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1 Introduction

These notes are taken from the final part of a class on rectifiability given at the
University of Zürich during the summer semester 2004. The main aim is to provide a
self-contained reference for the proof of the following remarkable theorem,

Theorem 1.1. Let µ be a locally finite measure onRn and α a nonnegative real
number. Assume that the following limit exists, is finite andnonzero forµ-a.e. x:

lim
r↓0

µ(Br (x))

r α
.

Then eitherµ = 0, or α is a natural number k≤ n. In the latter case, a measureµ
satisfies the requirement above if and only if there exists a Borel measurable function
f and a countable collection{Γi } of Lipschitz k-dimensional submanifolds ofRn such
that

µ(A) =
∑

i

∫

Γi ∩A
f (x) dVolk(x) for any Borel set A.

Here Volk denotes the naturalk-dimensional volume measure that a Lipschitz
submanifold inherits as a subset ofRn.

The first part of Theorem 1.1, (i.e. ifµ is nontrivial thenα must be integer) was
proved by Marstrand in [17]. The second part is trivial whenk = 0 andk = n. The first
nontrivial case,k = 1 andn = 2, was proved by Besicovitch in his pioneering work
[2], though in a different framework (Besicovitch’s statement dealt with sets instead of
measures). Besicovitch’s theorem was recast in the framework above in [24], and in
[23] it was extended to the casek = 1 and genericn. The higher dimensional version
remained a long standing problem. Marstrand in [16] made a major contribution to
its solution. His ideas were sufficient to prove a weaker theorem for 2-dimensional
sets inR3, which was later generalized by Mattila in [18] to arbitrary dimensions and
codimensions.

The problem was finally solved by Preiss in [25]. His proof starts from Marstrand’s
work but he introduces many new and interesting ideas. Although the excellent book
of Mattila [21] gives a summary of this proof, many details and some important ideas
were not documented. As far as I know, the only reference for the proof of the second
part of Theorem 1.1 is Preiss’ paper itself.

As a measure of the complexity of the subject, we remark that natural general-
izations of Marstrand, Mattila, and Preiss’ theorems proved to be quite hard; see for
instance [12] and [13].
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Actually, in [25] Preiss proved the following stronger quantitative version of the
second part of Theorem 1.1:

Theorem 1.2. For any pair of nonnegative integers k≤ n there exists a constant
c(k, n) > 1 such that the following holds. Ifµ is a locally finite measure onRn and

0 < lim sup
r↓0

µ(Br (x))

r k
< c(k, n) lim inf

r↓0

µ(Br (x))

r k
< ∞ for µ-a.e. x∈ Rn,

then the same conclusion as for Theorem 1.1 holds.

The proof of this statement is longer and more difficult. On the other hand, most of
the deep ideas contained in [25] are already needed to prove Theorem 1.1. Therefore,
I decided to focus on Theorem 1.1.

Despite the depth of Theorem 1.1, no substantial knowledge of geometric measure
theory is needed to read these notes. Indeed, the only prerequisites are:

• Some elementary measure theory;
• Some classical covering theorems and the Besicovitch Differentiation Theorem;
• Rademacher’s Theorem on the almost everywhere differentiability of Lipschitz

maps;
• The definition of Hausdorff measures and a few of their elementary properties.

All the fundamental definitions, propositions, and theorems are given in Chapter 2,
together with references on where to find them.

The reader will note that I do not assume any knowledge of rectifiable sets. I
define them in Chapter 4, where I prove some of their basic properties. The material
of Chapter 4 can be found in other books and Mattila’s book is aparticularly good
reference for Chapter 3 and Chapter 5. However, there are twogood reasons for
including Chapters 3, 4, and 5 in these notes:

(a) To make these notes accessible to people who are not experts in the field;
(b) To show the precursors of some ideas of Preiss’ proof, in the hope that it makes

them easier to understand.

These two reasons have also been the main guidelines in presenting the proofs of
the various propositions and theorems. Therefore, some of the proofs are neither the
shortest nor the most elegant available in the literature. For instance, as far as I know,
the shortest and most elegant proof of Marstrand’s Theorem (see Theorem 3.1) uses
a beautiful result of Kirchheim and Preiss (see Theorem 3.11in [10]). However, I
have chosen to give Marstrand’s original proof because the “moments” introduced by
Preiss (which play a major role in his proof; see Chapters 7, 8, and 9) are reminiscent
of the “barycenter” introduced by Marstrand (see (3.17)).
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Similarly, I have not hesitated to sacrifice generality, whenever this seemed to
make the statements, the notation, or the ideas more transparent. Therefore, many
other remarkable facts proved by Preiss in [25] are not mentioned in these notes.

As already mentioned above, Chapter 2 is mostly a list of prerequisites on measure
theory. In Chapter 3, we prove the classical result of Marstrand that ifα ∈ R and
µ 6= 0 satisfy the assumption of Theorem 1.1, thenα is an integer. In this chapter we
also introduce the notion of tangent measure.

In Chapter 4 we define rectifiable sets and rectifiable measures and we prove the
Area Formula and a classical rectifiability criterion. As anapplication of these tools we
give a first characterization of rectifiable measures in terms of their tangent measures.

In Chapter 5 we prove a deeper rectifiability criterion, due to Marstrand for 2-
dimensional sets inR3 and extended by Mattila to general dimension and codimension.
This rectifiability criterion plays a crucial role in the proof of Theorem 1.1.

In Chapter 6 we give an overview of Preiss’ proof of Theorem 1.1. In this chapter
we motivate some of its difficulties and we split the proof into three main steps, each
of which is taken in one of the subsequent three chapters. Chapter 10 is a collection of
open problems connected to the various topics of the notes, which I collected together
with Bernd Kirchheim.

In Appendix A we prove the Kirchheim–Preiss Theorem on the analyticity of the
support of uniformly distributed euclidean measures, whereas Appendix B contains
some useful elementary computations on Gaussian integrals.

I wish to thank Matteo Focardi and Andrew Lorent, who carefully read these notes
and helped me with many comments and suggestions, and Filippo Pellandini, David
Pumberger, and Stefan Wenger, who followed the last part of my course. Finally, I
am very grateful to the anonymous referee whose suggestionshave greatly improved
many paragraphs of these notes.



2 Notation and preliminaries

In this section, we gather some basic facts which will be usedlater in these notes. For
a proof of the various theorems and propositions listed in the next sections, the reader
is referred to Chapter 1 and Sections 2.3, 2.4, 2.5, and 2.8 of[1].

2.1. General notation and measures

The topological closure of a setU and its topological boundary will be denoted
respectively byU and∂U . Givenx ∈ Rn andr > 0, we will useBr (x), Br (x), and
∂Br (x) to denote, respectively, the open ball centered atx of radiusr , its closure, and
its boundary. Ak-dimensional linear subspace ofRm will be called ak-dimensional
linear plane. WhenV is ak-dimensional linear plane andx ∈ Rm, the setx + V will
be called ak-dimensional affine plane. We will simply use the word “plane” when
there is no ambiguity as to whether we mean a linear or an affineplane. Whenx and
y are vectors ofRn, we will denote by〈x, y〉 their scalar product. WhenA and B
are matrices andx is a vector, we will denote byA · B andA · x the usual product of
matrices and the usual product of a matrix and a column vector.

In these notes we will always consider nonnegative measuresµ, though many
theorems can be generalized to real and vector-valued measures with almost no effort.
µ-measurable sets andµ-measurable functions are defined in the usual way. The
Lebesgue measure onRn is denoted byL n.

When E ⊂ U andµ is a measure onU , we will denote byµ E the measure
defined by

[µ E] ( A) := µ(A ∩ E) .

If f is a nonnegativeµ-measurable function, then we denote byfµ the measure
defined by

[ f µ]( A) :=
∫

A
f dµ .

We say that a measureµ is Borel regular if the Borel setsareµ-measurable and if for
everyµ-measurable setA there exists a Borel setBsuch thatA ⊂ B andµ(B\ A) = 0.
We say that a Borel measureµ is locally finite if µ(K ) < ∞ for every compact set
K . All the measures considered in these notes are Borel regular and, except for the
Hausdorff measures (see below), they are all locally finite.Moreover, even when
dealing with the Hausdorff measureH k, we will always work with its restrictions to
Borel setsE with locally finite H k measure, i.e. such thatH k(E ∩ K ) < ∞ for
every compact setK . Hence, in practice, we will always deal with measures whichare
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Borel regular and locally finite. For these measures, the following proposition holds
true (see Proposition 1.43 of [1]).

Proposition 2.1. Letµ be a Borel regular and locally finite measure onRn. If E is a
Borel set such thatµ(E) < ∞, then for everyε > 0 there exists a compact set K and
an open set U, such that K⊂ E ⊂ U andµ(U \ K ) < ε.

Sometimes, when comparing two different measuresµ andν on an open setA
we will use thetotal variationof µ− ν on A, which is denoted by|µ− ν|(A) and is
defined as

|µ− ν|(A) := sup
ϕ∈Cc(A),|ϕ|≤1

∫

ϕ d(µ− ν) .

We will say that theµ-measurable functionf is Lebesgue continuous at a point x
with respect to the measureµ if we have

lim
r↓0

1

µ(Br (x))

∫

Br (x)

∣

∣ f (y) − f (x)
∣

∣ dy = 0 .

Whenµ is the Lebesgue measure, we will simply say thatf is Lebesgue continuous
atx. The following is an application of the Besicovitch Differentiation Theorem 2.10
(compare with Corollary 2.23 of [1]).

Proposition 2.2. If µ is a locally finite measure and f∈ L1(µ), then forµ-a.e. x, f
is Lebesgue continuous at x with respect toµ.

2.2. Weak∗ convergence of measures

As usual, we endow the spaceCc(Rn) of continuous compactly supported functions
with the topology of uniform convergence on compact sets. This means thatϕ j → ϕ

if

• there exists a compact setK such that supp (ϕ j ) ⊂ K for everyn;
• ϕ j → ϕ uniformly.

If µ is a locally finite measure onRn, then the map

ϕ →
∫

ϕdµ

induces a continuous linear functional onCc(Rn). The converse is true for any
nonnegative linear functional.
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Theorem 2.3(Riesz’ Representation Theorem).Let L : Cc(Rn) → R be a linear
functional such that L(ϕ) ≥ 0 for everyϕ ≥ 0. Then there exists a locally finite
nonnegative measureµ such that

L(ϕ) =
∫

ϕ dµ .

Therefore, it is natural to endow the space of locally finite Euclidean measuresM
with the topology of the dual space ofCc(Rn):

Definition 2.4. Let {µ j } be a sequence of locally finite nonnegative measures onRn.

We say thatµ j converges weakly∗ toµ (and we writeµ j
∗
⇀ µ) if

lim
j ↑∞

∫

ϕ dµ j =
∫

ϕ dµ

for everyϕ ∈ Cc(Rn).

We will often use the fact that, if for every bounded open setA we have|µ j −
µ|(A) → 0, thenµ j

∗
⇀ µ.

Note that ifµ j
∗
⇀ µ, then{µ j } is uniformly locally bounded, that is, for every

compact setK there exists a constantCK such thatµ j (K ) ≤ CK for every j ∈ N.
Moreover, sinceM is the dual of the topological vector spaceCc(Rn), the weak∗

topology defined above enjoys the following compactness property:

Proposition 2.5. Let{µ j } be a sequence of uniformly locally bounded measures. Then

there exists a subsequence{µ j i } and a locally finite measureµ such thatµ j i
∗
⇀ µ.

Moreover, since the topological vector spaceCc(Rn) is separable, the following
well known metrizability property holds.

Proposition 2.6 (Metrizability of weak∗ convergence).Let M(Rn) be the set of
nonnegative locally finite measures. Then there exists a distance d onM(Rn) such
that

µ j
∗
⇀ µ if and only if d(µ j , µ) → 0.

For the reader’s convenience we include a proof of this proposition.

Proof. Let G := { fi } ⊂ Cc(Rn) be a countable dense set. Containing a set of
nonnegative functions{ϕe} with ϕe = 1 onBe(0). That is, for everyf ∈ Cc(Rn) there
exists a sequence{ fi ( j )} ⊂ G such that fi ( j ) → f and the supports offi ( j ) are all
contained in a compact setK f .
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For i ∈ N andµ, ν ∈ M we define

di (µ, ν) :=
∣

∣

∣

∣

∫

fi dµ−
∫

fi dν

∣

∣

∣

∣

.

Then we set

d(µ, ν) :=
∞
∑

i =1

2−i min
{

di (µ, ν) , 1
}

.

Clearlyd defines a distance. Indeed, ifd(µ, ν) = 0 then
∫

f dµ =
∫

f dν for every
f ∈ Cc(Rn), which impliesµ = ν. Hence, it suffices to check the triangle inequality,
which follows easily from

di (µ, ζ ) ≤ di (µ, ν) + di (ν, ζ ) .

Now assumeµ j
∗
⇀ µ. Then for eachfi ∈ G we have

lim
j →∞

∫

fi dµ j =
∫

fi dµ . (2.1)

After fixing 1 > δ > 0 we selectN0 > 0 such that
∑

i>N0
2−i < δ/2. From (2.1) we

conclude that there exists anN1 > 0 such that

di (µ j , µ) =
∣

∣

∣

∣

∫

fi dµ−
∫

fi dµ j

∣

∣

∣

∣

≤ δ

2N0
for everyi ≤ N0 and j ≥ N1 .

(2.2)
Therefore, forj ≥ N1 we have

d(µ j , µ) ≤
N0
∑

i =1

2−1di (µ j , µ) +
∑

i>N0

2−i ≤ δ

2
+ δ

2
= δ .

We conclude thatd(µ j , µ) → 0.
On the other hand, assume thatd(µ j , µ) → 0. Observe that{µ j } is locally uni-

formly bounded, becauseµ j (Be(o)) ≤
∫

ϕedµ j and the letter is a bounded sequence
for eachl . Let ϕ ∈ Cc(Rn). From our assumptions there exists a compact setK
which contains supp (ϕ) and a sequence{ fi } ⊂ G such thatfi → f uniformly and
supp (fi ) ⊂ K .

Let M be such thatµ(K ) + µ j (K ) ≤ M for every j . For any givenε > 0 we
can choosefi in the sequence above such that‖ϕ − fi ‖∞ ≤ ε/(2M). Now, since
di (µ j , µ) → 0, we can chooseN such that

di (µ j , µ) ≤ ε

2
for every j ≥ N.

Therefore, we can compute
∣

∣

∣

∣

∫

ϕdµ j −
∫

ϕdµ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

fi dµ j −
∫

fi dµ

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

( fi − ϕ)dµ j

∣

∣

∣

∣

+
∣

∣

∣

∣

∫

( fi − ϕ)dµ

∣

∣

∣

∣

≤
ε

2
+ ‖ϕ − fi ‖∞

(

µ(K ) + µ j (K )
)

≤ ε .
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Therefore, we conclude that

lim
j ↑∞

∫

ϕ dµ j =
∫

ϕ dµ .

The arbitrariness ofϕ implies thatµ j
∗
⇀ µ. �

Finally we conclude this section with a technical proposition which will be very
useful in many situations.

Proposition 2.7. Let{νi } be a sequence of measures such thatνi
∗
⇀ ν. Then

• lim inf i νi (A) ≥ ν(A) for every open set A;
• lim supi νi (K ) ≤ ν(K ) for every compact set K .

Therefore,

• νi (A) → ν(A) for every bounded open set A such thatν(∂A) = 0;
• For any point x there exists a set Sx ⊂ R+ at most countable such that

νi (Bρ(x)) → ν(Bρ(x)) for everyρ ∈ R+ \ Sx.

Proof. Let νi andν be as in the statement of the proposition and assumeA is open.
Let {ϕ j } ⊂ Cc(A) be such that 0≤ ϕ j ≤ 1 andϕ j (x) → 1 for everyx ∈ A. Since
νi (A) ≥

∫

ϕ j dνi for every j andi , we have

lim inf
i ↑∞

νi (A) ≥ lim inf
i ↑∞

∫

ϕ j dνi =
∫

ϕ j dν for every j .

Letting j ↑ ∞ we obtain
lim inf

i ↑∞
νi (A) ≥ ν(A) . (2.3)

Consider nowK compact and fixε > 0. LetU be an open set such thatK ⊂ U and
ν(U \ K ) < ε. Now, fix ϕ ∈ Cc(U ) such that 0≤ ϕ ≤ 1 andϕ = 1 onK . Then we
have

lim sup
i ↑∞

νi (K ) ≤ lim sup
i ↑∞

∫

ϕ dνi =
∫

ϕ dν ≤ ν(U ) < ν(K ) + ε .

The arbitrariness ofε gives

lim sup
n↑∞

νi (K ) ≤ ν(K ) . (2.4)

Next let A be a bounded open set such thatν(∂A) = 0. Then,A is compact and, by
(2.3) and (2.4),

lim inf
i

νi (A) ≥ ν(A) = ν( Ā) ≥ lim sup
i

νi ( Ā) ≥ lim sup
i

νi (A) .
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Finally, givenx, we consider the set

Sx :=
{

r ∈ R
+ : ν(∂Br (x)) > 0

}

.

According to what we have proved so far, we have

lim
i ↑∞

νi (Br (x)) = ν(Br (x)) for anyr ∈ R+ \ Sx.

Sinceν is locally finite,Sx is at most countable. �

2.3. Covering theorems and differentiation of measures

In these notes we will use two well-known covering theorems.For the first, we refer
the reader to Theorem 2.1 of [21], and for the second, to Theorem 2.19 of [1].

Theorem 2.8(5r -Covering Theorem).Let B be a family of balls of the Euclidean
spaceRn such that the supremum of their radii is finite. Then there exists a countable
subsetC = {Br i (xi )}i ∈N ofB such that:

• The balls Br i (xi ) are pairwise disjoint;
• ⋃

B∈B B ⊂
⋃

i ∈N
B5r i (xi ).

Theorem 2.9 (Besicovitch–Vitali Covering Theorem).Let A be a bounded Borel
Euclidean set andB a collection ofclosedballs such that for every x∈ A and every
r > 0 there exists a ballBρ(x) ∈ B with radiusρ < r . If µ is a locally finite
measure, then there exists a countable subsetC ⊂ B of pairwise disjoint balls such
thatµ

(

A \
⋃

B∈C B
)

= 0.

The Besicovitch–Vitali Covering Theorem is the main tool for proving the follow-
ing differentiation theorem for measures (see Theorem 2.22of [1]):

Theorem 2.10(Besicovitch Differentiation of Measures).Letµandν be locally finite
Euclidean measures. Then the limit

f (x) := lim
r↓0

ν(Br (x))

µ(Br (x))

exists atµ-a.e. point x∈ supp (µ). Moreover, the Radon–Nikodym decomposition of
ν with respect toµ is given by fµ+ ν E, where

E :=
(

R
n \ supp (µ)

)

∪
{

x ∈ supp (µ) : lim
r↓0

ν(Br (x))

µ(Br (x))
= ∞

}

.
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2.4. Hausdorff measures

For any nonnegative real numberα we define the constantωα to beπα/2Γ(1 + α/2),
where

Γ(t) :=
∫ ∞

0
st−1e−s ds.

Whenα is an integer,ωα is equal to theL α measure of the Euclidean unit ball ofRα

(see Proposition B.1).
We define theα-dimensional Hausdorff measure onRn in the usual way (cf.

Definition 2.46 of [1]):

Definition 2.11. Let E ⊂ Rn. Theα-dimensional Hausdorff measure ofE is denoted
byH α(E) and defined by

H
α(E) := lim

δ↓0
H

α
δ (E),

whereH α
δ (E) is defined as

H
α
δ (E) := ωα

2α
inf

{

∑

i ∈I

(

diam (Ei )
)α
∣

∣

∣ diam (Ei ) < δ , E ⊂
⋃

i ∈I

Ei

}

.

In the following proposition we summarize some important properties of the Haus-
dorff measure (see Propositions 2.49 and 2.53 of [1]).

Proposition 2.12.

(i) The measuresH α are Borel.
(ii) They are translation-invariant andH α(λE) = λαH α(E) for every positiveλ.

(iii) If α > α′ > 0, thenH α(E) > 0 =⇒ H α′
(E) = ∞.

(iv) If f : Rm → Rn is a Lipschitz map, thenH α( f (E)) ≤ (Lip ( f ))αH α(E).
(v) The n-dimensional Hausdorff measure onRn coincides with the Lebesgue mea-

sure.

Point (iii) allows theHausdorff dimensionof a setE to be defined as the infimum of
theα’s such thatH α(E) = 0. Proposition 2.13 below is a direct consequence of (v).
Before stating the proposition, we first need to introduce the definition of the push-
forward of a measure. Ifµ is a measure onRm and f : Rm → Rn isµ-measurable,
then we define the measuref#µ as

[

f#µ
]

(A) := µ
(

f −1(A)
)

.

Proposition 2.13. Let V ⊂ Rn be a k-dimensional affine plane. Fix a system of
orthonormal coordinates x1, . . . , xk, y1, . . . , yn−k such that V= {y1 = . . . = yn−k =
0}. Denote byι : Rk → Rn the map x→ (x, 0). ThenH k V = ι#L

k.
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We end this section by defining theα-densities of Euclidean measures and sets at
a given pointx (cf. Definition 2.55 of [1]).

Definition 2.14. Let µ be a locally finite Euclidean measure andα a nonnegative
number. Then we define theupper(resp.lower) α-densityofµ atx as

θ∗α(µ, x) := lim sup
r↓0

µ(Br (x))

ωαr α
θα∗ (µ, x) := lim inf

r↓0

µ(Br (x))

ωαr α
.

When the two quantities coincide, we simply speak of theα-densityofµ atx, denoted
by θα(µ, x);

If E is a Borel set, we define theα-densities ofE atx as

θ∗α(E, x) := θ∗α(H α E, x
)

θα∗ (E, x) := θα∗
(

H α E, x
)

θα(E, x) := θα
(

H α E, x
)

.

Concerning the relations between densities and measures, we have two useful
propositions which follow both from Proposition 2.56 of [1].

Proposition 2.15. Let E be a Borel set andα a nonnegative number such that
H α(E) < ∞. Then

• θ∗α(E, x) = 0 for H α-a.e. x∈ Rn \ E;
• 2−α ≤ θ∗α(E, x) ≤ 1 for H α-a.e. x∈ E.

Proposition 2.16. Letµ be a measure andα a nonnegative real number such that

0 < θα∗(µ, x) < ∞ for µ-a.e. x.

Then there exists anα-dimensional set E and a Borel function f such thatµ =
f H α E.

2.5. Lipschitz functions

Let E be a subset ofRn. f : E → Rk is a Lipschitz function if there exists a constant
K such that

| f (x) − f (y)| ≤ K |x − y| ∀x, y ∈ E . (2.5)

The smallest numberK for which inequality (2.5)holds is called theLipschitz constant
of f and we denote it by Lip (f ).

The following Proposition has a very elementary proof:

Proposition 2.17. Let f : Rk ⊃ G → Rm be a Lipschitz function. Then there exists
a Lipschitz functionf̃ : Rk → Rm such thatf̃ |G = f .
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Proof. If m = 1 we set

f̃ (x) := inf
y∈E

f (y) + Lip ( f )|y − x| . (2.6)

It is easy to check that̃f is Lipschitz and is an extension off . Whenm > 1 we use
(2.6) to extend each component of the vectorf . �

Remark 2.18. Note that form = 1 the functionf̃ defined in (2.6) satisfies Lip (̃f ) =
Lip ( f ). For m > 1 the extension suggested above does not have this property in
general. However, there does exist an extensionf̂ such that Lip (f̂ ) = Lip ( f ). This
statement is called Kirszbraun’s Theorem,and it is considerably more difficult to prove
(see 2.10.43 of [8]).

The following are two remarkable theorems concerning Lipschitz functions. In
these notes we will use only the first, but we include the second because it often gives
very good insight into the various properties of Lipschitz functions. For a proof of
Theorem 2.19, see Theorem 2.14 of [1]. For a proof of Theorem 2.20, see Theorem
3.1.16 of [8].

Theorem 2.19(Rademacher).Let f : Rn ⊃ E → Rk be a Lipschitz function. Then
f is differentiable atL n-a.e. x∈ E, that is, forL n-a.e. x∈ E there exists a linear
map d fx : Rn → Rk such that

lim
y∈E , y→x

| f (y) − f (x) − d fx(y − x)|
|y − x|

= 0 .

Theorem 2.20(Whitney’s extension theorem).Let f : Rn ⊃ E → Rk be a Lipschitz
function. For everyε > 0 there exists a functioñf ∈ C1(Rn,Rk) such thatL n({x ∈
E : f (x) 6= f̃ (x)}) < ε.

2.6. The Stone–Weierstrass Theorem

In some approximation arguments we will make use of the classical Stone–Weierstrass
Theorem (see Theorem 7.31 of [27]):

Definition 2.21. LetF be a family of real functions on the setE. Then we say that

• F separates the pointsif for every x 6= y ∈ E there existsf ∈ F such that
f (x) 6= f (y);

• F vanishes at no point of Eif for every x ∈ E there existsf ∈ F such that
f (x) 6= 0.

Theorem 2.22(Stone–Weierstrass).Let K be a compact set andA ⊂ C(K ) be an
algebra of functions which separates the points and vanishes at no point. Then for
every f ∈ C(K ) there exists{ f j } ⊂ A such that fj → f uniformly.



3 Marstrand’s Theorem and tangent measures

The goal of this chapter is to prove the following beautiful result of Marstrand:

Theorem 3.1(Marstrand’s Theorem).Letµ be a measure onRn, α a nonnegative
real number, and E a Borel set withµ(E) > 0. Assume that

0 < θα∗ (µ, x) = θα∗(µ, x) < ∞ for µ-a.e. x∈ E. (3.1)

Thenα is an integer.

This theorem was first proved in [17]. Actually, in [17], the author proved a much
stronger result, which provides important information on the measuresµ satisfying
(3.1) forα integer. This second part of Marstrand’s result is stated inRemark 3.10 and
will be proved in Chapter 6 (cp. with Theorem 6.8).

Our presentation is very close to that of chapter 14 of [21], particularly in that we
will use tangent measures.

Blow up. The first idea of the proof is that, if for someα there exists a nontrivialµ
which satisfies (3.1), then, via a “blow-up” procedure, we can produce a second (non-
trivial) measureν which satisfies a much stronger condition than (3.1). In particular,
ν will be anα-uniform measure in the following sense:

Definition 3.2 (α-uniform measures). We say that a measureµ isα-uniform if

µ(Br (x)) = ωαr
α for everyx ∈ supp (µ) and everyr > 0.

We denote byUα(Rn) the set ofα-uniform measuresν such that 0∈ supp (ν).

This particular choice of the constantωα will be convenient later since it ensures
H k V ∈ Uk(Rn) for everyk-dimensional linear planeV ⊂ Rn. We warn the reader
that there existk-uniform measures which are not of the formH k V : An example
of such a measure is given in Section 6.1 of Chapter 6. This striking fact will play a
crucial role in the last part of these notes (see the introduction to Chapter 6).

The “blow-up” procedure is better described after introducing the notion of tangent
measure. Not only will this notion simplify the discussion of this chapter, but it will
also be extremely useful in later chapters.

Definition 3.3 (Tangent measures). Letµ be a measure,x ∈ Rn, andr be a positive
real number. Then the measureµx,r is defined by

µx,r (A) = µ(x + r A) for all Borel setsA ⊂ Rn.
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For any nonnegative real numberα, we denote by Tanα(µ, x) the set of all measuresν
for which there exists a sequencer i ↓ 0 such that

µx,r i

r αi

∗
⇀ ν in the sense of measures.

Tanα(µ, x) is a subset of Tan(µ, x), the set oftangent measures toµ at x, first
introduced by Preiss in [25]. In his definition, Preiss considers all measuresν which
are weak limits ofciµx,r i for some choice of a vanishing sequence{r i } and of a positive
sequence{ci }. However, in all the cases considered in these notes, Tanα(µ, x) contains
all the information about Tan(µ, x).

Using the language of tangentmeasures, the first ingredientof the proofofTheorem
3.1 is given by the following proposition, which roughly says that at almost every point
x, at sufficiently small scale,µ is close to a nontrivialα-uniform measure. Nowadays,
arguments like that of Proposition 3.4 are considered to be quite standard in Geometric
Measure Theory.

Proposition 3.4. Letµ be as in Theorem 3.1, then forµ-a.e. x∈ E we have

∅ 6= Tanα(µ, x) ⊂
{

θα(µ, x)ν : ν ∈ Uα(Rn)
}

.

α-Uniform measures. The second step in the proof of Theorem 3.1 is to show that
the following proposition is valid.

Proposition 3.5. If Uα(Rn) 6= ∅, thenα is a nonnegative integer less than or equal
to n.

The proof of this Proposition is the core of this chapter. Here we briefly describe
the scheme of Marstrand’s approach.

Sketch of the proof of Proposition 3.5.

(a) The Besicovitch Differentiation Theorem givesUα(Rk) = ∅ for everyα > k (see
Remark 3.14).

(b) We will show that, ifα < k, then

Uα(Rk) 6= ∅ =⇒ Uα(Rk−1) 6= ∅ . (3.2)

(c) Arguing by contradiction, assume thatUα(Rn) 6= ∅ for someα ∈ R+ \ N. Let
k := [α] < α < n and iteraten − [α] times (3.2). We conclude thatUα(Rk) 6= ∅,
which contradicts (a).

�
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Clearly, the key point of this scheme is (b). Its proof reliesagain on a “blow-up”
procedure, which we split into the following lemmas. The first is a trivial remark:

Lemma 3.6. Let α ≥ 0, µ ∈ Uα(Rk), and x ∈ supp (µ). Then∅ 6= Tanα(µ, x) ⊂
Uα(Rk).

The second is an elementary geometric observation (see Section 2 and Figure 3.1).

Lemma 3.7. Let0 ≤ α < k andµ ∈ Uα(Rk). Then there exists y∈ supp (µ) and a
system of coordinates x1, . . . , xk onRk such that

supp (ν) ⊂ {x1 ≥ 0} for everyν ∈ Tanα(µ, y). (3.3)

The last is the core of Marstrand’s proof:

Lemma 3.8. Let0 ≤ α < k andν ∈ Uα(Rk). If supp (ν) ⊂ {x1 ≥ 0}, then

supp (ν̃) ⊂ {x1 = 0} for everyν̃ ∈ Tanα(ν, 0). (3.4)

From these three Lemmas we easily conclude that (b) holds using the following
procedure:

• We fixµ ∈ Uα(Rn) and we apply Lemma 3.7 in order to find ay ∈ supp (µ) that
satisfies (3.3).

• Considerν ∈ Tanα(µ, x). Then by Lemma 3.6 we haveν ∈ Uα(Rn) and from
(3.3) we obtain supp (ν) ⊂ {x1 ≥ 0}.

• Finally consider ˜ν ∈ Tanα(ν, 0). Such a measure belongs toUα(Rn) (again by
Lemma 3.6) and its support is contained in the hyperplane{x1 = 0}.

Therefore, ˜ν can be seen naturally as an element ofUα(Rn−1).

m-Uniform measures. Note that none of the lemmas above needs the assumption
α ∈ R \ N, which indeed plays a role only in the final argument by contradiction
contained in (c). Moreover, the Besicovitch Differentiation Theorem givesUk(Rk) =
{L k}. Therefore, from the procedure outlined above and a standard diagonal argument
we obtain the following:

Corollary 3.9. Let m be an integer andµ ∈ Um(Rn). Then there exists an m-
dimensional linear plane V⊂ Rn and two sequences{xi } ⊂ supp (µ) and{r i } ⊂]0, 1]
such that

µxi ,r i

r m
i

∗
⇀ H

m V in the sense of measures.
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Remark 3.10. Actually, in [17] Marstrand proved a much stronger result, which, in
the language of tangent measures, says that:

• If α is an integer andµ satisfies the assumptions of Theorem 3.1, then the following
holds forµ-a.e.x:

There exists anα-dimensional planeV such thatθα(µ, x)H α V ∈ Tanα(µ, x).
(3.5)

This statement is proved in Chapter 6 (cp. with Theorem 6.8) and it is the starting
point of Preiss’ Theorem (see the introduction to Chapter 6).

The Kirchheim–Preiss Regularity Theorem. Both Proposition 3.4 and Corollary
3.9 can be proved in a more direct way by using the following remarkable Theorem of
Kirchheim and Preiss; see [10].

Theorem 3.11.Letµ be a measure ofRn such that

µ(Br (x)) = µ(Br (y)) for every x, y ∈ supp (µ) and every r> 0. (3.6)

Then the support ofµ is a real analytic variety, i.e. there exists an analytic function
H : Rn → R such thatsupp (µ) = {H = 0}.

