ expx(rz) ∈ Br(x), where expx denotes the exponential
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8 The regularity of varifolds with replacements

map with base point x. We then denote by Vx,r the varifold (T xr )−1
] V ∈

V(B1). Then, as a consequence of the monotonicity formula, one concludes
that for any sequence {Vx,rn

} there exists a subsequence converging to a
stationary varifold V ∗ (stationary for the Euclidean metric!), which in
addition is a cone (see Corollary 42.6 of [69]). Any such cone is called
tangent cone to V in x. For varifolds with the replacement property, the
following is a fundamental step towards the regularity (first proved by
Pitts for n ≤ 5 in [56]).

Lemma 8.2. Let V be a stationary varifold in an open set U ⊂M having
a replacement in any annulus An ∈ AN r(x)(x) for some positive function
r. Then:

• V is integer rectifiable;

• θ(x, V ) ≥ 1 for any x ∈ U ;

• any tangent cone C to V at x is a minimal hypersurface for general
n and (a multiple of) a hyperplane for n ≤ 6.

Proof. First of all, by the monotonicity formula there is a constant CM
such that

‖V ‖(Bσ(x))
σn

≤ CM
‖V ‖(Bρ(x))

ρn
(8.1)

for all x ∈ M and all 0 < σ ≤ ρ < Inj (M). Fix x ∈ supp (‖V ‖) and
0 < r < min{r(x)/2, Inj (M)/4}. Next, we replace V with V ′ in the
annulus An(x, r, 2r). We observe that ‖V ′‖ 6≡ 0 on An(x, r, 2r), otherwise
there would be ρ ≤ r and ε such that supp (‖V ′‖) ∩ ∂Bρ(x) 6= ∅ and
supp (‖V ′‖)∩An(x, ρ, ρ+ε) = ∅. By the choice of ρ, this would contradict
Theorem 8.1(ii).

Thus we have found that V ′ An(x, r, 2r) is a non-empty stable minimal
hypersurface and hence there is y ∈ An(x, r, 2r) with θ(y, V ′) ≥ 1. By
(8.1),

‖V ‖(B4r(x))
(4r)n

=
‖V ′‖(B4r(x))

(4r)n
≥ ‖V ′‖(B2r(y))

(4r)n

≥ ωn
2nCM

θ(y, V ′) ≥ ωn
2nCM

.
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8.3 Unique continuation and two technical lemmas on varifolds

Hence, θ(x, V ) is uniformly bounded away from 0 on supp (‖V ‖) and Al-
lard’s rectifiability theorem (see Theorem 42.4 of [69]) gives that V is
rectifiable.

Let C denote a tangent cone to V at x and ρk → 0 a sequence with
Vx,ρk

→ C. Note that C is stationary. Let V ′
k be a replacement of V in

An(x, λρk, (1−λ)ρk), where λ ∈ (0, 1/4), and set W ′
k = (T xρk

)−1
] V ′

k. Up to
subsequences we have W ′

k → C ′ for some stationary varifold C ′. By the
definition of a replacement we obtain

C ′ = C in Bλ ∪An(0, 1 − λ, 1) ; (8.2)
‖C ′‖(Bρ) = ‖C‖(Bρ) for ρ ∈ (0, λ) ∪ (1 − λ, 1) .

Moreover, since C is cone,

‖C ′‖(Bσ)
σn

=
‖C ′‖(Bρ)

ρn
for all ρ, σ ∈ (0, λ) ∪ (1 − λ, 1) . (8.3)

By the monotonicity formula for stationary varifolds in Euclidean spaces,
(8.3) implies that C ′ as well is a cone (see for instance 17.5 of [69]). More-
over, by Theorem 3.3, C ′ An(0, λ, 1 − λ) is a stable embedded minimal
hypersurface. Since C and C ′ are integer rectifiable, the conical structure
of C implies that supp(C) and supp(C ′) are closed cones (in the usual
meaning for sets) and the densities θ(·, C) and θ(·, C ′) are 0-homogeneous
functions (see Theorem 19.3 of [69]). Thus (8.2) implies C = C ′ and
hence that C is a stable minimal hypersurface in An(0, λ, 1 − λ). Since
λ is arbitrary, C is a stable minimal hypersurface in the punctured ball.
Thus, if n ≤ 6, by Simons’ theorem (see Theorem B.2 in [69]) C is in
fact a multiple of a hyperplane. If instead n ≥ 7, since {0} has dimen-
sion 0 ≤ n − 7, C is a minimal hypersurface in the whole ball B1 (recall
Definition 3.5).

8.3 Unique continuation and two
technical lemmas on varifolds

To conclude the proof we need yet three auxiliary results. All of them
are justified in Section 8.5. The first one is a consequence of the classical
unique continuation for minimal surfaces.

79



8 The regularity of varifolds with replacements

Theorem 8.3. Let U be a smooth open subset of M and Σ1,Σ2 ⊂ U two
connected smooth embedded minimal hypersurfaces with ∂Σi ⊂ ∂U . If Σ1

coincides with Σ2 in some open subset of U , then Σ1 = Σ2.

The other two are elementary lemmas for stationary varifolds.

Lemma 8.4. Let r < Inj (M) and V a stationary varifold. Then

supp(V ) ∩Br(x) =
∪

0<s<r

supp(V Bs(x)) ∩ ∂Bs(x) . (8.4)

Lemma 8.5. Let Γ ⊂ U be a relatively closed set of dimension n and S a
closed set of dimension at most n−2 such that Γ\S is a smooth embedded
hypersurface. Assume Γ induces a varifold V which is stationary in U . If
∆ is a connected component of Γ\S, then ∆ induces a stationary varifold.

8.4 Proof of Proposition 4.8

The proof consists of five steps.

Step 1: Setup. Let x ∈ M and ρ ≤ min{r(x)/2, Inj (M)/2}. Then
we choose a replacement V ′ for V in An(x, ρ, 2ρ) coinciding with a stable
minimal embedded hypersurface Γ′. Next, choose s ∈ (0, ρ) and t ∈
(ρ, 2ρ) such that ∂Bt(x) intersects Γ′ transversally. Then we pick a second
replacement V ′′ of V ′ in An(x, s, t), coinciding with a stable minimal
embedded hypersurface Γ′′ in the annulus An(x, s, t). Now we fix a point
y ∈ ∂Bt(x)∩Γ′ that is a regular point of Γ′ and a radius r > 0 sufficiently
small such that Γ′∩Br(y) is topologically an n-dimensional ball in M and
γ = Γ′ ∩ ∂Bt(x) ∩ Br(y) is a smooth (n − 1)-dimensional surface. This
can be done due to our regularity assumption on y. Then we choose a
diffeomorphism ζ : Br(y) → B1 such that

ζ(∂Bt(x)) ⊂ {z1 = 0} and ζ(Γ′′) ⊂ {z1 > 0} ,

where z1, . . . , zn+1 are orthonormal coordinates in B1. Finally suppose

ζ(γ) = {(0, z2, . . . , zn, g′((0, z2, . . . , zn))} ,
ζ(Γ′) ∩ {z1 ≤ 0} = {(z1, . . . , zn, g′((z1, . . . , zn))}

for some smooth function g′. Note that
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8.4 Proof of Proposition 4.8

• any kind of estimates (like curvature estimates or area bound or
monotonicity) for a minimal surface Γ ⊂ Br(y) translates into sim-
ilar estimates for the surface ζ(Γ);

• varifolds in Br(y) are pushed forward to varifolds in B1 and there
is a natural correspondence between tangent cones to V in ξ and
tangent cones to ζ]V in ζ(ξ).

We will use the same notation for the objects in Br(y) and their images
under ζ.

z1 = 0

B1

ζ(Γ′)

ζ(Γ′′)
ζ(γ)

Figure 8.1: The surfaces Γ′, Γ′′ and γ in the coordinates z.

Step 2: Tangent cones. We next claim that any tangent cone to V ′′

at any point w ∈ γ is a unique flat space. Note that all these w are regular
points of Γ′. Therefore by our transversality assumption every tangent
cone C at w coincides in {z1 < 0} with the half-space TwΓ′ ∩ {z1 < 0}.
We wish to show that C coincides with TwΓ′. By the constancy theorem
(see Theorem 41.1 in [69]), it suffices to show supp(C) ⊂ TwΓ′.

Note first that if z ∈ TwΓ′ ∩ {z1 = 0} is a regular point for C, then by
Theorem 8.3, C coincides with TwΓ′ in a neighborhood of z. Therefore,
if z ∈ supp(C) ∩ {z1 = 0}, either z is a singular point, or C = TwΓ′ in
a neighborhood of z. Assume now by contradiction that p ∈ supp(C) \
TwΓ′. Since, by Lemma 8.2 and the fact that Γ′′ has replacements due to
Proposition 4.7, SingC has dimension at most n− 7, we can assume that
p is a regular point of C. Consider next a sequence N j of smooth open
neighborhoods of SingC such that TwΓ′ \ N j

is connected and N j →
SingC. Let ∆j be the connected component of C \ N j

containing p.
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8 The regularity of varifolds with replacements

Then ∆j is a smooth minimal surface with ∂∆j ⊂ ∂N j . We conclude
that ∆j cannot touch {z1 = 0}: it would touch it in a regular point of
supp(C)∩ {z1 = 0} and hence it would coincide with TwΓ′ \N j

, which is
impossible because it contains p. If we let ∆ = ∪∆j , then ∆ is a connected
component of the regular part of C, which does not intersect {z1 = 0}.
Let W be the varifold induced by ∆: by Lemma 8.5 W is stationary. Since
C is a cone, W is also a cone. Thus supp(W ) 3 0. On the other hand
supp(W ) ⊂ {z1 ≥ 0}. Thus, by Theorem 8.1(i), {z1 = 0} ⊂ supp(W ).
But this would imply that {z1 = 0}∩TwΓ′ is in the singular set of C: this
is a contradiction because the dimension of {z1 = 0} ∩ TwΓ′ is n− 1.

