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1 Introduction

These notes are taken from the final part of a class on rediiffabiven at the
University of Zirich during the summer semester 2004. The main aim is tdgeav
self-contained reference for the proof of the following egkable theorem,

Theorem 1.1. Let x4 be a locally finite measure oR" and o a nonnegative real
number. Assume that the following limit exists, is finite aodzero foru-a.e. X:

B (X
rlo re
Then eitherr = 0O, or a is a natural number k< n. In the latter case, a measuge
satisfies the requirement above if and only if there existsralBneasurable function
f and a countable collectioff’; } of Lipschitz k-dimensional submanifoldstfsuch
that

u(A) = > /r " f(x)dVol*(x) for any Borel set A.
i i

Here Vol denotes the natur&-dimensional volume measure that a Lipschitz
submanifold inherits as a subsetRf.

The first part of Theorem 1.1, (i.e. jf is nontrivial theno. must be integer) was
proved by Marstrand irl[7]. The second partis trivialwhdn= 0 andk = n. The first
nontrivial casek = 1 andn = 2, was proved by Besicovitch in his pioneering work
[2], though in a different framework (Besicovitch’s staterndealt with sets instead of
measures). Besicovitch’s theorem was recast in the framkesave in 4], and in
[23 it was extended to the cake= 1 and generia. The higher dimensional version
remained a long standing problem. Marstrandliif [nade a major contribution to
its solution. His ideas were sufficient to prove a weaker theofor 2-dimensional
sets inR3, which was later generalized by Mattila ihg] to arbitrary dimensions and
codimensions.

The problem was finally solved by Preiss#9]. His proof starts from Marstrand’s
work but he introduces many new and interesting ideas. Ajhdhe excellent book
of Mattila [21] gives a summary of this proof, many details and some impoiteeas
were not documented. As far as | know, the only referencén®ptoof of the second
part of Theorem 1.1 is Preiss’ paper itself.

As a measure of the complexity of the subject, we remark thatral general-
izations of Marstrand, Mattila, and Preiss’ theorems pdaeebe quite hard; see for
instance 12 and [13].
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Actually, in [25] Preiss proved the following stronger quantitative vemsid the
second part of Theorem 1.1:

Theorem 1.2. For any pair of nonnegative integers K n there exists a constant
c(k, n) > 1such that the following holds. }f is a locally finite measure oR" and

u( r( ) r( )

0 < limsup———= < c(k, n)I|m|nf A < oo forpu-a.e. xe R",

rl0

then the same conclusion as for Theorem 1.1 holds.

The proof of this statement is longer and more difficult. Gedther hand, most of
the deep ideas contained 2f are already needed to prove Theorem 1.1. Therefore,
| decided to focus on Theorem 1.1.

Despite the depth of Theorem 1.1, no substantial knowletigeametric measure
theory is needed to read these notes. Indeed, the only pisiteg are:

Some elementary measure theory;
Some classical covering theorems and the Besicovitchi@iftéation Theorem;
Rademacher’'s Theorem on the almost everywhere diffetslityaof Lipschitz
maps;

* The definition of Hausdorff measures and a few of their eleargrproperties.

All the fundamental definitions, propositions, and theaere given in Chapter 2,
together with references on where to find them.

The reader will note that | do not assume any knowledge offisale sets. |
define them in Chapter 4, where | prove some of their basicestigs. The material
of Chapter 4 can be found in other books and Mattila's bookpsuicularly good
reference for Chapter 3 and Chapter 5. However, there areggbed reasons for
including Chapters 3, 4, and 5 in these notes:

(a) To make these notes accessible to people who are notekptre field;
(b) To show the precursors of some ideas of Preiss’ proofj@grbpe that it makes
them easier to understand.

These two reasons have also been the main guidelines imgiresthe proofs of
the various propositions and theorems. Therefore, sonteegitoofs are neither the
shortest nor the most elegant available in the literatuoe iffstance, as far as | know,
the shortest and most elegant proof of Marstrand’s Theosem Theorem 3.1) uses
a beautiful result of Kirchheim and Preiss (see Theorem B1110]). However, |
have chosen to give Marstrand’s original proof becausertimtients” introduced by
Preiss (which play a major role in his proof; see Chapters ana 9) are reminiscent
of the “barycenter” introduced by Marstrand (see (3.17)).
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Similarly, 1 have not hesitated to sacrifice generality, néneer this seemed to
make the statements, the notation, or the ideas more tnamgpal herefore, many
other remarkable facts proved by PreissZB][are not mentioned in these notes.

As already mentioned above, Chapter 2 is mostly a list ofgpeisites on measure
theory. In Chapter 3, we prove the classical result of Marstrthat ifo € R and
1 # 0 satisfy the assumption of Theorem 1.1, theis an integer. In this chapter we
also introduce the notion of tangent measure.

In Chapter 4 we define rectifiable sets and rectifiable measué we prove the
Area Formula and a classical rectifiability criterion. Assqaplication of these tools we
give a first characterization of rectifiable measures in $sofitheir tangent measures.

In Chapter 5 we prove a deeper rectifiability criterion, doevtarstrand for 2-
dimensional sets iR® and extended by Mattila to general dimension and codimansio
This rectifiability criterion plays a crucial role in the miof Theorem 1.1.

In Chapter 6 we give an overview of Preiss’ proof of Theorein In this chapter
we motivate some of its difficulties and we split the proobititree main steps, each
of which is taken in one of the subsequent three chaptergpt€h#0 is a collection of
open problems connected to the various topics of the notashw collected together
with Bernd Kirchheim.

In Appendix A we prove the Kirchheim—Preiss Theorem on tredditity of the
support of uniformly distributed euclidean measures, whsrAppendix B contains
some useful elementary computations on Gaussian integrals

I wish to thank Matteo Focardi and Andrew Lorent, who callgfidad these notes
and helped me with many comments and suggestions, andd-Hpftandini, David
Pumberger, and Stefan Wenger, who followed the last partyofonrse. Finally, |
am very grateful to the anonymous referee whose suggestavesgreatly improved
many paragraphs of these notes.



2 Notation and preliminaries

In this section, we gather some basic facts which will be Uested in these notes. For
a proof of the various theorems and propositions listedémixt sections, the reader
is referred to Chapter 1 and Sections 2.3, 2.4, 2.5, and 23.of

2.1. General notation and measures

The topological closure of a sét and its topological boundary will be denoted
respectively byJ andoU. Givenx € R" andr > 0, we will useB;, (x), B, (x), and
0B (x) to denote, respectively, the open ball centeredatradiusr, its closure, and
its boundary. Ak-dimensional linear subspacel&f" will be called ak-dimensional
linear plane. WheW is ak-dimensional linear plane ande R™, the setx + V will
be called &-dimensional affine planeWe will simply use the word “plane” when
there is no ambiguity as to whether we mean a linear or an gifaree. Wherx and
y are vectors ofR", we will denote by(x, y) their scalar product. WheA andB
are matrices and is a vector, we will denote byA - B andA - x the usual product of
matrices and the usual product of a matrix and a column vector

In these notes we will always consider nonnegative measur¢sough many
theorems can be generalized to real and vector-valued mesasith almost no effort.
u-measurable sets andmeasurable functions are defined in the usual way. The
Lebesgue measure @' is denoted by#™".

WhenE c U andy is a measure old, we will denote byu L E the measure
defined by

[uLE](A) := w(ANE).

If f is a nonnegative:-measurable function, then we denote by the measure
defined by

[ful(A) = /Afd,u.

We say thata measurds Borel regular if the Borel sets aremeasurable and if for
everyu-measurable s there exists a Borel s&suchthatA ¢ Bandu(B\ A) = 0.
We say that a Borel measuteis locally finite if x(K) < oo for every compact set
K. All the measures considered in these notes are Borel regudh except for the
Hausdorff measures (see below), they are all locally finitéoreover, even when
dealing with the Hausdorff measug’, we will always work with its restrictions to
Borel setsE with locally finite /% measure, i.e. such tha#’*(E N K) < oo for
every compactsé€. Hence, in practice, we will always deal with measures whieh
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Borel regular and locally finite. For these measures, tHeahg proposition holds
true (see Proposition 1.43 df]).

Proposition 2.1. Let « be a Borel regular and locally finite measure BA. If E is a
Borel set such that (E) < oo, then for every > 0there exists a compact set K and
anopensetU, suchthatK E c U andu(U \ K) <.

Sometimes, when comparing two different measuresdv on an open sef
we will use thetotal variationof x — v on A, which is denoted by — v|(A) and is
defined as

—vi(A) = sup /fﬂd(ﬂ—v)-

9eCe(A)lpl<1

We will say that theu-measurable function is Lebesgue continuous at a point x
with respect to the measuyeif we have

_ 1
mm Br(x)|f(y)— f(x)|dy = 0.

Wheny is the Lebesgue measure, we will simply say thas Lebesgue continuous
atx. The following is an application of the Besicovitch Diffetéeation Theorem 2.10
(compare with Corollary 2.23 ofl]).

Proposition 2.2. If x is a locally finite measure and & L(u), then foru-a.e. x, f
is Lebesgue continuous at x with respectto

2.2. Weak convergence of measures

As usual, we endow the spa€g(IR") of continuous compactly supported functions
with the topology of uniform convergence on compact setss fifeans thap; — ¢
if

* there exists a compact d€tsuch that suppd;) C K for everyn;
® ¢; — ¢ uniformly.

If u isalocally finite measure dR", then the map

¢%/¢du

induces a continuous linear functional @3(R"). The converse is true for any
nonnegative linear functional.
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Theorem 2.3(Riesz’ Representation Theorem)et L : C.(R") — R be a linear
functional such that [p) > 0 for everyp > 0. Then there exists a locally finite
nonnegative measugesuch that

L) = [odu.

Therefore, itis natural to endow the space of locally finiteli€lean measure$t
with the topology of the dual space G§(R"):

Definition 2.4. Let{x;} be a sequence of locally finite nonnegative measurégon
We say thaj j converges weaklyto u (and we writeu = w) if

lim du; = d
jTOo/(/’ﬂj /(f’ﬂ

We will often use the fact that, if for every bounded open Aate have|u; —
u1I(A) = 0, theny; R L.

Note that if R u, then{u} is uniformly locally bounded, that is, for every
compact seK there exists a consta@ such thatuj(K) < Ck for everyj e N.
Moreover, sinceM is the dual of the topological vector spaCg(R"), the weak
topology defined above enjoys the following compactnesgenty:

for everyp e C.(R").

Proposition 2.5. Let{x ; } be a sequence of uniformly locally bounded measures. Then
there exists a subsequer(gg, } and a locally finite measure such that , BN L.

Moreover, since the topological vector spdgR") is separable, the following
well known metrizability property holds.

Proposition 2.6 (Metrizability of weak convergence)Let M(R") be the set of
nonnegative locally finite measures. Then there existstardie d onM(R") such
that

uj — u ifandonlyif duj,x)— 0.
For the reader’s convenience we include a proof of this psition.

Proof. Let G := {fj} c C;(R") be a countable dense set. Containing a set of
nonnegative functionfe} with p. = 1 onBg(0). Thatis, for everyf € C.(R") there
exists a sequenddi(j)} C G such thatfij) — f and the supports ofjj) are all
contained in a compact skt .
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Fori e Nandu,v € M we define
di(,u,v) = /fid,u—/fidv .

d(g,v) = > 27 'min{di(x,v), 1}.
i=1
Clearlyd defines a distance. Indeeddifu,v) = Othen[ fdu = [ fdv for every
f e C.(R"), whichimpliesu = v. Hence, it suffices to check the triangle inequality,
which follows easily from

di(u, ) < di(u,v)+di(v, ().

Now assume R . Thenfor eachf; € G we have

,Iim/fi duj = /fi du . (2.1)
j—o00

After fixing1 > ¢ > 0 we selectNo > O suchthad;_ . 271 < 6/2. From (2.1) we
conclude that there exists & > 0 such that

0
/fid,u—/fid,uj

= 9N yI < No ]2 N1
| hel’efore, forj > Nj we have

Then we set

di(uj, n) =

(2.2)

0
- =J.
+2

NI

No
d(uj. p) < D 27M(u. u)+ D 27 <
i=1 i>Np
We conclude thadl(«, u) — O.

On the other hand, assume tilgt: j, x) — 0. Observe thafu;} is locally uni-
formly bounded, becaugej(Be(0)) < [ pedxj and the letter is a bounded sequence
for eachl. Letgp e C,(R"). From our assumptions there exists a compackset
which contains supgf) and a sequendg;} ¢ G such thatf; — f uniformly and
supp (fi) c K.

Let M be such tha(K) + ;(K) < M for everyj. For any givere > 0 we
can choosf; in the sequence above such thiat— fi|l. < ¢/(2M). Now, since
di(uj, u) = 0, we can choosl such that

di(uj, n) < % foreveryj > N.

Therefore, we can compute

’/Mﬂj _/f/’dﬂ‘ ‘/fidﬂj _/fid,u‘-i-‘/(fi — p)dpu;

< g+||¢— filloo (1 (K) + 2 (K)) < &.

IA

N ‘/(fi —(/’)dﬂ‘

A
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Therefore, we conclude that

lim du; = du.
],Too/com /q)ﬂ

The arbitrariness af implies thaty ; R U O

Finally we conclude this section with a technical propositiwhich will be very
useful in many situations.

Proposition 2.7. Let{v;} be a sequence of measures such thai v. Then

liminf; v;(A) > v(A) for every open set A;
¢ limsup vi(K) < v(K) for every compact set K.

Therefore,

* v (A) — v(A) for every bounded open set A such th&tA) = 0;
e Forany point x there exists a set & R* at most countable such that

vi(B,(x)) = v(B,(x)) foreveryp e R*\S.

Proof. Letv; andv be as in the statement of the proposition and ass@rnseopen.
Let{p;} C Cc(A) be suchthat &< ¢; < 1 andg;(x) — 1 for everyx € A. Since
vi(A) > [ p;dv; for everyj andi, we have

Iin;inf vi(A) > Iirqinf/goj dy; = /goj dv foreveryj.
1 Too 1 Too

Letting j T oo we obtain
Iir_qinf vi(A) > v(A). (2.3)
I Too
Consider nowK compact and fix > 0. LetU be an open set such thétc U and

v(U \ K) < e. Now, fixg € Cc(U) suchthatO< ¢ < 1andp = 1onK. Thenwe
have

limsupvi(K) < limsup [ gdvi = /godv < vU) <v(K)+e.

iTo0 iTo0
The arbitrariness of gives

limsupvi(K) < v(K). (2.4)

ntoo

Next let A be a bounded open set such th&tA) = 0. Then,A is compact and, by
(2.3)and (2.4),

liminf vi(A) = v(A) = v(A) > limsupyi(A) > limsupyi(A).



2.3 Covering theorems and differentiation of measures 9

Finally, givenx, we consider the set
Sc = {r e R* : v(B(x)) > 0} .
According to what we have proved so far, we have

iIi?m vi(Br (X)) = v(B/(x)) foranyr e Rt\ S,.

Sincev is locally finite, S, is at most countable. O

2.3. Covering theorems and differentiation of measures

In these notes we will use two well-known covering theoref. the first, we refer
the reader to Theorem 2.1 &1, and for the second, to Theorem 2.19 &jf |

Theorem 2.8(5r -Covering Theorem)Let 5 be a family of balls of the Euclidean
spaceR" such that the supremum of their radii is finite. Then therstex countable
subset = {By, (X;)}iey Of B such that:

® The balls B (x;) are pairwise disjoint;
Uges B € Ulew Bsr (Xi).

Theorem 2.9 (Besicovitch—Vitali Covering Theorem).et A be a bounded Borel
Euclidean set andB a collection ofclosedballs such that for every x A and every
r > 0 there exists a balB,(x) € B with radiusp < r. If x is a locally finite

measure, then there exists a countable suBset B of pairwise disjoint balls such

thatu (A\ Ugee B) =0.

The Besicovitch—Vitali Covering Theorem is the main toalocoving the follow-
ing differentiation theorem for measures (see Theorem&. pR):

Theorem 2.10(Besicovitch Differentiation of Measuresl)et 4 andv be locally finite
Euclidean measures. Then the limit

(B
f0) = I8 B )

exists atu-a.e. point xe supp (). Moreover, the Radon—Nikodym decomposition of
v with respect tqu is given by fu + vL E, where

E := (R"\'supp)) U {x e supp) : m%:m
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2.4. Hausdorff measures

For any nonnegative real numheme define the constant, to bez */?I' (1 + a/2),
where

r(t) ::/ st—le~Sds.
0

Whena is an integerg, is equal to theZ* measure of the Euclidean unit ball&f
(see Proposition B.1).

We define then-dimensional Hausdorff measure @&f in the usual way (cf.
Definition 2.46 of [1]):

Definition 2.11. Let E ¢ R". Thea-dimensional Hausdorff measurebfs denoted
by s#*(E) and defined by

HJCU(E) = I{;T)j‘f(; (E),

wheresZ*(E) is defined as

H(E) = %inf [Z(diam(Ei))a diam(E) <4, E C U Ei] .

iel iel

In the following proposition we summarize some importaiarties of the Haus-
dorff measure (see Propositions 2.49 and 2.53f [

Proposition 2.12.

(i) The measureg?’* are Borel.
(i) They are translation-invariantand?“(1E) = A*.57“(E) for every positivé..
(i) Ifa > ' > 0, then#*(E) > 0 = #*(E) = c0.
(iv) If f : R™ — R"is aLipschitz map, thex?’*(f (E)) < (Lip ( f))*72*(E).
(v) The n-dimensional Hausdorff measure®hcoincides with the Lebesgue mea-
sure.

Point (iii) allows theHausdorff dimensioof a setE to be defined as the infimum of
thea’s such that7Z”*(E) = 0. Proposition 2.13 below is a direct consequence of (v).
Before stating the proposition, we first need to introdu@dkfinition of the push-
forward of a measure. |l is a measure oR™and f : R™ — R" is u-measurable,
then we define the measufgu as

[fau] (A) = u(174(A).

Proposition 2.13. Let V ¢ R" be a k-dimensional affine plane. Fix a system of
orthonormal coordinatesx .. . ., Xk, Y1, ..., Ya_kSUchthatV={y; = ... = yhx =
0}. Denote by : Rk — R" the map x— (x, 0). ThensZKL_V = 1,.7K.
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We end this section by defining thkedensities of Euclidean measures and sets at
a given point (cf. Definition 2.55 of ]).

Definition 2.14. Let x be a locally finite Euclidean measure ada honnegative
number. Then we define thupper(resp.lower) a-densityof 4 atx as

(B ey 2 1= i B0

0" (u, X) = limsup————=

rio onl (O B

When the two quantities coincide, we simply speak ofithdensityof 1 atx, denoted

by 0% (., X);

If E is a Borel set, we define thedensities of atx as

6**(E,x) = 0*(H“LE,x)
04(E,x) = 0%(H*LE,X)
0“(E,x) = 0*(H"LE,X).

Concerning the relations between densities and measueebave two useful
propositions which follow both from Proposition 2.56 @}

Proposition 2.15. Let E be a Borel set and a nonnegative humber such that
H*(E) < oo. Then

e 9**(E,x)=0for #“-a.e. xe R"\ E;
e 27¢ < 9**(E,x) < 1for s#*-a.e. xe E.

Proposition 2.16. Let 4 be a measure ang a nonnegative real number such that
0 < 0*%(u,x) < oo foru-a.e. x.

Then there exists an-dimensional set E and a Borel function f such that=
fo"_E.

2.5. Lipschitz functions

Let E be asubsetdR". f : E — RXis a Lipschitz function if there exists a constant
K such that
[Tx)— f(Y)I < Kix=yl Vvx,yeE. (2.5)
The smallest numbéd for which inequality (2.5) holds is called tihgschitz constant
of f and we denote it by Lipf).
The following Proposition has a very elementary proof:

Proposition 2.17. Let f : RK> G — R™ be a Lipschitz function. Then there exists
a Lipschitz functionf : RK — R™ such thatf | = f.
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Proof. If m = 1 we set

f0) = inf 1(y)+Lip()ly —xI. (2.6)
Itis easy to check thaf is Lipschitz and is an extension 6f Whenm > 1 we use
(2.6) to extend each component of the vedtor O

Remark 2.18. Note that form = 1 the functionf defined in (2.6) satisfies Lipf() =
Lip(f). Form > 1 the extension suggested above does not have this property i
general. However, there does exist an extensisuch that Lip f) = Lip (f). This
statementis called Kirszbraun’s Theorem, and it is comaldlg more difficult to prove
(see 2.10.43 ofg)).

The following are two remarkable theorems concerning Lhigdfunctions. In
these notes we will use only the first, but we include the séb@tause it often gives
very good insight into the various properties of Lipschiindtions. For a proof of
Theorem 2.19, see Theorem 2.14 . [For a proof of Theorem 2.20, see Theorem
3.1.16 of B].

Theorem 2.19(Rademacher)Let f : R" 5 E — RK be a Lipschitz function. Then
f is differentiable at¥"-a.e. xe E, thatis, for.¥"-a.e. xe E there exists a linear
map df, : R" — RK such that
im O = 100 —dby—x)| _
yeE, y—x |y —X|

0.

Theorem 2.20(Whitney’s extension theorem).et f : R" 5 E — R be a Lipschitz
function. For every > Othere exists a functiof € C1(R", RK) such thatZ"({x

E:f(x)# f(X)) <e.

2.6. The Stone—Weierstrass Theorem

In some approximation arguments we will make use of the idakStone—\Weierstrass
Theorem (see Theorem 7.31 @f]):

Definition 2.21. Let F be a family of real functions on the sét Then we say that

e F separates the pointi$ for every x # y € E there existsf € F such that
f(x) # f(y);
e F vanishes at no point of H for every x € E there existsf e JF such that

f(x) # 0.

Theorem 2.22(Stone—\Weierstrass).et K be a compact set and c C(K) be an
algebra of functions which separates the points and vasigti@o point. Then for
every fe C(K) there existg f;} c Asuchthat f — f uniformly.



3 Marstrand’s Theorem and tangent measures

The goal of this chapter is to prove the following beautiggult of Marstrand:

Theorem 3.1(Marstrand’s Theorem)Let u be a measure oRR", « a nonnegative
real number, and E a Borel set with(E) > 0. Assume that

0 < 0f(u,x)=0"(u,x) <oo foru-ae. xeE. (3.1)

Thena is an integer.

This theorem was first proved ia7]. Actually, in [17], the author proved a much
stronger result, which provides important information ba theasureg satisfying
(3.1) fora integer. This second part of Marstrand’s result is statétemark 3.10 and
will be proved in Chapter 6 (cp. with Theorem 6.8).

Our presentation is very close to that of chapter 124, [particularly in that we
will use tangent measures.

Blow up. The first idea of the proof is that, if for somaethere exists a nontrivial
which satisfies (3.1), then, via a “blow-up” procedure, we peoduce a second (non-
trivial) measure which satisfies a much stronger condition than (3.1). Inigalsr,

v will be ana-uniform measure in the following sense:

Definition 3.2 (e-uniform measures). We say that a meaguigo-uniform if
w(Br (X)) = w,r* foreveryx e supp () and every > 0.
We denote by/*(IR") the set ofx-uniform measures such that 0= supp ¢).

This particular choice of the constant will be convenient later since it ensures
JXLV e UX(R") for everyk-dimensional linear plané c R". We warn the reader
that there exisk-uniform measures which are not of the for“L_V: An example
of such a measure is given in Section 6.1 of Chapter 6. Thigrgjrfact will play a
crucial role in the last part of these notes (see the intribolnto Chapter 6).

The “blow-up” procedure is better described after intradg¢he notion of tangent
measure. Not only will this notion simplify the discussidithis chapter, but it will
also be extremely useful in later chapters.

Definition 3.3 (Tangent measures). Letbe a measures € R", andr be a positive
real number. Then the measurg, is defined by

Uxr(A) = u(x+rA) forallBorelsetsA c R".
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For any nonnegative real numherwe denote by Tar(u, X) the set of all measures
for which there exists a sequengel 0 such that

Hx,ri

— v inthe sense of measures.

Tan,(u, X) is a subset of Tan(, x), the set otangent measures to at x, first
introduced by Preiss ir2f]. In his definition, Preiss considers all measureghich
are weak limits o€; ux r, for some choice of a vanishing sequefigg¢and of a positive
sequencéc; }. However, in all the cases considered in these noteg(Zan) contains
all the information about Tam(, X).

Usingthe language oftangent measures, the firstingreafihre proof of Theorem
3.1lis given by the following proposition, which roughly safat at almost every point
X, at sufficiently small scalg is close to a nontriviak-uniform measure. Nowadays,
arguments like that of Proposition 3.4 are considered taiiie gtandard in Geometric
Measure Theory.

Proposition 3.4. Letu be asin Theorem 3.1, then fara.e. xe E we have

g # Tan,(u,x) C {6“(u,x)v v e U*(RM)}.

a-Uniform measures. The second step in the proof of Theorem 3.1 is to show that
the following proposition is valid.

Proposition 3.5. If U/*(R") # @, thena is a nonnegative integer less than or equal
ton.

The proof of this Proposition is the core of this chapter. éHee briefly describe
the scheme of Marstrand’s approach.

Sketch of the proof of Proposition 3.5.

(a) The Besicovitch Differentiation Theorem givé$(R¥) = @ for everya > k (see
Remark 3.14).
(b) We will show that, ifx < k, then

U'RY A — URCYH£H. (3.2)

(c) Arguing by contradiction, assume thi#t (R") # ¢ for somea € Rt \ N. Let
k :=[a] < a < nand iterater — [«] times (3.2). We conclude that*(R¥) = @,
which contradicts (a).

O



3 Marstrand’s Theorem and tangent measures 15

Clearly, the key point of this scheme is (b). Its proof rebgsin on a “blow-up”
procedure, which we split into the following lemmas. Thetfissa trivial remark:

Lemma 3.6. Leta > 0, u € U*(R¥), and x € supp (). Thend # Tan,(u, X) C
U*(R¥).

The second is an elementary geometric observation (see®2end Figure 3.1).

