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The h-principle and Onsager’s conjecture

Camillo De Lellis (Universität Zürich, Zürich, Switzerland) and László Székelyhidi (Universität Leipzig, Leipzig, Germany)

1 Introduction

The h-principle is a concept introduced by Gromov which
pertains to various problems in differential geometry, where
one expects high flexibility of the moduli spaces of solutions
due to the high-dimensionality (or underdetermined nature)
of the problem. Interestingly, in some cases a form of the
h-principle holds even for systems of partial differential rela-
tions which are, formally, not underdetermined.

Perhaps the most famous instance is the Nash-Kuiper theo-
rem on C1 isometric Euclidean embeddings of n-dimensional
Riemannian manifolds. In the classical situation of embed-
ding (two-dimensional) surfaces in three-space, the resulting
maps comprise three unknown functions that must satisfy a
system of three independent partial differential equations. This
is a determined system and, indeed, sufficiently regular solu-
tions satisfy additional constraints (C2, i.e. continuous second
order derivatives, suffices). The oldest example of such a con-
straint is the Theorema Egregium of Gauss: the determinant
of the differential of the Gauss map (a-priori an “extrinsic”
quantity) equals a function which can be computed directly
from the metric, i.e. the intrinsic Gauss curvature of the orig-
inal surface.

At a global level there are much more restrictive conse-
quences: for instance any (C2) isometric embedding u of the
standard 2-sphere S2 in R3 can be extend in a unique way to
an isometry of R3 and must therefore map S2 affinely onto the
boundary of a unitary ball. In other words C2 isometric em-
beddings of the standard 2-sphere in R3 are rigid; in fact the
same holds for any metric on the 2-sphere which has positive
Gauss curvature.

Nevertheless, the outcome of the Nash-Kuiper theorem is
that C1 solutions are very flexible and all forms of the afore-
mentioned rigidity are lost. In a sense, in this situation low
regularity serves as a replacement for high-dimensionality.

A similar phenomenon has been found recently for solu-
tions of a very classical system of partial differential equa-
tions in mathematical physics: the Euler equations for ideal
incompressible fluids. Regular (C1) solutions of this system
are determined by the boundary and initial data, whereas con-
tinuous solutions are not unique and might even violate the
law of conservation of kinetic energy. Although at a rigorous
mathematical level this was proved only recently, the latter
phenomenon was predicted in 1949 by Lars Onsager in his
famous note [41] about statistical hydrodynamics. Onsager
conjectured a threshold regularity for the conservation of the
kinetic energy. The conjecture is still open and the threshold
has deep connections with the Kolmogorov’s theory of fully
developed turbulence.

In this brief note we will first review the isometric embed-
ding problem, emphasizing the h-principle aspects. We will
then turn to some “h-principle-type statements” in the theory
of differential inclusions, proved in the last three decades by
several authors. These results were developed independently
of Gromov’s work, but a fruitful relation was pointed out in

a groundbreaking paper by Müller and Šverak fifteen years
ago, see [38]. There is however a fundamental difference: in
differential geometry the h-principle results are in the “C0 cat-
egory”, whereas the corresponding statements in the theory of
differential inclusions hold in the “L∞ category”. Indeed “L∞

h-principle statements” in differential geometry are usually
trivial, whereas “C0 h-principle statements” in the theory of
differential inclusions are usually false. Surprisingly both as-
pects are present and nontrivial when dealing with solutions
of the incompressible Euler equations: the last two sections
of this note will be devoted to them.

2 Nash and the isometric embedding problem

Let Mn be a smooth compact manifold of dimension n ≥ 2,
equipped with a Riemannian metric g. An isometric embed-
ding of (Mn, g) into Rm is a continuous map u which pre-
serves the length of curves. Obviously this implies that u is
a Lipschitz homeomorphism of M and u(M). For u ∈ C1 the
length-preserving condition amounts, in local coordinates, to
the system

∂iu · ∂ ju = gi j . (1)

consisting of n(n+1)/2 equations in m unknowns. The system
obviously guarantees that any C1 solution is an immersion:
the property of being an embedding is than simply equivalent
to the injectivity of the map u. We will therefore use the term
“isometric immersion” for C1 solutions of (1) which are not
necessarily injective.