Step 3: Graphicality. In this step we show that the surfaces Γ′ and
Γ′′ can be “glued” together at ∂Bt(x), that is

Γ′′ ⊂ Γ′ in Bt(x) \Bt−ε(x) for some ε > 0 . (8.5)

For this we fix z ∈ γ and, using the notation of Step 2, consider the
(exterior) unit normal τ(z) to the graph of g′. Let T zr : Rn+1 → Rn+1 be
the dilation of the (n+ 1)-space given by

T zr (z̄) =
z̄ − z

r
.

By Step 2 we know that any tangent cone to V ′′ at z is given by the tangent
space TzΓ′ and therefore the rescaled surfaces Γr = T zr (Γ′′) converge to
the half-space H = {v : τ(z) · v = 0, v1 > 0}. We claim that this implies
that we have

lim
z̄→z,z̄∈Γ′′

|(z̄ − z) · τ(z)|
|z̄ − z|

= 0 (8.6)

uniformly on compact subsets of γ. We argue by contradiction and assume
the claim is wrong. Then there is a sequence {zj} ⊂ Γ′′ with zj → z
and |(zj − z) · τ(z)| ≥ k|zj − z| for some k > 0. We can assume that
zj is a regular point of Γ′′ for all j ∈ N. We set rj = |zj − z|, then
there is a positive constant k̄ such that B2k̄rj

(zj) ∩H = ∅. This implies
that d(H,Bk̄rj

(zj)) ≥ k̄rj . By the minimality of Γ′′ we can apply the
monotonicity formula and find

‖V ′′‖(Bk̄rj
(zj)) ≥ Ck̄nrnj

for some positive constant C depending on the diffeomorphism ζ. In other
words, there is a considerable amount of the varifold that is far from the
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8.4 Proof of Proposition 4.8

half-space H. But this contradicts the fact that the corresponding full
space is the only tangent cone. We also point out that this convergence
is uniform on compact subsets of γ.

Now we denote by ν the smooth normal field to Γ′′ with ν ·(0, . . . , 0, 1) ≥
0. Let Σ be the space {(0, α1, . . . , αn) : αi ∈ R}. Then we assume
that zj → z, set rj = d(zj ,Σ) and define the rescaled hypersurfaces
Γj = T

zj
rj (Γ′′ ∩ Brj (zj)). Then all the Γj are smooth stable minimal

surfaces in B1, thus we can apply Theorem 3.3 to extract a subsequence
that converges to a stable minimal hypersurface in the ball B1/2. But
by (8.6) we know that this limit surface is simply TzΓ′ ∩ B1/2. Since the
convergence is in the C1 topology we have

lim
z̄→z,z̄∈Γ′′

ν(z̄) = τ(z) .

Again this convergence is uniform in compact subsets of γ.
For any z ∈ γ Theorem 3.3 gives us a radius σ > 0 and a function

g′′ ∈ C2({z1 ≥ 0}) with

Γ′′ ∩Bσ(z) = {(z1, . . . , zn, g′′(z1, . . . , zn)) : z1 > 0} ;
g′′(0, z2, . . . , zn) = g′(0, z2, . . . , zn) ;

Dg′′(0, z2, . . . , zn) = Dg′(0, z2, . . . , zn) .

Using elliptic regularity theory (see [37]), we conclude that g′ and g′′ are
the restriction of a smooth function g giving a minimal surface ∆. Using
now Theorem 8.3, we conclude that ∆ ⊂ Γ′, and hence that Γ′′ is a subset
of Γ′ in a neighborhood of z. Since this is vaild for every z ∈ γ, we
conclude (8.5).

Step 4: Regularity in the annuli. In this step we show that V is a
minimal hypersurface in the punctured ball Bρ(x) \ {x}. First of all we
prove

Γ′ ∩An(x, ρ, t) = Γ′′ ∩An(x, ρ, t) .

Assume for instance that p ∈ Γ′′ \ Γ′. Without loss of generality we can
assume that p is a regular point. Let then ∆ be the connected component
of Γ′′ \ (Sing Γ′′ ∪ Sing Γ′) containing p. ∆ is necessarily contained in
Bt−ε(x), otherwise by (8.5) and Theorem 8.3, ∆ would coincide with a
connected component of Γ′ \ (Sing Γ′′ ∪ Sing Γ′) contradicting p ∈ Γ′′ \
Γ′. But then ∆ induces, by Lemma 8.5, a stationary varifold V , with
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8 The regularity of varifolds with replacements

supp(V ) ⊂ Bt−ε(x). So, for some s ≤ t−ε, we have ∂Bs(x)∩supp(V ) 6= ∅
and supp(V ) ⊂ Bs(x), contradicting Theorem 8.1(ii). This proves Γ′′ ⊂
Γ′. Precisely the same argument can be used to prove Γ′ ⊂ Γ′′.

Thus we conclude that Γ′ ∪ Γ′′ is in fact a minimal hypersurface in
An(x, s, 2ρ). Since s is arbitrary, this means that Γ′ is in fact contained
in a larger minimal hypersurface Γ ⊂ B2ρ(x) \ {x} and that, moreover,
Γ′′ ⊂ Γ for any second replacement V ′′, whatever the choice of s (t being
instead fixed) is.

Fix now such a V ′′ and note that V ′′ Bs(x) = V Bs(x). Note,
moreover, that by Theorem 8.1(ii) we necessarily conclude

supp(V Bs(x)) ∩ ∂Bs(x) ⊂ Γ′′ ⊂ Γ .

Thus, using Lemma 8.4, we conclude supp(V ) ⊂ Γ, which hence proves
the desired regularity of V .

Step 5: Conclusion. The only thing left to analyize are the centers
of the balls Bρ(x) of the previous steps. Clearly, if n ≥ 7, we are done
because by the compactness of M we only have to add possibly a finite set
of points, that is a 0-dimensional set, to the singular set. In other words,
the centers of the balls can be absorbed in the singular set.

If, on the other hand, n ≤ 6, we need to show that x is a regular point.
If x /∈ supp (‖V ‖), we are done, so we assume x ∈ supp (‖V ‖). By Lemma
8.2 we know that every tangent cone is a multiple θ(x, V ) of a plane (note
that n ≤ 6). Consider the rescaled exponential maps of Section 8.2 and
note that the rescaled varifolds Vr coincide with (T xr )−1(Γ) = Γr. Using
Theorem 3.3 we get the C1-convergence of subsequences in B1 \ B1/2 and
hence the integrality of θ(x, V ) = N .

Fix geodesic coordinates in a ball Bρ(x). Thus, given any small positive
constant c0, if K ∈ N is sufficiently large, there is a hyperplane πK such
that, on An(x, 2−K−2, 2−K), the varifold V is the union of m(K) disjoint
graphs of Lipschitz functions over the plane πK , all with Lipschitz con-
stants smaller than c0, counted with multiplicity j1(K), . . . , jm(K), with
j1 + . . . + jm = N . We do not know a priori that there is a unique tan-
gent cone to V at x. However, if K is sufficiently large, it follows that
the tilt between two consecutive planes πK and πK+1 is small. Hence
ji(K) = ji(K + 1) and the corresponding Lipschitz graphs do join, form-
ingm disjoint smooth minimal surfaces in the annulusAn(x, 2−K−3, 2−K),
topologically equivalent to n-dimensional annuli. Repeating the process
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8.5 Proofs of the technical lemmas

inductively, we find that V Bρ(x) \ {x} is in fact the union of m smooth
disjoint minimal hypersurfaces Γ1, . . . ,Γm (counted with multiplicities
j1 + . . .+ jm = N), which are all, topologically, punctured n-dimensional
balls.

Since n ≥ 2, by Lemma 8.5, each Γi induces a stationary varifold.
Every tangent cone to Γi at x is a hyperplane and, moreover, the density
of Γi (as a varifold) is everywhere equal to 1. We can therefore apply
Allard’s regularity theorem (see [1]) to conclude that each Γi is regular.
On the other hand, the Γi are disjoint in Br(x) \ {x} and they contain x.
Therefore, if m > 1, we contradict the classical maximum principle. We
conclude that m = 1 and hence that x is a regular point for V .

8.5 Proofs of the technical lemmas

8.5.1 Proof of (ii) in Theorem 8.1

For simplicity assume that M = Rn+1. The proof can be easily adapted
to the general case. Let us argue by contradiction; so assume that there
are x ∈ supp(‖W‖) and Br(x) such that (Br(x) \K) ∩ supp(‖W‖) = ∅.
Given a vector field χ ∈ C∞

c (U,Rn+1) and an n-plane π we set

Tr (Dχ(x), π) = Dv1χ(x) · v1 + · · · +Dvnχ(x) · vn

where {v1, . . . , vn} is an orthonormal base for π. Recall that the first
variation of W is given by

δW (χ) =
∫
G(U)

Tr (Dχ(x), π) dW (x, π) .

Take a decreasing function η ∈ C∞([0, 1]) which vanishes on [3/4, 1] and
is identically 1 on [0, 1/4]. Denote by ϕ the function given by ϕ(x) =
η(|y − x|/r) for y ∈ Br(x). Take the interior unit normal ν to ∂K in x,
and let zt be the point x+ tν. If we define vector fields ψt and χt by

ψt(y) =
y − zt
|y − zt|

and χt = ϕψt ,

then χt is supported in Br(x) and Dχt = ϕDψt+∇ϕ⊗ψt. Moreover, by
the strict convexity of the subset K,

∇ϕ(y) · ν > 0 if y ∈ K ∩Br(x) and ∇ϕ(y) 6= 0 .
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8 The regularity of varifolds with replacements

Note that ψt converges to ν uniformly in Br(x), as t ↑ ∞. Thus, ψT (y) ·
∇ϕ(y) ≥ 0 for every y ∈ K ∩Br(x), provided T is sufficiently large. This
yields that

Tr (∇ϕ(y) ⊗ ψT (y), π) ≥ 0 for all (y, π) ∈ G(Br(x) ∩K) . (8.7)

Note that Tr (Dψt(y), π) > 0 for all (y, π) ∈ G(Br(x)) and all t > 0. Thus

δW (χT ) =
∫
G(Br(x)∩K)

Tr (DχT (y), π) dW (y, π)

(8.7)

≥
∫
G(Br(x)∩K)

Tr (ϕ(y)DψT (y), π) dW (y, π)

≥
∫
G(Br/4(x)∩K)

Tr (DψT (y), π) dW (y, π) > 0 .

