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Abstract. Following Almgren’s construction of the center manifold in his Big

regularity paper, we show the C3,α regularity of area-minimizing currents in

the neighborhood of points of density one without using the nonparametric
theory. This study is intended as a first step towards the understanding of

Almgren’s construction in its full generality.

1. Introduction. In this note we consider area-minimizing integral currents T of
dimension m in Rm+n. The following theorem is the cornerstone of the regularity
theory. It was proved for the first time by De Giorgi [2] for n = 1 and then extended
later by several authors (the constant ωm denotes, as usual, the Lebesgue measure
of the m-dimensional unit ball).

Theorem 1.1. There exist constants ε, β > 0 such that, if T is an area-minimizing
integral current and p is a point in its support such that

θ(T, p) = 1, supp (∂T ) ∩Br(p) = ∅ and ‖T‖(Br(p)) ≤ (ωm + ε) rm,

then supp (T ) ∩Br/2(p) is the graph of a C1,β function f .

Once established this ε-regularity result, the regularity theory proceeds further
by deriving the usual Euler–Lagrange equations for the function f . Indeed, it turns
out that f solves a system of elliptic partial differential equations and the Schauder
theory then implies that f is smooth (in fact analytic, using the classical result by
Hopf [5]).

In his Big regularity paper [1], Almgren observes that an intermediate regularity
result can be derived as a consequence of a more complicated construction without
using the nonparametric PDE theory of minimal surfaces (i.e. without deriving the
Euler-Lagrange equation for the graph of f). Indeed, given a minimizing current
T and a point p with θ(T, p) = Q ∈ N, under the hypothesis that the excess is
sufficiently small, Almgren succeeds in constructing a C3,α regular surface (called
center manifold) which, roughly speaking, approximates the “average of the sheets
of the current” (we refer to [1] for further details). In the introduction of [1] it is
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observed that, in the case Q = 1, the center manifold coincides with the current
itself, thus implying directly the C3,α regularity.

The aim of the present note is to give a simple direct proof of this remark,
essentially following Almgren’s strategy for the construction of the center manifold
in the simplified setting Q = 1. At this point the following comment is in order:
the excess decay leading to Theorem 1.1 remains anyway a fundamental step in the
proof of this paper (see Proposition 2.2 below) and, as far as we understand, of
Almgren’s approach as well. One can take advantage of the information contained
in Theorem 1.1 at several levels but we have decided to keep its use to the minimum.

2. Preliminaries.

2.1. Some notation. From now on we assume, without loss of generality, that T
is an area-minimizing integer rectifiable current in Rm+n satisfying the following
assumptions:

∂T = 0 in B1(0), θ(T, 0) = 1 and ‖T‖(B1) ≤ ωm + ε, (H)

with the small constant ε to be specified later.
In what follows, Bmr (q), Bnr (u) and Bm+n

r (p) denote the open balls contained,
respectively, in the Euclidean spaces Rm, Rn and Rm+n. Given a m-dimensional
plane π, Cπr (q) denotes the cylinder Bmr (q) × π⊥ ⊂ π × π⊥ = Rm+n and Pπ :
π × π⊥ → π the corresponding orthogonal projection. Central points, supscripts
and subscripts will be often omitted when they are clear from the context.

We will consider different systems of cartesian coordinates in Rm+n. A corol-
lary of De Giorgi’s excess decay theorem (a variant of which is precisely stated in
Proposition 2.2 below) is that, when ε is sufficiently small, the current has a unique
tangent plane at the origin (see Corollary 2.4). Thus, immediately after the state-
ment of Corollary 2.4, the most important system of coordinates, denoted by x,
will be fixed once and for all in such a way that π0 = {xm+1 = . . . = xm+n = 0}
is the tangent plane to T at 0. Other systems of coordinates will be denoted by
x′, y or y′. We will always consider positively oriented systems x′, i.e. such that
there is a unique element A ∈ SO(m + n) with x′(p) = A · x(p) for every point
p. An important role in each system of coordinates will be played by the oriented
m-dimensional plane π where the last n coordinates vanish (and by its orthogonal
complement π⊥). Obviously, given π there are several systems of coordinates y for
which π = {ym+1 = . . . = ym+n = 0}. However, when we want to stress the relation
between y and π we will use the notation yπ.

2.2. Lipschitz approximation of minimal currents. The following approxi-
mation theorem can be found in several accounts of the regularity theory for area-
minimizing currents. It can also be seen as a special case of a much more general
result due to Almgren (see the third chapter of [1]) and reproved in a simpler way
in [3]. As it is customary the (rescaled) cylindrical excess is given by the formula

Ex(T, Cπr ) :=
‖T‖(Cπr )− ωmrm

ωm rm
=

1

2ωm rm

ˆ
Cπr
|~T − ~π|2 d‖T‖, (1)

(where ~π is the unit simple vector orienting π and the last equality in (1) holds
when we assume P](T Cπr ) = JBr(pK).
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Proposition 2.1. There are constants C > 0 and 0 < η, ε1 < 1 with the following
property. Let r > 0 and T be an area-minimizing integer rectifiable m-current in
Cπr such that

∂ T = 0, Pπ
#(T ) = JBmr K and E := Ex(T, Cπr ) ≤ ε1.

Then, for s = r(1 − CEη), there exists a Lipschitz function f : Bs → Rn and a
closed set K ⊂ Bs such that:

Lip(f) ≤ CEη; (2a)

|Bs \K| ≤ C rmE1+η and graph(f |K) = T (K × Rn); (2b)∣∣∣∣‖T‖(Cs)− ωm sm − ˆ
Bs

|Df |2

2

∣∣∣∣ ≤ C rmE1+η. (2c)

This proposition is a key step in the derivation of Theorem 1.1. In the appendix
we include a short proof in the spirit of [3]. Clearly, Theorem 1.1 can be thought
as a much finer version of this approximation. However, an aspect which is crucial
for further developments is that several important estimates can be derived directly
from Proposition 2.1.

2.3. De Giorgi’s excess decay. The fundamental step in De Giorgi’s proof of
Theorem 1.1 is the decay of the quantity usually called “spherical excess” (where
the minimum is taken over all oriented m–planes π):

Ex(T,Br(p)) := min
π

Ex(T,Br(p), π),

with

Ex(T,Br(p), π) :=
1

2

 
Br(p)

|~T − ~π|2d‖T‖.

Proposition 2.2. There is a dimensional constant C with the following property.
For every δ, ε0 > 0, there is ε > 0 such that, if (H) holds, then Ex(T,B1) ≤ ε2

0 and

Ex(T,Br(p)) ≤ C ε2
0 r

2−2δ, (3)

for every r ≤ 1/2 and every p ∈ B1/2 ∩ supp (T ).

From now on we will consider the constant δ fixed. Its choice will be specified
much later.

Definition 2.3. For later reference, we say that a plane π is admissible in p at
scale ρ (or simply that (p, ρ, π) is admissible) if

Ex(T,Bρ(p), π) ≤ Cm,nε2
0 ρ

2−2δ, (4)

for some fixed (possibly large) dimensional constant Cm,n.

Proposition 2.2 guarantees that, for every p and r as in the statement, there exists
always an admissible plane πp,r. The following is a straightforward consequence of
Proposition 2.2 which will be extensively used.

Corollary 2.4. There are dimensional constants C, C ′ and C ′′ with the following
property. For every δ, ε0 > 0, there is ε > 0 such that, under the assumption (H):

(a) if (p, ρ, π) and (p′, ρ′, π′) are admissible (according to Definition 2.3), then

|~π − ~π′| ≤ C ε0

(
max{ρ, ρ′, |q − q′|}

)1−δ
;
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(b) there exists a unique tangent plane πp to T at every p ∈ supp (T ) ∩ B1/2;

moreover, if (p, ρ, π) is admissible then |π − πp| ≤ C ′ ε0 ρ
1−δ and, vice versa,

if |π − πp| ≤ C ′′ ε0 ρ
1−δ, then (p, ρ, π) is admissible;

(c) for every q ∈ Bm1/4, there exists a unique u ∈ Rn such that

(q, u) ∈ supp (T ) ∩B1/2.

Remark 2.5. An important point in the previous corollary is that the constant
C ′′ can be chosen arbitrarily large, provided the constant Cm,n in Definition 2.3
is chosen accordingly. This fact is an easy consequence of the proof given in the
appendix.

Theorem 1.1 is clearly contained in the previous corollary (with the additional
feature that the Hölder exponent β is equal to 1−δ, i.e. is arbitrarily close to 1). In
order to make the paper self-contained, we will include also a proof of Proposition 2.2
and Corollary 2.4 in the appendix.

