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8056 Zürich, Switzerland

(Communicated by the associate editor name)

Abstract. In a recent paper, jointly with Elisabetta Chiodaroli and Ondřej

Kreml we consider the Cauchy problem for the isentropic compressible Euler
system in 2 space dimensions, with initial data which assume two different

constant values and have a discontinuity across a line. If we consider selfsimi-

lar solutions we then encounter a classical 1-dimensional Riemann problem for
the corresponding hyperbolic system of conservation laws. We show that for

some suitable choice of the pressure and of the initial data there exist infinitely

many bounded admissible solutions which are not selfsimilar and indeed are
genuinely 2-dimensional. We also show that some of these Riemann data are

generated by a 1-dimensional compression wave. Our theorem leads therefore
to Lipschitz initial data for which there are infinitely many global bounded

admissible weak solutions. Each of these solutions coincide as long as the clas-

sical (Lipschitz) solution exists and they differentiate themselves immediately
after the first blow-up time. Our approach is heavily influenced by a work of

László Székelyhidi which provides a similar result in the case of the classical

vortex-sheet problem for the incompressible Euler equations.

1. Introduction. Consider the isentropic compressible Euler equations of gas dy-
namics in n space dimensions. This system consists of n+1 scalar equations, which
state the conservation of mass and linear momentum. The unknowns are the density
ρ and the velocity v and the system takes the the form: ∂tρ+ divx(ρv) = 0

∂t(ρv) + divx (ρv ⊗ v) +∇x[p(ρ)] = 0
(1)

The pressure p is a function of ρ determined from the constitutive thermodynamic
relations of the gas under consideration and it is assumed to satisfy p′ > 0 (this
hypothesis guarantees also the hyperbolicity of the system on the regions where
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ρ is positive). A common choice is the polytropic pressure law p(ρ) = κργ with
constants κ > 0 and γ > 1. The classical kinetic theory of gases predicts exponents
γ = 1 + 2

d , where d is the degree of freedom of the molecule of the gas.
A lot of attention has been devoted in the literature to the Cauchy problem which

consists of solving (1) on a domain of the form R2 × [0, T [ (where T might also be
infinite), subject to an initial condition of type ρ(·, 0) = ρ0

v(·, 0) = v0 .
(2)

It is well known that, even starting from extremely regular initial data, the solutions
of the Cauchy problem for the system (1) develop singularities in finite time. It is
also well-known that after the appearance of the first singularity weak solutions
(i.e. solutions in the usual distributional sense, see Definition 2.1 for the precise
formulation) are not unique: the standard example is provided by “non-physical”
shocks, which can however be ruled out imposing that the weak solutions satisfy
some further admissibility condition. Much effort has been put in understanding
how this approach can give well-posedness results after the appearance of the first
singularity, leading to a quite mature and successful theory in one space dimension
(we refer the reader to the monographs [1],[8] and [19]).

Here we consider the case of two space dimensions and restrict our attention to
bounded weak solutions of (1) which satisfy the following additional inequality in
the sense of distributions (called usually entropy inequality, although for the specific
system (1) this is rather a weak form of the energy balance):

∂t

(
ρε(ρ) + ρ

|v|2

2

)
+ divx

[(
ρε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v

]
≤ 0 (3)

where the internal energy ε : R+ → R is given through the law p(r) = r2ε′(r).
Indeed, admissible solutions are required to satisfy a slightly stronger condition, i.e.
a form of (3) which involves also the initial data, see Definition 2.2.

Starting from the work [12] it was observed that (3) is in this case not enough to
restore uniqueness of admissible bounded solutions. The methods used in [12], in-
spired by techniques developed in the theory of differential inclusions, show a rather
surprising abundance of admissible solutions to the Cauchy problem with certain
particular initial data. However those specific initial data were rather irregular,
leaving open the question whether this fact alone was responsible for such behavior.

The investigations of [12] have been pushed further in [5] and in [6]: in the latter
paper, we have shown that the same nonuniqueness result holds even for Lipschitz
initial data, therefore leading to the following theorem.

Theorem 1.1. Let p(ρ) = ρ2. Then there are Lipschitz initial data ρ0 and v0, with
ρ0 ≥ c0 > 0 for which there are infinitely many admissible bounded weak solutions
(ρ, v) of the Cauchy problem (1)-(2), with inf ρ > 0. All these solutions coincide
with the classical one as long as it exists and differ immediately after the formation
of the first singularity.