This contradicts that W is stationary and completes the proof.

8.5.2 Proof of Theorem 8.3

Let W ⊂ U be the maximal open set on which Σ1 and Σ2 coincide. If
W 6= U , then there is a point p ∈W ∩U . In a ball Bρ(p), Σ2 is the graph
of a smooth function w over Σ1 (as usual, we use normal coordinates in a
regular neighborhood of Σ1). By a straightfoward computation, w satisfies
a differential inequality of the form |AijD2

ijw| ≤ C(|Dw|+ |w|) where A is
a smooth function with values in symmetric matrices, satisfying the usual
ellipticity condition Aijξiξj ≥ λ|ξ2|, where λ > 0. Let x ∈W be such that
d(x, p) < ε. Then w vanishes at infinite order in x and hence, according
to the classical result of Aronszajn (see [12]), w ≡ 0 on a ball Br(x) where
r depends on λ, A, C and d(x, ∂Bρ(p)), but not on ε. Hence, by choosing
ε < r we contradict the maximality of W .

8.5.3 Proof of Lemma 8.4

Let T be the set of points y ∈ supp(V ) such that the approximate tangent
plane to V in y is transversal to the sphere ∂B|y−x|(x). The claim follows
from the density of T in supp(V ). Again, this is proved for n = 2 in
Appendix B of [18] (see Lemma B.2 therein). We include the proof here
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with the small (and obvious adjustments). Since V is integer rectifiable,
V is supported on a rectifiable n-dimensional set R and there exists a
Borel function h : R → N such that V = hR. Assume that the lemma is
false; then there exists y ∈ Bρ(x) ∩ supp(‖V ‖) and t > 0 such that

• the tangent plane to R in z is tangent to ∂Bd(z,x)(x), for any z ∈
Bt(y).

We choose t so that Bt(y) ⊂ Bρ(x). Denote the polar coordinates in
Bρ(x) by (r, θ, ϕ1, . . . , ϕn−1) and let f be a smooth nonnegative function
in C∞

c (Bt(y)) with f = 1 on Bt/2(y). Denote by χ the vector field

χ(r, θ, ϕ1, . . . , ϕn−1) = f(r, θ, ϕ1, . . . , ϕn−1) ∂∂r .

For every z ∈ R ∩Bt(y), the plane π tangent to R in z is also tangent to
the sphere ∂Bd(z,x)(x). Hence, an easy computation yields that

Tr (Dχ, π)(z) =
nf(z)
d(z, x)

.

This gives

[δV ](χ) =
∫
R∩Bt(y)

nh(z)f(z)
d(z, x)

dHn(z) > C‖V ‖(Bt/2(y)) ,

for some positive constant C. Since y ∈ supp(‖V ‖), we have

‖V ‖(Bt/2(y)) > 0 .

This contradicts that V is stationary.

8.5.4 Proof of Lemma 8.5

Set Γr := Γ \ S and denote by H the mean curvature of Γr and by ν the
unit normal to Γr. Obviously H = 0. Let V ′ be the varifold induced by
∆. We claim that

[δV ′](χ) =
∫

∆

div∆ χ = −
∫

∆

Hχ · ν (8.8)

for any vector field χ ∈ Xc(U).
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8 The regularity of varifolds with replacements

The first identity is the classical computation of the first variation (see
Lemma 9.6 of [69]). To prove the second identity, fix a vector field χ and
a constant ε > 0. Without loss of generality we assume S ⊂ Γ. By the
definition of the Hausdorff measure, there exists a covering of S with balls
Bri

(xi) centered on xi ∈ S such that ri < ε and
∑
i r
n−1
i ≤ ε. By the com-

pactness of S ∩ supp(χ) we can find a finite covering {Bri(xi)}i∈{1,...,N}.
Fix smooth cut-off functions ϕi with

• ϕi = 1 on M \B2ri(xi) and ϕi = 0 on Bri(xi);

• 0 ≤ ϕi ≤ 1, |∇ϕi| ≤ Cr−1
i .

(Note that C is in fact only a geometric constant.) Then χε := χΠϕi is
compactly supported in U \ S. Thus,∫

∆

div∆ χε = −
∫

∆

Hχε · ν (8.9)

The RHS of (8.9) obviously converges to the RHS of (8.8) as ε → 0. As
for the left hand side, we estimate∫

∆

|div∆(χ− χε)| ≤
∑
i

∫
Bri

(xi)∩∆

(‖∇χ‖C0 + ‖χ‖C0‖∇ϕi‖C0)

≤
∑
i

‖V ‖(Bri(xi))‖χ‖C1(1 + Cr−1
i ) (8.10)

≤ C‖χ‖C1

∑
i

(rni + Crn−1
i ) < Cε

where the first inequality in the last line follows from the monotonicity
formula. We thus conclude that the LHS of (8.9) converges to the LHS of
(8.8).
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9 Improved convergence and
an index bound in
3-manifolds

In this chapter we restrict our discussion to the case n = 2, that is, surfaces
in 3-manifolds. There is a special interest in the methods presented in the
previous chapters for the case of 3-manifolds due to the rich interplay
between minimal surface theory and the topology of 3-manifolds (see for
instance [46], [58]). In [57] Pitts and Rubinstein claimed a bound on
the genus of the minimal surface obtained by the min-max method in
terms of the genera of an approximating critical sequence (see the precise
statement below). Building on [72] this claim was finally proved in [27].
The second claim of [57] concerns the index of instability of the min-max
surface (see the precise statement below). In the classical situation of the
mountain pass lemma the critical point has index 1 (unless there is some
nullity). It is therefore reasonable to expect that this will hold in the
present situation. The proof, however, should be more involved since no
Palais-Smale condition can be applied and the convergence of the critical
sequence is in a very weak sense. In this chapter we refine the analysis
of the min-max surface (under somewhat more restrictive conditions on
the sweepouts). In the first section we collect the results of [27] and the
claims of [57]. In the second section we show that it is possible to choose
a minimizing sequence such that every min-max sequence (with a certain
rate of convergence) converges to a smooth minimal surface. In the third
section we use this result to prove in some very simple situations that
the min-max surface has index at least one. Even though this result is
still very far from a proof of the claims in [57], we introduce some ideas
that might be helpful. Finally, in the fourth section we show that we
can deform the min-max sequence in such a way that it converges in the
Hausdorff sense and still has the almost minimality property.
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9 Improved convergence and an index bound in 3-manifolds

9.1 Genus and index bounds: the claims

In Section 2.1.1 we introduced the relevant version of the min-max con-
struction. Following the discussion of Remark 2.10, in this chapter we will
consider smooth families that satisfy an additional regularity assumption.

Definition 9.1. We call a generalized smooth family {Σt} a regular fam-
ily of (type Σ) if

(r1) T = {0, 1};

(r2) there is an ambient isotopy Φ : (0, 1)×M →M and a smooth surface
Σ such that Σt = Φ(t,Σ).

The reason for this restriction is more of technical nature, to make the
regularity of the families and their deformations coincide. We use it in
some proofs. The results, we believe, should not depend on it.

Remark 9.2. As pointed out in Remark 2.10, in the two-dimensional
theory this notion is still sufficient. One only has to make sure that there
is a saturated set Λ with m0(Λ) > 0. In many situations our manifold
M will be a sphere and the sweepouts consist of spheres or tori. In these
cases, the same argument as in Section 2.1.1 works.

In [18] a proof of the following theorem, the analogon of Theorem 2, is
given.

Theorem 9.3. Let M be a closed Riemannian 3-manifold. For any sat-
urated set Λ, there is a min-max sequence {Σjtj} converging in the sense
of varifolds to a smooth embedded minimal surface Σ with area m0(Λ)
(multiplicity is allowed).

Now we write Σ =
∑N
i=1 niΓ

i, where the Γi are the connected compo-
nents of Σ, counted without multiplicity, and ni ∈ N \ {0}. Moreover, we
denote by O the set of orientable components and by N the set of the
unorientable ones. With these notions we can state the main result of
[27].

Theorem 9.4. Let Λ, Σjtj , Σ as in Theorem 9.3. Then∑
Γi∈O

g(Γi) +
1
2

∑
Γi∈N

(g(Γi) − 1) ≤ lim inf
j→∞

g(Σjtj ) . (9.1)
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9.2 Good minimizing sequences

This result is not the one annouced in [57], where on the left hand side
also the multiplicities appear, but see Section 10 of [27] for a discussion.
The claim of [57] concerning the index is the following.

Claim 1. Let Σ be as before. Then∑
Γi∈O

niIndex(Γi) +
∑

Γi∈N

ni
2

Index(Γi) ≤ 1

≤
∑

Γi∈O

ni(Index(Γi) + Nullity(Γi)) +
∑

Γi∈N

ni
2

(Index(Γi) + Nullity(Γi)) .

In particular, together with the bumpy metric theorem of Brian White
(see [76]) this would yield that on a Riemannian manifold the min-max
method generically gives an index 1 embedded minimal surface.

9.2 Good minimizing sequences

One main step in the proof of Theorems 9.3 and 9.4 is the fact that there is
a min-max sequence that is almost minimizing in sufficiently small annuli.
This was the key ingredient to prove the smoothness of the limit. Recall
that in the theory of [18] almost minimality is defined analogously to Def-
inition 4.3 but using isotopies as the deformation families. In this section
we show that we can modifiy the corresponding minimizing sequence in
such a way that all min-max sequences that converge with a certain rate
have smooth limits.

Basically, the idea is to use the techiques of Proposition 6.4 to deform
all the surfaces that are not almost minimal to considerably less area such
that in the end only those surfaces stay close in area to m0 (depending
on j: the rate) that are almost minimizing.

Unfortunately, there are some technical difficulties since it might hap-
pen that almost minimizing surfaces loose this property as collateral dam-
age of the deformations.