We note in passing that one may also study "weak" so-
lutions of the system (1). Recall that a Lipschitz mapping
u : M → Rm is, in virtue of the classical Rademacher the-
orem, differentiable almost everywhere. Then, we say that
u ∈ Lip is a weak isometry if (1) holds almost everywhere on
M. However, being a weak isometry does not imply that the
length of curves is preserved. As pointed out by Gromov in
[29], such a map may – and in fact, generically will (see [36])
– contract whole submanifolds of M into single points.

Before the fundamental works of Nash in the fifties, only
the existence of local analytic embeddings for analytic met-
rics was known (for m =

n(n+1)
2 ), see [32] and [11]. Assuming

for the moment that g ∈ C∞, the pioneering ideas introduced
by Nash culminated into two “classical” theorems concerning
the (global!) solvability of (1):

Theorem 1 (Nash [40], Gromov [29]). Let m ≥ (n + 2)(n +

3)/2 and v : M → Rm be a short embedding (resp. immer-
sion) of M, i.e. a C1 embedding (resp. immersion) satisfying
the inequality ∂iv · ∂ jv ≤ gi j in the sense of quadratic forms.
Then v can be uniformly approximated by isometric embed-
dings (resp. immersions) of class C∞.

Theorem 2 (Nash [39], Kuiper [37]). If m ≥ n + 1, then any
short embedding (resp. immersion) can be uniformly approx-
imated by isometric embeddings (resp. immersions) of class
C1.
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Theorems 1 and 2 are not merely existence theorems, they
show that there exists a huge (essentially C0-dense) set of so-
lutions. This type of abundance of solutions is a central aspect
of Gromov’s h-principle. Naively, such “flexibility” could
be expected for high codimension as in Theorem 1, since
then there are many more unknowns than equations in (1).
The h-principle for C1 isometric embeddings is on the other
hand rather striking, especially when compared to the classi-
cal rigidity result concerning the Weyl problem (see [43] for
a thorough discussion):

Theorem 3 (Cohn Vossen [14], Herglotz [30]). If (S2, g) is
a compact Riemannian surface with positive Gauss curvature
and u ∈ C2 is an isometric immersion into R3, then u(M) is
uniquely determined up to a rigid motion.

It is intuitively clear that weak (i.e. Lipschitz) isometries
cannot enjoy any rigidity property of this type. One can think
for instance of folding a piece of paper. The folding preserves
length, is therefore isometric, but the resulting map is clearly
not C1: the tangent vector is not continuous across folds. The
difficulty of the Nash-Kuiper theorem is precisely to obtain
a continuous tangent vector, and this requires a complicated
“high dimensional” construction.

Thus it is clear that isometric immersions have a completely
different qualitative behaviour at low and high regularity (i.e.
below and above C2).

Both Theorems 1 and 2 make use of a certain extra free-
dom or “extra dimensions” in the problem. The proof of The-
orem 1 relies on the Nash-Moser implicit function theorem
and yields solutions which are not only isometric but also free
- the n + n(n + 1)/2 vectors of first and second partial deriva-
tives of the map u are linearly independent in Rm at each point
x. The presence of “extra dimensions” in the proof of Theo-
rem 2 is more subtle and manifests itself as low regularity.
Naively, one might think of low regularity in this context as
having a large number of active Fourier modes.