Lemma 3.7. Let0 < a < k andu e U*(R¥). Then there exists g supp () and a
system of coordinates x . ., x, onRK such that

supp @) c {x1 >0} foreveryv € Tan,(u«,y). (3.3)
The last is the core of Marstrand’s proof:

Lemma3.8. Let0 < a < k andv e U*(R). If supp ¢) c {x; > 0}, then

supp¢) c {x3 =0} foreverybv € Tan,(v, 0). (3.4)

From these three Lemmas we easily conclude that (b) holdg tise following
procedure:

e We fix u € U*(R") and we apply Lemma 3.7 in order to find/as supp ) that
satisfies (3.3).

e Considen e Tan,(u, x). Then by Lemma 3.6 we have e /*(R") and from
(3.3) we obtain supp c {x3 > 0}.

® Finally considen™e Tarf'(v, 0). Such a measure belongslié(R") (again by
Lemma 3.6) and its support is contained in the hyperp{ane- 0}.

Thereforep™an be seen naturally as an elemeriy6¢R"1).

m-Uniform measures. Note that none of the lemmas above needs the assumption
a € R\ N, which indeed plays a role only in the final argument by catittéon
contained in (c). Moreover, the Besicovitch DifferentatiTheorem gived/*(R*) =
{.£X}). Therefore, fromthe procedure outlined above and a stdmtiagonal argument

we obtain the following:

Corollary 3.9. Let m be an integer ang € U™(R"). Then there exists an m-
dimensionallinear plane \& R" and two sequencgs;} C supp ) and{r;} c]0, 1]
such that

—NX,'T;“ — "LV in the sense of measures.

ri
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Remark 3.10. Actually, in [17] Marstrand proved a much stronger result, which, in
the language of tangent measures, says that:

¢ [f o isanintegerangd satisfies the assumptions of Theorem 3.1, then the following
holds foru-a.e.x:

There exists an-dimensional plan¥ such that” (u, X)2* LV € Tan,(u, X).
(3.5)

This statement is proved in Chapter 6 (cp. with Theorem &@)itis the starting
point of Preiss’ Theorem (see the introduction to Chapter 6)

The Kirchheim—Preiss Regularity Theorem. Both Proposition 3.4 and Corollary
3.9 can be proved in a more direct way by using the followimgagkable Theorem of
Kirchheim and Preiss; se&(.

Theorem 3.11. Let u be a measure dR" such that
w(Br (X)) = u(Bi(y)) foreveryxy e supp)andeveryr> 0. (3.6)

Then the support of is a real analytic variety, i.e. there exists an analyticdtion
H :R" —» R suchthasupp ) = {H = 0}.

In Appendix A we include a proof of Theorem 3.11, taken frdt@i][ Recall that,
if we excludeZ = R" (which corresponds to the trivial cast = 0), any analytic
varietyZ c R" has a natural stratification

n—1
z =z, (3.7)
i=0

where eacl; is ani-dimensional (possibly empty) analytic submanifoldf If u
satisfies (3.6) and is the analytic variety given by Theorem 3.11, therklbe largest
i forwhich z; in (3.7) is not empty. Thef is a rectifiablek-dimensional set and it is
not difficult to show thaj: = c.s#_ Z for some constart.

Plan of the chapter. Before going into the details of the various proofs, we byiefl
outline the plan of this chapter. Inthe first section we pferaposition 3.4 and Lemma
3.6. The second section contains Lemma 3.7 and some basick®nm_emma 3.8
and Corollary 3.9 are proved, respectively, in the third fandth section.

3.1. Tangent measures and Proposition 3.4

Tangent measures can be viewed as a suitable generaliabtimconcept of tangent
planes to &€ submanifold ofR". Indeed, lel be ak-dimensionalC! submanifold
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of R", setu := #¥LT and considex € I. Then itis not difficult to verify that the
measures ¥y, are given by

M—x
I’_k,ux,r =¢%pk|_( p )

Here  — x)/r =: T, isthe set

{y iry+xerl}.

Therefore, since the seisCt, asr | Othe set§, look almostlike the tangent plafig
tol atx (see Figure 3.1). In the next chapter, using the area fortdiich relates the
abstract definition of Hausdorff measure with the usuaédéhtial geometric formula
for the volume of a smooth submanifold) we will prove that

T, D KT,

(cp. with Theorem 4.8 and its proof). This implies that Jfan x) = {7¥L Ty}, as
one would naturally expect.

Figure 3.1. Fromltol, :={y : y+rx e}

If fisacontinuous function anda measure,itfollows directly from the definition
that Tan(f u, xX) = f(X)Tan(u, X). By thiswe mean thatbelongs to Tag( f u, x) if
andonlyifv = f(x)¢ forsome € Tan(u, X). By Proposition 2.2, we can generalize
this fact in the following useful proposition:

Proposition 3.12(Locality of Tan,(u, x)). Letu be ameasure oR" and f e L(x)
a Borel nonnegative function. Then

Tan,(fu,x) = f(x)Tan,(u,x) foru-a.e. x. (3.8)

Remark 3.13. As a corollary of Proposition 3.12 we obtain that, for everyr&
setB,

Tan,(u LB, x) = Tan,(u, x) foru-a.e.x € B. (3.9
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Proof of Proposition 3.12We claim that the equality (3.8) holds for every poinin
the set

1
By = {xeR" : lim———— [T(y)— f(x)|du(y) = 0}, (3.10)
' 10 1(Br (%) /a0 g
and we recall that:(R" \ B;) = 0 (see Proposition 2.2).
To prove the claim, fix € B; andv € Tan,(u, X). Consider; | 0 such that
v = “ri 2w, (3.11)
i
If we define
o (e

i .
I’ioc

b

then for every balB, we have

1160m = vil(B) < o [ 1F0) = 1601du0)

- [Hen0]__s .

- [ ey [ 1T idn. @12)
Note that the quantity

1
1 (ol
£ (Byr, (X)) /B Nil (y) — f(x)Idu(x)

vanishes in the limit becauses B, whereas the ratio
#(Byri (%))
rf
is bounded because of (3.11). Therefore, we concld@e)v; — v{|(B,) — O for
everyp > 0, and hence; — f(x)v. This implies Tap(f u, x) c f(x)Tan,(u, X).
The opposite inclusion follows from a similar argument. O

We are now ready to attack Proposition 3.4, which we provaegiai common
“countable decomposition” argument.

Proof of Proposition 3.4.
Step 1 For every positive, j, k € N, consider the sets
(i —.1)wa _ #B X)) - (J +_1)wa

| re |

EbIK = TIx

1
forallr < —
~ k

Clearly, for every we have
E c [JE"X. (3.13)
ik
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We claim that foru-a.e.x € E"-IK the following holds:

e Forevery e Tan,(uL E"X x) we have the estimate

20,
[V(Br (y)) — 0% (1, X)owar *| < (ID for everyy e supp ¢) andr > 0. (3.14)

We will prove the claim in the next step. Note that combinihg tclaim with
Remark 3.13 we can conclude that

e If we fix i, then for everyj andk and foru-a.e. x € E"}, the bound of (3.14)
holds for every € Tan,(u, X).

From (3.13) we conclude that far-a.e. x € E, the bound (3.14) holds for every
v € Tan,(u, X). Sincei varies in the set of positive integers, which is countablke, w
conclude that foi-a.e.x € E, the bound (3.14) holds for everye Tan,(u, x) and
for everyi. Therefore, we conclude that, for any suchnd any such,

v(Br(y)) = 6%(u, X)w,r* foreveryy e supp ¢) andr > 0.

This means that/6%(u, X) is ana-uniform measure. To conclude tha®9*(u, X) €
U*(R"), it suffices to show that & supp ¢). This follows from Proposition 2.7.
Indeed,
B,r.
p=0(B00) = p~ lim supss 1 (B,(0)) = limsup ) > 4,0, x) .

i—o00 i—o0 (pri)a

Letting p 1 r we conclude ~*v(B;(0)) > w,0.(u, X) and hencé, (v, 0) > 6,.(u,
x) > 0.

Step 2 We are left with the task of proving (3.14) fara.e.x € E"-K. To simplify
the notation we set

o B F
F := EMIK Fi = {xe F:IimM = 0}.
rl0 re

By Proposition 2.2 we have(F \ F1) = 0 and therefore it suffices to prove (3.14)
whenx e F;. Therefore, we fixx € F1,v € Tan,(u L F, xX), andr; | 0 such that
b= (L F)xr *

ry

Note that, for every € supp ¢), there exist$x;} c F such that
Xj — X
yi = - V.

fi
Indeed, if this were not the case, then we would hayg, (B,(y)) = O for some
p > 0and some subsequer{cgy }, which would implyv(B,(y)) = 0. We claim that
there existsS C R at most countable such that

iIi?m vi(B,,(yi)) = v(B,(y)) foreveryp e RT\S. (3.15)
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Indeed, if we defing' := uiyi_y’l, we obtain that; = vand (3.15) translates into

im ¢ (B, (y)) = v(B,(¥)).

Hence, the existence of the countableSillows from Proposition 2.7.
Let us compute

im v (B,(y)) = fim “EmEITE)

Recallthatk; — X)/r; — y. Therefore we havi — x| < Cr; for some constar@
large enough. So we have

#(Bor )\ F) im £ (Bcpy, (X) \ F)
r(l

i—00 re

lim
=00

=0,

[
where the last equality follows from the fact tha& F;. Therefore we obtain

lim v(B,(y)) = fim #(nt).

From this identity and from the definition &f, we conclude that (3.14) holds for every
p € RT\ S. SinceSis countable, for every € Sthere existyp;j} c Rt \ Swith

pj T p. Hencep(B,(y)) = lim; v(B, (y)) and from this we conclude that (3.14) is
valid for everyr € R*.

Step 3 So far we have proved that
Tan,(u,x) c 0%(u, X)U*(R") for u-a.e.x € R".

It remains to show that for-a.e. x € R" the set Tap(u, X) is not empty. Let us fix
anyx such that**(u, x) < co. Then, for every > 0, the set of numbers

u(By(X) = ruxr(B,) 1 <1

is uniformly bounded. Therefore, the family of measufes* iy }r<1 is locally
uniformly bounded. From the compactness of the wdakology of measures, it

follows that there exists a sequengel 0 and a measurg,, such thafuy A Uoo-
Henceu o, € Tan, (i, X). O

Proof of Lemma 3.61In this case, the argument given in Step 3 of the proof of Propo
sition 3.4 shows that Tafu, x) # @ for everyx € supp ().
Now fix anyx € supp (t) and any € Tan,(u, X), and letr; | 0 be such that

*

—a
li“fxrn — V.
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Given anyy € supp ¢), we argue as in Step 2 of the proof of Proposition 3.4 in order
to conclude that

® There exists a sequenpg} C supp () such that
Xi — X
yi = - Y
Fi
e There exists a countable set- R* such that

lm e (B,(y)) = v(B,(y)) foreveryp < R¥\'S.

Thus, for every € R™ \ Swe have
pBr06) _

o o
I

v(B, () = lim

For everyp € R* there exists a sequenfyg} c R* \ Ssuchthap; 1 p. Therefore,
we conclude that(B,(y)) = w.p* foreveryp > 0. The arbitrariness of € supp ¢)
impliesv € U*(R"). O

3.2. Lemma 3.7 and some easy remarks

Remark 3.14. Assume thajc € U*(R"). If a > n, from the Besicovitch Differenti-
ation Theorem we conclude that= f_Z", where

f(x) = lim #(B:()) for £"-a.e.x.

rlo pr"

If o > n, we conclude thaf = 0. If @ = n we obtain thatf = 1g, whereE =

supp (). Sinceu € U"(R"), we conclude tha#Z"(B; (0)NE) = w,r" = £"(B;(0)).

SincekE is closed, we obtaiB; (0) c E and the arbitrariness ofimpliesE = R".
Combining this argument with Proposition 2.13, we conclilnde: If x € U™(R")

and supp/) is contained in am-dimensional linear plan€, theny = 7Z™LV.

Proof of Lemma 3.7SetE := supp {«) and note that, since < n, B;(0) ¢ E.
Indeed, we can use the Besicovitch-Vitali Covering Theaeeoover.Z"-almost all
B1(0) with a collection of pairwise disjoint closed ba{Erj (xj)} contained inB1(0)
and with radii strictly less than 1. If we hd}(0) c E then we could estimate

HBIO) = D a(B(x) = @0 Drf > 0, 1] = =5 DBy ()
j j j "

= 2 nBy(0) = s,
Wn

Vv

which contradicts:(B1(0)) = w, (note that here we used the idenl;iiyﬁrj (x;)) =
w,r'{; although in the definition of-uniform measure this identity holds fopen
balls, it is immediate to see that it extends to closed bati.t In fact the covering
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argument just given shows(By(0)) > 7;*(B1(0)) = oo for § > sup 2r;. Since the
radii of the covering can be chosen arbitrarily small, one redine this argument to
show the inequality: > 7L E.

Having shown thak is notR", we fixy ¢ E. SinceE is a nonempty closed set,
there existz € E such that disty, E) = |y — z| =: a. Without loss of generality,
we takez to be the origin and we fix a system of coordinates. . ., X, such that
y=(-a,0,...,0). Clearly,E is contained in the closed set

E = R"\Ba(y) = {x:(@+x)* +X3+... +x? > a?}.
Fix v € Tan,(u, 0) and a sequencee |, 0 such that

Hori =

Vi = p
ri

The support of; is given by
Ei = E/ri ¢ E = {@+rix)?+r2(xZ+...+x?) > a%}.

Note that, forany e {x; < 0}, there existtN > Oandp > OsuchthaB,(x)N E =0
fori > N;cf. Figure 3.2. Hence (B,(x)) = 0, whichyieldsx ¢ supp ¢). Therefore
supp ¢) C {x1 > 0}, which concludes the proof. O

X1 X1

7 7

<3

Xz,...,Xn

+(=19)

Figure 3.2. The setsE; converge to the closed upper half-space.

3.3. Proof of Lemma 3.8

Remark 3.15. Let u € U*(R™) and f : RT — R be a simple function, that is
f = >N, a1y for some choice oN € N, r; > 0 anda € R. Then, for any
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y € supp ) we have

N N

/f(|z|)dﬂ(z) = > au(B,(0) = > auB,(y) = /f(IZ—YI)dM(Z)~
i=1 i=1

By a simple approximation argument we conclude that

/go(Z)d,u(Z) = /q)(z— y)du(z) foranyradialk € L(x)andvy e supp ).

(3.16)
Proof. Let us define the quantity
b(r) : Da zdv(2) = r° / z2dv(2) (3.17)
= v = R .
v(Br(0)) /& (0) B (0)

(in other wordsh(r) is given byw, times the barycenter of the measute B; (0)).
We let ©1(r), ..., ba(r)) be the components of the vectar).

Since suppy) C {x1 > 0}, we haveb;(r) > 0. Moreoverp;(r) = 0 would imply
that supp¥) c {x; = 0} and the claim of the lemma would follow trivially. The idea
is to study the limiting behavior dif(r ) asr | 0. More precisely, given € Tan, (v, 0),
we define

o) = r—“/w)zda(z). (3.18)

Our goal is to show that(r) = 0 for everyr. Since suppyJ C {x; > 0}, this would
imply supp ¢) C {x1 = 0} and conclude the proof of the lemma.

Step 1 In this step we prove the following claim:
(b(r), )| < C(a)ly|* for everyy e supp¢) N Bz (0). (3.19)
Using the identity
2%, y) = IyP+ (r? = Ix = yP?) = (r* = Ix]%),

we can compute

2|(b(r), y)| r=

/ 2(x, y) dv(x)
B (0)

Py (B (0)) + /B NG

—/ (r? = |x/?) dv(x)
B (0)

= r—a

. (3.20)
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Fory € supp ¢), Remark 3.15 gives
/ (r2—|x — yl?) dv(x) —/ (r? —|x?) dv(x)
B (0) B (0)

— [ =xmyR - [ = x -y dvo)
B (0)

Br (Y)
= / (r?—1x — yl?) dv(x) —/ (r?=Ix—yP)dv(x). (3.21)
Br (O\Bx () Br (Y)\B:(0)
Combining (3.20) and (3.21) we obtain
21(b(r), y)I < wa|y|2+r—“/ Ir? = Ix = yI?[dv(x)
Br (O\ B (y)

+r ‘“/ r?—|x —yl?|dv(x). (3.22)
Br (Y)\ B (0)

Forx € B:(0)\ B (y), we have

0 < Ix—=yP=r® < x=yP—IxI* = (IXx=yl+IX|)(IXx=yl—Ix]) < 4r]y],
whereas fox € B:(y) \ B;(0) we have

0 <r’—x—yP < XP=Ix=yP” = (Ix=yl+IX)(Ix| =[x =y]) < 4r|y].
Hence, (3.22) gives

oy + T2 (B () \ B (0) + (B0 Br(y)]

arlyl
r(l

2|(b(r), )|

IA

= yP+—v[(BO\BO) U (BO\BY)|. (3.23)
Clearly, if|y] < r, then

(Br(Y)\ Br(o)) U (Br 0)\ B (y)) C Bryy(0)\ Br_jy(y) .

Hence
4
21(b(r), y)l < walyP+ r(ﬂ [v(Br+|y|(0)) - V(Br—|y|(Y))] (3.24)
= oy + 22 Ty~ ¢~ 1y)] < Cl@iy?. (3:25)

This gives (3.19) foty| < r. Forr < |y| < 2r we use

B (¥)\ Br(0)U B (0)\ B (y) C Brypyi(0)
and a similar computation.

Step 2To reach the desired conclusion, fixx Tan, (v, 0) and a sequence J, O

such that
i vor, * ~
V = — V.

a
r
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Moreover, leb(r) andc(r) be the quantities defined in (3.17) and (3.18). By Proposi-
tion 2.7, there is a s& c R which is at most countable and such that

c(p) = Iirﬂ) b(pri) forp e RT\ S
I

Letp € RT\ Sandz € supp {) N B,(0). Thenthere exists a sequerizg converging
tozsuchthaty, :=rjz e supp ¢). Using (3.19), we obtain

i HbCori), i)l il
l{c(p), 2)| = LE%T < C(a)!lirS)T =

0.

This means thafc(p), z) = 0 for everyz e supp ¢) N B,(0). Therefore

0=p / (©(p), 2 d3(2) = 1)

B,(0

This holds for every € Rt \ S. Since forp € Sthere existdpi} ¢ Rt \ Swith
pi T p,we conclude

c(p) = lim c(pi) = 0,

and hence(p) = 0 for everyp > 0, which completes the proof. O

3.4. Proof of Corollary 3.9

Proof. For every measure, we denote byZ, () the closure of the set

Hx,r
&=

© X e supp ), r €0, 1]} (3.26)

in the metricd of Proposition 2.6. Note that for every € supp () we have
Tan,(u, X) € 7,(u). Letmandu be as in the statement of the lemma andkset

n—m. Weapply Lemmas 3.6, 3.7, and 3.8 to find afamily of measurgs (0,1,...2q C

U™(RM) such that

® pwo=panduii1 € To(ui);
e suppux) C V for somem-dimensional linear plang c R".

From Remark 3.14 it follows thaty, = 2™V, and hence the corollary follows if
we can proveux € 7,(uo). To show this, it suffices to apply the following clairk 2
times:

¢ eT(v) = 7,(S) c T, (v). (3.27)
Since7,(v) is closed in the metrid, this claim is equivalent to
$xp

a

el (v) = =L e T,(v) forall p <1andx € suppf). (3.28)
p
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Fix ¢ asin (3.28). Then there are sequenegsc supp () and{r;} c]O, 1] such that
vi . Yxn R &
= —ri“ .
Clearlyvix,p A &y, p- Hence, if we defing; .= x; +rix andp; := pr;, we conclude
that

1
Vap _ Yxp x Sxp

pit p* p*
This would prove the desired claim (3.28%ifwere in the support of, which however
mightnotbethe case. So, considerasequéngec R"suchthat; := (wi—z)/r; |
0. Then
f—p = o lan f g (3.29)
Pi Pi
Indeed ' = C;_l and hence for any test functigne C.(R") we simply have

/ 0(2)dfi (2) - / 0(2dc @) = / 0@ - o +2)dh(D.  (3.30)

Sincep(-) — ¢(y; + -) converges to 0 uniformly anf is locally uniformly bounded,
the right hand side of (3.30) converges to 0 gsoo, which shows (3.29).

To complete the proof of (3.28) it remains to find a sequenceuch thafw;} c
supp () and @; — z)/ri — 0. Assume by contradiction that there is no such
sequence. Then there existg & 0 such that(By,,(z)) = 0, for infinitely manyi’s.

But then, by Proposition 2.7,

<(B,(x) = P“fpx;p(Bn/p(O)) < p" Iiﬂgfw
= p“liminfM -0
il0 pla

which would contradict the assumptigns supp €). O



4 Rectifiability

This chapter deals with rectifiable sets and rectifiable nness

Definition 4.1 (Rectifiability). Ak-dimensional Borel seE C R" is calledrectifiable
if there exists a countable family;}; of k-dimensional Lipschitz graphs such that
HAE\UT) =0.

A measurey is called ak-dimensional rectifiable measurethere exist ak-
dimensional rectifiable sé& and a Borel functiorf such tha: = f#7¥LE.

By the Whitney Extension Theorem, we could replace Lipgchith C! in the
previous definition. However, we will never use this factiede notes. The final goal
of this chapter is to give a first characterization of redtiieameasures in terms of their
tangent measures; see Theorem 4.8.

The Area Formula. If E is rectifiable we have an important tool which relates the
abstract definition o£7%(E) to the differential geometric formula commonly used to
compute thé&-volume of aC* manifold. This tool is the area formula.

Definition 4.2 (Jacobian determinant). Late R™Kbe amatrixand.(x) = A-x the
linear mapL : R — R™ naturally associated to it. We defidé. := (det (Al - A))Y/2.

Let G be a Borel set and : G — R™ a Lipschitz map. We denote lyf, the
differential of f at the pointx which, thanks to Rademacher’s Theorem, exists at
ZX-a.e.x e G. We denote byl f the Borel functiond f(x) := Jd ;.

Proposition 4.3 (Area Formula).Let E ¢ R* be a Borel setand £ E — R" a
Lipschitz map. Then

/ A°(17Y((2) do(2) = / Jf(x) d.Z*(x). (4.1)
f(E) E

Recall that?#°(F) gives the number of elements Bf Whenl is a Borel subset
of ak-dimensional Lipschitz graph, there exists a Lipschitzfion f : R — R
and a Borel seE such that™ = {(x, f(x)) : x € E}. Therefore, we can apply the
previous proposition to the Lipschitz map

F:R<sx » (x, f(x)) e R",
in order to obtain
A = / JF(X)d.ZX(x).
E
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If we fix a pointx wheref is differentiable andl f is Lebesgue continuous, then:

* JF(y)will be close toJd f, for most pointsy close tox;
e Close tox, I' will look very much like the plane tangent [oat x.

Therefore, it is not surprising that the following coroitdrolds.

Corollary 4.4. Letu be a k-dimensional rectifiable measure. Thendea.e. y there
exist a positive constany@nd a k-dimensional linear plane,\éuch that

r*uy, — o #*LV, asrlO.

The Rectifiability Criterion. We now come to an important question: How does
one prove that a set is rectifiable? The most common tool usdtit purpose is the
criterion given by Proposition 4.6. Before stating it, we@uuce some notation.

Definition 4.5 (k-cones). LetV be ak-dimensional linear plane dk". Then we
denote byV+ the orthogonal complement &. Moreover, we denote bi, and

Qv, respectively, the orthogonal projection ¥randV+. Fora € R*, we denote by
C(V, a) the set

{xeR" 1 |Qu(X)| < alPv(X)I}.

For everyx € R", we denote b (x, V, a) the sex + C(V, «). Any suchC(x, V, a)
will be called ak-cone centered at

C(x,V,a)

Figure 4.1. The coneC(x, V, ).
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Proposition 4.6 (Rectifiability Criterion). Let E ¢ R" be a Borel set such that
0 < JX(E) < co. Assume that the following two conditions hold feffk-a.e.
x e E:

e O4E,x)>0;

® There exists a k-cone(&, V, a) such that
. AX(ENB(X)\ C(X, V, a))
lim ”
rlo r

= 0. 4.2)
Then E is rectifiable.

The main idea behind Proposition 4.6 is that the conditidrova are some sort
of approximate version of (4.3) below. Indeed, the proof @d@sition 4.6 uses the
following elementary geometric observation, which wiabe useful later:

Lemma 4.7 (Geometric Lemma)Let F c R". Assume that there exists a k-
dimensional linear plane V and a real numbesuch that

F c C(x,V,a) foreveryxe F. (4.3)
Then there exists a Lipschitz map ¥ — V1 such that Fc {(x, f(x)):x € V}.

The proof of Proposition 4.6 shows that one can decompé@&ealmost all E
into a countable union of sef§ satisfying the assumption of the lemma. In this
decomposition the conditiatf(x, E) > 0 will play a crucial role.

First characterization of rectifiable measures. A corollary of Proposition 4.6 is
the converse of Corollary 4.4. Therefore, rectifiable measoan be characterized in
terms of their tangent measures in the following way:

Theorem 4.8. A measureu is a k-dimensional rectifiable measure if and only if for
u-a.e. X there exist a positive constaptand a k-dimensional linear plang \éuch
that

e — o XLV, asrlO. (4.4)

Plan of the chapter. In the first two sections we prove the Area Formula and Corol-
lary 4.4; in the third section we prove the Geometric Lemmea e Rectifiability
Criterion; in the fourth section we prove Theorem 4.8.

4.1. The Area Formula I: Preliminary lemmas

First of all, we check that the Area Formula holds when the rhagpaffine. Indeed,
in this case,f (E) is contained in &-dimensional affine plane. Thus, after a suitable
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change of coordinates, the Area Formula becomes the usumalli® for changing
variables in the Lebesgue integral.

Lemma4.9. Let f in Propositiond.3be affine. Thefd.1)holds.

Proof. Since f is affine, there exists a matrik € R"** and a constart € R" such
that f (x) = ¢ + A - x. Without loss of generality we assume tleat 0. Moreover,
note that) f = (det (A" - A))Y/2.

Clearly f (E) is a subset of somedimensional linear plan¢ and we can find an
orthonormal system of coordinates . . ., Yk, Yk+1, - - -, Yn SUCh that

= {yk+1=YI<+2=~~~=Yn=O}-
Writing f in this new system of coordinates is equivalent to finding @hagonal
matrix O e R"*K such that
f(x) = B-x = O-A-x.