2.4. Two technical lemmas. We conclude this section with the following two
lemmas which will be needed in the sequel.

Consider two functions f : D ⊂ π0 → π⊥0 and f ′ : D′ ⊂ π → π⊥, with associated
systems of coordinates x and x′, respectively, and x′(p) = A · x(p) for every p ∈
Rm+n. If for every q′ ∈ D′ there exists a unique q ∈ D such that (q′, f ′(q′)) =
A · (q, f(q)) and vice versa, then it follows that graphπ0

(f) = graphπ(f ′), where

graphπ0
(f) :=

{
(q, f(q)) ∈ D× π⊥0

}
and graphπ(f ′) :=

{
(q′, f ′(q′)) ∈ D′× π⊥

}
.

The following lemma compares norms of functions (and of differences of functions)
having the same graphs in two nearby system of coordinates.

Lemma 2.6. There are constants c0, C > 0 with the following properties. Assume
that

(i) ‖A− Id‖ ≤ c0, r ≤ 1;
(ii) (q, u) ∈ π0 × π⊥0 is given and f, g : Bm2r(q)→ Rn are Lipschitz functions such

that

Lip(f),Lip(g) ≤ c0 and |f(q)− u|+ |g(q)− u| ≤ c0 r.
Then, in the system of coordinates x′ = A · x, for (q′, u′) = A · (q, u), the following
holds:

(a) graphπ0
(f) and graphπ0

(g) are the graphs of two Lipschitz functions f ′ and
g′, whose domains of definition contain both Br(q

′);
(b) ‖f ′ − g′‖L1(Br(q′)) ≤ C ‖f − g‖L1(B2r(q));

(c) if f ∈ C4(B2r(q)), then f ′ ∈ C4(Br(q
′)), with the estimates

‖f ′ − u′‖C3 ≤ Φ (‖A− Id ‖, ‖f − u‖C3) , (5)

‖D4f ′‖C0 ≤ Ψ (‖A− Id ‖, ‖f − u‖C3)
(
1 + ‖D4f‖C0

)
, (6)

where Φ and Ψ are smooth functions.

Proof. Let P : Rm×n → Rm and Q : Rm×n → Rn be the usual orthogonal
projections. Set π = A(π0) and consider the maps F,G : B2r(q) → π⊥ and
I, J : B2r(q)→ π given by

F (x) = Q(A((x, f(x))) and G(x) = Q(A((x, g(x))),

I(x) = P (A((x, f(x))) and J(x) = P (A((x, g(x))).
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Obviously, if c0 is sufficiently small, I and J are injective Lipschitz maps. Hence,
graphπ0

(f) and graphπ0
(g) coincide, in the new coordinates, with the graphs of the

functions f ′ and g′ defined respectively in D := I(B2r(q)) and D̃ := J(B2r(q)) by
f ′ = F ◦ I−1 and g′ = G ◦ J−1. If c0 is chosen sufficiently small, then we can find a
constant C such that

Lip(I), Lip(J), Lip(I−1), Lip(J−1) ≤ 1 + C c0, (7)

and

|I(q)− q′|, |J(q)− q′| ≤ C c0 r. (8)

Clearly, (7) and (8) easily imply (a). Conclusion (c) is a simple consequence of
the inverse function theorem. Finally we claim that, for small c0,

|f ′(x′)− g′(x′)| ≤ 2 |f(I−1(x′))− g(I−1(x′))| ∀ x′ ∈ Br(q′), (9)

from which, using the change of variables formula for biLipschitz homeomorphisms
and (7), (b) follows.

In order to prove (9), consider any x′ ∈ Br(q′), set x := I−1(x′) and

p1 := (x, f(x)) ∈ π0 × π⊥0 ,

p2 := (x, g(x)) ∈ π0 × π⊥0 ,

p3 := (x′, g′(x′)) ∈ π × π⊥.

Obviously |f ′(x′) − g′(x′)| = |p1 − p3| and |f(x) − g(x)| = |p1 − p2|. Note that,
g(x) = f(x) if and only if g′(x′) = f ′(x′), and in this case (9) follows trivially. If this
is not the case, the triangle with vertices p1, p2 and p3 is non-degenerate. Let θi be
the angle at pi. Note that, Lip(g) ≤ c0 implies |90◦ − θ2| ≤ Cc0 and ‖A− Id‖ ≤ c0
implies |θ1| ≤ Cc0, for some dimensional constant C. Since θ3 = 180◦ − θ1 − θ2,
we conclude as well |90◦ − θ3| ≤ Cc0. Therefore, if c0 is small enough, we have
1 ≤ 2 sin θ3, so that, by the Sinus Theorem,

|f ′(x′)− g′(x′)| = |p1 − p3| =
sin θ2

sin θ3
|p1 − p2| ≤ 2 |p1 − p2| = 2 |f(x)− g(x)|,

thus concluding the claim.

The following is an elementary lemma on polynomials.

Lemma 2.7. For every n,m ∈ N, there exists a constant C(m,n) such that, for
every polynomial R of degree at most n in Rm and every positive r > 0,

|DkR(q)| ≤ C

rm+k

ˆ
Br(q)

|R| for all k ≤ n and all q ∈ Rm. (10)

Proof. We rescale and translate the variables by setting S(x) = R(rx + q). The
lemma is then reduced to show that

n∑
k=0

|DkS(0)| ≤ C
ˆ
B1(0)

|S|, (11)

for every polynomial S of degree at most n in Rm, with C = C(n,m). Consider
now the vector space V n,m of polynomials of degree at most n in m variables. V n,m

is obviously finite dimensional. Moreover, on this space, the two quantities

‖S‖1 :=

n∑
k=0

|DkS(0)| and ‖S‖2 :=

ˆ
B1(0)

|S|
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are two norms. The inequality (11) is then a corollary of the equivalence of norms
on finite-dimensional vector spaces.

3. The approximation scheme and the main theorem. The C3,α regularity
of the current T will be deduced from the limit of a suitable approximation scheme.
In this section we describe the scheme and state the main theorem of the paper.

We start by fixing a nonnegative kernel ϕ ∈ C∞c (Bm1 ) which is radial and satisfies´
ϕ = 1. As usual, for τ > 0, we set ϕτ (w) := τ−mϕ(w/τ). Consider the area-

minimizing current S = T (Bm+n
1/2 ∩C

π0

1/4) (recall that π0 = {xm+1 = . . . = xm+n =

0} is the tangent plane to T at 0). From Corollary 2.4 (b) and (c), it is simple to
deduce the following: if p = (q, u) ∈ π × π⊥, ρ ≤ 2−6 and π form an admissible
triple (p, 8 ρ, π) with p ∈ supp (T ) ∩B1/16, then

Pπ
#(S Cπ8ρ(q)) = JB8ρ(q)K and ∂S = 0 in Cπ8ρ(q).

From now on, we will assume that Cm,n ε
2
0 2−3(2−2δ) ≤ ε1, where ε1 is the constant

of Proposition 2.1 and Cm,n the constant of Proposition 2.2. This assumption
guarantees the existence of the Lipschitz approximation of Proposition 2.1, which
we restrict to Bm6ρ(q), f : Bm6ρ(q) ⊂ π → π⊥. Then, consider the following functions:

(I1) f̂ = f ∗ ϕρ;
(I2) f̄ such that {

∆f̄ = 0 on Bm4ρ(q),

f̄ |∂Bm4ρ(q) = f̂ ;

(I3) g : Bmρ (q′) ⊂ π0 → π⊥0 , with x(p) = (q′, u′) ∈ π0×π⊥0 , such that graphπ0
(g) =

graphπ(f̄) in the cylinder Cρ(q′) ⊂ π0 × π⊥0 .

Remark 3.1. In order to proceed further, we need to show the existence of g as in
(I3). We wish, therefore, to apply Lemma 2.6 to the function f̄ . First recall that
|π − π0| ≤ Cε0|p|1−δ ≤ Cε0 by Corollary 2.4. Thus, assumption (i) in Lemma 2.6
is satisfied provided ε0 is chosen sufficiently small. Next note that, by the interior
estimates for the harmonic functions and (2a), one has

Lip(f̄ |B3ρ
) ≤ CLip(f̂ |B4ρ

) ≤ C Eη .

Moreover, if we consider the ball Bs(p) with s = ρEη/(2m), by the monotonocity
formula, ‖T‖(Bs(p)) ≥ ωmρmEη/2. Thus, by (2b), the graph of f contains a point in
Bs(p). Using the Lipschitz bound (2a), we then achieve ‖f−u‖C0(B6ρ(q)) ≤ CρEη/2,

which in turn implies ‖f̄ − u‖C0(B4ρ(q)). Recalling that E ≤ Cε2
0ρ

2−2δ, we conclude
that condition (ii) in Lemma 2.6 is satisfied when ε0 is sufficiently small. Therefore
Lemma 2.6(a) guarantees that the function g exists.

Remark 3.2. It is obvious that in order to define the function g we could have
used, in place of the f given by Proposition 2.1, the function whose graph gives the
current T in B6ρ(p). This would have simplified many of the computations below.
However, as mentioned in the introduction, we hope that our choice helps in the
understanding of the more general construction of Almgren.