We start by proving a version of the above sketched strategy. Due to
the mentioned difficulties the formulation of the lemma is slightly more
complicated.

Lemma 9.5. Let {{Σt}j} a minimizing sequence such that

(i) for all j ∈ N {Σt}j is a regular family of type Σj via an isotopy Φj;
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9 Improved convergence and an index bound in 3-manifolds

(ii) F({Σt}j) ≤ m0 + 1
8j ;

(iii) all min-max limits are stationary varifolds.

Then, for all j, there is εj > 0 such that for all small δ > 0 there is a
family {Γt}j such that for t ∈ (0, 1) with H2(Γjt ) ≥ m0 − εj there are two
open sets Ut,i = U j,δt,i , i = 1, 2, with diameter less than 4δ such that

(a) Γjt ∩ U ct,i = Σjt ∩ U ct,i, for i = 1, 2;

(b) Σjt is 1
j -a.m. in all pairs of open sets in CO with diameter less than

2δ.

Proof. The idea of the proof is to run a variant of the argument of the
Almgren-Pitts combinatorial lemma (see Proposition 6.4, see also Propo-
sition 5.3 in [18]). There, under the assumption that all the large time
slices are not almost minimizing in pairs, the argument is used to bring
down the area of all these large time slices to construct a competitor fam-
ily that contradicts the definition of m0. The variant we want to use here
only brings down the area of the large time slices that are not almost
minimizing in pairs. There is, however, a catch in this strategy. One
can not guarantee that after the deformation a time slice that was almost
minimizing in a specific set before still has this property (see Figure 9.1).
Since we only change in the small sets Ut,i at time t, the original sur-
face needs to be almost minimizing even there because otherwise the area
would have been brought down too much. That is the reason why the
statement is about the original sequence. Taking sets of small diameter
assures that the two sequences do not differ too much.

Figure 9.1: On the left, the curve is almost minimizing in the left ball,
but not in the right one. After the deformation it is no longer
almost minimizing in the left ball.
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9.2 Good minimizing sequences

Step 1: The set K. To run the combinatorial argument we need a
good finite covering of the set of bad time slices. In the original proof
the set of large time slices (with a certain lower bound) is compact, so
everything is straight forward. In our situation the set of times of non-
almost-minimality is not compact. However, considering the (compact)
closure still gives us a sort of non-almost-minimality with slightly different
constants. More precisely, we define for a fixed j ∈ N and δ > 0

K0 :=
{
t ∈ [0, 1] : Σjt is not

1
j
-a.m. in a pair of balls in CO of radius δ

}
.

We denote by K the closure of K0 and note that K is compact.

Claim. Let t ∈ K and (Bt,1, Bt,2) the pair of balls where Σjt is not almost
minimal. Then for every small ε > and γ > 0 there are isotopies φit,ε,γ ,
i = 1, 2, with the following properties:

• φit,ε,γ(0,Σ
j
t ) = Σjt ;

• supp
(
φit,ε,γ

)
⊂ (Bi,t)γ = {x ∈M : d(x,Bi,t) < γ}, s ∈ [0, 1];

• H2(φit,ε,γ(s,Σ
j
t )) ≤ H2(Σjt ) + ε+ 1

8j , s ∈ [0, 1];

• H2(φit,ε,γ(1,Σ
j
t )) ≤ H2(Σjt ) + ε− 1

j .

To prove the claim let t ∈ K. Then there is a sequence tl → t such
that tl ∈ K0. To construct the isotopies φit,ε,γ the idea is to start from
Σjt , then follow the family to Σjtl for some tl close enough and then use
the isotopies given by the non-almost-minimality of Σjtl .

Let xl,1 and xl,2 be the centers of balls of non-almost-minimality of Σjtl .
By the compactness of M there is a subsequence of {tl}l (we keep the
notation) and two points x1 and x2 such that xl,i → xi for i = 1, 2. Thus
for all γ > 0 there is L ∈ N with B(xl,i) ⊂⊂ B(xi) γ

2
for l ≥ L where all

the balls B(y) have radius δ. By the isotopy version of the freezing lemma
(Step 1 in Lemma 6.1) there are isotopies Ψi such that for τ close enough
to t the following properties hold

• Ψi(τ,Σj) ∩B(xi)cγ = Σjτ ∩B(xi)cγ ;

• Ψi(τ,Σj) ∩B(xi) γ
2

= Σjt ∩B(xi) γ
2
;

93



9 Improved convergence and an index bound in 3-manifolds

• |H2(Ψi(τ,Σj)) −H2(Σjt )| ≤ ε
2 .

Next we choose l ≥ L such that tl is close enough to t for the above to
hold. Denote by ψil the isotopies given by the non-almost-minimality of
Σjtl in B(xl,i) ⊂⊂ B(xi) γ

2
. Then we glue the isotopies Ψi running from

t to tl and ψil . Finally, we smooth these isotopies in the time parameter
(if necessary) with an error of area of at most ε

2 . By construction these
isotopies satisfy all the requirements of the claim.

Step 2: The combinatorial argument. Fix γ > 0 so small that for
all pairs of balls (B1, B2) ∈ CO of radius δ the pair ((B1)γ , (B2)γ) is still
in CO. Then for all t ∈ K there are a pair of balls (B1,t, B2,t) ∈ CO and
isotopies ϕit such that the properties in the claim hold for our choice of
γ and a fixed ε > 0 that is much smaller than 1

8j . From this point we
can copy the proof of Proposition 5.3 in [18] except for the fact that we
replace (B1,t, B2,t) by ((B1,t)γ , (B2,t)γ). Hence, we find a regular family
{Γt}j of type Σj such that

t /∈ K ⇒ H2(Γjt ) ≤ H2(Σjt ) +
1
2j

t ∈ K ⇒ H2(Γjt ) ≤ H2(Σjt ) −
1
4j
.

In particular, the family {Γt}j has the following property: if H2(Γjt ) ≥
m0 − 1

8j , then there are at most two balls B(y1) and B(y2) of radius

δ+ γ where Γjt differs from Σjt . Since all the non-almost-minimizing time
slices are deformed to surfaces of area below the chosen threshold, Σjt is
indeed almost minimizing in all pairs in CO for t with H2(Γjt ) ≥ m0 − 1

8j .
Defining Ut,i = B2δ(yi) gives the result of the proposition for balls. Note
that almost minimality is preserved under restriction to subsets. Thus,
the conclusion holds not only for pairs of balls, but all pairs of open sets
of diameter less than 2δ.

Remark 9.6. In general, Γjt with H2(Γjt ) ≥ m0 − 1
8j is not necessarily

almost minimizing in all pairs in CO. Clearly it is where the surface
coincides with Σjt . However, even if Σjt was almost minimizing in a ball,
this property cannot be assumed to hold after the deformation if the ball in
consideration is affected by the deformation (see Figure 9.1). Therefore
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9.2 Good minimizing sequences

the result of the previous lemma is the best we can hope for using this
strategy.

The following proposition is a version of Proposition 4.4 that shows that
the almost minimality in pairs of sets of small diameter is still sufficient
for the regularity theory.

Proposition 9.7. Let 0 < δ < Inj (M) and assume that Σj is 1
j -almost

minimizing in pairs (U, V ) ∈ CO of open sets with

max{diam(U),diam(V )} < 2δ .

Then there is a subsequence {Σk(j)} and a smooth embedded minimal sur-
face Σ such that

(i) Σk(j) → Σ in the sense of varifolds;

(ii) the genus bound (9.1) holds.

Proof. The proof of this lemma is basically contained in [18], [27]. The
only difference is in the restriction to sets with diameter less than 2δ. It is
sufficient to show that under this slightly weaker assumption we can still
conclude almost minimality in sufficiently small annuli as the rest of the
proof is then the same.

Fix k ∈ N and r > 0 with 0 < 9r < δ. Then for all x ∈ M the pair
(Br(x), Bδ(x)\ B̄9r(x)) is in CO and the sets have small enough diameter.
Therefore, by assumption, Σj is 1

j -a.m in Br(x) or Bδ(x)\ B̄9r(x). So, we
have

(a) either Σj is 1
j -a.m. in Br(y) for all y ∈M ;

(b) or there is xjr ∈M such that Σj is 1
j -a.m. in Bδ(xjr) \ B̄9r(xjr).

If (a) holds for some r > 0 and some subsequence {Σk(j)}, we are done.
Otherwise there are {xlk}∞l,k=1 such that

(c) for k, l large enough, Σl is 1
l -a.m. in Bδ(xlk) \ B̄ 1

k
(xlk);

(d) xlk → xk, xk → x.
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9 Improved convergence and an index bound in 3-manifolds

We conclude that, for any K there is JK such that Σj is 1
j -a.m. in

Bδ(x) \ B̄ 1
K

(x) for all j ≥ JK . Therefore, if y ∈ Bδ(x) \ {x}, we choose
r(y) such that Br(y)(y) ⊂⊂ Bδ(x)\{x}, whereas r(x) is chosen arbitrarily
(but smaller than δ). It follows that An ⊂⊂ Bδ(x) \ {x}, for any An ∈
AN r(z)(z) with z ∈ Bδ(x). Hence, {Σj} is 1

j -a.m. in An, provided j is
large enough. Repeating this argument finitely many times, starting with
M \ Bδ(x), we get the almost minimality in sufficiently small annuli in
all points z ∈ M . So far the proof was except for the restriction of the
diameter a line by line copy of the proof of Proposition 4.4. In the two-
dimensional case of [18], for the regularity theory (in particular to apply
[45]), in addition one needs that in every annulus An Σj is a smooth
surface for j large enough. We recall Remark 2.9. Each Σj is smooth
except at finitely many points. We denote by Pj the set of singular points
of Σj . After extracting another subsequence we can assume that Pj is
converging, in the Hausdorff topology, to a finite set P . If x ∈ P and
An is any annulus centered at x, then Pj ∩ An = ∅ for j large enough.
If x 6∈ P and An is any (small) annulus centered at x with outer radius
less than d(x, P ), then Pj ∩ An = ∅ for j large enough. Thus, after
possibly modifying the function r above, the sequence {Σj} satisfies all
the necessary conditions for the regularity theory of [18].