The iteration technique in the proof of Theorem 2, called
convex integration, was subsequently developed by Gromov
[28, 29] into a very powerful and very general tool to prove
the h-principle in a wide variety of geometric-topological prob-
lems (see also [25, 45]). In such situations typically the sought-
after solution must satisfy a pointwise inequality rather than
an equality. An example is to find n divergence free vector-
fields on a parallelizable n-dimensional manifold which are
linearly independent at any point - the inequality here arises
from the pointwise linear independence. Convex integration
in this context is essentially a homotopic-theoretic method.
In contrast, for equalities there is no general method except
in certain cases (so-called ample relations), which do not in-
clude Theorem 2 or the applications to fluid mechanics below.

In general the regularity of solutions obtained using con-
vex integration (for ample relations) agrees with the highest
derivatives appearing in the equations (see [44]). An interest-
ing question raised in [29, p. 219] is how one could extend
convex integration to produce more regular solutions. Essen-
tially the same question, in the case of isometric embeddings,
is also mentioned as Problem 27 in [46]. In the latter con-
text, for high codimension this was resolved by Källen in
[33]. In codimension 1 the problem was first considered by
Borisov who in [6] announced that, if g is analytic, then the h-

principle holds for local isometric embeddings u ∈ C1,α with
α < 1

1+n+n2 (Ck,α is the usual notation for spaces of Ck maps
u such that each partial derivative w of order k is Hölder con-
tinuous with exponent α, namely satisfies the bound |w(x) −
w(y)| ≤ C(d(x, y))α, where d is the Riemannian distance). A
proof for the case n = 2 appeared in [7] and for a proof in
any dimension valid also for C2 metrics we refer the reader
to [16]. Borisov also pointed out that the optimal regularity
for rigidity statements is not C2: in particular in a series of
papers [1, 2, 3, 4, 5] he showed that Theorem 3 is valid for
C1,α isometric immersions u when α > 2

3 (see [16] for a short
proof).

3 The h-principle as a relaxation statement

The h-principle amounts to the vague statement that local
constraints do not influence global behaviour. In differen-
tial geometry this leads to the fact that certain problems can
be solved by purely topological or homotopic-theoretic meth-
ods, once the "softness" of the local (differential) constraints
has been shown. In turn, this softness of the local constraints
can be seen as a kind of relaxation property.

In order to gain some intuition let us again look at the
system of partial differential equations (1) with some fixed
smooth g. Obviously any sequence of solutions

{uk}k , uk : Ω→ Rm ,

of (1) enjoys a uniform bound upon the maximum of |∂iuk |

and thus the Arzelà-Ascoli theorem guarantees the uniform
convergence, up to subsequences, to some limit map u. The
limit u must be Lipschitz and an interesting question is whether
from the equations we can recover some better convergence,
for instance in the C1 category. As we have learned from
the previous section, this depends on the codimension and
the apriori assumptions on the smoothness of the sequence.
For instance, for surfaces in 3-space if the metric g has pos-
itive curvature and the maps uk are sufficiently smooth, their
images will be (portions of) convex surfaces: this, loosely
speaking, amounts to some useful information about second
derivatives which will improve the convergence of uk and re-
sult in a limit u with convex image.

If instead we only assume that the sequence uk consists of
approximate solutions, for instance in the sense that

∂iuk · ∂iuk − gi j → 0 uniformly,

then even if g has positive curvature and the uk are smooth,
their images will not necessarily be convex. Let us nonethe-
less see what we can infer about the limit u. Consider a
smooth curve γ ⊂ Ω. Then uk ◦ γ is a C1 Euclidean curve.
As already noticed, if we denote by Le(uk ◦ γ) the “Euclidean
length” and by Lg(γ) the length of γ in the Riemannian mani-
fold (Ω, g), then

Le(uk ◦ γ) − Lg(γ)→ 0. (2)

On the other hand the curves uk ◦ γ converge uniformly to
the (Lipschitz) curve u ◦ γ and it is well-known that under
such type of convergence the length might shrink but cannot
increase. In other words we conclude that

Le(u ◦ γ) ≤ Lg(γ) . (3)
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Recall that, by Rademacher’s theorem, u is differentiable al-
most everywhere: it is a simple exercise to see that, when (2)
holds for every curve γ in Ω, then

∂iu · ∂ ju ≤ gi j a.e. in Ω, (4)

(as above, the latter inequality should be understood in the
sense of quadratic forms).