In Appendix A we include a proof of Theorem 3.11, taken from [10]. Recall that,
if we excludeZ = Rn (which corresponds to the trivial caseH ≡ 0), any analytic
varietyZ ⊂ Rn has a natural stratification

Z =
n−1
⋃

i =0

Zi , (3.7)

where eachZi is ani -dimensional (possibly empty) analytic submanifold ofRn. If µ
satisfies (3.6) andZ is the analytic variety given by Theorem 3.11, then letk be largest
i for which Zi in (3.7) is not empty. ThenZ is a rectifiablek-dimensional set and it is
not difficult to show thatµ = cH k Z for some constantc.

Plan of the chapter. Before going into the details of the various proofs, we briefly
outline the plan of this chapter. In the first section we proveProposition 3.4 and Lemma
3.6. The second section contains Lemma 3.7 and some basic remarks. Lemma 3.8
and Corollary 3.9 are proved, respectively, in the third andfourth section.

3.1. Tangent measures and Proposition 3.4

Tangent measures can be viewed as a suitable generalizationof the concept of tangent
planes to aC1 submanifold ofRn. Indeed, letΓ be ak-dimensionalC1 submanifold
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of Rn, setµ := H k Γ and considerx ∈ Γ. Then it is not difficult to verify that the
measuresr −kµx,r are given by

r −kµx,r = H
k

(

Γ − x

r

)

.

Here (Γ − x)/r =: Γr is the set
{

y : r y + x ∈ Γ
}

.

Therefore, since the setΓ isC1, asr ↓ 0 the setsΓr look almost like the tangentplaneTx

to Γ atx (see Figure 3.1). In the next chapter, using the area formula(which relates the
abstract definition of Hausdorff measure with the usual differential geometric formula
for the volume of a smooth submanifold) we will prove that

H
k Γr

∗
⇀ H

k Tx

(cp. with Theorem 4.8 and its proof). This implies that Tank(µ, x) = {H k Tx}, as
one would naturally expect.

x 0

x + Tx Tx
Γr

Γ

r 1

Figure 3.1. FromΓ to Γr := {y : y + r x ∈ Γ}

If f is a continuous function andµa measure, it follows directly from the definition
that Tank( f µ, x) = f (x)Tank(µ, x). By this we mean thatν belongs to Tank( f µ, x) if
and only ifν = f (x)ζ for someζ ∈ Tank(µ, x). By Proposition 2.2,we can generalize
this fact in the following useful proposition:

Proposition 3.12(Locality of Tanα(µ, x)). Letµ be a measure onRn and f ∈ L1(µ)
a Borel nonnegative function. Then

Tanα( f µ, x) = f (x)Tanα(µ, x) for µ-a.e. x. (3.8)

Remark 3.13. As a corollary of Proposition 3.12 we obtain that, for every Borel
setB,

Tanα(µ B, x) = Tanα(µ, x) for µ-a.e.x ∈ B. (3.9)
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Proof of Proposition 3.12.We claim that the equality (3.8) holds for every pointx in
the set

B1 :=
{

x ∈ R
n : lim

r↓0

1

µ(Br (x))

∫

Br (x)
| f (y) − f (x)| dµ(y) = 0

}

, (3.10)

and we recall thatµ(Rn \ B1) = 0 (see Proposition 2.2).
To prove the claim, fixx ∈ B1 andν ∈ Tanα(µ, x). Considerr i ↓ 0 such that

νi := µx,r i

r αi

∗
⇀ ν . (3.11)

If we define

ν′
i := ( f µ)x,r i

r αi
,

then for every ballBρ we have

| f (x)νi − ν′
i |(Bρ) ≤ 1

r αi

∫

Bρri

| f (y) − f (x)| dµ(x)

=
[

µ(Bρr i (x))

r αi

]

1

µ(Bρr i (x))

∫

Bρri

| f (y) − f (x)| dµ(x). (3.12)

Note that the quantity

1

µ(Bρr i (x))

∫

Bρri

| f (y) − f (x)| dµ(x)

vanishes in the limit becausex ∈ B1, whereas the ratio

µ(Bρr i (x))

r αi

is bounded because of (3.11). Therefore, we conclude| f (x)νi − ν′
i |(Bρ) → 0 for

everyρ > 0, and henceν′
i

∗
⇀ f (x)ν. This implies Tanα( fµ, x) ⊂ f (x)Tanα(µ, x).

The opposite inclusion follows from a similar argument. �

We are now ready to attack Proposition 3.4, which we prove using a common
“countable decomposition” argument.

Proof of Proposition 3.4.
Step 1 For every positivei, j , k ∈ N, consider the sets

Ei, j ,k :=
{

x :
( j − 1)ωα

i
≤ µ(Br (x))

r α
≤ ( j + 1)ωα

i
for all r ≤ 1

k

}

.

Clearly, for everyi we have

E ⊂
⋃

j ,k

Ei, j ,k . (3.13)
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We claim that forµ-a.e.x ∈ Ei, j ,k the following holds:

• For everyν ∈ Tanα(µ Ei, j ,k, x) we have the estimate
∣

∣ν(Br (y)) − θα(µ, x)ωαr
α
∣

∣ ≤ 2ωα
i

for everyy ∈ supp (ν) andr > 0. (3.14)

We will prove the claim in the next step. Note that combining this claim with
Remark 3.13 we can conclude that

• If we fix i , then for everyj andk and forµ-a.e. x ∈ Ei, j ,k, the bound of (3.14)
holds for everyν ∈ Tanα(µ, x).

From (3.13) we conclude that forµ-a.e. x ∈ E, the bound (3.14) holds for every
ν ∈ Tanα(µ, x). Sincei varies in the set of positive integers, which is countable, we
conclude that forµ-a.e.x ∈ E, the bound (3.14) holds for everyν ∈ Tanα(µ, x) and
for everyi . Therefore, we conclude that, for any suchx and any suchν,

ν(Br (y)) = θα(µ, x)ωαr
α for everyy ∈ supp (ν) andr > 0.

This means thatν/θα(µ, x) is anα-uniform measure. To conclude thatν/θα(µ, x) ∈
Uα(Rn), it suffices to show that 0∈ supp (ν). This follows from Proposition 2.7.
Indeed,

ρ−αν
(

Bρ(0)
)

≥ ρ−α lim sup
i →∞

µxi ,r i (Bρ(0)) = lim sup
i →∞

µ(Bρr i )

(ρr i )α
≥ ωαθ∗(µ, x) .

Letting ρ ↑ r we concluder −αν(Br (0)) ≥ ωαθ∗(µ, x) and henceθ∗(ν, 0) ≥ θ∗(µ,
x) > 0.

Step 2 We are left with the task of proving (3.14)forµ-a.e.x ∈ Ei, j ,k. To simplify
the notation we set

F := Ei, j ,k F1 :=
{

x ∈ F : lim
r↓0

µ(Br (x) \ F)

r α
= 0

}

.

By Proposition 2.2 we haveµ(F \ F1) = 0 and therefore it suffices to prove (3.14)
whenx ∈ F1. Therefore, we fixx ∈ F1, ν ∈ Tanα(µ F, x), andr i ↓ 0 such that

ν i := (µ F)x,r i

r αi

∗
⇀ ν .

Note that, for everyy ∈ supp (ν), there exists{xi } ⊂ F such that

yi := xi − x

r i
→ y .

Indeed, if this were not the case, then we would haveµx,r i (k) (Bρ(y)) = 0 for some
ρ > 0 and some subsequence{r i (k)}, which would implyν(Bρ(y)) = 0. We claim that
there existsS ⊂ R at most countable such that

lim
i ↑∞

ν i (Bρ(yi )) = ν(Bρ(y)) for everyρ ∈ R+ \ S. (3.15)



20 3 Marstrand’s Theorem and tangent measures

Indeed, if we defineζ i := ν i
yi −y,1, we obtain thatζi

∗
⇀ ν and (3.15) translates into

lim
i ↑∞

ζ i (Bρ(y)) = ν(Bρ(y)) .

Hence, the existence of the countable setS follows from Proposition 2.7.
Let us compute

lim
i →∞

ν i (Bρ(yi )) = lim
i →∞

µ(Bρr i (xi ) ∩ F)

r αi
.

Recall that (xi − x)/r i → y. Therefore we have|xi − x| ≤ Cri for some constantC
large enough. So we have

lim
i →∞

µ(Bρr i (xi ) \ F)

r αi
≤ lim

i →∞

µ
(

B(C+ρ)r i (x) \ F
)

r αi
= 0 ,

where the last equality follows from the fact thatx ∈ F1. Therefore we obtain

lim
i →∞

ν i (Bρ(yi )) = lim
i →∞

µ(Bρr i (xi ))

r αi
.

From this identity and from the definition ofF , we conclude that (3.14) holds for every
ρ ∈ R+ \ S. SinceS is countable, for everyρ ∈ S there exists{ρ j } ⊂ R+ \ S with
ρ j ↑ ρ. Hence,ν(Bρ(y)) = lim j ν(Bρ j (y)) and from this we conclude that (3.14) is
valid for everyr ∈ R+.

Step 3 So far we have proved that

Tanα(µ, x) ⊂ θα(µ, x)Uα(Rn) for µ-a.e.x ∈ Rn.

It remains to show that forµ-a.e. x ∈ Rn the set Tanα(µ, x) is not empty. Let us fix
anyx such thatθα∗(µ, x) < ∞. Then, for everyρ > 0, the set of numbers

r −αµ(Bρr (x)) = r −αµx,r (Bρ) r ≤ 1

is uniformly bounded. Therefore, the family of measures{r −αµx,r }r≤1 is locally
uniformly bounded. From the compactness of the weak∗ topology of measures, it

follows that there exists a sequencer j ↓ 0 and a measureµ∞ such thatµx,r j

∗
⇀ µ∞.

Hence,µ∞ ∈ Tanα(µ, x). �

Proof of Lemma 3.6.In this case, the argument given in Step 3 of the proof of Propo-
sition 3.4 shows that Tanα(µ, x) 6= ∅ for everyx ∈ supp (µ).

Now fix anyx ∈ supp (µ) and anyν ∈ Tanα(µ, x), and letr i ↓ 0 be such that

r −α
i µx,r i

∗
⇀ ν .
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Given anyy ∈ supp (ν), we argue as in Step 2 of the proof of Proposition 3.4 in order
to conclude that

• There exists a sequence{xi } ⊂ supp (µ) such that

yi := xi − x

r i
→ y;

• There exists a countable setS ⊂ R+ such that

lim
i ↑∞

r −α
i µx,r i (Bρ(yi )) = ν(Bρ(y)) for everyρ ∈ R+ \ S.

Thus, for everyρ ∈ R+ \ Swe have

ν(Bρ(y)) = lim
r i ↓0

µ(Bρr i (xi ))

r αi
= ωαρ

α .

For everyρ ∈ R+ there exists a sequence{ρ j } ⊂ R+ \ Ssuch thatρ j ↑ ρ. Therefore,
we conclude thatν(Bρ(y)) = ωαρ

α for everyρ > 0. The arbitrariness ofy ∈ supp (ν)
impliesν ∈ Uα(Rn). �

3.2. Lemma 3.7 and some easy remarks

Remark 3.14. Assume thatµ ∈ Uα(Rn). If α ≥ n, from the Besicovitch Differenti-
ation Theorem we conclude thatµ = f L n, where

f (x) = lim
r↓0

µ(Br (x))

ωnr n
for L n-a.e.x.

If α > n, we conclude thatf = 0. If α = n we obtain thatf = 1E, whereE =
supp (µ). Sinceµ ∈ Un(Rn), we conclude thatL n(Br (0)∩E) = ωnr n = L n(Br (0)).
SinceE is closed, we obtainBr (0) ⊂ E and the arbitrariness ofr impliesE = Rn.

Combining this argument with Proposition 2.13, we concludethat: Ifµ ∈ Um(Rn)
and supp (µ) is contained in anm-dimensional linear planeV , thenµ = H m V .

Proof of Lemma 3.7.Set E := supp (µ) and note that, sinceα < n, B1(0) 6⊂ E.
Indeed, we can use the Besicovitch–Vitali Covering Theoremto coverL n-almost all
B1(0) with a collection of pairwise disjoint closed balls{Br j (x j )} contained inB1(0)
and with radii strictly less than 1. If we hadB1(0) ⊂ E then we could estimate

µ(B1(0)) ≥
∑

j

µ(Br j (x j )) = ωα
∑

j

r αj > ωα
∑

j

r n
j = ωα

ωn

∑

j

L
n(Br j (x j ))

= ωα

ωn
L

n(B1(0)) = ωα ,

which contradictsµ(B1(0)) = ωα (note that here we used the identityµ(Br j (x j )) =
ωαr αj ; although in the definition ofα-uniform measure this identity holds foropen
balls, it is immediate to see that it extends to closed balls too). In fact the covering
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argument just given showsµ(B1(0))> H α
δ (B1(0)) = ∞ for δ > supj 2r j . Since the

radii of the covering can be chosen arbitrarily small, one can refine this argument to
show the inequalityµ ≥ H α E.

Having shown thatE is notRn, we fix y 6∈ E. SinceE is a nonempty closed set,
there existsz ∈ E such that dist (y, E) = |y − z| =: a. Without loss of generality,
we takez to be the origin and we fix a system of coordinatesx1, . . . , xn such that
y = (−a, 0, . . . , 0). Clearly,E is contained in the closed set

Ẽ := R
n \ Ba(y) =

{

x : (a + x1)2 + x2
2 + . . .+ x2

n ≥ a2} .

Fix ν ∈ Tanα(µ, 0) and a sequencer i ↓ 0 such that

νi := µ0,r i

r αi

∗
⇀ ν .

The support ofνi is given by

Ei := E/r i ⊂ Ẽi :=
{

(a + r i x1)
2 + r 2

i (x2
2 + . . .+ x2

n) ≥ a2} .

Note that, for anyx ∈ {x1 < 0}, there existsN > 0 andρ > 0 such thatBρ(x)∩ Ẽi = ∅
for i ≥ N; cf. Figure 3.2. Henceνi (Bρ(x)) = 0, which yieldsx 6∈ supp (ν). Therefore
supp (ν) ⊂ {x1 ≥ 0}, which concludes the proof. �
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Figure 3.2. The setsẼi converge to the closed upper half-space.

3.3. Proof of Lemma 3.8

Remark 3.15. Let µ ∈ Uα(Rn) and f : R+ → R be a simple function, that is
f =

∑N
i =1 ai 1[0,r i [ for some choice ofN ∈ N, r i > 0 andai ∈ R. Then, for any
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y ∈ supp (µ) we have

∫

f (|z|) dµ(z) =
N
∑

i =1

aiµ(Br i (0)) =
N
∑

i =1

aiµ(Br i (y)) =
∫

f (|z − y|) dµ(z) .

By a simple approximation argument we conclude that
∫

ϕ(z) dµ(z) =
∫

ϕ(z − y) dµ(z) for any radialϕ ∈ L1(µ) and∀y ∈ supp (µ).

(3.16)

Proof. Let us define the quantity

b(r ) := ωα

ν(Br (0))

∫

Br (0)
z dν(z) = r −α

∫

Br (0)
z dν(z) , (3.17)

(in other words,b(r ) is given byωα times the barycenter of the measureν Br (0)).
We let (b1(r ), . . . , bn(r )) be the components of the vectorb(r ).

Since supp (ν) ⊂ {x1 ≥ 0}, we haveb1(r ) ≥ 0. Moreover,b1(r ) = 0 would imply
that supp (ν) ⊂ {x1 = 0} and the claim of the lemma would follow trivially. The idea
is to study the limiting behavior ofb(r ) asr ↓ 0. More precisely, given ˜ν ∈ Tanα(ν, 0),
we define

c(r ) := r −α
∫

Br (0)
z dν̃(z) . (3.18)

Our goal is to show thatc(r ) = 0 for everyr . Since supp (˜ν) ⊂ {x1 ≥ 0}, this would
imply supp (ν̃) ⊂ {x1 = 0} and conclude the proof of the lemma.

Step 1 In this step we prove the following claim:

|〈b(r ), y〉| ≤ C(α)|y|2 for everyy ∈ supp (ν) ∩ B2r (0). (3.19)

Using the identity

2〈x, y〉 = |y|2 +
(

r 2 − |x − y|2
)

−
(

r 2 − |x|2
)

,

we can compute

2
∣

∣〈b(r ), y〉
∣

∣ = r −α
∣

∣

∣

∣

∫

Br (0)
2〈x, y〉 dν(x)

∣

∣

∣

∣

= r −α
∣

∣

∣

∣

|y|2ν(Br (0)) +
∫

Br (0)

(

r 2 − |x − y|2
)

dν(x)

−
∫

Br (0)

(

r 2 − |x|2
)

dν(x)

∣

∣

∣

∣

. (3.20)
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For y ∈ supp (ν), Remark 3.15 gives
∫

Br (0)

(

r 2 − |x − y|2
)

dν(x) −
∫

Br (0)

(

r 2 − |x|2
)

dν(x)

=
∫

Br (0)

(

r 2 − |x − y|2
)

dν(x) −
∫

Br (y)

(

r 2 − |x − y|2
)

dν(x)

=
∫

Br (0)\Br (y)

(

r 2 − |x − y|2
)

dν(x) −
∫

Br (y)\Br (0)

(

r 2 − |x − y|2
)

dν(x) . (3.21)

Combining (3.20) and (3.21) we obtain

2|〈b(r ), y〉| ≤ ωα|y|2 + r −α
∫

Br (0)\Br (y)

∣

∣r 2 − |x − y|2
∣

∣ dν(x)

+r −α
∫

Br (y)\Br (0)

∣

∣r 2 − |x − y|2
∣

∣dν(x) . (3.22)

Forx ∈ Br (0) \ Br (y), we have

0 ≤ |x − y|2 − r 2 ≤ |x − y|2 − |x|2 =
(

|x − y| + |x|
)(

|x − y| − |x|
)

≤ 4r |y| ,

whereas forx ∈ Br (y) \ Br (0) we have

0 ≤ r 2 − |x − y|2 ≤ |x|2 − |x − y|2 =
(

|x − y| + |x|
)(

|x| − |x − y|
)

≤ 4r |y| .

Hence, (3.22) gives

2|〈b(r ), y〉| ≤ ωα|y|2 +
4r |y|

r α

[

ν
(

Br (y) \ Br (0)
)

+ ν
(

Br (0) \ Br (y)
)

]

= ωα|y|2 +
4r |y|

r α
ν
[

(

Br (y) \ Br (0)
)

∪
(

Br (0) \ Br (y)
)

]

. (3.23)

Clearly, if |y| ≤ r , then
(

Br (y) \ Br (0)
)

∪
(

Br (0) \ Br (y)
)

⊂ Br+|y|(0) \ Br−|y|(y) .

Hence

2|〈b(r ), y〉| ≤ ωα|y|2 + 4|y|
r α−1

[

ν
(

Br+|y|(0)
)

− ν
(

Br−|y|(y)
)

]

(3.24)

= ωα|y|2 + 4|y|ωα
r α−1

[

(r + |y|)α − (r − |y|)α
]

≤ C(α)|y|2 . (3.25)

This gives (3.19) for|y| ≤ r . Forr ≤ |y| ≤ 2r we use

Br (y) \ Br (0) ∪ Br (0) \ Br (y) ⊂ Br+|y|(0)

and a similar computation.

Step 2To reach the desired conclusion, fix ˜ν ∈ Tanα(ν, 0) and a sequencer i ↓ 0
such that

ν i := ν0,r i

r αi

∗
⇀ ν̃ .
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Moreover, letb(r ) andc(r ) be the quantities defined in (3.17) and (3.18). By Proposi-
tion 2.7, there is a setS ⊂ R which is at most countable and such that

c(ρ) = lim
r i ↓0

b(ρr i ) for ρ ∈ R+ \ S.

Letρ ∈ R+ \ Sandz ∈ supp (ν̃)∩ Bρ(0). Then there exists a sequence{zi } converging
to z such thatyi := r i zi ∈ supp (ν). Using (3.19), we obtain

|〈c(ρ), z〉| = lim
r i ↓0

|〈b(ρr i ), yi 〉|
r i

≤ C(α) lim
r i ↓0

|yi |2

r i
= 0 .

This means that〈c(ρ), z〉 = 0 for everyz ∈ supp (ν̃) ∩ Bρ(0). Therefore

0 = ρ−α
∫

Bρ (0)
〈c(ρ), z〉 dν̃(z) = |c(ρ)|2 .

This holds for everyρ ∈ R+ \ S. Since forρ ∈ S there exists{ρi } ⊂ R+ \ S with
ρi ↑ ρ, we conclude

c(ρ) = lim
i →∞

c(ρi ) = 0 ,

and hencec(ρ) = 0 for everyρ > 0, which completes the proof. �

3.4. Proof of Corollary 3.9

Proof. For every measureµ, we denote byTα(µ) the closure of the set
{µx,r

r α
: x ∈ supp (µ), r ∈]0, 1]

}

(3.26)

in the metricd of Proposition 2.6. Note that for everyx ∈ supp (µ) we have
Tanα(µ, x) ⊂ Tα(µ). Let m andµ be as in the statement of the lemma and setk :=
n−m. WeapplyLemmas3.6, 3.7, and3.8 tofinda familyofmeasures{µi}i ∈{0,1,...,2k} ⊂
Um(Rn) such that

• µ0 = µ andµi +1 ∈ Tα(µi );
• supp (µ2k) ⊂ V for somem-dimensional linear planeV ⊂ Rn.

From Remark 3.14 it follows thatµ2k = H m V , and hence the corollary follows if
we can proveµ2k ∈ Tα(µ0). To show this, it suffices to apply the following claim 2k
times:

ξ ∈ Tα(ν) =⇒ Tα(ξ ) ⊂ Tα(ν) . (3.27)

SinceTα(ν) is closed in the metricd, this claim is equivalent to

ξ ∈ Tα(ν) =⇒ ξx,ρ

ρα
∈ Tα(ν) for all ρ ≤ 1 andx ∈ supp (ξ ). (3.28)
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Fix ξ as in (3.28). Then there are sequences{xi } ⊂ supp (r ) and{r i } ⊂]0, 1] such that

ν i := νxi ,r i

r αi

∗
⇀ ξ .

Clearlyν i
x,ρ

∗
⇀ ξx,ρ . Hence, if we definezi := xi + r i x andρi := ρr i , we conclude

that
νzi ,ρi

ραi
=

ν i
x,ρ

ρα
∗
⇀

ξx,ρ

ρα
.

This would prove the desired claim (3.28) ifzi were in the support ofν, which however
mightnotbe thecase. So, considerasequence{wi } ⊂ Rn such thatyi := (wi −zi )/r i ↓
0. Then

ζ i − β i := νwi ,ρi

ραi
− νzi ,ρi

ραi

∗
⇀ 0 . (3.29)

Indeed,β i = ζ i
yi ,1 and hence for any test functionϕ ∈ Cc(Rn) we simply have

∫

ϕ(z)dβ i (z) −
∫

ϕ(z)dζ i (z) =
∫

(ϕ(z) − ϕ(yi + z)) dβi (z). (3.30)

Sinceϕ(·) − ϕ(yi + ·) converges to 0 uniformly andβi is locally uniformly bounded,
the right hand side of (3.30) converges to 0 asi ↑ ∞, which shows (3.29).

To complete the proof of (3.28) it remains to find a sequencewi such that{wi } ⊂
supp (µ) and (wi − zi )/r i → 0. Assume by contradiction that there is no such
sequence. Then there exists aη > 0 such thatν(Br i η(zi )) = 0, for infinitely manyi ’s.
But then, by Proposition 2.7,

ξ (Bη(x)) = ρα
ξx,ρ

ρα
(Bη/ρ(0)) ≤ ρα lim inf

i ↑∞

νzi ,ρi (Bη/ρ(0)

ραi

= ρα lim inf
i ↓0

ν(Br i η(zi ))

ραi
= 0

which would contradict the assumptionx ∈ supp (ξ ). �



4 Rectifiability

This chapter deals with rectifiable sets and rectifiable measures.

Definition 4.1(Rectifiability). Ak-dimensional Borel setE ⊂ Rn is calledrectifiable
if there exists a countable family{Γi }i of k-dimensional Lipschitz graphs such that
H k

(

E \
⋃

Γi
)

= 0.
A measureµ is called ak-dimensional rectifiable measureif there exist ak-

dimensional rectifiable setE and a Borel functionf such thatµ = f H k E.

By the Whitney Extension Theorem, we could replace Lipschitz with C1 in the
previous definition. However, we will never use this fact in these notes. The final goal
of this chapter is to give a first characterization of rectifiable measures in terms of their
tangent measures; see Theorem 4.8.

The Area Formula. If E is rectifiable we have an important tool which relates the
abstract definition ofH k(E) to the differential geometric formula commonly used to
compute thek-volume of aC1 manifold. This tool is the area formula.

Definition 4.2(Jacobian determinant). LetA ∈ Rm×k be a matrix andL(x) = A·x the
linear mapL : Rk → Rm naturally associated to it. We defineJ L := (det (At · A))1/2.
Let G be a Borel set andf : G → Rm a Lipschitz map. We denote byd fx the
differential of f at the pointx which, thanks to Rademacher’s Theorem, exists at
L k-a.e.x ∈ G. We denote byJ f the Borel functionJ f (x) := Jd fx.

Proposition 4.3 (Area Formula).Let E ⊂ Rk be a Borel set and f: E → Rn a
Lipschitz map. Then

∫

f (E)
H

0
(

f −1({z})
)

dH
k(z) =

∫

E
J f (x) dL

k(x) . (4.1)

Recall thatH 0(F) gives the number of elements ofF . WhenΓ is a Borel subset
of ak-dimensional Lipschitz graph, there exists a Lipschitz function f : Rk → Rn−k

and a Borel setE such thatΓ = {(x, f (x)) : x ∈ E}. Therefore, we can apply the
previous proposition to the Lipschitz map

F : R
k 3 x → (x, f (x)) ∈ R

n ,

in order to obtain

H
k(Γ) =

∫

E
J F(x) dL

k(x) .
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If we fix a pointx where f is differentiable andd f is Lebesgue continuous, then:

• J F(y) will be close toJd fx for most pointsy close tox;
• Close tox, Γ will look very much like the plane tangent toΓ atx.

Therefore, it is not surprising that the following corollary holds.

Corollary 4.4. Letµ be a k-dimensional rectifiable measure. Then forµ-a.e. y there
exist a positive constant cy and a k-dimensional linear plane Vy such that

r −kµy,r
∗
⇀ cyH

k Vy as r ↓ 0.

The Rectifiability Criterion. We now come to an important question: How does
one prove that a set is rectifiable? The most common tool used for this purpose is the
criterion given by Proposition 4.6. Before stating it, we introduce some notation.

Definition 4.5 (k-cones). LetV be ak-dimensional linear plane ofRn. Then we
denote byV⊥ the orthogonal complement ofV . Moreover, we denote byPV and
QV , respectively, the orthogonal projection onV andV⊥. Forα ∈ R+, we denote by
C(V, α) the set

{

x ∈ R
n : |QV (x)| ≤ α|PV (x)|

}

.

For everyx ∈ Rn, we denote byC(x,V, α) the setx + C(V, α). Any suchC(x,V, α)
will be called ak-cone centered atx.
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Figure 4.1. The coneC(x,V, α).
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Proposition 4.6 (Rectifiability Criterion). Let E ⊂ Rn be a Borel set such that
0 < H k(E) < ∞. Assume that the following two conditions hold forH k-a.e.
x ∈ E:

• θk
∗ (E, x) > 0;

• There exists a k-cone C(x,V, α) such that

lim
r↓0

H k
(

E ∩ Br (x) \ C(x,V, α)
)

r k
= 0 . (4.2)

Then E is rectifiable.

The main idea behind Proposition 4.6 is that the conditions above are some sort
of approximate version of (4.3) below. Indeed, the proof of Proposition 4.6 uses the
following elementary geometric observation, which will also be useful later:

Lemma 4.7 (Geometric Lemma).Let F ⊂ Rn. Assume that there exists a k-
dimensional linear plane V and a real numberα such that

F ⊂ C(x,V, α) for every x∈ F. (4.3)

Then there exists a Lipschitz map f: V → V⊥ such that F⊂ {(x, f (x)) : x ∈ V}.

The proof of Proposition 4.6 shows that one can decomposeH k-almost allE
into a countable union of setsFi satisfying the assumption of the lemma. In this
decomposition the conditionθk

∗ (x, E) > 0 will play a crucial role.

First characterization of rectifiable measures. A corollary of Proposition 4.6 is
the converse of Corollary 4.4. Therefore, rectifiable measures can be characterized in
terms of their tangent measures in the following way:

Theorem 4.8. A measureµ is a k-dimensional rectifiable measure if and only if for
µ-a.e. x there exist a positive constant cx and a k-dimensional linear plane Vx such
that

r −kµx,r
∗
⇀ cxH

k Vx as r ↓ 0. (4.4)

Plan of the chapter. In the first two sections we prove the Area Formula and Corol-
lary 4.4; in the third section we prove the Geometric Lemma and the Rectifiability
Criterion; in the fourth section we prove Theorem 4.8.

4.1. The Area Formula I: Preliminary lemmas

First of all, we check that the Area Formula holds when the mapf is affine. Indeed,
in this case,f (E) is contained in ak-dimensional affine plane. Thus, after a suitable
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change of coordinates, the Area Formula becomes the usual formula for changing
variables in the Lebesgue integral.

Lemma 4.9. Let f in Proposition4.3be affine. Then(4.1)holds.

Proof. Since f is affine, there exists a matrixA ∈ Rn×k and a constantc ∈ Rn such
that f (x) = c + A · x. Without loss of generality we assume thatc = 0. Moreover,
note thatJ f = (det (At · A))1/2.

Clearly f (E) is a subset of somek-dimensional linear planeV and we can find an
orthonormal system of coordinatesy1, . . . , yk, yk+1, . . . , yn such that

V =
{

yk+1 = yk+2 = . . . = yn = 0
}

.

Writing f in this new system of coordinates is equivalent to finding an orthogonal
matrix O ∈ Rn×k such that

f (x) = B · x = O · A · x .

Clearly, (det (Bt · B))1/2 = (det (At · A))1/2. We denote byf j (x) the j -th component
of the vectorf (x) in the system of coordinatesy1, . . . , yn and we definef̃ : Rk → Rk

as

f̃ (x) =
(

f1(x), . . . , fk(x)
)

.

Moreover, we defineι : Rk → Rn by ι(z) = (z, 0, . . .0). Then, according to
Proposition 2.13 we have

H
k(F) = L

k(ι−1(F)) for every BorelF ⊂ f (E).

This implies
∫

f (E)
H

0
(

f −1(y)
)

dH
k(y) =

∫

f̃ (E)
H

0
(

f̃ −1(y)
)

dL
k(y) . (4.5)

Moreover, (det (At · A))1/2 = J f̃ (x), and sincef̃ is a map between spaces of the same
dimension, it is easy to check thatJ f̃ = |detd f̃ |. Therefore, the usual formula for
the change of variables in the Lebesgue integral yields

∫

f̃ (E)
H

0( f̃ −1(y)
)

dL
k(y) =

∫

E
|detd f̃x| dL

k(x) =
∫

E
J f (x) dL

k(x) .

(4.6)

Combining (4.5) and (4.6) we obtain (4.1). �

The next two lemmas deal with two other relevant cases of the Area Formula: The
case whereL k(E) = 0 and the case whereJ f (x) = 0 for L k-a.e.x.
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Lemma 4.10. Let f be as in Proposition4.3 and assumeL k(E) = 0. Then(4.1)
holds.

Proof. The proof follows trivially from Proposition 2.12(iv). �

Lemma 4.11. Let f be as in Proposition4.3. If J f (x) = 0 for L k-a.e. x∈ E, then
(4.1)holds.

Proof. Clearly we have to showH k( f (E)) = 0. Let

F :=
{

x ∈ E : f is differentiable atx andJ(d fx) = 0
}

.

SinceL k(E \ F) = 0, we conclude thatH k( f (E \ F)) = 0. Therefore, it suffices
to proveH k( f (F)) = 0.

Without loss of generality we may assume thatF is contained in the ballBR =
BR(0) ⊂ Rm. Moreover, recall that, sincef is a Lipschitz map, there exists a constant
M such that|d fx| ≤ M for everyx ∈ F . We will prove that

H
k

2ε( f (F)) ≤ cε for everyε > 0, (4.7)

wherec is a constant which depends only onM , k, n, and R. Letting ε ↓ 0, we
concludeH k( f (F)) = 0.

