Partial Differential Equations

An extension of the identity $\text{Det} = \text{det}$

Une extension de l'identité $\text{Det} = \text{det}$

Camillo De Lellisa, Francesco Ghiraldinb

a Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
b Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy

1. Introduction

We first define the notion of distributional Jacobian and of BnV function:

Definition 1.1. Let $\Omega \subset \mathbb{R}^m$ be an open set, assume p and q satisfy:

$$p \geq n - 1, \quad \frac{1}{q} + \frac{n - 1}{p} \leq 1. \quad (1)$$

For $u \in L^q \cap W^{1,p}(\Omega, \mathbb{R}^n)$ with $m \geq n$, we let $j(u)$ be the $(m - n + 1)$-current given by the action $(j(u), \omega) := (-1)^n \int_\Omega u^1 du^2 \wedge \cdots \wedge du^n \wedge \omega$ on forms ω in $\mathcal{C}^\infty_c(\Omega)$. The distributional Jacobian of u is the $(m - n)$-current $[Ju] := \partial j(u)$. We say that a map $u \in W^{1,p} \cap L^q$ belongs to BnV if its distributional Jacobian $[Ju]$ has finite mass (and hence it can be represented by a Radon Measure).

If $m = n$, $[Ju]$ is a distribution and a simple calculation gives that $[Ju] = \frac{1}{m} \text{div}\text{Cof}(\nabla u)u$, where Cof$(\nabla u)$ is the matrix of cofactors of ∇u. This case of Definition 1.1 was first introduced by Ball in [2]. Subsequent works by Šverák [17] and Müller and Spector [15] were devoted to analyze the regularity properties of such maps and their applications to problems in elasticity. A powerful theory for these variational problems has been developed by Giaquinta, Modica and Souček (see [9]).
Lemma 2.3. Let $\Omega \subset \mathbb{R}^m$ be an open set and let $u \in L^q \cap W^{1,p}(\Omega, \mathbb{R}^m)$ be a BnV map. Let v be the density of the absolutely continuous part of the distributional Jacobian Ju with respect to the Lebesgue measure: $Ju = v\mathcal{L}^m + [Ju]^q = [Ju]^q + [Ju]^q$. Then $v(x) = \det Ju(x)$ for \mathcal{L}^m-almost every $x \in \Omega$.

Proof. Let $\phi_{\delta,t}$ be a standard Lipschitz cut-off, taking the value 1 for $|x| \leq r - \delta$ and 0 for $|x| \geq r$, with $\phi_{\delta,t}(x) = (r - |x|)/\delta$ for $r - \delta \leq |x| \leq r$. Let $f(r) = \int_{B_1} u^1 \, dx \ldots \wedge du^n$: then $f \in L^1([0,1])$ because of (1) and Fubini’s Theorem. This implies that L^1-a.e. r is a Lebesgue point, that is: $\int_{r-\delta}^{r+\delta} f(s) - f(r) \, ds = o(\delta)$. Moreover $\langle Ju, \phi_{\delta,t} \rangle = \langle j(u), \phi_{\delta,t} \rangle = \int - u^1 \, du^1 \wedge \ldots \wedge du^n + \frac{1}{\delta} \int f_{r-\delta}^{r+\delta} \int_{B_1} u^i \, dx \ldots \wedge du^n \, dx1(t)$. Hence at every Lebesgue point $\langle Ju, \phi_{\delta,t} \rangle \to \int_{B_1} u^1 \, dx \ldots \wedge du^n$; on the other hand, by dominated convergence, $\langle [Ju], \phi_{\delta,t} \rangle \to [Ju](B_1)$, that proves the proposition. \square

Definition 2.2. Let $u \in BnV(\Omega, \mathbb{R}^m)$ and let $x_0 \in B_r \subset \Omega$. We define $u_{\varepsilon}(y) := (u(x_0 + \varepsilon y) - u(x_0))/\varepsilon$.