2. Main results. We recall here the usual definitions of weak and admissible so-
lutions to (1).
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Definition 2.1. By a weak solution of (1)-(2) on R2×[0,∞[ we mean a pair (ρ, v) ∈
L∞(R2 × [0,∞[) such that the following identities hold for every test functions
ψ ∈ C∞c (R2 × [0,∞[,R), φ ∈ C∞c (R2 × [0,∞[,R2):∫ ∞

0

∫
R2

[ρ∂tψ + ρv · ∇xψ] dxdt+

∫
R2

ρ0(x)ψ(x, 0)dx = 0 (4)

∫ ∞
0

∫
R2

[ρv · ∂tφ+ ρv ⊗ v : Dxφ+ p(ρ) divx φ] +

∫
R2

ρ0(x)v0(x) · φ(x, 0)dx = 0.

(5)

Definition 2.2. A bounded weak solution (ρ, v) of (1)-(2) is admissible if it satisfies
the following inequality for every nonnegative test function ϕ ∈ C∞c (R2 × [0,∞[):∫ ∞

0

∫
R2

[(
ρε(ρ) + ρ

|v|2

2

)
∂tϕ+

(
ρε(ρ) + ρ

|v|2

2
+ p(ρ)

)
v · ∇xϕ

]

+

∫
R2

(
ρ0(x)ε(ρ0(x)) + ρ0(x)

∣∣v0(x)
∣∣2

2

)
ϕ(x, 0) dx ≥ 0 . (6)

The following is then the theorem proved in [12]:

Theorem 2.3 (De Lellis - Székelyhidi). For any p ∈ C1 with p′ > 0 there are pairs
ρ0, v0 ∈ L∞ such that there are infinitely many bounded admissible solutions (ρ, v)
of (1)-(2) with inf ρ > 0.

As already mentioned, the initial data constructed in [12] were however very
irregular. It was then proved by Chiodaroli that indeed the ill-posedness of Theorem
2.3 still holds even if ρ0 is regular. More precisely

Theorem 2.4 (Chiodaroli). For any p ∈ C1 with p′ > 0 and any ρ0 ∈ C1 with
inf ρ0 > 0 there is v0 ∈ L∞ such that there are infinitely many bounded admissible
solutions (ρ, v) of (1)-(2) with inf ρ > 0.

In [6] we consider first initial data of a very particular form. We denote the space
variable as x = (x1, x2) ∈ R2 and set

(ρ0(x), v0(x)) :=

 (ρ−, v−) if x2 < 0

(ρ+, v+) if x2 > 0,
(7)

where ρ±, v± are constants.
It is well-known that for some special choices of these constants there are solutions

of (1) which are rarefaction waves, i.e. self-similar solutions depending only on t
and x2 which are locally Lipschitz for positive t and constant on lines emanating
from the origin (see [8, Section 7.6] for the precise definition). Reversing their order
(i.e. exchanging + and −) the very same constants allow for a compression wave
solution, i.e. a solution on R2×] −∞, 0[ which is locally Lipschitz and converges,
for t ↑ 0, to the jump discontinuity of (7). When this is the case we will then say
that the data (7) are generated by a classical compression wave.

It follows from the usual treatment of the 1-dimensional Riemann problem that
for data as in (7) uniqueness holds if the admissible solutions are also required to
be self-similar, i.e. of the form (ρ, v)(x, t) =

(
r
(
x2

t

)
, w
(
x2

t

))
, and to have locally

bounded variation. In fact in this case the solutions are obtained “gluing” together
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rarefaction waves and jump discontinuities across interfaces of type {(x, t) : x2 =
νt}.

In the paper [6] we show the existence of bounded admissible solutions which are
not selfsimilar. Although we expect such solutions to exist for very general pressure
laws, we show them only for some particular choice of the pressure p.

Theorem 2.5 (Chiodaroli-De Lellis-Kreml). There are smooth pressures p with
p′ > 0 and constants ρ±, v± for which, if (ρ0, v0) are as in (7), then there are
infinitely many bounded admissible solutions (ρ, v) of (1)-(2) with inf ρ > 0.

Among the pressure laws of Theorem 2.5 there is also the quadratic law p(ρ) = ρ2.
The strongest results of [6] are indeed proved fur such law. More precisely we have
the following strengthened version of Theorem 2.5.

Theorem 2.6 (Chiodaroli-De Lellis-Kreml). Assume p(ρ) = ρ2. Then there are
constants ρ±, v± for which the conclusion of Theorem 2.5 holds and such that
(ρ0, v0) are generated by a classical compression wave.

Theorem 1.1 is then a simple corollary of Theorem 2.6: the solutions of Theorem
1.1 are simply obtained “patching” a classical compression wave with the nonstan-
dard solutions of Theorem 2.6.