Notation 9.8. To simplify the upcoming discussion we fix our notation
for this section.

• We call a minimizing sequence {{Σt}j} good if it satisfies (i),(ii)
and (iii) of Lemma 9.5.

• We denote by {{Γj,δt }} the minimizing sequence constructed from
{{Σt}j} as in Lemma 9.5 with parameter δ.

• Moreover we set εj = 1
8j . Finally we set

Gj,δ = {t ∈ [0, 1] : H2(Γj,δt ) ≥ m0 − εj} .

Remark 9.9. We can summarize the results obtained so far in this section
as follows: Let {{Σt}j} be good, δ > 0. If tj ∈ Gj,δ, then Σjtj converges
to a smooth embedded minimal surface and the genus bound holds.
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9.2 Good minimizing sequences

Since the condition encoded in Gj,δ is one for the deformed minimizing
sequence and the conclusion is about the original one, this is still not
satisfactory. The two sequences differ only on small sets of diameter 4δ.
Therefore, we would like to let δ go to 0. To be able to do this, we will
need the compactness theorem of Choi-Schoen (see Theorem 3.9).

Theorem 9.10. Let M be a closed Riemannian 3-manifold and {{Σt}j}
a good minimizing sequence. Then there is a minimizing sequence {{Γt}j}
such that Γjt is isotopic to Σjt with the following property: If {Γk(j)tk(j)

} is a
min-max sequence with

(i) H2(Γk(j)tk(j)
) ≥ m0 − εk(j);

(ii) Γk(j)tk(j)
→ V in the sense of varifolds;

(iii) g := lim infj→∞ g(Γk(j)tk(j)
) <∞,

then V is a smooth embedded minimal surface and the genus bound (9.1)
holds.

Proof. Step 1: Approximation. For the moment we fix δ > 0. Then,
if {tj} is a sequence with tj ∈ Gj,δ, {Σjtj} is a min-max sequence with the
property that Σjtj is 1

j -a.m. in all pairs of sets in CO with diameter less
than 2δ. Thus, by Proposition 9.7, there is an embedded minimal surface
Γδ satisfying the genus bound (9.1) such that Σjtj → Γδ in the sense of
varifolds. Note that the genus of Γδ (counted without multiplicity) is
bounded independently from δ > 0 by g once the subsequence {k(j)} is
fixed. We choose a (not relabeled) subsequence such that this holds and
therefore can be assumed for any further subsequence we take. In view of
(iii) we can assume that g <∞. We introduce the following notation

Mg = {smooth embedded minimal surfaces in M with genus
(when counted without multiplicity) bounded by g} .

Then we claim the following: For all δ > 0 there is kδ(j) ≥ j such that
for all t ∈ Gkδ(j),δ we have

D(Σlt,Mg) <
1
j
, l ≥ kδ(j) .
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9 Improved convergence and an index bound in 3-manifolds

For, if not, we can find sequences tj ∈ Gj,δ such that Σk(j)tj is bounded
away from Mg. A contradiction to the above argument.

Next, we take a sequence δj → 0 and consider {Γj,δj

tj } with tj ∈ Gj,δj .
We choose a subsequence according to the following iterative scheme:

1. Step: We set k(1) = kδ1(1).

2. Step: Assume that we have chosen k(1), . . . , k(j), then we choose

k(j + 1) = max
{
kδj+1(j + 1), k(j) + 1

}
.

In this way we obtain a sequence of smooth embedded minimal surfaces
Γj and a subsequence Σk(j)tj such that

D
(
Σk(j)tk(j)

,Γj
)
<

1
j
.

By construction, Γk(j),δk(j)
tk(j)

differs from Σk(j)tk(j)
only in two disjoint open

sets U j,i, i = 1, 2, with diameter less than 4δk(j). Therefore we also have

D
(
Γk(j),δk(j)
tk(j)

(U j,1 ∪ U j,2)c,Γj (U j,1 ∪ U j,2)c
)
<

1
j
. (9.2)

From now on we assume k(j) = j to simplify the notation. Moreover we
omit the reference to δj in the notation for Γj,δj

tj as we now always consider
this situation.

Step 2: Convergence. Assume we have a varifold V such that Γjtj →
V in the sense of varifolds. This can always be achieved by taking a further
subsequence. We would like to apply Theorem 3.9 to the sequence {Γj}
and conclude that the limit is smooth and coincides with V . We have

Γj =
Nj∑
k=1

mj,kΓj,k ,

where the Γj,k are the connected components and mj,k are the multi-
plicities. We have Area(Γj) ≤ C for all j large enough. We order the
connected components by their area in decreasing order. There might be
two problems. It might happen that Nj → ∞ or mj,k → ∞ as j → ∞
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for a fixed k. In any of these cases Area(Γj,k) → 0. Now we parametrize
Γj,k conformally. Then the parametrization sj,k is harmonic and the area
equals the energy. Then by a result in [61] there is ε0 > 0 such that
E(sj,k) < ε0 implies that E(sj,k) = 0. Therefore Γj,k is a point for j
large. Since the varifold does not see points, we can assume that none
of the two mentioned problems occurs and we have a uniform bound on
the number of connected components and the multiplicities. On the other
hand, we know that g(Γj,k) (counted without multiplicity) is uniformly
bounded by g. Thus we can apply Theorem 3.9 and find a smooth em-
bedded minimal surface Γ such that Γj → Γ. Moreover the genus bound
holds, i.e.

g(Γ) ≤ lim inf
j

g(Γj) ≤ lim inf
j

g(Γjtj ) , (9.3)

where we know the second inequality to hold only if we disregard the
multiplicities of Γj .

We still have to prove that V = Γ (where we identify the surface with
the associated varifold). In order to do so, we note that we can assume
that U j,i = B2δj

(xj,i). Taking a suitable subsequence (not relabeled), we
have xj,i → xi. Note that x1 and x2 might coincide. Now, for every
ε > 0, there is N ∈ N such that U j,i ⊂⊂ Bε(xi) for all j ≥ N , i = 1, 2.
Let x ∈ supp(V ) \ {x1, x2}. Then, for all j large enough and r > 0 small
enough, Br(x) ∩ (U j,1 ∪ U j,2) = ∅. Therefore,

D(Γ Br(x), V Br(x)) ≤ D(Γ Br(x),Γj Br(x))
+D(Γj Br(x),Γ

j
tj Br(x))

+D(Γjtj Br(x), V Br(x)) .

The first term clearly converges to 0, so does the third one. Finally the sec-
ond one converges to 0 due to (9.2). This shows that supp(V ) \ {x1, x2}
coincides with the smooth embedded minimal surface Γ. To conclude
we need to show that x1 and x2 are removable singularities. If xi ∈
Γ \ {x1, x2} = Γ, then the singularity is clearly removable. But the mono-
tonicity formula implies that this is the only possibility. This together
with (9.3) gives the claimed result.
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9 Improved convergence and an index bound in 3-manifolds

9.3 The index of min-max surfaces

In this section we show how to use Theorem 9.10 to deduce information
about the index of instability of min-max surfaces. One key ingredient is
the following result by Brian White [77].

Theorem 9.11. Let M be a closed Riemannian manifold, Σ ⊂ M a
smooth compact embedded minimal hypersurface that is strictly stable.
Then there are an open subset U ⊂M containing Σ such that Area(Σ) <
Area(Σ′) for all currents Σ′ homologuos to Σ in U .

The result we want to prove is the following.

Theorem 9.12. Consider (S3, g). Let Λ be a family of regular sweepouts
of type S2. Then one of the following two cases holds:

(i) There is an embedded minimal 2-sphere with Area ≤ m0(Λ)
2 .

(ii) There is an embedded minimal 2-sphere with Area ≤ m0(Λ) and
Index + Nullity ≥ 1.

Remark 9.13. In particular, if the multiplicity of the min-max surface
of the theorem is one, then situation (ii) occurs.

Proof. Let {{Σt}j} a good minimizing sequence and {{Γt}j} the corre-
sponding minimizing sequence of Theorem 9.10. Then we pick a min-max
sequence {Γjtj} such that Area(Γjtj ) ∈ (m0 − εj ,m0). By Theorem 9.10
there are a subsequence (not relabeled) and a smooth embedded minimal
2-sphere or an embedded projective plane Γ such that Γjtj → Γ in the
sense of varifolds. The latter is impossible for topological reasons. Thus
we only need to consider the case of the sphere. Now there are two pos-
sibilities. Either Γ has multiplicity one or it has higher multiplicity. In
the latter case, Γ counted without multiplicity one has Area ≤ m0

2 . This
gives case (i). Therefore from now on we can assume that the multiplicity
is one. To deduce that in this situation we arrive at case (ii), we argue
by contradiction. We assume strict stability of Γ and find a contradiction
to Theorem 9.11.

Step 1: Surgery. The result of Theorem 9.11 only gives us informa-
tion about competitors lying in an L∞-neighborhood of Γ. The varifold
convergence Γjtj → Γ, however, is too weak to guarantee that Γjtj lies in
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this neighborhood for j large. To handle this defect, we show that an
appropriate surgery produces a valid competitor with good properties.
A precise description of the type of surgery we use is given in Section
2 of [27]. More precisely, Proposition 2.3 therein asserts that, for each
ε > 0 small enough and j large enough, we can find a surface Γ̃jtj obtained
from Γjtj through surgery (cutting away necks and discarding connected
components) and satisfying the following properties:

(a) Γ̃jtj is contained in T2εΓ;

(b) Γ̃jtj ∩ TεΓ = Γjtj ∩ TεΓ.

Here TδΓ denotes the tubular δ-neighborhood. If we do this procedure
carefully, we can even get more

(c) H2(Γ̃jtj ) ≤ H2(Γjtj ).

To see this, we consider γjt = Γjtj ∩ ∂T+
t Γ. T+

t Γ means that we only
consider one of the two boundary components (the other one is treated
in the same way). By Sard’s lemma γjt is the union of curves for a.e.
t ∈ (ε, 2ε). The coarea formula gives∫ 2ε

ε

Length(γjt ) ≤ η .