Clearly, (det8' - B))Y/? = (det (A" - A))Y/2. We denote byf;(x) the j-th component
of the vectorf (x) in the system of coordinatgs, . . ., y, and we defind : R¥ — Rk
as

f(x) = (fu(x), ..., fu(x)).

Moreover, we define : RK — R" by 1(2) = (2 0,...0). Then, according to
Proposition 2.13 we have

HNF) = L¥Y(F)) forevery BorelF c f(E).

This implies
/ A0(17Yy)) dok(y) = / A°(f1(y)) d2X(y). (4.5)
f(E) f(E)

Moreover, (detAt - A))Y2 = J f(x), and sincef is a map between spaces of the same
dimension, it is easy to check thatf = |detd f|. Therefore, the usual formula for
the change of variables in the Lebesgue integral yields

[ A (fHy)) dLXy) = / |detd f, | d.Z*(x) = / JF(x)d-ZX(x).
f(E) E E

(4.6)
Combining (4.5) and (4.6) we obtain (4.1). O

The next two lemmas deal with two other relevant cases of tka Aormula: The
case whereZ%(E) = 0 and the case whetkf (x) = 0 for #¥-a.e.x.
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Lemma 4.10. Let f be as in Propositiod.3 and assumeZ*(E) = 0. Then(4.1)
holds.

Proof. The proof follows trivially from Proposition 2.12(iv). O

Lemma4.11. Let f be as in Propositiod.3. If Jf(x) = 0for #*-a.e. xe E, then
(4.1)holds.

Proof. Clearly we have to show?’*(f(E)) = 0. Let
F o= {x € E : fisdifferentiable ak andJ(df,) = o} .

Since. Z¥(E \ F) = 0, we conclude tha#Z*(f (E \ F)) = 0. Therefore, it suffices
to provesZ%(f (F)) = 0.

Without loss of generality we may assume tRais contained in the balBg =
Br(0) c R™. Moreover, recall that, sincéis a Lipschitz map, there exists a constant
M such thatd fx| < M for everyx € F. We will prove that

HK(F(F)) < ce foreverye > 0, 4.7
wherec is a constant which depends only &, k, n, andR. Lettinge | 0, we
concludesZ¥(f(F)) = 0.

Step 1First covering argument. For everye F, denote byA, : Rk — R" the
affine map given byA(y) = f(x) + dfy(y — x). Since everyx e F is a point of
differentiability, there exists a positivg < 1 such that:

[f(y) — Ax(Y)| < elx—y| forally e B (x). (4.8)
Therefore, for every < ry we have
f(B,(X) C 1°(x,p) = {zeR“  dist(z, AB, (X)) < Sp}. (4.9)

Fromthe 5-covering Lemma, we can covEmwith a countable family of ballgBy, (x;)}
such that

e x € Fand5; <ry;
¢ the ballsB;, ;5(x;) are pairwise disjoint and containedBg.

Therefore, we conclude that

n<1 and > rf < 5R, (4.10)
i

f(F) ¢ [ J1°(x.n). (4.11)
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Step 2Second covering argument. Recall tlitl fy,) = 0. Therefore, the rank
of the linear mapd fy, is at mostk — 1 and henceAy (B, (xi)) is contained in a
(k — 1)-dimensional affine plang . Moreover,|dfy | < M. Therefore Ax (B, (Xi))
is contained in a — 1)-dimensional dislD; c V; of radiusMr;. Hence

1°(xi, 1) € {zeR" : dist(z, Dj) < eri}. (4.12)

Then, it is elementary to check that eakct{x;, r;) can be covered bge=*-1 n-
dimensional balld; ; of radiuser; (where the constar@ depends only ok, m, and
M).

From (4.11) we obtain thgtB; ;} is a countable covering df. Moreover, the
diameter of eaclB; ; is precisely 2r; < 2¢. Therefore,

4.10
HKEE) < oS En) < oY Cork 2 wCER |
i,j i
SinceC depends only ok, n, andM, this is the desired inequality (4.7). O

4.2. The Area Formula ll

The intuitive idea behind the proof of the Area Formula ig tladter discarding the
setEg c E wheref is not differentiable or where the Jacobian determinant vgeD
can covelkE \ Eg with a countable number of Borel sdEs c E such that on each;
the mapf is very close to an injective affine map. We make this idea mpogeise in
Lemma 4.12 below, where we will use the following notation:

Ifthe mapf : G — H isinjective, thenf ~! denotes the inverse df: G — f(G).
Lemma4.12. Let E c R be a Borel setand f E — R" a Lipschitz map. Fix any

t > 1. Then there exists a countable covering of E with Borel sisii&g};-o such
that:

(i) Ifx € Eg, then either f is not differentiable at x, or JX) = 0.
(i) Foreveryi> 1,the map f isinjective oniE
(iii) Foreveryi> 1there exists an injective linear mag LR¥ 5 E; — R" such
that the following estimates hold:

Lip (fleoLi®) =t Lp (Lio(fle)™) < t, (4.13)
7L < Jf(x) < tJL vxeE. (4.14)

Proof. We defineEg as the set of pointgs € E where f is not differentiable or
Jf(x) = 0 (i.e. dfy is notinjective).
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Next we fix:

e ¢>0suchthat™ +¢ <1<t—g;
e C c E dense and countable;
¢ Sdense and countable in the set of injective linear map®* — R".

Foreveryx e C,L € S,andi > 1 we define:
E(x,L,i) = {y € Byi(x) : f isdifferentiable ay, dfy is injective, (4.15)
and (4.16) holdi,
where (4.15) and (4.16) are:
Lip(dfyoL™) < t—e,  Lip(Lodf) < (t7H42)7". (4.15)
1@ - f—diz—y)| < ellz—y)l  VzeBaily).  (4.16)
Step 1The setE(x, L, i) enjoy the properties (ii) and (iii).

It is not difficult to conclude (4.14) from (4.15), using elemary linear algebra.
Moreover, note that (4.15) and (4.16) imply

L=y < If@ = fWI < tiLEz=-Y)l (4.17)
foreveryy, ze E(x, L, 1). Therefore,f|g, is injective and (4.13) follows easily.
Step 2The setE(x, L, i) coverE \ Eo.

Lety € E\ Eo. Thenf is differentiable ay andd fy is injective. Therefore, from
the density ofSin the set of injective linear maps : Rk — R", it follows that there
exists arL for which the bounds (4.15) hold.

SinceL is injective, there exists@> 0 such that|v| < |L(v)| for everyo e RX.
From the differentiability off aty, it follows that for some > 0 we have

[f@) — f(y) —dfy(z=y)| < eclz—yl| < elLz=Yy)I  Vze Byi(y).

Because of the density @, there existx € C such thaty € By/i(x). Therefore,
y € E(x, L,i). This shows that the set&(x, L, i)} coverE \ Eg and concludes the
proof. O

Proof of the~Area FormulaFixt > 1 and lef{E;} be the sets of Lemma 4.12. Define
inductivelyEq := Ep and

i—1
Ei = E \ U Ej .
j=0
Then{ Ej } is a Borel partition of=. We claim that

[ _oratinano) = 3 [ ey i) drte). @)
f(E) f(E)

i>0
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This equality easily follows by

/ AO(E(y) dAKy) = / HOE N 17Y(y)) dA(y)
f(E) RN

= [ S AEN ) = 3 [ A )
R i—o v f(E)

n’
i=0

(in order to justify the last equality one needs to checktiafunctiony — #°(AN
f~1(y)) is Borel measurable i\ is Borel measurable antlLipschitz).

Next we will show how to combine (4.18) with the lemmas progédve in order
to obtain (4.1). From Lemmas 4.10 and 4.11 it follows that

[ A1) ) e = [ a0 (@19
f(Eo) Eo
From Lemma 4.12(ii) it follows that

[, 7Tl ) 0t = A4((ED). (4.20)
From (4.13) and Proposition 2.12(iv) we conclude

t*A*(Li(E)) < #%(T(E)) < t“%(Li(E)). (4.21)
From Lemma 4.9 we obtain

AX(Li(E)) = / JLi(x) d.2%(x), (4.22)
Ej

and finally from (4.14) we have
=« /E | JE(X)d.ZX(x) < /E | JLi(x)dZ*x) < t /E | JE(X)d.Z*(x). (4.23)
From (4.20), (4.21), (4.22), and (4.23), we obtain

t / I dLX(x) < / _A((Flg) M y)) dork(y) <t / IF() d.24(x).
Ei f(E) Ei

(4.24)
Therefore, from (4.18), (4.19), and (4.24) we conclude

= / JF(x)d.L*x) < / HFL(y)) daK(y) < t* / Jf(x) dZ¥x).
E f(E) E

(4.25)

Lettingt | 1 we obtain the desired formula. O
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4.3. The Geometric Lemma and the Rectifiability Criterion

Proof of Lemma 4.7The condition (4.3) implies that the mdy | is injective. Let
X1, ... Xk Y1, - - ., Yn_k D€ @ system of orthonormal coordinates such that

V = {(x,y) : y = 0}.

It follows that for everyx € G := Py(F) there exists a uniqug € V+ such that
(X, y) € G. Hence, we can define a functign G — V< such that

F = {(x,9(x) : xeG}.
Note that ifz; = (X1, 9(X1)) andz, = (X2, g(X2), then

P(z—2) = x1—% and Quv(zi—2) = g(X) — g(X2).

Therefore, (4.3) can be translated ingfz;) — 9(z2)| < a|z1 — 22| and we conclude
thatg is Lipschitz. Proposition 2.17 shows that there exists atlijitz extension of
to V. This concludes the proof. O

Proof of Proposition 4.6 We remark that all the sets defined in this proof are Borel.
Checking this is a standard exercise in measure theory.
First of all we define the sets

Fj = {xe E:AMENB(X) > r¥/j forallr <1/i}, (4.26)

wherei andj are positive integers. Sinde c ULj Fij, it suffices to prove that each
Fi j is rectifiable. From now on we restrict our attention to a fi¥egl and we drop
the indices, j to simplify the notation.

Next we fix a finite collection of linear pland¥/a, ..., Vn} such that for every
linear plane/ we have

C(,V,a) c C(0,Vq, 2a) forsomeVy,.
For any fixeds > 0 we define the sets
£ = {xe F 1 #%(E N B(X)\ C(X, Vim, 2)) < er® forallr < 1/|}.

Clearly, we havek C U, ,, G, Therefore, it suffices to prove that for some- 0
eachGy , is rectifiable. We will be able to show this provided thds smaller than
a geometric constam{«, j), wherej is the parameter which appears in Definition
(4.26). Therefore, the choice ofs independent dfandm.

We set 3 := min{j~*, 17!} and we will prove thaGf N B,(y) is a subset of a
k-dimensional Lipschitz graph for evepyand whenever < c(a, j). Without loss of
generality, we carry out the proof for the ca8e= Gy, N B,(0).
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Let us briefly summarize the properties enjoyeddy
(@) G c B,(0),
(b) SXE N B/(x)) > j~Irkforeveryx e Gandevery < 3p;
(c) H%(E N B (x) \ C(X, Vi, 2a)) < er* for everyx e G andr < 3p.
We claim that there exists a consta(u, |) such that
ife <c(a, j) then G c C(X, Vm, 4a) foreveryx e G. (4.27)

In view of Lemma 4.7 this claim concludes the proof.
We now come to the proof of (4.27). First of all, note that feesy o there exists
a constant(a) < 1 such that for every cone(x, V, 4a) we have:

ify ¢ C(x,V,4a), then Bgy)y—x(Y)NC(X,V,2a)=0, (4.28)
cf. Figure 4.2.

boundary of
C(x,V,2a)

7 \'\. boundary of
C(x, V, 4a)

Figure 4.2. The geometric constard(a) of (4.28) is given by
|z — z|/|z — x|, wherez is any point distinct fronx which belongs
to the boundary o€(x, V, 4a).

Then (4.27) holds for

k
cla, ]) = [Céfj?] .

Indeed, assume by contradiction that the conclusion ofdsZalse. Then there exist
X,y € G such thaty ¢ C(X, Vi, 4a). From (a) we know that := |x — y| < 2p.
From (4.28) we obtain

Bc(a)r (y) - Rn \ C(Xa Vma Za) .
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From (b) we conclude

(c(a)r)
]
Therefore, from (c) we obtaire(3r)k > j~Y(c(a)r)¥, which yields ¢ >
i 7137 X[c(a)]k = c(a, j). This contradicts the choice < c¢(a, j) and therefore
concludes the proof. O

<%k(BE’ﬁ'(X) N E \ C(Xa Vm, 20()) 2 <%k(BC(OC)r (y) N E) 2

4.4. Proof of Theorem 4.8

We assume, without loss of generality, that the meagusdinite.

From tangent measures to rectifiability. Letx be a point where
Foue = XLV

wherec, is a positive constant ang, ak-dimensional linear plane. We first prove that
0% (u,x) = 0%(u,x) = cx. (4.29)

Indeed, since, 7%V, (6B1(0)) = 0, we can apply Proposition 2.7 to conclude
= Irl?g r_k,ux,r(Bl(o)) = Cx%kLVx(Bl(o)) = Cxwk.

Therefore, (4.29) holds and we can apply Proposition 2.16éotwclude thaty =
f %L E for some Borel functiorf and some Borel sé&.

In order to show that is rectifiable, it suffices to prove th&; := EN {f > ¢}
is rectifiable. We fixc > 0 and consider := #¥_E.. From Proposition 3.12 it
follows that

Tan(v,x) = {f(X)c# LV} forpu-a.exeE, (4.30)

wherecy is a positive constant andy, a k-dimensional plane. We wish to apply
Proposition 4.6. Arguing as above, we clearly have

0%(Ee,x) > 0 for#*-a.e.x € E..

Moreover, ZX(E¢) < ¢ 1u(R") < oo. Thus, it suffices to check the condition on
cones (4.2) and we will do it for all pointswhere (4.30) holds. Indeed, fix an> 0
and note that

HX(EcN B (X) \ C(X, Vy, @)
rk

Ux,r (Bl(o) \ C(Oa A% 0‘))
rk '
(4.31)

lim sup
rlo

= limsup
rl0
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Note thatthe seh := B1(0)\ C(0, Vi, a) is open and bounded angs#% L Vy (6 A) =
0. Therefore, from Proposition 2.7 we conclude

Ux,r (Bl(o) \ C(O, Vy, 0())
rk

limsup
rl0

= i (Vx N By(0)\ C(0, Vy, @) = O.

(4.32)
Hence, (4.2) holds and we can apply Proposition 4.6 to caledlatE. is rectifiable.

From rectifiability to tangent measures. From Proposition 3.12 it suffices to prove
the claim wheri = %L E, whereE is a subset of a Lipschitz graph. Thus, we
assume

= {(z f(2) : ze G},

whereG c R¥is a Borel setand : R — R" ¥ s a Lipschitz map.
Let H c G be the set of pointg where

e f isdifferentiable;
e df is Lebesgue continuous;
¢ G has density 1 (with respect 1#).

Denote by, thek-dimensional linear plane:
= {(y.df«y)) : yeR"}.
We claim that for evergy € H we have
U@ @) — ALV, asr | 0. (4.33)

Clearly, sinceZ¥(G\ H) = 0, this claim would conclude the proof of the proposition.

We now come to the proof of (4.33). Without loss of generaliycan assume
thatzg = 0 andf(z)) = 0. To simplify the notation, we will writd/ in place ofV,,
and we denote bif the Lipschitz map

F:Rsz - (z f(2) eR".
Let us fix a test functiop € C;(R™) and recall that
1 1 X
5 [e00due 0 = % [0 (%) duo. (439

We now use the Area Formula to write

/go(ri) du(x) = /G ( ()) IF@d242). (4.35)

LetC > 0 be suchthap € C;(Bc(0)). Then we have

/G 0 ( ( )) JF(2)d. L @2) = /G s F)(O)q) ( ( )) JF(2)d.Z @2). (4.36)
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Recall that

e 0 is a point of density 1 foG and thereforeg ~%.Z¥(B¢,(0) \ G) vanishes as
rlo;
e dFisLebesgue continuous at 0, and therefore

Iimr‘k/ |JF(2) — JF(0)|d.Z%(2) = 0;
ri0 Bcr (0)

e [ isdifferentiable at 0 and hence
(F(Z)) (dFo(Z))’ .
o\—)—v» = 0.
r r

From these three remarks we conclude that

1 F(2) K

lim — — ) JF(2)dZ

r'?grk [/GmBCr(o)q)( r ) @ @

d
— / (p( FO(Z))JF(O)d.zk(z)] = 0. (4.37)
BCr(O)

r

lim sup
110 2B, (0)

Sinced Fy is linear, we have ~'d Fy(2) = d Fo(r 1z). We then change variables to
obtain
1
p (d FO(Z)) JF(0)d-2*@)
Bcr (0) r

rk

/ o(d Fo(0)) I d o d.2%(w)
]Rk

= / o (x) dX(x) . (4.38)
\%
Therefore, putting (4.34), (4.35), (4.36), and (4.37) tbhge we conclude

im = [ 60 duord) = [ o0 LVIN.

The arbitrariness af yieldsr < uq, L %LV and completes the proof.
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In this chapter we will improve upon the characterizatiomedtftifiable sets given in
the previous chapter. Our goal is the following result:

Theorem 5.1. Let 4 be a measure such that fara.e. X we have

(i) 00 > 0™ (u, x) = O(u, X) > 0;
(i) Every tangent measure joat x is of the form gZ¥L_V for some k-dimensional
linear plane V.

Theny is a rectifiable measure.

Clearly, from Theorem 4.8 it follows that every rectifiableasure enjoys the
property above. However, the converse is much more subdle Theorem 4.8.
Indeed, there is a major difference between (i) and (4.4he Tatter implies the
unigueness of the tangent measure, whereas the former oioésdeed, there can be
a pointx where (i) and (ii) hold and Talfx, X) consists of more than one measure.
This might happen because both the constarid the plan&/ of (ii) might vary, as
we can see in the examples below. The case of Example 5.2 —eWwhearies —
is more relevant, since it implies that we cannot concludeorém 5.1 directly from
Proposition 4.6.

Note that Theorem 5.1 and Theorem 4.8 imply thaty ienjoys the properties
(i) and (ii) at u-a.e. x, thenu has a unigue tangent measure at almost every point.
Therefore, the set of exceptional points where (i) and Gijitbut the tangent measures
are not unique is a set of measure zero.

Example 5.2. Let c R? be the graph of the functioh : R — R given by

f2) = |z| sin(log|log(1 + |z|7Y)|) forz#0
o 0 forz = 0.

The measure: := J#*LT is locally finite and satisfies both conditions (i) and (ii)
of Theorem 5.1 at every e I'. If we denote by, the line¢, := {(z,a2) : z e R},
then

Tany(u,0) = {#'Lts @ ae[-11]}.
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Example 5.3. Similarly, we letg : R> — [1, 3] be given by
9(x1, X2) = 2+ sin(log |log(1+ [x4™)])

(actuallyg is not defined orix; = 0} but this does not affect the discussion). Then
the measure dR? given byu = g 771 (, satisfies both (i) and (i) at every e £o.
However

Tam(u,0) = {c Lty @ cell,3]}.

Weakly linearly approximable sets. Theorem 5.1 is a corollary of a more general
rectifiability criterion fork-dimensional sets &", first proved by Marstrand fde= 2
andn = 3in [16] and later generalized by Mattila id §].

Definition 5.4. Let E be ak-dimensional set dR" and fixx € R". We say thaE is
weakly linearly approximablatx if for everyn > 0 there existd andr positive such
that

e For everyp < r there exists &-dimensional linear plan&/ (which possibly
depends op) for which the following two conditions hold:

AMENB,X)\ {z:distx+W,2) <np}) < np*; (5.1)
A*(ENB,(2) > 4p* forallze (x +W)N B,(x). (5.2)

The first condition tells us that, at small scales aroxjmhost of E is contained in
a tubular neighborhood of + W; see Figure 5.1.

X+ W

Figure 5.1. The set given by the intersection of the b@}I(x) with
the strip{z sdistx + W, 2) < qp}. Condition (5.1) implies that
most of E N B,(x) lies within this set.
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The second condition says that at small scales, any sméalidratiered around a
pointz of X + W contains a significant portion &; see Figure 5.2.

X+ W

Figure 5.2. A pointzon (x + W) N B,(x) and the small balB,,(2)
centered on it. According to (5.2) this ball contains a digant
portion of E.

If u := f¥LE is as in Theorem 5.1, then these two conditions are satisfied
at.7’%-almost every point oE. Therefore, Theorem 5.1 follows from the following
proposition.

Proposition 5.5 (Marstrand—Mattila Rectifiability Criterion)Let E be a Borel set
such thatd < #7%(E) < oo and assume that E is weakly linearly approximable at
s *-a.e. xe E. Then E is rectifiable.

Plan of the chapter. In the first section we introduce some preliminary defingion
and lemmas and in the second we prove Proposition 5.5. Inrtaksiction we show
how Theorem 5.1 follows from Proposition 5.5.

5.1. Preliminaries: Purely unrectifiable sets and projectbns

First we introduce the definition of a purely unrectifiable se

Definition 5.6. Let E be ak-dimensional set wit#X(E) < co. We say tha€E is
purely unrectifiableif for every Lipschitz k-dimensional graphl’ we have
4T NE)=0.
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The following decomposition property of Borel sets with finHausdorff measure
is a simple corollary of our definition:

Theorem 5.7(Decomposition Theorem).et E be a Borel set such that’™*(E) < oo.
Then there exist two Borel set$ FE" ¢ E such that

e F'UE" =E;
e E'isrectifiable;
e E'is purely unrectifiable.

Such a decomposition is unique upag¥-null sets, that is: If F and F satisfy the
three properties listed above, then

JKNE\F") = HXF"\E") = HXEY\FY) = HXFY\EY) = 0. (5.3)

Proof. We define
R(E) := {E' : E'c EisBoreland rectifiablp.

and
a = sup JHXE).
E'eR(E)
Let {E;} c R(E) be such thatZ%(E;) 1 «. Then we seE" := |J E;. ClearlyE"
is rectifiable,E" ¢ E, andJ#Z%(E") = a. We claim thatE® := E \ E' is purely
unrectifiable. Indeed, if there were a Lipschitz gr&much thatZ*(ESNT) > Owe
would have that

HAYE'UTNEY) > a. (5.4)
SinceE" U (I' N E®) € R(E), (5.4) would contradict the maximality of.
To prove the uniqueness of the decomposition, note thahtkesiection between

a purely unrectifiable set and a rectifiable set has alwéfameasure 0. Therefore, if
F' andFY are as in the statement of the theorem we have

JKENEY) = HXENFY) = HXF'NEY) = #XF'NFY) = 0. (5.5)
SinceE" UEY = E = F" U FY, (5.5) implies (5.3). O
We are now ready for the following two lemmas. The first is @atiapplication

of the Decomposition Theorem and of the Besicovitch Diffitision Theorem. The

second relies upon the Geometric Lemma (Lemma 4.7) of thequechapter. Note
that both of them will no longer be required after proving@sition 5.5.

Lemma 5.8. If Proposition 5.5 were false, there would exist a purelyaatifiable set
E with s#%(E) > 0which is weakly linearly approximable &*-a.e. xe E.
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Proof. Assume that Proposition 5.5 is false andiebe an unrectifiable set which is
weakly linearly approximable a#’*-a.e.x € F. Let F" U FY be the decomposition
of F into arectifiable part and purely unrectifiable part giveiLbynma 5.8. Recalling

Proposition 2.2, we have that

i ANFUNB(X)

10 JOXF N B (X))
for s#%-a.e.x e FY. Moreover, note that, iF is weakly linearly approximable at
andx satisfies (5.6), theR" is also weakly linearly approximable =t

Therefore, we conclude thEt is purely unrectifiable and weakly linearly approx-
imable at7#k-a.e.x e FU. 0O

(5.6)

Lemma 5.9. Let E be a purely unrectifiable set with finite Hausdorff measund
which is weakly linearly approximable #¥-a.e. xe E. Thens#’¥(Py(E)) = Ofor
everyk-dimensional linear plane V.

Remark 5.10. From the Besicovitch—Federer Projection Theorem (seen&iance
Theorem 18.1 0f21]) we know that every purely unrectifiable $etwith finite #
measure has null projection @most every idimensional plan&/. Here, “almost
every” is with respect to the natural measure that one camelein the set ok-
dimensional linear planes &™ (the so called Grassmannian manif@dm, k)); cf.
Section 3.9 of21]. However, one can find examples of purely unrectifiablewaish
project to sets with positive measure smme kdimensional plane; see for instance
Lemma 18.12 of21].

Proof. We fix0 < ¢ < 1/2.

Step 1As is often the case, we start by selecting a compadE set E such that
JX(E \ C) < ¢ and the conditions of weak linear approximatiorGohold at every
pointx € C in a uniform way. More precisely

(Cl) There exists a compact getc E and positive numbers, 7, ¢ such that
H*EN\C) < &, n < de < ¢ (5.7)

and for evenya € C and every < rq the following two properties hold:
JYEN B (a) > ok, (5.8)
there exists &-planeW s.t. C N By (a) C {z s dist(z,a+ W) < nr}. (5.9)

In order to show (Cl) we first sele€’ compact such that:

o JWXE\C) <e/2;
* There are positive; andd such that condition (5.8) holds for evary r;.
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This is clearly possible since (5.2) implies that the lowensity of E is positive at
¥ almost every.

Recall thatE is weakly linearly approximable a#’*-a.e.x € C. Therefore, we
can select:

(a) A compactset c C’ with s#%(C"\ C) < ¢/2,
(b) a positive numbey < de, and
(c) apositiverg < ry,

such that for everg € C and every < rqthere existV satisfying

. nryk
AMENBx@)\ {z : dist@a+W) < qr/2)) < 5(7) . (5.10)

Clearly, C, 9, # andrq satisfy both (5.7) and (5.8). We claim that fare C and
r < rothe planaw of (5.10) also meets condition (5.9). Let us begin by assgrtfia
contrary. Then there would existe C N B; (a) with dist (z, a+ W) > »r. Therefore,
B,r/2(2) would be contained iBx (a) \ {z : dist(z,a+ W) < 5r/2}. Hence, we
would have

. k
HA*(Bx(@NE\{z : dist(z, a+W) < r/2}) > S*(ENBy 2(a)) (528) 5(’7—;) ,
which contradicts (5.10).