Lemma 2.3. Let u be as above and set $\delta \varepsilon(x) := a(x - x_0)$. Then $\langle Ju_{\varepsilon} \rangle = \frac{1}{\varepsilon} \delta_{\varepsilon}\frac{\partial}{\partial x} [Ju]$.

Proof. Let $\phi \in C_c^\infty(B_1)$ be a test function. Since $\langle Ju_{\varepsilon} \rangle, \phi = \langle j(u_{\varepsilon}), \phi \rangle$ we have:

$$\langle [Ju_{\varepsilon}] \rangle, \phi = (-1)^n \int_{B_1} \frac{u^1(x_0 + \varepsilon y) - u^1(x_0)}{\varepsilon} \, dx \ldots \wedge dx \nabla u^n(x_0 + \varepsilon y), \nabla \phi(y) \rangle \, dy$$

$$= (-1)^n \int_\Omega \frac{u^1(x) - u^1(x_0)}{\varepsilon^{n+1}} \, dx \ldots \wedge dx \nabla u^n(x), \nabla \phi\left(\frac{x - x_0}{\varepsilon}\right) \rangle \, dx$$

$$= \frac{1}{\varepsilon^n} \int_{B_1} \hat{\phi}\left(\frac{x - x_0}{\varepsilon}\right) \right) \, dx \, [Ju_{\varepsilon}] \phi \left(\frac{x - x_0}{\varepsilon}\right) \rangle.$$

Taking the supremum over $\phi \in C_c^\infty(B_1)$: $\|\phi\|_\infty \leq 1$ we conclude $\|Ju_{\varepsilon}\| = \frac{1}{\varepsilon^n} \delta_{\varepsilon}\frac{\partial}{\partial x} [Ju]$. Since the Radon–Nikodym decomposition commutes with the push forward, $\|Ju_{\varepsilon}\| = \frac{1}{\varepsilon^n} \delta_{\varepsilon}\frac{\partial}{\partial x} [Ju]^q$ and $\|Ju_{\varepsilon}\|^q = \frac{1}{\varepsilon^n} \delta_{\varepsilon}\frac{\partial}{\partial x} [Ju]^q$, which allows to conclude

$$\|Ju_{\varepsilon}\|^q(B_r(x_0)) = \frac{\|Ju\|^q(B_r(x_0))}{\varepsilon^n} \quad \forall r > 0.
$$

(3)
Proof of Theorem 1.2. To simplify the notation we use \(u_h \) for the function \(u_{h-1} \) given by Definition 2.2. We use formula (2) to the blow-up sequence \((u_h) \) around a “good” point \(x_0 \) to get \([J u_h](B_\rho(x_0)) = \int_{\partial B_\rho(x_0)} u_h^1 \, \text{d} u_h^n \wedge \cdots \wedge \text{d} u_h^n \), and hence we let \(h \uparrow \infty \) to obtain

\[
\nu(x_0)|B_\rho| = \int_{\partial B_\rho(x_0)} (L \cdot x)^1 L^2 \wedge \cdots \wedge L^n = \int_{\partial B_\rho(x_0)} (L \cdot x)^1 \text{cof}(L)_k^1 \cdot \eta^k = \text{det}(L)|B_\rho|,
\]

where \(L := \nabla u(x_0) \) and \(\eta \) is the exterior unit normal to \(\partial B_\rho \).

Step 1: By the standard theory of Sobolev functions (see [7]), a.e. \(x_0 \in \Omega \) satisfies the following properties:

(a) \(\lim_{r \downarrow 0} \frac{1}{r^n} \left[\left\| [J u_h^2]^{1}([B_r(x_0))] + \int_{B_r(x_0)} [\nu(x) - \nu(x_0)] \, \text{d} x \right\| \right] = 0 \);

(b) \(\nabla u \) is approximately continuous at \(x_0 \) and in particular \(\int_{B_r(x_0)} |\nabla u(x) - \nabla u(x_0)|^p \, \text{d} x = o(r^n) \).