Step 1First covering argument. For everyx ∈ F , denote byAx : Rk → Rn the
affine map given byAx(y) = f (x) + d fx(y − x). Since everyx ∈ F is a point of
differentiability, there exists a positiverx ≤ 1 such that:

∣

∣ f (y) − Ax(y)
∣

∣ ≤ ε|x − y| for all y ∈ Brx (x) . (4.8)

Therefore, for everyρ ≤ rx we have

f (Bρ(x)) ⊂ I ε(x, ρ) :=
{

z ∈ R
n : dist

(

z, Ax(Bρ(x))
)

≤ ερ
}

. (4.9)

From the 5r -covering Lemma, we can coverF with a countable family ofballs{Br i (xi )}
such that

• xi ∈ F and 5r i ≤ rxi ;
• the ballsBr i /5(xi ) are pairwise disjoint and contained inBR.

Therefore, we conclude that

r i ≤ 1 and
∑

i

r k
i ≤ 5k Rk , (4.10)

f (F) ⊂
⋃

i

I ε(xi , r i ) . (4.11)
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Step 2Second covering argument. Recall thatJ(d fxi ) = 0. Therefore, the rank
of the linear mapd fxi is at mostk − 1 and henceAxi (Br i (xi )) is contained in a
(k − 1)-dimensional affine planeVi . Moreover,|d fxi | ≤ M . Therefore,Axi (Br i (xi ))
is contained in a (k − 1)-dimensional diskDi ⊂ Vi of radiusMr i . Hence

I ε(xi , r i ) ⊂
{

z ∈ R
n : dist (z, Di ) ≤ εr i

}

. (4.12)

Then, it is elementary to check that eachI ε(xi , r i ) can be covered byCε−(k−1) n-
dimensional ballsBi, j of radiusεr i (where the constantC depends only onk, m, and
M).

From (4.11) we obtain that{Bi, j } is a countable covering ofF . Moreover, the
diameter of eachBi, j is precisely 2εr i ≤ 2ε. Therefore,

H
k

2ε( f (F)) ≤ ωk

∑

i, j

(εr i )
k ≤ ωk

∑

i

Cεr k
i

(4.10)
≤ ωkC5k Rkε .

SinceC depends only onk, n, andM , this is the desired inequality (4.7). �

4.2. The Area Formula II

The intuitive idea behind the proof of the Area Formula is that, after discarding the
setE0 ⊂ E where f is not differentiable or where the Jacobian determinant is 0, we
can coverE \ E0 with a countable number of Borel setsEi ⊂ E such that on eachEi

the mapf is very close to an injective affine map. We make this idea moreprecise in
Lemma 4.12 below, where we will use the following notation:

If the map f : G → H is injective, thenf −1 denotes the inverse off : G → f (G).

Lemma 4.12. Let E ⊂ Rk be a Borel set and f: E → Rn a Lipschitz map. Fix any
t > 1. Then there exists a countable covering of E with Borel subsets {Ei }i ≥0 such
that:

(i) If x ∈ E0, then either f is not differentiable at x, or J f(x) = 0.
(ii) For every i≥ 1, the map f is injective on Ei .

(iii) For every i ≥ 1 there exists an injective linear map Li : Rk ⊃ Ei → Rn such
that the following estimates hold:

Lip
(

f |Ei ◦ L−1
i

)

≤ t Lip
(

L i ◦
(

f |Ei

)−1
)

≤ t , (4.13)

t−k J Li ≤ J f (x) ≤ tk J Li ∀x ∈ Ei . (4.14)

Proof. We defineE0 as the set of pointsx ∈ E where f is not differentiable or
J f (x) = 0 (i.e. d fx is not injective).
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Next we fix:

• ε > 0 such thatt−1 + ε < 1< t − ε;
• C ⊂ E dense and countable;
• Sdense and countable in the set of injective linear mapsL : Rk → Rn.

For everyx ∈ C, L ∈ S, andi ≥ 1 we define:

E(x, L, i ) =
{

y ∈ B1/ i (x) : f is differentiable aty, d fy is injective, (4.15)

and (4.16) hold
}

,

where (4.15) and (4.16) are:

Lip
(

d fy ◦ L−1) ≤ t − ε, Lip
(

L ◦ d f −1
y

)

≤
(

t−1 + ε)−1 . (4.15)
∣

∣ f (z) − f (y) − d fy(z − y)
∣

∣ ≤ ε|L(z − y)| ∀z ∈ B2/ i (y) . (4.16)

Step 1The setsE(x, L, i ) enjoy the properties (ii) and (iii).

It is not difficult to conclude (4.14) from (4.15), using elementary linear algebra.
Moreover, note that (4.15) and (4.16) imply

t−1|L(z − y)| ≤ | f (z) − f (y)| ≤ t |L(z − y)| (4.17)

for everyy, z ∈ E(x, L, i ). Therefore,f |Ei is injective and (4.13) follows easily.

Step 2The setsE(x, L, i ) coverE \ E0.

Let y ∈ E \ E0. Then f is differentiable aty andd fy is injective. Therefore, from
the density ofS in the set of injective linear mapsA : Rk → Rn, it follows that there
exists anL for which the bounds (4.15) hold.

SinceL is injective, there exists ac > 0 such thatc|v| ≤ |L(v)| for everyv ∈ Rk.
From the differentiability off at y, it follows that for somei > 0 we have

∣

∣ f (z) − f (y) − d fy(z − y)
∣

∣ ≤ εc|z− y| ≤ ε|L(z − y)| ∀z ∈ B2/ i (y) .

Because of the density ofC, there existsx ∈ C such thaty ∈ B1/ i (x). Therefore,
y ∈ E(x, L, i ). This shows that the sets{E(x, L, i )} coverE \ E0 and concludes the
proof. �

Proof of the Area Formula.Fix t > 1 and let{Ei } be the sets of Lemma 4.12. Define
inductivelyẼ0 := E0 and

Ẽi := Ei \
i −1
⋃

j =0

Ẽ j .

Then{Ẽ j } is a Borel partition ofE. We claim that
∫

f (E)
H

0( f −1(y)) dH
k(y) =

∑

i ≥0

∫

f (Ẽi )
H

0(( f |Ẽi
)−1(y)

)

dH
k(y) . (4.18)
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This equality easily follows by
∫

f (E)
H

0( f −1(y)) dH
k(y) =

∫

Rn

H
0(E ∩ f −1(y)) dH

k(y)

=
∫

Rn

∞
∑

i =0

H
0(Ẽi ∩ f −1(y)) dH

k(y) =
∞
∑

i =0

∫

f (Ẽi )
H

0(( f |−1
Ẽi

(y)) dH
k(y)

(in order to justify the last equality one needs to check thatthe functiony → H 0(A∩
f −1(y)) is Borel measurable ifA is Borel measurable andf Lipschitz).

Next we will show how to combine (4.18) with the lemmas provedabove in order
to obtain (4.1). From Lemmas 4.10 and 4.11 it follows that

∫

f (Ẽ0)
H

0(( f |Ẽ0
)−1(y)

)

dH
k(y) =

∫

Ẽ0

J f (x) dL
k(x) . (4.19)

From Lemma 4.12(ii) it follows that
∫

f (Ẽi )
H

0(( f |Ẽi
)−1(y)

)

dH
k(y) = H

k
(

f (Ẽi )
)

. (4.20)

From (4.13) and Proposition 2.12(iv) we conclude

t−k
H

k
(

L i (Ẽi )) ≤ H
k
(

f (Ẽi )
)

≤ tk
H

k
(

L i (Ẽi )
)

. (4.21)

From Lemma 4.9 we obtain

H
k
(

L i (Ẽi )) =
∫

Ẽi

J Li (x) dL
k(x) , (4.22)

and finally from (4.14) we have

t−k
∫

Ẽi

J f (x) dL
k(x) ≤

∫

Ẽi

J Li (x) dL
k(x) ≤ tk

∫

Ẽi

J f (x) dL
k(x) . (4.23)

From (4.20), (4.21), (4.22), and (4.23), we obtain

t−2k
∫

Ẽi

J f (x) dL
k(x) ≤

∫

f (Ẽi )
H

0(( f |Ẽi
)−1(y)

)

dH
k(y) ≤ t2k

∫

Ẽi

J f (x) dL
k(x) .

(4.24)
Therefore, from (4.18), (4.19), and (4.24) we conclude

t−2k
∫

E
J f (x) dL

k(x) ≤
∫

f (E)
H

0( f −1(y)) dH
k(y) ≤ t2k

∫

E
J f (x) dL

k(x) .

(4.25)

Letting t ↓ 1 we obtain the desired formula. �
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4.3. The Geometric Lemma and the Rectifiability Criterion

Proof of Lemma 4.7.The condition (4.3) implies that the mapPV |F is injective. Let
x1, . . . , xk, y1, . . . , yn−k be a system of orthonormal coordinates such that

V =
{

(x, y) : y = 0
}

.

It follows that for everyx ∈ G := PV (F) there exists a uniquey ∈ V⊥ such that
(x, y) ∈ G. Hence, we can define a functiong : G → V⊥ such that

F =
{

(x, g(x)) : x ∈ G
}

.

Note that ifz1 = (x1, g(x1)) andz2 = (x2, g(x2), then

PV
(

z1 − z2
)

= x1 − x2 and QV
(

z1 − z2
)

= g(x1) − g(x2) .

Therefore, (4.3) can be translated into|g(z1) − g(z2)| ≤ α|z1 − z2| and we conclude
thatg is Lipschitz. Proposition 2.17 shows that there exists a Lipschitz extension ofg
to V . This concludes the proof. �

Proof of Proposition 4.6.We remark that all the sets defined in this proof are Borel.
Checking this is a standard exercise in measure theory.

First of all we define the sets

Fi, j :=
{

x ∈ E : H
k(E ∩ Br (x)) ≥ r k/j for all r < 1/ i

}

, (4.26)

wherei and j are positive integers. SinceE ⊂
⋃

i, j Fi, j , it suffices to prove that each
Fi, j is rectifiable. From now on we restrict our attention to a fixedFi, j and we drop
the indicesi, j to simplify the notation.

Next we fix a finite collection of linear planes{V1, . . . ,VN} such that for every
linear planeV we have

C(0,V, α) ⊂ C(0,Vm, 2α) for someVm.

For any fixedε > 0 we define the sets

Gε
l ,m :=

{

x ∈ F : H
k
(

E ∩ Br (x) \ C(x,Vm, 2α)
)

≤ εr k for all r < 1/ l
}

.

Clearly, we haveF ⊂
⋃

l ,m Gε
l ,m. Therefore, it suffices to prove that for someε > 0

eachGε
l ,m is rectifiable. We will be able to show this provided thatε is smaller than

a geometric constantc(α, j ), where j is the parameter which appears in Definition
(4.26). Therefore, the choice ofε is independent ofl andm.

We set 3ρ := min{j −1, l−1} and we will prove thatGε
l ,m ∩ Bρ(y) is a subset of a

k-dimensional Lipschitz graph for everyy and wheneverε < c(α, j ). Without loss of
generality, we carry out the proof for the caseG := Gε

l ,m ∩ Bρ(0).
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Let us briefly summarize the properties enjoyed byG:

(a) G ⊂ Bρ(0);

(b) H k(E ∩ Br (x)) ≥ j −1r k for everyx ∈ G and everyr < 3ρ;

(c) H k(E ∩ Br (x) \ C(x,Vm, 2α)) ≤ εr k for everyx ∈ G andr < 3ρ.

We claim that there exists a constantc(α, j ) such that

if ε < c(α, j ) then G ⊂ C(x,Vm, 4α) for everyx ∈ G . (4.27)

In view of Lemma 4.7 this claim concludes the proof.
We now come to the proof of (4.27). First of all, note that for everyα there exists

a constantc(α) < 1 such that for every coneC(x,V, 4α) we have:

if y 6∈ C(x,V, 4α), then Bc(α)|y−x|(y) ∩ C(x,V, 2α) = ∅ ; (4.28)

cf. Figure 4.2.

boundary of

z

z′

x
C(x,V,2α)

boundary of

C(x,V,4α)

Figure 4.2. The geometric constantc(α) of (4.28) is given by
|z′ − z|/|z − x|, wherez is any point distinct fromx which belongs
to the boundary ofC(x,V, 4α).

Then (4.27) holds for

c(α, j ) := [c(α)]k

3k j
.

Indeed, assume by contradiction that the conclusion of (4.27) is false. Then there exist
x, y ∈ G such thaty 6∈ C(x,Vm, 4α). From (a) we know thatr := |x − y| ≤ 2ρ.
From (4.28) we obtain

Bc(α)r (y) ⊂ R
n \ C(x,Vm, 2α) .
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From (b) we conclude

H
k
(

B3r (x) ∩ E \ C(x,Vm, 2α)
)

≥ H
k
(

Bc(α)r (y) ∩ E) ≥ (c(α)r )k

j
.

Therefore, from (c) we obtainε(3r )k ≥ j −1(c(α)r )k, which yields ε ≥
j −13−k[c(α)]k = c(α, j ). This contradicts the choiceε < c(α, j ) and therefore
concludes the proof. �

4.4. Proof of Theorem 4.8

We assume, without loss of generality, that the measureµ is finite.

From tangent measures to rectifiability. Let x be a point where

r −kµx,r → cxH
k Vx

wherecx is a positive constant andVx ak-dimensional linear plane. We first prove that

θk∗(µ, x) = θk
∗ (µ, x) = cx . (4.29)

Indeed, sincecxH
k Vx(∂B1(0)) = 0, we can apply Proposition 2.7 to conclude

lim
r↓0

µ(Br (x))

r k
= lim

r↓0
r −kµx,r (B1(0)) = cxH

k Vx(B1(0)) = cxωk .

Therefore, (4.29) holds and we can apply Proposition 2.16 toconclude thatµ =
f H k E for some Borel functionf and some Borel setE.

In order to show thatµ is rectifiable, it suffices to prove thatEc := E ∩ { f > c}
is rectifiable. We fixc > 0 and considerν := H k Ec. From Proposition 3.12 it
follows that

Tank(ν, x) =
{

f (x)cxH
k Vx

}

for µ-a.e.x ∈ Ec, (4.30)

wherecx is a positive constant andVx a k-dimensional plane. We wish to apply
Proposition 4.6. Arguing as above, we clearly have

θk
∗ (Ec, x) > 0 for H k-a.e.x ∈ Ec.

Moreover,H k(Ec) ≤ c−1µ(Rn) < ∞. Thus, it suffices to check the condition on
cones (4.2) and we will do it for all pointsx where (4.30) holds. Indeed, fix anα > 0
and note that

lim sup
r↓0

H k
(

Ec ∩ Br (x) \ C(x,Vx, α)
)

r k
= lim sup

r↓0

νx,r
(

B1(0) \ C(0,Vx, α)
)

r k
.

(4.31)
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Note that the setA := B1(0)\C(0,Vx, α) is open and bounded andcxH
k Vx(∂A) =

0. Therefore, from Proposition 2.7 we conclude

lim sup
r↓0

νx,r
(

B1(0) \ C(0,Vx, α)
)

r k
= cxH

k
(

Vx ∩ B1(0) \ C(0,Vx, α)
)

= 0 .

(4.32)
Hence, (4.2) holds and we can apply Proposition 4.6 to conclude thatEc is rectifiable.

From rectifiability to tangent measures. From Proposition 3.12 it suffices to prove
the claim whenµ = H k E, whereE is a subset of a Lipschitz graph. Thus, we
assume

E =
{

(z, f (z)) : z ∈ G
}

,

whereG ⊂ Rk is a Borel set andf : Rk → Rn−k is a Lipschitz map.
Let H ⊂ G be the set of pointsz where

• f is differentiable;
• d f is Lebesgue continuous;
• G has density 1 (with respect toL k).

Denote byVz thek-dimensional linear plane:

Vz :=
{

(y, d fz(y)) : y ∈ R
k
}

.

We claim that for everyz0 ∈ H we have

r −kµ(z0, f (z0)),r → H
k Vz0 asr ↓ 0. (4.33)

Clearly, sinceL k(G\ H ) = 0, this claim would conclude the proof of the proposition.
We now come to the proof of (4.33). Without loss of generalitywe can assume

thatz0 = 0 and f (z0) = 0. To simplify the notation, we will writeV in place ofVz0

and we denote byF the Lipschitz map

F : R
k 3 z → (z, f (z)) ∈ R

n .

Let us fix a test functionϕ ∈ Cc(Rm) and recall that

1

r k

∫

ϕ(x) dµ0,r (x) = 1

r k

∫

ϕ
(x

r

)

dµ(x) . (4.34)

We now use the Area Formula to write
∫

ϕ
(x

r

)

dµ(x) =
∫

G
ϕ

(

F(z)

r

)

J F(z) dL
k(z) . (4.35)

Let C > 0 be such thatϕ ∈ Cc(BC(0)). Then we have
∫

G
ϕ

(

F(z)

r

)

J F(z) dL
k(z) =

∫

G∩BCr/(Lip F )(0)
ϕ

(

F(z)

r

)

J F(z) dL
k(z) . (4.36)
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Recall that

• 0 is a point of density 1 forG and thereforer −kL k(BCr (0) \ G) vanishes as
r ↓ 0;

• d F is Lebesgue continuous at 0, and therefore

lim
r↓0

r −k
∫

BCr (0)
|J F(z) − J F(0)| dL

k(z) = 0 ;

• F is differentiable at 0 and hence

lim
r↓0

sup
z∈BCr (0)

∣

∣

∣

∣

ϕ

(

F(z)

r

)

− ϕ

(

d F0(z)

r

)∣

∣

∣

∣

= 0 .

From these three remarks we conclude that

lim
r↓0

1

r k

{∫

G∩BCr (0)
ϕ

(

F(z)

r

)

J F(z) dL
k(z)

−
∫

BCr (0)
ϕ

(

d F0(z)

r

)

J F(0)dL
k(z)

}

= 0 . (4.37)

Sinced F0 is linear, we haver −1d F0(z) = d F0(r −1z). We then change variables to
obtain

1

r k

∫

BCr (0)
ϕ

(

d F0(z)

r

)

J F(0)dL
k(z) =

∫

Rk

ϕ(d F0(w))Jd F0 dL
k(w)

=
∫

V
ϕ(x) dH

k(x) . (4.38)

Therefore, putting (4.34), (4.35), (4.36), and (4.37) together, we conclude

lim
r↓0

1

r k

∫

ϕ(x) dµ0,r (x) =
∫

ϕ(x) d[H k V ](x) .

The arbitrariness ofϕ yieldsr −kµ0,r
∗
⇀ H k V and completes the proof.
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In this chapter we will improve upon the characterization ofrectifiable sets given in
the previous chapter. Our goal is the following result:

Theorem 5.1. Letµ be a measure such that forµ-a.e. x we have

(i) ∞ > θ∗k(µ, x) ≥ θk
∗ (µ, x) > 0;

(ii) Every tangent measure toµ at x is of the form cH k V for some k-dimensional
linear plane V .

Thenµ is a rectifiable measure.

Clearly, from Theorem 4.8 it follows that every rectifiable measure enjoys the
property above. However, the converse is much more subtle than Theorem 4.8.
Indeed, there is a major difference between (ii) and (4.4): The latter implies the
uniqueness of the tangent measure, whereas the former does not. Indeed, there can be
a pointx where (i) and (ii) hold and Tank(µ, x) consists of more than one measure.
This might happen because both the constantc and the planeV of (ii) might vary, as
we can see in the examples below. The case of Example 5.2 — where V varies —
is more relevant, since it implies that we cannot conclude Theorem 5.1 directly from
Proposition 4.6.

Note that Theorem 5.1 and Theorem 4.8 imply that, ifµ enjoys the properties
(i) and (ii) atµ-a.e. x, thenµ has a unique tangent measure at almost every point.
Therefore, the set of exceptionalpoints where (i) and (ii) hold but the tangent measures
are not unique is a set of measure zero.

Example 5.2. Let Γ ⊂ R2 be the graph of the functionf : R → R given by

f (z) :=
{

|z| sin
(

log
∣

∣log
(

1 + |z|−1
)∣

∣

)

for z 6= 0
0 for z = 0.

The measureµ := H 1 Γ is locally finite and satisfies both conditions (i) and (ii)
of Theorem 5.1 at everyx ∈ Γ. If we denote bỳ a the line`a :=

{

(z, az) : z ∈ R
}

,
then

Tan1(µ, 0) =
{

H
1 `a : a ∈ [−1, 1]

}

.
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Example 5.3. Similarly, we letg : R2 → [1, 3] be given by

g(x1, x2) = 2 + sin
(

log
∣

∣log(1+ |x1|−1)
∣

∣

)

(actuallyg is not defined on{x1 = 0} but this does not affect the discussion). Then
the measure ofR2 given byµ = gH 1 `0 satisfies both (i) and (ii) at everyx ∈ `0.
However

Tan1(µ, 0) =
{

cH 1 `0 : c ∈ [1, 3]
}

.

Weakly linearly approximable sets. Theorem 5.1 is a corollary of a more general
rectifiability criterion fork-dimensional sets ofRn, first proved by Marstrand fork = 2
andn = 3 in [16] and later generalized by Mattila in [18].

Definition 5.4. Let E be ak-dimensional set ofRn and fixx ∈ Rn. We say thatE is
weakly linearly approximableatx if for everyη > 0 there existsλ andr positive such
that

• For everyρ < r there exists ak-dimensional linear planeW (which possibly
depends onρ) for which the following two conditions hold:

H
k
(

E ∩ Bρ(x) \
{

z : dist (x + W, z) ≤ ηρ
})

< ηρk ; (5.1)

H
k
(

E ∩ Bηρ(z)
)

≥ λρk for all z ∈ (x + W) ∩ Bρ(x). (5.2)

The first condition tells us that, at small scales aroundx, most ofE is contained in
a tubular neighborhood ofx + W; see Figure 5.1.

x + W

x
ρ

ηρ

Figure 5.1. The set given by the intersection of the ballBρ(x) with
the strip

{

z : dist (x + W, z) ≤ ηρ
}

. Condition (5.1) implies that
most ofE ∩ Bρ(x) lies within this set.
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The second condition says that at small scales, any small ball centered around a
pointz of x + W contains a significant portion ofE; see Figure 5.2.

x + W

x
ρ

z

ηρ

Figure 5.2. A point z on (x + W) ∩ Bρ(x) and the small ballBηρ(z)
centered on it. According to (5.2) this ball contains a significant
portion ofE.

If µ := f H k E is as in Theorem 5.1, then these two conditions are satisfied
atH k-almost every point ofE. Therefore, Theorem 5.1 follows from the following
proposition.

Proposition 5.5 (Marstrand–Mattila Rectifiability Criterion).Let E be a Borel set
such that0 < H k(E) < ∞ and assume that E is weakly linearly approximable at
H k-a.e. x∈ E. Then E is rectifiable.

Plan of the chapter. In the first section we introduce some preliminary definitions
and lemmas and in the second we prove Proposition 5.5. In the final section we show
how Theorem 5.1 follows from Proposition 5.5.

5.1. Preliminaries: Purely unrectifiable sets and projections

First we introduce the definition of a purely unrectifiable set.

Definition 5.6. Let E be ak-dimensional set withH k(E) < ∞. We say thatE is
purely unrectifiable if for every Lipschitz k-dimensional graphΓ we have
H k(Γ ∩ E) = 0.
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The following decomposition property of Borel sets with finite Hausdorff measure
is a simple corollary of our definition:

Theorem 5.7(Decomposition Theorem).Let E be a Borel set such thatH k(E) < ∞.
Then there exist two Borel sets Eu, Er ⊂ E such that

• Eu ∪ Er = E;
• Er is rectifiable;
• Eu is purely unrectifiable.

Such a decomposition is unique up toH k-null sets, that is: If Fu and Fr satisfy the
three properties listed above, then

H
k(Er \ F r ) = H

k(F r \ Er ) = H
k(Eu \ Fu) = H

k(Fu \ Eu) = 0 . (5.3)

Proof. We define

R(E) :=
{

E′ : E′ ⊂ E is Borel and rectifiable
}

.

and

α := sup
E′∈R(E)

H
k(E′) .

Let {Ei } ⊂ R(E) be such thatH k(Ei ) ↑ α. Then we setEr :=
⋃

Ei . Clearly Er

is rectifiable,Er ⊂ E, andH k(Er ) = α. We claim thatEc := E \ Er is purely
unrectifiable. Indeed, if there were a Lipschitz graphΓ such thatH k(Ec ∩ Γ) > 0 we
would have that

H
k
(

Er ∪ (Γ ∩ Ec)
)

> α . (5.4)

SinceEr ∪ (Γ ∩ Ec) ∈ R(E), (5.4) would contradict the maximality ofα.
To prove the uniqueness of the decomposition, note that the intersection between

a purely unrectifiable set and a rectifiable set has alwaysH k measure 0. Therefore, if
F r andFu are as in the statement of the theorem we have

H
k(Er ∩Eu) = H

k(Er ∩Fu) = H
k(F r ∩Eu) = H

k(F r ∩Fu) = 0 . (5.5)

SinceEr ∪ Eu = E = F r ∪ Fu, (5.5) implies (5.3). �

We are now ready for the following two lemmas. The first is a trivial application
of the Decomposition Theorem and of the Besicovitch Differentiation Theorem. The
second relies upon the Geometric Lemma (Lemma 4.7) of the previous chapter. Note
that both of them will no longer be required after proving Proposition 5.5.

Lemma 5.8. If Proposition 5.5 were false, there would exist a purely unrectifiable set
E withH k(E) > 0 which is weakly linearly approximable atH k-a.e. x∈ E.
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Proof. Assume that Proposition 5.5 is false and letF be an unrectifiable set which is
weakly linearly approximable atH k-a.e.x ∈ F . Let F r ∪ Fu be the decomposition
of F into a rectifiable part and purely unrectifiable part given byLemma 5.8. Recalling
Proposition 2.2, we have that

lim
r↓0

H k(Fu ∩ Br (x))

H k(F ∩ Br (x))
= 1 (5.6)

for H k-a.e.x ∈ Fu. Moreover, note that, ifF is weakly linearly approximable atx
andx satisfies (5.6), thenFu is also weakly linearly approximable atx.

Therefore, we conclude thatFu is purely unrectifiable and weakly linearly approx-
imable atH k-a.e.x ∈ Fu. �

Lemma 5.9. Let E be a purely unrectifiable set with finite Hausdorff measure and
which is weakly linearly approximable atH k-a.e. x∈ E. ThenH k(PV (E)) = 0 for
everyk-dimensional linear plane V .

Remark 5.10. From the Besicovitch–Federer Projection Theorem (see for instance
Theorem 18.1 of [21]) we know that every purely unrectifiable setE with finite H k

measure has null projection onalmost every k-dimensional planeV . Here, “almost
every” is with respect to the natural measure that one can define on the set ofk-
dimensional linear planes ofRm (the so called Grassmannian manifoldG(m, k)); cf.
Section 3.9 of [21]. However, one can find examples of purely unrectifiable setswhich
project to sets with positive measure onsome k-dimensional plane; see for instance
Lemma 18.12 of [21].

Proof. We fix 0< ε < 1/2.

Step 1As is often the case, we start by selecting a compact setC ⊂ E such that
H k(E \ C) < ε and the conditions of weak linear approximation ofC hold at every
pointx ∈ C in a uniform way. More precisely

(Cl) There exists a compact setC ⊂ E and positive numbersr0, η, δ such that

H
k(E \ C) < ε, η < δε < ε (5.7)

and for everya ∈ C and everyr < r0 the following two properties hold:

H
k(E ∩ Br (a)) ≥ δr k , (5.8)

there exists ak-planeW s.t. C ∩ Br (a) ⊂
{

z : dist (z, a + W) ≤ ηr
}

. (5.9)

In order to show (Cl) we first selectC′ compact such that:

• H k(E \ C′) < ε/2;
• There are positiver1 andδ such that condition (5.8) holds for everyr < r1.
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This is clearly possible since (5.2) implies that the lower density ofE is positive at
H k almost everyx.

Recall thatE is weakly linearly approximable atH k-a.e. x ∈ C. Therefore, we
can select:

(a) A compact setC ⊂ C′ with H k(C′ \ C) < ε/2,
(b) a positive numberη < δε, and
(c) a positiver0 < r1,

such that for everya ∈ C and everyr < r0 there existsW satisfying

H
k
(

E ∩ B2r (a) \
{

z : dist (z, a + W) ≤ ηr/2
})

< δ
(ηr

2

)k
. (5.10)

Clearly, C, δ, η andr0 satisfy both (5.7) and (5.8). We claim that fora ∈ C and
r < r0 the planeW of (5.10) also meets condition (5.9). Let us begin by assuming the
contrary. Then there would existz ∈ C ∩ Br (a) with dist (z, a+ W) > ηr . Therefore,
Bηr/2(z) would be contained inB2r (a) \

{

z : dist (z, a + W) ≤ ηr/2
}

. Hence, we
would have

H
k
(

B2r (a)∩E\
{

z : dist (z, a+W) ≤ ηr/2
})

≥ H
k
(

E∩Bηr/2(a)
) (5.8)

≥ δ
(ηr

2

)k
,

which contradicts (5.10).

Step 2Now let us fix an arbitraryk-dimensional linear planeV . For eachi ∈ N

define the sets

Ci :=
{

a ∈ C : C ∩ Bi −1(a) \ C(a,V, η−1) = ∅
}

.

By the Geometric Lemma 4.7, the intersection ofCi with a ball of radiusi −1/2 is
contained in a Lipschitz graph. Therefore, sinceC is purely unrectifiable, we have

H
k

(

⋃

i

Ci

)

= 0 .

It follows that forH k-a.e.a ∈ C there existsb ∈ C ∩ Br0(a) ∩ Bi −1(a) such that

|QV (b − a)| >
|PV (b − a)|

η

and hence

|PV (b − a)| < η|b − a| .
Setr := |a−b|, letW satisfy (5.9) and definec := PW(b−a)+a. From the first step
it follows that|c−b| ≤ ηr . SincePW is a projection, we obtain|c−a| ≤ |b−a| = r .
Moreover, recalling thatη < ε < 1/2, we obtain

|c − a| ≥ |b − a| − |c − b| ≥ (1 − η)r > r/2 .
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Therefore, the vectorw := (c − a)/|c − a| is a unit vector which belongs toW and
is such that|PV (w)| ≤ Cη, whereC is a geometric constant, independent ofη. We
claim that this implies

H
k
(

PV

(

{

z : dist (z, a + W) < ηr
}

∩ Br (a)
))

≤ C1ηr
k , (5.11)

whereC1 is a geometric constant; cf. Figure 5.3.

�
�
�
�

V

a

a + W

{z : dist (z,a + W) ≤ ηr }

ηr

Figure 5.3. The projection of the set
{

z : dist (z, a+ W) < ηr
}

∩ Br (a)
has size comparable toη along at least one direction.

Indeed, after translating and rescaling, (5.11) is equivalent to

H
k
(

PV

(

{

z : |QW(z)| < η
}

∩ B1(0)
))

≤ C1η . (5.12)

Now, letW′ be the subspace ofW perpendicular tow and setV ′ := PV (W′). V ′ is a
linear space and its dimension is at mostm − 1. Hence, there exists a vectorv ∈ V
perpendicular toV ′ with |v| = 1. Clearly,|〈v, w〉| ≤ |PV (w)| ≤ η. We conclude that
|〈ζ, v〉| ≤ η for everyζ ∈ W ∩ B1(0). Therefore, for everyζ ∈ B1(0) we can compute

|〈ζ, v〉| ≤ |〈PW(ζ ), v〉| + |〈QW(ζ ), v〉| ≤ η + |QW(ζ )| .

This equation implies that

PV

(

{

z : |QW(z)| < η
}

∩ B1(0)
)

⊂ {z : |〈z, v〉| ≤ 2η} ∩ B1(0)

and sincev ∈ V and|v| = 1, this establishes (5.12) and hence (5.11).
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Combining (5.11) with (5.9) we obtain

H
k
(

PV (C ∩ Br (a))
)

≤ C1ηr
k

and hence

H
k
(

PV (C ∩ Br/2(a))
)

≤ C1ηr
k . (5.13)

Step 3 Using a Vitali–Besicovitch covering we can coverH k-almost allC with
balls Br i (ai ) which are pairwise disjoint, are centered at points ofC, have radii less
thanr0/2 and satisfy (5.13) when we replacer/2 with r i anda with ai . Hence, we can
write

H
k
(

PV (C)
)

≤
∑

i

H
k
(

PV (C ∩ Br i (ai ))
) (5.13)

≤
∑

i

C1ηr
k
i

(5.8)
≤ C1

(

ηδ−1)
∑

i

H
k
(

E ∩ Br i (ai )
)

= C1
(

ηδ−1)
H

k(E) ≤ C1εH
k(E) . (5.14)

Moreover, sincePV is a projection,

H
k
(

PV (E \ C)
)

≤ H
k(E \ C) ≤ ε .