Thus, loosely speaking, one possible interpretation of the
Theorems 1-2 is that the system of partial differential inequal-
ities (4) is the “relaxation” of (1) (resp. in the C∞ and C1

category) with respect to the C0 topology. In order to explain
this better, let us simplify the situation further, and consider
the case Ω ⊂ Rn with the flat metric gi j = δi j, to be embedded
isometrically into Rm. Then the system (1) is equivalent to
the condition that the full matrix derivative Du(x) is a linear
isometry at every point x, i.e. that

Du(x) ∈ O(n,m) (5)

for every x. Note also that the inequality (4) is similarly
equivalent to

Du(x) ∈ co O(n,m), (6)

where, for a compact set K we denote by co K its convex hull.
More generally, given a compact set of matrices K ⊂ Rm×n

one considers the differential inclusion

Du(x) ∈ K (7)

and its relaxation - the latter may be given by the convex hull
co K, but it might also be a strictly smaller set. The local as-
pect of the h-principle amounts to the statement that solutions
of the original inclusion (7) are dense in C0 in the potentially
much larger relaxation.

This might seem very surprising, but consider the following
one-dimensional problem, i.e. the case n = m = 1. Thus,
setting Ω = [0, 1], we are looking at the inclusion problem
u′(x) ∈ {−1, 1}. Of course C1 solutions need to have constant
derivative ±1, but Lipschitz solutions may be rather wild. In
fact, it is not difficult to show that the closure in C0 of the set

S := {u ∈ Lip[0, 1] : |u′| = 1 a.e. }

coincides with the convex hull

R := {u ∈ Lip[0, 1] : |u′| ≤ 1 a.e. } .

Since the topology of uniform convergence in this setting (uni-
form Lipschitz bound) is equivalent to weak* convergence of
the derivative in L∞, the latter statement can be interpreted as
a form of the Krein-Milman theorem. Moreover, it was ob-
served in [12] that R \S is a meager set in the Baire Category
sense, cf. also [8].

For general differential inclusions with m, n ≥ 2, the situa-
tion is more complicated, but there is - as a rule of thumb - a
kind of dichotomy, depending on the set K: either
• (a) one has a large relaxation and a Krein-Milman type

result as above, or
• (b) one has rigidity (and essentially “no relaxation”).

These two situations have been studied in detail in the context
of nonlinear elasticity (see [17, 38, 34, 35]. Case (a) can be

interpreted as a form of the h-principle, albeit a weak form, as
in general the solutions to the corresponding problem (7) will
be Lipschitz but not necessarily C1.

As discussed above, in the weak isometric map problem
(i.e. the case where K = O(n,m)) solutions can be intuitively
constructed by folding (see also [18, 19]): such maps have an
altogether different structure from the Nash-Kuiper C1 solu-
tions. In this example the existence of many Lipschitz solu-
tions is not as surprising as Theorem 2. Next, we discuss the
Euler equations, where already a weak form of the h-principle
is rather striking.

4 The Euler equations as a differential inclusion

The incompressible Euler equations is perhaps the oldest sys-
tem of partial differential equations in fluid dynamics and it
was derived by Euler more than 250 years ago. The unknowns
are the velocity v of the fluid and the (mechanical) pressure
field p. Both of them depend upon a space variable x (rang-
ing in some domain Ω of R2 and R3, or in the periodic tori
T2, T3) and a time variable t. The system can be written as
follows: 

∂tv + divx(v ⊗ v) + ∇p = 0,

divx v = 0 .
(8)

For C1 functions v the nonlinearity divx(v ⊗ v) equals the ad-
vective derivative (v · ∇)v, which in components is expressed
as

[(v · ∇) v]i =
∑

j

v j∂ jvi .