Step 2Now let us fix an arbitrark-dimensional linear plan€. For each € N
define the sets

C :={aeC:CnBau(@\C@V,n =0}

By the Geometric Lemma 4.7, the intersectionQyfwith a ball of radius ~1/2 is
contained in a Lipschitz graph. Therefore, sidis purely unrectifiable, we have

%(Uc) _o

It follows that for.7#*-a.e.a e C there existd € C N By, (a) N B;-:(a) such that
|Py (b —a)
Qub—ay > O3
n
and hence
IPv(b—a)] < nlb—al.

Setr ;= |a—b|, letW satisfy (5.9) and define:= Py (b — a) + a. From the first step
it follows that|c — b| < #r. SincePy is a projection, we obtaift —a| < [b—a| =r.
Moreover, recalling thag < ¢ < 1/2, we obtain

lc—al > |[b—al—Jc—=Db] > 1—-xn) > r/2.
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Therefore, the vectap := (c — a)/|c — a| is a unit vector which belongs ¥/ and
is such thatPy (w)| < Cyn, whereC is a geometric constant, independengofWe
claim that this implies

jfk(Pv({z : distz, a+ W) < gr}n Br(a))) < CugrX, (5.11)

whereC; is a geometric constant; cf. Figure 5.3.

s dist(z, a4+ W) < gr}

nr

a+W

Figure 5.3. The projection ofthe sdz : dist(z, a+ W) < yr} N B;(a)
has size comparable toalong at least one direction.

Indeed, after translating and rescaling, (5.11) is eqaiveb
A (PV({Z D IQw@I <7} N Bl(O))) < Cu. (5.12)

Now, letW’ be the subspace oY perpendicular taw and setV’ .= P,(W’). V'isa
linear space and its dimension is at most 1. Hence, there exists a veciore V
perpendicular td/’ with [o| = 1. Clearly,|{(v, w)| < |Py(w)| < 5. We conclude that
[{¢,v)] < nforeveryr € WnN By(0). Therefore, for every € B;1(0) we can compute

K& o)l < {Pw(E), o)l + {Qw(0), v)l < 7+ [Qw()I-
This equation implies that
P ({z : 1Qw@I <7} NBiO)) © (2 : Iz, 0}l < 24} N By(0)

and since € V and|v| = 1, this establishes (5.12) and hence (5.11).
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Combining (5.11) with (5.9) we obtain
HA(P(CNB(@)) < Cupr

and hence
H*(Py(CNBr@) < Cunrk. (5.13)
Step 3 Using a Vitali-Besicovitch covering we can cov#f¥-almost allC with
balls By, (a;) which are pairwise disjoint, are centered at point€phave radii less

thanry/2 and satisfy (5.13) when we replag withr; anda with g . Hence, we can
write

A¥(Py(C)) Z%k Py(C N By, (a)) ZCMF

A ) 2 AHENE (@)
= Ci(no” )%k(E) < Ce /). (5.14)
Moreover, sincePy is a projection,
A(PY(E\C)) < AME\C) < &.
We conclude that
HMPV(E) < H*(P(E\C)) +7#%(Py(C)) < (1+ Ciit*E))e.
The arbitrariness of gives.Z¥(Py (E)) = 0, which is the desired claim. O

5.2. The proof of the Marstrand—Mattila rectifiability crit erion

We argue by contradiction and assume that the propositfatsis. Therefore, Lemma
5.8 gives us a purely unrectifiable §&which is weakly linearly approximable a#7¥-
a.e.x € E. Lemma 5.9 implies that the projection of this set on ededymensional
plane is a null set. Then the strategy goes roughly as follows

* We fix a ballB; (x) around a poink whereE is well approximated by a plang'.

* We show that for most of the pointsin B; (x) the setE N B;(y) is well approxi-
mated by a plan@/, which is “almost perpendicular” té/. This will follow from
A(Pw(E N Br(x))) =0

* The conditions of good approximation and the fact iVais almost perpendicular
to W imply that close toy there is a “column” of pairwise disjoint balls of size
smaller than (but still comparable toyand centered at points &. This column

is almost perpendicular t/. On the other hand there must be many such points
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close to all the points diV N B (x). Therefore, there are many of these columns
of balls. See Fig. 5.4

q
D Q9 ¢
L2 009
w Y axd o h P
SR
D
q

Figure 5.4. The columns of balls close to the pland.

e By condition (5.2), each of the balls above gives a signiticantribution to
JX(E N B (X)), which therefore turns out to be large.

® Since the upper density of a détis bounded from above by 1 in a.e. point, the
previous conclusion would give a contradiction.

Proof. We argue by contradiction and assume that the Propositifelse. From
Lemma 5.8 and Lemma 5.9 we conclude the existence of & saeth that

(@) 0< SXE) < oo;
(b) #¥(Py(E)) = 0 for everyk-dimensional plan¥';
(c) E is weakly linearly approximable a#’%-a.e.x.

Step 1 As is often the case, by standard measure theoretic arganvempass to
a subseF which enjoys properties (a) and (b) and a strengthenedoreosi(c). First
of all we start by choosing a compact $etc E such that

(al) 0< JZ%(F) < oo;
(d) There existsy andd positive such that

HYENB(@) > o forallae Fandr <ro. (5.15)
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Next we fix any positivey < 1 and we claim the existence of a compactset: F
such that

(@2) 0< H#X(F1) < oo;
(e) There existy €]0, ro[ andy > 0 such that for every < r; and evenya € F,
we can choose a plavg with the following properties

FNBx(a) c {z: dist@z,a+W) < nr}, (5.16)
A*(ENBy(b) > y(ur)¢ forallbe (a+ W)n B(a). (5.17)

Indeed, from the definition of weak linear approximabilithere exist a compact
F1 c F,r1 €]0,ro[andy > 0such that:

* (a2)holds;
e Forevery < rpthere exists a plane/ which satisfies (5.17) and
k : nrk
H(ENBx(@)\{z : dist@z,a+ W) < 5r/2}) < 5(?) . (5.18)

SinceF; c F, from (5.15) and (5.18) we conclude (5.16), arguing as ip $tef the
proof of Lemma 5.9 (cf. the proof of (Cl)).
Finally, we claim the existence & c F; such that

(a3) 0< #X(G) < oo;
(f) There exists a positive < r; such that for every < r, and everya € G we can
choose &-dimensional linear plang/ which satisfies (5.17) and

FNBx(a) c {z: dist@za+W)<nr} (5.19)
(@+W)NB(@a) c {z: dist@z F) <gr}. (5.20)

Indeed, using the Besicovitch Differentiation Theorem &nd5), we can select a
compact se6 c F; and a positive, < rq such that (a3) holds and

k nrk
H((E\F)NBx(@) < y (7) foralla e G andr <r,. (5.21)

Now, for everya € G andr < rp, selectW such that (5.16) and (5.17) hold. Clearly
(5.19) follows from (5.16). It remains to show that (5.20)dw If it were false, there
would be & € (a + W) N B, (a) such thaB,; (b) N F = @. Therefore,

%k(EmBm(b)) — %k((E\F)ﬂB”r(b)) < %k((E\F)mBZr(a)) (5.521) y (n_zr.)ka

which would contradict (5.17).

Step2 Wefixa0 < t < y /2, which will be chosen appropriately later (together
with the# of the previous step).
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Next we take a poird € G such that

e 9@, G) < 1;
e lim, r*7%((E\ G) N B/ (a)) = 0.

Without loss of generality, we assume that 0 and we seleat; < r, such that

A*(ENB(0) < 2mr¥, Vr <rg (5.22)

A*((E\NG)NBx(0) < tr¥  wr <r3. (5.23)
After fixingr = o < r3, we select &V which satisfies (5.19) and (5.20). Recall that

A*(Pw(G)) < A*(Pw(E)) = 0. (5.24)

We will show that fory andt sufficiently small, (5.17), (5.19), (5.20), (5.22), (5.23)
and (5.24) lead to a contradiction.

We start by introducing some notation: Fore W andp € R* we denote by
D, (b) and byC, (b) respectively the sets

D,(b) := B,(b) "W and C,(b) := {x : Pw(x) e D,(b)},

which we will call (respectively) the disk and cylinder cergd ab of radiusp. Their
geometric meaning is illustrated in Figure 5.5.

/ D, (a)

N
A

A

Figure 5.5. The diskD,(a) and the cylindeC, (b).

We setH := D,(0)\ Pw(G N B2, (0)). Note thatH is an open set, sindd is
compact. For every € H we set

p(x) = dist(x, Pw(G N B2 (0))).
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Observe that
p(x) < 5o . (5.25)
Indeed, if this were false, we would ha®,(x) N G = @. Therefore, we would
conclude
AM(ENB,(X) = H(E\G)N B, (X))

J4(E\G)N By (0) 2 1 (’72")k ,

AN

which contradicts (5.17).
Using the 5-Covering Lemma, we can find a countable{sgefic; ¢ H N D, ,4(0)
such that, if we set; := p(X;), we find:

® The diskg[D2g, (X)} coverH N D,/4(0);
® The diskg{Dg, (i)} are pairwise disjoint.

SincesZ%(H N D,4(0)) = 7#%(D,,4(0)) = ax(c /4)¢, we conclude that

1 JXH N D, 4(0)  wxoX
k = 20p; k o/ = . 2
Ewkp. Zokgwk( Opi)< > oK S (5.26)
We define the subsets of indickksandJ as
J:={iel : C,p(x)NFnNB,(0)+# 0}, K = 1\J. (5.27)

For everyi € J we denote byy; a point of F N C,, 2(x;) N B, (0) and recall (5.19),
which implies|y; — Pw(Yi)| < #o. Therefore, whemy is chosen sufficiently small,
we obtain that

B, 2(yi) € B;(0).
Recall thaty; € F satisfies the lower bound (5.15). Therefore, we have
SpXk
HK(Co(6) N (ENG)NB,(0) > A*(ENB,(y)) > -
Hence

Sot = 3 2Z 4G, )1 (E\ G B,(0)

ied ied
2k tao 2Kk
< ”kT%k((E\G)mBJ(O)) < “’ka” :

where the second inequality follows because the cylindg(%; ) are pairwise disjoint.
Combining this estimate with that of (5.26), we concludethere is a positive constant
¢ (which does not depend @myof the quantities;, #, 4, y ) such that

Za)kpik > coX, (5.28)
ieK
providedt is chosen sufficiently small.
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Step 3 To simplify the notation, from now on we will writ€; in place ofC,, (x;).
Forevenyi e K, denote byz a point ofoC,, N G N By, (0). Recall that such a point
exists because, according to our definitiopgfwe have

pi = dist(xi, Rw(G N By (0)).
Next, we fix ak-dimensional plan&V; which meets the conditions (5.19) and (5.20)
for the choicea = z,r = p; /8.
Sincei € K, according to definition (5.27), we have
Cpi/Z(Xi) NFN BU(O) = 4.
Since (5.20) holds angt = p; /8, the intersection dN, + z with C,, /4(X;) N Bz, ,4(0)
must be empty. An easy computation yields that this is ptessifly if
(2 + W) N Cap, (Xi) N By 2(0)

contains a segmef of lengthcyo = c1pi /(87), wherec; is a geometric constant; cf.
Figure 5.6.

e Ca

Large segmentin
(Zi + VVI) N CZpi N BU

Wi + 7

Figure 5.6. Since the intersection &% 4 z with C,, ,4(x;) N B, (0)
is empty, & + W) N Cy,, (X)) N B,/2(0) contains a large segment of
size comparable 6.

Therefore, there is a second geometric constastich that on the segmegtwe
can find

N > co/pi = C2/(8n)



5.3 Proof of Theorem 5.1 53

points{zij }j=1...n Suchthat the ball8,, /z(zij) are pairwise disjoint. Recall that from
(5.25) we have

pi = on
and thus we conclude
C2

N > 2. (5.29)
n

By (5.20), each balB i/g(Zij) must contain a poinbij e F. Therefore, from the
density lower bound (5.15) we have

k j 5Pik
H(EN B, sw) > & (5.30)

From our considerations, it follows that the ba[IB;)i/g(wij)}j:L_,_N are also pairwise
disjoint and contained €4, (x;). Since the cylinder$C,, (Xi)}ick are pairwise
disjoint, we conclude that the family of balls

{Bus(w!) :ieK,j=1..,N}

are pairwise disjoint.
Therefore, from (5.29) and (5.30) we conclude

N ] |
> > A ENBE) = TSN

A (ENB,(0) >
ieK j=1 ieK j=1
= o wkp; = wkp; -
8Ky ; P 8wy ; P

Recalling (5.28), this yields a positive constagt(independent ob and ) such
that

HA*(ENB,(0) > C3é0'k.
n

Therefore, we can choogeso small that we obtain a contradiction to (5.22). This
completes the proof. O

5.3. Proof of Theorem 5.1

Proof. First of all, from Proposition 2.16, it follows that = f . #%L_E for some

Borel setE and some nonnegative Borel functidn Our goal is to prove that

EN{f > O}isrectifiable. In order to do this it suffices to show that thithe case for
c:=Enfct>f >cjforanyl>c> 0.
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Fix ¢ €]1, O[, setF := E; and define := L F. Then, by the Besicovitch
Differentiation Theorem and from Proposition 3.12 we have

0*(u, x) 0% (u, x)
f(x) f(x)

Tan(v, x) = Tan(u,x)/f(x) for#*-a.e.x e F.
Therefore, fow-a.e.x we have that
0 > 0*(F,x) > O%F,x) > 0, (5.31)

for #%-a.e.x e F,

O™(F,x) = and O%F,x) =

Tank(v,x) c {a#*LV : a>0 and V isak-dimensionallinear plarje
(5.32)

We now prove that at every poimtwhich satisfies (5.31) and (5.32j, is weakly
linearly approximable.

Let us fix anx where (5.31) and (5.32) hold and assume thas not weakly
linearly approximable at.

Without loss of generality we can assume- 0. Then there exist a positiveand
asequence; | 0such that for everg-dimensional plan&/ and everyj

e either
HN(F N B (0)\ {z:distW,2) < arj}) > arl; (5.33)
® orthere existzjw € W N By, (0) with
o E0Bn @) L (5.34)

K =

Setyj = rj"‘vo,rj. Sinced* (v, x) < oo, we can assume that a subsequence (not
relabeled) ofv;} converges to,, € Tan(v, x). From (5.32) it follows that for some
k-dimensional linear plan&/ and some constagt> 0 we havev,, = CZKLW.
Moreover, either (5.33) or (5.34) holds for an infinite numbé j’s. So, for a
subsequence, not relabeled, either (5.33) or (5.34) holdslfradii.

In case this were true for (5.33) we would conclude

vj(Bl(O)\{z:dist(\N, 2) < ;7}) > 7. (5.35)

Consider the se® which is the closure 0B,(0) \ {z : dist(W,z) < »}. From
Proposition 2.7, we have
CHA*(WNQ) = vu(Q) > limsupyj(Q) > 7,
jToo
which is a contradiction becau¥é N Q = #.
Similarly, if (5.34) held for everyj, there would be a sequence of poiRise
W N By1(0) such that
liTm vj(B,(xj)) = 0.
jToo



5.3 Proof of Theorem 5.1 55

Passing to a subsequence we can assumethat x € W. Therefore, we would
conclude

G = CAMWNB,() = vee(By()) < lim vi(By(x)) = 0. (5.36)

On the other hand, by Proposition 2.7 we have
OX(F, X)axp* < v5(B,(0)) = Cp* for.#-ae.p > 0.

From (5.31) we conclude that > 0, which contradicts (5.36). This concludes the
proof. O



6 An overview of Preiss’ proof

In this chapter and in the forthcoming three ones we will givproof of Preiss’
Theorem, which is outlined below.

Theorem 6.1. Let m be an integer angd a locally finite measure oRR" such that
0 < O0M(u,x) =0™(u, x) < ocoforu-a.e. x. Then is an m-dimensional rectifiable
measure.

Note that the casea = 0 andm = n are trivial. In the casen = 1 andn = 2, the
Theorem was first proved by Besicovitch in his pioneeringk@t. More precisely,
Besicovitch proved it for measures of the for#*L_ E, whenE is a Borel set with
#1(E) < oo and his proof was later extended to planar Borel measuresdrgevi
and Randolph in34]. In [23], Moore extended the result to the case= 1 and
arbitraryn. The general case was open for a long time until Preiss salgechpletely

in [25].

Marstrand’s Approach. Recalling Proposition 3.4, the assumption of Theorem 6.1
yields the following:

Tang(u,x) C {0(u,x)v 1 veU™R")} foru-a.e.x. (6.1)

Hence, if the following conjecture were true, we could apfheorem 5.1 to conclude
thatu is rectifiable.

Conjecture 6.2. If v € UM(R") then there exists am-dimensional linear plan&/
suchthav = 7ML W.

Such a conjecture is quite easy to prove wher= 1 and, therefore, combined
with Proposition 3.4, it yields a proof of Theorem 6.1 far= 1. This proof differs
from the “classical” proof of Besicovitch—Moore, which vég relies on the fact
that connected?’*-finite sets are rectifiable. This new approach to the probias
introduced by Marstrand iriLp], though not using the language of tangent measures.
In that paper Marstrand proved the following theorem witea 2 andn = 3:

Theorem 6.3.Letm be anintegerand E R" be a Borel set such tha?#™(E) < co.
Ifthe density™(E, x) exists and is equal tbat.7#™M-a.e. xe E, then E is rectifiable.

In the language of tangent measures, the idea of the prodi@dreEm 6.3 is that,
for s#™M-a.e. x, the tangent measures ™ _E enjoy a stronger property than
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just belonging td/™(R"). This property allows to show that any such measure is of
the form2ZML W, and therefore makes it possible to apply the Marstrandtilislat
Rectifiability Criterion. This approach was completed ia general case by Mattila,
see [L§].

Whenm = 2 it is shown in p5] that the answer to Conjecture 6.2 is positive and
therefore Marstrand’s approach can be completed even feor8m 6.1. However,
we will see that the proof of this requires considerable wdvkenm > 3 Conjecture
6.2 turns out to be wrong, as is seen in the following example:

Example 6.4. Let [ be the 3-dimensional cone Bf* given by
{x§ = X2+ x5 +x3}.

ThensZ3LT e U3(R?. We refer to Section 6.1 for the explicit calculations.

As we will see, there is a way to overcome this obstacle whiwdilfi leads to a
proof of Theorem 6.1 in the general case.

Part A of Preiss’ strategy. First, letus recall the following corollary of the argument
that Marstrand used to prove Theorem 3.1 (cf. Corollary:3.9)

Corollary 6.5. Let m be an integer ang < U™(R"). Then there exist an m-
dimensionallinear plane - R" and two sequencésg;} C supp () and{r;} c]O, 1]

such that
Hxi,ri

T "LV in the sense of measures.
i

The first step towards the proof of Theorem 6.1 is then thevidilg Lemma:

Lemma6.6. Letx be asin Theorem 6.1. Then fpra.e. x the following holds:

(P) If v € Tany(u, X), thenr™vy € Tany(u, x) for every ye supp ¢) andr > 0.

Remark 6.7. From the definition of tangent measure it follows easily that
v e Tany(u, X) = r Mo, € Tany(u, X) atevery xand for every > 0.

Note, however, that (P) is much stronger and it cannot bea®gddo hold at every
pointx. For instance, if we take the cofleof Example 6.4 and we sat:= J#3|_C,
then Tan(u, 0) = {1}, whereas itis clear that for amy# 0 and every > 0 we have

r3uxe # .

Proposition 3.4, Corollary 6.5, and Lemma 6.6 yield thedimihg Theorem, which
was first proved by Marstrand id].
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Theorem 6.8(Part A). Letu be asin Theorem 6.1, then fpra.e. xe R" there exists
aplane W such that)(u, x) 2™ L Wy € Tanm(u, X).

In other words, in spite of the existence of Example 6.4, weckale that at almost
every pointx, the set of tangent measures contaitieastone plane.

Part B of Preiss’ strategy. Let us first introduce some notation which will be very
useful in the rest of these notes.

Definition 6.9. We denote byG(m, n) the set oim-dimensional plane¥ of R" and
by Gm(R") the set

GmR") = {A#™LV : Ve G(m,n)}.

We call the measures 6f,(R") flat measures.

Taking into account Theorem 6.8, Theorem 6.1 will then felioom Theorem
6.10 below.

Theorem 6.10(Part B). Let 4« be as in Theorem 6.1 and x a point such that

® Tam(u,x) C 0(u, XJUM(R");
® Tann(u, X) contains a measure of the fof{y, x)#™ LV for some m-dimensio-
nal plane V.

ThenTany(u, X) C 8(u, X)Gm(R").

In other words, Theorem 6.10 says that, if the set of tangeatsures tq: at the
pointx contains a plane, themytangent measure atx must be a plane. Theorem
6.8 and Theorem 6.10 imply that ata.e. x, the set of tangent measures consists of
k-dimensional planes. Therefore, we can apply Theorem 5cbelude thaj is
rectifiable.

A very sketchy outline of the strategy of Preiss’ proof of ®ham 6.10 is the
following:

® The set oim-uniform measures can be divided into two subsets, giveG.l{R")
and its complementa®y™(R") \ Gm(R").

o |If u e U™(R")\ Gn(RM), then on very large ballg must be quite different from a
flat measure (i.e. it must be “curved at infinity”). This triiss into the fact that
Gm(RM is, in some sense, disconnected flafi(R") \ Gm(R").

e On the other hand Tayfu, X) enjoys some “connectedness” properties, just from
theway itis defined: Itis the set of blow-ups of f&me measuia thesame point
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Therefore, it cannot happen that Tdm, X) contains at the same time an element
of O(u, X)Gm(R™) and one o (u, X)[U™(R") \ Gm(RM)].

In order to exploit these ideas we will need this and the rexd chapters. More
precisely, Theorem 6.10 will be split into the three key Frsipons 6.16, 6.18, and
6.19. The proof of each proposition is contained in one ofriket three chapters,
whereas in this chapter we will show how they imply Theoreh®6.

Plan of the chapter. In Section 6.1 we prove that the measure of Example 6.4 is
3-uniform. In section 6.2 we prove Lemma 6.6 and Theorem B &ection 6.3 we
introduce some definitions and we state the three Proposi6dl6, 6.18, and 6.19
which are the three main steps for proving Theorem 6.10. ¢ti&e6.4 we show how
Theorem 6.10 follows from these Propositions.

6.1. The congx3 = Xi + X3 + X3},

In this section we will sef = {x € R*: xZ = x? + x5 + x3}. Our goal is to prove
the following

Proposition 6.11. The measure?’3 LI belongs td/3(R?).

A direct proof of this proposition can be found in the papkt]{ Indeed, in
this paper the authors, using differential geometric argisy show the following
complete classification result.

Theorem 6.12. u € U™ 1(R™) if and only if « is flat or m > 4 and there exists an
orthonormal system of coordinates such that 7™M 1L {x2 + X3 + X3 = X2}.

Here we propose a proof of Proposition 6.11 which is lesstifEhis proof is not
much longer than that given ii]] and it exploits some calculations and tricks that
will be used again in the proof of Theorem 6.10. However, vat fieed the following
definition and the subsequent technical lemma:

Definition 6.13. Let P be the set of polynomials of one real variable. Then wi&let
be the vector space generated by

{f e C®[R") : f(x)=a+ P(x)e ™" whereP e P,acR,b> o} .

The proof of the following lemma is a straightforward apption of the Stone—
Weierstrass Theorem, but we include it for the reader’s eniance.
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Lemma6.14. Let g € C.(R) and define Ge C.(R") as

G(x) = a(xI).

Then there exists a sequer€&} C R, such that G — G uniformly on thevhole
R™,

Proof. ClearlyG € R, if and only if G(x) = g(]x|) for someg € R,. Therefore, it
suffices to prove the lemma whan= 1.

Let [0, oo] be the one-point compactification of,[8o[ and note thatevery € R1
extends to a unique functioh e C([0, c<]). We denote bfz the vector space given
by the continuous extensions of functionsof.

SinceR; is an algebra of functions, the same hoIds?ﬁnrMoreover, note that:

e foreverya, b € [0, oo] there exists a functior € R such thatf (@) # f(b);
e foreverya e [0, co] there exists a functiori € R such thatf (a) # O.

Therefore, we can apply the Stone—Weierstrass Theorenote #tatR is dense in
C([0, oc]). This concludes the proof. O

Proof of Proposition 6.11Step 1 In the next steps we will prove that for every
p € I \ {0} there exists a constagy such that

A3(B(p)NT) = cpr®  vr > 0. (6.2)

This claim suffices to prove the Proposition. Indeedpfix " \ {0} and recall thal
is aC! manifold in a neighborhood gf. Therefore,
cp = lim BN _
p — r¢0 r3 - wsa
and hence?”3(B;(p) N ") = wsr3 for everyr > 0 andp € I \ {0}. On the other
hand, if we fixr > 0, we can take a sequenigg} c I \ {0} such that; — 0in order
to conclude that

A3 N B (0) = g_@ojﬁ(rm B(p)) = war®.

Step 2 Letus fixp € I \ {0}. In order to prove (6.2) it suffices to show that for
every functionp e C.(R), there exists a constagf such that

/go (lX: pl) d#3LT(x) = c,r® foreveryr > 0. (6.3)

Indeed, knowing (6.3) we could take a sequence, of C(B1(0)) which converges
pointwise everywhere tag, ). In this case, the constantg would be uniformly
bounded and passing to a subsequence, not relabeled, we assume that they
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converge to some constary. Pluggingy; in (6.3) and passing to the limit inwe
would conclude that#’3(" N B;(0)) = cpr3.
Now, letBB be the set of function$ e L*(R?, 5#°L_T) such that

* f(X)=o(x—pl);
¢ there exists a constagf which satisfies (6.3).

Clearly, this set is a vector space. We claim that it woulficeito show
e P ¢ B (6.4)

in order to conclude (6.3).
Indeed, assume for the moment that (6.4) holds (we will pibireStep 3) and
take the derivative in of the equality

/e"x‘p'z/rzd%3l_r(x) = cr?

to obtain

2|x — p|?
/—l r3p| e PP 4R LM (x) = cr?.