We conclude that

H
k(PV (E)) ≤ H

k
(

PV (E \ C)
)

+ H
k
(

PV (C)
)

≤
(

1 + C1H
k(E)

)

ε .

The arbitrariness ofε givesH k(PV (E)) = 0, which is the desired claim. �

5.2. The proof of the Marstrand–Mattila rectifiability crit erion

We argue by contradiction and assume that the proposition isfalse: Therefore, Lemma
5.8 gives us a purely unrectifiable setE which is weakly linearly approximable atH k-
a.e.x ∈ E. Lemma 5.9 implies that the projection of this set on everyk-dimensional
plane is a null set. Then the strategy goes roughly as follows:

• We fix a ballBr (x) around a pointx whereE is well approximated by a planeW.

• We show that for most of the pointsy in Br (x) the setE ∩ Br (y) is well approxi-
mated by a planeWy which is “almost perpendicular” toW. This will follow from
H k(PW(E ∩ Br (x))) = 0.

• The conditions of good approximation and the fact thatWy is almost perpendicular
to W imply that close toy there is a “column” of pairwise disjoint balls of size
smaller than (but still comparable to)r and centered at points ofE. This column
is almost perpendicular toW. On the other hand there must be many such points
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close to all the points ofW ∩ Br (x). Therefore, there are many of these columns
of balls. See Fig. 5.4

W x

Figure 5.4. The columns of balls close to the planesWy.

• By condition (5.2), each of the balls above gives a significant contribution to
H k(E ∩ Br (x)), which therefore turns out to be large.

• Since the upper density of a setE is bounded from above by 1 in a.e. point, the
previous conclusion would give a contradiction.

Proof. We argue by contradiction and assume that the Proposition isfalse. From
Lemma 5.8 and Lemma 5.9 we conclude the existence of a setE such that

(a) 0< H k(E) < ∞;
(b) H k(PV (E)) = 0 for everyk-dimensional planeV ;
(c) E is weakly linearly approximable atH k-a.e.x.

Step 1 As is often the case, by standard measure theoretic arguments, we pass to
a subsetF which enjoys properties (a) and (b) and a strengthened version of (c). First
of all we start by choosing a compact setF ⊂ E such that

(a1) 0< H k(F) < ∞;
(d) There existsr0 andδ positive such that

H
k(E ∩ Br (a)) ≥ δr k for all a ∈ F andr < r0. (5.15)
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Next we fix any positiveη < 1 and we claim the existence of a compact setF1 ⊂ F
such that

(a2) 0< H k(F1) < ∞;
(e) There existr1 ∈]0, r0[ andγ > 0 such that for everyr < r1 and everya ∈ F1,

we can choose a planeW with the following properties

F ∩ B2r (a) ⊂
{

z : dist (z, a + W) < ηr
}

, (5.16)

H
k
(

E ∩ Bηr (b)
)

≥ γ (ηr )k for all b ∈ (a + W) ∩ Br (a). (5.17)

Indeed, from the definition of weak linear approximability,there exist a compact
F1 ⊂ F , r1 ∈]0, r0[ andγ > 0 such that:

• (a2) holds;
• For everyr < r1 there exists a planeW which satisfies (5.17) and

H
k
(

E ∩ B2r (a) \
{

z : dist (z, a + W) ≤ ηr/2
})

< δ
(ηr

2

)k
. (5.18)

SinceF1 ⊂ F , from (5.15) and (5.18) we conclude (5.16), arguing as in Step 1 of the
proof of Lemma 5.9 (cf. the proof of (Cl)).

Finally, we claim the existence ofG ⊂ F1 such that

(a3) 0< H k(G) < ∞;
(f) There exists a positiver2 < r1 such that for everyr < r2 and everya ∈ G we can

choose ak-dimensional linear planeW which satisfies (5.17) and

F ∩ B2r (a) ⊂
{

z : dist (z, a + W) < ηr
}

(5.19)

(a + W) ∩ Br (a) ⊂
{

z : dist (z, F) < ηr
}

. (5.20)

Indeed, using the Besicovitch Differentiation Theorem and(5.15), we can select a
compact setG ⊂ F1 and a positiver2 < r1 such that (a3) holds and

H
k
(

(E \ F) ∩ B2r (a)
)

≤ γ
(ηr

2

)k
for all a ∈ G andr < r2. (5.21)

Now, for everya ∈ G andr < r2, selectW such that (5.16) and (5.17) hold. Clearly
(5.19) follows from (5.16). It remains to show that (5.20) holds. If it were false, there
would be ab ∈ (a + W) ∩ Br (a) such thatBηr (b) ∩ F = ∅. Therefore,

H
k
(

E∩Bηr (b)
)

= H
k
(

(E\F)∩Bηr (b)
)

≤ H
k
(

(E\F)∩B2r (a)
) (5.21)

≤ γ
(ηr

2

)k
,

which would contradict (5.17).

Step 2 We fix a 0< t < γηk/2, which will be chosen appropriately later (together
with theη of the previous step).
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Next we take a pointa ∈ G such that

• θ∗k(a,G) ≤ 1;
• limr r −kH k((E \ G) ∩ Br (a)) = 0.

Without loss of generality, we assume thata = 0 and we selectr3 < r2 such that

H
k
(

E ∩ Br (0)
)

< 2ωkr
k , ∀r < r3 (5.22)

H
k
(

(E \ G) ∩ B2r (0)
)

< tr k ∀r < r3 . (5.23)

After fixing r = σ < r3, we select aW which satisfies (5.19) and (5.20). Recall that

H
k(PW(G)) ≤ H

k(PW(E)) = 0 . (5.24)

We will show that forη andt sufficiently small, (5.17), (5.19), (5.20), (5.22), (5.23),
and (5.24) lead to a contradiction.

We start by introducing some notation: Forb ∈ W andρ ∈ R+ we denote by
Dρ(b) and byCρ (b) respectively the sets

Dρ(b) := Bρ(b) ∩ W and Cρ(b) :=
{

x : PW(x) ∈ Dρ(b)
}

,

which we will call (respectively) the disk and cylinder centered atb of radiusρ. Their
geometric meaning is illustrated in Figure 5.5.

Cρ(b)
Dρ(a)

Figure 5.5. The diskDρ(a) and the cylinderCρ(b).

We setH := Dσ (0) \ PW(G ∩ B2σ (0)). Note thatH is an open set, sinceG is
compact. For everyx ∈ H we set

ρ(x) := dist (x, PW(G ∩ B2σ (0))) .
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Observe that
ρ(x) ≤ ησ . (5.25)

Indeed, if this were false, we would haveBησ (x) ∩ G = ∅. Therefore, we would
conclude

H
k
(

E ∩ Bησ (x)
)

= H
k
(

(E \ G) ∩ Bησ (x)
)

≤ H
k
(

(E \ G) ∩ B2σ (0)
) (5.23)

≤ γ (ησ )k

2
,

which contradicts (5.17).
Using the 5r -Covering Lemma, we can find a countable set{xi }i ∈I ⊂ H ∩ Dσ/4(0)

such that, if we setρi := ρ(xi ), we find:

• The disks{D20ρi (xi )} coverH ∩ Dσ/4(0);
• The disks{D4ρi (xi )} are pairwise disjoint.

SinceH k(H ∩ Dσ/4(0)) = H k(Dσ/4(0)) = ωk(σ/4)k, we conclude that

∑

i ∈I

ωkρ
k
i = 1

20k

∑

i ∈I

ωk(20ρi )
k ≥ H k(H ∩ Dσ/4(0))

20k
= ωkσ

k

80k
. (5.26)

We define the subsets of indicesK andJ as

J :=
{

i ∈ I : Cρi /2(xi ) ∩ F ∩ Bσ (0) 6= ∅
}

, K := I \ J . (5.27)

For everyi ∈ J we denote byyi a point ofF ∩ Cρi /2(xi ) ∩ Bσ (0) and recall (5.19),
which implies|yi − PW(yi )| ≤ ησ . Therefore, whenη is chosen sufficiently small,
we obtain that

Bρi /2(yi ) ⊂ Bσ (0) .

Recall thatyi ∈ F satisfies the lower bound (5.15). Therefore, we have

H
k
(

Cρi (xi ) ∩ (E \ G) ∩ Bσ (0)
)

≥ H
k
(

E ∩ Bρi /2(yi )
)

≥
δρk

i

2k
.

Hence
∑

i ∈J

ωkρ
k
i ≤

∑

i ∈J

ωk2k

δ
H

k
(

Cρi (xi ) ∩ (E \ G) ∩ Bσ (0)
)

≤ ωk2k

δ
H

k
(

(E \ G) ∩ Bσ (0)
)

≤ tωk2kσ k

δ
,

where the second inequality follows because the cylindersCρi (xi ) are pairwise disjoint.
Combining thisestimatewith thatof (5.26), weconclude that there isapositiveconstant
c (which does not depend onanyof the quantitiesr j , η, δ, γ ) such that

∑

i ∈K

ωkρ
k
i ≥ cσ k , (5.28)

providedt is chosen sufficiently small.
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Step 3 To simplify the notation, from now on we will writeCi in place ofCρi (xi ).
For everyi ∈ K , denote byzi a point of∂Cρi ∩ G ∩ B2σ (0). Recall that such a point
exists because, according to our definition ofρi , we have

ρi := dist (xi , PW(G ∩ B2σ (0)) .

Next, we fix ak-dimensional planeWi which meets the conditions (5.19) and (5.20)
for the choicea = zi , r = ρi /8η.

Sincei ∈ K , according to definition (5.27), we have

Cρi /2(xi ) ∩ F ∩ Bσ (0) = ∅ .
Since (5.20) holds andηr = ρi /8, the intersection ofWi + zi with Cρi /4(xi )∩ B3σ/4(0)
must be empty. An easy computation yields that this is possible only if

(zi + Wi ) ∩ C2ρi (xi ) ∩ Bσ/2(0)

contains a segmentSi of lengthc1σ = c1ρi /(8η), wherec1 is a geometric constant; cf.
Figure 5.6.

�
�
�
�

C2ρi

Cρi

Wi + zi

zi

Large segment in

Cρi /4

(zi + Wi ) ∩ C2ρi ∩ Bσ

Figure 5.6. Since the intersection ofWi + zi with Cρi /4(xi ) ∩ Bσ (0)
is empty, (zi + Wi ) ∩ C2ρi (xi ) ∩ Bσ/2(0) contains a large segment of
size comparable toσ .

Therefore, there is a second geometric constantc2 such that on the segmentSi we
can find

N ≥ c2σ/ρi = c2/(8η)
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points{z j
i } j =1,...,N such that the ballsBρi /2(z

j
i ) are pairwise disjoint. Recall that from

(5.25) we have

ρi ≤ ση

and thus we conclude

N ≥ c2

η
. (5.29)

By (5.20), each ballBρi /8(z j
i ) must contain a pointw j

i ∈ F . Therefore, from the
density lower bound (5.15) we have

H
k
(

E ∩ Bρi /8(w
j
i )
)

≥
δρk

i

8k
. (5.30)

From our considerations, it follows that the balls{Bρi /8(w j
i )} j =1,...N are also pairwise

disjoint and contained inC4ρi (xi ). Since the cylinders{C4ρi (xi )}i ∈K are pairwise
disjoint, we conclude that the family of balls

{

Bρi /8(w j
i ) : i ∈ K , j = 1, . . . , N

}

are pairwise disjoint.
Therefore, from (5.29) and (5.30) we conclude

H
k
(

E ∩ Bσ (0)
)

≥
∑

i ∈K

N
∑

j =1

H
k
(

E ∩ Bρi /8(z j
i )
)

≥
∑

i ∈K

N
∑

j =1

δρk
i

8k

= Nδ

8kωk

∑

i ∈K

ωkρ
k
i ≥ c2δ

8kωkη

∑

i ∈K

ωkρ
k
i .

Recalling (5.28), this yields a positive constantc3 (independent ofδ and η) such
that

H
k
(

E ∩ Bσ (0)
)

≥ c3
δ

η
σ k .

Therefore, we can chooseη so small that we obtain a contradiction to (5.22). This
completes the proof. �

5.3. Proof of Theorem 5.1

Proof. First of all, from Proposition 2.16, it follows thatµ = f H k E for some
Borel set E and some nonnegative Borel functionf . Our goal is to prove that
E ∩ { f > 0} is rectifiable. In order to do this it suffices to show that thisis the case for
Ec := E ∩ {c−1 ≥ f ≥ c} for any 1> c > 0.



54 5 The Marstrand–Mattila Rectifiability Criterion

Fix c ∈]1, 0[, setF := Ec and defineν := H k F . Then, by the Besicovitch
Differentiation Theorem and from Proposition 3.12 we have

θ∗k(F, x) = θ∗k(µ, x)

f (x)
and θk

∗ (F, x) = θk
∗ (µ, x)

f (x)
for H k-a.e.x ∈ F,

Tank(ν, x) = Tank(µ, x)/ f (x) for H k-a.e.x ∈ F .

Therefore, forν-a.e.x we have that

∞ > θ∗k(F, x) ≥ θk
∗ (F, x) > 0, (5.31)

Tank
(

ν, x
)

⊂
{

aH
k V : a ≥ 0 and V is ak-dimensional linear plane

}

.

(5.32)

We now prove that at every pointx which satisfies (5.31) and (5.32),F is weakly
linearly approximable.

Let us fix anx where (5.31) and (5.32) hold and assume thatF is not weakly
linearly approximable atx.

Without loss of generality we can assumex = 0. Then there exist a positiveη and
a sequencer j ↓ 0 such that for everyk-dimensional planeW and everyj

• either
H

k
(

F ∩ Br j (0) \
{

z : dist (W, z) ≤ ηr j
})

≥ ηr k
j ; (5.33)

• or there existszj ,W ∈ W ∩ Br j (0) with

H
k

(

F ∩ Bηr j (zj ,W)
)

r k
j

≤ 1

j
. (5.34)

Setν j := r −k
j ν0,r j . Sinceθ∗k(ν, x) < ∞, we can assume that a subsequence (not

relabeled) of{ν j } converges toν∞ ∈ Tank(ν, x). From (5.32) it follows that for some
k-dimensional linear planeW and some constant ¯c ≥ 0 we haveν∞ = c̄H k W.
Moreover, either (5.33) or (5.34) holds for an infinite number of j ’s. So, for a
subsequence, not relabeled, either (5.33) or (5.34) holds for all radii.

In case this were true for (5.33) we would conclude

ν j

(

B1(0) \
{

z : dist (W, z) ≤ η
}

)

≥ η . (5.35)

Consider the setΩ which is the closure ofB1(0) \
{

z : dist (W, z) ≤ η
}

. From
Proposition 2.7, we have

c̄H k
(

W ∩ Ω
)

= ν∞(Ω) ≥ lim sup
j ↑∞

ν j (Ω) ≥ η ,

which is a contradiction becauseW ∩ Ω = ∅.
Similarly, if (5.34) held for everyj , there would be a sequence of pointsx j ∈

W ∩ B1(0) such that
lim
j ↑∞

ν j (Bη(x j )) = 0 .
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Passing to a subsequence we can assume thatx j → x ∈ W. Therefore, we would
conclude

c̄ηk = c̄H k(W ∩ Bη(x)) = ν∞(Bη(x)) ≤ lim
j ↑∞

ν j (Bη(x j )) = 0 . (5.36)

On the other hand, by Proposition 2.7 we have

θk
∗ (F, x)ωkρ

k ≤ ν∞(Bρ(0)) = c̄ρk for L 1-a.e.ρ > 0.

From (5.31) we conclude that ¯c > 0, which contradicts (5.36). This concludes the
proof. �



6 An overview of Preiss’ proof

In this chapter and in the forthcoming three ones we will givea proof of Preiss’
Theorem, which is outlined below.

Theorem 6.1. Let m be an integer andµ a locally finite measure onRn such that
0< θm

∗ (µ, x) = θm∗(µ, x) < ∞ forµ-a.e. x. Thenµ is an m-dimensional rectifiable
measure.

Note that the casesm = 0 andm = n are trivial. In the casem = 1 andn = 2, the
Theorem was first proved by Besicovitch in his pioneering work [2]. More precisely,
Besicovitch proved it for measures of the formH 1 E, whenE is a Borel set with
H 1(E) < ∞ and his proof was later extended to planar Borel measures by Morse
and Randolph in [24]. In [23], Moore extended the result to the casem = 1 and
arbitraryn. The general case was open for a long time until Preiss solvedit completely
in [25].

Marstrand’s Approach. Recalling Proposition 3.4, the assumption of Theorem 6.1
yields the following:

Tanm(µ, x) ⊂
{

θ(µ, x)ν : ν ∈ Um(Rn)
}

forµ-a.e.x. (6.1)

Hence, if the following conjecture were true, we could applyTheorem 5.1 to conclude
thatµ is rectifiable.

Conjecture 6.2. If ν ∈ Um(Rn) then there exists anm-dimensional linear planeW
such thatν = H m W.

Such a conjecture is quite easy to prove whenm = 1 and, therefore, combined
with Proposition 3.4, it yields a proof of Theorem 6.1 form = 1. This proof differs
from the “classical” proof of Besicovitch–Moore, which heavily relies on the fact
that connectedH 1-finite sets are rectifiable. This new approach to the problemwas
introduced by Marstrand in [16], though not using the language of tangent measures.
In that paper Marstrand proved the following theorem whenm = 2 andn = 3:

Theorem 6.3.Let m be an integer and E⊂ Rn be a Borel set such thatH m(E) < ∞.
If the densityθm(E, x) exists and is equal to1atH m-a.e. x∈ E, then E is rectifiable.

In the language of tangent measures, the idea of the proof of Theorem 6.3 is that,
for H m-a.e. x, the tangent measures toH m E enjoy a stronger property than
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just belonging toUm(Rn). This property allows to show that any such measure is of
the formH m W, and therefore makes it possible to apply the Marstrand–Mattila
Rectifiability Criterion. This approach was completed in the general case by Mattila,
see [18].

Whenm = 2 it is shown in [25] that the answer to Conjecture 6.2 is positive and
therefore Marstrand’s approach can be completed even for Theorem 6.1. However,
we will see that the proof of this requires considerable work. Whenm ≥ 3 Conjecture
6.2 turns out to be wrong, as is seen in the following example:

Example 6.4. Let Γ be the 3-dimensional cone ofR4 given by
{

x2
4 = x2

1 + x2
2 + x2

3

}

.

ThenH 3 Γ ∈ U3(R4). We refer to Section 6.1 for the explicit calculations.

As we will see, there is a way to overcome this obstacle which finally leads to a
proof of Theorem 6.1 in the general case.

Part A of Preiss’ strategy. First, let us recall the following corollary of the argument
that Marstrand used to prove Theorem 3.1 (cf. Corollary 3.9):

Corollary 6.5. Let m be an integer andµ ∈ Um(Rn). Then there exist an m-
dimensional linear plane V⊂ Rn and two sequences{xi } ⊂ supp (µ) and{r i } ⊂]0, 1]
such that

µxi ,r i

r m
i

∗
⇀ H

m V in the sense of measures.

The first step towards the proof of Theorem 6.1 is then the following Lemma:

Lemma 6.6. Letµ be as in Theorem 6.1. Then forµ-a.e. x the following holds:

(P) If ν ∈ Tanm(µ, x), then r−mνy,r ∈ Tanm(µ, x) for every y∈ supp (ν) and r > 0.

Remark 6.7. From the definition of tangent measure it follows easily that

ν ∈ Tanm(µ, x) =⇒ r −mν0,r ∈ Tanm(µ, x) atevery xand for everyr > 0.

Note, however, that (P) is much stronger and it cannot be expected to hold at every
pointx. For instance, if we take the coneC of Example 6.4 and we setµ := H 3 C,
then Tan3(µ, 0) = {µ}, whereas it is clear that for anyx 6= 0 and everyr > 0 we have
r −3µx,r 6= µ.

Proposition 3.4, Corollary 6.5, and Lemma 6.6 yield the following Theorem,which
was first proved by Marstrand in [17].
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Theorem 6.8(Part A). Letµ be as in Theorem 6.1, then forµ-a.e. x∈ Rn there exists
a plane Wx such thatθ(µ, x)H m Wx ∈ Tanm(µ, x).

In other words, in spite of the existence of Example 6.4, we conclude that at almost
every pointx, the set of tangent measures containsat leastone plane.

Part B of Preiss’ strategy. Let us first introduce some notation which will be very
useful in the rest of these notes.

Definition 6.9. We denote byG(m, n) the set ofm-dimensional planesV of Rn and
byGm(Rn) the set

Gm(Rn) :=
{

H
m V : V ∈ G(m, n)

}

.

We call the measures ofGm(Rn) flat measures.

Taking into account Theorem 6.8, Theorem 6.1 will then follow from Theorem
6.10 below.

Theorem 6.10(Part B). Letµ be as in Theorem 6.1 and x a point such that

• Tanm(µ, x) ⊂ θ(µ, x)Um(Rn);
• Tanm(µ, x) contains a measure of the formθ(µ, x)H m V for some m-dimensio-

nal plane V .

ThenTanm(µ, x) ⊂ θ(µ, x)Gm(Rn).

In other words, Theorem 6.10 says that, if the set of tangent measures toµ at the
pointx contains a plane, thenanytangent measure toµ atx must be a plane. Theorem
6.8 and Theorem 6.10 imply that atµ-a.e. x, the set of tangent measures consists of
k-dimensional planes. Therefore, we can apply Theorem 5.1 toconclude thatµ is
rectifiable.

A very sketchy outline of the strategy of Preiss’ proof of Theorem 6.10 is the
following:

• The set ofm-uniform measures can be divided into two subsets, given byGm(Rn)
and its complementaryUm(Rn) \ Gm(Rn).

• If µ ∈ Um(Rn) \ Gm(Rn), then on very large ballsµmust be quite different from a
flat measure (i.e. it must be “curved at infinity”). This translates into the fact that
Gm(Rn) is, in some sense, disconnected fromUm(Rn) \ Gm(Rn).

• On the other hand Tanm(µ, x) enjoys some “connectedness” properties, just from
the way it is defined: It is the set of blow-ups of thesame measureat thesame point.
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Therefore, it cannot happen that Tanm(µ, x) contains at the same time an element
of θ(µ, x)Gm(Rn) and one ofθ(µ, x)[Um(Rn) \ Gm(Rn)].

In order to exploit these ideas we will need this and the next three chapters. More
precisely, Theorem 6.10 will be split into the three key Propositions 6.16, 6.18, and
6.19. The proof of each proposition is contained in one of thenext three chapters,
whereas in this chapter we will show how they imply Theorem 6.10.

Plan of the chapter. In Section 6.1 we prove that the measure of Example 6.4 is
3-uniform. In section 6.2 we prove Lemma 6.6 and Theorem 6.8.In Section 6.3 we
introduce some definitions and we state the three Propositions 6.16, 6.18, and 6.19
which are the three main steps for proving Theorem 6.10. In Section 6.4 we show how
Theorem 6.10 follows from these Propositions.

6.1. The cone{x2
4 = x2

1 + x2
2 + x2

3},

In this section we will setΓ := {x ∈ R4 : x2
4 = x2

1 + x2
2 + x2

3}. Our goal is to prove
the following

Proposition 6.11. The measureH 3 Γ belongs toU3(R4).

A direct proof of this proposition can be found in the paper [11]. Indeed, in
this paper the authors, using differential geometric arguments, show the following
complete classification result.

Theorem 6.12.µ ∈ Um−1(Rm) if and only ifµ is flat or m ≥ 4 and there exists an
orthonormal system of coordinates such thatµ = H m−1 {x2

1 + x2
2 + x2

3 = x2
4}.

Here we propose a proof of Proposition 6.11 which is less direct. This proof is not
much longer than that given in [11] and it exploits some calculations and tricks that
will be used again in the proof of Theorem 6.10. However, we first need the following
definition and the subsequent technical lemma:

Definition 6.13. LetP be the set of polynomials of one real variable. Then we letRn

be the vector space generated by
{

f ∈ C∞(Rn) : f (x) = a + P(|x|2)e−b|x|2 whereP ∈ P, a ∈ R, b > 0
}

.

The proof of the following lemma is a straightforward application of the Stone–
Weierstrass Theorem, but we include it for the reader’s convenience.
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Lemma 6.14. Let g∈ Cc(R) and define G∈ Cc(Rn) as

G(x) := g(|x|) .

Then there exists a sequence{Gk} ⊂ Rn such that Gk → G uniformly on thewhole
Rn.

Proof. ClearlyG ∈ Rn if and only if G(x) = g(|x|) for someg ∈ R1. Therefore, it
suffices to prove the lemma whenn = 1.

Let [0,∞] be the one-point compactification of [0,∞[ and note that everyf ∈ R1

extends to a unique functioñf ∈ C([0,∞]). We denote byR̃ the vector space given
by the continuous extensions of functions ofR1.

SinceR1 is an algebra of functions, the same holds forR̃. Moreover, note that:

• for everya, b ∈ [0,∞] there exists a functionf ∈ R̃ such thatf (a) 6= f (b);
• for everya ∈ [0,∞] there exists a functionf ∈ R̃ such thatf (a) 6= 0.

Therefore, we can apply the Stone–Weierstrass Theorem to show thatR̃ is dense in
C([0,∞]). This concludes the proof. �

Proof of Proposition 6.11.Step 1 In the next steps we will prove that for every
p ∈ Γ \ {0} there exists a constantcp such that

H
3(Br (p) ∩ Γ

)

= cpr
3 ∀r > 0 . (6.2)

This claim suffices to prove the Proposition. Indeed, fixp ∈ Γ \ {0} and recall thatΓ
is aC1 manifold in a neighborhood ofp. Therefore,

cp = lim
r↓0

H 3
(

Br (p) ∩ Γ
)

r 3
= ω3 ,

and henceH 3
(

Br (p) ∩ Γ
)

= ω3r 3 for everyr > 0 andp ∈ Γ \ {0}. On the other
hand, if we fixr > 0, we can take a sequence{pi } ⊂ Γ \ {0} such thatpi → 0 in order
to conclude that

H
3(Γ ∩ Br (0)

)

= lim
pi →0

H
3(Γ ∩ Br (pi )

)

= ω3r
3 .

Step 2 Let us fix p ∈ Γ \ {0}. In order to prove (6.2) it suffices to show that for
every functionϕ ∈ Cc(R), there exists a constantcϕ such that

∫

ϕ

( |x − p|
r

)

dH
3 Γ(x) = cϕr

3 for everyr > 0. (6.3)

Indeed, knowing (6.3) we could take a sequence ofϕi ∈ Cc(B1(0)) which converges
pointwise everywhere to1B1(0). In this case, the constantscϕi would be uniformly
bounded and passing to a subsequence, not relabeled, we could assume that they
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converge to some constantcp. Pluggingϕi in (6.3) and passing to the limit ini we
would conclude thatH 3(Γ ∩ Br (0)) = cpr 3.

Now, letB be the set of functionsf ∈ L1(R4,H 3 Γ) such that

• f (x) = ϕ(|x − p|);
• there exists a constantcϕ which satisfies (6.3).

Clearly, this set is a vector space. We claim that it would suffice to show

e−|x−p|2 ∈ B (6.4)

in order to conclude (6.3).
Indeed, assume for the moment that (6.4) holds (we will proveit in Step 3) and

take the derivative inr of the equality
∫

e−|x−p|2/r 2
dH

3 Γ(x) = cr3

to obtain
∫

2|x − p|2
r 3

e−|x−p|2/r 2
dH

3 Γ(x) = cr2 .

From this we conclude that|x − p|2e−|x−p|2 belongs toB. Taking a second derivative
we find

(4|x − p|4 − 6|x − p|2)e−|x−p|2 ∈ B ,

and hence we conclude|x − p|4e−|x−p|2 ∈ B. By induction, we obtain
(|x − p|2)ke−|x−p|2 ∈ B for every positive integerk. Therefore, (6.4) would im-
ply that, if P is a polynomial, thenP(|x − p|2)e−|x−p|2 ∈ B. A change of variables
implies that every function of the type

P(|x − p|2)e−a|x−p|2, whereP is a polynomial anda > 0, belongs toB.

By linearity, we conclude that for everyγ ∈ Rn, the functiong(x) := γ (x − p)
belongs toB.

Now fix f ∈ Cc(R4) of the formϕ(|x − p|). Clearly,e|x−p|2ϕ(|x − p|) is still
a continuous compactly supported function. Then, using Lemma 6.14 we conclude
that there exists a sequence of functions{γk} ⊂ Rn such that the functionsfk(x) =
γk(x − p) converge uniformly toe|x−p|2ϕ(|x − p|). Therefore, for every fixedr > 0
we could compute

∫

ϕ

( |x − p|
r

)

dH
3 Γ(x) = lim

k↑∞

∫

e−|x−p|2/r 2
γk(x − p) dH

3 Γ(x) .

On the other hande−|x|2/r 2
γk(x) ∈ Rn and hencee−|x−p|2/r 2

γk(x − p) ∈ B. This
means that

∫

ϕ

( |x − p|
r

)

dH
3 Γ = cϕr

3

for some constantcϕ .
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Step 3 It remains to prove (6.4), that is

I (r ) :=
∫

e−r 2|x−p|2 dH
3 Γ(x) = cr−3 for everyr > 0. (6.5)

Note that the coneΓ is invariant for dilations centered at the origin and rotations that
keep (0, 0, 0, 1) fixed. Therefore, it suffices to show (6.5) forp = (1, 0, 0, 1). We
compute

I (r ) =
∫ ∞

0

∫

Γ∩∂Bρ (0)
e−r 2

[

(x1−1)2+x2
2+x2

3+(x4−1)2
]

dH
2(x) dρ =:

∫ ∞

0
J(ρ) dρ .

Note that (x1 −1)2+ x2
2 + x2

3 + (x4 −1)2 = |x|2 +2−2(x1+ x4) and thatΓ∩∂Bρ(0)
is given by
{

x4 = ρ/
√

2 , x2
1 + x2

2 + x2
3 = ρ2/2

}

∪
{

x4 = −ρ/
√

2 , x2
1 + x2

2 + x2
3 = ρ2/2

}

.

Therefore, we can compute

J(ρ) = e−r 2(ρ2+2)
(

e
√

2r 2ρ + e−
√

2r 2ρ
)

∫

x2
1+x2

2+x2
3=ρ2/2

e2r 2x1 dH
2

=: e−r 2(ρ2+2)
(

e
√

2r 2ρ + e−
√

2r 2ρ
)

K (ρ) .

We use the spherical coordinates (θ, φ) → (cosθ, sinθ sinφ, sinθ cosφ) to compute

K (ρ) = ρ2

2

∫ π

0
e−

√
2r 2ρ cosθ 2π sinθ dθ = πρ√

2r 2

∫ π

0
e−

√
2r 2ρ cosθ (

√
2r 2ρ sinθ

)

dθ

= πρ
√

2r 2
e−

√
2r 2ρ cosθ

∣

∣

∣

π

0
= πρ

√
2r 2

[

e
√

2r 2ρ − e−
√

2r 2ρ
]

.

Hence, we conclude

J(ρ) = πρ
√

2r 2
e−r 2(ρ2+2)

(

e
√

2r 2ρ + e−
√

2r 2ρ
) (

e
√

2r 2ρ − e−
√

2r 2ρ
)

= πρ
√

2r 2
e−r 2(ρ2+2)

(

e2
√

2r 2ρ − e−2
√

2r 2ρ
)

= πρ
√

2r 2

(

e−r 2(ρ−
√

2)2 − e−r 2(ρ+
√

2)2
)

.

Therefore,

I (r ) = π√
2r 2

[∫ ∞

0
e−r 2(ρ−

√
2)2ρ dρ −

∫ ∞

0
e−r 2(ρ+

√
2)2ρ dρ

]

= π√
2r 2

[∫ ∞

−
√

2
e−r 2t2

(t +
√

2)dt −
∫ ∞

√
2

e−r 2t2
(t −

√
2)dt

]

= π√
2r 2

{

∫

√
2

−
√

2
e−r 2t2

t dt +
√

2

[∫ ∞

−
√

2
e−r 2t2

dt +
∫ ∞

√
2

e−r 2t2
dt

]

}

=
π

r 2

[

∫ ∞

−
√

2
e−r 2t2

dt +
∫ −

√
2

−∞
e−r 2t2

dt

]

=
π3/2

r 3
.