The reader familiar with the theory of distributions will rec-
ognize that, after writing the Euler equations as in (8), we can
naturally introduce a concept of weak solutions as soon as
v is a square summable function. We refrain however from
defining such “distributional solutions” formally. Rather, we
describe a possible route to such concept.

Assume for the moment that the pair (v, p) is smooth and
satisfies (8). Consider a “fluid element”, namely a region
U ⊂⊂ Ω with smooth boundary ∂U. If we integrate the sec-
ond equation of (8) in the space variable and use the diver-
gence theorem we achieve∫

∂U
v(x, t) · n(x) dS (x) = 0 , (9)

where n denotes the outward unit normal to ∂U (and we use
the notation

∫
Σ

f (x) dS (x) for surface integrals). If we instead
integrate the first equation on U × [a, b] we then achieve∫ b

a

[∫
∂U

(
(v(x, t) · n(x))v(x, t) + p(x, t)n(x)

)
dS (x)

]
dt

=

∫
U

(v(x, a) − v(x, b)) dx. (10)

Both identities make perfect sense when (v, p) are merely con-
tinuous functions and express the balance of mass and mo-
mentum for the portion of the fluid which occupies the region
U. (9) simply expresses the conservation of mass, since it re-
quires that the amount of fluid particles leaving U balances
that of particles entering U. (10) expresses the variation of
the momentum, which can change only for two reasons:
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• particle fluids leave the region U, carrying different mo-
menta compared to those entering;

• the fluid occupying the “external regions”, namely the
complement of the fluid element U, exerts a force on the
portion occupying U; such force is directed along the
unit normal to the boundary ∂U at it is proportional to
the mechanical pressure p.

It is not difficult to see that continuous (v, p) are distributional
solutions of (8) if and only if the identities (9) and (10) hold
for every smooth U ⊂⊂ Ω. However the weak formulation
through (9)-(10) is very natural and interesting per se: it is
indeed common to derive the equations governing a contin-
uous system by first considering the laws of conservation of
motion in different regions. The corresponding partial differ-
ential equations are then derived following a process which is
the reverse of the one outlined above.

Finally, if we wish to abandon the requirement that (v, p)
is continuous, general distributional solutions can be suitably
characterized as maps satisfying (9) and (10) for “almost all”
fluid elements U.

The system (8) is, for classical C1 solutions, deterministic:
when supplied with appropriate boundary conditions such so-
lutions are unique. The most common condition (when the
space domain Ω = R2,R3,T2,T3 and the space-time domain
is Ω × [0,T ])), is the initial value

v(·, 0) = v0 .

Classical solutions are then uniquely determined by the initial
data v0 (but in the cases Ω = R2,R3 some additional assump-
tion upon the decay at spatial infinity is needed: v(·, t) ∈ L2 is
the most natural one and it is sufficient).

Surprisingly, Scheffer proved in [42] that the situation is
completely different for irregular weak solutions.

Theorem 4 (Scheffer 1993). There is a nontrivial, compactly
supported v ∈ L2(R2 × R) which solves (8) in the sense of
distributions.

In [22] we have shown that the latter theorem can be de-
rived very naturally as a corollary of a suitable h-principle
statement, or relaxation result, in the spirit of the previous
section. There are several powerful general versions of such
statement, which restrict severely the natural attempts to give
a definition of “admissible weak solutions” enjoying unique-
ness, see for instance [23]. To keep our discussion as simple
as possible, we restrict here to a rather easy version. But we
first need to introduce the system of “partial differential in-
equalities” which is the appropriate relaxation of (8).