The function g is the main building block of the construction of this paper. It is
called the (p, ρ, π)-interpolation of T or, if Ex(T,B8ρ(p)) = Ex(T,B8ρ(p), π), simply
the (p, ρ)-interpolation of T .

The main estimates of the paper are contained in the following proposition.
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Proposition 3.3. There are constants α,C > 0 such that, if g, g′ are respectively
(p, ρ, π)- and (p′, ρ, π′)-interpolations, then

ρ1−α‖D4g‖C0 + ‖g‖C3 ≤ C, (12a)

4∑
`=0

ρ`−3−α‖D`g(x)−D`g′(x)‖C0 ≤ C in Bρ(p) ∩Bρ(p′), (12b)

|D3g(q)−D3g′(q′)| ≤ C|q − q′|α, with p = (q, u), p′ = (q′, u′). (12c)

3.1. Approximation scheme. Let 5 < n0 < k0 be natural numbers and consider
the cube Q = [−2−n0 , 2−n0 ]m. For k ≥ k0, we consider the usual subdivision
of Rm into dyadic cubes of size 2 · 2−k, centered at points ci = 2−ki ∈ 2−kZm.
The corresponding closed cubes of the subdivision are then denoted by Qi and we
consider below only those Qi’s which have nonempty intersection with Q.

According to Corollary 2.4 and to the previous observations, for every ci there
exists a unique ui such that pi = (ci, ui) ∈ supp (T ) ∩ B1/16. Moreover, for every

constant C, if k0 is large enough, we can consider the (pi, C 2−k)-interpolation gi
for all k ≥ k0.

Let ψ ∈ C∞c ([− 5
4 ,

5
4 ]m) be a nonnegative function such that, if we define ψi(q) :=

ψ(2k(q − ci)), then ∑
i∈Zm

ψi ≡ 1 in Q .

Denote by Ai the set of indices j such that Qj and Qi are adjacent. Note that
the choice of ψ guarantees ψi ψj = 0 if j 6∈ Ai. Moreover the cardinality of Ai is
(bounded by) a dimensional constant independent of k and, if q ∈ Qi, then in a
neighborhood of q we have∑

j∈Ai

ψj = 1 and
∑
j∈Ai

D`ψj(q) = 0 for all ` > 0. (13)

We are now ready to state and prove the central theorem of this note.

Theorem 3.4. There are dimensional constants n0 < k0 with the following prop-
erties. Given an area-minimizing current T as in (H) and k ≥ k0, consider the
functions hk : Q→ Rn given by hk :=

∑
i ψi gi. Then,

‖hk‖C3,α ≤ C, (14)

for some dimensional constants α > 0 and C (which, in particular, do not depend
on k). Moreover, the graphs of hk converge, in the sense of currents, to T (Q ×
Rn) ∩B1/2, thus implying that T is a C3,α graph in a neighborhood of the origin.

Proof of Theorem 3.4. Given k, consider a cube Qi of the corresponding dyadic
decomposition and a point q ∈ Qi. We already observed that, in a neighborhood of
q, hk =

∑
j∈Ai ψjgj . Moreover, from the definition, we have that

‖D`ψj‖C0 = 2k` ‖D`ψ‖C0 = C` 2k` for every ` ∈ N. (15)

The C0 estimate of hk follows trivially from (12a), since

|hk(q)| ≤
∑
j∈Ai

‖ψj‖C0‖gj‖C0 ≤ C.
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As for the C1 estimate, we write the first derivative of hk as follows,

Dhk(q) =
∑
j∈Ai

(
Dψj(q)gj(q) + ψj(q)Dgj(q)

)
(13)
=
∑
j∈A

(
Dψj(q)(gj(q)− gi(q)) + ψj(q)Dgj(q)

)
,

from which, using (12a), (12b) and (15), we deduce

|Dhk(q)| ≤
∑
j∈Ai

(
‖Dψj‖C0‖gi − gj‖C0 + ‖ψj‖C0‖Dgj‖C0

)
≤ C.

With analogous computations, we obtain

|D2hk(q)| ≤
∑
j∈Ai

(
‖D2ψj‖C0‖gi − gj‖C0 + ‖Dψj‖C0‖Dgj −Dgi‖C0+

+ ‖ψj‖C0‖D2gj‖C0

)
≤ C,

|D3hk(q)| ≤
∑
j∈Ai

(
‖D3ψj‖C0‖gj − gi‖C0 + ‖D2ψj‖C0‖Dgj −Dgi‖C0+

+ ‖Dψj‖‖D2gj −D2gi‖C0 + ‖ψj‖C0‖D3gj‖C0

)
≤ C,

|D4hk(q)| ≤
∑
j∈Ai

(
‖D4ψj‖C0‖gj − gi‖C0 + ‖D3ψj‖C0‖Dgj −Dgi‖C0+

+ ‖D2ψj‖‖D2gj −D2gi‖C0 + ‖Dψj‖C0‖D3gj −D3gi‖C0+

+ ‖ψj‖C0‖D4gj‖C0

)
≤ C 2k(1−α),

where C is a constant independent of k.
Now, let q, q′ ∈ B1/2 and consider the cubes Qi and Qj such that q ∈ Qi and

q′ ∈ Qj . If the two cubes are adjacent, then we have |q− q′| ≤ C2−k and, therefore,

|D3hk(q)−D3hk(q′)| ≤ ‖D4hk‖C0 |q − q′|

≤ C 2k(1−α) |q − q′|
≤ C |q − q′|α.

If Qi and Qj are not adjacent, then 2 |q−q′| ≥ max{|ci−cj |, 2−k}. Since supp (ψ) ⊂
[− 5

4 ,
5
4 ]m, D3hk(ci) = D3gi(ci) for every i and from (12c) it follows that

|D3hk(q)−D3hk(q′)| ≤ |D3hk(q)−D3hk(ci)|+ |D3gi(ci)−D3gj(cj)|+
+ |D3hk(cj)−D3hk(q′)|

≤ C 2−k‖D4hk‖C0 + C|cj − ci|α

≤ C2−kα + C|ci − cj |α

≤ C|q − q′|α.
This concludes the proof of (14). We finally come to the convergence of the graphs
of hk in the sense of currents. Obviously, by compactness we can assume that a
subsequence of hk (not relabelled) converges in the C3(Q) norm to some limiting
C3,α function h. On the other hand, by Corollary 2.4 and Proposition 2.1, it follows
easily that the support of T (Q × Rn) ∩ B1/2 is contained in the graph of h. But
then, by the Constancy Theorem, T (Q×Rn)∩B1/2 must coincide with an integer
multiple of the graph of h. Our assumptions imply easily that the multiplicity is
necessarily 1.
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4. L1-estimate. The rest of the paper is devoted to the proof of Proposition 3.3. A
fundamental point is an estimate for the L1 distance between the harmonic function
f̄ introduced in step (I2) of the approximation scheme and the function f itself. A

preliminary step is the following estimate on the Laplacian of f̂ , which is a simple
consequence of the first variation formula for area-minimizing currents.

Lemma 4.1. There exists δ, γ, C, λ > 0 such that, if (p, 8ρ, π) is admissible and f̂
is as in (I1), then

‖∆f̂‖C0(Bm5ρ) ≤ Cρ1+λ, (16)ˆ
B5ρ

∣∣∣∣ ˆ
Bρ(w)

Df(z) ·Dγ(w − z) dz
∣∣∣∣ dw ≤ C E1+η ρm ‖Dγ‖L1 , ∀γ ∈ C1

c (Bρ,Rn),

(17)
where η is the constant in Proposition 2.1 and E = Ex(T,B8ρ(p), π).

Proof. Let µ be the measure defined by µ(A) := ‖T‖(A × π⊥). We start showing
that the approximation f given by Proposition 2.1 satisfies∣∣∣∣ˆ Df ·Dκ

∣∣∣∣ ≤ C ˆ
|Dκ| |Df |3 dx+ C

ˆ
|Dκ|1B6ρ\K (dx+ dµ(x)), (18)

for every κ ∈ C1
c (B6ρ,Rn). Consider the vector field χ(x, y) = (0, κ(x)). From the

minimality of the current T , we infer that the first variation of the mass in direction
χ vanishes, δT (χ) = 0. We set Tf = graph(f). Since δT (χ) = 0, we get∣∣∣∣ˆ Df ·Dϕ

∣∣∣∣ ≤ ∣∣∣∣ˆ Df ·Dϕ− δTf (χ)

∣∣∣∣+ |δT (χ)− δTf (χ)| . (19)

The first variation δTf (χ) is given by the formulaˆ
C6ρ

div~Tfχd‖Tf‖ =
d

ds

∣∣∣
s=0

ˆ
B6ρ

√
1 + |Df + sDκ|2 +

∑
|α|≥2Mα(Df + sDκ)2 dx

=

ˆ
B6ρ

Df ·Dκ+
∑
|α|≥2Mα(Df) d

ds

∣∣
s=0

Mα(Df + sDκ)√
1 + |Df |2 +

∑
|α|≥2Mα(Df)2

.