This concludes the proof. �
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6.2. Part A of Preiss’ strategy

The aim of this section is to prove Lemma 6.6. In order to do this, it is very convenient
to use the metricd on the space of measuresM introduced in Proposition 2.6, which
induces the topology of the weak∗ convergence on bounded subsets ofM.

Proof of Lemma 6.6.It is enough to prove that the following condition holds forµ-a.e.
a:

(R) If ν ∈ Tanm(µ, a) andx ∈ supp (ν) thenνx,1 ∈ Tanm(µ, a).

Indeed, leta be a point where (R) holds and fixb ∈ supp (ζ ), ζ ∈ Tan(µ, a), and
r > 0. Note thatν := r −mζ0,r ∈ Tanm(µ, a), b/r ∈ supp (ν), andr −mζb,r = νb/r,1.
Hence, applying (R) tox = b/r , we conclude thatr −mζb,r ∈ Tanm(µ, x).

In order to prove (R), for everyk, j ∈ N we define

Ak, j :=
{

a ∈ R
n : ∃ν ∈ Tanm(µ, a) and x ∈ supp (ν) such that

d
(

r −mµa,r , νx,1
)

≥ 1

k
∀r <

1

j

}

.

Clearly it suffices to show thatµ(Ak, j ) = 0. We argue by contradiction and assume
thatµ(Ak, j ) > 0 for somek and j . For someR> 0 we have that the set

Bk, j := Ak, j ∩
{

a : R−1 < θm
∗ (µ, a) = θ∗m(µ, a) ≤ R

}

has positive measure. We drop the indices fromBk, j and we consider the set

S := {νx,1 : ν ∈ Tanm(µ, a) for somea ∈ B and x ∈ supp (ν)} .
Recall that, by Proposition 2.6, the weak∗ topology onC is induced by the metric
d. Note thatS is a set of uniformly locally bounded measures. Indeed, recall that
νx,1(Br (0)) = ν(Br (xa)) = θm(µ, a)ωmr m ≤ Rωmr m. Therefore,

S ⊂ {ν : ν(Br (0)) ≤ Rωmr m ∀r } =: C .

So, by Proposition 2.5,C with the metricd is compact and we can coverC with a finite
family of setsGi of type

Gi :=
{

ζ : d(ζ, ζi ) <
1

4k

}

.

Consider the setsDi of pointsa ∈ B for which there exists at least aνa ∈ Tanm(µ, a)
and anxa ∈ supp (νa) such thatνa

xa
∈ Gi and

d
(

r −mµa,r , ν
a
xa,1

)

≥ 1

k
for everyr <

1

j
. (6.6)

The setsDi form a finite covering ofB, and henceµ(Di ) > 0 for somei . We drop the
indexi and denote this set byD.
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For anya ∈ D we then fix a choice ofνa ∈ Tanm(µ, a) andxa ∈ supp (νa) such
that (6.6) holds andνa

xa,1 ∈ Gi . If a andb are two points ofD, then

d
(

νa
xa,1, ν

b
xb,1

)

<
1

2k
(6.7)

becauseνa
xa
, νb

xb
∈ Gi .

Next, we choose

• a ∈ D such that

lim
r↓0

µ(D ∩ Br (a))

µ(Br (a))
= 1 ; (6.8)

• r i ↓ 0 such that

r −m
i µa,r i

∗
⇀ νa ; (6.9)

• ai ∈ D such that
∣

∣ai − (a + r i xa)
∣

∣ < dist (a + r i xa, D) +
r i

i
. (6.10)

The choice ofa is possible becauseD isµ-measurable. Note that

lim
i ↑∞

dist (a + r i xa, D)

r i
= 0 . (6.11)

Indeed, if we had

lim sup
i ↑∞

dist (a + r i xa, D)

r i
> c ,

then from (6.8) we would obtainνa(Bc(xa)) = 0, which is clearly a contradiction to
xa ∈ supp (νa).

Note that
r −m

i µai ,r =
(

r −m
i µa,r i

)

ai −a
ri
,1

∗
⇀ νa

xa,1 .

Therefore, forr i < j −1 sufficiently small we have

d
(

νa
xa,1, r

−m
i µai ,r i

)

<
1

2k
. (6.12)

On the other hand, sinceai ∈ D we have
1

k
< d

(

ν
ai
xai ,1

, r −m
i µai ,r i

)

. (6.13)

From the triangle inequality we obtain

d
(

ν
ai
xai ,1

, r −m
i µai ,r i

)

≤ d
(

ν
ai
xai ,1

, νa
xa,1

)

+ d
(

νa
xa,1, r

−m
i µai ,r i

)

. (6.14)

From (6.12) we find that the second summand in the right hand side of (6.14) is strictly
less than (2k)−1. The same inequality holds for the first summand in view of (6.7).
Therefore, we conclude

d
(

ν
ai
xai ,1

, r −m
i µai ,r i

)

<
1

k
which contradicts (6.13). �
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Proof of Theorem 6.8.Note that, at a pointx where Corollary 6.5 and Lemma 6.6
hold, we conclude that the weak∗ closure of Tanm(µ, x) contains a measure of type
ν = θ(µ, x)H m V whereV is anm-dimensional linear plane. Now, in the case at
hand Tanm(µ, x) is a weakly∗ closed set. Indeed, consider for everyρ ∈]0, 1] the set

Cρ :=
{

σ−mµx,σ : 0< σ ≤ ρ
}

.

TheseCρ are all contained in the set{ν : ν(Br (0)) ≤ C(r ) ∀r } for an appropriately
chosen functionC : R+ → R+. By Proposition 2.7 the weak∗ topology on this last
set is metrized byd. Denote byC̄ρ the closureCρ in the metricd. Since Tanm(µ, x) =
⋂

0<ρ<1Cρ , Tanm(µ, x) is weakly∗ closed. This completes the proof. �

6.3. Part B of Preiss’ strategy: Three main steps

We begin with the notion of tangent measures at infinity, obtained by a scaling pro-
cedure which is the opposite of a blow-up, namely a “blow-down” of the original
measure.

Definition 6.15. Let α ∈ R+ andµ be a locally finite measure. Then we define
Tanα(µ,∞) as the set of measuresν such that there existsr i ↑ ∞ with

µ0,r i

r αi

∗
⇀ ν .

Note that, whenµ ∈ Um(Rn), the family of measures
{µr

r m

}

r>0

is locally uniformly bounded. Therefore, for every sequence{r i } ↑ ∞ we can extract

a subsequencer i ( j ) such thatr −m
i ( j )µ0,r i ( j )

∗
⇀ ν for some measureν.

In Chapter 7 we will show thatm-uniform measures have a unique tangent measure
at infinity. Proposition 6.16 below provides the precise statement.

Proposition 6.16. If ν ∈ Um(Rn), then there existsζ ∈ Um(Rn) such that
Tanm(ν,∞) = {ζ }.

This proposition means that the whole family of measures{r −mν0,r }r>0 converges
to ζ asr ↑ ∞. Therefore, we will speak ofthetangent measure at infinity toν. Such a
uniquenessproperty yields that the measureζ is, in some sense, a “cone” and therefore
it will enable us to draw many useful conclusions about its structure.

Definition 6.17. We say that a measureν ∈ Um(Rn) is flat at infinity if the tangent
measure at infinity is flat.
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In Chapter 8 we will show that, ifν ∈ Um(Rn) and its tangent measure at infinity
is sufficiently close to a flat measure, thenν is flat at infinity. More precisely, we will
prove the following:

Proposition 6.18. There exists a constantε > 0 which depends only on m and n such
that:

• If ν ∈ Um(Rn), {ζ } = Tanm(ν,∞), and

min
V∈G(m,n)

∫

B1(0)
dist2 (x,V) dζ (x) ≤ ε ,

thenζ is flat.

Finally, in the last chapter we will prove the following proposition.

Proposition 6.19. If ν ∈ Um(Rn) is flat at infinity, thenν is flat.

6.4. From the three main steps to the proof of Theorem 6.10

In this section we will show how Theorem 6.10 follows from thethree propositions of
the previous section. In order to do this we will need the following lemma.

Lemma 6.20. Letϕ ∈ Cc(Rn) and consider the functional F: M(Rn) → R given
by

F(µ) := min
V∈G(m,n)

∫

ϕ(z) dist2 (z,V) dµ(z) .

Then F(µi ) → F(µ) if µi
∗
⇀ µ.

Fix ϕ ∈ Cc(B2(0)) such that 0≤ ϕ ≤ 1 andϕ = 1 on B1(0). From the very
definition of the functionalF and Remark 3.14, a conical measureµ ∈ Um(Rn) is flat
if and only if F(µ) = 0. The idea of the proof of Theorem 6.10 is then the following.
Assume by contradiction that there exists a pointx where a tangent measureα is flat
and another tangent measureν is not flat. Letχ be the measure tangent at infinity toν.
Then from Proposition 6.19 we conclude thatχ is not flat and from Proposition 6.18
we obtain thatF(χ ) > ε. On the other handF(α) = 0. Define

f (r ) := F
(

r −mµ0,r
)

.

Note that there existrk ↓ 0 andsk ↓ 0 such thatr −m
k µx,rk

∗
⇀ α ands−m

k µx,sk

∗
⇀ χ .

Hence, from Lemma 6.20 we conclude thatf (rk) ↓ 0 and lim supk f (sk) > ε. On
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the other hand, Lemma 6.20 implies thatf is continuous. Therefore, the functionf
should have the oscillatory behavior sketched in Figure 6.1.

r

ε

σk rk

Figure 6.1. The graph off

Clearly, f (rk) will be belowε, for k large enough. Denote byσk the first point
where f reaches again the levelε. One can show thatrk/σk ↑ ∞. If we assume that

σ−m
k µx,σk

∗
⇀ ξ for some measureξ , the conditionrk/σk ↑ ∞ implies that there exists

a sequence of pointsθk ∈ [σk, rk] such thatθ−m
k µx,θk converges to the tangent measure

to ξ at infinity. Sincef (σk) = ε, ξ cannot be flat. On the other hand, sincef (θk) ≤ ε,
Proposition 6.18 implies that the tangent measure toξ at infinity is flat. Therefore, we
find a contradiction to Proposition 6.19.

We will give the details of this argument after proving Lemma6.20.

Proof of Lemma 6.20.First of all, letVi be such that

F(µi ) :=
∫

ϕ(z) dist2 (z,Vi ) dµi .

Up to subsequences we can assume thatVi converges to anm-dimensional planeV∞.
Therefore, the functionsϕ(·) dist2 (·,Vi ) converge uniformly toϕ(·) dist2 (·,V∞) and
we find that

lim
i ↑∞

∫

ϕ(z) dist2 (z,Vi ) dµi =
∫

ϕ(z) dist2 (z,V∞) dµ .

This implies that
lim inf

i ↑∞
F(µi ) ≥ F(µ) .

Finally, letV be anm-dimensional plane such that

F(µ) =
∫

ϕ(z) dist2 (z,V) dµ .

Since

lim
i ↑∞

∫

ϕ(z) dist2 (z,V) dµi =
∫

ϕ(z) dist2 (z,V) dµ ,
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we conclude that

lim sup
i ↑∞

F(µi ) ≤ F(µ) .

This concludes the proof. �

Proof of Theorem 6.10.We argue by contradiction and we fix a pointx such that

• Tan(µ, x) ⊂ θ(µ, x)Um(Rn);
• there existsν ∈ Tan(µ, x) such thatν/θ(µ, x) is flat;
• there existsζ ∈ Tan(µ, x) such thatζ/θ(µ, x) is not flat.

Without loss of generality we can assume thatθ(µ, x) = 1.
Now, let χ be the tangent measure toζ at infinity and fix a nonnegativeϕ ∈

Cc(B2(0)) such thatϕ = 1 onB1(0). Proposition 6.18 and Proposition 6.19 give that

F(χ ) > ε . (6.15)

Note thatχ ∈ Tan(µ, x). Now we fixrk ↓ 0 andsk ↓ 0 such that

µx,rk

r m
k

∗
⇀ ν

µx,sk

sm
k

∗
⇀ χ .

We can also assume thatsk < rk. Define

f (r ) := F
(

r −mµ0,r
)

.

Sinceν is flat, from Lemma 6.20 we have

lim
rk↓0

f (rk) = F(ν) = 0 .

Hence, forrk sufficiently small, we have

f (rk) < ε . (6.16)

On the other hand, since

lim
sk↓0

f (sk) = F(χ ) > ε ,

for sk sufficiently small we have

f (sk) > ε . (6.17)

From Lemma 6.20 we conclude thatf is a continuous function ofr . Hence, we can fix
σk ∈ [sk, rk] such thatf (σk) = ε and f (r ) ≤ ε for r ∈ [σk, rk]. By compactness there
exists a subsequence of{σk}, not relabeled, such thatσ−m

k µx,σk converges weakly∗ to
a measureξ ∈ Um(Rn). Clearly,

F(ξ ) = lim
σk↓0

f (σk) = ε .
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Hence,ξ cannot be flat. Now, note thatrk/σk → ∞. Indeed, if for some subsequence,
not relabeled, we had thatrk/σk converged to a constantC (necessarily larger than 1),
we would conclude that

ξ0,C

Cm
= ν

because

ν = weak∗ lim
k↑∞

µx,rk

r m
k

= weak∗ lim
k↑∞

(

σk

rk

)m(
µx,σk

σm
k

)

0,rk/σk

= C−mξ0,C .

Henceξ would be flat.
Next, note that for any givenR> 0 we have

(Rσk)−mµx,Rσk

∗
⇀ R−mξ0,R .

Hence,
F
(

ξ0,R
)

= lim
k↑∞

f (Rσk) .

If R ≥ 1 we haveRσk ≥ σk. Moreover, sincerk/σk → ∞, we conclude that
Rσk ∈ [σk, rk] wheneverk is large enough. Therefore, we conclude that

F
(

R−mξ0,R
)

≤ ε for everyR ≥ 1.

Letψ be the tangent measure at infinity toξ . Then

F(ψ) = lim
R↑∞

F
(

R−mξ0,R
)

≤ ε .

Applying Proposition 6.18 we conclude thatψ is flat, and hence from Proposition 6.19
we conclude thatξ is flat, which is a contradiction. �



7 Moments and uniqueness of the tangent measure
at infinity

In this chapter we will prove Proposition 6.16, that is the uniqueness of tangent
measures at infinity form-uniform measures. For the reader’s convenience we state
again Proposition 6.16 below.

Proposition7.1. Ifµ ∈ Um(Rn), thenthereexistsζ ∈ Um(Rn)suchthatTanm(µ,∞) =
{ζ }.

A first easy remark, which will be used many times in the subsequent chapters, is
that the condition ofm-uniformity of the measureµ allows us to compute

∫

ϕdµ for
radialϕ’s, without any further information onµ. This is stated more precisely in the
following lemma.

Lemma 7.2. Letϕ : R → R+ be a Borel function,µ an m-uniform measure and y a
point in the support ofµ. Then

∫

Rn

ϕ(|x|) dµ(x) =
∫

Rn

ϕ(|x − y|) dµ(x) =
∫

Rm

ϕ(|z|) dL
m(z) . (7.1)

Proof. Denote byBr (y) then-dimensional ball of radiusr centered aty ∈ Rn and
by B̃r (z) them-dimensional ball of radiusr centered atz ∈ Rm. Sinceµ(Br (0)) =
µ(Br (y)) = ωmr m = L m(B̃r (0)), the identity (7.1) is clear ifϕ is piecewise constant.
Therefore, a standard density argument gives (7.1) in the general case. �

Next we introduce a normalization of the measuresr −mµ0,r . Namely, we multiply
them by a Gaussian.

Definition 7.3. Letµ ∈ Um(Rn). Then we setµr := r −me−|·|2µ0,r , that is, for every
Borel function we have

∫

ϕ(x)dµr (x) = r −m
∫

e− |x|2
r2 ϕ

(x

r

)

dµ(x) .

Note that ifν ∈ Tanm(µ, x) andr i ↑ ∞ is a sequence such that

r −m
i µ0,r i

∗
⇀ ν ,

thenµr i

∗
⇀ e−|·|2ν. Therefore, the tangent measure toµ at infinity is unique if and

only if the measuresµr have a unique limit forr ↑ ∞.
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Moments. Sinceµ ∈ Um(Rn), it is not difficult to check that for every polynomial
P the function

FP(r ) :=
∫

P(z) dµr (z)

is uniformly bounded. Assume we could prove the existence ofthe following limit for
every polynomialP:

lim
r↑∞

FP(r ) . (7.2)

We then would have that, ifζ andξ are tangent measures at infinity toµ, then
∫

e−|z|2 P(z) dζ (z) =
∫

e−|z|2 P(z) dξ (z)

for every polynomialP. This is enough to conclude that the measuresζ andξ coincide.
Therefore, our goal is to prove the existence of the limits (7.2). In order to do this

we introduce the following notation.

Definition 7.4 (Moments). Letµ ∈ Um(Rn), u1, . . . , uk ∈ Rn, ands ∈ R+. Then we
define

I (s) :=
∫

e−s|z|2 dµ(z),

bµk,s(u1, . . . , uk) := (2s)k

k!
I (s)−1

∫

〈z, u1〉〈z, u2〉 . . . 〈z, uk〉 e−s|z|2 dµ(z) .

The reader will recognize thatbµk,s(u1, . . . , uk) is closely related toFP(s−1/2) if we
chooseP(z) = 〈z, u1〉〈z, u2〉 . . . 〈z, uk〉. Since, for each fixedk, the space ofk-linear
forms onRn is a real vector space of finite dimension, we consider on it the standard
topology. Under this convention, the limits

lim
s↓0

s−N/2bµN,s (7.3)

exist if and only if (7.2) exists. Hence, our final goal is proving the following:

Proposition 7.5. If µ ∈ Um(Rn), then the limits(7.3)exist.

The momentsbµN,s are, in a certain sense, generalizations of the barycenter

br (µ) = r −m
∫

Br (0)
z dµ(z) ,

defined in (3.17) and used in Section 3.3 to studyα-uniform measures. One sees
immediately the convenience of multiplying by a Gaussian, which allows to integrate
over the wholeRn. However, we will see soon that this is not the only reason for
choosing the Gaussian; this choice will play an important role in many algebraic
computations.
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Note that, thanks to Lemma 7.2,I (s) is independent of the measureµ. This is not
the case for thek-linear formsbµk,s. However we will drop the superscript when the
measureµ is clear from the context.

Taylor expansion. In Lemma 7.6 below, we will make use of the following notation

bµk,s(x
k) := bµk,s(x, x, . . . , x) .

A similar notation will be used whenever we deal withk-linear forms. The existence
of the limits (7.3) follows from a key calculation involvingmoments, stated in point
(b) of the following lemma.

Lemma 7.6(Taylor expansion 1).Letµ ∈ Um(Rn). Then

(a) there exists a dimensional constant C (depending only on m) such that

∣

∣bk,s(u1, . . . , uk)
∣

∣ ≤ C
2kkk/2

k!
sk/2|u1| . . . |uk| , (7.4)

(b) for every q∈ N there exists a constant C such that
∣

∣

∣

∣

∣

2q
∑

k=1

bk,s(x
k) −

q
∑

k=1

sk|x|2k

k!

∣

∣

∣

∣

∣

≤ C
(

s|x|2
)q+ 1

2 for every x∈ supp (µ). (7.5)

Let us adopt the conventionb0,s(x0) = 1. Then, fors|x|2 < 1, point (b) can be
formally rewritten as

∞
∑

k=0

bk,s(x
k) = es|x|2 for everyx ∈ supp (µ). (7.6)

What follows is the “formal” computation that leads to (7.6), which will be rigorously
justified in Section 7.2:

∞
∑

k=0

bk,s(x
k) =

∞
∑

k=0

I (s)−1
∫

(2s〈z, x〉)k

k!
e−s|z|2 dµ(z)

= I (s)−1
∫

[ ∞
∑

k=0

(2s〈z, x〉)k

k!

]

e−s|z|2 dµ(z)

= I (s)−1
∫

e2s〈z,x〉−s|z|2 dµ(z)

= I (s)−1es|x|2
∫

e−s|x|2+2s〈z,x〉−s|z|2 dµ(z)

= es|x|2 I (s)−1
∫

e−s|z−x|2 dµ(z) .
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Actually, this computation turns out to be valid forevery x∈ Rn. When in addition
we havex ∈ supp (µ), Lemma 7.2 gives

∫

e−s|z−x|2 dµ(z) =
∫

e−s|z|2 dµ(z) = I (s),
and hence (7.6). Point (b) of Lemma 7.6 is the starting point of the next proposition.

Proposition 7.7(Taylor expansion 2).Letµ ∈ Um(Rn). Then for j, k ∈ N there exist
symmetric k-linear forms b( j )

k such that:

For all q ∈ N we have bµk,s =
q
∑

j =1

s j b( j )
k

j !
+ o(sq) for s ↓ 0; (7.7)

b( j )
k = 0 if k > 2 j ; (7.8)

2q
∑

k=1

b(q)
k (xk) = |x|2q for all q ∈ N and all x ∈ supp (µ). (7.9)

This proposition concludes the proof of the uniqueness of the tangent measure at
infinity. Indeed, according to all that has been discussed sofar, we just need to show
the existence of the limit (7.3), which is a trivial consequence of (7.7) and (7.8).

If we have to specify the dependence of the formb( j )
k on the measureµwe will write

bµ,( j )
k . In order to visualize the relation between (7.6) and (7.9),we will use the table

below. Clearly, the first row gives the Taylor expansion ofes|x|2 − 1. If x ∈ supp (µ),
the same is true for the first column, according to (7.6). Moreover, according to (7.7)
and (7.8), the interior rows are the expansions ofbk,s(xk). Therefore, the interior
columns must be “expansions” ofsk|x|2k/k! for x ∈ supp (µ).

· · · · · · · · · · · · · · · · · · · · ·

b5,s(x5) 0 0 s3

3! b
(3)
5 (x5) s4

4! b
(4)
5 (x5) s5

5! b
(5)
5 (x5) · · ·

b4,s(x4) 0 s2

2! b
(2)
4 (x4) s3

3! b
(3)
4 (x4) s4

4! b
(4)
4 (x4) s5

5! b
(5)
4 (x4) · · ·

b3,s(x3) 0 s2

2! b
(2)
3 (x3) s3

3! b
(3)
3 (x3) s4

4! b
(4)
3 (x3) s5

5! b
(5)
3 (x3) · · ·

b2,s(x2) sb(1)
2 (x2) s2

2! b
(2)
2 (x2) s3

3! b
(3)
2 (x2) s4

4! b
(4)
2 (x2) s5

5! b
(5)
2 (x2) · · ·

b1,s(x) sb(1)
1 (x) s2

2! b
(2)
1 (x) s3

3! b
(3)
1 (x) s4

4! b
(4)
1 (x) s5

5! b
(5)
1 (x) · · ·

es|x|2 − 1 s|x|2 s2

2! |x|4 s3

3! |x|6 s4

4! |x|8 s5

5! |x|10 · · ·
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Plan of the chapter. In section 7.1 we will show how Proposition 7.7 implies
Proposition 7.1. In section 7.2 we will prove Lemma 7.6. Finally, in section 7.3 we
will use Lemma 7.6 to prove Proposition 7.7.

7.1. From Proposition 7.7 to the uniqueness of the tangent measure at infinity

From Proposition 7.7 to Proposition 7.1.From Proposition 7.7 we observe that

• if N is odd, then

lim
s↓0

bN,s(x1, . . . , xN)

sN/2
= 0 ,

• for anyk ∈ N

lim
s↓0

b2k,s(x1, . . . , x2k)

sk
= b(k)

2k (x1, . . . , x2k) .

In both cases we conclude that the limits

lim
s↓0

bN,s(x1, . . . , xN)

sN/2

exist. Recall that

bN,s(u1, . . . , uN) = (2s)N

N!
I (s)−1

∫

〈z, u1〉〈z, u2〉 . . . 〈z, uN〉e−s|z|2 dµ(z) ,

where

I (s) =
∫

e−s|z|2 dµ(z) .

From Lemma 7.2 and Proposition B.1 we have

I (s) =
∫

e−s|z|2 dL
m(z) =

1

sm/2

∫

e−|z|2 dL
m(z) =

(π

s

)m/2
.

Therefore,
bN,s(u1, . . . , uN)

sN/2
= C(N,m)sN/2+m/2

∫

〈z, u1〉〈z, u2〉 . . . 〈z, uN〉e−s|z|2 dµ(z) ,

whereC(N,m) = 2N/(N!πm/2), and hence a positive dimensional constant, indepen-
dent ofs. If we definer := s−1/2 we obtain

bN,s(u1, . . . , uN)

sN/2
= C(N,m)r −N

r m

∫

〈z, u1〉 . . . 〈z, uN〉e−r −2|z|2 dµ(z)

= C(N,m)

r m

∫

〈r −1z, u〉 . . . 〈r −1z, uN〉e−|r −1z|2 dµ(z)

= C(N,m)
∫

〈x, u1〉 . . . 〈x, uN〉e−|x|2 d
[µ0,r

r m

]

(x) .

Therefore, we conclude that the limits (7.2) exist wheneverP is a polynomial of the
form 〈u1, ·〉 . . . 〈uN, ·〉.
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Let {rk} and{sk} be two sequences of real numbers such that

• rk ↑ ∞, sk ↑ ∞;
• r −m

k µx,rk

∗
⇀ ν1, s−m

k µx,sk

∗
⇀ ν2.

We set ˜ν1 := e−|·|2ν1 andν̃2 := e−|·|2ν2. Clearly,

µrk

∗
⇀ ν̃1 µsk

∗
⇀ ν̃2 .

Note that for anyj ∈ N andε > 0 there existsM > 0 such that
∫

Rn\BM (0)
|z| j dµr (z) ≤ ε .

Therefore, we conclude that

lim
rk↓0

∫

〈z, u〉 j dµrk(z) =
∫

〈z, u〉 j dν̃1(z),

lim
sk↓0

∫

〈z, u〉 j dµsk(z) =
∫

〈z, u〉 j dν̃2(z) .

Hence, following the previous discussion, we conclude that
∫

〈z, u〉 j dν̃1(z) =
∫

〈z, u〉 j dν̃2(z) . (7.10)

This implies that for every polynomialP in n variables we have
∫

e−|z|2 P(z) dν1(z) =
∫

e−|z|2 P(z) dν2(z) . (7.11)

Using the expansion

e−a|z|2 =
∞
∑

i =0

(

−
√

a|z|2
)i

i !
,

one also obtains the equality
∫

e−(1+a)|z|2 P(z) dν1(z) =
∫

e−(1+a)|z|2 P(z) dν2(z) (7.12)

for every nonnegativea. Therefore, a density argument like that used in Step 2 of the
proof of Proposition 6.11 (see also Lemma 6.14) givesν1 = ν2. We include it below
for the reader’s convenience.

Clearly, it suffices to show
∫

ϕ(z) dν1(z) =
∫

ϕ(z) dν2(z) (7.13)

for everyϕ ∈ Cc(Rn). LetB be the vector space generated by functions of the form

b + e−(1+a)|z|2 P(z) ,
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wherea ≥ 0, b ∈ R andP is a polynomial. To prove (7.13), it suffices to show the
following:

(D) For every compactly supported functionψ ∈ C(Rn) there exists a sequence
{ψi } ⊂ B which converges uniformly toψ .

Indeed, assume (D), fixϕ ∈ Cc(Rn), and choose{ψi } ⊂ B which convergesuniformly
toψ := e|·|2ϕ. Then we have

∫

e−|z|2ψi (z) dν1(z) =
∫

e−|z|2ψi (z) dν2(z) . (7.14)

Since{ψi } is uniformly bounded, we leti ↑ ∞ in (7.14) to obtain (7.13).
In order to show (D), fixψ ∈ Cc(Rn), denote bySn the usual one-point compacti-

fication ofRn, and denote bỹψ ∈ Cc(Sn) the unique continuous extension ofψ . For
everyχ ∈ B there existsaswell a unique extension ˜χ ∈ Cc(Sn). Denote byB̃ the vector
space of such extensions. ThenB̃ is an algebra of continuous functions on a compact
space, it separates the points, and it vanishes at no point. Therefore, we can apply the
Stone–Weierstrass Theorem to conclude that there exists a sequence{ψ̃i } ⊂ B̃ which
converges uniformly toψ̃ . The corresponding sequence{ψi } ∈ B also converges
uniformly toψ . This concludes the proof of (D) and of the proposition. �

7.2. Elementary bounds onbk,s and the expansion(7.5)

Proof of Lemma 7.6.(a) Recall that

bk,s(u1, . . . , uk) = (2s)k

k!
I (s)−1

∫

〈z, u1〉 . . . 〈z, uk〉e−s|z|2 dµ(z) .

Hence, we obtain

∣

∣bk,s(u1, . . . , uk)
∣

∣ ≤ |u1| . . . |uk|
(2s)k

k!
I (s)−1

∫

|z|ke−s|z|2dµ(z) .

Recall the computation already performed in the proof of Proposition 7.1. From
Lemma 7.2 and Proposition B.1 we have

I (s) :=
∫

e−s|z|2 dµ(z) =
∫

e−s|z|2dL
m(z)

= s−m/2
∫

e−|z|2 dL
m(z) =

(π

s

)m/2
. (7.15)

Therefore

(2s)k

k!
I (s)−1

∫

|z|ke−s|z|2dµ(z) = 2k

πm/2k!
sk/2

∫

|s1/2z|ke−|s1/2z|2 d
[

sm/2µ(z)
]

.

(7.16)
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Using Lemma 7.2 and changing variables we obtain
∫

|s1/2z|ke−|s1/2z|2 d
[

sm/2µ(z)
]

=
∫

|s1/2z|ke−|s1/2z|2 d
[

sm/2
L

m(z)
]

=
∫

|z|ke−|z|2 dL
m(z) . (7.17)

From (B.4) and (B.6) of Proposition B.1 we obtain
∫

|z|ke−|z|2 dL
m(z) ≤ C(m)kk/2 , (7.18)

whereC(m) is a dimensional constant that depends only onm.
Hence, (7.15), (7.16), (7.17), and (7.18) give the bound (7.4).

(b) If s|x|2 ≥ 1, we can use the following rough bounds:
∣

∣

∣

∣

∣

2q
∑

k=1

bk,s(x
k) −

q
∑

k=1

sk|x|2k

k!

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

2q
∑

k=1

bk,s(x
k)

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

q
∑

k=1

sk|x|2k

k!

∣

∣

∣

∣

∣

(7.4)
≤ C(m)

(

s|x|2
)q

∞
∑

k=1

2kkk/2

k!
+
(

s|x|2
)q

∞
∑

k=1

1

k!

≤ C1(m)
(

s|x|2
)q
,

where here we have used the summability of the series

∞
∑

k=1

2kkk/2

k!
,

which follows from Stirling’s formulak! ≥ Ckke−k. Note that in this case we do not
need the conditionx ∈ supp (µ). On the other hand, such condition is crucial when
s|x|2 < 1.

First of all, note that
∞
∑

k=0

sk|x|2k

k!
= es|x|2 .

More precisely,
∣

∣

∣

∣

∣

es|x|2 −
q
∑

k=0

sk|x|2k

k!

∣

∣

∣

∣

∣

=
∞
∑

k=q+1

sk|x|2k

k!

≤ sq+1|x|2q+2
∞
∑

k=0

1

k!
= esq+1|x|2q+2 . (7.19)
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By the bounds (7.4) it turns out that, fors|x|2 < 1,
∞
∑

k=1

∣

∣bk,s(x
k)
∣

∣ ≤
∞
∑

k=1

C
2kkk/2

k!
sk/2|x|k ≤ C

∞
∑

k=1

2kkk/2

k!
.

We have already observed in the previous step that the last series is summable. There-
fore, we conclude that

∞
∑

k=1

bk,s(x
k)

is summable fors|x|2 < 1. Moreover, we can estimate
∣

∣

∣

∣

∣

∞
∑

k=1

bk,s(x
k) −

2q
∑

k=1

bk,s(x
k)

∣

∣

∣

∣

∣

≤
∞
∑

k=2q+1

∣

∣bk,s(x
k)
∣

∣ ≤
∞
∑

k=2q+1

2kkk/2

k!
sk/2|x|k

≤ (s|x|2)q+1/2
∞
∑

k=1

2kkk/2

k!
≤ C(s|x|2)q+1/2 . (7.20)

Let us fix the convention thatb0,s(x0) := 1. Then, from (7.19) and (7.20) it follows
that the proof is complete provided we show the equality

∞
∑

k=0

bk,s(x
k) = es|x|2 (7.21)

for everys ∈ R+ andx ∈ Rn such thats|x|2 < 1 andx ∈ supp (µ).
From (7.20) and from the definition ofbk,s we have

∞
∑

k=0

bk,s(x
k) = lim

q↑∞

q
∑

k=0

I (s)−1
∫

(2s〈z, x〉)k

k!
e−s|z|2 dµ(z) .