Definition 5 (Subsolutions). Let e ∈ C∞ ∩ L1(Rn × R) with
e ≥ 0. A triple of smooth compactly supported functions

(v, u, q) : Rn × R→ Rn × Rn×n × R

is a subsolution of (8) with energy density ē if the following
properties hold:

(i) u takes values in the subspace of symmetric trace-free
matrices and spt (v, u, q) ⊂ spt(ē);

(ii) (v, u, q) solves {
∂tv + div u + ∇q = 0
div v = 0, (11)

(iii) the following inequality holds, in the sense of quadratic
forms, on the set {ē > 0}

viv j − ui j <
2
n eδi j . (12)

Theorem 6 ([22]). Let e ∈ C∞ ∩ L1(Rn × R) and (v, u, q)
be a subsolution with kinetic energy e. Then there exists a
sequence of bounded weak solutions (vk, pk) of (8) on Rn × R
such that

1
2 |v

k |2 = e almost everywhere (13)

and vk → v weakly in L2.

The analogy with the aforementioned results in the theory
of differential inclusions is rather striking. But, perhaps more
surprisingly, in the case of the Euler equations a similar state-
ment can be proved in the C0 category.

Theorem 7 ([24]). Let E ∈ C∞([0,T ]) with E > 0. Then
there exists a sequence of continuous weak solutions (vk, pk)
of (8) on T3 × [0,T ] such that

1
2

∫
|vk |2(x, t) dx = E(t) fotr every t (14)

and vk → 0 weakly in L2.

In fact, it is possible to extend the preceeding theorem and
produce sequences which converge not to zero but to a vector-
field v from a certain class of "subsolutions", as in Theorem
6. However, presently there is no full characterization of the
corresponding “relaxed problem” (for some results in this di-
rection see however [20]) . Note also that Theorem 7 remains
valid in two space dimensions as well (see [13]).

From Theorem 7 we conclude that continuous solutions of
the Euler equations do not necessarily preserve the kinetic en-
ergy. This phenomenon was in fact predicted long ago by Lars
Onsager and we will discuss it in the next section.

5 Onsager’s conjecture and continuous dissipative solu-
tions

One of the fundamental problems in the theory of turbulence
is to find a satisfactory mathematical framework linking the
basic continuum equations of fluid motion to the highly chaotic,
apparently random behaviour of fully developed turbulent flows.
Consider the incompressible Navier-Stokes equations

∂tv + div(v ⊗ v) + ∇p = µ∆v

div v = 0 ,
(15)

describing the motion of an incompressible viscous fluid. The
coefficient µ > 0 is the viscosity, which, after appropriate
non-dimensionalizing, equals the reciprocal of the Reynolds
number Re. As µ becomes smaller (more precisely, the Reynolds
number becomes larger), the observed motion becomes more
and more complex, at some stage becoming chaotic. The
statistical theory of turbulence, whose foundations were laid
by Kolmogorov in 1941, aims to describe universal patterns
in this chaotic, turbulent flow sufficiently far away from the
domain boundaries, by postulating that generic flows can be
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seen as realizations of random fields, and by using the sym-
metry and scaling properties of the Navier-Stokes equations;
we refer the reader to [27].

One of the cornerstones of the theory is the famous Kolmo-
gorov-Obukhov 5/3 law. It states that the energy spectrum
E(k), defined to be the kinetic energy per unit mass and unit
wavenumber, behaves like a power law

E(k) ∼ k−5/3. (16)

This power law, which is supposed to be valid in a certain
intermediate range of wave numbers k - called the inertial
range -, away from the large scales (affected by the bound-
aries of the domain and external forces) and away from the
very small scales (affected by dissipation), agrees remarkably
well with experiments and numerical simulations. Closely re-
lated to the 5/3 law is the idea of an energy cascade, originally
due to Richardson. The energy is introduced at large scales
and through nonlinear interaction it cascades to smaller and
smaller scales until it is dissipated by the viscosity in the very
small scales, cf. [27]. Indeed, a key hypothesis of the K41
theory is that the mean rate of energy dissipation ε is strictly
positive and independent of µ in the infinite Reynolds num-
ber limit (µ → 0). This effect in turbulent flows is known as
anomalous dissipation.