3. h-principle and differential inclusions. The proof of Theorem 1.1 relies
heavily on the works of the first author and László Székelyhidi, who in the pa-
per [11] introduced methods from the theory of differential inclusions to explain the
existence of compactly supported nontrivial weak solutions of the incompressible
Euler equations (discovered in the pioneering work of Scheffer [20]; see also [21]).
Indeed the paper [12] is based on the observation that these methods could be ap-
plied to the compressible Euler equations and lead to the ill-posedness of bounded
admissible solutions, see [12].

The link with the incompressible Euler equations is provided by the following
elementary remark.

Remark 1. Assume Ω ⊂ R2 × R and let (ρ, v) be a distributional solution of (1)
with constant density ρ. Then the pair (v, 0) is a weak solution of the incompressible
Euler equations  ∂tv + div v ⊗ v +∇q = 0

div v = 0 .
(8)

Or in other words a “pressureless” solution, where q = 0: note however that q could
be set to be any given constant.

Although classical solutions of the incompressible Euler equations with constant
pressure are rather rare, the methods of [11] show that there are many such weak
solutions. In fact the constraints posed by the equations for weak solutions are so
much weaker than those posed for classical solutions, that all these irregular ones
can be constructed to satisfy the additional constraint |v| = const.. In particular
these methods yield the following crucial lemma (cf. with [6, Lemma 3.7]; here S2×2

0

denotes the set of symmetric traceless 2× 2 matrices and Id is the identity matrix).

Lemma 3.1. Let (ṽ, ũ) ∈ R2 × S2×2
0 and C > 0 be such that

ṽ ⊗ ṽ − ũ < C

2
Id . (9)
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For any open set Ω ⊂ R2 × R there are infinitely many maps (v, u) ∈ L∞(R2 ×
R,R2 × S2×2

0 ) with the following property

(i) v and u vanish identically outside Ω;
(ii) divx v = 0 and ∂tv + divx u = 0;

(iii) (ṽ + v)⊗ (ṽ + v)− (ũ+ u) = C
2 Id a.e. on Ω.

For the relevance of the condition (9) and the techniques used to prove these
type of theorems we refer the reader to the survey article [13]: we give here just a
brief comment. Observe that, inside Ω, the pair (v, u) = (ṽ + v, ũ + u) solves the
linear identities  ∂tv + div u = 0

div v = 0
(10)

and the algebraic constraint

u = v ⊗ v − C

2
Id . (11)

Since C is a constant, plugging (11) into (10) we actually conclude that v is a
solution (in Ω) of (8) with constant pressure (such constant being free for us to
decide). Moreover, since u is trace-free, we conclude that |v|2 equals the constant
C. So, (9) can be interpreted as a relaxation of (11), i.e. an inequality which would
be automatically satisfied by any weak limit of sequences of solutions as above.
The methods of [11]-[12] essentially show that for any such “candidate weak limit”
there are indeed many sequences of exact solutions converging to it (although such
solutions are rather irregular).

4. The main geometric idea. Coming back to compressible Euler consider now
any constant ρ0 > 0. The pair (ρ, v) = (ρ0, ṽ + v) is then a weak solution of (1) in
Ω, as it can be easily verified by the identities

∂tρ0 + div(ρ0v) = ρ0 div v

and
∂t(ρ0v) + div(ρ0v ⊗ v) +∇[p(ρ0)] = ρ0(∂tv + div v ⊗ v) .

In fact it also an admissible solution: since

ρ0ε(ρ0) + ρ0
|v|2

2
and

ρ0ε(ρ0) + ρ0
|v|2

2
+ p(ρ0)

are both constants, (3) amounts to div v = 0.
Observe however that the pair (ρ, v) ceases to give a solution of compressible

Euler on the whole space-time. Assume now to chop R2 × R into finitely many
open subsets Ωi and repeat on each Ωi the construction of the previous section,
starting from arbitrary constants for v, u and ρ. Define a resulting pair (ρ, v) by
setting it equal, in each separate Ωi, to the various functions given by Lemma 3.1 (in
particular we are free to set the constants ρi for the value of the pressure). Although
(ρ, v) is an admissible solution of (1) in each separate open set, it might fail to do
so on the entire space-time. However, a careful computation shows that in order
to be an admissible solution on the entire space-time, we just need to satisfy some
compatibility conditions at the interfaces, which are reminiscent of the Rankine-
Hugoniot conditions. We observe that some care is needed: due to the oscillatory
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nature of the solutions, the traces of |v|2 do not coincide with the moduli squared
of the traces of v!