From now on we fix \(x_0 \) satisfying (a) and (b) and, without loss of generality, we assume \(x_0 = 0 \). Observe first of all that condition (a) and Eq. (3) imply:

\[
[J u_h_1]([B_r(0))] = h^n [J u_1]([B_r(0))] = o(1) + h^n \int_{B_r(0)} [\nu(y) \, \text{d} y \to [\nu(0)])[B_r(0)] \quad \forall r > 0.
\]

Step 2: We observe that, being \((u_h) \) a sequence, there is a set of radii \(\rho \in (0, 1) \) of full measure such that (2) holds for every \(h \). Moreover by (b), using Fubini’s and Fatou’s Theorems, for a.e. \(\rho \) there exists a subsequence (not relabeled and possibly depending on \(\rho \)) such that \(\nabla u_h \to L := \nabla u(0) \) in \(L^p(\partial B_\rho) \). We fix now a radius \(\rho \) with all the properties above and we do not relabel the relevant subsequence. Hence \(du_h^1 \wedge \cdots \wedge du_h^n \to L^2 \wedge \cdots \wedge L^n \) in \(L^{2^*} (\partial B_\rho) \), since

\[
\text{det} \frac{\partial u_h}{\partial x} \to \text{det} \frac{\partial u}{\partial x} = \frac{L^2}{L^n}.
\]

In the borderline case \(p = n - 1 \), the convergence is improved to the first Hardy space \(\mathcal{H}^1(\partial B_\rho) \) because of the Coifman–Lions–Meyer–Semmes estimate (see [3]):

\[
\left\| (\text{d} v^2 \wedge \cdots \wedge \text{d} v^n, \tau) \right\|_{\mathcal{H}^1(\partial B_\rho)} \leq C \left\| \text{d} v^2 \right\|_{L^{2^n - 1}(\partial B_\rho)} \cdots \left\| \text{d} v^n \right\|_{L^{2^n - 1}(\partial B_\rho)}.
\]

Suppose first of all that \(p > n - 1 \). Then by the Poincaré’s inequality and the Sobolev embedding theorem, the sequence \((u_h) \) is equicontinuous, with the estimate \(\|u_h - L \cdot x - C_h\|_{C^a(\partial B_\rho)} \leq C \|\nabla u_h - L\|_{L^p(\partial B_\rho)} \to 0 \). Here \(C_h \) is the average of \(u_h \) on \(\partial B_\rho \). Since \(\int_{\partial B_\rho} du_h^2 \wedge \cdots \wedge du_h^n = 0 \), we conclude,

\[
[J u_h_1]([B_r(0))] = \int_{\partial B_r(0)} (u_h^1 - C_{h_1}^1) \, \text{d} u_h^n \wedge \cdots \wedge \text{d} u_h^n \to \int_{\partial B_r(0)} (L \cdot x)^1 L^2 \wedge \cdots \wedge L^n = \text{det}(L)|B_\rho|.
\]

Finally if \(p = n - 1 \) we use the John–Nirenberg embedding and Poincaré’s inequality to get \(\|u_h - C_h - L \cdot x\|_{BMO} + \|u_h - C_h - L \cdot x\|_{L^1} \leq C \|\nabla u_h - L\|_{L^{2^n - 1}(\partial B_\rho)} \to 0 \). Recall that, by Fefferman’s Theorem, \(BMO \) is the dual space of \(\mathcal{H}^1 \) and thus \(\int \text{f} \, \text{g} \| \leq C(\|f\|_{BMO} + \|f\|_{L^1}) \|g\|_{\mathcal{H}^1} \) whenever \(f \) is integrable (see [16], Chapter IV; take into account that the original Theorem of Fefferman, proved in \(\mathbb{R}^n \), must be suitably modified to our situation where the domain is a compact manifold, see [10]). We thus infer that \(\int_{\partial B_\rho} (u_h^1 - C_{h_1}^1) \, \text{d} u_h^n \wedge \cdots \wedge \text{d} u_h^n \to \int_{\partial B_\rho} (L \cdot x)^1 L^2 \wedge \cdots \wedge L^n = \text{det}(L)|B_\rho| \). \(\square \)