It follows then that∣∣∣∣∣
ˆ
C6ρ

div~Tfχd‖Tf‖ −
ˆ
B6ρ

Df ·Dκ

∣∣∣∣∣ ≤
≤
ˆ
B6ρ

|Df ||Dκ|
(√

1 + |Df |2 +
∑
|α|≥2Mα(Df)2 − 1

)
+

+

∣∣∣∣∣
ˆ
B6ρ

∑
|α|≥2Mα(Df) d

ds

∣∣
s=0

Mα(Df + sDκ)

∣∣∣∣∣
≤ C

ˆ
B6ρ

|Dκ| |Df |3.

We next estimate the second term in the right hand side of (19):∣∣δT (χ)− δTf (χ)
∣∣ ≤ ˆ

B6ρ\K×Rn
div~Tχd‖T‖+

ˆ
B6ρ\K×Rn

div~Tfχd‖Tf‖

≤
ˆ

1B6ρ\K(x)|Dκ|(x) dµ(x) + C

ˆ
1B6ρ\K(x)|Dκ|(x) dx,
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where we have used the Lipschitz bound on f to estimate the second integral in the
right hand side of the first line. This concludes the proof of (18).

We now come to the proof of (16). From (18) and Proposition 2.1, it follows
straightforwardly that∣∣∣∣∣

ˆ
B6ρ

Df ·Dκ

∣∣∣∣∣ ≤ C E1+η ρm ‖Dκ‖L∞ , for every κ ∈ C1
c (B6ρ,Rn). (20)

Then, putting together the previous estimates, we conclude that

‖∆f̂‖L∞(B5ρ) = sup
γ∈C1

c (B5ρ),‖γ‖L1≤1

ˆ
Df̂ ·Dγ

= sup
γ∈C1

c (B5ρ),‖γ‖L1≤1

ˆ
Df ·D(γ ∗ ϕρ)

(20)

≤ sup
γ∈C1

c (B5ρ),‖γ‖L1≤1

C E1+ηρm ‖D(γ ∗ ϕρ)‖L∞

≤ C E1+η ρm ‖Dϕρ‖L∞

≤ C E1+η ρ−1

≤ C ρ(2−2δ)(1+η)−1.

Therefore, (16) follows choosing δ sufficiently small with respect to η.
For the proof of (17), it is enough to notice that, from (18) and Proposition 2.1,

we get
ˆ
B5ρ

∣∣∣∣∣
ˆ
Bρ(w)

Df(z) ·Dγ(w − z) dz

∣∣∣∣∣ dw ≤
≤ C

ˆ
B5ρ

|Dγ| ∗ |Df |3 + C

ˆ
B5ρ

|Dγ| ∗ 1Rm\K + C

ˆ
B5ρ

|Dγ| ∗
(
µ (Rm \K)

)
≤ ‖Dγ‖L1

(
CEη

ˆ
B6ρ

|Df |2 + |B6ρ \K|+ µ(B6ρ \K)

)
≤ C E1+η ρm ‖Dγ‖L1 .

Now we come to the L1-estimate for the harmonic approximation f̄ .

Proposition 4.2. Let (p, 8ρ, π) be admissible and f̄ be as in (I2). Then, there
exists α > 0 such that

‖f̄ − f‖L1(B4ρ) ≤ C ρm+3+α. (21)

Proof. First we estimate the L1 distance between f̄ and f̂ . Using the Poincaré
inequality and a simple integration by parts, we infer that

‖f̄ − f̂‖2L1(B4ρ) ≤ C ρ
m+2 ‖∇(f̄ − f̂)‖2L2(B4ρ) = C ρm+2

ˆ
B4ρ

∆f̂ (f̄ − f̂),

from which

‖f̂ − f̄‖L1(B4ρ) ≤ C ρ2+m ‖∆f̂‖∞
(16)

≤ C ρm+3+λ.

In order to prove (21), then it is enough to prove the following inequality,

‖f̂ − f‖L1(B4ρ) ≤ Cρm+3+α. (22)
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For every z ∈ B4ρ, from the definition of f̂ we have

f̂(z)− f(z) =

ˆ
ϕρ(z − y)(f(y)− f(z)) dy. (23)

To simplify the notation assume z = 0 and rewrite (23) as

f̂(0)− f(0) =

ˆ
ϕρ(y)

ˆ |y|
0

∂f

∂r

(
τ
y

|y|

)
dτ dy

=

ˆ
ϕρ(y)

ˆ |y|
0

∇f
(
τ
y

|y|

)
· y
|y|

dτ dy

=

ˆ
ϕρ(y)

ˆ 1

0

∇f(σy) · y dσ dy

=

ˆ ˆ 1

0

ϕρ

(w
σ

)
∇f(w) · w

σm+1
dσ dw

=

ˆ
∇f(w) · w

(ˆ 1

0

ϕρ

(w
σ

)
σ−m−1 dσ

)
︸ ︷︷ ︸

=:Φ(w)

dw.

More generally, for every z ∈ B4ρ, we have f̂(z) − f(z) =
´
∇f(w) · Φ(w − z) dw

and

‖f̂ − f‖L1(B4ρ) =

ˆ
B4ρ

∣∣∣∣ˆ ∇f(w) · Φ(w − z) dw
∣∣∣∣ dz.

Since ϕ is radial, the function Φ is a gradient. Indeed, it can be easily checked that,
for any ψ, the vector field ψ(|w|)w is curl-free. Moreover, supp (Φ) is compactly
contained in Bρ. Hence, we can apply (17) and get

‖f̂ − f‖L1(B4ρ) ≤ C E
1+η ρm ‖Φ‖L1 . (24)

By a simple computation,

‖Φ‖L1 =

ˆ
Rm

ˆ 1

0

|w|ϕ
(
w

ρσ

)
ρ−mσ−m−1 dσ dw = ρ

ˆ
Rm

ˆ 1

0

|y|ϕ(y) dσ dy .

The last integral is a constant which depends only on ϕ. Thus, (22) follows from
(24).

A simple consequence of the L1-estimate is a comparison between harmonic ap-
proximations at different scales.

Corollary 4.3. Assume (p, 16 r, π) is an admissible triple and let f̄1 and f̄2 be as
in (I2), with ρ = r and ρ = 2 r respectively. Then, if p = (q, u) ∈ π × π⊥,

4∑
`=0

r`−3−α‖D`f̄1 −D`f̄2‖C0(Bm
3r/2

(q)) ≤ C. (25)

Proof. It is enough to show that

‖f̄1 − f̄2‖L1(B2r) ≤ C rm+3+α, (26)

because then the conclusion of the lemma follows easily from the classical mean-
value property of harmonic functions. Clearly, from the admissibility of (p, 16 r, π)
and Corollary 2.4, it follows that |π − πp| ≤ C r2−2δ. Hence, always by the same
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corollary E2 := Ex(T,B16r(p), π) ≤ Cr2−2δ. Then, in view of Proposition 4.2, in
order to show (26), it suffices to prove

‖f1 − f2‖L1(B2r) ≤ C rm+3+α. (27)

Note first that f1 and f2 coincide on a set K with |B2r \K| ≤ CE1+η
2 rm. Moreover,

since the Lipschitz constants of f1 and f2 are bounded by a universal constant C,
we have |f1(z)− f2(z)| ≤ Cr for every z ∈ B2r. Therefore, we conclude (27) from

‖f1 − f2‖L1(B2r) ≤ Cr|B2r \K| ≤ C rE1+η
2 rm ≤ C rm+1+(1+η)(2−2δ).

5. Proof of Proposition 3.3. The proof of (12a) in Proposition 3.3 is given by
a simple iteration of Corollary 4.3 on dyadic balls.

Lemma 5.1. Let g1, g2 be respectively the (p, ρ, π)- and the (p, 2Nρ, π)-interpolation
(under the assumption of admissibility (4)). Then, for p = (q′, u′) ∈ π0 × π⊥0 , it
holds

‖g1‖C3 + ρ1−α‖D4g1‖C0 ≤ C, (28)

|D3g1(q′)−D3g2(q′)| ≤ C(2Nρ)α. (29)

Proof. Recalling Lemma 2.6, it suffices to show (28) for the function f̄1. Let n0 be
the biggest integer such that 2n0+3ρ ≤ 1

2 and for every k ≤ n0 − 1 set rk = 2k ρ. If
πk is such that Ex(T,B8rk , πk) = Ex(T,B8rk), then, by Corollary 2.4 (b), |π−πk| ≤
C r1−δ

k . Hence, we conclude that the admissibility condition (4) holds with r = rk,
so that we can consider the approximation f̄k as in (I2) for rk. From Corollary 4.3,
we get

‖D`f̄k −D`f̄k+1‖C0(Bm
3rk/2

(q)) ≤ Cr3+α−`
k ≤ C 2−(n0−k)(3+α−`), (30)

for ` ∈ {0, 1, 2, 3, 4}. Note that the series
∑
i 2−i(3+α−`) is summable for ` ≤ 3.