Note that η > 0 can be chosen arbitrarily small due to the varifold con-
vergence Γjtj → Γ. If we now perform surgery at the level t (one of the
a.e. “good” t), then we get

H2(Γ̃jtj ) ≤ H2(Γjtj ) + C Length(γjt )
2 −

∫ 2ε

t

Length(γjτ ) dτ + α .

Here C > 0 is the isoperimetric constant and α > 0 is an arbitrarily small
constant coming from the fact that we might have to smooth the new
surface. To obtain (c) we need to find a “good” time slice such that

C Length(γjt )
2 −

∫ 2ε

t

Length(γjτ ) dτ < 0 .

We argue by contradiction and assume that

C Length(γjt )
2 −

∫ 2ε

t

Length(γjτ ) dτ ≥ 0 for a.e. t . (9.4)
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We define f(t) :=
∫ 2ε

t
Length(γjτ ) dτ . This gives Length(γjt ) = −f ′(t) ≥ 0.

Thus, by (9.4), we obtain the differential inequality f(t) ≤ C(−f ′(t))2.
This can be resolved to give

− d

dt

(
f(t)

1
2

)
= − f ′(t)

2f(t)
1
2
≥ 1
C ′ .

Integrating between ε and 2ε we get

η ≥
∫ 2ε

ε

Length(γjt ) dt = f(ε) − f(2ε) ≥
( ε

C ′

)2

.

This gives a contradiction because η > 0 can be chosen arbitrarily small
(and C is independent of that choice). Therefore (c) is established. (A
similar argument is contained in the filgree lemma in [7].)

Step 2: Currents. We want to show that the new sequence {Γ̃jtj}
leads to a contradiction to Theorem 9.11. First we point out that due
to (b) we still have Γ̃jtj → Γ in the sense of varifolds. Moreover, we
have assumed that the mulitiplicity of Γ is 1. Therefore in the limit no
cancellation of mass can happen if we regard the Γ̃jtj as currents. To be
more precise, consider Vj (resp. V ) the varifold induced by Γ̃jtj (resp. Γ)
and Tj (resp. T ) the associated currents. Note that by assumption all the
varifolds have multiplicity one. By the compactness of integer currents
there is a subsequence (not relabeled) of {Tj} and an integer current S
such that Tj → S as currents.

Claim. S = T .

To prove this claim, denote the support of S by N . Clearly, N ⊂ Γ
due to the inequality ‖V (S)‖ ≤ ‖V ‖ as measures that follows from the
lower semicontinuity of the mass of currents. Here V (S) denotes the
varifold induced by S. Therefore, by the constancy theorem, S = m[Γ],
where m ∈ Z. Again, by the semicontinuity of the mass of currents,
m ∈ {−1, 0, 1}. Denote by π the projection onto Γ, orthogonal with
respect to the normal coordinates given by the tubular neighborhood.
After the choice of an orientation, above ‖T‖-a.e. every point x ∈ Γ
there are an odd number of points of Γ̃jtj sitting in π−1({x}) that add
up with signs to 1. This is essentially Sard’s lemma (and degree theory).
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Thus π#Tj = T . Therefore limj→∞ π#Tj = T . On the other hand, the
projection commutes with the limit, that is,

S = π#S = π#( lim
j→∞

Tj) = lim
j→∞

π#Tj = T .

This establishes the claim.

Step 3: Conclusion. To apply Theorem 9.11, we need to know that
the Γ̃jtj are homologous to Γ in TεΓ (or at least one of them). We compute
the homology groups of TεΓ. We make two observations:

(1) T2εΓ is homeomorphic to Γ × (−1, 1) (in fact even diffeomorphic);

(2) Γ × (−1, 1) is homotopic to Γ × {0}.

Combining these facts implies that the homology groups Hi(Γ,Z) and
Hi(T2εΓ,Z) are isomorphic. Since Γ is a 2-sphere, this gives

Hi(T2εΓ,Z) =

{
Z i = 0, 2
0 else .

Moreover, Γ is a generator of H2(T2εΓ,Z). This is due to the fact that the
multiplicity of Γ is one. Now assume that none of the Γ̃jtj is homologous to
Γ. Because they have all multiplicity one, none of them can be homologous
to a multiple cover of Γ and they are all in the homology class of the current
T ′ = 0. But then also the limit is in the same homology class. But this is
a contradiction to the fact that Γ is a generator of the homology group.
So at least one Γ̃jtj is homologous to Γ in T2εΓ.

Finally, if we choose ε > 0 small enough, then T2εΓ is contained in the
L∞-neighborhood of Theorem 9.11. But then the theorem gives

H2(Γ̃jtj ) > H2(Γ) = m0 > H2(Γjtj ) ≥ H2(Γ̃jtj ) .

This is clearly a contradiction. Therefore Γ cannot be strictly stable,
which gives (ii) of the theorem.

Corollary 9.14. Consider (S3, g). Let Λ be a family of regular sweepouts
of type T 2, where T 2 is the torus. Then one of the following two cases
holds:

(i) There is an embedded minimal 2-sphere or torus with Area ≤ m0(Λ)
2 .
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9 Improved convergence and an index bound in 3-manifolds

(ii) There is an embedded minimal 2-sphere or torus with Area ≤ m0(Λ)
and Index + Nullity ≥ 1.

Proof. Again for topological reasons we know that the min-max surface
contains no non-orientable connected component. We only have to see
where in the proof of Theorem 9.12 we used the assumption that we con-
sidered sweepouts by spheres. Then it is clear that by the genus bound
each connected component has to be a sphere or a torus, hence this am-
biguity in the statements. For this argument we can assume that Γ is
connected.

The surgery-step might decrease the genus, i.e. transform a torus into
a sphere. But this does not infect the rest of the argument. The second
step still works and we get the convergence as currents. Finally, the third
step involves some soft topological argument. Assume that {Γj} is the
min-max sequence after surgery converging to Γ in the sense of currents.
Since Γ is a sphere or a torus, in particular oriented, by the same argument
as in the proof of Theorem 9.12 we have Hi(Γ,Z) ∼= Hi(T2εΓ,Z). Note
that in both cases H2(Γ,Z) = Z and Γ is a generator of H2(T2εΓ,Z) due
to multiplicity one. Now the rest of the argument is completely analogous
to the one in Theorem 9.12.

The upper bound of Claim 1 is more difficult, even in this particular
case, and we only discuss a formal, rough idea and point out the main
difficulties.

In [77] the following characterization of minimal surfaces Σ with index
k > 0 (and no nullity) is given: There is an open subset U ⊂M containing
Σ and a k-parameter family of surfaces Σv, v ∈ B̄kv (0) such that Σ = Σ0

and Σ strongly maximizes the area in this k-paramter family. Moreover,
these Σv are graphs over Σ of functions u in the k-dimensional subspace
V of W 1,2 spanned by eigenvectors of the Jacobi operator with negative
eigenvalues.

To prove the index bound, the following argument seems natural. As-
sume by contradiction that the index is ≥ 2. Choose a good minimizing
sequence {{Σt}j}. For j large enough, some Σjt1 will come close to Σ in
the varifold sense. Use surgery, to come close in a stronger sense such that
Σjt1 will be a W 1,2-graph over Σ. Project orthogonally on V and connect
in V to some Σjt2 that connects to the family {Σjt} again via surgery. If
we were able to perform all these steps in such a way that we never gain
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9.3 The index of min-max surfaces

too much area, this would produce a competitor family with a maximal
time slice with area less than m0, a contradiction.

There are some difficulties the be faced. First of all, in each of the
steps one has to keep track of the area. For instance, such a careful
surgery has been used in the proof of Theorem 9.12. Second, that surgery
does not provide surfaces that are graphs over Σ. In fact, to deform
the surface to a graph with the necessary control of the area seems to
be quite difficult. Finally, it is not immediately clear that the deformed
(and surgically treated) family can be constructed such that it is still an
admissible competitor.

We investigate a bit further the second issue, that is, how to do surgery
and admissible deformations to obtain a graph over Σ while controlling
the gain of area. This issue seems crucial for any further steps towards
index or also genus bounds.

To deal with the case of higher multiplicity in Theorem 9.12 the above
argument does not apply anymore. It can very well happen that, say, a
sequence of spheres that are homotopically trivial in the tubular neigh-
borhood converge as varifolds to the minimal sphere Σ with multiplicity
2 (see Figure 9.2).

Σ

Σj

Figure 9.2: The sphere Σ with multiplicity 2 is approximated by a sphere
Σj that is homotopically trivial in the tubular neighborhood.

Viewed as currents, however, a cancellation of mass yields that the
limit would be the zero current. It would be desirable to modify this
sequence by surgery and isotopies such that it becomes a double cover of
Σ. More precisely, we would like to obtain two graphs over Σ, without
having much more area. In this situation it is even more difficult since a
priori the surfaces are not even in the same homology class in the tubular
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9 Improved convergence and an index bound in 3-manifolds

neighborhood.
Another situation where this procedure would be helpful is a proof of

the genus bound (9.1) with the multiplicities on the left hand side of the
inequality.

For all these reasons, we formulate the following

Goal. There is a min-max sequence {Σjtj} that can be deformed by surgery
and isotopies into a sequence {Σ̃jtj} that converges smoothly to Σ. Mor-
ever, there is an appropriate control over the area in the process and the
area of Σ̃jtj .

On a local level, that is, in annuli, such deformations have been used in
the regularity theory of Theorem 9.3. The tools were the almost minimial-
ity, the result of Meeks-Simon-Yau [45] about the regularity of minimizers
in isotopy classes and the smooth convergence of stable surfaces as conse-
quence of curvature estimates. For a similar global result, one possibility
could be a careful pasting of local deformations. A prerequisite for such a
strategy are the regularity result of Meeks-Simon-Yau and the curvature
estimate of Schoen up to the boundary. The first has been proved in [27]
(at least in balls), whereas the second is still open (but see Chapter 3.3).