Note that
∣

∣

∣

∣

∣

q
∑

k=0

(2s〈z, x〉)k

k!
e−s|z|2

∣

∣

∣

∣

∣

≤ e−s|z|2
q
∑

k=0

(2s|z||x|)k

k!
≤ e−s(|z|2+2|z||x|) .

Since f (·) = e−s(|·|2+2|·||x|) ∈ L1(µ), by the Dominated Convergence Theorem we
conclude

∞
∑

k=0

bk,s(x
k) = I (s)−1

∫

[ ∞
∑

k=0

(2s〈z, x〉)k

k!

]

e−s|z|2 dµ(z)

= I (s)−1
∫

e2s〈z,x〉−s|z|2 dµ(z)

= I (s)−1es|x|2
∫

e−s|x|2+2s〈z,x〉−s|z|2 dµ(z)

= es|x|2 I (s)−1
∫

e−s|z−x|2 dµ(z) . (7.22)
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Sincex ∈ supp (µ), from Lemma 7.2 we obtain
∫

e−s|z−x|2 dµ(z) =
∫

e−s|z|2 dµ(z) = I (s) .

Hence, from (7.22) we conclude (7.21). This completes the proof. �

7.3. Proof of Proposition 7.7

Before coming to the proof of Proposition 7.7, we introduce some notation.

Definition 7.8. We denote by
⊙k

Rn the vector space of symmetrick-tensors onRn.
Whenu1, . . . , uk ∈ Rn we denote byu1 � . . .� uk their symmetric tensor product,
that is, the tensor

1

k!

∑

σ∈Gk

uσ (1) ⊗ . . .⊗ uσ (k) ,

whereGk denotes the group of permutations of{1, . . . , k}. We use the shorthanduk

whenu1 = . . . = uk = u.

For eachs we can regardbk,s as an element of Hom
(

⊙k
Rn,R

)

and therefore

we consider the maps → bk,s as a curve in Hom
(

⊙k
Rn,R

)

.

Definition 7.9. For every pair of positive integersk, n we defineXk,n as the direct sum

Rn ⊕
⊙2

Rn ⊕ . . .⊕
⊙k

Rn .

We denote byPj the canonical projection ofXk,n on
⊙ j

Rn.

We can extendbk,s to a linear functional onX2q,n by settingbk,s

∣

∣

∣
⊙ j

Rn
= 0 for

every j 6= k. Therefore, the maps →
∑2q

k=1 bk,s can be considered as a curve in
Hom

(

X2q,n,R
)

.

Remark 7.10. On every
⊙k

Rn there exists a unique scalar product〈·, ·〉k such that

〈u1 � . . .� uk, v1 � . . .� vk〉k =
1

k!

∑

σ∈Gk

〈u1, vσ (1)〉 . . . 〈uk, vσ (k)〉 .

Lete1, . . . , en be an orthonormal base ofRn with the scalar product〈·, ·〉 and consider
the setI of increasing functionsi : {1, . . .k} → {1, . . .n}. Then the set

{

ei (1) � . . .� ei (k)
}

i ∈I

is an orthonormal base of
⊙k

Rn with the scalar product〈·, ·〉k.
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Definition 7.11. Letk andn be positive integers. We define onXk,n the scalar product
〈〈 ·, ·〉〉 as

〈〈 u, v〉〉 :=
k
∑

j =1

2 j 〈Pj (u), Pj (v)〉 j

j !
.

Moreover, we set‖u‖ := 〈〈 u, u〉〉 and for every linear subspaceV ⊂ X we denote by
V⊥ the orthogonal subspace

V⊥ :=
{

x ∈ X : 〈〈 x, v〉〉 = 0 ∀v ∈ V
}

.

We are now ready to give a brief outline of the proof of Proposition 7.7. The core
of this proposition is the Taylor expansion (7.7). Letq ∈ N. Roughly speaking (7.5)
determines (up to orderq) the Taylor expansion of the functionf (s) =

∑2q
i =1 bk,s(xk)

for x ∈ supp (µ). Here it is convenient to introduce the multilinear notation, in order
to consider the map

s → bs =
2q
∑

k=1

bk,s ∈ Hom (X2q,n,R)

as a curve of linear operators acting on the tensor spaceX = X2q,n. Therefore, (7.5)
gives the expansion

bs(x + x2 + . . .+ x2q) =
q
∑

k=1

sk|x|2k

k!
+ ‖x‖2q+1o(sq) (7.23)

wheneverx belongs to supp (µ). By linearity, this determines the values ofbs on the
vector spaceV generated by{x +x2+ . . .+x2q : x ∈ supp (µ)}. The tensor notation
gives a concise way to express this. Indeed, it is not difficult to see that there exists a
unique smooth curve

[0,∞[ 3 s → ωs ∈ Hom (X,R)

such thatωs(y j ) = 0 if j is odd andωs(y2k) = sk|y|2k/k!. Therefore, (7.23) can be
written asbs|V = ωs|V + o(sq).

Another key remark is that, for eachs, there exists a subspaceFs such that the
linear functionalbs vanishes onFs andV ⊕ Fs = X. Such anFs is given by an explicit
formula in (7.28). If we denote byQs the projection ofX overV alongFs, then we
havebs = bs|V ◦ Qs = ωs ◦ Qs + o(sq). Hence, we just need to show that the curve
of operatorss → Qs has a Taylor expansion arounds = 0. Indeed, using the formula
(7.28), we will show that this curve is analytic in a neighborhood of 0.

Proof of Proposition 7.7.First of all, note that (7.8) follows directly from (7.7) and
point (a) of Lemma 7.6. Similarly, (7.9) follows as well from(7.7) and point (b) of
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Lemma 7.6. Indeed, fixq ∈ N. From (7.5) we have
∣

∣

∣

∣

∣

2q
∑

k=1

bk,s(x
k) −

q
∑

k=1

sk|x|2k

k!

∣

∣

∣

∣

∣

≤ C
(

s|x|2
)q+ 1

2 for everyx ∈ supp (µ). (7.24)

From (7.7) we have

bk,s(x
k) =

q
∑

j =1

s j b( j )
k (xk)

j !
+ o(sq) (7.25)

for everyx ∈ Rn. Therefore, for any fixedx ∈ supp (µ), recalling (7.8) we can write
∣

∣

∣

∣

s
(

b(1)
1 (x) + b(1)

2 (x2) − |x|2
)

+
s2

2!

(

b(2)
1 (x) + b(2)

2 (x2) + b(2)
3 (x3) + b(2)

4 (x4)
)

+ . . .+ sq

q!

( 2q
∑

i =1

b(q)
i (xi ) − |x|2q

)∣

∣

∣

∣

∣

= o(sq) . (7.26)

Forq = 1 we have
∣

∣

∣b(1)
1 (x) + b(1)

2 (x2) − |x|2
∣

∣

∣ = s−1o(s)

and henceb(1)
1 (x) + b(1)

2 (x2) = |x|2. By induction we then obtain
∣

∣

∣

∣

∣

2q
∑

i =1

b(q)
i (xi ) − |x|2q

∣

∣

∣

∣

∣

= s−qo(sq) ,

and hence

|x|2q =
2q
∑

i =1

b(q)
i (xi ) .

It remains to prove point (7.7).

Proof of (7.7) Let us fixq ∈ N and consider the curve

R
+ 3 s → bs :=

2q
∑

k=1

bk,s ∈ Hom (X2q,n,R) .

For simplicity we will drop the superscripts fromX2q,n.
For anyk ∈ N we denote by ˆw2k the element of Hom (X,R) such that

ŵ2k(y) = 0 for everyy ∈
⊙ j

Rn with j 6= 2k,

ŵ2k(x2k) = |x|2k

k!
.

Note that this element belongs, therefore, to
⊙2k

Rn and it is given by the formula

ŵ2k(x1, . . . , x2k) =
1

k!(2k)!

∑

σ∈G2k

〈xσ (1), xσ (2)〉 . . . 〈xσ (2k−1), xσ (2k)〉 .
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For everys ∈ R+ we denote byωs the element of Hom (X,R) given by

ωs :=
q
∑

k=1

skŵ2k .

Finally, letV be the linear subspace ofX generated by the elements

x + x2 + . . .+ x2q = x + x � x + . . .+ x � . . .� x for x ∈ supp (µ).

The aim of this new notation is to rewrite the formula (7.5) as

bs(y) = ωs(y) + ‖y‖1+1/(2q)o(sq) for everyy ∈ V . (7.27)

Now for everys ∈ R+ we define the subspaceFs ⊂ X as

Fs :=
{

u ∈ X :

〈〈 2q
∑

k=1

sk Pk(u), v

〉〉

= 0 ∀v ∈ V

}

. (7.28)

Clearly,Fs ⊕ V = X, because the bilinear form

as(u, w) :=
〈〈

2q
∑

k=1

sk Pk(u), w

〉〉

is a scalar product onX.
Therefore, there exists a unique linear mapQs : X → X such that







Qs(v) = v for everyv ∈ V ,

Qs(v) = 0 for everyv ∈ Fs.

Clearly, (7.27) yields

bs(u) = ωs(Qs(u)) + ‖u‖1+1/(2q)o(sq) for u ∈ V . (7.29)

On the other hand, from the definition ofbs, it follows that

bs(u) = I (s)−1
∫

Rn

as(u, v + v2 + . . .+ v2q) e−s|v|2 dµ(v) .

Therefore, we have

bs(u) = 0 = ωs(0) = ωs(Qs(u)) for everyu ∈ Fs. (7.30)

By the linearity ofbs, (7.29) and (7.30) yield

bs = ωs ◦ Qs + ‖Qs‖1+1/29o(sq) . (7.31)

Indeed, by writingx = v + z ∈ V + Fs = X we get

|bs(x) − (ωs ◦ Qs)(x)| = |bs(v) − (ωs ◦ Qs)(v)|
≤ ‖v‖1+1/(2q)o(sq) ≤ (‖Qs‖‖x‖)1+1/(2q)o(sq) .

In (7.31) we understandbs andωs as curves in Hom (X,R) and Qs as a curve in
Hom (X, X).
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Note thatωs can also be defined fors = 0 and it yields an analytic curve [0,∞[3
s → ωs. Therefore (7.7) would be implied by the following claim:

The curve ]0,∞[3 s → Qs can be extended analytically tos = 0. (7.32)

Analyticity of Qs at s = 0. In what follows, for every vector spaceA ⊂ X we will
denote byPA the orthogonal projection onAwith respect to the scalar product〈〈 ·, ·〉〉 .
Recall thatPj is the orthogonal projection on

⊙ j
Rn.

Observe that
( 2q
∑

k=1

sk Pk

)

◦





2q
∑

j =1

s− j Pj



 =
∑

k, j

sk− j Pk ◦ Pj =
2q
∑

k=1

Pk .

Since the last linear map is the identity, we conclude that
∑2q

j =1 s− j Pj is the inverse of
∑2q

k=1 sk Pk. Therefore

x ∈ Fs ⇐⇒ x ∈





2q
∑

j =1

s− j Pj



 (V⊥) . (7.33)

We decompose the linear spaceV⊥ into a direct sum
⊕2q

k=1 Vk, where the linear spaces
Vk are defined inductively as

V1 := V⊥ ∩
⊙1

R
n,

V2 :=
{

V⊥ ∩
[
⊙1

R
n ⊕

⊙2
R

n
]}

∩ V⊥
1 ,

Vk :=
{

V⊥ ∩
[

⊕

j ≤k

⊙ j
R

n
]}

∩
⋂

j<k

V⊥
j .

Note that the setsVk are pairwise orthogonal and they are all orthogonal toV . Define
a linear mapAs : X → X in the following way:

• As is the identity onV ;
• As onVk is given byPk + s Pk−1 + . . .+ sk−1P1.

Note thatAs mapsV into V andV⊥ into Fs. Moreover, note that the curves → As

is analytic. We claim thatA0 is invertible, that is, the kernel ofA0 is {0}. Indeed, let
w be such thatA0(w) = 0. Decomposew = −v0 + v1 + . . . + v2q, wherevi ∈ Vi

andv0 ∈ V . Our goal is to show thatvi = 0 for everyi . We argue by contradiction
and assume that this is not the case. SinceA0(w) = −v0 +

∑2q
i =1 Pi (vi ), we must

necessarily havevk 6= 0 for somek ≥ 1. Choose the smallestk ≥ 1 with this property.
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Now, sincevk ∈
⊕

j ≤k

⊙ j
Rn, we have

vk = Pk(vk) +
k−1
∑

j =1

Pj (vk) . (7.34)

On the other hand,

v0 = Pk(vk) +
2q
∑

i =k+1

Pi (vi ) . (7.35)

Since for j 6= i we have〈〈Pj (x), Pi (y)〉〉 = 0 for everyx and y, we conclude
〈〈vk, v0〉〉 = |Pk(vk)|2. But vk belongs toVk, which is orthogonal toV , and hence
Pk(vk) = 0. On the other hand, sincevk ∈ Vk, we know that

(a) vk ∈
⊕

j ≤k

⊙ j
Rn;

(b) vk ∈ V⊥.

But from (a) andPk(vk) = 0, we concludevk ∈
⊕

j ≤k−1

⊙ j
Rn. This identity and (b)

implies thatvk ∈ Vk−1. SinceVk−1 ⊥ Vk, we have necessarilyvk = 0. This gives a
contradiction and completes the proof of the invertibilityof A0.

SinceAs is analytic, the invertibility ofA0 implies that, in a neighborhood of 0,As

is invertible and the maps → A−1
s is analytic. SetQ̃s := PV ◦ A−1

s and note that

• Q̃s is analytic in a neighborhood of 0 becauseA−1
s is analytic,

• Q̃s is the identity onV , since bothPV andA−1
s are the identity onV ,

• for s> 0 A−1
s mapsFs into V⊥, and thereforẽQs = 0 onFs.

Hence,Qs = Q̃s for s> 0, which implies thatQs has an analytic extension at 0.�
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The aim of this chapter is to prove Proposition 6.18. In particular, we will prove the
following stronger statement.

Proposition 8.1. If m = 0, 1, 2andµ ∈ Um(Rn), thenµ is flat at infinity.
If m ≥ 3, then there existsε > 0 (which depends only on m and n) such that, ifλ

is the tangent measure at infinity toµ ∈ Um(Rn) and

min
V∈G(m,n)

∫

B1(0)
dist2 (x,V) dλ(x) ≤ ε ,

thenλ is flat.

Remark 8.2. Recall that the previous proposition is optimal in the following sense:
Forn ≥ 4 andm = n − 1 the measureµ = H m {x2

1 + x2
2 + x2

3 = x2
4} is inUm(Rn)

and clearly the tangent measure toµ at infinity is not flat (see Proposition 6.11 and
Theorem 6.12).

In the proof of this proposition,a key role is played by the information gained in the
previous section: The uniqueness of the tangent measure at infinity. This uniqueness
implies a “cone” property of the tangent measure at infinity.Indeed, letµ be a given
measure and considerλ ∈ Tanm(µ,∞). Let r i ↑ ∞ be some sequence such that

r −m
i µ0,r i

∗
⇀ λ. Fix ρ > 0. Then (ρr i )−mµ0,ρr i

∗
⇀ ρ−mλ0,ρ . Therefore,ρ−mλ0,ρ

belongs to Tanm(µ,∞). If in addition the tangent measure toµ at infinity is unique,
we conclude

λ0,ρ = ρmλ for everyρ > 0. (8.1)

It is not difficult to see that (8.1) implies the following:

x ∈ supp (λ) =⇒ ρx ∈ supp (λ) ∀ρ > 0 . (8.2)

This consideration justifies the following definition.

Definition 8.3. A measureλ which satisfies (8.1) is called aconical measure.

We summarize the information gained so far in the following statement.

Corollary8.4 (Conicalpropertyof the tangentmeasureat infinity).Letµ, λ ∈ Um(Rn)
be such thatTanm(µ,∞) = {λ}. Thenλ is a conical measure and therefore satisfies
(8.1)and(8.2).
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Conical uniform measures. Proposition 8.1 holds because the same conclusion
holds foranyconical uniform measure:

Proposition 8.5. Letλ ∈ Um(Rn) be conical. If m≤ 2, thenλ is flat.
When m≥ 3, then there existsε > 0 (which depends only on m and n) such that, if

min
V∈G(m,n)

∫

B1(0)
dist2 (x,V) dλ(x) ≤ ε , (8.3)

thenλ is flat.

The combination of the conical and uniform properties yieldmany useful pieces of
information on the tangent measureλ. In particular, if we fixx, a change of variables
in the integrals that define the moments gives that

the functiong(s) := bλj ,s(x
j ) is of the formcsj/2. (8.4)

Therefore, from the Taylor expansion of Proposition 7.7, weconclude that

• bλj ,s = 0 when j is odd;
• bλ2k,s = (k!)−1skbλ,(k)

2k .

This simple remark has two important consequences. First ofall, it simplifies the
algebraic relations (7.9) of Proposition 7.7. Second, since flat measures are uniform
and conical, (8.4) holds for any flat measure as well. Recall the definition of the
momentsskbλ,(k)

2k . It is not difficult to see that (8.4) implies the following identity for
every conicalλ ∈ Um(Rn), for everym-dimensional linear planeV ⊂ Rn and for
everyx ∈ supp (λ) ∩ V :

∫

e−s|z|2〈z, x〉 j dλ =
∫

e−s|z|2〈z, x〉 j dH
m V . (8.5)

A standard density argument allows us to generalize (8.5) topoint (iii) of the following

Lemma 8.6. If λ ∈ Um(Rn) is conical, then

(i) bλ2k−1,s = 0 and bλ2k,s = (k!)−1skbλ,(k)
2k (therefore bλ2k,s has only one nontrivial

term in the Taylor expansion),
(ii) supp (λ) ⊂

{

b(k)
2k (x2k) = |x|2k

}

,
(iii) for every u∈ supp (λ), every f ∈ Rm with | f | = |u| and every nonnegative Borel

functionϕ : R+ × R → R we have
∫

Rn

ϕ
(

|z|, 〈z, u〉
)

dλ(z) =
∫

Rm

ϕ
(

|x|, 〈x, f 〉
)

dL
m(x) . (8.6)

We now focus on the algebraic relation (ii) fork = 1. In this case we have

b(1)
2 (x2) = |x|2 for everyx ∈ supp (λ). (8.7)
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Consider an orthonormal system of vectorse1, . . . , en which diagonalizes the sym-
metric bilinear formb(1)

2 :

b(1)
2 (x � y) = α1〈x, e1〉〈y, e1〉 + . . .+ αn〈x, en〉〈y, en〉 . (8.8)

The bilinear form is positive semidefinite and we fix the convention that the eigenvalues
αi are ordered asα1 ≥ α2 ≥ . . . ≥ αn ≥ 0. A simple computation using (8.6) implies
that trb(1)

2 = tr bλ2,1 = m:

Lemma 8.7. Letλ ∈ Um(Rn) be conical. Thentr b(1)
2 = tr bλ2,1 = m.

Proof. From point (i) of Lemma 8.6 we have trb(1)
2 = tr bλ2,1. Using Lemma 7.2, we

can compute

tr (bλ2,1) =
n
∑

i =1

bλ2,1(e
2
i ) = 2I (1)−1

∫

e−|z|2
n
∑

i =1

〈ei , z〉2 dλ(z)

= 2I (1)−1
∫

e−|z|2|z|2 dλ(z) = 2I (1)−1
∫

Rm

e−|x|2|x|2 dL
m(x) .

This last integral can be easily evaluated with an integration by parts (see for instance
Proposition B.1) and gives tr (bλ2,1) = m. �

Thanks to this observation, the crucial step in proving Proposition 8.5 is the
inequality

αm ≥ 1 . (8.9)

Indeed, this inequality and Lemma 8.7 yield thatα1 = . . . = αm = 1 andαm+1 =
. . . = αn = 0. Therefore, if we denote byV the vector space spanned bye1, . . . , em,
we obtain

b(1)
2 (x2) = |PV (x)|2 for everyx.

Coming back to (8.7), we discover that|PV (x)|2 = |x|2 for every x ∈ supp (λ),
namely that the support ofλ is contained in them-dimensional planeV . This implies
the desired claimλ = H m V .

The inequality (8.9) is always satisfied whenm ≤ 2, whereas form ≥ 3 it is
implied by the additional hypothesis (8.3). The argument ofPreiss which leads to
(8.9) is elementary and uses again point (iii) of Lemma 8.6.

Plan of the chapter. In section 8.1 we prove the conical properties of the tangent
measure at infinity; in section 8.2 we prove Lemma 8.6 and in section 8.3 we prove
Proposition 8.5.
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8.1. The tangent measure at infinity is a cone

Proof of Corollary 8.4.As observed in the introduction,ρ−mλ0,ρ is a tangent measure
at infinity toµ. Since Tanm(µ,∞) = {λ}, we concludeρ−mλ0,ρ = λ.

We will now prove (8.2). Letx ∈ supp (λ) andρ > 0. Fromρ−mλ0,ρ = λ we
conclude that

ρmλ(Br/ρ(x)) = λ
(

Br (ρx)
)

for everyr > 0.

Since

λ
(

Br (ρx)
)

= ρmλ(Br/ρ(x)) > 0,

we concludeρx ∈ supp (λ). �

8.2. Conical uniform measures

Proof of Lemma 8.6.(i) By definition we have

bλj ,s
(

x j
)

= (2s) j

j !
I (s)−1

∫

e−s|z|2〈x, z〉 j dλ(z) . (8.10)

We make the change of variablesw = s1/2zand we use the conical propertyλ0,s = smλ

to conclude

bλj ,s
(

x j
)

= (2s) j

j !
I (s)−1s− j/2−m/2

∫

e−|w|2〈x, w〉 j dλ(w) .

From Lemma 7.2 and Proposition B.1, it follows that

I (s) =
(π

s

)m/2
.

Therefore, we conclude

bλj ,s
(

x j
)

= 2 j s j/2

πm/2 j !

∫

e−|w|2〈x, w〉 j dλ(w) . (8.11)

From (7.7) of Proposition 7.7 we conclude that

bλj ,s(x
j ) =







0 if j is odd,

(( j/2)!)−1s j/2 bµ,( j/2)
j (x j ) if j is even.

Since the values of a symmetricj -linear formb are determined by its values on the
elements of the formx j , from these identities we obtain (i).

(ii) From (i) and (7.7) of Proposition 7.7 (applied toλ) we obtain

bλ,(k)
j = 0 if j 6= 2k. (8.12)
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From (7.9) we have
2k
∑

i =1

bλ,(k)
i (xi ) = |x|2k for everyx ∈ supp (λ). (8.13)

Clearly, (8.12) and (8.13) give (ii).

(iii) From (i) we know that
∫

e−s|z|2〈z, u〉2k−1 dλ(z) = 0 for everyu ∈ Rn.

From (i) we also know

bλ2 j ,s(x
2 j ) = s j

j !
bλ,( j )

2 j (x2 j ) . (8.14)

Thus, we can compute
∫

e−s|z|2〈z, u〉2k dλ(z)

(8.10)=
(π

s

)m/2 (2k)!

22ks2k
bλ2k,s(u

2k)

(8.14)=
(π

s

)m/2 (2k)!

k! 22ksk
bλ,(k)

2k (u2k)

(i i )=
(π

s

)m/2 (2k)!

k! 22ksk
|u|2k for everyu ∈ supp (λ). (8.15)

Now fix an orthonormal basise1, . . . , em onRm and consider the vectorf := |u|e1.
Then we have
∫

Rm

e−s|x|2〈x, f 〉2k dL
m(x) = |u|2k

∫

Rm−1
e−s|ξ |2 dL

m−1(ξ )
∫

R

e−s|t|2t2k dL
1(t) .

(8.16)
Using Proposition B.1, we conclude that (8.16) is equal to

(π

s

)m/2 (2k)!

k! 22ksk
|u|2k .

Therefore, the integrals in (8.15) and (8.16) are equal.
Since this identity is independent of the choice ofe1, . . . , em, we conclude that the

following equality
∫

e−s|z|2〈z, u〉 j dλ(z) =
∫

Rm

e−s|x|2〈x, f 〉 j dL
m(x) (8.17)

holds for everys > 0, everyu ∈ supp (λ), every f ∈ Rm with |u| = | f | and every
j ∈ N.

Let Y ⊂ R2 be the set{y1 ≥ 0} and denote byB the set of Borel functions
ϕ : Y → R such thatϕ(|z|, 〈z, u〉) ∈ L1(Rn, λ) and

∫

ϕ(|z|, 〈z, u〉) dλ(z) =
∫

Rm

ϕ(|x|, 〈x, f 〉) dL
m(x) (8.18)
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holds for everyu ∈ supp (λ) and everyf ∈ Rm with |u| = | f |. From a standard
approximation argument the claim (iii) of the lemma followsfrom the inclusion

Cc(Y) ⊂ B . (8.19)

To show that (8.19)holds, we use an approximation argument similar to those exploited
in the proof of Proposition 6.11 (see also Lemma 6.14) and in the proof of Proposition
7.1.

First of all, from (8.17) we conclude thatB contains all functions of the form
e−sy2

1 y j
2. By takingk times the derivative ins of both sides of (8.17) we conclude that

B contains all functions of type

e−sy2
1 y2k

1 y j
2 for s> 0 and j , k ∈ N.

Moreover,B is a vector space. Therefore, for everyk, j , and N, B contains the
functions

e−sy2
1 y2k

1 y j
2

(

N
∑

i =0

(−1)i
si y2i

2

i !

)

.

Using thatλ(Br (0)) = L m(Br (0)), we can apply the Dominated Convergence Theo-
rem to show that, when|k| < 1,

lim
N↑∞

∫

e−s|z|2|z|2k〈 f, z〉 j

(

N
∑

i =0

(−1)i
si 〈 f, z〉2i

i !

)

dL
m(z)

=
∫

e−s(|z|2+〈z, f 〉2)|z|2k〈 f, z〉 j dL
m(z),

lim
N↑∞

∫

e−s|z|2|z|2k〈u, z〉 j

(

N
∑

i =0

(−1)i
si 〈u, z〉2i

i !

)

dλ(z)

=
∫

e−s(|z|2+〈z,u〉2)|z|2k〈u, z〉 j dλ(z) .

The case|k| > 1 can be concluded easily by rescaling, since the measureλ is conical.
Therefore, we conclude that any linear combination of functions of typee−s|y|2 y2k

1 y j
2

with positives belongs toB.
Now we fix ϕ ∈ Cc(Y) and we denote byC the vector space generated by the

functions f ∈ C(Y) of type

a + e−s|y|2 Q(y2
1, y2)

whereQ are polynomials,a real constants, ands positive constants.
We letX = Y ∪ {∞} be the one-point compactification ofY, we setψ(y1, y2) :=

e|y|2ϕ(y1, y2), and we extend it tõψ ∈ C(X) by ψ̃(∞) = 0. Any function f ∈ C has
a unique extensioñf ∈ C(X). The setC̃ of such extensions is an algebra, it separates
the points, and it vanishes at no point. Therefore, we can usethe Stone–Weierstrass
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Theorem to find a sequence{ f̃i } ⊂ C̃ which converges uniformly tõψ . If { fi } is the
corresponding sequence ofC, we then conclude that

gi (y1, y2) := e−|y|2 fi (y1, y2)

converge uniformly toϕ andgi (y) ≤ Ce−|y|2 for some constantC. From what has
been proved above, we havegi ∈ B. The boundgi (y) ≤ Ce−|y|2, together with
λ(Br (0)) = L m(Br (0)), implies that

lim
i ↑∞

∫

gi (|z|, 〈z, u〉) dλ(z) =
∫

ϕ(|z|, 〈z, u〉) dλ(z),

lim
i ↑∞

∫

Rm

gi (|x|, 〈x, f 〉) dL
m(x) =

∫

Rm

ϕ(|x|, 〈x, f 〉) dL
m(x) .

Hence, we finally obtain thatϕ ∈ B. �

8.3. Proof of Proposition 8.5

Proof of Proposition 8.5.It is trivial to show thatU0(Rn) consists of the Dirac mass
concentrated at the origin, and therefore in this case the proposition is trivially true.

Let m ≥ 1 and consider the bilinear formb(1)
2 . We selectn orthonormal vectors

e1, . . .en such that

b(1)
2 (x � y) = α1〈x, e1〉〈y, e1〉 + . . .+ αn〈x, en〉〈y, en〉 , (8.20)

where we fix the convention thatα1 ≥ . . . ≥ αn ≥ 0 (recall thatb(1)
2 = bλ2,1, which is

positive semidefinite by definition). We claim that

αm ≥ 1 . (8.21)

From (8.21) and Lemma 8.7 we would concludeα1 = . . . αm = 1 andαm+1 = . . . =
αn = 0. Therefore, if we denote byV the vector space generated bye1, . . . , em, we
would conclude thatb(1)

2 (x2) = |PV (x)|2. Hence, from point (ii) of Lemma 8.6 we
would conclude supp(λ) ⊂ {|x|2 = |PV (x)|2}, that is supp (λ) ⊂ V . This would imply
λ = H m V , which is the desired claim (compare with Remark 3.14). Therefore, it
remains to show that (8.21) holds.

Casem = 1, 2. Sinceλ(B1(0)) = ωm > 0 and

λ({0}) = lim
r↓0
λ(Br (0)) = lim

r↓0
ωmr m = 0 ,

clearly supp (λ)\{0} 6= ∅ (in other wordsλ cannot be a Dirac mass concentrated at the
origin). If x ∈ supp (λ), sinceλ is conical we havez := x/|x| ∈ supp (λ). Therefore,
b(1)

2 (z2) = |z|2 = 1. Hence, we have the inequality

α1 ≥ sup
|z|=1

b(1)
2 (z2) ≥ 1 ,

which proves (8.21) form = 1.



92 8 Flat versus curved at infinity

Whenm = 2, letz be as above and letf be a vector ofR2 with modulus 1= |z|.
Using Lemma 8.6 we can write

λ
(

{y : |〈y, z〉| ≤ 1}
)

=
∫

1|〈y,z〉|≤1 dλ(y)

=
∫

R2

1|〈x, f 〉|≤1 dL
2(x) = ∞ .

Hence, we conclude that there exists a sequence{z′
j } ⊂ supp (λ) with

lim
n↑∞

|z′
j | = ∞ and |〈z′

j , z〉| ≤ 1 .

By passing to a subsequence (not relabeled) we can assume that y j := z′
j /|z′

j |converge
to ay ∈ Rn with |y| = 1. Then we would have

|〈y, z〉| = lim
n↑∞

|〈z′
j , z〉|

|z′
j |

≤ 0 .

Sincey j ∈ supp (λ), we knowb(1)
2 (y2

j ) = |y j |2 = 1. Therefore, passing into the limit

in j we obtainb(1)
2 (y2) = 1. Summarizing, we know that

|y| = |z| = 1 , 〈y, z〉 = 0 and b(1)
2 (z2) = b(1)

2 (y2) = 1 .

This impliesα2 ≥ 1, and hence gives (8.21).

Casem ≥ 3. Let W be anym-dimensional linear plane and assume thatf1, . . . fk

is an orthonormal base for the orthogonal spaceW⊥. Then

tr (b(1)
2 W⊥) = tr (b2,1 W⊥) =

k
∑

i =1

b2,1( f 2
i )

= 2I (1)−1
∫

e−|z|2
k
∑

i =1

〈z, f i 〉2 dλ(z)

= C(m)
∫

e−|z|2 dist2(z,W) dλ(z) , (8.22)

whereC(m) = 2π−m/2, i.e. a constant which depends only onm.
Now, letV be them-dimensional plane spanned bye1, . . . , em. Then we have

tr (b(1)
2 V⊥) = min

m-planesW
tr (b(1)

2 W⊥)

becauseV⊥ is spanned by then − m eigenvectors ofb(1)
2 corresponding to then − m

smallest eigenvalues. Thus, using (8.22), we conclude
∫

e−|z|2 dist2 (z,V) dλ(z) = min
m-planesW

∫

e−|z|2 dist2 (z,W) dλ(z) ≤ ε .

(8.23)
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Now letδ > 0. We claim that, ifε is sufficiently small, then

for all e ∈ V ∩ B1(0) there isz ∈ supp (λ) such that|z − e| ≤ δ. (8.24)

First we show that forδ sufficiently small (8.24)yields the statement of the proposition.
Indeed, apply (8.24) toe = em and letx ∈ supp (λ) be such that|x − em| ≤ δ. Since
αi + (m− 1)αm ≤ tr (b(1)

2 ) = m for everyi ≤ m− 1 (recall Lemma 8.7), we conclude

αi − 1 ≤ (m − 1)(1− αm) for everyi ≤ m − 1. (8.25)

Moreover, from the definition ofαi we have

αi ≤ αm ≤ 1 for everyi ≥ m. (8.26)

Sincex ∈ supp (λ) we have
n
∑

i =1

αi 〈x, ei 〉2 = b(1)
2 (x2) = |x|2 .