Therefore, ‖f̄1‖C3 ≤ C + ‖f̄n0
‖C3 . On the other hand, since rn0

> 1/32, it is easy
to see that ‖f̄n0‖C3 ≤ C for some universal constant C, so that ‖f̄1‖C3 ≤ C. In the
same way we have ‖D4f̄1‖C0 ≤ C ρα−1. Then, (28) follows from Lemma 2.6 (c) .

Finally, Corollary 4.3 obviously implies thatˆ
Bm

3rk/2
(q)

|f̄k − f̄k+1| ≤ Crm+3+α
k . (31)

Hence, using again Lemma 2.6, we concludeˆ
Bmrk

(q′)

|gk − gk+1| ≤ Crm+3+α
k . (32)

Let Pk and Pk+1 be the third order Taylor polynomials at q′ of gk and gk+1. From
the estimate ‖D4gk‖, ‖D4gk+1‖ ≤ Crα−1

k and (32), we easily inferˆ
Bmrk

(q′)

|Pk − Pk+1| ≤ C rm+3+α
k .

Hence, applying Lemma 2.7, we then get

|D3gk(q′)−D3gk+1(q′)| = |D3Pk(q′)−D3Pk+1(q′)| ≤ C rαk . (33)

Arguing as above, the estimate (29) follows from (33) and a simple iteration.
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The final step in the proof of Proposition 3.3 consists in comparing two different
interpolating functions defined at the same scale but for nearby balls and varying
planes π. We do this in the following two separate lemmas.

Lemma 5.2. Let g1 and g2 be the (p, ρ, π)- and (p, ρ, π′)-interpolating functions
where as usual (p, 8ρ, π) and (p, 8ρ, π′) are admissible. Then,

3∑
`=0

ρ`−3−α‖D`g1 −D`g2‖C0(Bmρ (q)) ≤ C. (34)

Proof. As before, we first show that

‖g1 − g2‖L1(B3/2ρ(q)) ≤ Cρm+3+α. (35)

Denote by f1, f2 the Lipschitz approximations given by Proposition 2.1 in the co-
ordinates associated to π, π′ and let h1, h2 : Bρ(q)→ π⊥0 be the Lipschitz functions
whose graphs coincide with the graphs of f1 and f2 respectively. From Lemma 2.6
and Proposition 4.2, we have

‖gi − hi‖L1(B3/2ρ(q)) ≤ ‖fi − f̄i‖L1(B2ρ(qi)) ≤ C ρ
m+3+α,

where (q1, u1), (q2, u2) and (q, u) are the coordinates of p in π × π⊥, π′ × π′⊥ and
π0 × π⊥0 respectively. Therefore, for (35) it is enough to show

‖h1 − h2‖L1(B3/2ρ(q)) ≤ Cρm+3+α.

To see this, consider the set A = {h1 6= h2}. From Proposition 2.1 if follows that

|A| ≤ Hm
(
graph(h1)4 graph(h2)

)
≤ Cρm+2+α.

Then, if x ∈ A and y ∈ B3ρ/2 \A, since h1(y) = h2(y) and Lip(hi) ≤ C, we have

|h1(x)− h2(x)| ≤ |h1(x)− h1(y)|+ |h2(y)− h2(x)| ≤ C|y − x| ≤ Cρ,

from which ‖h1 − h2‖L1(B3/2ρ(q)) ≤ C r |A| ≤ C ρm+3+α.

From (35) we are ready to conclude. Let x ∈ Bρ(q) and Pi be the third order
Taylor expansions of gi at x. Arguing as in Lemma 5.1, we conclude

‖P1 − P2‖L1(Bρ/2(x)) ≤ Cρm+3+α.

Using Lemma 2.7 we then conclude

|DkP1(x)−DkP2(x)| ≤ Cρ3−k+α for k ∈ {0, 1, 2, 3}. (36)

On the other hand, since DkPi(x) = Dkgi(x), (36) implies the desired estimates.

Lemma 5.3. Let g1 and g2 be, respectively, the (p, ρ, π)- and (p′, ρ, π)-interpolating
functions, where (p, ρ, π) and (p′, ρ, π) are admissible. Assume that p = (q, u),
p′ = (q′, u′) with |q − q′| ≤ ρ/16. Then,

4∑
`=1

ρ`−3−α‖D`g1 −D`g2‖C0(Bnρ (q)∩Bnρ (q′)) ≤ C. (37)

The proof of this lemma exploits only a portion of the same computations used
for Lemma 5.2 and is left to the reader.

The proof of (12b) follows straightforwardly from Lemma 5.2 and Lemma 5.3;
while the proof of (12c) is given below.
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Proof of (12c). Consider R := 16 |q − q′| and let h, k and h′ be the (q,R, π)-,
(q,R, π′)- and (q′, R, π′)-interpolations, respectively. By Corollary 2.4, if |q − q′| is
small enough, we can apply Lemma 5.2 and Lemma 5.3 to conclude that

|D3h(q)−D3k(q)|+ |D3k(q′)−D3h′(q′)| ≤ CRα.

On the other hand, by (12a), ‖D4k‖ ≤ CRα−1, and so |D3h(q) −D3h′(q′)| ≤ Rα.
Since by Lemma 5.1 we know that |D3g(q) − D3h(q)| ≤ CRα and |D3g′(q′) −
D3h′(q′)| ≤ CRα, the desired conclusion follows.

Appendix A. De Giorgi’s regularity result. In this section we provide a proof
of De Giorgi’s regularity Theorem 1.1 in its more refined version of Corollary 2.4.
The overall strategy proposed here is essentially De Giorgi’s celebrated original
one [2]; however, in many points we get advantage from some new observations
contained in our recent work [3].

In the following we keep the conventions of the rest of the paper, but we use the
various Greek letters α, β, . . . for other parameters and other functions. Moreover,
given a current T in Rm+n, a Borel set A ⊂ Rm+n and a simple m-vector τ , we
define the following excess measures:

e(T,A, τ) :=
1

2

ˆ
A

|~T − τ |2 d‖T‖ and e(T,A) := min
‖τ‖=1

e(T,A, τ).

A.1. Lipschitz approximation. In this section we prove Proposition 2.1. To
this aim, we assume without loss of generality that π = π0 and consider an area-
minimizing integer rectifiable m-dimensional current T in Cr such that

∂ T = 0, P#(T ) = JBmr K and E := Ex(T, Cr) < 1,

where P : Rm+n → Rm is the orthogonal projection.
The proof is in the spirit of the approximation result in [3] and is made in three

steps.

A.1.1. BV estimate. Consider the push-forwards into the vertical direction of the
0-slices 〈T,P, x〉 through the projection P⊥ : Rm+n → Rn:

Tx := P⊥
# 〈T,P, x〉 .

These integer 0-currents (i.e. sums of Dirac deltas with integer coefficients) are
characterized by the following identity (see [6, Section 28]):
ˆ
Br

〈Tx, ψ〉ϕ(x) dx = 〈T, ϕ(x)ψ(y) dx〉 for every ϕ ∈ C∞c (Bmr ), ψ ∈ C∞c (Rn).

Lemma A.1. For every ψ ∈ C∞c (Rn) with ‖Dψ‖∞ ≤ 1, the function Φψ defined
by Φψ(x) := 〈Tx, ψ〉 belongs to BV (Bmr ) and(
|DΦψ|(A)

)2 ≤ 2 e(T,A× Rn, ~em) ‖T‖(A× Rn) for every open A ⊂ Bmr . (38)

Proof. For ϕ ∈ C∞c (A,Rm), note that (divϕ(x)) dx = dα, where

α =
∑
j

ϕj dx̂
j and dx̂j = (−1)j−1dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxm.
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Hence, from the characterization of the slices Tx, it follows that
ˆ
A

Φψ(x) divϕ(x) dx =

ˆ
Br

〈Tx, ψ(y)〉divϕ(x) dx

= 〈T, ψ(y) divϕ(x) dx〉
= 〈T, ψ dα〉
= 〈T, d(ψ α)〉 − 〈T, dψ ∧ α〉
= −〈T, dψ ∧ α〉 , (39)

where in the last equality we used the hypothesis ∂T = ∅ on Bmr ×Rn. Now, observe
that the m-form dψ ∧ α has no dx component, since

dψ ∧ α =

m∑
j=1

n∑
i=1

∂ψ

dyi
(y)ϕj(x) dyi ∧ dx̂j .