From this we conclude thit — p|2e‘|x‘p|2 belongs ta3. Taking a second derivative

we find
(@x = p|* — 6ix — pP)e P e B,

and hence we concludég — pl“e"x‘p|2 e B. By induction, we obtain
(Ix — p|)ke~*=P ¢ B for every positive integek. Therefore, (6.4) would im-
ply that, if P is a polynomial, therP(|x — p|2)e~*~P” e B. A change of variables
implies that every function of the type

P(Ix — pl)e @*=P*  whereP is a polynomial ané > 0, belongs td3.

By linearity, we conclude that for every € Ry, the functiong(x) := y(x — p)
belongs tas.

Now fix f e C.(R*) of the formg(|x — p|). Clearly,e*=P p(|x — p|) is still
a continuous compactly supported function. Then, usingrharé.14 we conclude
that there exists a sequence of functiogng c R, such that the function§(x) =
yk(X — p) converge uniformly tce'x—p'2¢(|x — pl). Therefore, for every fixed > 0
we could compute

/‘/’ (lx: p|) dAPLI(X) = liTTo/e"X‘P'z”zyk(x ~ pP)dAPLI(X).

On the other hané=**/"*y,(x) € R, and hence *=P*/r*y (x — p) e B. This

means that
/q) (lX: pl) dAPLT = c,r3

for some constard, .



62 6 An overview of Preiss’ proof
Step 3 It remains to prove (6.4), that is
I(r) := /e"z'x‘p'zd%ﬁl_r(x) = cr=3 foreveryr > 0. (6.5)

Note that the con€E is invariant for dilations centered at the origin and ratas that
keep (Q0, 0, 1) fixed. Therefore, it suffices to show (6.5) fpr= (1,0, 0, 1). We
compute

|(r) _ /00/ e—rZ[(X1—1)2+X§+X§+(X4—l)2] d%Z(X) dp — /oo J(p) dp )
o Jrnes,() 0
Note that & — L)% + X3 + X3+ (X4 — 1> = |X|>+2—2(x1 + X4) and thaf N B, (0)
is given by
{xa=p/vV2, X2+ %2+ x5 =p?/2} U{xa=—p/V2, X2+ x5+ %3 = p?/2}.
Therefore, we can compute

J(p) = e r2(p*+2) (eﬁr2p+e—ﬁr2p)/ o2 X1 g 2

X24+X3+X5=p?/2
= g0+ (eﬁrz” + e‘*@zf’) K(p).

We use the spherical coordinatés¢$) — (cosd, sind sing, sind cosg) to compute

2 T T
K(p) — p_/ e—«/érzpcose 2r sinddo = Tp / e—ﬁercose (\/Erszintg) do

2 Jo J2r2 Jo
_ TP e V2r?p cos@‘” _ TP |:e«/§r2p _ e—ﬁrzp]
V2r2 0 J2r2

Hence, we conclude

Jp) = _jzpze—ﬂ(p%a (eﬁrzp + e‘fzrzp) (eﬁrzﬂ — e‘ﬁrzﬂ)
r
_ TP —r2(p2+2)( 2212 —zﬁrzp) _ P ( —1%(p—/2) —r2(p+ﬁ>2)
= ——€ € —€ =—\€ —€ .
Vrz Vrz

Therefore,

T ° 2 2 © 2 2
[(r) = e V27 ¢ _/ e P +v2y g
(r) NAE [ /0 pdo = | pdp

- ﬁ [/_0; et + v/2)dt — /; et - fz)dt]

T ﬁ 2¢2 © 2¢2 ° 242
= / e’ tdt+ﬁ[/ e’ dt+/ e’ dt]
Nz | J-yz V2 V2
— r”_z[/oo e—rztzdt+/_ﬁe—fztzdt} - i
-2 —x

This concludes the proof. O

N
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6.2. Part A of Preiss’ strategy

The aim of this section is to prove Lemma 6.6. In order to ds, tihis very convenient
to use the metrid on the space of measur#4 introduced in Proposition 2.6, which
induces the topology of the weakonvergence on bounded subsetd.¢f

Proof of Lemma 6.6l1tis enough to prove that the following condition holds foa.e.
a:

(R) Ifv e Tany(u, @) andx € supp ¢) thenvy 1 € Tany(u, a).

Indeed, leta be a point where (R) holds and fixe supp (), ¢ € Tan(, a), and
r > 0. Note that :=r~"¢g, € Tann(u, @), b/r € supp ¢), andr "¢y r = vpr1.
Hence, applying (R) t& = b/r, we conclude that "¢y, € Tanm(x, X).

In order to prove (R), for everly, j € N we define

A¢j = {aeR": JveTan(u,a) and x esupp¢) suchthat

d(r Muar, Vx,l) > % vr < JE )
Clearly it suffices to show that(A ;) = 0. We argue by contradiction and assume
thatu (A, ;) > O forsomekandj. For someR > 0 we have that the set
Bej = Ajn{a: R <0M(u,a)=060"(u,a) <R}
has positive measure. We drop the indices fi§g and we consider the set
S = {vx1 @ v e Tany(u,a)forsomeae B and x € supp)}.

Recall that, by Proposition 2.6, the wéakpology onC is induced by the metric
d. Note thatS is a set of uniformly locally bounded measures. Indeed,lIréva
vy 1(Br (0)) = v(Br (Xa)) = 0™ (1, @)aomr™ < Rwmr ™. Therefore,

Sc{v:v(B(0)< Ronr™vr} =:C.
So, by Proposition 2.%; with the metriad is compact and we can cowemwith a finite
family of setsG; of type
1
Gi =10 1 dEa) < g

Consider the setB; of pointsa € B for which there exists at least& € Tan,(u, a)
and anx, € supp ¢?) suchthav e G; and

1 1
d(r "uar, vy ,) > . for everyr < T (6.6)

The setd; form a finite covering oB, and hence:(D;) > 0 for some. We drop the
indexi and denote this set ly.
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For anya € D we then fix a choice of? € Tan,(u, a) andx, € supp ¢2) such
that (6.6) holds and;, ; € G;. If aandb are two points oD, then

b 1

d(vg 1, ve 1) < x (6.7)
because;’z‘, % € Gi.
Next, we choose
® ae Dsuchthat DAB
jim “(POB@) ). (6.8)
10 u(Br(a))
* r; | Osuchthat
oy, — V3] (6.9)
® g e Dsuchthat
r.
la — (@+riX)| < dist@+riXa, D)+i—'. (6.10)
The choice ok is possible becaud® is u-measurable. Note that
dist@+rixa, D
jim dSt@+1xa, D) (6.11)

iToo I

Indeed, if we had
) dist@+rixa, D)
lim sup > C,
iToo Fi
then from (6.8) we would obtain®(B:(x5)) = 0, which is clearly a contradiction to
Xa € Supp ¢?).
Note that

* a

—m —m
Har = (ri ﬂa,ri)?,l — Vx.1-
Therefore, for; < j ! sufficiently small we have
1

d(v e I Ha, n) < x (6.12)
On the other hand, sineg € D we have
1
E < d( X 10 ri luaq rl) (613)
From the triangle inequality we obtain
d(”? T ,Ua,r) < d(”? 1 xa )+d( e 10 T ", fl) (6.14)

From (6.12) we find that the second summand in the right haledsdi(6.14) is strictly
less than (R)~X. The same inequality holds for the first summand in view of 6.
Therefore, we conclude

~l P

d(vzi T lu& fl) <

which contradicts (6.13). O
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Proof of Theorem 6.8Note that, at a poink where Corollary 6.5 and Lemma 6.6
hold, we conclude that the weaklosure of Tap(u, X) contains a measure of type
v = 0(u, X)LV whereV is anm-dimensional linear plane. Now, in the case at
hand Tag,(u, X) is a weakly closed set. Indeed, consider for everg]0, 1] the set

C, == {6 Mux, : 0<a <p}.

TheseC, are all contained in the s¢t : v(B;(0)) < C(r) vr} for an appropriately
chosen functiol€ : R* — R*. By Proposition 2.7 the we&kopology on this last
setis metrized byl. Denote byC, the closure’,, in the metriad. Since Tam(u, X) =
ﬂo<p<lcp, Tann(u, X) is weakly* closed. This completes the proof. O

6.3. Part B of Preiss’ strategy: Three main steps

We begin with the notion of tangent measures at infinity, ioleié by a scaling pro-
cedure which is the opposite of a blow-up, namely a “blow-dbdwaf the original
measure.

Definition 6.15. Let « € R* and x be a locally finite measure. Then we define
Tan, (u, co) as the set of measuresuch that there exists 1 co with

/‘O,ri _*\

i

Note that, when: € U™M(R"), the family of measures

E
rmjrso

is locally uniformly bounded. Therefore, for every sequefic} T oo we can extract
a subsequenag;) such that; Y uor, ~ v for some measure

In Chapter 7 we will show thamh-uniform measures have a unique tangentmeasure
at infinity. Proposition 6.16 below provides the preciseesstent.

Proposition 6.16. If v € U™(R"), then there existgy e UM(R") such that
Tan(v, 00) = {¢}.

This proposition means that the whole family of measfire8vq, }; .o converges
to¢ asr T co. Therefore, we will speak dhetangent measure at infinity to Such a
uniqueness property yields that the meagusgin some sense, a “cone” and therefore
it will enable us to draw many useful conclusions about itgctire.

Definition 6.17. We say that a measuree U™(R") is flat at infinity if the tangent
measure at infinity is flat.
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In Chapter 8 we will show that, if € /™(IR") and its tangent measure at infinity
is sufficiently close to a flat measure, theis flat at infinity. More precisely, we will
prove the following:

Proposition 6.18. There exists a constant- 0 which depends only on m and n such
that:

e Ifv e U™R"), {¢} = Tanm(v, o0), and

VeG(m,n)

min / dis? (x, V)d¢(x) < ¢,
B1(0)

then¢ is flat.
Finally, in the last chapter we will prove the following pragition.

Proposition 6.19. If v € /™(R") is flat at infinity, therv is flat.

6.4. From the three main steps to the proof of Theorem 6.10

In this section we will show how Theorem 6.10 follows from theee propositions of
the previous section. In order to do this we will need theofglhg lemma.

Lemma 6.20. Letp € C(R") and consider the functional F M(R") — R given
by
F(u) =, min /(p(z)dislz (z,V)du(2).
eG(m,

VeG(m,n)

Then Rui) — F(u)if ui — p.

Fix ¢ € Cc(B2(0)) such that 0< ¢ < 1 andg = 1 on By(0). From the very
definition of the functionaF and Remark 3.14, a conical measpre U™(R") is flat
if and only if F(x) = 0. The idea of the proof of Theorem 6.10 is then the following.
Assume by contradiction that there exists a paimthere a tangent measures flat
and another tangent measuris not flat. Lety be the measure tangent at infinityto
Then from Proposition 6.19 we conclude thais not flat and from Proposition 6.18
we obtain that(y) > ¢. On the other han& (a) = 0. Define

f(r) == F(r"™uor).

Note that there exist | 0 ands, | O such that, ™ s, X ands, " g s, A x-
Hence, from Lemma 6.20 we conclude thdty) | O and limsup f(sc) > . On
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the other hand, Lemma 6.20 implies tHats continuous. Therefore, the functidn
should have the oscillatory behavior sketched in Figure 6.1

Figure 6.1. The graph off

Clearly, f(ry) will be belowe, for k large enough. Denote by the first point
wheref reaches again the level One can show thak/ox T oo. If we assume that

o lx.op A ¢ for some measurg, the conditiorry /ox T oo implies that there exists
asequence of pointg € [oy, rk] such that, " ux g converges to the tangent measure
to ¢ atinfinity. Sincef (ox) = ¢, £ cannot be flat. On the other hand, sinfdéy) < ¢,
Proposition 6.18 implies that the tangent measuteabinfinity is flat. Therefore, we
find a contradiction to Proposition 6.19.

We will give the details of this argument after proving Lemé&a0.

Proof of Lemma 6.20First of all, letV; be such that

Fu) = / o(2)dist (2, Vi) dy

Up to subsequences we can assumeVtthaonverges to am-dimensional plan®.
Therefore, the functiong(-) disf (-, V;) converge uniformly ta(-) dist (-, V) and
we find that

iIiTrpo/go(z)distz(z,Vi)dﬂi = /(p(z)dislz(z,Voo)d,u.

This implies that
liminf Fu) = Fu).
1Too

Finally, letV be anm-dimensional plane such that
FU) = [ o@dis? @z V)du.

Since

ili?rpo/(p(z)distz(z, V)du, = /q)(z)distz(z,V)dy,
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we conclude that
limsupF(ui) < F(u).

1Too

This concludes the proof. O

Proof of Theorem 6.10We argue by contradiction and we fix a poinsuch that

* Tan(u, x) C O(u, X)UM(R");
¢ there existy € Tan(u, x) such thav /6(u, x) is flat;
® there existg € Tan(u, x) such that /6(u, X) is not flat.

Without loss of generality we can assume at, x) = 1.
Now, let y be the tangent measure ¢oat infinity and fix a nonnegative e
C¢(B2(0)) such thap = 1 onB;(0). Proposition 6.18 and Proposition 6.19 give that

F(x) > ¢. (6.15)
Note thaty € Tan(u, x). Now we fixry | 0 ands, | O such that
Hxne > Hxse *
re o4

We can also assume that < r¢. Define
f(r) := F(I’_mﬂo,r) )
Sincev is flat, from Lemma 6.20 we have

lim f(r) = F@) = 0.

Hence, forry sufficiently small, we have
f(r) < . (6.16)
On the other hand, since
lsmf(&) = F() > &,
for s sufficiently small we have
f(s) > €. (6.17)

From Lemma 6.20 we conclude thits a continuous function ef Hence, we can fix
ok € [, rk] such thatf (o) = ¢ andf(r) < e forr e [ok, r]. By compactness there
exists a subsequencefet}, not relabeled, such thaf ™ u« ,, converges weaklyto
ameasuré € U™(R"). Clearly,

F(E) = lmT(o) = &
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Hence¢ cannot be flat. Now, note that/ox — oo. Indeed, if for some subsequence,
not relabeled, we had that/o, converged to a consta@t(necessarily larger than 1),
we would conclude that

doc
Cm
because
m
. . Ok —
v = weak lim 2% = weak lim (ZX) (£ = C "%
kToo rk koo \ I'k Oy 0,1 /ok

Hencel would be flat.
Next, note that for any giveR > 0 we have

(Rowk) ™™ tix, Roy = R™M&%Rr.

Hence,
F(for) = im f(Ra).

If R > 1 we haveRox > ox. Moreover, sincay/ox — oo, we conclude that
Rok € [ok, k] whenevek is large enough. Therefore, we conclude that

F(RM&R) < ¢ foreveryR> 1.
Let  be the tangent measure at infinityttoThen
— 1 —Mm
Fly) = F'ggo F(R™MR) < e.

Applying Proposition 6.18 we conclude thais flat, and hence from Proposition 6.19
we conclude thaf is flat, which is a contradiction. O



7 Moments and uniqueness of the tangent measure
at infinity

In this chapter we will prove Proposition 6.16, that is thequeness of tangent
measures at infinity fom-uniform measures. For the reader’s convenience we state
again Proposition 6.16 below.

Proposition7.1. If u € U™(R"™), thenthere exists € U™(R") suchthafan,(u, o) =
{¢}-

A first easy remark, which will be used many times in the subsatichapters, is
that the condition om-uniformity of the measurg allows us to computg ¢dx for
radialg’s, without any further information op. This is stated more precisely in the
following lemma.

Lemma7.2. Letyp : R — R* be a Borel functiony an m-uniform measure and y a
point in the support of:. Then

/ p(IX1) dju(x) = / o(Ix — yD) du(x) = / o(Z)dL™D).  (1.1)
RO Rn R™

Proof. Denote byB;(y) the n-dimensional ball of radius centered ay € R" and
by B; (z) them-dimensional ball of radius centered ax € R™. Sinceu(B;(0)) =
1B () = omr™ = £™(B,(0)), the identity (7.1) is clear if is piecewise constant.
Therefore, a standard density argument gives (7.1) in thergécase. O

Next we introduce a normalization of the measuiré8uq . Namely, we multiply
them by a Gaussian.

Definition 7.3. Let x € U™(R"). Then we sef;, :=r~™e 4, that is, for every
Borel function we have

[ o0t = 17 [0 (X) duto).

Note thatifv € Tanm(u, X) andr; T co is a sequence such that

*

—m
r.i ﬂO,ri - Vv,

theny, — e 'y, Therefore, the tangent measuredat infinity is unique if and
only if the measureg, have a unique limit for 1 co.
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Moments. Sinceu € U™M(R"), itis not difficult to check that for every polynomial
P the function

Folr) = [ P@dui(2

is uniformly bounded. Assume we could prove the existentiesofollowing limit for
every polynomialP:
IiTm Fp(r). (7.2)
rToo

We then would have that, if and¢ are tangent measures at infinitytothen

/e—”'zP(z)d((Z) = /e‘|z|2 P(2)d¢(2)

for every polynomiaP. This is enough to conclude that the measyr@sds coincide.
Therefore, our goal is to prove the existence of the limit&)7In order to do this
we introduce the following notation.

Definition 7.4 (Moments). Letw € U™(R"), uy, ..., ux € R", ands € R*. Thenwe
define

1(s) := / e752° 4 4 (2),

U . (zs)k -1 —s|z?
b s(U1, ..., Uk) = e I(s) (Z,ur)(z,u2) ... (Z, u) €727 du(2).
The reader will recognize thbf ((us, . . ., ux) is closely related t&p (s~%/2) if we

chooseP(z) = (z,u1)(z, uy) ... (z, ux). Since, for each fixeH, the space ok-linear
forms onR" is a real vector space of finite dimension, we consider oreistandard
topology. Under this convention, the limits

lim sV/2by (7.3)

exist if and only if (7.2) exists. Hence, our final goal is praythe following:
Proposition 7.5. If x € U™(R"), then the limit{7.3) exist.

The moment$y , are, in a certain sense, generalizations of the barycenter

bi(1) = r_m/Br(O)Zdﬂ(Z),

defined in (3.17) and used in Section 3.3 to studyniform measures. One sees
immediately the convenience of multiplying by a Gaussiadmcivallows to integrate
over the wholeR". However, we will see soon that this is not the only reason for
choosing the Gaussian; this choice will play an importate io many algebraic
computations.
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Note that, thanks to Lemma 7.K(s) is independent of the measuyre This is not
the case for thé&-linear formsbﬁ‘S However we will drop the superscript when the
measureu is clear from the context.

Taylor expansion. InLemma 7.6 below, we will make use of the following notation
bf’s(xk) = b (X, X, ..., X).

A similar notation will be used whenever we deal wktfinear forms. The existence
of the limits (7.3) follows from a key calculation involvingoments, stated in point
(b) of the following lemma.

Lemma 7.6(Taylor expansion 1)Letu € U™(R"). Then

(a) there exists a dimensional constant C (depending only oruot) that

2k kk/2
k2

Sl ud, (7.4)

|bk,s(ul,...,uk)| <C

(b) for every ge N there exists a constant C such that

Ky | 2K .
Zbk s(X¥) — z > IXI < C(s|x|?)""2 forevery xe supp@).  (7.5)

Let us adopt the conventidi s(x°) = 1. Then, fors|x|? < 1, point (b) can be
formally rewritten as

D bes(x) = e for everyx e supp ). (7.6)

What follows is the “formal” computation that leads to (7 ®hich will be rigorously
justified in Section 7.2:

Z bk,s(xk)
k=0

I() 1/(Zsz X)) —S|Z|2dy(z)

TS /[ (Zsz X) k} 57 d,1(2)

= | (S)—l / eZS(Z,X)—S|Z|2 d,u(Z)
_ —1_s|x|? —5|X|24-25(z,X)—s]| 2
= I(s)""e e du(2)

= &gt / e 517X 4 u(2) .
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Actually, this computation turns out to be valid fevery xe R". When in addition
we havex € supp (), Lemma 7.2 gived e 57X du(2) = [e 5 du(2) = 1(s),
and hence (7.6). Point (b) of Lemma 7.6 is the starting pdititenext proposition.

Proposition 7.7(Taylor expansion 2)Let . € U™(R"). Then for j k € N there exist
symmetric k-linear formsﬁﬁ such that:

9 i)
Forallg e Nwehave f, = Z S .Ik +o(s?) fors | 0; (7.7)
j=1 '
b’ = 0 ifk > 2j; (7.8)
2q
@yky 29
Zbk x) = [X] forallg e Nand all x € supp ). (7.9)
k=1

This proposition concludes the proof of the uniquenessetahgent measure at
infinity. Indeed, according to all that has been discussddrsave just need to show
the existence of the limit (7.3), which is a trivial conseqoe of (7.7) and (7.8).

If we have to specify the dependence of the fd)ﬁ?won the measure we will write
b’k"(‘). In order to visualize the relation between (7.6) and (Z@) will use the table
below. Clearly, the first row gives the Taylor expansiomﬁ*jf'2 — 1. If X € supp ),
the same is true for the first column, according to (7.6). Mweg, according to (7.7)
and (7.8), the interior rows are the expansiondgf(x*). Therefore, the interior
columns must be “expansions” gf|x|%/ k! for x e supp ().

bs, s(X5) 0 0 ShPx5)  Sb(x%)  £bP(x5)
by s(x%) 0 ShP(xY  SHI(x)  $hPxY  ShP(x4)
bs.s(x3) 0 ShP(x®) SbP(x¥) SbP(x3)  TbP(x3)
bz,s(x?) sBP(x®) 5620 §bP(x) $b5(x?)  £bP(x?)
by.s(X) st 56900 56000 Sb90  £bP(x)

2 2 3 4 5
el — 1 s S S X S
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Plan of the chapter. In section 7.1 we will show how Proposition 7.7 implies
Proposition 7.1. In section 7.2 we will prove Lemma 7.6. Hinan section 7.3 we
will use Lemma 7.6 to prove Proposition 7.7.

7.1. From Proposition 7.7 to the uniqueness of the tangent nasure at infinity

From Proposition 7.7 to Proposition 7. From Proposition 7.7 we observe that

e f Nisodd,then

. bns(Xg, ..., X
lim N,s( 1 N) _ 0,
) SN/Z
e foranyk e N
ok s(Xe, L., Xok) ®
lim — = by’ (Xq, . X
) Sk 2k( 1, s 2k)
In both cases we conclude that the limits
. bns(Xg, ..., X
lim N,s( 1 N)
sl0 sN/2

exist. Recall that

N
bn,s(Uz, ..., UN) = &) ) ——1(s)” /zul Z,Up) ... (z, un)e S du(2) ,
where
I(s) = / e 52" du(z).

From Lemma 7.2 and Proposition B.1 we have

1 /2
I(s) = / e 57" d.M(z) = — e d.om(z) = (%)m .
Therefore,

bN,S(ula B UN)

N2 = C(N, m)SN/2+m/2/<z, Us)(z, Up) ... (z, un)e™ 5 du(z),

whereC(N, m) = 2V /(N!z™?), and hence a positive dimensional constant, indepen-
dent ofs. If we definer := s~%/2 we obtain

bn,s(Us, ..., u C(N, m)r =N B
% - %/Q, U ... (z,une™ 2 du(2)
_N -1
- C(rn:m) rlzuy... r iz un)e " du(2)

= C(N, m)/ (X, Up) ... (X, uy)e d[ﬂor](x)

Therefore, we conclude that the limits (7.2) exist whend¥és a polynomial of the
form(ug, ) ... {Un, *).
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Let {rx} and{s} be two sequences of real numbers such that

b rkTOO!SKTOO;

-m * 1 o—m 2
¢ Tk Hxne T VS S Mg T VS

We set! := e"I"vlandi? := eI*v2. Clearly,

* ~1 * ~2
e L

Note that for anyj € N ande > 0 there existd > 0 such that

/ 12 duc(2) < e.
R™ Bw(0)

Therefore, we conclude that

Iim/(z, uy dur (2) = /(Z, u! di'(2),

rel0

Iim/(z, uy dus(2) = /(z, u)) di?(2).
10

Hence, following the previous discussion, we conclude that

/(z, uyl divl(z) = /(z, uy) dv?(2). (7.10)
This implies that for every polynomidt in n variables we have
/e"Z'ZP(z)dvl(z) = /e"Z'ZP(z)dvz(z). (7.11)

Using the expansion
=, (—vaiz?)'
e—a|z|2 _ 2: ( \/_

. )
“ i!
i=0

one also obtains the equality
/ el p) dul(z) = / e~ 1+al2’ p(2) dv?(2) (7.12)

for every nonnegativa. Therefore, a density argument like that used in Step 2 of the
proof of Proposition 6.11 (see also Lemma 6.14) gives- v2. We include it below
for the reader’s convenience.

Clearly, it suffices to show

[v@ei@ = [o@ai (7.13)
for everyp € C.(R"). Let B be the vector space generated by functions of the form

b+ e A p(z)
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wherea > 0,b € R andP is a polynomial. To prove (7.13), it suffices to show the
following:

(D) For every compactly supported functian € C(R") there exists a sequence
{wi} € B which converges uniformly tg.

Indeed, assume (D), fix € C;(R"), and chooséy;} c B which converges uniformly
to y := el’p. Then we have

/ ey dvi(2) = / e i (2 h(2). (7.14)

Since{y; } is uniformly bounded, we lgt 1 oo in (7.14) to obtain (7.13).

In order to show (D), fixy € C.(R"), denote bys" the usual one-point compacti-
fication of R", and denote by € C¢(S") the unique continuous extensionyf For
everyy € Bthere exists as well a unique extensjoa T.(S"). Denote by3the vector
space of such extensions. ThBiis an algebra of continuous functions on a compact
space, it separates the points, and it vanishes at no pdietefore, we can apply the
Stone—Weierstrass Theorem to conclude that there existpuescd 1//.} c Bwhich
converges uniformly tay. The corresponding sequenpg} € B also converges
uniformly to y. This concludes the proof of (D) and of the proposition. O

7.2. Elementary bounds orby s and the expansion(7.5)

Proof of Lemma 7.6(a) Recall that

25)K 2
bis(Uy, ..., U) = %I(S)‘l/u, Ug) ... (z, u)e S du(2).
Hence, we obtain

k
|bisUz, ..., u)| < ugl.. Iuklul(S)‘l/IZIKe‘s'z' du(2).