Therefore,

0 =
n
∑

i =1

(αi − 1)〈x, ei 〉2 (8.26)
≤

m
∑

i =1

(αi − 1)〈x, ei 〉2

(8.25)
≤ (m − 1)(1− αm)

m−1
∑

i =1

〈x, ei 〉2 + (αm − 1)〈x, em〉2

= (m − 1)(1− αm)
m−1
∑

i =1

〈x − em, ei 〉2

−(1 − αm)
(

〈em, em〉 + 〈em, x − em〉
)2

≤ (1 − αm)

(

(m − 1)
m−1
∑

i =1

|x − em|2 −
(

1 − |x − em|
)2

)

≤ (1 − αm)
(

(m − 1)2δ2 − (1 − δ)2) .

If δ is sufficiently small, the number (m− 1)2δ2 − (1− δ)2 is negative. Therefore, for
δ sufficiently small the inequality above is satisfied if and only if αm ≥ 1, which is the
desired conclusion.

It remains to prove (8.24). We argue again by contradiction.If the claim were
wrong, then we would have a numberδ > 0, a sequence ofm-uniform measures{λk},
a sequence ofm-planes{Vk}, and a sequence of points{xk} such that

lim
k↑∞

∫

e−|z|2 dist2 (z,Vk) dλk(z) = 0

xk ∈ Vk ∩ B1(0) and λk(Bδ(xk)) = 0 .
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Since everything is invariant under rotations, we can assume thatVk = W. Moreover,
we can assume that a subsequence, not relabeled, of{xk} converges to a pointx ∈
V ∩ B1(0). Finally we can assume thatλk

∗
⇀ λ. Then it follows thatλ ∈ Um(Rn),

supp (λ) ⊂ V andλ(Bδ(x)) = 0. On the other hand, the first two conditions imply
easily thatλ = H m V (compare with Remark 3.14) and hence they are incompatible
with the third condition. �



9 Flatness at infinity implies flatness

In this chapter we will make the last step towards the proof ofPreiss’ Theorem and we
will prove the following proposition:

Proposition 9.1. Letµ ∈ Um(Rn) and V an m-dimensional plane. IfH m V is the
tangent measure toµ at infinity, thenµ = H m V .

The first information which we gain on an uniform measure which is flat at infinity
concerns the special momentsb(k)

2k = bµ,(k)
2k .

Recall that from Lemma 7.2 and Proposition B.1 we have

I (s) =
∫

e−s|z|2 dL
m(z) = 1

sm/2

∫

e−|z|2 dL
m(z) =

(π

s

)m/2
.

Using this identity and changing variables in the integral defining the moments, one
can readily check that

bµ2k,s(u1, . . . , u2k)

sk
= r 2kbµ2k,r −2(u1, . . . , u2k)

= 22k

(2k)!
I (1)−1

∫

〈w, u1〉 . . . 〈w, u2k〉 e−|w|2d
[µ0,r

r m

]

(w) .

SinceH m V is tangent toµ at infinity, by lettings ↓ 0 (and hencer ↑ ∞) we gain
the identity

lim
s↓0

bµ2k,s(u1, . . . , uk)

sk
= 22k

(2k)!
I (1)−1

∫

〈w, u1〉 . . . 〈w, u2k〉 e−|w|2d
[

H
m V

]

(w)

= bH
m V

2k,1 (u1, . . . , u2k) .

Since Proposition 7.7 gives

lim
s↓0

bµ2k,s(u1, . . . , u2k)

sk
=

bµ,(k)
2k (u1, . . . , u2k)

k!
,

we can compute

b(k)
2k (x2k) = k!bH

m V
2k,1 (x2k)

= 22kk!|PV (x)|2k

(2k)! I (1)

∫

Rm−1

e−|ξ |2 dL
m−1(ξ )

∫

R

e−t2
t2k dL

1(t) .

Here and in what follows, we use the notation of Definition 4.5: PV denotes the
orthogonal projection onV andQV the orthogonal projection onV⊥. The integral
above can be computed explicitly (see for instance Proposition B.1) and we obtain
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point (i) of Lemma 9.2 below. The identityk!bH
m V

2k,1 = bH
m V,(k)

2k can be proved
with a direct computation or one can use Lemma 8.6.

Point (ii) of Lemma 9.2 provides information on the momentsb(k)
2k−1. Its proof is

less direct but not long. Here, wheneverb is a symmetricj -linear form, we denote by
b V the restriction ofb to

⊙ j V .

Lemma 9.2. Letµ and V be as in Proposition 9.1. Then

(i) b(k)
2k (x2k) = k!bH

m V
2,1 (x2k) = bH

m V,(k)
2k (x2k) = |PV (x)|2k for every x∈ Rn,

(ii) b(k)
2k−1 V = 0 for every k.

Note that the casek = 1 of (ii) implies the existence of a vectorw ∈ V⊥ such that
b(1)

1 (v) = 〈v, w〉 for everyv ∈ Rn. In order to simplify some computations it is useful
to introduce the following notation.

Definition 9.3. We letb ∈ V⊥ be such thatb(1)
1 (z) = 2〈b, z〉.

Hausdorff distance betweensupp (µ) and V . Recall that the momentsb(k)
i satisfy

the following identities:

2k
∑

i =1

b(k)
i (xi ) = |x|2k for everyx ∈ supp (µ). (9.1)

By Lemma 9.2(i), the casek = 1 of (9.1) gives

2〈b, x〉 + |PV (x)|2 = |x|2 for everyx ∈ supp (µ),

which becomes

|QV (x)|2 = 2〈b, x〉 for everyx ∈ supp (µ). (9.2)

Combining Lemma 9.2(ii) and (9.2) (recall thatb ∈ V⊥), we obtain

2|b||QV(x)| ≥ 2〈b, QV(x)〉 = 2〈b, x〉 = |QV (x)|2

for everyx ∈ supp (µ). Therefore, we conclude that|QV (x)| ≤ 2|b| for every
x ∈ supp (µ). That is, the distance between any pointx ∈ supp (µ) and the planeV
is uniformly bounded by a constant. It is not difficult to showthat also the distance
between supp (µ) and anyv ∈ V is bounded. These two conclusions are incorporated
in the following lemma.

Lemma 9.4. Letµ and V be as in Proposition 9.1. Then

(iii) b(1)
1 (x) = |QV (x)|2 and|QV (x)| ≤ ‖b(1)

1 ‖ for every x∈ supp (µ),
(iv) There exists r0 > 0 such thatdist (v, supp (µ)) < r0 for everyv ∈ V .
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Coming back to (9.2), note that if we could proveb = 0, then we would conclude
supp (µ) ⊂ V . As already observed many times, this would implyµ = H m V ;
compare with Remark 3.14. (On the other hand, ifµ = H m V , then

bµ1,s(u) = bH
m V

1,s (u) = 2s I(s)−1
∫

V
〈z, u〉 dH

m(z) = 0 ,

and hence necessarilyb(1)
1 = 0.) Therefore, our goal is to show thatb = 0 (or,

equivalently,b(1)
1 = 0). In order to prove this we will make use of the casek = 2 in

(9.1) and many computations.

Properties of tr b(2)
2 . The basic observations are contained in the following proposi-

tion.

Proposition 9.5. Letµ be as in Proposition 9.1. Then

tr b(2)
2 = 0, (9.3)

tr b(2)
2 ≥ 4

m + 2

∣

∣

∣
b(1)

1

∣

∣

∣

2
. (9.4)

The proof of (9.3) is fairly simple.

Proof of (9.3). From Proposition 7.7 we have

b2,s = sb(1)
2 + s2

2
b(2)

2 + o(s2) .

Therefore

tr b(2)
2 = 2 lim

s↓0

tr
(

s−1b2,s
)

− tr b(1)
2

s
. (9.5)

From Lemma 9.2(i) we conclude thatb(1)
2 (u, v) = 〈PV (u), PV (v)〉 (indeed, if we define

the bilinear formB(u, v) := 〈P(u), P(v)〉, then Lemma 9.2(i) says that the quadratic
forms induced byb(1)

2 andB are the same). Thus, trb(1)
2 is m, i.e. the dimension of

the linear spaceV . Recall the definition ofb2,s. If we fix an orthonormal system of
vectorse1, . . . , en onRn, then we have

tr
(

s−1b2,s
)

= s−1
n
∑

i =1

b2,s(e
2
i ) = s−1 (2s)2

2!
I (s)−1

∫ n
∑

i =1

e−s|z|2〈z, ei 〉2 dµ

= 2s

∫

|z|2e−s|z|2 dµ(z)
∫

e−s|z|2 dµ(z)
= 2s

∫

Rm |x|2e−s|x|2 dL m(x)
∫

Rm e−s|x|2 dL m(x)
,

where the last equality follows from Lemma 7.2. Using Proposition B.1, we obtain

tr
(

s−1b2,s
)

= m ,

and therefore, plugging this into (9.5) we conclude (9.3). �



98 9 Flatness at infinity implies flatness

The inequality (9.4) will be split into two parts:

tr
(

b(2)
2 V⊥

)

= 2
∣

∣

∣b(1)
1

∣

∣

∣

2
, (9.6)

tr
(

b(2)
2 V

)

≥ −
2m

m + 2

∣

∣

∣b(1)
1

∣

∣

∣

2
. (9.7)

The first part is not complicated to prove.

Proof of (9.6). We use again

b2,s = sb(1)
2 + s2

2
b(2)

2 + o(s2)

to conclude

tr
(

b(2)
2 V⊥

)

= 2 lim
s↓0

tr
(

b2,s V⊥)− str
(

b(1)
2 V⊥

)

s2

= 2 lim
s↓0

tr
(

b2,s V⊥)

s2
, (9.8)

where, in the last equality, we have used Lemma 9.2(i).
Lete1, . . . , en−m be a system of orthonormal vectors ofV⊥. The same calculations

performed in the proof of (9.3) yield

tr
(

b2,s V⊥) = 2s2I (s)−1
∫

e−s|z|2
n−m
∑

i =1

〈z, ei 〉2 dµ

= 2s2I (s)−1
∫

e−s|z|2|QV (z)|2 dµ . (9.9)

From Lemma 9.4(iii) we know that

|QV (z)|2 = b(1)
1 (z) for everyz ∈ supp (µ) . (9.10)

Recalling that
b1,s(z) = sb(1)

1 (z) + o(s) = 2s〈b, z〉 + o(s) , (9.11)

we can write

tr
(

b(2)
2 V⊥

)

(9.8)= 2 lim
s↓0

tr
(

b2.s V⊥)

s2

(9.9)&(9.10)= 4 lim
s↓0

I (s)−1
∫

e−s|z|2b(1)
1 (z) dµ(z)

= 8 lim
s↓0

I (s)−1
∫

e−s|z|2〈b, z〉 dµ(z)

= 4 lim
s↓0

b1,s(b)

s
(9.11)= 8|b|2 = 2

∣

∣

∣
b(1)

1

∣

∣

∣

2
. (9.12)

�
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The last inequality (9.7) is the hard core of the proof of Proposition 9.1. After
proving in Section 9.1 statement (ii) of Lemma 9.2 and statement (iv) of Lemma 9.4,
in Section 9.2 we will introduce some notation and derive an integral formula for

tr
(

b(2)
2 V

)

(see equation (9.14) of Lemma 9.9). In Section 9.3 we will study the

identity (9.1) whenk = 2 and prove an intermediate inequality involving the integrand
of (9.14) (see Lemma 9.10). Finally, in Section 9.4 we will use these two ingredients
in order to prove (9.7).

9.1. Proofs of (ii) and (iv)

Proof of (ii). Sinceb(k)
2k−1 is symmetric, it suffices to show

b(k)
2k−1(y2k−1) = 0 for everyy ∈ V .

Therefore, let us fixy ∈ V with y 6= 0. Since

r −mµ0,r
∗
⇀ H

m V for r ↑ ∞,

there exists a sequence{x j } ⊂ supp (µ) such that

x j

|x j |
→ y

|y|
and |x j | → ∞ .

Recall that from Proposition 7.7 we have

b(k)
2k−1(x2k−1

j ) = |x j |2k − b(k)
2k (x2k

j ) −
2k−2
∑

i =1

b(k)
i (xi

j )

(here we adopt the convention that the last sum is equal to 0 ifk = 1). Hence, from
Lemma 9.2(i) we obtain

b(k)
2k−1(x2k−1

j ) = |x j |2k − |PV (x j )|2k −
2k−2
∑

i =1

b(k)
i (xi

j ) ≥ −
2k−2
∑

i =1

b(k)
i (xi

j ) .

Thus,

b(k)
2k−1(y2k−1) = |y|2k−1 lim

j ↑∞
|x j |−(2k−1)b(k)

2k−1(x2k−1
j )

≥ −|y|2k−1 lim
j ↑∞

|x j |−(2k−1)
2k−2
∑

i =1

b(k)
i (xi

j ) .

Clearly, there exist constantsC′ andC such thatb(k)
i (xi

j ) ≤ C′|xi
j |i ≤ C(1+ |xi

j |2k−2)
for everyi ∈ {1, . . . , 2k − 2}. Therefore we conclude

b(k)
2k−1(y2k−1) ≥ −C|y|2k−1 lim

j ↑∞

1 + |x j |2k−2

|x j |2k−1
= 0 .
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Since−y ∈ V , the same argument gives

−b(k)
2k−1(y2k−1) = b(k)

2k−1

(

(−y)2k−1) ≥ 0 ,

and we conclude thatb(k)
2k−1(y2k−1) = 0. �

Proof of (iv). Assume that the statement is false. Then there exists{xk} ⊂ V with

rk := dist (supp (µ), xk) → ∞ .

Let yk ∈ supp (µ) be such that|xk − yk| = rk. From Lemma 9.4(iii) it follows that
dist (yk,V) ≤ ‖b(1)

1 ‖. Let zk ∈ V be such that|yk − zk| = dist (yk,V ) and consider
the measures

µk := r −m
k µzk,rk .

After possibly extracting a subsequence, we can assume thatµk ∗
⇀ µ∞. Note thatµk

satisfies the condition

µk(Br (x)) = ωmr m for everyx ∈ supp (µk) andr > 0. (9.13)

It might be thatµk 6∈ Um(Rn), since we do not know whether the origin belongs to
supp (µk). However, we know that

dist (0, supp (µk)) = r −1
k dist (zk, supp (µ)) ≤ r −1

k dist (zk, yk) ≤ r −1
k |b(1)

1 | .
This, combined with (9.13), gives 0∈ supp (µ∞) and thereforeµ∞ ∈ Um(Rn). On
the other hand

supp (µk) ⊂
{

|Q(x)| ≤ |b(1)
1 |/rk

}

and hence we conclude supp (µ∞) ⊂ V . This, together withµ∞ ∈ Um(Rn), implies
µ∞ = H m V (compare with Remark 3.14).

If we setwk := xk − zk ∈ V , we have that

lim
n↑∞

|wk|
rk

= 1 .

Therefore, we can assume thatwk/rk converges to au ∈ V . Sinceµ(Brk(xk)) = 0,
we obtainµk(B1(wk/rk)) = 0 and therefore we concludeµ∞(B1(u)) = 0, which
contradictsµ∞ = H m V . �

9.2. An integral formula for tr
(

b(2)
2 V

)

We start this section by introducing some notation.

Definition 9.6. We letγ be the measure (2π)−m/2e−|z|2/2H m V .

Next we consider two linear mapsω :
⊙2 V → Rn andb̂ ∈ Hom (

⊙2 V,R), as
defined below.
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Definition 9.7. We letω :
⊙2 V → Rn be defined by

〈ω(u2), w〉 := 3b(2)
3 (u2 � w) − 4|u|2〈b, w〉 for everyu ∈ V and everyw ∈ Rn.

We letb̂ ∈ Hom (
⊙2 V,R) be defined by

b̂(u2) := b(2)
2 (u2) + 〈ω(u2), b〉 .

Remark 9.8. Note that from Lemma 9.2(ii) and Definition 9.3 it follows that

〈ω(u2), w〉 = 0 for everyu, w ∈ V .

Hence,ω(u2) takes values inV⊥ and we can regard it as a linear mapω :
⊙2 V → V⊥.

We are now ready to state the formula which is the main goal of this section.

Lemma 9.9. Letµ and V be as in Proposition 9.1. Then we have

tr
(

b(2)
2 V

)

=
∫

b̂(v2) dγ (v) . (9.14)

Proof. First of all, recall thatb(2)
2 V is symmetric. Therefore, there exists a system

of orthonormal coordinatesv1, . . . , vm ∈ V such that the corresponding orthonor-
mal vectorse1, . . . , em are eigenvectors ofb(2)

2 with corresponding real eigenvalues
β1, . . . , βm. This means that

∫

b(2)
2 (v2) dγ (v) =

∫

(

β1v
2
1 + . . .+ βmv

2
m

)

dγ (v)

= β1 + . . .+ βm = tr
(

b(2)
2 V

)

, (9.15)

where we have used Proposition B.1 to compute the second integral.
Hence, in order to conclude (9.14), we have to prove that

∫

〈ω(v2), b〉 dγ (v) = 0 . (9.16)

Step 1 Using the same argument which gives (9.15), we conclude that

|PV (z)|2 =
∫

V
〈z, v〉2 dγ (v) for everyz ∈ Rn. (9.17)

Next, for anyv, w ∈ Rn, we use the definition of the momentsbk,s and the expansion
(7.7) in Proposition 7.7 to compute

lim
s↓0

8s

I (s)

∫

e−s|z|2〈z, v〉2〈z−b, w〉 dµ(z) = 3b(2)
3 (v2�w)−4b(1)

2 (v2)〈b, w〉 . (9.18)

Whenv ∈ V andw ∈ V⊥, recalling thatb(1)
2 (v2) = |PV (v)|2 = |v|2, we then obtain

lim
s↓0

8s

I (s)

∫

e−s|z|2〈z, v〉2〈z − b, w〉 dµ(z) = 〈ω(v2), w〉 . (9.19)
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Therefore, we can compute
∫

V
〈ω(v2), b〉 dγ (v)

(9.19)=
∫

V
lim
s↓0

8s

I (s)

∫

V
e−s|z|2〈z, v〉2〈z − b, b〉 dµ(z) dγ (v)

= lim
s↓0

8s

I (s)

∫

e−s|z|2〈z − b, b〉
∫

V
〈z, v〉2 dγ (v) dµ(z)

(9.17)= lim
s↓0

8s

I (s)

∫

e−s|z|2|PV (z)|2〈z − b, b〉dµ(z) . (9.20)

Note that, to justify the equality in the second line, we apply the Dominated Conver-
gence Theorem through the bound

∣

∣

∣

∣

8s

I (s)

∫

V
e−s|z|2〈z, v〉2〈z − b, w〉 dµ(z)

∣

∣

∣

∣

≤ Cs1+m/2
∫

V
e−s|z|2|z|2|v|2|w| dµ(z) ≤ C|v|2|w|2 (9.21)

where we used that, by Lemma 9.4(iii),|〈z − b, w〉| ≤ C|w| for z ∈ supp (µ) and
w ∈ V⊥.

Step 2 Next, consider anyw ∈ Rn. Using again Lemma 9.4(iii) and Lemma 7.2
we obtain
∣

∣

∣

∣

∫

e−s|z|2|QV (z)|2〈z − b, w〉 dµ(z)

∣

∣

∣

∣

≤ 4|b|2|w|
∫

e−s|z|2(|z| + |b|
)

dµ(z)

= 4|b|2|w|
∫

Rm

e−s|x|2(|x| + |b|
)

dL
m(x) .

Therefore, using Proposition B.1 we conclude

lim
s↓0

s

I (s)

∫

e−s|z|2|QV (z)|2〈z − b, w〉 dµ(z) = 0 . (9.22)

Next, we will show that the following limit exists and is 0:

lim
s↓0

s

I (s)

∫

e−s|z|2|z|2〈z − b, w〉 dµ(z) . (9.23)

First of all, if we fix a system of orthonormal vectorse1, . . .en, we can write

lim
s↓0

s

I (s)

∫

e−s|z|2|z|2〈z − b, w〉 dµ(z)

=
n
∑

i =1

lim
s↓0

s

I (s)

∫

e−s|z|2〈z, ei 〉2〈z − b, w〉 dµ(z) . (9.24)

Then the limit exists because of (9.18) (and actually this limit is a linear combination
of b(2)

3 (e2
i � w) andb(1)

2 (e2
i )〈b, w〉).
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Next, we write

s

I (s)

∫

e−s|z|2|z|2〈z − b, w〉 dµ(z) = π−m/2

∫

e−s|z|2|z|2〈z − b, w〉 dµ(z)

s−1−m/2

=: π−m/2 J(s)

s−1−m/2
.

Note that
J(s)

s−1−m/2
=

− d
ds

∫

e−s|z|2〈z − b, w〉 dµ(z)

− 2
m

d
dss

−m/2
.

Thus, recalling thatI (s) = πm/2s−m/2, we can use De L’Ĥopital’s rule to conclude

lim
s↓0

s

I (s)

∫

e−s|z|2|z|2〈z − b, w〉 dµ(z) =
m

2πm/2
lim
s↓0

∫

e−s|z|2〈z − b, w〉 dµ(z)

s−m/2

= m

2
lim
s↓0

∫

e−s|z|2〈z − b, w〉 dµ(z)

I (s)
.

Note that

lim
s↓0

1

I (s)

∫

e−s|z|2〈z, w〉 dµ(z) = 1

2
b(1)

1 (w) = 〈b, w〉

and
1

I (s)

∫

e−s|z|2〈b, w〉 dµ(z) = 〈b, w〉 .

Therefore, we find

lim
s↓0

s

I (s)

∫

e−s|z|2|z|2〈z − b, w〉 dµ(z) = 0 .

Combining this with (9.22) we obtain

lim
s↓0

s

I (s)

∫

e−s|z|2|PV (z)|2〈z − b, w〉 dµ(z) = 0 . (9.25)

In the particular casew = b, the last equality can be combined with (9.20) to give
(9.16), which completes the proof. �

9.3. An intermediate inequality

In this section, we use the identity (9.1) withk = 2 to derive an inequality involving
b̂.

Lemma 9.10. Letµ and V be as in Proposition 9.1. Then

(v) b(2)
1 (z) + b(2)

2 (z2) + 3b(2)
3

((

PV (z)
)2 � QV (z)

)

= |QV (z)|2
(

|QV (z)|2 + 2|PV (z)|2
)

for every z∈ supp (µ).
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(vi) For everyv ∈ V we have
(

b̂(v2)
)2 ≤

∣

∣ω(v2)
∣

∣

2 |b|2 . (9.26)

Proof. (v) First of all we prove

b(2)
3 (v � w2) = b(2)

3 (v3) = b(2)
3 (w3) = 0 for all v ∈ V andw ∈ V⊥. (9.27)

Recall that Lemma 9.2(ii) givesb(2)
3 (v3) = 0 for everyv ∈ V . Next, letv ∈ V and

w ∈ V⊥ be given. From Proposition 7.7 we have

b(2)
3 (v � w2) = lim

s↓0
2s−2b3,s(v � w2) = lim

s↓0

8s

3I (s)

∫

e−s|z|2〈z, v〉〈z, w〉2 dµ(z) .

(9.28)

Clearly,|〈z, v〉| ≤ |z||v|. Moreover, sincew ∈ V⊥,

〈z, w〉2 = 〈QV (z), w〉2 ≤ |QV (z)|2|w|2.

Recalling Lemma 9.4(iii), we can bound the integrand in (9.28) by |v||b(1)
1 |2|w|2|z|,

and thus we obtain

3|b(2)
3 (v � w2)| ≤ lim

s↓0

8s|v||b(1)
1 |2|w|2

I (s)

∫

e−s|z|2|z| dµ(z)

= lim
s↓0

8s|v||b(1)
1 |2|w|2

I (s)

∫

Rm

e−s|x|2|x| dL
m(x) .

Changing variables in the last integral, recalling thatI (s) = (π/s)m/2, and using
Proposition B.1, we obtain

lim
s↓0

s I(s)−1
∫

Rm

e−s|x|2|x| dL
m(x) = lim

s↓0
C

sm/2+1

sm/2+1/2
= 0 .

A similar computation yieldsb(2)
3 (w3) = 0 for w ∈ V⊥ and completes the proof of

(9.27).
We now come to (v). Fixz ∈ supp (µ). Then from Proposition 7.7 we have

b(2)
1 (z) + b(2)

2 (z2) + b(2)
3 (z3) + b(2)

4 (z4) = |z|4 .

Lemma 9.2(i) implies|PV (z)|4 = b(2)
4 (z4). Moreover, we have the elementary identity

|z|4 = |PV (z)|4 + 2|PV (z)|2|QV (z)|2 + |QV (z)|4. Hence, we have

b(2)
1 (z) + b(2)

2 (z2) + b(2)
3 (z3) = |QV (z)|2

(

|QV (z)|2 + 2|PV (z)|2
)

. (9.29)

Moreover, we can write

b(2)
3 (z3) = b(2)

3

(

(PV (z) + QV (z))3)
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and using (9.27) we obtain

b(2)
3 (z3) = 3b(2)

3

(

PV (z)2 � QV (z)
)

.

Substituting this into (9.29) we obtain (v).

(vi) Fix v ∈ V . Lemma 9.4(iv) implies that, for anyti ↑ ∞, there existvi ∈ V and
wi ∈ V⊥ such that

ti v + vi +wi ∈ supp (µ) and |vi + wi | ≤ r0 .

We can assume that, up to subsequences,wi → w for somew ∈ V⊥. Applying (v),
we have

b(2)
1 (ti v + vi +wi ) + b(2)

2 ((ti v + vi +wi )
2) + 3b(2)

3 ((ti v + vi )
2 � wi )

= 2|ti v + vi |2|wi |2 + |wi |4 .

Dividing by t2
i and lettingi ↑ ∞ we conclude

b(2)
2 (v2) + 3b(2)

3 (v2 � w) = 2|v|2|w|2 .

On the other hand, sinceti v + vi +wi ∈ supp (µ), from Lemma 9.4(iii) we have

b(1)
1 (ti v + vi + wi ) = |wi |2 .

Sinceti v + vi ∈ V , from Lemma 9.2(ii) we concludeb(1)
1 (ti v + vi ) = 0 and hence

b(1)
1 (wi ) = |wi |2 .

Letting i ↑ ∞ we find thatb(1)
1 (w) = |w|2. Therefore, recalling Definition 9.7 and the

fact thatb(1)
1 (w) = 2〈b, w〉, we conclude that







b(2)
2 (v2) + 〈ω(v2), w〉 = 0,

|w|2 = 2〈b, w〉 .
(9.30)

Setv̂ := w − b. Then from (9.30) we have

|v̂|2 = |w|2 − 2〈w, b〉 + |b|2 = |b|2 (9.31)

and (recall Definition 9.7)

b̂(v2) + 〈ω(v2), v̂〉 = 0 .

Therefore, we conclude
(

b̂(v2)
)2 ≤

∣

∣ω(v2)
∣

∣

2 |v̂|2 (9.31)=
∣

∣ω(v2)
∣

∣

2 |b|2 . (9.32)

�
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9.4. Proof of(9.7)and conclusion

We are now ready for the last computations leading to (9.7) and hence to the proofs of
Proposition 9.5 and Proposition 9.1.

Proof of the inequality(9.7). Step 1Recall the identity (v) of Lemma 9.10,

0 = b(2)
1 (z) + b(2)

2 (z2) + 3b(2)
3

(

(PV (z))2 � QV (z)
)

− |QV (z)|4 − 2|PV(z)|2|QV (z)|2 ,
(9.33)

which holds for anyz ∈ supp (µ). Moreover, recall the identities

|QV (z)|2 Lemma 9.4(iii)= b(1)
1 (z)

Lemma 9.2(ii)= b(1)
1 (QV (z)) = 2〈b, QV(z)〉 ,

which also hold for everyz ∈ supp (µ). Inserting them into (9.33) and using the forms
b̂ andω of Definition 9.7, we obtain

0 = b̂
(

(PV (z))2)+
〈

ω
(

(PV (z))2), QV (z) − b
〉

+ b(2)
1 (z)

+ 2b(2)
2

(

PV (z) � QV (z)
)

+ b(2)
2

(

QV (z)2)

−
(

b(1)
1 (QV (z))

)2
for everyz ∈ supp (µ).

From Lemma 9.4(iii) we know that|QV (z)| ≤ ‖b(1)
1 ‖ = 2|b|. Therefore, there exists

a constantK which gives the linear growth bound

∣

∣b̂
(

(PV (z))2)+
〈

ω
(

(PV (z))2), QV (z) − b
〉∣

∣ ≤ K
(

|z| + 1
)

for everyz ∈ supp (µ).

Hence, from Lemma 7.2 and Proposition B.1 we conclude

lim sup
s↓0

∣

∣

∣

∣

s

I (s)

∫

e−s|z|2 [b̂
(

(PV (z))2)+
〈

ω
(

(PV (z))2), QV (z) − b
〉]

dµ(z)

∣

∣

∣

∣

≤ K lim
s↓0

s

I (s)

∫

e−s|z|2(|z| + 1
)

dµ(z)

= K lim
s↓0

s

I (s)

∫

Rm

e−s|x|2(|x| + 1
)

dL
m(x) = 0 . (9.34)

Step 2From Proposition B.1 we compute

∫

V
〈ζ, v〉4dγ (v) = 3|ζ |4 for everyζ ∈ V . (9.35)
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Indeed, fix orthonormal coordinatesx1, . . . , xm on V in such a way thatζ =
(|ζ |, 0, . . . , 0). From the definition ofγ we obtain
∫

V
〈ζ, v〉4dγ (v) = (2π)−m/2

∫

Rm

|ζ |4x4
1e−|x|2/2 dx = |ζ |4π−m/2

∫

Rm

4y4
1e−|y|2 dy

= 4|ζ |4π−m/2

(∫

Rm−1
e−|y′|2 dy′

)

·
(∫

R

y4
1e−y2

1 dy1

)

= 4|ζ |4π−m/2 (π (m−1)/2)
(

3

4
π−1/2

)

= 3|ζ |4 .

Similarly, if y, z ∈ V are orthogonal, we fix orthonormal coordinatesx1, . . . , xm on
V so thaty = (|y|, 0, . . . , 0) andz = (0, |z|, . . . , 0) and we obtain
∫

V
〈y, v〉2〈z, v〉2dγ (v) = 4|y|2|z|2π−m/2

(∫

Rm−2
e−|y′|2 dy′

)

·
(∫

R

y2
1e−y2

1 dy1

)

·
(∫

R

y2
2e−y2

2 dy2

)

= |y|2|z|2 (9.36)

and
∫

V
〈y, v〉〈z, v〉3dγ (v) = 4|y||z|3π−m/2

(∫

Rm−2

e−|y′|2 dy′
)

·
(∫

R

y1e
−y2

1 dy1

)

·
(∫

R

y3
2e−y2

2 dy2

)

= 0 . (9.37)

For generaly, z ∈ V , we writey = ξ + az, whereξ ⊥ z and we compute
∫

V
〈y, v〉2〈z, v〉2dγ (v) =

∫

V
〈ξ, v〉2〈z, v〉2 dγ (v) + 2a

∫

V
〈ξ, v〉〈z, v〉3 dγ (v)

+a2
∫

V
〈z, v〉4 dγ (v)

(9.36)+(9.37)= |ξ |2|z|2 + 3a2|z|4

= (|ξ |2 + a2|z|2)|z|2 + 2(a|z|2)2 = |y|2|z|2 + 2〈z, y〉2 .

(9.38)

Now we fix y ∈ V andw ∈ V⊥ and we compute
∫

V
〈y, v〉2〈ω(v2), w〉 dγ (v)

(9.19)= lim
s↓0

8s

I (s)

∫

e−s|z|2〈z − b, w〉
[∫

V
〈y, v〉2〈z, v〉2 dγ (v)

]

dµ(z)

(9.38)= lim
s↓0

16s

I (s)

∫

e−s|z|2〈z − b, w〉〈z, y〉2 dµ(z)

+ lim
s↓0

8s|y|2

I (s)

∫

e−s|z|2|PV (z)|2〈z − b, w〉 dµ(z)

(9.19)+(9.25)= 2〈ω(y2), w〉 . (9.39)
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(The convergence in the second line is justified by the Dominated Convergence Theo-
rem through the bound (9.21)). Therefore, we have
∫

V

(

b̂(v2)
)2

dγ (v)
(9.26)
≤ |b|2

∫

V

∣

∣ω(v2)
∣

∣

2
dγ (v)

(9.19)= |b|2 lim
s↓0

∫

V

8s

I (s)

∫

e−s|z|2〈z, v〉2〈z − b, ω(v2)〉 dµ(z) dγ (v)

= |b|2 lim
s↓0

8s

I (s)

∫

e−s|z|2
∫

V
〈z, v〉2〈z − b, ω(v2)〉 dγ (v) dµ(z) .