The relevant computations show that these compatibility conditions depend only
on the chosen “starting” constants. We are therefore ready to give an outline of
the main idea behind the construction in [6], which indeed stems out of several
conversations of the authors with László Székelyhidi and it is inspired by his work
[23].

Consider first some data as in (7). We then partition the upper half space {t > 0}
in regions contained between half-planes meeting all at the line {t = x2 = 0}, see
Definition 5.1 and cf. Figure 1. We then define the density function ρ = ρ to be
constant in each region: this density function will indeed give the final ρ for all the
solutions we construct and it is therefore required to take the constant values ρ± in
the outermost regions P±.

x2

t

P−
P+

P1

P2

P3

Figure 1. A “fan partition” in five regions.

We then solve the compressible Euler equations (1) in each region P1, . . . , PN
using Lemma 3.1, so imposing that the modulus of the velocity is constant (in each
region): its square will be denoted by Ci.

The corresponding constant values (ρi, vi, ui) will then give a globally defined
(piecewise constant) function (ρ, v, u), which will be called a fan subsolution of the
compressible Euler equations. We then wish to choose our subsolution so that,
after solving (1) in each region Pi with the methods of [12], the resulting globally
defined (ρ, v) are admissible global solutions of (1). This leads to a suitable system
of PDEs for the piecewise constant functions (ρ, v, u) which are summarized in the
Definitions 5.2 and 5.3.

5. Subsolutions. The approach sketched in the previous section leads to the fol-
lowing rigorous definitions (cf. Definitions 3.3, 3.4 and 3.5 in [6]).
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Definition 5.1 (Fan partition). A fan partition of R2×]0,∞[ consists of finitely
many open sets P−, P1, . . . , PN , P+ of the following form

P− = {(x, t) : t > 0 and x2 < ν−t} (12)

P+ = {(x, t) : t > 0 and x2 > ν+t} (13)

Pi = {(x, t) : t > 0 and νi−1t < x2 < νit} (14)

where ν− = ν0 < ν1 < . . . < νN = ν+ is an arbitrary collection of real numbers.

Definition 5.2 (Fan Compressible subsolutions). A fan subsolution to the com-
pressible Euler equations (1) with initial data (7) is a triple (ρ, v, u) : R2×]0,∞[→
(R+,R2,S2×2

0 ) of piecewise constant functions satisfying the following requirements.

(i) There is a fan partition P−, P1, . . . , PN , P+ of R2×]0,∞[ such that

(ρ, v, u) =

N∑
i=1

(ρi, vi, ui)1Pi
+ (ρ−, v−, u−)1P− + (ρ+, v+, u+)1P+

where ρi, vi, ui are constants with ρi > 0 and u± = v± ⊗ v± − 1
2 |v±|

2Id;
(ii) For every i ∈ {1, . . . , N} there exists a positive constant Ci such that

vi ⊗ vi − ui <
Ci
2

Id . (15)

(iii) The triple (ρ, v, u) solves the following system in the sense of distributions:

∂tρ+ divx(ρ v) = 0 (16)

∂t(ρ v) + divx (ρ u) +∇x

(
p(ρ) +

1

2

(∑
i

Ciρi1Pi
+ ρ|v|21P+∪P−

))
= 0 (17)

Definition 5.3 (Admissible fan subsolutions). A fan subsolution (ρ, v, u) is said to
be admissible if it satisfies the following inequality in the sense of distributions

∂t (ρε(ρ)) + divx [(ρε(ρ) + p(ρ)) v] + ∂t

(
ρ
|v|2

2
1P+∪P−

)
+ divx

(
ρ
|v|2

2
v1P+∪P−

)
+

N∑
i=1

[
∂t

(
ρi
Ci
2

1Pi

)
+ divx

(
ρi v

Ci
2

1Pi

)]
≤ 0 . (18)

The discussion of the previous section can then be summarized in the following
proposition.

Proposition 5.4. Let p be any C1 function and (ρ±, v±) be such that there exists
at least one admissible fan subsolution (ρ, v, u) of (1) with initial data (7). Then
there are infinitely many bounded admissible solutions (ρ, v) to (1)-(7) such that
ρ = ρ.

6. The algebra. As already mentioned, the various conditions given in the above
definitions can be easily reduced to Rankine-Hugoniot conditions on the (flat) in-
terfaces dividing the various regions. As shown in [6] it suffices consider fan sub-
solutions with a fan partition consisting of only three sets, namely P−, P1 and P+:
this rather restrictive assumption is already enough to show that subsolutions exist.
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x2ν+ν−

1

P1

P+

P−

t

Figure 2. The fan partition in three regions.