Write ~T = (~T ·~em)~em + ~S (see [6, Section 25] for the scalar product on m-vectors).
We then conclude that

〈T, dψ ∧ α〉 = 〈~S · ‖T‖ , dψ ∧ α〉. (40)

Moreover,
ˆ
A×Rn

|~S|2 d ‖T‖ =

ˆ
A×Rn

(
1−

(
~T · ~em

)2)
d ‖T‖

≤ 2

ˆ
A×Rn

(
1−

(
~T · ~em

))
d ‖T‖

= 2 e(T,A× Rn, ~em). (41)

If ‖ϕ‖∞ ≤ 1, then |dψ ∧ α| ≤ ‖Dψ‖∞ ‖ϕ‖∞ ≤ 1. Hence, by Cauchy–Schwartz
inequality

ˆ
A

Φψ(x) divϕ(x) dx
(39)

≤ | 〈T, dψ ∧ α〉 | (40)
= |〈~S · ‖T‖ , dψ ∧ α〉|

≤ |dψ ∧ α|
ˆ
A×Rn

|~S| d ‖T‖

≤
(ˆ

A×Rn
|~S|2 d ‖T‖

) 1
2 √

M(T (A× Rn))

(41)

≤
√

2 e(T,A× Rn, ~em)
√

M(T (A× Rn)).

Taking the supremum over all ϕ with L∞-norm less or equal 1, we conclude (38).

A.1.2. Maximal Function truncation. Here, we show how we determine the Lips-
chitz approximation. Given α > 0, we set

MT (x) := sup
Bms (x)⊂Bmr

Ex(T, Cs(x)),

K :=
{
x ∈ Bmr : MT (x) ≤ E2α

}
and L :=

{
x ∈ Bmr : MT (x) > E2α/2m

}
.
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Lemma A.2. Let 0 < α < 1
2 and r′ = r(1− E 1−2α

m ). Then, there exists h : Br′ →
Rn such that:

Lip(h) ≤ C Eα and graph(h|K) = T (K × Rn), (42)

|Bs \K| ≤
5m

E2α
e(T, (L ∩B

s+rE
1−2α
m

)× Rn, ~em) ≤ 5mE1−2α rm ∀s ≤ r′. (43)

Proof. Note that x /∈ K if and only if there exists 0 < rx < rE
1−2α
m such that

E2α <
e(T, Crx(x), ~em)

ωm rmx
≤ e(T, Cr, ~em)

ωm rmx
=
rmE

rmx
.

Hence, recalling the standard Maximal Function estimate (see, for example, [7]), we
deduce easily (43).

In order to define the approximation h, recall that
´
A
‖Tx‖ ≤ ‖T‖(A × Rn) for

every open set A (cp. to [6, Lemma 28.5]). Therefore,

‖Tx‖ ≤ lim
r→0

‖T‖(Cr(x))

ωm rm
≤MT (x) + 1 for almost every x.

Hence, since E < 1 and P]T = JBrK, we have that 1 ≤ ‖Tx‖ < 2 for almost every
point in K. Thus, Tx = δg(x) for some measurable function g.

By Lemma A.1, for every ψ ∈ C∞c (Rn) with ‖Dψ‖L∞ ≤ 1,

M(|DΦψ|)(x)2 = sup
0<s≤r−|x|

(
|DΦψ|(Bs(x))

|Bs|

)2

≤ sup
0<s≤r−|x|

2 e(T, Cs(x), ~em) M(T, Cs(x))

|Bs|2

= sup
0<s≤r−|x|

2 e(T, Cs(x), ~em)
(
e(T, Cs(x), ~em) + |Bs|

)
|Bs|2

≤ 2MT (x)2 + 2MT (x)

≤ CMT (x).

Therefore, by a standard argument (see, for instance, [4, 6.6.2]), this implies the
existence of a constant C > 0 such that, for every x, y ∈ K Lebesgue points of Φψ,

|Φψ(x)− Φψ(y)| = |ψ(g(x))− ψ(g(y))| ≤ C Eα |x− y|.

Taking the supremum over a dense, countable set of ψ ∈ C∞c (Rn) with ‖Dψ‖∞ ≤ 1,
we deduce that

|g(x)− g(y)| ≤ C Eα |x− y|. (44)

We can hence extend g to all Br′ , obtaining a Lipschitz function h with Lipschitz
bound CEα. Clearly, since h|K = g|K and Tx = δg(x), we conclude graph(h|K) =
T (K × Rn).

Remark A.3. Note that from Lemma A.2 it follows thatˆ
Br′

|Dh|2 ≤ C E rm (45)

and ‖T − graph(h)‖(Cr′) ≤ CE1−2α rm , (46)

for some dimensional constant C > 0



CENTER MANIFOLD: A CASE STUDY 17

A.1.3. Proof of Proposition 2.1. We start fixing positive constants α, σ, θ, γ such
that

σ, γ <
1− 2α

2m
, 2σ < θ < γ and

1− 2α− σ
m− 1

m > 1. (47)

Consider the Lipschitz approximation h given by Lemma A.2 corresponding to the
exponent α (we keep the same notation as above). By a slicing argument, we find
s ∈ [r(1− Eσ), r(1− Eθ)] such thatˆ

B
s+rEθ

\B
s−2rEθ

|Dh|2 ≤ C Eσ
ˆ
Br′

|Dh|2 ≤ C E1+σ rm (48)

and M((T − graph(h)) ∂Bs) ≤ C E1−2α−σrm−1. (49)

(With a slight abuse of notation, we write (T −graph(h)) ∂Bs in place of the more
correct 〈T − graph(h), ϕ, s〉, where ϕ(x) = |x|.)

Moreover, setting for a standard kernel ϕ

g(x) =

{
h ∗ ϕrEγ if x ∈ Bs−rEθ ,
|x|−s+r Eθ

r Eθ
h(x) + s−|x|

r Eθ
h ∗ ϕrEγ (x) if x ∈ Bs \Bs−rEθ ,

it is simple to verify that Lip(g) ≤ CEα and, furthermore,ˆ
Bs

|Dg|2 ≤
ˆ
Bs\L

|Dh|2 + C E1+δ rm, (50)

for some δ > 0, where L is as in Lemma A.2. Indeed, we can estimate the energy
of g in two steps as follows. First in the annulus Bs \Bs−rEθ :ˆ

Bs\Bs−rEθ
|Dg|2 ≤ C

ˆ
Bs+rEγ \Bs−r(Eθ+Eγ )

|Dh|2+

+
C

r2E2 θ

ˆ
Bs\Bs−rEθ

|h− h ∗ ϕrEγ |2

≤ C
ˆ
B
s+rEθ

\B
s−2rEθ

|Dh|2 +
C r2E2 γ

r2E2 θ

ˆ
Br

|Dh|2

(45)

≤ C (E1+σ + E1+2 γ−2 θ) rm .

Hence, in Bs−rEθ :ˆ
B
s−rEθ

|Dg|2 ≤
ˆ
B
s−rEθ

(|Dh| ∗ ϕrEγ )2

=

ˆ
B
s−rEθ

(
(|Dh|1Bs\L + |Dh|1Bs∩L) ∗ ϕrEγ

)2
≤ 2

ˆ
B
s−rEθ

((|Dh|1Bs\L) ∗ ϕrEγ )2+

+ 2

ˆ
B
s−rEθ

((|Dh|1Bs∩L) ∗ ϕrEγ )2,

where the first term is estimated in turn asˆ
B
s−rEθ

((|Dh|1Bs\L) ∗ ϕrEγ )2 ≤
ˆ
Bs

(|Dh|1Bs\L)2 ≤
ˆ
Bs\L

|Dh|2



18 CAMILLO DE LELLIS AND EMANUELE SPADARO

and the second one as follows,ˆ
B
s−rEθ

(|Dh|1Bs∩L ∗ ϕrEγ )2 ≤ ‖Dh‖L∞ ‖1Bs∩L ∗ ϕrEγ‖2L2

≤ C E2α ‖ϕrEγ‖2L2 ‖1Bs∩L‖2L1

= C E2−mγ−2α rm.

Hence, by the choice of the constants in (47), (50) follows.
Next, we observe that, from ∂

(
T − graph(h)

)
∂Br = 0, by the isoperimetric

inequality and (49), there is an integer rectifiable current R such that

∂R =
(
T − graph(h)

)
∂Bs and ‖R‖ ≤ CE

(1−2α−σ)m
m−1 rm.