Recall the computation already performed in the proof ofpBsition 7.1. From
Lemma 7.2 and Proposition B.1 we have

I(s) = / e du(z) = / e~52°d.£™(2)

T

s M2 / e d.mz) = (g)m/z. (7.15)

Therefore

(2s) -1 k —s|z? 2 k/2 1/2 1k g18V22% [ gM/2
T'(S) |zI"e™> du(z) = PR |s¥<z|"e d[s™?u(2)].
(7.16)
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Using Lemma 7.2 and changing variables we obtain
1/2 |sl/22|2 gM/2 _ 1/2 1k o—|sY22|2 m/2 com
|s¥2ze d[s™*u(z)] = |s"“z|e d[s™?.£™(2)]

/ 1z]ke™ 2" d.2™(2). (7.17)

From (B.4) and (B.6) of Proposition B.1 we obtain
/ 1z[ke™12" d.#™(z) < C(m)k¥/2, (7.18)

whereC(m) is a dimensional constant that depends onlyon
Hence, (7.15), (7.16), (7.17), and (7.18) give the boung)(7.

(b) If s|x|? > 1, we can use the following rough bounds:

s|x|2 3 sk|x|2k
k)—Z < 9| + Z
=1
(7.4) | 2kKk/2 > 1
< C 2\4 -+
< c(m)(s|x|?) 2 0t (sIxI?) gk!

< Cum)(six?)?,
where here we have used the summability of the series

0 okyk/2
ki’

k=1

which follows from Stirling’s formulak! > Ckke . Note that in this case we do not
need the conditiox € supp (). On the other hand, such condition is crucial when
sIx|? < 1.

First of all, note that

00 kiy 2K
ZS |X| S|X|2
%
k=0 '
More precisely,
9 kpy 2k Ky |2k
S _ s¢IX| _ SYIX|
k! B k!
k=0 k=g+1

IA

1
SCH—lleZCH—ZZkI — e§]+llxl2q+2 (719)
k=0
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By the bounds (7.4) it turns out that, 1‘1;|rx|2 <1,
2kkk/2

Z|bks(x)| < Zc e CZ :

We have aIready observedin the previous step that the iaassmesummable. There-
fore, we conclude that

o0
z bk,s(xk)
k=1
is summable fos|x|? < 1. Moreover, we can estimate
00 2q 00 - okyk/2
k k k gk/2
Zbk,s(x )_ Zbk,s(x ) = Z |bk,s(x )| =< Kl / |X|
k=1 k=1 k=2q+1 k=2g+1

O okKk/2
(s|x|2)q+1/22 < ClexP)™2. (7.20)

Let us fix the convention thd s(x°) := 1. Then, from (7.19) and (7.20) it follows
that the proof is complete provided we show the equality

> bis(xk) = e (7.21)
k=0

for everys e R+ andx e R" such thas|x|? < 1 andx e supp ().
From (7.20) and from the definition bf s we have

o) q k
P _1 [ @Sz, X)) g
> by = Im 30169 [ E e duta).

Note that

i (2s(z, X)) e
k!

k=0

Since f(-) = e S(I"*+21X) ¢ | 1(4), by the Dominated Convergence Theorem we

conclude
S bt = 197 [ |3 [ 2. }e-S'Z'Zdu(z)
k=0
— I(S)—l/eZS(Z,X)—S|Z|2dlu(Z)
_ |(S)—les|x|2/(:}—s|x|2+23<z,><>—s|z|2 du(z)

= eS|X|2| (S)_l / e_S|Z_X|2 d,u(z) . (722)

esiz? Z (23|Z||X|) e—S(iz?+2lzlIx])

k=0
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Sincex e supp (), from Lemma 7.2 we obtain

/ e du(z) = / e du(z) = 1(s).
Hence, from (7.22) we conclude (7.21). This completes thefpr O

7.3. Proof of Proposition 7.7

Before coming to the proof of Proposition 7.7, we introduaee notation.

Definition 7.8. We denote b)@k R" the vector space of symmetketensors oR".
Whenug, ..., ux € R" we denote byi; © ... ® uk their symmetric tensor product,
thatis, the tensor

1
W ZUU(]_)@...@UU(;(),

" 0eGy

whereGy denotes the group of permutations{af . . ., k}. We use the shorthand
whenu; =... =ux =u.
For eacls we can regard, s as an element of Horﬁ@kR“, R) and therefore

we consider the map— by s as a curvein Hor( @" R", ]R).

Definition 7.9. For every pair of positive integeks n we defineX®" as the direct sum
R'"® O’R"®...d OR".

We denote byP; the canonical projection ofkn on@j R".

We can extendb s to a linear functional orX2a" py settingby s - = 0 for
everyj # k. Therefore, the map — Zﬁil bk s can be considered as a curve in
Hom (X2", R).

Remark 7.10. On every@k R" there exists a unique scalar prodiict), such that

1
(UUO...0U, 01O ...0vkk = i Z(Ul, Vg()) - - - {Uks Do (K)) -

" 5eCy

Letey, ..., e, be an orthonormal base Bf with the scalar produgt, -) and consider
the setl of increasing functions: {1, ...k} — {1,...n}. Thenthe set

{emo...0ar}.,

is an orthonormal base @k R" with the scalar produgt, ).
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Definition 7.11. Letk andn be positive integers. We define %" the scalar product
((,) as

k

_ 21(Pj(u), Pj(v));]
(fu,o) = 3 i :
j=1
Moreover, we seffu|| := ({u, u)) and for every linear subspavec X we denote by
V+ the orthogonal subspace

Vt = {xe X : ((x,0)) =0 VoeV}.

We are now ready to give a brief outline of the proof of Proposi7.7. The core
of this proposition is the Taylor expansion (7.7). lbe€ N. Roughly speaking (7.5)
determines (up to ordey) the Taylor expansion of the functidi(s) = Zfil b s(x)
for x € supp (). Here it is convenient to introduce the multilinear naiatiin order
to consider the map

29
s > bs=>bgs € Hom(X**" R)
k=1

as a curve of linear operators acting on the tensor spaeeX?%". Therefore, (7.5)
gives the expansion
a Sk|X|2k

I
~ K

bs(X + X2+ ...+ x%) = + ||x]1%+o(sY) (7.23)

whenevex belongs to suppd). By linearity, this determines the valuestafon the
vector spac¥ generated byx +x24...4+x% : x e supp ()}. The tensor notation
gives a concise way to express this. Indeed, it is not difficutee that there exists a
unigue smooth curve

[0,00[ 28 —» ws € Hom (X, R)

such thatws(y!) = 0if j is odd andws(y?) = s¥|y|?/k!. Therefore, (7.23) can be
written asbs|y = ws|v + 0(s?).

Another key remark is that, for eadh there exists a subspaég such that the
linear functionabs vanishes ofrs andV @ Fs = X. Such arFsis given by an explicit
formula in (7.28). If we denote b), the projection ofX overV alongFs, then we
havebs = bs|y 0 Qs = ws o Qs + 0(s?). Hence, we just need to show that the curve
of operators — Qs has a Taylor expansion arougsd-= 0. Indeed, using the formula
(7.28), we will show that this curve is analytic in a neightmod of O.

Proof of Proposition 7.7 First of all, note that (7.8) follows directly from (7.7) and
point (a) of Lemma 7.6. Similarly, (7.9) follows as well frof#.7) and point (b) of
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Lemma 7.6. Indeed, fig € N. From (7.5) we have

Zbk s(xX) — Z SkIXIZk

k=1
From (7.7) we have

C(S|X|2)q+% foreveryx e supp ).  (7.24)

Sjbﬂ) k
b s(X) = Z % + 0o(sY) (7.25)
j=1 ‘
for everyx € R". Therefore, for any fixed e supp ), recalling (7.8) we can write

SZ
s(b8200 + 5703 = 1x1?) + 21 (6200 + 663 + BP0 + b))

S @ 2
q
+...+q!(2 b; (x)—|x|Q)

i=1

= o(s%). (7.26)

Forq = 1 we have
b0 + B0 — 12| = s7o(9)
and hencda(ll)(x) + bgl)(xz) = |x|%. By induction we then obtain

2q ‘
> bP() — x|
i=1

s Yo(s?),

and hence
2q
X% = > b9(x).
i=1
It remains to prove point (7.7).

Proof of (7.7) Let us fixg € N and consider the curve

2q
R*ss — bs = > beseHom(X®" R).
k=1

For simplicity we will drop the superscripts frox?d-".
For anyk € N we denote byoy the element of HomX, R) such that

da(y) = 0 foreveryy e (O R"with j # 2K,

N
Wak(X™) = T
Note that this element belongs, therefore@ﬁk R" and it is given by the formula

“ 1
Wok(X1, . .., Xx) = PN Z (Xo(1)> X5(2)) - - - (Xg(2k=1)> X5 (2K)) -

oGy
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For everys € Rt we denote byys the element of HomX, R) given by

q
os = > i
k=1
Finally, letV be the linear subspace ®fgenerated by the elements
X+X24+ .. +X9 = X+ XOX+...+X0O...0x forx e supp ).

The aim of this new notation is to rewrite the formula (7.5) as

bs(y) = ws(y) + Ily|I*Y@o(s%) foreveryy e V. (7.27)
Now for everys € R+ we define the subspaég c X as

2q
Fo = {ue X <<ZskPk(u),u>> =0 W ev] . (7.28)
k=1

Clearly,Fs ® V = X, because the bilinear form

2q
s = (> #nwu)
k=1

is a scalar product oK.
Therefore, there exists a unique linear n@@p: X — X such that

[ Qs(v) =v foreveryo e V,

Qs(v) =0 foreveryo € Fs.
Clearly, (7.27) yields
bs(u) = ws(Qs(u)) + |[ul**@Do(s%) foru e V. (7.29)
On the other hand, from the definitionlaf, it follows that
bs(u) = | (s)_l/ as(U, v + 02 + ... + 02 e PP du().
]Rn

Therefore, we have

By the linearity ofbs, (7.29) and (7.30) yield
bs = @50 Qs+ [ Qs?°0(sY). (7.31)

Indeed, by writingk = v +z e V 4+ Fs = X we get
Ibs(X) — (ws 0 Qs)(X)| = [bs(v) — (ws o Qs) ()l
ol Do(s%) < (I QslllIx[)*#Do(s).

In (7.31) we understanlds andws as curves in HomX, R) and Qs as a curve in
Hom (X, X).

AN
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Note thatws can also be defined fer= 0 and it yields an analytic curve [Bo[>
s — ws. Therefore (7.7) would be implied by the following claim:

The curve ]JQoo[> s —» Qs can be extended analytically $o= 0. (7.32)
Analyticity of Qs ats = 0. In what follows, for every vector spack® c X we will
denote byPa the orthogonal projection oA with respectto the scalar produg¢t, -)) .

Recall thatP; is the orthogonal projection c(@j R".
Observe that

2q 2q 2q
(Zskpk)o D sTIP) = D 8RR = > R
k1 i—1 K] k=1

Since the last linear map is the identity, we concludeE%il s™J P isthe inverse of
32 s¢Py. Therefore

2q
x € Fg — xe | D sTIP (VY. (7.33)
j=1

We decompose the linear spaté into a direct sun@ﬁil Vk, Where the linear spaces
Vi are defined inductively as

Vi = VINnQOR,
V2 (VEN[OR"® O°R"]} NV,

{VL N [@@JR”]} N Dkvﬁ.

j<k

Vk
Note that the setgy are pairwise orthogonal and they are all orthogon& tdefine
alinear mapAs : X — X in the following way:

A is the identity orV;
* AsonViisgivenbyP + sR_1+ ...+ <Py

Note thatAs mapsV into V andV+ into Fs. Moreover, note that the curge— Ag
is analytic. We claim tha# is invertible, that is, the kernel o4 is {0}. Indeed, let

w be such tha\o(w) = 0. Decompose = —vp + v1 + ... + v2q, Wherev; €V,
andog € V. Our goal is to show that; = O for everyi. We argue by contradiction
and assume that this is not the case. SiAggv) = —ovg + Zizil P, (vi), we must

necessarily havex # 0forsomek > 1. Choose the smallelst> 1 with this property.
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Now, sincenx € @; ©'R", we have

k—1
v = P + D P (7.34)
i=1
On the other hand,
2q
vo = P+ D R(i). (7.35)
i=k+1

Since forj # i we have((P;(x), P(y))) = 0 for everyx andy, we conclude
({vk, v0)) = |P(vi)]?. But vy belongs toVk, which is orthogonal to/, and hence
Pk(vk) = 0. Onthe other hand, sinog € V, we know that

(@) vk € D« @jRn;
(b) vk € V*.

But from (a) andP(vk) = 0, we concludex € B _; (O’'R". This identity and (b)
implies thatox € Vk—1. SinceVk_1 L Vi, we have necessariby = 0. This gives a
contradiction and completes the proof of the invertibitfyAg.

SinceAg is analytic, the invertibility ofA implies that, in a neighborhood of B¢
is invertible and the map— A;'is analytic. SeQs := Py o A;!and note that

. @S is analytic in a neighborhood of 0 becausg! is analytic,
® Qis the identity orV, since bothP, and A;* are the identity ofv,
e fors> 0 A;! mapsFsintoV+, and therefor&)s = 0 onF.

Hence,Qs = QS fors > 0, which implies thaQs has an analytic extension at O]
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The aim of this chapter is to prove Proposition 6.18. In patér, we will prove the
following stronger statement.

Proposition 8.1. Ifm = 0, 1, 2andu € U™(R"), theny is flat at infinity.
If m > 3, then there exists > 0 (which depends only on m and n) such that, if
is the tangent measure at infinity toe 4/™(R") and

min/ dist (x, V) di(x) < ¢,
VeG(m,n) B1(0)

theni is flat.

Remark 8.2. Recall that the previous proposition is optimal in the falilog sense:
Forn > 4 andm = n — 1 the measurg = J##ML{x? + x3 + x5 = X7} is inU™(R")
and clearly the tangent measureitat infinity is not flat (see Proposition 6.11 and
Theorem 6.12).

Inthe proof of this proposition, a key role is played by thieimation gained in the
previous section: The uniqueness of the tangent measurfrdtyi This uniqueness
implies a “cone” property of the tangent measure at infinityleed, letx be a given
measure and consideére Tann(u, o). Letr; T oo be some sequence such that
r"uor, Z ). Fix p > 0. Then pri)"™uo,r, = p~™Ao,,. Thereforep=™ig,
belongs to Tap(u«, oo). If in addition the tangent measure goat infinity is unique,
we conclude

lo, = p™i foreveryp > 0. (8.1)
Itis not difficult to see that (8.1) implies the following:

X € supp @) - pX esuppf@) Vp>0. (8.2)

This consideration justifies the following definition.
Definition 8.3. A measurel which satisfies (8.1) is calledanical measure

We summarize the information gained so far in the followitagesment.
Corollary 8.4 (Conical property ofthe tangentmeasure atinfinitygtu, 4 € U™(R")

be such thafan,(u, co) = {4}. Theni is a conical measure and therefore satisfies
(8.1)and(8.2).
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Conical uniform measures. Proposition 8.1 holds because the same conclusion
holds foranyconical uniform measure:

Proposition 8.5. Let 1 € U/™(R") be conical. If m< 2, theni is flat.
When m> 3, then there exists > 0 (which depends only on m and n) such that, if

min dis? (x, V)di(x) < ¢, 8.3
L st v < 8.9

theni is flat.

The combination of the conical and uniform properties yialthy useful pieces of
information on the tangent measureln particular, if we fixx, a change of variables
in the integrals that define the moments gives that

the functiong(s) := b{ (x/) is of the formcs/2. (8.4)
Therefore, from the Taylor expansion of Proposition 7.7 caeclude that
* bf =0whenj is odd;
o b= (K)1s*b5Y.
This simple remark has two important consequences. Firatloit simplifies the
algebraic relations (7.9) of Proposition 7.7. Second,esitat measures are uniform
and conical, (8.4) holds for any flat measure as well. Reballdefinition of the
momentsskbg’((k). It is not difficult to see that (8.4) implies the followingeditity for

every conicall e U™(R"), for everym-dimensional linear plan¥ c R" and for
everyx € suppg)NV:

/ ez, x)1 d) = / ez, )1 d ALV . (8.5)

A standard density argument allows us to generalize (8 fwitat (iii) of the following

Lemma8.6. If 1 € U™(R") is conical, then

(i) bj_1s = 0and b, = (k) ~skby " (therefore  ; has only one nontrivial
term in the Taylor expansion),

(i) supp @) C {b5(x*) = Ix1*},
(iii) foreveryue supp @), every fe R™with|f| = |u] and every nonnegative Borel
functiong : R* x R — R we have

/(p(|z|,(z,u))d/1(z) :/ o(Ixl, (x, f)) dZM(x). (8.6)
R" RrRM

We now focus on the algebraic relation (ii) loe= 1. In this case we have

bS"(x?) = |x|> foreveryx  supp@). (8.7)
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Consider an orthonormal system of vecters. . ., e, which diagonalizes the sym-
metric bilinear forrrbgl):

bél)(XG y) = ai(X, ey, er) + ...+ an(X, €)Y, &) . (8.8)

The bilinear form is positive semidefinite and we fix the cariien that the eigenvalues
aj are ordered ag; > as > ... > an > 0. A simple computation using (8.6) implies
thattrb$” = trbj, = m:

Lemma8.7. Let1 € U™(R") be conical. Ther b{M = tr bﬁﬂl =m.

Proof. From point (i) of Lemma 8.6 we havebg) =1tr bé“’l. Using Lemma 7.2, we
can compute

tr(psy) = D b)) = 21" / e > (e, 2%dA(2)
i=1 i=1

= 21t / e1122dA(z) = 21(1) ™t / e X’ 1x12d.ZM(x) .
]Rm

This last integral can be easily evaluated with an integretily parts (see for instance
Proposition B.1) and gives Ibil) =m. O

Thanks to this observation, the crucial step in proving Bsiton 8.5 is the
inequality

am > 1. (8.9)

Indeed, this inequality and Lemma 8.7 yield that= ... = am = 1 andomyy =
... =an = 0. Therefore, if we denote by the vector space spanneddyy. .., en,
we obtain

bM(x?) = |R/(X)|? foreveryx.

Coming back to (8.7), we discover thgR, (x)|?> = |x|? for everyx e supp (),
namely that the support dfis contained in then-dimensional plan® . This implies
the desired claiml = 7ML V.

The inequality (8.9) is always satisfied when < 2, whereas fom > 3 it is
implied by the additional hypothesis (8.3). The argumenPdiss which leads to
(8.9) is elementary and uses again point (iii) of Lemma 8.6.

Plan of the chapter. In section 8.1 we prove the conical properties of the tangent
measure at infinity; in section 8.2 we prove Lemma 8.6 and ¢tice 8.3 we prove
Proposition 8.5.
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8.1. The tangent measure at infinity is a cone

Proof of Corollary 8.4.As observed in the introductiop; ™4g , is a tangent measure
atinfinity to x. Since Tag(u, oo) = {1}, we conclude "1, = /.

We will now prove (8.2). Lek € supp¢)andp > 0. Fromp™"1q, = 1 we
conclude that

p"A(Br/p (X)) = A(B;(px)) foreveryr > 0.
Since
/I(Br(/)x)) = p"A(Br/,(X)) > O,
we concludepx € supp ). O

8.2. Conical uniform measures

Proof of Lemma 8.6(i) By definition we have

- 2s)] ) .
bjs(x)) = (ji,)l(s)‘l/e‘s'z' (x,2)1dA(2). (8.10)
We make the change of variables= s*/?zand we use the conical propeftys = s™/
to conclude

) = (zjil)Jl(s)—ls—“z‘m/z / e 1 (x, ) d(w).

From Lemma 7.2 and Proposition B.1, it follows that

I(s) = (%)m/z.

Therefore, we conclude

) . 2] SJ-/2 2 .
bjA’S(XJ) - 2] /e—|w| %, w)! di(w). (8.11)
From (7.7) of Proposition 7.7 we conclude that
_ 0 if j is odd,
b?,s(xj) = . ) .
((1/2))*s2b 02 (xdy if jis even.

Since the values of a symmetrjelinear formb are determined by its values on the
elements of the form!, from these identities we obtain (i).

(ii) From (i) and (7.7) of Proposition 7.7 (appliedAbwe obtain
by® =0 ifj+#£2 (8.12)
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From (7.9) we have
x
> bM<y = x> foreveryx e supp@). (8.13)

Clearly, (8.12) and7(8.l3) give (ii).
(i) From (i) we know that
/e‘s'z'z(z, uy*1di(z) = 0 foreveryu e R".
From (i) we also know _
b () = 7705 (<). (8.14)

Thus, we can compute

/e‘s'z'z(z, uwy*di(z)

(8.10) m/2 (2k)! u

(8.14) ( )m/z (2K)! b (k)( 2%
= S %

K1 22ksk
i T\m2 (2k)!
W (E) T luj? for everyu e supp @). (8.15)
Now fix an orthonormal basis, . .., e, onR™ and consider the vectdr := |u|e;.

Then we have

/ e x, £1XdLM(x) = |u* / e~SK’ g_7m1 () / estPtZ g (t)
. . . (8.16)
Using Proposition B.1, we conclude that (8.16) is equal to
m/2  (2K)!
(s) kl22‘<s'<| *
Therefore, the integralsin (8.15) and (8.16) are equal.
Since this identity is independent of the choiceqf. . ., en, we conclude that the
following equality

/ ez, u) di(z) = / e (x, f)) d.2™(x) (8.17)
]Rm

holds for everys > 0, everyu € supp (), everyf € R™ with |u| = | f| and every
j e N.

Let Y c RR? be the sefly; > 0} and denote by3 the set of Borel functions
¢ : Y = R suchthat(|z|, (z, u)) € LYR", 1) and

[ot@ @wdi@ = [ a0z @8)
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holds for everyu € supp @) and everyf € R™ with |u| = |f|. From a standard
approximation argument the claim (iii) of the lemma follofsem the inclusion
C(Y) C B. (8.19)

To showthat (8.19) holds, we use an approximation argunraiiasto those exploited
in the proof of Proposition 6.11 (see also Lemma 6.14) anlderptoof of Proposition
7.1.

First of all, from (8.17) we conclude th# contains all functions of the form
e—syfyzl. By takingk times the derivative is of both sides of (8.17) we conclude that
B contains all functions of type

e MyXyl fors> 0andj, k e N.

Moreover, B is a vector space. Therefore, for evdey|j, andN, B contains the

functions
¥ 2 ZN 1Sy
—S |

i=0
Using thati (B, (0)) = -Z™(B;(0)), we can apply the Dominated Convergence Theo-
rem to show that, whejk| < 1,

li —s|z| 2k f | >2 d.em
m [ sz 1,2) >3 gomg

i=0

- / e S22 19122 £, 21 d.2™(2),

N >2
l!limo/ —si2?) 2%, 2) (Z( 1)' )di(z)

i=0
:/e‘s('z'2+<z’”>2)|z|2k(u, 2 di(z).

The casgk| > 1 can be concluded easily by rescaling, since the medsareonical.
Therefore, we conclude that any linear combination of fioms of typee™ sly/? yz"yl
with positives belongs ta5.

Now we fix ¢ € C(Y) and we denote b{ the vector space generated by the
functionsf e C(Y) of type

a+e QY2 y,)

whereQ are polynomialsa real constants, angpositive constants.

We letX =Y U {oo} be the one-point compactification\mc we sety (Y1, o) :=
eY’o(y1, y2), and we extend it tgy e C(X) by y(c0) = 0. Any functionf e C has
a unique extensiof € C(X). The set’ of such extensions is an algebra, it separates
the points, and it vanishes at no point. Therefore, we carthes8tone—\Weierstrass



8.3 Proof of Proposition 8.5 91

Theorem to find a sequen¢é} c C which converges uniformly tg. If { f;} is the
corresponding sequence®fwe then conclude that

Gi(yn y2) = e M fi(y1, o)

converge uniformly ta andgi(y) < Ce Y for some constan®. From what has
been proved above, we hage € B. The boundg;i(y) < Ce VP, together with
2(Br(0)) = £™(B(0)), implies that

im [ a0z @) di@) = [ o0z, (z.u)dia).

im [ a0 142700 = [ oixi. . £)dZ709.
o0 JRrm RM
Hence, we finally obtain that € B. 0

8.3. Proof of Proposition 8.5

Proof of Proposition 8.5t is trivial to show thai/°(R") consists of the Dirac mass
concentrated at the origin, and therefore in this case thggsition is trivially true.

Letm > 1 and consider the bilinear forbil). We selech orthonormal vectors
€1, ...6, such that

X OY) = ai(X, ey, &) + ...+ an(X, &) (Y, &), (8.20)

where we fix the conventionthat > ... > a, > 0 (recall tha1b§l) = bj ;, which is
positive semidefinite by definition). We claim that

om > 1. (8.21)
From (8.21) and Lemma 8.7 we would conclude= ...am = 1 andoame; = ... =
an = 0. Therefore, if we denote by the vector space generateddyy. . ., en, we
would conclude thab{"(x?) = |Py(x)|2. Hence, from point (i) of Lemma 8.6 we
would conclude suppl c {|x|2 = |Pv(x)|?}, thatis supp4) c V. Thiswouldimply

. = ™V, which is the desired claim (compare with Remark 3.14). &fee, it
remains to show that (8.21) holds.

Casem =1, 2. Sincel(B1(0)) = wm > 0and
— i — i m _
A({0}) = IrlggJ A(Br(0)) = 'r'?c} omf™ = 0,
clearly supp{) \ {0} # @ (in other words! cannot be a Dirac mass concentrated at the

origin). If x € supp @), since/ is conical we have := x/|x| € supp ¢). Therefore,
b{"(z2) = |z|? = 1. Hence, we have the inequality

a; > supb$(?) > 1,
1Zj=1

which proves (8.21) fom = 1.
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Whenm = 2, letz be as above and ldt be a vector oR? with modulus 1= |z|.
Using Lemma 8.6 we can write

Ady:ly,21<1) = /1.<y,z>|§lou(y)

= / 1|<X,f>|§1dgz(X) = 0.
R2

Hence, we conclude that there exists a sequézj¢e— supp ¢) with

lim |Z| = oo and  [(Z,2)] < 1.

nToo
By passing to a subsequence (notrelabeled) we can assurgethaz; /|z;| converge
toay € R"with |y| = 1. Then we would have

. Kz}, 2)]
,2) = lim —2
1<y, 2)| iz

Sincey; e supp @), we knowb$’(y?) = |y;|> = 1. Therefore, passing into the limit
in j we obtairbgl)(yz) = 1. Summarizing, we know that

lyl =12l =1, (v, =0 and bMA) =bPy?) = 1.