3. Proof of Theorem 1.3

Given a normal current \(T \in N_k(\mathbb{R}^m) \) and a Lipschitz map \(\pi : \mathbb{R}^m \to \mathbb{R}^l \) with \(k \geq l \), we can define a weakly*-measurable map \(x \mapsto (T, \pi, x) \in N_{k-l}(\mathbb{R}^m) \), uniquely characterized by the validity of the identity \(\int_{\pi(T)} T(T, \pi, x) \psi(x) \, \text{d} x = T \pi(T, \pi, x) \, \text{d} \pi \) for every \(\psi \in C^1_c(\mathbb{R}^l) \) (this is the so-called “slicing of the current”, see for instance [8]). In [5], the first author proved a slicing theorem for Jacobians, namely:

Theorem 3.1. Let \(\iota^* : \mathbb{R}^k \to \{x\} \times \mathbb{R}^k \) be the natural injection of \(\mathbb{R}^k \) into \(\mathbb{R}^m \), and let \(\pi : \mathbb{R}^{m-k} \times \mathbb{R}^k \to \mathbb{R}^{m-k} \) a projection, with \(k \geq m \). Denote by \(u^* \) the trace \(u|_{\mathbb{R}^k} = u o \iota^* \). Then \([J u^*], \pi, x) = (-1)^{(m-k)n} \iota^*[J u] \). Moreover this property holds separately for the absolutely continuous part and the singular part of \([J u] \).

This theorem allows us to pass from Theorem 1.2 to Theorem 1.3.
Proof of Theorem 1.3. Set \(\pi(x) = (x^1, \ldots, x^{m-n}) \), and \(y = (x^{m-n+1}, \ldots, x^n) \). By Theorem 3.1, \(\langle [Ju]^a, f \rangle = \langle [Ju]^a \circ \pi, f \rangle \rangle \in L^{m-n}(\pi). \) Thus, using Theorem 1.2, we conclude
\[
\langle [Ju]^a, f \rangle = \int \left(\int (-1)^{(m-n)\alpha} \det(\nabla_y u(x, y)) f(x, y) \, d\mathcal{L}^n(y) \right) \, d\mathcal{L}^{m-n}(x)
\]
\[
= \int \det(\nabla_y u(x, y)) f(x, y) \, dy \wedge d\pi = \int f(\epsilon_1 \wedge \cdots \wedge \epsilon_m \, \mathbb{L} \, du_1 \wedge \cdots \wedge du_n, d\pi) \, d\mathcal{L}^m.
\]

It is easy to show that, for every \(A \in GL(n, \mathbb{R}) \), the identity \(\langle Ju \circ A \rangle = \det(A) \cdot (A^{-1})^* [Ju] \) holds, where \(\det(A) \) is the sign of the determinant of \(A \). If then \(I \) is a multiindex of length \(m-n \), and \(\pi^I(x) = (x^1, \ldots, x^{m-n}) \), we let \(A \) be a permutation matrix satisfying \(\pi = \pi^I \circ A \). Then
\[
\langle [Ju]^a, f_I \rangle = \deg(A) \int \mathbb{R}^m f_I \circ A(e_1 \wedge \cdots \wedge e_m \mathbb{L} \, du_1 \circ A) \wedge \cdots \wedge du^n \circ A) \, d\mathcal{L}^m
\]
\[
= \deg(A) \int \mathbb{R}^m A^* (f_I \, du_1 \wedge \cdots \wedge du^n \, \wedge d\pi^I) = \int \mathbb{R}^m f_I \, du_1 \wedge \cdots \wedge du^n \, \wedge d\pi^I.
\]

It is then sufficient to write a generic form as \(\omega = \sum_i f_I \, dx^I \) to conclude the proof. \(\square \)

Acknowledgements

The second author would like to thank Prof. Luigi Ambrosio for many useful discussions and the Universität Zürich for the generous hospitality he enjoyed during his stay. The first author is grateful to Duvan Henao for pointing out his mistake in [5].

References