Moreover, being g|∂Bs = h|∂Bs , we can use graph(g) + R as competitor for the
current T . In this way we obtain, for a suitable τ > 0,

‖T‖(Cs) ≤ |Bs|+
ˆ
Bs

|Dg|2

2
+ C E1+τ rm

(50)

≤ |Bs|+
ˆ
Bs\L

|Dh|2

2
+ C E1+τ rm. (51)

On the other hand, again using the Taylor expansion for the area functional,

‖T‖(Cs) = ‖T‖((Bs ∩ L)× Rn) + ‖graph(h|Bs\L)‖

≥ ‖T‖((Bs ∩ L)× Rn) + |Bs \ L|+
ˆ
Bs\L

|Dh|2

2
− C E1+τ rm. (52)

Hence, from (51) and (52), we deduce

e(T, (Bs ∩ L)× Rn, ~em) ≤ C E1+τ rm. (53)

We are now in the position to conclude the proof of Proposition 2.1. Let β < α
be such that 2β < τ and let f be the Lipschitz approximation given by Lemma A.2
corresponding to β. Clearly, (2a) follows once we take η ≤ β. Moreover, since
{MT > Eβ/2m} ⊂ L, from (43) and (53) we get (2b) if η is accordingly chosen.
Finally, for (2c), we use again the Taylor expansion of the area functional to con-
clude:∣∣∣∣‖T‖(Cs)− ωm sm − ˆ

Bs

|Df |2

2

∣∣∣∣ ≤ e(T, (Bs ∩ L)× Rn, ~em)+

+

ˆ
Bs∩L

|Df |2

2
+ C E1+β rm

≤C (E1+τ + E1+β) rm + C E2β |B1 ∩ L|
≤C E1+η rm.

A.2. Convergence to harmonic functions. Let (Tl)l∈N be a sequence of mini-
mizing m-currents in B1 ⊂ Rm+n such that

∂Tl = 0 in B1, θ(Tl, 0) = 1 and ‖Tl‖(B1) ≤ ωm + εl with εl → 0. (54)

It is immediate to see that, up to subsequences, the Tl converge in the sense of
currents to a flat m-dimensional disk centered at the origin. By the monotonicity
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formula, there is also Hausdorff convergence of the supports of Tl to the flat disk in
every compact set C ⊂⊂ B1:

lim
l→+∞

sup
x∈C∩supp (Tl)

dist(x,Rm × {0}) = 0.

In particular, there exist radii rl → 1 such that

∂
(
Tl Crl

)
= 0 in Crl and P#

(
Tl Crl

)
=

q
Bmrl

y
.

In the following proposition we prove the convergence to a harmonic function for
the rescaled Lipschitz approximations.

Proposition A.4. Let Tl be as in (54), El := e(Tl, Crl , ~em) and fl : Brl(1−Eηl ) → Rn

the approximations in Proposition 2.1. The rescaled functions ul := fl−f̄l√
El

, where

f̄l =
ffl
fl are the averages, converge in W 1,2

loc to a harmonic function u.

Proof. Note that, by (45) it follows that supl
´
Brl
|Dul|2 <∞. Hence, since

ffl
ul =

0, by the Sobolev embedding and the Poincaré inequality, there exists a function
u : B1 → Rn such that, for every s < 1, ul → u in L2(Bs) and Dul⇀Du in L2(Bs).

Set Ds = lim inf l
´
Bs
|Dul|2. If the proposition does not hold, for some s < 1,

then

(i) either
´
Bs
|Du|2 < Ds,

(ii) or u|Bs is not harmonic.

Under this assumption, we can find s0 > 0 such that, for every s ≥ s0, there exists
v ∈W 1,2(Bs,Rn) with

v|∂Bs = u|∂Bs and γs := Ds −
ˆ
Bs

|Dv|2 > 0. (55)

With a slight abuse of notation, we write (Tl − graph(fl)) ∂Cr in place of
〈Tl − graph(fl), ϕ, r〉, where ϕ(z, y) = |z|. Consider the function ψl given by

ψl(r) := E−1
l M

(
(Tl−graph(fl)) ∂Cr

)
+

ˆ
∂Br

|Dul|2 +

ˆ
∂Br

|Du|2 +

´
∂Br
|ul − u|2´

Bsl
|ul − u|2

,

Since from the estimates on the Lipschitz approximation, one gets

‖Tl‖(Csl)− ‖graph(fl)‖(Csl) ≤ CE
1+η
l ,

lim inf l
´ sl
s0
ψl(r) dr < ∞. Therefore, by Fatou’s Lemma, there is s ∈ (s0, 1) and a

subsequence, not relabelled, such that liml ψl(s) <∞. It follows that:

(a)
´
∂Bs
|ul − u|2 → 0,

(b)
´
∂Bs
|Dul|2 +

´
∂Bs
|Du|2 ≤M for some M <∞,

(c) ‖(Tl − graph(ul)) ∂Bs‖ ≤ C El.
Once fixed s, we approximate v by a Lipschitz function w such that:ˆ
Bs

|Dw|2 ≤
ˆ
Bs

|Dv|2+θ,

ˆ
∂Bs

|Dw|2 ≤
ˆ
∂Bs

|Dv|2+θ and

ˆ
∂Bs

|w−v|2 ≤ θ,

where θ > 0 will be chosen later. Next, for every given δ > 0 (also to be chosen
later), define ξl via a linear interpolation so that

Lip(ξl) ≤ CEη−1/2
l , ξl|∂Bs = ul|∂Bs ξl|Bs−δ = w|Bs−δ .
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It is easy to see that this can be done so that the following estimates hold:ˆ
Bs

|Dξl|2 ≤
ˆ
Bs

|Dw|2 + Cδ

ˆ
∂Bs

|Dw|2 + Cδ

ˆ
∂Bs

|Dul|2 + C δ−1

ˆ
∂Bs

|w − ul|2

(a),(b)

≤
ˆ
Bs

|Dv|2 + θ + C δM + C δ−1θ.

We choose first δ and then θ so to guarantee that

lim sup
l

ˆ
|Dξl|2 ≤

ˆ
Bs

|Dv|2 +
γs
2
. (56)

The functions ξl give the desired contradiction. Set zl :=
√
El ξl and consider

the current Zl := graph(ξl). Since zl|∂Bs = fl|∂Bs , ∂Zl = graph(fl) ∂Bs. There-
fore, from (c), ‖∂(Tl Bs − Zl)‖ ≤ CEl. From the isoperimetric inequality (see [6,
Theorem 30.1]), there exists an integral current Rl such that

∂Rl = ∂(Tl Cs − Zl) and ‖Rl‖ ≤ CEm/(m−1)
l .

Set finally Wl = Tl (Crl \ Cs) +Zl +Rl. By construction, it holds ∂Wl = ∂Tl. The
Taylor expansion of the area functional and the various estimates achieved give:

lim sup
l

‖Wl‖ − ‖Tl‖
El

≤ lim sup
l

‖Wl‖ − ‖graph(fl)‖+ C E1+η
l

El

≤ lim sup
l

E−1
l

{
‖Rl‖+

ˆ
Bs

|Dzl|2

2
−
ˆ
Br

|Dfl|2

2

}
≤ lim sup

l

ˆ
Bs

|Dξl|2

2
−Ds

≤
ˆ
Bs

|Dv|2 +
γs
2
−Ds

≤ −γs
2
< 0 .

For l large enough this last inequality contradicts the minimality of the current
Tl.

Remark A.5. Note the following easy corollary of Proposition 2.1:ˆ
Bs

|Df |2 = 2E ωm r
m + C E1+η rm.

Hence, in particular, the harmonic function u in Proposition A.4 satisfiesˆ
B1

|Du|2 ≤ 2ωm.

A.3. Decay estimate. We start with the following technical lemma.

Lemma A.6. Let f : Bs → Rn be the Lipschitz approximation in Proposition 2.1
and S the integer current associated to its graph. If τ is the unitary m-vector given
by

τ =
(e1 +Ae1) ∧ · · · ∧ (em +Aem)

‖(e1 +Ae1) ∧ · · · ∧ (em +Aem)‖
, with A =

 
Bs

Df, (57)

then, for every t ≤ s,

e(S, Ct, τ) =

ˆ
Bt

|Df −A|2

2
+ CE1+η.
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Proof. From the definition of excess and (2b), it follows that

e(S, Ct, τ) = ‖S‖(Ct)−
ˆ
Ct
〈~S, τ〉 d‖S‖

=

ˆ
Bt

|Df |2

2
+ |Bt|+ C E1+η −

ˆ
Ct
〈~S, τ〉 d‖S‖. (58)

Notice that |A|2 = |
ffl
Df |2 ≤

ffl
|Df |2 ≤ CE, thus implying

|τ̄ | =
√
〈τ̄ , τ̄〉 =

√
det(δij +Aei ·Aej) =

√
1 + |A|2 +O(|A|4) = 1 +

|A|2

2
+O(E2)

(where τ̄ = (e1 +Ae1) ∧ . . . ∧ (em +Aem)) and

〈(e1 +Df e1) ∧ · · · ∧ (em +Df em), τ̄〉 = det(δij +Dfei ·Aej)
= 1 +Df ·A+O(|Df |2|A|2)

= 1 +Df ·A+O(E1+2η).