This impliesa, > 1, and hence gives (8.21).

Casem > 3. LetW be anym-dimensional linear plane and assume that . . fx
is an orthonormal base for the orthogonal spate Then

K
rOPLWY = tr(p LW = > baa(f?)
i—1

k
= 2|(1)—1/e—'2'22<z, f)2dA(2)
i=1

= C(m) / e 12 dist(z, W) dA(2) (8.22)
whereC(m) = 2z ~™?2,i.e. a constant which depends onlyran
Now, letV be them-dimensional plane spanned &y ..., e,. Then we have

rPLVvY) =  min tr(ePLW)
m-planeswW

becaus&/+ is spanned by the — m eigenvectors olﬁgl) corresponding to the — m
smallest eigenvalues. Thus, using (8.22), we conclude

Jerastevae = mn [ e st @ Wi < o
m-plane
(8.23)
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Now letd > 0. We claim that, i is sufficiently small, then
foralle e V N By(0) there isz € supp ¢) such thatz—e| < 6. (8.24)

Firstwe show that fod sufficiently small (8.24) yields the statement of the praias.
Indeed, apply (8.24) te = e, and letx € supp ¢) be such thafx — eq| < J. Since
ai +(M—Loy < tr (bgl)) = mforeveryi < m—1(recallLemma 8.7), we conclude

ai—1 < (m=-1)(1-ay) foreveryi <m-—1. (8.25)
Moreover, from the definition of; we have
ai < om < 1 foreveryi > m. (8.26)

Sincex e supp ¢) we have
n
D ailx.e)? = b(x%) = x.
i=1

Therefore,
n

0 = S-Dxe? 20> (@ -1ixe)?
i=1

i=1

m—1
2 (M= am D% 8)2 + (am — DX, enl?
i=1
m—1
= (M-—1)1—om) Y (X—en &)’
i=1
—(1 = am)({em &m) + (Em, X — em)”
m—1 5
< (1—am)((m— 1)Z|x —enl®— (1—|x —enl) )
i=1

< (L—am) (M= 1P - (1-0)) .

If § is sufficiently small, the numben(— 1)?6*> — (1 — 0)? is negative. Therefore, for
o sufficiently small the inequality above is satisfied if andyagha, > 1, which is the
desired conclusion.

It remains to prove (8.24). We argue again by contradictiiribe claim were
wrong, then we would have a numbger 0, a sequence afi-uniform measure§iy},
a sequence ofi-planeg i}, and a sequence of poir{ts} such that

fim / e 1% dis? (z, Vi) di(2) = O

Xk € Vk N B1(0) and Ak(Bs(xk)) = 0.
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Since everything is invariant under rotations, we can asshaitVy, = W. Moreover,

we can assume that a subsequence, not relabelés, Jofonverges to a point e

V N By(0). Finally we can assume that . ). Then it follows thati e U™RM),
supp @) c V andl(Bs(x)) = 0. On the other hand, the first two conditions imply
easilythatt = 7™V (compare with Remark 3.14) and hence they are incompatible
with the third condition. O



9 Flatness at infinity implies flatness

In this chapter we will make the last step towards the pro#frefss’ Theorem and we
will prove the following proposition:

Proposition 9.1. Letx € U™(R") and V an m-dimensional plane. #™LV is the
tangent measure tp at infinity, thenu = 7™ V..

The first information which we gain on an uniform measure Wwhgflat at infinity
concerns the special momebég = bgk’(k).
Recall that from Lemma 7.2 and Proposition B.1 we have

I(s) = / e 4 M(z) = j/z / e d.m(z) = (%)m/z.

Using this identity and changing variables in the integefiing the moments, one
can readily check that

2k (Ul, LRI U2k)
—= 2"b"kr AU, ..., U

_ (Zk)lm) /w ) ... (w, Uz €1 d [£2 ] )

SinceZ™LV is tangent tqu at infinity, by lettings | 0 (and hence 1 co) we gain
the identity

. bgk’S(Ul, ceey Uk) |w|
Islilg — % = (2k)' I(l) / w, Ug) ... {(w, Ux) € d[%mI_V] (w)
= bzfml_v(ula ceeo u2k) .

Since Proposition 7.7 gives

. bgk’s(ula ceeo u2k) bgk’(k)(ul, ey uzk)

||m K = 5

sl0 S k!
we can compute

b0 = Kibg(T=Y ()
22KK1 Py (x)]%¢ / 2 2
= —— 7 e " d. 2™ 1(¢&) / et d.ZYt).
(Zk)I I (l) Rm—l R

Here and in what follows, we use the notation of Definition:4m, denotes the
orthogonal projection o and Qy the orthogonal projection o+. The integral
above can be computed explicitly (see for instance Prdpasi.1) and we obtain
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point (i) of Lemma 9.2 below. The identitglby’;—" = by’"-V-® can be proved
with a direct computation or one can use Lemma 8.6.

Point (ii) of Lemma 9.2 provides information on the mometnﬁté_l. Its proof is
less direct but not long. Here, whenebés a symmetrig -linear form, we denote by
bL_V the restriction obto O’ V.

Lemma9.2. Letx and V be as in Proposition 9.1. Then

(i) b3 (x%) = kI, =Y (x%) = byt "LV (x 2 — | Py (x)[2 for every xe R,

(i) b% LV =0foreveryk.

Note that the cask = 1 of (ii) implies the existence of a vectar € V+ such that
b(ll)(v) = (v, w) for everyp € R". In order to simplify some computations it is useful
to introduce the following notation.

Definition 9.3. We letb € V- be such thab{"(z) = 2(b, 2).

Hausdorff distance betweersupp («) and V. Recall that the moment#k) satisfy
the following identities:

2
> oM(x) = [x1* foreveryx e supp ). (9.1)

i=1
By Lemma 9.2(i), the cade= 1 of (9.1) gives
2(b, x) + |Py(X)|> = |x|> foreveryx e supp (),
which becomes
IQv(X)|> = 2(b,x) foreveryx € supp (). (9.2)
Combining Lemma 9.2(ii) and (9.2) (recall that V1), we obtain
2/b||Qv(X)| > 2(b, Qu(x)) = 2(b,x) = [Qu(X)I?

for everyx € supp ). Therefore, we conclude the®y(x)| < 2|b| for every

X € supp (). Thatis, the distance between any poing supp () and the plan&/

is uniformly bounded by a constant. It is not difficult to shtwat also the distance
between supp) and any € V is bounded. These two conclusions are incorporated
in the following lemma.

Lemma9.4. Letx and V be as in Proposition 9.1. Then

(ii)) bP(x) = 1Qu(x)I?and|Qy (x| < [Ib"]| for every xe supp ),
(iv) There existsg > 0such thadist (v, supp («)) < roforeveryy € V.
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Coming back to (9.2), note that if we could prdve-= 0, then we would conclude
supp ) c V. As already observed many times, this would imply= s#™LV;
compare with Remark 3.14. (On the other hang, i sZ™L_V, then

by {(u) = bf‘;”"LV(u) = 2sl(s)™? / (z,uyd#™2) = 0,
Vv

and hence necessaril;f) = 0.) Therefore, our goal is to show thlat= 0 (or,
equivalently,bgl) = 0). In order to prove this we will make use of the c&se 2 in
(9.1) and many computations.

Properties oftr bgz). The basic observations are contained in the following psépo
tion.

Proposition 9.5. Let u be as in Proposition 9.1. Then
trb? = o, (9.3)

4 2
rb? > m_+2\b<11>\ _ (9.4)

The proof of (9.3) is fairly simple.
Proof of (9.3). From Proposition 7.7 we have
S2
bys = st + Eb§2)+o(sz).
Therefore
tr (s7bys) — trbS”
S .

From Lemma 9.2(i) we conclude tHa(u, v) = (P (u), Py (v)) (indeed, if we define
the bilinear formB(u, v) := (P(u), P(v)), then Lemma 9.2(i) says that the quadratic
forms induced b)bgl) andB are the same). Thus,hf) ism, i.e. the dimension of
the linear spac® . Recall the definition ob,s. If we fix an orthonormal system of
vectorsey, ..., €, onR", then we have

. 25(6) = S > (s) Ze (z,&)"du
i=1 i=1

12 du@) o X d2T(X)
Je s du(2) Jpm €SP ZM(x)
where the last equality follows from Lemma 7.2. Using Préfars B.1, we obtain
tr (stbps) = m,

and therefore, plugging this into (9.5) we conclude (9.3). O

trb) = 2 lim (9.5)

tr (s™'bys)
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The inequality (9.4) will be split into two parts:

2
r (L) = 2[p{, (9.6)
2m 2
(2) _ (1)
tr (oL V) > m+2]bl B 9.7)
The first part is not complicated to prove.
Proof of (9.6). We use again
SZ
bps = sbY + Eb§2)+o(s2)
to conclude
tr (bpsL V1Y) —str (BSVL VL
tr (bgzh_vl) = 2lim . ( )
sl0 S
tr (bpslV+
— 2Iim¥, (9.8)
si0 S

where, in the last equality, we have used Lemma 9.2(i).
Letey, ..., en_m be a system of orthonormal vectorswf. The same calculations
performed in the proof of (9.3) yield

n—m
tr (bpsLVY) = 2szl(s)‘l/e‘s'z'22<z,a)zdﬂ
i=1

= 232I(s)‘l/e‘s'z'leV(z)lzdﬂ. (9.9)
From Lemma 9.4(iii) we know that
IQv(@)? = bi"(z) foreveryz e supp). (9.10)
Recalling that
by.s(z) = sBY(2) + o(s) = 2s(b, 2) +0fs), (9.12)

we can write

tr (bpsLV*
r (bPLve) & 2tim I P2sL V) 2 )
sl0 S

(9-9)&(9.10) 4lim I(s)~t / e 376 (2) du(2)
S

_ i -1 —slz]?
= 8IS|£Q I(s) /e (b, z) du(2)

_ bus(b 2
— giim2s® e gy 2’b§l>’ . (9.12)
sl0 S

O
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The last inequality (9.7) is the hard core of the proof of Bxxfion 9.1. After
proving in Section 9.1 statement (ii) of Lemma 9.2 and stai@n(iv) of Lemma 9.4,
in Section 9.2 we will introduce some notation and derive rdegral formula for

tr (bgz)l_v) (see equation (9.14) of Lemma 9.9). In Section 9.3 we wiltlgtthe

identity (9.1) wherk = 2 and prove an intermediate inequality involving the ingegt
of (9.14) (see Lemma 9.10). Finally, in Section 9.4 we wik tisese two ingredients
in order to prove (9.7).

9.1. Proofs of (ii) and (iv)

Proof of (ii). Sincebg;)_1 is symmetric, it suffices to show
b (y2-1) = 0 for everyy € V.
Therefore, let us fixy € V with y £ 0. Since
rMuor — A™LV  forr 1 oo,
there exists a sequenpg } C supp () such that
XY
;] 1yl
Recall that from Proposition 7.7 we have

and  [Xj| = oo.

2k—2
K - K K) /i
bl () = Ix; [ = b)) - > bM(x))
i=1

(here we adopt the convention that the last sum is equal t& 65f1). Hence, from
Lemma 9.2(i) we obtain

2k—-2 2k—-2

K - i 0o
b5 106 = I = 1R ()% = 3 B90d) = = 3 b))
i=1 i=1
Thus,
K - ~1; —(@k-1)p(K _
o 1Y) = 1y lim g~ Db ¢
2k—2

v

2k—1 ; 1= (2k-1) (K) (g
— lim |x b™(x}).
[y lim 1| ; (X))
Clearly, there exist constan® andC such thabi(k)(x‘j) < CIxj|" < C(L+Ixj[*7?)
foreveryi € {1, ..., 2k — 2}. Therefore we conclude

_ _ i 1_|_ |X I2k—2
b¥ (y?*1) > —Cly&iim — I~

= 0.
jroo x|t
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Since—y € V, the same argument gives
—b30 1 (y* ) =BG, (=)™ = 0,
and we conclude thaf?_ (y2-1) = 0. 0

Proof of (iv). Assume that the statement is false. Then there eigfs— V with
re = dist(suppf), xx) — oo.
Let yx € supp () be such thatxx — yk| = rk. From Lemma 9.4(iii) it follows that

dist(yx, V) < ||b§l)||. Letz € V be such thatyx — z«| = dist (y«, V) and consider

the measures

k . —m
o= ey -

After possibly extracting a subsequence, we can assum)e‘thfat 1. Note thatuX
satisfies the condition

1X(Br (X)) = omr™ foreveryx e supp (¥) andr > 0. (9.13)

It might be thatu* ¢ U/™(R"), since we do not know whether the origin belongs to
supp ¥). However, we know that

dist (0, supp X)) = rtdist @z, supp @) < rtdist(z yi) < retotd).
This, combined with (9.13), gives & supp (*°) and therefore:® € U™(R"). On
the other hand
supp @) < {IQM)I < 1b{]/ri}
and hence we conclude supp{) c V. This, together withu> e U™(R"), implies

u>® = "MLV (compare with Remark 3.14).
If we setwy := Xk — zx € V, we have that
lim @ = 1.
ntoo Ik
Therefore, we can assume that/rx convergesto a € V. Sinceu(B, (xk)) = O,
we obtainuX(Bs(wk/rk)) = 0 and therefore we conclude®(B;(u)) = 0, which
contradictsu™ = 7ML V. O

9.2. Anintegral formula for tr (b$LV)
We start this section by introducing some notation.
Definition 9.6. We lety be the measure =™ 2e~12*/2 MV

Next we consider two linear maps: )V — R"andb € Hom (O?V, R), as
defined below.
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Definition 9.7. We letw : )%V — R" be defined by
((U?), w) = 302U © w) — 4lul’(b, w) foreveryu e V and every € R".
We letb e Hom (O?V, R) be defined by
bu?) = bP(U?) + (w(u?), by .

Remark 9.8. Note that from Lemma 9.2(ii) and Definition 9.3 it follows tha
(w(u?),w) = 0 foreveryu,w € V.

Hencew(u?) takes valuesii - and we canregarditas alinear map@2 V > Vi
We are now ready to state the formula which is the main godlisfsection.

Lemma9.9. Letx and V be as in Proposition 9.1. Then we have

tr (bgz)Lv) - / Bw2) dy (). (9.14)
Proof. First of all, recall thabgz)l_v is symmetric. Therefore, there exists a system
of orthonormal coordinates,, ..., om € V such that the corresponding orthonor-
mal vectorsey, ..., e, are eigenvectors dfigz) with corresponding real eigenvalues

fS1, ..., Pm- This means that
/ bY@ dy () = / (B2 + ...+ prv2) dy ()

= frtotpn =t (0LV), (9.15)

where we have used Proposition B.1 to compute the secorgtahte
Hence, in order to conclude (9.14), we have to prove that

/<w(1)2), b)dy (v) = 0. (9.16)
Step 1 Using the same argument which gives (9.15), we conclude that

|Py(2)|2 / z,0)2dy () foreveryz e R". (9.17)

Next, for anyv, w € R", we use the definition of the momeihigs and the expansion
(7.7) in Proposition 7.7 to compute

'ii“ol%/ e (2,0)2(z—b, w) du(?) = 30§ (v?Ow)—46§(v?)(b, w) . (9.18)
Whenov € V andw e V4, recalling thab{"(v2) = |Py ()2 = [v|2, we then obtain

" I(s)/ e (2,022 b, w) du(?) = (@(v?), w). (9.19)
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Therefore, we can compute

2 (9.19) . 8s / Sz N2
/V<w(v )bydy () & /V'é?‘ous) [ 2,072 b.b) @ 7 )

8s 2
: —3|z| _ 2
Islgg) o/ (z—b, b>/v<z,v> dy (v)du(2)

. 8s _sjz? 2
ls'%@/e [IPv(2)|“(z—Db,b)ydu(z). (9.20)

(9.17)

Note that, to justify the equality in the second line, we ggpk Dominated Conver-
gence Theorem through the bound

8s 2
‘@ v e_S|Z| (Za D>2<Z - ba U)> dlu(z)
: CSHm/Z/ e |22 2wl du(2) < CloPlwl? (9.21)
\Y

where we used that, by Lemma 9.4(iijjz — b, w)| < C|w]| for z € supp {«) and
weV™t

Step 2 Next, consider anyw € R". Using again Lemma 9.4(iii) and Lemma 7.2
we obtain

‘ / e 57 1Qu(@)12(z — b, w) du(2)

AN

4|b|?|w| / e 5% (12| + |bl) du(2)

= 4bPw| [ e (x| + |b]) d.L™(x).

Rm

Therefore, using Proposition B.1 we conclude

X S sz _
Ilira@/e 2°1Qv(2)|%(z— b, w)du(z) = 0. (9.22)

S,

Next, we will show that the following limit exists and is O:

im > [ oSl 52i5 _
I;irg) 10 /e |z|*(z— b, w)du(2). (9.23)

First of all, if we fix a system of orthonormal vectas . . . e,, we can write

i S [ oStz 2,
Ié?(]) I(s)/e |z|7(z — b, w) du(2)

= > lim %/e—5'2'2<z, e)2(z—b, w) du(z) . (9.24)
i=1

Then the limit exists because of (9.18) (and actually thistlis a linear combination
of bP(e? © w) andb{(e?) (b, w)).
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Next, we write

s 2 [ e97°1212(z = b, w) du(2)
_ | | 2 _ — 2 s
@/e St Izl (Z_baw> d/u(z) = 7 m g—1-m/2
—m2 J(S)
2
a o-1-m/2°
Note that
) —& e (z—b,w)du(?)
g-1-m/2 _gdgs—m/z ’
mds

Thus, recalling thak(s) = = ™?s~™2, we can use De L’@pital’s rule to conclude

—s|z?
ISIEB TSS) e—S|Z|2|Z|2<Z —b,w)du(z) = 271_”;/2 2578 fe Izl (Zsjmt/); w)du(2)
= MMim Je iz b, w)du(@)
2 sl0 1(s)
Note that

'ii'arls) [ &5 2 wdu@ = 60w) = b.w)
and
Tls) / e (b, w) du(2) = (b, w).
Therefore, we find
Isi?(]) %/e‘s'z'2|z|2<z—b, w)ydu(z) = 0.
Combining this with (9.22) we obtain

. S _glzI2 .
Is'%@/e 2°1Py(2)12(z— b, w)du(z) = 0. (9.25)

In the particular case = b, the last equality can be combined with (9.20) to give
(9.16), which completes the proof. O
9.3. Anintermediate inequality

In this section, we use the identity (9.1) wkh= 2 to derive an inequality involving
b.

Lemma9.10. Letx and V be as in Proposition 9.1. Then

V) b?(2) + bP(22) + 362 ((Pv(2))* © Qu(2) = 1Qv (@12 (1Qv(DIZ + 2Py (2)1?)
for every ze supp ().
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(vi) Foreveryn € V we have

(B©?)* < |o©d)|*IbI. (9.26)

Proof. (v) First of all we prove
bP0w o w?) = bPw%) = bPw? = 0 forallv e Vandw e V.  (9.27)

Recall that Lemma 9.2(ii) givelsgz)(v3) = 0 for everyn € V. Next, letv € V and
w € V* be given. From Proposition 7.7 we have
(2) 2 -2 2y _ —s|z| 2
b3(v©w)_|s|?323 b3’3(v®w)_s¢03l(s)/ (z,0)(z, )" du(2).

(9.28)

Clearly,|(z, v)| < |z||v]. Moreover, sincey € V-,

(z, w)? = (Qu(2), w)* < |QV(DP|w|*.
Recalling Lemma 9.4(jii), we can bound the integrand in 12y [v]|b{"|2|w|?|z],

and thus we obtain

3P © w?)|

IA

8slo!1b'M121w2
lim M/e—smzm du(2)

sl0 [(s)
= lim M/ e—SIXI2|X|d$m(X)
sl 1(s) R '

Changing variables in the last integral, recalling thég) = (z/s)™?2, and using
Proposition B.1, we obtain

Sm/2+l

. -1 —s|x|? m =
ISI?(]JSI(S) /Rme IX] dZ™(x) = I'”(]Csm/2+1/2 = 0.

A similar computation yieldb:(f)(w3) = 0 for w € V+* and completes the proof of
(9.27).
We now come to (v). Fixz € supp (). Then from Proposition 7.7 we have

b?(2) + bP(2) + bP(#) + bP(2) = 12/*

Lemma 9.2(i) impliesPy (2)]* = b?(*). Moreover, we have the elementary identity
121* = IPv(2)1* + 2Py (2)1?| Qv (2)I* + 1Qv(2)|*. Hence, we have

b?(2) + bP(2) + bP () = 1QV@DIP(1QVDI + 2Py (2)?) . (9.29)
Moreover, we can write

bP(2®) = bP((Pv(2) + Quv(2)®)
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and using (9.27) we obtain
bP(2%) = 30P(Pv(2?© Qu(2).
Substituting this into (9.29) we obtain (v).

(vi) Fixo € V. Lemma 9.4(iv) implies that, for arty T oo, there exisb; € V and
w; € V1 suchthat

tio + o) +wi € supp ) and loi + wi] <rg.

We can assume that, up to subsequeneogsy w for somew € V+. Applying (v),
we have

b(lz)(tiv + v + wi) + béz)((tiv +0i + wi)?) + Sbgz)((tiv +0i)? © w;)
= 2t +viPlwi® + wi]*.
Dividing by t? and letting 1 oo we conclude
bPw?) + 3bP w2 O w) = 2jv||w|?.
On the other hand, sind® + v; + w; € supp ), from Lemma 9.4(iii) we have
b(ll)(tiv + 0 4+ wi) = |wi|*.
Sincetjo + v; € V, from Lemma 9.2(ii) we concludegl)(tiv + i) = 0andhence
bP(wi) = fwil?.

Lettingi 1 oo we find thatbgl)(w) = |w|?. Therefore, recalling Definition 9.7 and the
fact thatb{"(w) = 2(b, w), we conclude that

bP(2) + (w(v?), w) = 0,

(9.30)
lwl* = 2(b, w).
Setv := w — b. Then from (9.30) we have
52 = |w|? = 2(w, b) + |b]> = |bJ? (9.31)
and (recall Definition 9.7)
b(®?) + (w(v?), ) = O.
Therefore, we conclude
(60:2)" < [w@d)|* 1512 2 0@ b2 (9.32)
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9.4. Proof of(9.7)and conclusion
We are now ready for the last computations leading to (9.@)&mce to the proofs of

Proposition 9.5 and Proposition 9.1.

Proof of the inequality9.7). Step 1Recall the identity (v) of Lemma 9.10,

0 = bP(2) +bP(2) + 36P((Py () © Qv(2) — IQV)I* - 21V (DI IQV (D)2,
(9.33)
which holds for any € supp {«). Moreover, recall the identities

1Qu(z)2 e phpy szl Q. (2)) = 2(b, Qu(2)),

which also hold for every € supp (). Inserting theminto (9.33) and using the forms
b andw of Definition 9.7, we obtain

0 = B((A(2)?) +{e((Pv(2)?). Qu(d) — b} + bP(2)
+ 269 (Py(2) © Qu(2)) + bP(Qv(2)?)
- (b(ll)(QV(z)))2 for everyz e supp ().

From Lemma 9.4(iii) we know thgQv (2)| < ||b§l)|| = 2|b|. Therefore, there exists
a constanK which gives the linear growth bound

6((Pv(2))?) + (0((Pv(2)?), Qu(2) — b)| < K(lzl+1) foreveryz e supp ().

Hence, from Lemma 7.2 and Proposition B.1 we conclude

lim sup
sl0

S —s|z? TR
9 / e [b((Pv(2))?) + (o((Pv(2))?), Qu(2) — b)] du(2)

IA

im—_ [ esiz?
K Is'?(]) 16 /e (Izl + 1) du(2)

— Klim =1 [ esix? Mix) —
= K Is'?(]) 16 Rme (IX|+1)dZ£™(x) = 0. (9.34)

Step 2From Proposition B.1 we compute

/(C,w“dy(o) = 3|¢|* foreveryr e V. (9.35)
\%
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Indeed, fix orthonormal coordinates, ..., Xy on V in such a way thay =
(I¢1, 0, ..., 0). From the definition of we obtain

/(C,v>4dV(v) = @r)™2 [ |o*de ¥ 2dx = |C|47r_m/2/ Aybe VP dy
\% RM RM

= i’z ( / e P dy) : ( / yie ™ dyl)
RM-1 R
— 4|C|47T—m/2 (n_(m—l)/Z) (gn—l/Z) — 3|(|4

Similarly, if y, z € V are orthogonal, we fix orthonormal coordinakgs. . ., X, on
V sothaty = (]y|,0,...,0)andz = (0, |z, ..., 0) and we obtain

v RM-2

( / y2e i dyl)-( / yze % dYZ) = |yPIzl* (9.36)
R R
and

/ (. 0)(z0)%dy @) = 4|y||z|37r_m/2(/ e—lv’lzds/)
V Rm—z

( / yie dyl) : ( / yge‘ygdyz) = 0. (9.37)
R R

For generaly, z e V, we writey = ¢ 4+ az, whered | zand we compute

/<y,v>2<z,v>2dy(v) = /<5,v>2<z,v>2dy(v)+2a/v<f,v><z,v>3dy(v>
\Y Vv

(9.36)4-(9.37)

+a /V (z, v)*dy (v) P22 + 3a%|2)*

(€17 + %1213z + 2@lz?)? = |yPPlzl* + 2(z, y)?.
(9.38)

Now we fixy € V andw € V+ and we compute

/V (y, 0)2(0(0?), w) dy (v)

8 :
(919 im % e (7 b, w) [ /V <y,u>2<z,v>2dy(v)} du(2)
. 16s 2
=i 5 | & z-bwz Y du@
8sly|? 2
SL0 ng)l - [ e IR (@) 2z = b, w) du(2)

(9-19)+(9.25) 2a(y?), w) . (9.39)
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(The convergence in the second line is justified by the Dotath@onvergence Theo-
rem through the bound (9.21)). Therefore, we have

[ 662 a0 2 0 [ o0 050)
V Vv

9.19)

|b|2|im/ %/e_slzlz(z,wZ(Z—b, o(®?)) du(2)dy (v)

sl0

= |b? lim I(s)/ —S'Z'Z/ (z,0)2(z — b, w(®?)) dy () du(2) .