We introduce therefore the real numbers α, β, γ, δ, v−1, v−2, v+1, v+2 such that

v1 = (α, β), (19)

v− = (v−1, v−2) (20)

v+ = (v+1, v+2) (21)

u1 =

(
γ δ
δ −γ

)
. (22)

We are now ready to report the algebraic conditions that such numbers must satisfy
and which correspond to Proposition 5.1 in [6].

Proposition 6.1. Let N = 1 and P−, P1, P+ be a fan partition as in Definition
5.1. The constants v1, v−, v+, u1, ρ−, ρ+, ρ1 as in (19)-(22) define an admissible
fan subsolution as in Definitions 5.2-5.3 if and only if the following identities and
inequalities hold:

• Rankine-Hugoniot conditions on the left interface:

ν−(ρ− − ρ1) = ρ−v−2 − ρ1β (23)

ν−(ρ−v−1 − ρ1α) = ρ−v−1v−2 − ρ1δ (24)

ν−(ρ−v−2 − ρ1β) = ρ−v
2
−2 + ρ1γ + p(ρ−)− p(ρ1)− ρ1

C1

2
; (25)

• Rankine-Hugoniot conditions on the right interface:

ν+(ρ1 − ρ+) = ρ1β − ρ+v+2 (26)

ν+(ρ1α− ρ+v+1) = ρ1δ − ρ+v+1v+2 (27)

ν+(ρ1β − ρ+v+2) = −ρ1γ − ρ+v
2
+2 + p(ρ1)− p(ρ+) + ρ1

C1

2
; (28)
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• Subsolution condition:

α2 + β2 < C1 (29)(
C1

2
− α2 + γ

)(
C1

2
− β2 − γ

)
− (δ − αβ)

2
> 0 ; (30)

• Admissibility condition on the left interface:

ν−(ρ−ε(ρ−)− ρ1ε(ρ1)) + ν−

(
ρ−
|v−|2

2
− ρ1

C1

2

)

≤ [(ρ−ε(ρ−) + p(ρ−))v−2 − (ρ1ε(ρ1) + p(ρ1))β] +

(
ρ−v−2

|v−|2

2
− ρ1β

C1

2

)
; (31)

• Admissibility condition on the right interface:

ν+(ρ1ε(ρ1)− ρ+ε(ρ+)) + ν+

(
ρ1
C1

2
− ρ+

|v+|2

2

)

≤ [(ρ1ε(ρ1) + p(ρ1))β − (ρ+ε(ρ+) + p(ρ+))v+2] +

(
ρ1β

C1

2
− ρ+v+2

|v+|2

2

)
. (32)

Although there seems to be an abundance of constants satisfying the require-
ments of the proposition above, it has proved rather difficult to find an efficient
way of finding them. A large portion of the paper [6] is spent to give two dif-
ferent methods to generate some constants fulfilling the inequalities and identities
(23)-(32).

7. Specific solutions. The first of these methods makes the specific choice p(ρ) =
ρ2. It is with this specific pressure law that we reach Theorem 2.6 and hence
our main result Theorem 1.1. More precisely we show that there are constants
satisfying the requirements of Proposition 6.1 for which, in addition, the initial data
(7) is generated by a compression wave. Such data are in fact easy to characterize,
following classical computations.

Lemma 7.1. Let 0 < ρ− < ρ+, v+ = (− 1
ρ+
, 0) and v− = (− 1

ρ+
, 2
√

2(
√
ρ+−

√
ρ−)).

Then there is a pair (ρ, v) ∈W 1,∞
loc ∩ L∞(R2×]−∞, 0[,R+ × R2) such that

(i) ρ+ ≥ ρ ≥ ρ− > 0;
(ii) The pair solves the hyperbolic system ∂tρ+ divx(ρv) = 0

∂t(ρv) + divx (ρv ⊗ v) +∇x[p(ρ)] = 0
(33)

with p(ρ) = ρ2 in the classical sense (pointwise a.e. and distributionally);
(iii) for t ↑ 0 the pair (ρ(·, t), v(·, t)) converges pointwise a.e. to (ρ0, v0) as in (7);
(iv) (ρ(·, t), v(·, t)) ∈W 1,∞ for every t < 0.

A clever choice of some of the constants combined with some careful algebraic
computations show then the following

Lemma 7.2. Let p(ρ) = ρ2. There exist ρ±, v± satisfying the assumptions of
Lemma 7.1 and ρ1, C1, v1, u1, ν± satisfying the algebraic identities and inequalities
(23)-(32).
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