Extending the inertial range to infinitely small scales (i.e.
k → ∞) corresponds in a certain sense to the limit µ → 0,
when (15) becomes the incompressible Euler equations

∂tv + divx(v ⊗ v) + ∇p = 0,

divx v = 0 .
(17)

A classical calculation shows that for smooth solutions (v, p)
of (17) the kinetic energy is conserved∫

|v(x, t)|2 dx =

∫
|v(x, 0)|2 dx. (18)

Lars Onsager suggested in his famous note [41] the possibil-
ity of anomalous dissipation for weak solutions of the Euler
equations as a consequence of the energy cascade. It is worth
emphasizing that, although the K41 theory and the theory of
turbulence in general is a statistical theory, concerned with
ensemble averages of solutions of the Navier-Stokes equa-
tions, the suggestion of Onsager turns this into the following
“pure PDE” question

Conjecture 8. For weak solutions (v, p) of (17) with

|v(x, t) − v(y, t)| ≤ C|x − y|θ ∀x, y, t (19)

(where the constant C is independent of x, y, t), we have:
(a) If θ > 1/3, the energy is conserved by any solution, i.e.

(18) holds;
(b) For θ < 1/3 there are solutions which do not conserve

the energy.

The space of functions satisfying (19) is usually denoted
by L∞(0,T ; Cθ(T3)) and belongs naturally to the hierarchy of
spaces Lp(0,T ; Cθ(T3)): a function in the latter space is as-
sumed to satisfy (19) at a.e. t with a time-dependent constant
C(t) such that

∫
C(t)pdt < ∞.

The first part of the conjecture, i.e. assertion (a), has been
shown by Eyink in [26], following some original computa-
tions of Onsager, and by Constantin, E and Titi in [15]. The
proof amounts to giving a rigorous justification of the formal
computation leading to (18) and in [15] this is done via a suit-
able regularization of the equation and a commutator estimate
(whereas Onsager’s original calculations are based on conver-
gence of Fourier series).

Concerning the second part of the conjecture, clearly the
first mathematical statement in that direction is Theorem 4.
Theorem 7 showed for the first time rigorously that C0 solu-
tions can dissipate the kinetic energy. The two statements are
prototypical of a series of recent results concerning point (b)
of Conjecture 8, which take the techniques of [24] as start-
ing point. Therefore, having fixed a certain specific space of
functions X, these results can be classified in the following
two categories:
(A) There exists a nontrivial weak solution v ∈ X of (17)

with compact support in time.
(B) Given any smooth positive function E = E(t) > 0, there

exists a weak solution v ∈ X of (17) with∫
T3
|v(x, t)|2 dx = E(t) ∀ t.

Obviously both types lead to non-conservation of energy and
would therefore conclude part (b) of Onsager’s conjecture if
proved for the space X = L∞(0,T ; C1/3−ε(T3)) for every ε >
0. So far the best results are as follows.

Theorem 9. Let ε be any positive number smaller than 1
5 .

Then
• Statement (A) is true for X = L1(0,T ; C1/3−ε(T3)).
• Statement (B) is true for X = L∞(0,T ; C1/5−ε(T3)).

Statement (B) has been shown for X = L∞(0,T ; C1/10−ε)
in [21], whereas P. Isett in [31] was the first to prove State-
ment (A) for X = L∞(0,T ; C1/5−ε), thereby reaching the cur-
rent best “uniform” Hölder exponent for Part (b) of Onsager’s
conjecture. Subsequently, T. Buckmaster, the two authors and
P. Isett proved Statement (B) for X = L∞(0,T ; C1/5−ε) in [9].
Finally, Statement (A) for X = L1(0,T ; C1/3−ε(T3)) has been
proved very recently in [10].
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