Recall that in Remark 9.8 we have observed that the valuesaoé all contained in
VL. Thus(z — b, w(v?)) = (Qv(2) — b, w(v?)). Moreover, since supp( = V, we
can write

[ @y e = witip S e [m@.0teue
~bot?) dy(v)dﬂ(Z)
o [ €5 (Pv@). Qv - b) dutd

(9:39) |b | I|m

@39 _16/p)? Isiﬂ?)@ / e B((Py(2))?) du(2)

= 16 P [ e B(R@AAATLV @),

(9.40)
where in the last line we have used t&t™L_V is tangent tqu at infinity.
After a change of variables, we conclude
[ 607 dr0) < -8bF | Bu?)dr ). (9.41)
\Y \%
Step 3 Let s, ..., An be the eigenvalues dfand fix coordinates, ..., vm ON

V in such a way that the unit vectoes, . . ., e, are the eigenvectors df Then we
have by (9.17)

[809ar0) = [ i+ puddr )
\Y V
= Pr4...4+pm = trb (9.42)

and

[ G0N o) = [ (ot ) dr )
\Y% \Y
= B2 [ vidy@)+2> B | vZ?dy®).
> / > i vt

j>i
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Recalling (9.35) and (9.36) we obtain

m m 2 m
/V(B(vz))z dy(0) = 3D F+2D B = (Zﬁi) +2> B
i=1 i=1

j>i i

(1 D)(E) - (2) [fsowo]

Therefore, from (9.41) we conclude

(1+%) [ / 6<v2>dy<v)T < —abf? | By o)

IV

and hence
- 2\ * 2m 2
2 _ < 2 _ A @
/Vb(v ydy () > (1+ m) 8lbj2 = m+2‘bl ‘ . (9.43)
Combining (9.43) with Lemma 9.9 we obtain (9.7). O

Proofs of Proposition 9.1 and of Proposition 9.6oncerning Proposition 9.5, note
that (9.3) is proved in the introduction of the chapter, velaer (9.4) follows from
(9.6) (which is also proved in the introduction of the chapsad (9.7).

Coming to Proposition 9.1, note that (9.3) and (9.4) gjgé = 0. By Lemma
9.4(iii) this implies supp#) c V. As already remarked upon many times, sipds
anm-uniform measure and anm-dimensional plane, thisimplies that= 7™V,
which is the desired conclusion. O



10 Open problems

This chapter presents several open problems related tophs bf these notes, which
| collected with the help of Bernd Kirchheim.

10.0.1. Lower and upper densities and BesicovitchE/2-Conjecture. As already

mentioned in the introduction, the theorem proved by Priei$25] is stronger than
the one exposed in the second part of these notes. We rebalétfor the reader’s
convenience (cp. with Theorem 1.2).

Theorem 10.1. For any pair of nonnegative integers k n there exists a constant
c(k, n) > 1such that the following holds. }f is a locally finite measure oR" and

u( r( ) r( )

0 < limsup—————= < c(k, n)Ilmlnf Al

rl0

< oo forpu-a.e. xe R",

(10.1)
theny is a rectifiable k-dimensional measure.

The following is an open problem.

Problem 10.2. What are the optimal constaru, n) for which Theorem 10.1 holds?
How do they behave far T co?

Very little is known in this direction. In his paper, Preidsos/s thatc(2, n)
convergesto 1 as 1 oo. There is a striking difference with the cdse= 1. Moore
provedin R3] thatc(1, n) > 1+ 1/100 for everyn. This fact gives a glimpse of why
the casé& > 2 of Theorem 1.2 is much more difficult than the clse 1.

A natural interesting case of Problem 10.2 is given by messurof the form
¥ _E for some Borel seE. In this case the upper densit§* (u, x) is necessarily
less or equal than 1 at-almost every poink. Therefore, as a corollary of Theorem
10.1 we conclude that

Corollary 10.3. For any pair of nonnegative integersk n let gk, n) > 1 be the
constants of Theorem 10.1. Then, any Borel set E @vith#(E) < oo such that

ak,n) = ck,n)"t < O%E,x) for#*-ae. xecE (10.2)

is a rectifiable set.
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Thus we can ask the following question.

Problem 10.4. What are the optimal constanigk, n) under which Corollary 10.3
holds?

Though clearlya(k, n) < [c(k, n)]72, it is not known whether one can control
a(Kk, n) from below withc(k, n). The optimal constant(1, n) was conjectured long
agoin p]. This is the famous Besicovitcty2-Conjecture:

Conjecture 10.5.1f E c R?isaBorel setwith O< J#*(E) < coandd*(E, x) > 1/2
for 2#1-a.e.x, thenE is rectifiable.

In his seminal paper?] Besicovitch proved the bound(1, 2) < 3/4. His proof
generalizes easily to show tha{l, n) < 3/4 for everyn. The boundu(1, 2) >
1/2 was already proved by Besicovitch i8] [(see also $]). More precisely, he
exhibited a purely unrectifiable s& which has lower density equal to/4 s#*-
almost everywhere. Besicovitch’s estimat, n) < 3/4 remained for a long time
the best until Preiss and 3&r in P6] improved it toa(1, n) < (2 + +/46)/12. A
more important feature of their proof is that it actually ends to general metric
spaces. Recent attempts to solve Besicovitch’s Conjecturbe found in§] and [7].
Concerning the value of the optimal constafk, n) for generak andn very little is
known. In 3] Chlebik proved that«(k, n) > 1/2.

An “g”-version of Marstrand’s Theorem 3.1 is valid as well. Monegsely,
the following theorem holds and its proof is a routine apgiian of the techniques
introduced in Chapter 3.

Theorem 10.6.Leta € RT \ N and ne N. Then there exists a positive constant
&(a, n) such that

i ({x 10 < Iin?féup@ < (1+&(a, n))Iirpiionf @]) =0 (10.3)

for every measurga.
Proof. Lete > 0 be a fixed positive number. Arguing with a blow-up procedg@

the proof of Marstrand’s Theorem 3.1, in order to show thectigsion of the theorem
for this particulag, it suffices to show that there are no nontrivial measusch that

@ur* < V(B (X)) < (14 &)w,r* foreveryx e supp () and every > 0. (10.4)

So, if the theorem were false, for every> 0 there would exist a measuvg with
0 € supp ¢.) satisfying the bounds (10.4). By compactness, a subsegquéfv,}. o
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converges to a measurg e U*(R"). But we know from Proposition 3.5 that* (R")
isempty forevery € R*T\N. This gives a contradiction and concludes the proaf.

As above, we can ask

Problem 10.7. What are the optimal constanig:, n) for which Theorem 10.6 holds?
How do they behave as1 co?

Even the following question is still unsolved.

Problem 10.8. Leta € R* \ N. Isliminf, ¢(a, n) > 0?

10.0.2. Noneuclidean settingAnother outstanding problem is to extend the validity
of Theorem 1.1 to more general geometries. In particula, ftlowing natural
conjecture (see for instancd] is widely open.

Conjecture 10.9. Let X be a finite-dimensional Banach spaaea positive number
andy a nontrivial measure oK such that

0 < lim LB

im — oo foru-a.e.x € X, (10.5)

whereB; (x) denotes the intrinsic ball of radinsand centek. Thena is an integer.

Fora €]0, 1] the answer to the conjecture is affirmative and followsfi@metric
version of the arguments of Marstrand &rb]. The following much more challenging
case of Conjecture 10.9, recently proved by Lorentlid,[is the only other known
extension of Marstrand’s result.

Theorem 10.10.Conjecture 10.9 holds far €]1, 2[ if the balls of X are polytopes.

Example 10.11.1tis not difficult to see that Conjecture 10.9 does not hotdjieneral
metric groupsX. For instance, one might také = R?! with distanced(x, y) =
ly — x|¥* and the measure = 7, for a €]1, 2[ (cp. with [4]).

A natural generalization of Preiss’ rectifiability theorenthe following.

Conjecture 10.12. Let X be a finite-dimensional Banach spagege N and ¢ a
measure orX such that

B
0 < lim Lk(x)) <oo foru-ae.xe X. (10.6)
rl0 r

Theng is a rectifiablek-dimensional measure.
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For more general metric spacegshis conjecture fails (tak¥ as in Example 10.11
and choose: = 2). Clearly, the cask = 0 is trivial. The casd& = 1 follows by a
suitable modification of Besicovitch’s arguments. kgr 2 the validity of Conjecture
10.12 is known only in the Euclidean space. Even the follgwireaker version is
open:

Conjecture 10.13.Let X be a finite-dimensional Banach spake; 2 aninteger and
E a Borel set ofX with finite .7#*-measure such that

k
im JCYE ﬂkBr(x))
rio0 gl

ThenkE is arectifiabl&k-dimensional set.

=1 fors#*-aexekE. (10.7)

In the model cas&X = ¢3 (i.e., R® with the cube norm) Lorent carried out
a considerable part of Preiss’ strategy kP[] The situation here is much more
complicated because of the large abundance of uniform mesa&ee the next section
for a related problem).

10.0.3. Uniform measures.We start this section by defining uniform measures, a
suitable generalization éfuniform measures.

Definition 10.14. A locally finite measure: onRR" is said to be a uniform measure if
foreveryr > 0 and for everk, y € supp («) we haveu(B; (X)) = u(B:(y)).

The following elegant theorem of Kirchheim and Preiss (&% §nd Theorem
3.11) proves a strong regularity property of uniform measyhe proofis reported in
Appendix A).

Theorem 10.15.If x is a uniform measure, thesupp () is a real analytic variety,
i.e. there exists an analytic function HR" — R such thasupp ) = {H = 0}.

A standard stratification result shows that analytic vasedre the union of finitely
many strata, each of which is an analytic submanifold ofjat&limension. Ik is the
dimension of the “top” stratum, then supp)(is ak-dimensional rectifiable set, and it
is easy to check that = c#%_supp () for some positive constant

The following is a very natural and hard problem.

Problem 10.16. Classify all uniform measures.
Even the very particular case of classifying all discretiéarm measures is open.

Clearly, k-uniform measures are a particular example of uniform nressand
hence the following is another very particular case of Reob10.16.
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Problem 10.17. Give a complete description &(R™) for every pair of integerk
andm.

A solution of this last classification problem would yieldiff@ent point of view
on Preiss’ proof,i.e. adeeper understanding of why flabumifmeasures and uniform
measures curved at infinity form a disconnected set.

The cas&k = m — 1 of Problem 10.17 has been settled by Kowalski and Preiss
in[11].

Theorem 10.18. u € U™ Y(R™) if and only if x is flat or m > 4 and there exists an
orthonormal system of coordinates such that= #™1_C, where C is the cone
{X? 4+ X5 + x5 = x2}.

Flat measures and measures of the fo#ffiL_ V x C (whereV x C ¢ R"* x R*
is the product of a linear subspace\bfwith the light coneC) are the only known
examples ok-uniform measures. Therefore even the following seemiimgipcent
guestion is still open:

Question 10.19.Are therek-uniform measures which are neither flat measures nor
products between the light cone and flat measures?

A natural way of constructing uniform measures is to look Kedimensional
homogeneous seis c R".

Definition 10.20. A setZ c R"is homogeneous if for every, y € Z there exists an
isometry® of R" such thatb(x) = y and®(Z) = Z.

One could naively conjecture that all uniform measures aredgeneous, i.e. of
the typec.#% L Z for an homogeneous set, but the light cone shows once mdre tha
this is not the case. However the following questions aleogtéen.

Question 10.21.Are there nonhomogeneous uniform measuré®ifor n < 3?

Question 10.22.Are there nonhomogeneous uniform measures with bounded sup
port?

Question 10.23.Are there nonhomogeneous uniform measures with discrppost?

Conjecture 10.12 leads naturally to the study of measureshmdrem-uniform
with respect to different geometries. As already mentionled case of3, has a



10 Open problems 115

large abundance of 2-uniform measures. For instande=f {(x1, X2, f (X1, X2)} is

the graph of a 1-Lipschitz functioh : ¢2, — R, then the measurgZ?LT is a
2-uniform measure (herg?”? denotes the Hausdorff 2-dimensional measure relative
to the metric spacé® ). On the other hand#’?L_V is a 2-uniform measure for any
linear 2-dimensional subspa¥e The following is a plausible conjecture.

Conjecture 10.24.Let 7#?|_Z be a 2-uniform measure if%,. Then eitheZ is a
linear subspace, or it is the graph of a 1-Lipschitz functfon ¢3, — R, up to a
permutation oky, X2, Xs.

10.0.4. Exact density functions.Let us introduce the following terminology.

Definition 10.25. A functionh : Rt — R is called an exact density functionRf'
if there exists a nontrivial measureon R" such that

0 < lim 44509

L < oo foru-a.e.x. (10.8)

Now Marstrand’s Theorem 3.1 can be restated in the followiag.

Theorem 10.26.h(r) = r* is an exact density function iR" if and only ifa is a
natural number less or equal than n.

It has been proved by Mattilaid §] thatin one dimension an exact density function
must satisfy the conditions

h
0 <limh(r) < oo or 0<lim ﬁ < 00. (10.9)
rlo rlo r

Section 6 of 5] contains several results and questions about exact gidasittions
and more complicated variants of them.

10.0.5. Symmetric measures and singular integralsSome of the ideas o2p| have
been used by Mattila and Preiss #&2] to prove the following rectifiability result (see
also the previous work2[0] of Mattila in two dimensions).

Theorem 10.27.Let u be a finite Borel measure d" such thal < 6%(u, x) < oo
for u-a.e. x. If the principal value

. y — X
Ilm/ —d 10.10
M Jem.00 Ty = X< w(y) ( )

exists atu-a.e. X, thenu is a rectifiable k-dimensional measure.
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In [22] the authors raised the following question.

Question 10.28.Assume thaju = s#¥L_E for some Borel seE with finite J#*
measure and that (10.10) exists fora.e. x. Is it then possible to drop the lower
density assumptiof(x, x) > 0in Theorem 10.27?

If we replace (10.10) by the existence of the principal védlreother singular
kernels of typeQ(x/|x|)|x|~¥ with Q odd, then the conclusion of Theorem 10.27 is
false (see9]). Itis an open problem to understand for which type of késio@e can
generalize the rectifiability result of Mattila and Preiss.

The proof of Theorem 10.27 uses a blow-up technique and dutatedy of
the tangent measures o In particular, using this approach, one ends up studying
symmetric measures.

Definition 10.29. A measurew onR" is calledk-dimensional symmetric measifre
/ (z—=x)dv(z2) = 0 foreveryx € supp ¢) andany > 0, (10.12)
B (x)

and there exists a positive constarsuch that
V(B (X)) > cr’ > 0 foreveryx e supp {). (10.12)

In [20] Mattila showed that ifR? symmetric measures are necessarily sums of flat
measures. In higher dimension the question whether a siregalt holds is open.



Appendix A. Proof of Theorem 3.11

Before coming to the proof we recall that assumption (3.6)lies the following
identity for everyy, z € supp () and anyu-summable radial functiop(| - |):

/ o(1x — yD) du(x) = / o(1x — ) du(x) (A1)

(see Remark 3.15 and the proof of Lemma 7.2).

Proof. In order to simplify the notation, from now on we denote supplfy S and,
given anyx € S, we introduce the functio : R* — R given by

f(s) = u(Bs(x)).
By assumptionf does not depend on the choicexof S.
Step 1 In this step we prove the estimate

n
w(Bi(y)) < 5" (rg) f(s) foreveryO< s <r < ooandforevery € R".
(A.2)
Denote byF the family of finite subsetg c B, (y) such that

S .
|z — 25| > > for everyz, z, € Z with z; # z,.

Fix Z € F and note that the ballsB;,4(2) : z € Z} are all disjoint and contained in
Bs/ar (y). Therefore

n 5 n
card ) on (Z) = > L"(Bsa(2) < L"(Bsjaly)) = on (Zr)
zeZ
and we conclude that
card@) < 5"(r/s)". (A.3)

This allows us to choose a gt € F such that card{) = maxzc+ card ).
Fixz e M. Then, eitheBs/>(z) " S = @ and hence:(Bs/2(2)) = 0, or there exists
y € Bs/2(z) N Sand thusu(Bs/2(2)) < u(Bs(y)) = f(s). Inany case,
1(Bs/2(2)) < u(Bs(x)) = f(s) foranyze M. (A.4)
Note that the maximality oM implies that the ball§$Bs/>(y)}yem coverB;(x). Thus

B0 = X u(Boaly) £ card@)t(9 L 5(5) 1.

yeM
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Step 2 Let us fixx° € Sand set
F(x,s) = / [e—slz—xlz - e—S'Z—X°'2] du(z) forx e R"ands> 0. (A.5)

For anyx € R" we can write

1
/e‘s|z‘x'zdu(z) = /ﬂ ({z LSz r}) dr = /0 1 (By=mnys(x)) dr.
(A.6)
Therefore:

e From (A.2) and (A.6) we conclude

1l/e 1
/e‘s'z‘x'zdﬂ(z) < 5"f (s‘l/z)/ (=Inr)V2dr + f(s7Y?) (1_5) < 00
0
(A7)
and thus the integral in (A.5) is finite.
* From (A.1) we conclude that the integral in (A.5) vanishesgfioyx € supp ().

Therefore,F is well defined, finite, andF(x, s) = 0 for anys > 0 andx € S. We
claim that

F(x,s) = 0 foranys> 1 — X € S. (A.8)

As we have already remarked, one implication follows diggfcom (A.1). It remains
to prove the opposite implication. Assume tlxa¢z S and lete > 0 be such that
B.(X) N S= @. Then we have

[esraa =

M8

/ e du(2)
Biier1)s (X)\ Bie (X)

k=1

< Ze_Skz"zu(B(kH)s(X))
k=1
(A2) < —ske? n
< 10D ek + 1) f(2/2) (A.9)
k=1
and
/ e du(2) = e u(B,p(x%) = e f(e/2). (A.10)

These inequalities imply that

e—s|z—x|2d 7 00
lim f P~ 12 < lim 1Oqze—5(k2—1/4)32(k+1)n - 0.
st [ € du(2) stoo ™ &

Therefore, fos large enoughk-(x, s) must be negative.
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Step 3 We now define
H(x) = / e S F(x, s) ds. (A.11)
1

Recalling (A.7), we have

2 2
F2(x,s) < 2( / e_slz_xlzd,u(X)) +2( / e‘s'z‘xo'zdu(x))

1/e e—1\°
= —1/2y12 _ n/2 - =
4.5 f(sV?) (/0 (=Inr)¥odr + — )
e 2
4.52“[1‘(1)]2(/1/ (—Inr)“/zdr+il) fors>1. (A.12)
0 e

AN

AN

ThusH is finite and moreover, by (A.8}(x) = Oifand only ifx € S. To complete
the proof of the theorem we just need to show tHat analytic.

First of all, note thatH can be extended to a complex function(@f by simply
setting

o0 2
H(, ..o, &) = /1 e [ / (e—SZKZi—fi)Z_e—S'Z—X°'2) d,u(Z):| ds (A.13)

forevery €1, ..., &) € C". We will now show that this extension is holomorphic.
First of all, set

h(s, z, &) = e S ~)P _ gslz—x

Thus, we can write
00 2
HO = | e_sz[/h(S,Z,f)dﬂ(Z)] ds.
1

=12 =12 H = x 02
h(S, z, f) — e—s|z—Reg| +s|/Im&|“+2si(z—Res)-Im¢ e—s|z—x | ,

Next, note that

from which we obtain
Ih(s, z, &) < e SZX°F | gslimel gsiz—Rel (A.14)

We use this inequality to estimate

‘/h(s, z,Q)du()| < /lh(s, z,8)|du(2)
%)

C (1+e3“m€”'2) fors> 1. (A.15)
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This gives
IH(&)| < C/e‘Sz (1+e23“m5'2) ds < .
Next, note that we have

oh .
—(s,2,¢) = 0 foreveryj. (A.16)
0

Fix a directionw € C". We want to show tha@;% exists at every and that

H © h
Z—w(é) - /1 e‘sz[/h(s, Z,é)dy(z)/g—w(s, z,g)dﬂ(z)] ds. (A.17)

This, together with (A.16), would imply that is holomorphic and complete the
proof.
Therefore, fixt, € C" and consider

im H( +tw) — H(S)
teR,t]0 t

= lim /oo e [/(h(s, z,&+tw)+h(s, z,¢)) du(z)
1

teR,tl0
/ h(s,z, { +tw) —h(s, z,{)
t
Recalling (A.14), for fixed' andw, and fort < 1 we obtain
fscot(@d = IN(s,z ¢ +tw) + (s, z )

2 - 2 12
< CeCs (e—s|z—><o| + e—s|z—Re(__,+tw)| +e—s|z—Reg| ) )

dﬂ(z)} ds.

Therefore, it is easy to see that there exikts,, € L(x) such thatfs: ., < fsco
for every|t| < 1. From the Dominated Convergence Theorem, we conclude

im [ (h(s.2.¢ +10) + 6. 2.8) du@ = 2 [ hs.2)du@. (A1)
Next, consider
oSt @2 @ -e) _ g
t

‘ h(s, z, & + to) — h(s, , f)’ - ‘e_szj(z,. _mz‘

" <

For any given complex numberwe have

e—sta -1 e—stRea -1
t t

Using this elementary remark, simple calculations lead to

‘ h(s,z, & +tw) —h(s, z &)

< elReal fort) < 1.

_ _ 2 _ _ _ 2
n < CeCse s|z—Re¢|“+Cs|z—Re¢| < Ceclse s|z—Re¢| /2’

(A.19)
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where the constan@ andC; depend only o andw. Thus, again by the Dominated
Convergence Theorem,

sz —h(s, 2 h
Hrg/ (5.2 5“‘1’) 529 440 = /s—w(s, 28du@.  (A-20)

Next, from (A.15), it follows easily that

e‘sz/]h(s, 2,& +tw) +h(s,2,8)| du(z) < CEs. (A.21)

Similarly, by (A.19), the same computations leading to &.dive

/ h(sa Z, f + ta)) - h(S, Z, é:)
t
Hence, by (A.21) and (A.22) we conclude

e / Ih(s, & + te) + h(s, 2, &)| du(?)
/ ‘ h(sa Za f +ta)) - h(sa Za é:)

du(z) < Ce*s. (A.22)

t du(z) < C.e°5%, (A.23)

Therefore, by the Dominated Convergence Theorem, (A.2820), and (A.23) give
(A.17). O



Appendix B. Gaussian integrals

Proposition B.1.

/ e 4™z = ™2 (B.1)
Rm
wm = LTBO) = — (B.2)
2m+17.rm
i1 = LPYBY(0) = (B.3)

em+1)2m—1)...3-1

[ 1 e d e = (j-1+ T) (1 T) Momz (B4

2 2/ 2
—z? m Dm (m+1)/2
zle7" dZ"(2) = B.5
[ 1 @ = mrte (B.5)

j -1 m-—1 Mo
Z 2J+le—|2|2 dgm 7) = ( + m_) . (1+ ) m (m+l)/2.
/]Rm | I ( ) J 2 2 (m + 1)(Dm+1n.
(B.6)

Proof. (i) Note that from Fubini’s Theorem we have

m
/ e 4.z = / e 4% "Imdzdz...dz, = [/ e_xzdgl(x)} :
RM R™ R

(B.7)

Form = 2 we obtain

2
[/ e—xz dgl(x)i| — / e—|z|z d.o2
R R?
= / 2rredr = —ze | = T,
0

and hence
/ e X d.LNx) = 7Y2.
R

Using again (B.7) we conclude

/ e d. M2 = ™2,
Rm
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(ii) Recalling thatz#?™=1(8 B, (0)) = 2mwamr ™2, we obtain
/ e 1% 4. 2M(z) = / 2Mawom 2™ Le " dr .
R2m 0

Writing r?™te"* = r2™2(re~"") and integrating by parts we obtain
00 |"2m_3

e dr
2

2Mazm / r21le"dr = 2maum(2m — 2) /
0

0
2m(m — 1)wom / r2m=3¢—*gr
0
By induction we have

o0
2 .2
/ e dy™™z) = m!me/ 2re”" dr = mlwom
R2m 0

and hence from (B.1) we concludgy, = z#™/m!.

(i) Again using polar coordinates and integrating by parts waiob

2 2 1)2m—-1)...3-1 [ _.
/2 e_|Z| d$2m+l(z) — w2m+l( m + )( ) / e dr.
R2m+1 0

2m
Therefore, from (B.1) we have

2m+1)(2m-1)...3-1
™2 g +1( ) )

1/2
om+1 T ?

m
from which we conclude (B.3).
(iv) It is easy to check that
2P = 122z, 26 ) = —1282(z/2, v, (7)) .
Using this observation and integrating by parts we obtain
. 1z% e d.¥Mz) = % /R ) [div (12171 ~22)]e”*" d.#™(2)
= %/Rm(Zj —2+m)|z]3~ 2717 4. ™(2).
By induction we find
. 1zj% e~ 12" d.#M(z)
= (i-1+ g) (i —2+g)...(1+ g) g/Rme"z'zdgm(z).

Using (B.1) we conclude (B.4).
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(v) Integrating by parts as above, we compute

122+ d.2™(2) = (j + mT_l) o (l+ mT_l) / e 4.,
Rm

Using polar coordinates we conclude

1zle”* d.2™(2) = mwm/ rMe~dr .
0

Rn’l

Note that
o0 1 o0 2
rMe~’dr = —/ M + Domerr e dr
/o (M+ Deomsr Jo ( Joms
R S / e 4.
(M + Domir Jrmn
from which we obtain
|Z|e—IZI2 d.2"(z) = &ﬂ(mﬂ)ﬂ.
RM (M + 1)oms1

Therefore, we conclude

R 1712
|z|2+1e™ 17 d £ ™ (2)
RM

. m-=1 m-—1 Mwm
=j+—)... (1+ Mtz
(‘ 2 ) ( 2 )(m+1)wm+l
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