Hence, from

~S =
(e1 +Df e1) ∧ · · · ∧ (em +Df em)

‖(e1 +Df e1) ∧ · · · ∧ (em +Df em)‖
,

we have that
ˆ
Ct
〈~S, τ〉 d‖S‖ =

ˆ
Bt

(1 +Df ·A+O(E1+2 η))

(
1 +
|A|2

2
+O(E2)

)−1

dx

=

ˆ
Bt

(
1 +Df ·A− |A|

2

2

)
dx+O(E1+2 η). (59)

Putting together (58) and (59), we obtain the desired conclusion,

e(S, Ct, τ) =

ˆ
Bt

|Df |2 + |A|2 − 2Df ·A
2

+O(E1+η) =

ˆ
Bt

|Df −A|2

2
+O(E1+η).

The basic step in De Giorgi’s decay estimate is the following.

Proposition A.7. For every θ > 0, there exists ε > 0 such that, if T is an area-
minimizing m-dimensional integer rectifiable current in B1 such that

∂T = 0, θ(T, 0) = 1 and ‖T‖(B1) ≤ ωm + ε,

then

e(T,B 1
2
) ≤

(
1

2m+2
+ θ

)
e(T,B1). (60)

Proof. The proof is by contradiction. Assume that there exists θ > 0 and a sequence
of area-minimizing currents (Tl)l∈N in B1 satisfying (54) such that

e(Tl, B 1
2
) >

(
1

2m+2
+ θ

)
e(Tl, B1). (61)

Let rl be the sequence in Section A.2. Clearly, it holds that

e(Tl, Crl , ~em) = e(Tl, Crl ∩B1, ~em) ≤ e(Tl, B1, ~em) = e(Tl, B1).
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Hence, from (61),

e(Tl, C 1
2
, ~em) ≥ e(Tl, C 1

2
) ≥ e(Tl, B 1

2
) >

(
1

2m+2
+ θ

)
e(Tl, B1)

≥
(

1

2m+2
+ θ

)
e(Tl, Crl , ~em). (62)

Let El, fl, ul be as in Proposition A.4 and u : B1 → Rn the harmonic function such
that ul converges to u in W 1,2

loc (B1). Note that (62) and Remark A.5 imply thatˆ
B 1

2

|Du|2 = lim
l→+∞

ˆ
B 1

2

|Dul|2 = lim
l→+∞

2 e(Tl, C 1
2
)

El
> 2

(
1

2m+2
+ θ

)
> 0.

In particular, Du is not identically 0. Since from Remark A.5
´
B1
|Du|2 ≤ 2ωm,

from (62) and Lemma A.6, we getˆ
B 1

2

|Dfl −Al|2

2
+ C E1+η

l ≥ e(Tl, C 1
2
, τl)

≥ e(Tl, C 1
2
)

≥
(

1

2m+2
+ θ

)
El

ˆ
B1

|Du|2

2
.

where Al =
ffl
B1/2

Dfl and τl is as in (57).

Rescaling by El and passing to the limit in l, for (Du)s =
ffl
Bs
Du, we getˆ

B 1
2

|Du− (Du) 1
2
|2 ≥

(
1

2m+2
+ θ

) ˆ
B1

|Du|2 ≥
(

1

2m+2
+ θ

) ˆ
B1

|Du− (Du)1|2,

against the decay property of harmonic functions. This gives the contradiction and
concludes the proof.

We conclude with the proofs of Proposition 2.2 and Corollary 2.4.

Proof of Proposition 2.2. The proof is now an easy consequence of Proposition A.7.
For every δ > 0 choose θ > 0 such that(

1

2

)2−2 δ

=
1

4
+ 2m θ.

Fix ε̄ sufficiently small so that Proposition A.7 applies. Then, if we chose ε small
enough in the hypothesis (H) of Proposition 2.2, recalling the beginning of Section
A.2, we have that

‖T‖(B1/2(p)) ≤ (ωm + ε̄) 2−m for every p ∈ supp (T ) ∩B1/2.

It follows from the monotonicity formula that ‖T‖(Br(p)) ≤ (ωm + ε̄)rm for ev-
ery r. Therefore, we can apply iteratively (the appropriate rescaled version of)
Proposition A.7, and for 2−k−1 < r ≤ 2−k one obtains

Ex(T,Br(p)) ≤ CEx(T,B 1

2k
(p))

≤ C
(

1

2k

)2−2 δ

Ex(T,B1/2(p))

≤ C Ex(T,B1) r2−2 δ .
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Proof of Corollary 2.4. Consider two admissible pairs (p, ρ, π) and (p, 2ρ, π′). Using
the monotonicity ‖T‖(Bs(p)) ≥ ωmsm for ever s > 0, it follows that

|~π − ~π′|2 ≤ C ρ−m
ˆ
Bρ

|~π − ~T |2 d‖T‖+ C (2ρ)−m
ˆ
B2ρ

|~π′ − ~T |2 d‖T‖

≤ C ε2
0 ρ

2−2 δ.

Hence, for admissible pairs (p, ρ, π) and (p, ρ′, π′) with ρ
2k+1 < ρ′ ≤ ρ

2k
, we have

|~π − ~π′|2 ≤ C ε2
0

k∑
i=0

( ρ
2k

)2−2 δ

≤ C ε2
0 ρ

2−2 δ
k∑
i=0

2−(2−2 δ)k ≤ C ε2
0 ρ

2−2 δ. (63)

As already noticed, Proposition 2.2 implies that there exists an admissible ~πρ,p for
every p ∈ B 1

2
∩ supp (T ) and ρ ≤ 1

8 . Therefore, from (63) one deduces the existence

of the limit plane ~πp = limρ→0 ~πρ,p. Moreover, the same computations imply that,
if π is admissible, then |~π − ~πp| ≤ C ′ ε0 ρ

1−δ. Vice versa, if |~π − ~πp| ≤ C ′′ ε0 ρ
1−δ,

then π is admissible (the constant C ′ is possibly larger than C ′′). Finally, from
Ex(T,Bρ, ~πp) ≤ C ε2

0 ρ
2−2 δ, it follows straightforwardly that πp is the tangent plane

to T at p, thus proving (b).
Reasoning as above, for p, p′ ∈ supp (T ) ∩B 1

2
, setting r = |p− p′|, we have that

|~πp − ~πp′ |2 ≤
C

rm

ˆ
Br(p)∩Br(p′)

(
|~πp − ~T |2 + |~πp′ − ~T |2

)
≤ C

rm

ˆ
Br(p)

|~πp − ~T |2 +
C

rm

ˆ
Br(p′)

|~πp′ − ~T |2

≤ C ε2
0 r

2−2 δ.

It follows that, if (p, ρ, π) and (p, ρ′, π′) are admissible and, to fix the ideas ρ′ ≤ ρ,
then

|~π − ~π′|2 ≤ C ρ2−2 δ + |~πp − ~π′p′ |2 ≤ C ε2
0 max{ρ, ρ′, |p− p′|}2−2 δ. (64)

This is all we need to conclude. Indeed, by the fact that P#(T B1/2 ∩ C1/4) =q
B1/4

y
, it follows that supp (T ) is a graph of a function on B1/4, thus giving

(c). Moreover, from |~π0 − ~πp|2 ≤ C ε2
0 |p|2−2δ ≤ C ε2

0, it follows that the Lips-
chitz constant of this function is bounded by C ε0. Hence, |p − p′| ≤ C|q − q′| for
p, p′ ∈ supp (T )∩B1/2∩C1/4, where q = P(p), q′ = P(p′), and estimate (a) follows
from (64).
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gen elliptischer Differentialgleichungen zweiter Ordnung, Math. Z., 34 (1932), 194–233.

[6] Leon Simon, “Lectures on Geometric Measure Theory,” volume 3 of Proceedings of the Centre

for Mathematical Analysis, Australian National University. Australian National University
Centre for Mathematical Analysis, Canberra, 1983.

http://www.ams.org/mathscinet-getitem?mr=MR1777737&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR179651&return=pdf
http://arxiv.org/pdf/0910.5878v2
http://www.ams.org/mathscinet-getitem?mr=MR1158660&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1545250&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0756417&return=pdf


24 CAMILLO DE LELLIS AND EMANUELE SPADARO

[7] Elias M. Stein, “Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals,” volume 43 of Princeton Mathematical Series. Princeton University Press, Prince-

ton, NJ, 1993.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: camillo.delellis@math.uzh.ch

E-mail address: emanuele.spadaro@hcm.uni-bonn.de

http://www.ams.org/mathscinet-getitem?mr=MR1232192&return=pdf

	1. Introduction
	2. Preliminaries
	2.1. Some notation
	2.2. Lipschitz approximation of minimal currents
	2.3. De Giorgi's excess decay
	2.4. Two technical lemmas

	3. The approximation scheme and the main theorem
	3.1. Approximation scheme

	4. L1-estimate
	5. Proof of Proposition 3.3
	Appendix A. De Giorgi's regularity result
	A.1. Lipschitz approximation
	A.2. Convergence to harmonic functions
	A.3. Decay estimate

	REFERENCES