Recall that in Remark 9.8 we have observed that the values ofω are all contained in
V⊥. Thus〈z − b, ω(v2)〉 = 〈QV (z) − b, ω(v2)〉. Moreover, since supp (γ ) = V , we
can write
∫

V

(

b̂(v2)
)2

dγ (v) = |b|2 lim
s↓0

8s

I (s)

∫

e−s|z|2
∫

V
〈PV (z), v〉2〈QV (z)

− b, ω(v2)〉 dγ (v) dµ(z)
(9.39)= |b|2 lim

s↓0

16s

I (s)

∫

e−s|z|2 〈ω
(

(PV (z))2), QV (z) − b
〉

dµ(z)

(9.34)= −16|b|2 lim
s↓0

s

I (s)

∫

e−s|z|2b̂
(

(PV (z))2) dµ(z)

= −16π−m/2|b|2
∫

e−|z|2b̂
(

(PV (z))2)dH
m V (z) ,

(9.40)

where in the last line we have used thatH m V is tangent toµ at infinity.
After a change of variables, we conclude

∫

V

(

b̂(v2)
)2

dγ (v) ≤ −8|b|2
∫

V
b̂(v2) dγ (v) . (9.41)

Step 3 Let β1, . . . ,βm be the eigenvalues of̂b and fix coordinatesv1, . . . , vm on
V in such a way that the unit vectorse1, . . . , em are the eigenvectors ofb̂. Then we
have by (9.17)

∫

V
b̂(v2) dγ (v) =

∫

V
β1v

2
1 + . . .+ βmv

2
m dγ (v)

= β1 + . . .+ βm = tr b̂ (9.42)

and
∫

V

(

b̂(v2)
)2

dγ (v) =
∫

V

(

β1v
2
1 + . . .+ βmv

2
m

)2
dγ (v)

=
m
∑

i =1

β2
i

∫

V
v4

i dγ (v) + 2
∑

j>i

β jβi

∫

V
v2

i v
2
j dγ (v) .
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Recalling (9.35) and (9.36) we obtain
∫

V

(

b̂(v2)
)2

dγ (v) = 3
m
∑

i =1

β2
i + 2

∑

j>i

β jβi =
(

m
∑

i =1

βi

)2

+ 2
m
∑

i =1

β2
i

≥
(

1 + 2

m

)

(

m
∑

i =1

βi

)2

=
(

1 + 2

m

)[∫

V
b̂(v2) dγ (v)

]2

.

Therefore, from (9.41) we conclude
(

1 + 2

m

)[∫

V
b̂(v2) dγ (v)

]2

≤ −8|b|2
∫

V
b̂(v2) dγ (v)

and hence
∫

V
b̂(v2) dγ (v) ≥ −

(

1 + 2

m

)−1

8|b|2 = − 2m

m + 2

∣

∣

∣
b(1)

1

∣

∣

∣

2
. (9.43)

Combining (9.43) with Lemma 9.9 we obtain (9.7). �

Proofs of Proposition 9.1 and of Proposition 9.5.Concerning Proposition 9.5, note
that (9.3) is proved in the introduction of the chapter, whereas (9.4) follows from
(9.6) (which is also proved in the introduction of the chapter) and (9.7).

Coming to Proposition 9.1, note that (9.3) and (9.4) giveb(1)
1 = 0. By Lemma

9.4(iii) this implies supp (µ) ⊂ V . As already remarked upon many times, sinceµ is
anm-uniform measure andV anm-dimensional plane, this implies thatµ = H m V ,
which is the desired conclusion. �



10 Open problems

This chapter presents several open problems related to the topics of these notes, which
I collected with the help of Bernd Kirchheim.

10.0.1. Lower and upper densities and Besicovitch’s1/2-Conjecture. As already
mentioned in the introduction, the theorem proved by Preissin [25] is stronger than
the one exposed in the second part of these notes. We recall ithere for the reader’s
convenience (cp. with Theorem 1.2).

Theorem 10.1. For any pair of nonnegative integers k≤ n there exists a constant
c(k, n) > 1 such that the following holds. Ifµ is a locally finite measure onRn and

0 < lim sup
r↓0

µ(Br (x))

r k
< c(k, n) lim inf

r↓0

µ(Br (x))

r k
< ∞ for µ-a.e. x∈ Rn,

(10.1)
thenµ is a rectifiable k-dimensional measure.

The following is an open problem.

Problem 10.2. What are the optimal constantsc(k, n) for which Theorem 10.1 holds?
How do they behave forn ↑ ∞?

Very little is known in this direction. In his paper, Preiss shows thatc(2, n)
converges to 1 asn ↑ ∞. There is a striking difference with the casek = 1: Moore
proved in [23] thatc(1, n) ≥ 1 + 1/100 for everyn. This fact gives a glimpse of why
the casek ≥ 2 of Theorem 1.2 is much more difficult than the casek = 1.

A natural interesting case of Problem 10.2 is given by measuresµ of the form
H k E for some Borel setE. In this case the upper densityθk∗(µ, x) is necessarily
less or equal than 1 atµ-almost every pointx. Therefore, as a corollary of Theorem
10.1 we conclude that

Corollary 10.3. For any pair of nonnegative integers k≤ n let c(k, n) > 1 be the
constants of Theorem 10.1. Then, any Borel set E with0< H k(E) < ∞ such that

α(k, n) := c(k, n)−1 < θk
∗ (E, x) for H k-a.e. x∈ E (10.2)

is a rectifiable set.
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Thus we can ask the following question.

Problem 10.4. What are the optimal constantsα(k, n) under which Corollary 10.3
holds?

Though clearlyα(k, n) ≤ [c(k, n)]−1, it is not known whether one can control
α(k, n) from below withc(k, n). The optimal constantα(1, n) was conjectured long
ago in [2]. This is the famous Besicovitch 1/2-Conjecture:

Conjecture 10.5. If E ⊂ R2 is a Borel setwith 0< H 1(E) < ∞andθ1
∗ (E, x) > 1/2

for H 1-a.e.x, thenE is rectifiable.

In his seminal paper [2] Besicovitch proved the boundα(1, 2) ≤ 3/4. His proof
generalizes easily to show thatα(1, n) ≤ 3/4 for everyn. The boundα(1, 2) ≥
1/2 was already proved by Besicovitch in [2] (see also [5]). More precisely, he
exhibited a purely unrectifiable setE which has lower density equal to 1/2 H 1-
almost everywhere. Besicovitch’s estimateα(1, n) ≤ 3/4 remained for a long time
the best until Preiss and Tišer in [26] improved it toα(1, n) ≤ (2 +

√
46)/12. A

more important feature of their proof is that it actually extends to general metric
spaces. Recent attempts to solve Besicovitch’s Conjecturecan be found in [6] and [7].
Concerning the value of the optimal constantc(k, n) for generalk andn very little is
known. In [3] Chleb́ık proved thatα(k, n) ≥ 1/2.

An “ε”-version of Marstrand’s Theorem 3.1 is valid as well. More precisely,
the following theorem holds and its proof is a routine application of the techniques
introduced in Chapter 3.

Theorem 10.6. Let α ∈ R+ \ N and n ∈ N. Then there exists a positive constant
ε(α, n) such that

µ

({

x : 0< lim sup
r↓0

µ(Br (x))

r α
≤ (1 + ε(α, n)) lim inf

r↓0

µ(Br (x))

r α

})

= 0 (10.3)

for every measureµ.

Proof. Let ε > 0 be a fixed positive number. Arguing with a blow-up procedureas in
the proof of Marstrand’s Theorem 3.1, in order to show the conclusion of the theorem
for this particularε, it suffices to show that there are no nontrivial measuresν such that

ωαr
α ≤ ν(Br (x)) ≤ (1 + ε)ωαr

α for everyx ∈ supp (µ) and everyr > 0. (10.4)

So, if the theorem were false, for everyε > 0 there would exist a measureνε with
0 ∈ supp (νε) satisfying the bounds (10.4). By compactness, a subsequence of{νε}ε↓0
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converges to a measureν0 ∈ Uα(Rn). But we know from Proposition 3.5 thatUα(Rn)
is empty for everyα ∈ R+\N. This gives a contradiction and concludes the proof.�

As above, we can ask

Problem 10.7.What are the optimal constantsε(α, n) for which Theorem 10.6 holds?
How do they behave asn ↑ ∞?

Even the following question is still unsolved.

Problem 10.8. Letα ∈ R+ \ N. Is lim infn ε(α, n) > 0?

10.0.2. Noneuclidean setting.Another outstanding problem is to extend the validity
of Theorem 1.1 to more general geometries. In particular, the following natural
conjecture (see for instance [4]) is widely open.

Conjecture 10.9. Let X be a finite-dimensional Banach space,α a positive number
andµ a nontrivial measure onX such that

0< lim
r↓0

µ(Br (x))

r α
< ∞ for µ-a.e.x ∈ X, (10.5)

whereBr (x) denotes the intrinsic ball of radiusr and centerx. Thenα is an integer.

Forα ∈]0, 1[ the answer to the conjecture is affirmative and follows from a metric
version of the arguments of Marstrand in [15]. The following much more challenging
case of Conjecture 10.9, recently proved by Lorent in [14], is the only other known
extension of Marstrand’s result.

Theorem 10.10.Conjecture 10.9 holds forα ∈]1, 2[ if the balls of X are polytopes.

Example 10.11.It is not difficult to see that Conjecture 10.9 does not hold for general
metric groupsX. For instance, one might takeX = R1 with distanced(x, y) =
|y − x|1/α and the measureµ = H α, for α ∈]1, 2[ (cp. with [4]).

A natural generalization of Preiss’ rectifiability theoremis the following.

Conjecture 10.12. Let X be a finite-dimensional Banach space,k ∈ N andµ a
measure onX such that

0< lim
r↓0

µ(Br (x))

r k
< ∞ for µ-a.e.x ∈ X. (10.6)

Thenµ is a rectifiablek-dimensional measure.
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For more general metric spacesX this conjecture fails (takeX as in Example 10.11
and chooseα = 2). Clearly, the casek = 0 is trivial. The casek = 1 follows by a
suitable modification of Besicovitch’s arguments. Fork ≥ 2 the validity of Conjecture
10.12 is known only in the Euclidean space. Even the following weaker version is
open:

Conjecture 10.13.Let X be a finite-dimensional Banach space,k ≥ 2 an integer and
E a Borel set ofX with finite H k-measure such that

lim
r↓0

H k(E ∩ Br (x))

ωkr k
= 1 forH k-a.e.x ∈ E. (10.7)

ThenE is a rectifiablek-dimensional set.

In the model caseX = `3
∞ (i.e., R3 with the cube norm) Lorent carried out

a considerable part of Preiss’ strategy in [12]. The situation here is much more
complicated because of the large abundance of uniform measures (see the next section
for a related problem).

10.0.3. Uniform measures.We start this section by defining uniform measures, a
suitable generalization ofk-uniform measures.

Definition 10.14. A locally finite measureµ onRn is said to be a uniform measure if
for everyr > 0 and for everyx, y ∈ supp (µ) we haveµ(Br (x)) = µ(Br (y)).

The following elegant theorem of Kirchheim and Preiss (see [10] and Theorem
3.11) proves a strong regularity property of uniform measures (the proof is reported in
Appendix A).

Theorem 10.15. If µ is a uniform measure, thensupp (µ) is a real analytic variety,
i.e. there exists an analytic function H: Rn → R such thatsupp (µ) = {H = 0}.

A standard stratification result shows that analytic varieties are the union of finitely
many strata, each of which is an analytic submanifold of integer dimension. Ifk is the
dimension of the “top” stratum, then supp (µ) is ak-dimensional rectifiable set, and it
is easy to check thatµ = cH k supp (µ) for some positive constantc.

The following is a very natural and hard problem.

Problem 10.16.Classify all uniform measures.

Even the very particular case of classifying all discrete uniform measures is open.
Clearly,k-uniform measures are a particular example of uniform measures, and

hence the following is another very particular case of Problem 10.16.
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Problem 10.17. Give a complete description ofUk(Rm) for every pair of integersk
andm.

A solution of this last classification problem would yield a different point of view
on Preiss’ proof, i.e. a deeper understanding of why flat uniform measures and uniform
measures curved at infinity form a disconnected set.

The casek = m − 1 of Problem 10.17 has been settled by Kowalski and Preiss
in [11].

Theorem 10.18.µ ∈ Um−1(Rm) if and only ifµ is flat or m ≥ 4 and there exists an
orthonormal system of coordinates such thatµ = H m−1 C, where C is the cone
{x2

1 + x2
2 + x2

3 = x2
4}.

Flat measures and measures of the formH k V ×C (whereV ×C ⊂ Rn−4 ×R4

is the product of a linear subspace ofV with the light coneC) are the only known
examples ofk-uniform measures. Therefore even the following seeminglyinnocent
question is still open:

Question 10.19.Are therek-uniform measures which are neither flat measures nor
products between the light cone and flat measures?

A natural way of constructing uniform measures is to look fork-dimensional
homogeneous setsZ ⊂ Rn.

Definition 10.20. A setZ ⊂ Rn is homogeneous if for everyx, y ∈ Z there exists an
isometryΦ of Rn such thatΦ(x) = y andΦ(Z) = Z.

One could naively conjecture that all uniform measures are homogeneous, i.e. of
the typecH k Z for an homogeneous set, but the light cone shows once more that
this is not the case. However the following questions are still open.

Question 10.21.Are there nonhomogeneous uniform measures inRn for n ≤ 3?

Question 10.22.Are there nonhomogeneous uniform measures with bounded sup-
port?

Question 10.23.Are there nonhomogeneous uniform measureswith discrete support?

Conjecture 10.12 leads naturally to the study of measures which arem-uniform
with respect to different geometries. As already mentioned, the case of̀ 3

∞ has a
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large abundance of 2-uniform measures. For instance, ifΓ = {(x1, x2, f (x1, x2)} is
the graph of a 1-Lipschitz functionf : `2

∞ → R, then the measureH 2 Γ is a
2-uniform measure (hereH 2 denotes the Hausdorff 2-dimensional measure relative
to the metric spacè3

∞). On the other hand,H 2 V is a 2-uniform measure for any
linear 2-dimensional subspaceV . The following is a plausible conjecture.

Conjecture 10.24. Let H 2 Z be a 2-uniform measure iǹ3∞. Then eitherZ is a
linear subspace, or it is the graph of a 1-Lipschitz functionf : `3

∞ → R, up to a
permutation ofx1, x2, x3.

10.0.4. Exact density functions.Let us introduce the following terminology.

Definition 10.25. A functionh : R+ → R+ is called an exact density function inRn

if there exists a nontrivial measureµ onRn such that

0< lim
r↓0

µ(Br (x))

h(r )
< ∞ for µ-a.e.x. (10.8)

Now Marstrand’s Theorem 3.1 can be restated in the followingway.

Theorem 10.26.h(r ) = r α is an exact density function inRn if and only ifα is a
natural number less or equal than n.

It has been proved by Mattila in [19] that in one dimension an exact density function
must satisfy the conditions

0< lim
r↓0

h(r ) < ∞ or 0< lim
r↓0

h(r )

r
< ∞ . (10.9)

Section 6 of [25] contains several results and questions about exact density functions
and more complicated variants of them.

10.0.5. Symmetric measures and singular integrals.Some of the ideas of [25] have
been used by Mattila and Preiss in [22] to prove the following rectifiability result (see
also the previous work [20] of Mattila in two dimensions).

Theorem 10.27.Letµ be a finite Borel measure onRn such that0 < θk
∗ (µ, x) < ∞

for µ-a.e. x. If the principal value

lim
ε↓0

∫

Rn\Bε(x)

y − x

|y − x|k+1
dµ(y) (10.10)

exists atµ-a.e. x, thenµ is a rectifiable k-dimensional measure.
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In [22] the authors raised the following question.

Question 10.28.Assume thatµ = H k E for some Borel setE with finite H k

measure and that (10.10) exists forµ-a.e. x. Is it then possible to drop the lower
density assumptionθk

∗ (µ, x) > 0 in Theorem 10.27?

If we replace (10.10) by the existence of the principal valuefor other singular
kernels of typeΩ(x/|x|)|x|−k with Ω odd, then the conclusion of Theorem 10.27 is
false (see [9]). It is an open problem to understand for which type of kernels one can
generalize the rectifiability result of Mattila and Preiss.

The proof of Theorem 10.27 uses a blow-up technique and a careful study of
the tangent measures toµ. In particular, using this approach, one ends up studying
symmetric measures.

Definition 10.29. A measureν onRn is calledk-dimensional symmetric measureif
∫

Br (x)
(z − x) dν(z) = 0 for everyx ∈ supp (ν) and anyr > 0, (10.11)

and there exists a positive constantc such that

ν(Br (x)) ≥ crk > 0 for everyx ∈ supp (ν). (10.12)

In [20] Mattila showed that inR2 symmetric measures are necessarily sums of flat
measures. In higher dimension the question whether a similar result holds is open.



Appendix A. Proof of Theorem 3.11

Before coming to the proof we recall that assumption (3.6) implies the following
identity for everyy, z ∈ supp (µ) and anyµ-summable radial functionϕ(| · |):

∫

ϕ(|x − y|) dµ(x) =
∫

ϕ(|x − z|) dµ(x) (A.1)

(see Remark 3.15 and the proof of Lemma 7.2).

Proof. In order to simplify the notation, from now on we denote supp (µ) by S and,
given anyx ∈ S, we introduce the functionf : R+ → R given by

f (s) := µ(Bs(x)) .

By assumption,f does not depend on the choice ofx ∈ S.

Step 1 In this step we prove the estimate

µ(Br (y)) ≤ 5n
(r

s

)n
f (s) for every 0< s< r < ∞ and for everyy ∈ Rn.

(A.2)
Denote byF the family of finite subsetsZ ⊂ Br (y) such that

|z1 − z2| ≥ s

2
for everyz1, z2 ∈ Z with z1 6= z2.

Fix Z ∈ F and note that the balls{Bs/4(z) : z ∈ Z} are all disjoint and contained in
B5/4r (y). Therefore

card (Z)ωn

(s

4

)n
=
∑

z∈Z

L
n(Bs/4(z)) ≤ L

n(B5r/4(y)) = ωn

(

5r

4

)n

and we conclude that

card (Z) ≤ 5n(r/s)n . (A.3)

This allows us to choose a setM ∈ F such that card (M) = maxZ∈F card (Z).
Fix z ∈ M . Then, eitherBs/2(z) ∩ S = ∅ and henceµ(Bs/2(z)) = 0, or there exists

y ∈ Bs/2(z) ∩ Sand thusµ(Bs/2(z)) ≤ µ(Bs(y)) = f (s). In any case,

µ(Bs/2(z)) ≤ µ(Bs(x)) = f (s) for anyz ∈ M . (A.4)

Note that the maximality ofM implies that the balls{Bs/2(y)}y∈M coverBr (x). Thus

µ(Br (x)) ≤
∑

y∈M

µ
(

Bs/2(y)
) (A.4)

≤ card (Z) f (s)
(A.3)
≤ 5

(r

s

)n
f (s) .
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Step 2 Let us fixx0 ∈ Sand set

F(x, s) :=
∫

[

e−s|z−x|2 − e−s|z−x0|2
]

dµ(z) for x ∈ Rn ands> 0. (A.5)

For anyx ∈ Rn we can write
∫

e−s|z−x|2 dµ(z) =
∫

µ
(

{

z : e−s|z−x|2 > r
}

)

dr =
∫ 1

0
µ
(

B√
−(ln r )/s(x)

)

dr .

(A.6)
Therefore:

• From (A.2) and (A.6) we conclude
∫

e−s|z−x|2 dµ(z) ≤ 5n f
(

s−1/2)
∫ 1/e

0
(− ln r )n/2 dr + f (s−1/2)

(

1 − 1

e

)

< ∞
(A.7)

and thus the integral in (A.5) is finite.
• From (A.1) we conclude that the integral in (A.5) vanishes for anyx ∈ supp (µ).

Therefore,F is well defined, finite, andF(x, s) = 0 for anys > 0 andx ∈ S. We
claim that

F(x, s) = 0 for anys> 1 ⇐⇒ x ∈ S. (A.8)

As we have already remarked, one implication follows directly from (A.1). It remains
to prove the opposite implication. Assume thatx 6∈ S and letε > 0 be such that
Bε(x) ∩ S = ∅. Then we have

∫

e−s|z−x|2 dµ(z) =
∞
∑

k=1

∫

B(k+1)ε(x)\Bkε(x)
e−s|z−x|2 dµ(z)

≤
∞
∑

k=1

e−sk2ε2
µ
(

B(k+1)ε(x)
)

(A.2)
≤ 10n

∞
∑

k=1

e−sk2ε2
(k + 1)n f (ε/2) (A.9)

and
∫

e−s|z−x0|2 dµ(z) ≥ e−sε2/4µ
(

Bε/2(x
0)
)

= e−sε2/4 f (ε/2) . (A.10)

These inequalities imply that

lim
s↑∞

∫

e−s|z−x|2 dµ(z)
∫

e−s|z−x0|2 dµ(z)
≤ lim

s↑∞
10n

∞
∑

k=1

e−s(k2−1/4)ε2
(k + 1)n = 0 .

Therefore, fors large enough,F(x, s) must be negative.
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Step 3 We now define

H (x) :=
∫ ∞

1
e−s2

F2(x, s) ds. (A.11)

Recalling (A.7), we have

F2(x, s) ≤ 2

(∫

e−s|z−x|2 dµ(x)

)2

+ 2

(∫

e−s|z−x0|2 dµ(x)

)2

≤ 4 · 52n[ f (s−1/2)]2

(∫ 1/e

0
(− ln r )n/2 dr + e− 1

e

)2

≤ 4 · 52n[ f (1)]2
(∫ 1/e

0
(− ln r )n/2 dr + e− 1

e

)2

for s> 1 . (A.12)

ThusH is finite and moreover, by (A.8),H (x) = 0 if and only ifx ∈ S. To complete
the proof of the theorem we just need to show thatH is analytic.

First of all, note thatH can be extended to a complex function ofCn by simply
setting

H (ξ1, . . . , ξn) :=
∫ ∞

1
e−s2

[∫

(

e−s
∑

j (zj −ξ j )2 − e−s|z−x0|2
)

dµ(z)

]2

ds (A.13)

for every (ξ1, . . . , ξn) ∈ Cn. We will now show that this extension is holomorphic.
First of all, set

h(s, z, ξ ) := e−s
∑

j (zj −ξ j )2 − e−s|z−x0|2 .

Thus, we can write

H (ξ ) =
∫ ∞

1
e−s2

[∫

h(s, z, ξ ) dµ(z)

]2

ds.

Next, note that

h(s, z, ξ ) = e−s|z−Reξ |2+s|Im ξ |2+2si(z−Reξ )·Im ξ − e−s|z−x0|2 ,

from which we obtain

|h(s, z, ξ )| ≤ e−s|z−x0|2 + es|Im ξ |2e−s|z−Reξ |2 . (A.14)

We use this inequality to estimate
∣

∣

∣

∣

∫

h(s, z, ξ ) dµ(z)

∣

∣

∣

∣

≤
∫

|h(s, z, ξ )| dµ(z)

≤ es|Im ξ |2
∫

e−s|z−Reξ |2 dµ(z) +
∫

e−s|z−x0|2 dµ(z)

(A.7)
≤ C

(

1 + es|Im ξ |2
)

for s> 1. (A.15)
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This gives

|H (ξ )| ≤ C
∫

e−s2
(

1 + e2s|Im ξ |2
)

ds < ∞ .

Next, note that we have
∂h

∂ξ j

(s, z, ξ ) = 0 for every j . (A.16)

Fix a directionω ∈ Cn. We want to show that∂H
∂ω

exists at everyξ and that

∂H

∂ω
(ξ ) =

∫ ∞

1
e−s2

2

[∫

h(s, z, ξ ) dµ(z)
∫

∂h

∂ω
(s, z, ξ ) dµ(z)

]

ds. (A.17)

This, together with (A.16), would imply thatH is holomorphic and complete the
proof.

Therefore, fixξ, ω ∈ Cn and consider

lim
t∈R, t↓0

H (ξ + tω) − H (ξ )

t

= lim
t∈R, t↓0

∫ ∞

1
e−s2

[∫

(

h(s, z, ξ + tω) + h(s, z, ξ )
)

dµ(z)

·
∫

h(s, z, ξ + tω) − h(s, z, ξ )

t
dµ(z)

]

ds.

Recalling (A.14), for fixedξ andω, and fort ≤ 1 we obtain

fs,ξ,ω,t (z) := |h(s, z, ξ + tω) + h(s, z, ξ )|

≤ CeCs
(

e−s|z−x0|2 + e−s|z−Re (ξ+tω)|2 + e−s|z−Reξ |2
)

.

Therefore, it is easy to see that there existsfs,ξ,ω ∈ L1(µ) such thatfs,ξ,ω,t ≤ fs,ξ,ω

for every|t | ≤ 1. From the Dominated Convergence Theorem, we conclude

lim
t↓0

∫

(

h(s, z, ξ + tω) + h(s, z, ξ )
)

dµ(z) = 2
∫

h(s, z, ξ ) dµ(z) . (A.18)

Next, consider
∣

∣

∣

∣

h(s, z, ξ + tω) − h(s, z, ξ )

t

∣

∣

∣

∣

≤
∣

∣

∣
e−s

∑

j (zj −ξ j )2
∣

∣

∣

∣

∣

∣

∣

∣

∣

e
−st

(

t
∑

j (ω j )2+2
∑

j (zj −ξ j )ω j

)

− 1

t

∣

∣

∣

∣

∣

∣

.

For any given complex numberα we have
∣

∣

∣

∣

e−stα − 1

t

∣

∣

∣

∣

≤
∣

∣

∣

∣

e−stReα − 1

t

∣

∣

∣

∣

≤ es|Reα| for |t | ≤ 1 .

Using this elementary remark, simple calculations lead to
∣

∣

∣

∣

h(s, z, ξ + tω) − h(s, z, ξ )

t

∣

∣

∣

∣

≤ CeCse−s|z−Reξ |2+Cs|z−Reξ | ≤ CeC1se−s|z−Reξ |2/2 ,

(A.19)
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where the constantsC andC1 depend only onξ andω. Thus, again by the Dominated
Convergence Theorem,

lim
t↓0

∫

h(s, z, ξ + tω) − h(s, z, ξ )

t
dµ(z) =

∫

∂h

∂ω
(s, z, ξ ) dµ(z) . (A.20)

Next, from (A.15), it follows easily that

e−s2
∫

∣

∣h(s, z, ξ + tω) + h(s, z, ξ )
)∣

∣ dµ(z) ≤ CeCs−s2
. (A.21)

Similarly, by (A.19), the same computations leading to (A.15) give
∫
∣

∣

∣

∣

h(s, z, ξ + tω) − h(s, z, ξ )

t

∣

∣

∣

∣

dµ(z) ≤ CeCs . (A.22)

Hence, by (A.21) and (A.22) we conclude

e−s2
∫

|h(s, z, ξ + tω) + h(s, z, ξ )| dµ(z)

·
∫
∣

∣

∣

∣

h(s, z, ξ + tω) − h(s, z, ξ )

t

∣

∣

∣

∣

dµ(z) ≤ C1eCs−s2
. (A.23)

Therefore, by the Dominated Convergence Theorem, (A.18), (A.20), and (A.23) give
(A.17). �



Appendix B. Gaussian integrals

Proposition B.1.
∫

Rm

e−|z|2 dL
m(z) = πm/2 (B.1)

ω2m := L
2m(B1(0)) = πm

m!
(B.2)

ω2m+1 := L
2m+1(B1(0)) = 2m+1πm

(2m + 1)(2m − 1) . . .3 · 1
(B.3)

∫

Rm

|z|2 j e−|z|2 dL
m(z) =

(

j − 1 + m

2

)

. . .
(

1 + m

2

) m

2
πm/2 (B.4)

∫

Rm

|z|e−|z|2 dL
m(z) =

mωm

(m + 1)ωm+1
π (m+1)/2 (B.5)

∫

Rm

|z|2 j +1 e−|z|2 dL
m(z) =

(

j + m − 1

2

)

. . .

(

1 + m − 1

2

)

mωm

(m + 1)ωm+1
π (m+1)/2.

(B.6)

Proof. (i) Note that from Fubini’s Theorem we have
∫

Rm

e−|z|2 dL
m(z) =

∫

Rm

e−z2
1−z2

2−...−z2
m dz1 dz2 . . .dzm =

[∫

R

e−x2
dL

1(x)

]m

.

(B.7)

Form = 2 we obtain
[∫

R

e−x2
dL

1(x)

]2

=
∫

R2
e−|z|2 dL

2

=
∫ ∞

0
2πre−r 2

dr = −πe−r 2
∣

∣

∣

∞

0
= π ,

and hence
∫

R

e−x2
dL

1(x) = π1/2 .

Using again (B.7) we conclude
∫

Rm

e−|z|2 dL
m(z) = πm/2 .
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(ii) Recalling thatH 2m−1(∂Br (0)) = 2mw2mr 2m−1, we obtain
∫

R2m

e−|z|2 dL
2m(z) =

∫ ∞

0
2mω2m r 2m−1 e−r 2

dr .

Writing r 2m−1e−r 2 = r 2m−2
(

re−r 2)

and integrating by parts we obtain

2mω2m

∫ ∞

0
r 2m−1e−r 2

dr = 2mω2m(2m − 2)
∫ ∞

0

r 2m−3

2
e−r 2

dr

= 2m(m − 1)ω2m

∫ ∞

0
r 2m−3e−r 2

dr .

By induction we have
∫

R2m

e−|z|2 dL
2m(z) = m!ω2m

∫ ∞

0
2re−r 2

dr = m!ω2m

and hence from (B.1) we concludeω2m = πm/m!.

(iii) Again using polar coordinates and integrating by parts we obtain
∫

R2m+1

e−|z|2 dL
2m+1(z) = ω2m+1

(2m + 1)(2m − 1) . . .3 · 1

2m

∫ ∞

0
e−r 2

dr .

Therefore, from (B.1) we have

πm+1/2 = ω2m+1
(2m + 1)(2m − 1) . . .3 · 1

2m+1
π1/2 ,

from which we conclude (B.3).

(iv) It is easy to check that

|z|2 j e−|z|2 = |z|2 j −2〈z, ze−|z|2〉 = −|z|2 j −2
〈

z/2,∇z

(

e−|z|2
)〉

.

Using this observation and integrating by parts we obtain
∫

Rm

|z|2 j e−|z|2 dL
m(z) = 1

2

∫

Rm

[

div (|z|2 j −2z)
]

e−|z|2 dL
m(z)

= 1

2

∫

Rm

(2 j − 2 + m)|z|2 j −2e−|z|2 dL
m(z) .

By induction we find
∫

Rm

|z|2 j e−|z|2 dL
m(z)

=
(

j − 1 + m

2

) (

j − 2 + m

2

)

. . .
(

1 + m

2

) m

2

∫

Rm

e−|z|2 dL
m(z) .

Using (B.1) we conclude (B.4).
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(v) Integrating by parts as above, we compute
∫

Rm

|z|2 j +1e−|z|2 dL
m(z) =

(

j + m − 1

2

)

. . .

(

1 + m − 1

2

)∫

|z|e−|z|2 dL
m(z) .

Using polar coordinates we conclude
∫

Rm

|z|e−|z|2 dL
m(z) = mωm

∫ ∞

0
r me−r 2

dr .

Note that
∫ ∞

0
r me−r 2

dr = 1

(m + 1)ωm+1

∫ ∞

0
(m + 1)ωm+1r

me−r 2
dr

= 1

(m + 1)ωm+1

∫

Rm+1

e−|z|2 dL
m+1(z) ,

from which we obtain
∫

Rm

|z|e−|z|2 dL
m(z) = mωm

(m + 1)ωm+1
π (m+1)/2 .

Therefore, we conclude
∫

Rm

|z|2 j +1e−|z|2 dL
m(z)

=
(

j + m − 1

2

)

. . .

(

1 + m − 1

2

)

mωm

(m + 1)ωm+1
π (m+1)/2 .

�
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