9.4 Hausdorff convergence

As discussed in the previous section, in any further investigation the anal-
ysis of the convergence of the critical sequence is crucial. In general, we
cannot improve this convergence. If, however, we allow modifications by
suitable isotopies and surgeries on the critical sequence, then we can ob-
tain a sequence of surfaces converging in the Hausdorff sense. In addition,
and this is the improvement compared to the type of surgery applied in
the previous section, the almost minimality in small annuli is conserved
by these modifications. Even though this is still not sufficient to attack
the questions discussed at the end of the previous section, it might be
helpful for a proof of the goal that was formulated there.

First of all we prove a helpful lemma. For this we need to introduce
the following notion. In the definition of almost minimality there was a
ratio of the possible gain and the final loss of mass induced by an isotopy,
namely 1

8 . This exact ratio is of course not necessary for the regularity
theory as presented in [18], see also Chapters 6 and 7.
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9.4 Hausdorff convergence

Definition 9.15. We say that a hypersurface Σ has the (ε, δ)-almost min-
imizing property in U ⊂M if there DOES NOT exist any isotopy ψ sup-
ported in U such that ψ(0, ·) = id and

H2(ψ(t,Σ)) ≤ H2(Σ) +
ε

8
− δ

8
; (9.5)

H2(ψ(1,Σ)) ≤ H2(Σ) − ε− δ .

Now we can state and prove the following lemma that ascertains that the
almost minimizing property is conserved (with slightly different constants)
under singular isotopies.

Lemma 9.16. Let U ⊂ M open, Σ a hypersurface in M and Φ : [0, 1] ×
M →M an isotopy supported in U with

H2(Φ(t,Σ)) ≤ H2(Σ) +
ε

8
− δ1

8
, t ∈ [0, 1] .

Let, moreover, Σ′ = Σ U c, Γ = Σ U with

Φ(t, ·)#Σ → Σ′ ∪ (Γ′ ∪ Γ̄) , as t→ 1 ,

in the sense of varifolds, where H2(Γ̄) = 0 and Σ′ ∪ Γ′ is embedded, and
H2(Σ′ ∪ Γ′) < H2(Σ).

Then the following holds: If Σ is (ε, δ1)-almost minimizing in U , then
there is δ2 > δ1 (arbitrarily close) such that Σ′ ∪ Γ′ is (ε, δ2)-almost min-
imizing.

Proof. We argue by contradiction and assume that, for δ2 > δ1, there is an
isotopy Ψ such that the properties (9.5) are satisfied. By the assumption
that

Φ(t, ·)#Σ → Σ′ ∪ (Γ′ ∪ Γ̄) ,

for all γ > 0, there is ε0 > 0 such that

|H2(Φ(1 − ε0, ·)#Σ) −H2(Σ′ ∪ Γ′)| < γ .

Moreover, by the continuity of the mass of varifolds we also obtain (choos-
ing ε0 possibly smaller)

|H2(Ψ(t, ·)#Φ(1 − ε0, ·)#Σ) −H2(Ψ(t, ·)#(Σ′ ∪ Γ′))| < γ
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for all t ∈ [0, 1]. Using these inequalities we get

H2(Ψ(t, ·)#Φ(1 − ε0, ·)#Σ) ≤ H2(Ψ(t, ·)#(Σ′ ∪ Γ′)) + γ

≤ H2(Σ′ ∪ Γ′) + γ +
ε

8
− δ2

8

≤ H2(Φ(1 − ε0, ·)#Σ) + 2γ +
ε

8
− δ2

8
.

Analogously, we get

H2(Ψ(1, ·)#Φ(1 − ε0, ·)#Σ) ≤ H2(Φ(1 − ε0, ·)#Σ) + 2γ − ε− δ2 .

Choosing γ = δ2−δ1
16 , this gives that Φ(1 − ε0, ·)#Σ is not (ε, δ1)-almost

minimizing. By the assumption that H2(Σ′∪Γ′) < H2(Σ) this also implies
that Σ is not (ε, δ1)-almost minimizing. This is a contradiction. Since
δ2 > δ1 can be chosen arbitrarily close, this concludes the proof.

The goal of this section is the proof of the following

Theorem 9.17. Let Σ be the minimal hypersurface constructed by the
min-max procedure. Assume that it is orientable. Then there is a sequence
of smooth hypersurfaces {Γk} such that

(i) Γk is (εk, δk)-almost minimizing in sufficiently small annuli for some
sequence εk → 0 and a sequence δk → 0 of arbitrarily small δk < εk;

(ii) Γk → Σ in the sense of varifolds;

(iii) supp(Γk) → supp(Σ) in the Hausdorf sense.

Moreover, {Γk} is obtained from a min-max sequence by isotopies and
surgery.

We note that the critical sequence in the existence results of [18] and
[28] satisfies the conditions (i) and (ii), whereas the sequence of Theorem
9.12 satisfies conditions (ii) and (iii). The key point therefore in the proof
is to make sure that an appropriate surgery can be performed in such a
way that the almost minimality is not lost.

Before we come to the proof, we recall some notation that will be used.
Let 0 < 2r < Inj (M), x ∈ M . For y ∈ B̄r(x) we denote by [x, y] the
geodesic segment connecting x and y. This is well-defined due to the
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choice of r. Then, for λ ∈ [0, 1], we denote by τxλ (z) the point w ∈ [x, z]
with d(x,w) = λd(x, z). For 1 < λ ≤ 2, we can still define τxλ (z) by the
corresponding point on the geodesic extension of [x, z]. Note that this
is still well-defined. The map τxλ is simply the homothetic shrinking or
expansion with respect to the center x in the local Riemannian setting.

Proof of Theorem 9.17. We begin with some preliminary remarks.

Step 1: Setup. Let {Σk} be the critical sequence of the existence
theory. Then we know that there is a map r : M → R+ such that Σk

is 1
k -a.m. in AN r(x)(x). By assumption there is only a finite set Pk of

points such that Σk is not 1
k -a.m. in Br(x)(x).

Consider ε0 > 0 such that the tubular neighborhood Tε0Σ is diffeomor-
phic to Σ × (−1, 1). In the following discussion we will use this diffeo-
morphism as an identification and by abuse of notation also write, for
instance, Σ×{t} for its image under the diffeomorphism. Then the above
remark implies that there is a sequence of levels {Σ× {tl}} not intersect-
ing

∪
µ Pµ such that tl → 0. For the argument we fix such a level t and

denote Σ × {t} = Σ̃. By compactness there is a finite subcover of the
cover

∪
x∈Σ̃Br(x)(x). We denote the balls by B1, . . . , BN . Then there is

α > 0 such that Σ × (t− α, t+ α) is still covered by B1, . . . , BN .
Since Σ is a compact 2-manifold, there is a finite triangulation consisting

of triangles T1, . . . , TM . We denote, moreover, ∆i = Ti×(t−α, t+α). Then
we have Tt+αΣ\Tt−αΣ =

∪M
i=1 ∆i. In fact, by barycentric subdivision we

can also assume that for all i ∈ {1, . . . ,M} there is j ∈ {1, . . . , N} with
∆i ⊂ Bj . Finally, we find β > 0 such that

∆̃i = ∆i,2β = (Ti × (t− α, t+ α))2β ⊂ Bj ,

a 2β-neighborhood of ∆i.

Step 2: Surgery. For every fixed k ∈ N we consider {Σk,j}, a mini-
mizing sequence in H(Σk, ∆̃1), the set of isotopies that are supported in
∆̃1, are starting from Σk and have the property that the area of no time
slice of the isotopy exeeds the area of Σk by more (or equal) than 1

8k (see
Section 7.1). Using the Schoen-Simon curvature estimates we obtain that
(up to subsequences) Σk,j → Γk (j → ∞) as varifolds, where

(i) Γk (∆̃1)c = Σk (∆̃1)c;
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9 Improved convergence and an index bound in 3-manifolds

(ii) Γk ∆̃1 is a smooth stable minimal hypersurface;

(iii) Γk → Σ as varifolds;

(iv) Γk ∆̃1
C∞

→ Σ ∆̃1.

Clearly, Σ ∆̃1 = 0, thus by (iv) there is K1 ∈ N such that for k ≥ K1

also Γk ∆̃1 = 0. Hence, for k ≥ K1, limj→∞ H2(Σk,j ∆̃1) = 0. Now
the coarea formula gives that there is a geometric constant C > 0 such
that, for any η > 0,∫ 2β

β

Length(Σk,j ∂∆1,σ) dσ ≤ CH2(Σk,j ∆̃1) < Cη (9.6)

for j ∈ N large enough (depending only on η). Thus

Length(Σk,j ∂∆1,σ) <
2Cη
β

(9.7)

for a set of σ of measure at least β
2 . And by Sard’s lemma we can find

σ such that this inequality holds and Σk,j intersects ∂∆1,σ transversally.
Next, we note that there are constants C1 > 0 and λ > 0 such that

(E) For any s ∈ (0, 2β) the following holds: any simple curve γ lying
on ∂∆1,s with Length(γ) ≤ λ bounds an embedded disk D ⊂ ∂∆1,s

with diam(D) ≤ C1Length(γ).

Now we fix our choice of η. Let CM > 0 be the isoperimetric constant
in M . We choose η > 0 such that

η ≤ 1

2CM
(

2C
β

) ; (9.8)

8η < H2(Σk ∆̃1) ; (9.9)

2η <
1

16k
; (9.10)

η <
λβ

2C
. (9.11)

Then we fix our choice of j such that (9.6) holds.
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By construction, Σk,j ∂∆1,σ is a finite collection of simple curves. Let
Ω = ∆1,σ+2δ \ ∆1,σ−2δ. For 2δ > 0 sufficiently small, Σk,j Ω is a finite
collection cylinders with boundary curves lying on ∂∆1,σ±2δ. For the
sake of the argument we assume that there is only one cylinder C forming
Σk,j Ω. Repeating Step 3 for each cylinder gives then the general result.

We replace Σk,j Ω by the corresponding embedded disks D1, D2 lying
on ∂∆1,σ±2δ whose existence is ensured by (E), (9.7) and (9.11). Note,
however, that the choice of δ depends on j, but we will not indicate this
dependence in the notation. We denote the new surfaces (after a little
smoothing) by Σ̃k,j . We know that we have, due to the isoperimetric
inequality with constant CM > 0,

H2(Σ̃k,j) ≤ H2(Σk,j) + H2(D1) + H2(D2)

≤ H2(Σk,j) + 2CM

(
2Cη
β

)2

.

Since Σ̃k,j (∆̃1)c = Σk,j (∆̃1)c, this inequality reduces to

H2(Σ̃k,j ∆̃1) ≤ H2(Σk,j ∆̃1) + 2CM

(
2C
β

)2

η2

≤ η + 2CM

(
2C
β

)2

η2 ≤ 2η , (9.12)

where we used (9.6) and (9.8).

Step 3: Isotopic approximation. To ensure that after surgery the
surfaces Σ̃k,j still satisfy the almost minimizing property, we approximate
the surgery by isotopies and apply Lemma 9.16.

We start by considering the Euclidean case (the Riemannian case fol-
lows up to a constant by taking normal coordinates in a small tubular
neighborhood of ∂∆1,σ and choosing δ small enough). We look at the
intersection of C with a horizontal plane. We obtain an embedded closed
curve γ. We denote by u the Douglas solution of the two-dimensional
Plateau problem with boundary curve γ. We keep the notation γ for the
parametrization given by u|S1 . Then u is a solution of the boundary value
problem{

∆u = 0 on D
u|S1 = γ .

111
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Moreover, u is weakly conformal in the interior. Weakly means that a
priori there is a set B of isolated zeroes of ∂u (possible branch points).
u|S1 is bijective and u in the interior is holomorphic outside B. Therefore
the cardinality of the preimage is constant outside B, and we can conclude
that u is a diffeomorphism on D and continuous up to the boundary (due
to the fact that B is discrete). Hence all the curves u(∂Ds) are isotopic.
The fact that u is not smooth up to the boundary does not cause any
problem since it is only the parametrization that might be singular (but
still bijective), not, however, the curve itself. (See [31] for all these facts
about classical minimal surfaces.)

Then u is given by the Poisson Formula

u(r, θ) =
1 − r2

2π

∫ 2π

0

γ(ϕ)
1 − 2r cos(ϕ− θ) + r2

dϕ .

We compute

∂θu(r, θ) =
1 − r2

2π

∫ 2π

0

γ(ϕ) · d
dθ

(1 − 2r cos(ϕ− θ) + r2)−1 dϕ

=
1 − r2

2π

∫ 2π

0

γ(ϕ) · (−1)
d

dϕ
(1 − 2r cos(ϕ− θ) + r2)−1 dϕ

=
1 − r2

2π

∫ 2π

0

γ′(ϕ) · (1 − 2r cos(ϕ− θ) + r2)−1 dϕ ,

where we used integration by parts in the last step. Now we have, for
0 < r < 1,

Length(u|∂Dr ) =
∫ 2π

0

|∂θu(r, θ)| dθ

≤ 1 − r2

2π

∫ 2π

0

∫ 2π

0

|γ′(ϕ)|
1 − 2r cos(ϕ− θ) + r2

dϕdθ

=
1 − r2

2π

∫ 2π

0

|γ′(ϕ)|
∫ 2π

0

dθ

1 − 2r cos(ϕ− θ) + r2
dϕ

=
∫ 2π

0

|γ′(ϕ)| dϕ = Length(γ) .

In the step from the second last to the last line we used again the Poisson
formula, this time for the harmonic function constant 1. Therefore the
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isotopy given by γt = u(∂D1−t) shrinks γ to a point in way that does
not increase the length above the length of γ. Moreover, since all this
argument depends smoothly on γ, we can derive, by choosing the height
4δ of the cylinder small enough, that we can “glue” these isotopies along
the vertical axis to get an isotopy Ct of the cylinder shrinking it to a
segment connecting the top and bottom disk of C = C0 such that

Area(Ct) ≤ 2Area(C) , t ∈ [0, 1] . (9.13)

The fact that we are not in a Euclidean situation (as assumed so far in
this step) but in a Riemannian (at very small scale) is also absorbed in
the constant 2. Now we can define

Σ̂k,js A =


Σk,j Ω̄c if A = Ω̄c ,

Cs if A = Ω ,
D1,0 −D1,s +D2,0 −D2,s if A = ∂Ω ,

where Di,s denotes the top (i = 1) and the bottom (i = 2) of the cylin-
der Cs (note that Di,0 = Di in the previous notation). Thus Σ̂k,js is a
continuous deformation of Σk,j with

(i) Σ̂k,j1 = Σk,j Ωc ∪D1,0 ∪D2,0;

(ii) for all s ∈ [0, 1], by (9.6), (9.9), (9.12) and (9.13)

H2(Σ̂k,js ) ≤ H2(Σk,j) + H2(D1,0 ∪D2,0) + 2H2(Σk,j Ω)
≤ H2(Σk,j) + 4η < H2(Σk) .

Smoothing as we did for the surgery and gluing this isotopy with the
isotopy connecting Σk with Σk,j gives for j large enough that all the
hypotheses of Lemma 9.16 are satisfied for ε = 1

k , δ1 = 0. Therefore Σ̃k,j

is
(

1
k , ε

′)-a.m. for arbitrarily small ε′ > 0.

Step 4: Contraction. Let Σ̃k,jc be the connected component of Σ̃k,j

lying in ∆1,σ−δ and p the barycenter. Then there is a constant CR (due
to Riemannian effects) with

H2((τp1−s)#(Σ̃k,jc )) ≤ CRH2(Σ̃k,jc )(1 − s)2 ≤ CRH2(Σ̃k,jc ) .

We can assume that CR ≤ 2 (since we consider small scales). We denote
the isotopy of Σ̃k,j that results from the above homothetic shrinking of

113



9 Improved convergence and an index bound in 3-manifolds

the component Σ̃k,jc by Σ̃k,js . Then the above inequality implies, for all
s ∈ [0, 1],

H2(Σ̃k,js ) = H2(Σ̃k,js (∆1,σ+δ)c) + H2(Σ̃k,js ∆1,σ−δ)

≤ H2(Σ̃k,js (∆1,σ+δ)c) + 2H2(Σ̃k,jc )

≤ H2(Σ̃k,j) + H2(Σ̃k,jc )
(9.12)

≤ H2(Σ̃k,j) + 2η ≤ H2(Σ̃k,j) +
1
8k

− ε′

8
.

The last inequality follows from (9.10) and the fact that we can choose
ε′ arbitrarily small. Moreover, (τp1−s)#(Σ̃k,jc ) → 0 as s → 1. Therefore,
discarding Σ̃k,jc and invoking again Lemma 9.16 applied to Σ̃k,j , we can
summarize what we have achieved so far. By surgery, we can change Σk,j

such that

(a) Σ̃k,j does not intersect ∆1,σ;

(b) Σ̃k,j (∆̃1)c = Σk,j (∆̃1)c;

(c) H2(Σ̃k,j) ≤ H2(Σk);

(d) Σ̃k,j is
(

1
k , ε

)
-a.m. in ∆̃1.

Here ε > ε′ is arbitrarily close. In order to avoid unnecessary notational
complications we kept the notation Σ̃k,j for Σ̃k,j1 .

Step 5: Iteration. We want to iterate this procedure to get a sequence
Σ̃k with the following properties:

(a’) Σ̃k does not intersect Tt+αΣ \ Tt−αΣ =
∪M
i=1 ∆i;

(b’) Σ̃k Tt−αΣ = Σk Tt−αΣ;

(c’) H2(Σ̃k) ≤ H2(Σk);

(d’) Σ̃k is
(

1
k , ε

)
-a.m. in small annuli.

We denote by Σ̃k the surface Σ̃k,j for a j large enough such that (a)− (d)
of the previous step hold. Assume that ∆̃1 ∩ ∆̃2 6= ∅. If a neck passing
through ∆̃2 has been cut away in the first surgery, it is very well possible
that Σ̃k is no longer almost minimizing in ∆̃2. On the other hand, if we
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do the same procedure as before, that is, taking a minimizing sequence
{ ˜̃Σk,j} in H(Σ̃k, ∆̃2), then, for j large enough, this will be 1

k -a.m. in ∆̃2.
This allows us to run the previous program iteratively. The only point we
have to take care of is that we do not create any new pieces in ∆1. To
do so we consider ∆̃2 \ ∆1,σ instead of ∆̃2 and a minimizing sequence in
H(Σ̃k, ∆̃2 \∆1,σ). Applying Steps 2 to 4, we obtain that there is K2 such
that, for k ≥ K2, Σ̃k can be modified by suitable isotopies and surgery to
give ˜̃Σk with the properties

(a”) ˜̃Σk does not intersect ∆1,σ1 ∪ ∆2,σ2 ;

(b”) ˜̃Σk (∆̃1 ∪ ∆̃2)c = Σk (∆̃1 ∪ ∆̃2)c;

(c”) H2( ˜̃Σk) ≤ H2(Σk);

(d”) ˜̃Σk is
(

1
k , ε

)
-a.m. in small annuli.

This shows that after finitely many iteration steps (corresponding to the
M ∆i) we indeed obtain (a′) − (d′). In fact, if we discard the part of the
modified surfaces lying in M \ TtΣ, we can even obtain {Σ̃k,j} contained
in TtΣ with (b′) − (d′).

Step 6: Conclusion. So far, we have modified the initial sequence
{Σk}, for t fixed, to get a sequence {Σ̃k} with the desired properties. In
particular, there is K = K(t) ∈ N such that, for k ≥ K, Σ̃k is contained
in TtΣ. Taking the sequence {tl} of Step 1 and repeating the argument
of Steps 2 to 5 we find a sequence Γl = Σ̃K(tl), where Σ̃K(tl) is the corre-
sponding surface lying in TtlΣ. Therefore, {Γl} satisfies the requirements
of the claim with εl = 1

K(tl)
and δl = ε of Step 5 corresponding to tl.
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