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Abstract

We give an alternative proof of the regularity, up to the loose end, of minimizers, resp. critical
points of the Mumford-Shah functional when they are sufficiently close to the cracktip, resp.
they consist of a single arc terminating at an interior point.
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1. Introduction

In this paper we study the regularity properties of the jump set of local minimizers of the
Mumford-Shah energy on an open set Ω ⊂ R2, which for v ∈ SBV (Ω) is given by

E(v) :=

∫
Ω

|∇v|2dx+H1(Sv) . (1)

We say that u : Ω→ R is a minimizer if u ∈ SBV (Ω), E(u) < +∞ and

E(u) ≤ E(w) whenever {w 6= u} ⊂⊂ Ω.

For the notation and all the results concerning SBV functions we refer to the book [5].
The Mumford-Shah functional has been proposed by Mumford and Shah in their seminal

paper [26] as a variational model for image reconstruction. Since then, it has been widely
studied in the literature, from the theoretical side but also from the numerical and applied
ones (see [17, 19, 14, 10, 12] and also the many references in [5, Section 4.6]). Starting with
the pioneering work [19], the existence of minimizers has been proved in several frameworks
and with different methods, see for instance [13, 14, 25]. The most general and successful
approach is that of De Giorgi and Ambrosio through the space of special functions of bounded
variation that works in any dimension (see [18, 1, 5]).

The regularity theory has seen several contributions, both in two and several space
dimensions, see [19, 14, 8, 2, 4, 3, 23, 21, 5]. The most important regularity problem is the
famous Mumford-Shah conjecture, which states that (in 2 dimensions) the closure of the jump
set Su can be described as the union of a locally finite collection of injective C1 arcs {γi}
that can meet only at the endpoints, in which case they have to form triple junctions. More
precisely, given any point y ∈ Su \ ∂Ω we only have one of the following three possibilities:

(a) y belongs to the interior of some γi and thus Su, in a neighborhood of y, is a single
smooth arc; in this case y is called a regular point.

(b) y is a common endpoint of three (and only three) distinct arcs which form (at y) three
equal angles of 120 degrees; in this case y is called a triple junction.

(c) y is the endpoint of one (and only one) arc γj, i.e. it is a “loose end”; in this case y is
called a crack-tip.

Correspondingly, for any minimizer u it is known since the pioneering work of David [14]
that:

(A) If Su is sufficiently close, in a ball Br(x0) and in the Hausdorff distance, to a diameter
of Br(x0), then in the ball Br/2(x0) it is a C1,κ arc.

(B) If Su is close to a “spider” centered at x0, i.e. three radii of Br(x0) meeting at x0 at
equal angles, then in the ball Br/2(x0) it consists of three C1,κ closed arcs meeting at
equal angles at some point y0 ∈ Br/4(x0).
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Until recently no similar result was known in the case where Su is close to a single radius of
Br(x0), namely the model case of (c) above. The best result available was still due to David
(see [15, Theorem 69.29]):

(C) if Su ∩ Br(x0) is sufficiently close to a single radius in the Hausdorff distance, then
Su ∩ Br/2(x0) consists of a single connected arc which joins some point y0 ∈ Br/4(x0)
with ∂Br/2(x0) and which is smooth in Br/2(x0) \ {y0}.

However, David’s result does not guarantee that such arc is C1 up to the loose end y0: in
particular it leaves the possibility that the arc spirals infinitely many times around it (cf. for
instance [15, Section 80 pg. 571]). In this note we exclude the latter possibility and we prove
an ε-regularity result analogous to (A) and (B) in the remaining case of crack-tips. In an
unpublished manuscript , cf. [22], the first and second author claimed the following theorem.

Theorem 1.1. There exist universal constants ε, κ > 0 with the following property. Assume
that u is a local minimizer of the Mumford-Shah functional in Br(x0) and that distH (Su, σ) ≤
εr where σ is the horizontal radius [x0, x0 + (r, 0)]. Then there is a point y0 ∈ Br/16(x0) and
a C1,κ function ψ : [0, r/4]→ [0, r/8] such that

Su ∩Br/4(y0) =
{
y0 + (t, ψ(t)) : t ∈]0, r/4]

}
∩Br/4(y0) . (2)

The strategy was based on a suitable linearization but, due to a sign mistake, the linear
equations considered in [22] were actually not the correct ones. After correcting the mistake,
we found that for the new linear equations not all solutions had the appropriate decay
properties and in particular that there is a slowly varying solution which is not generated by
any symmetry of the original nonlinear equations (cf. the discussion below). In particular
the first and second author retrieved the manuscript [22] as the proof was not complete.
Andersson and Mikayelyan, in an independent work published around a year later attempted
a somewhat analogous linearization approach, based on much earlier computations from
their paper [6]. The latter reference contained as well an error and got them to consider
a wrong linearized problem (see the comments to [6], which was retrived by the authors,
and to version 1 of [7]). The works [22] and [6]-[7] linearize the problem in a different
system of coordinates, however both errors lead to a wrong sign in a corresponding term
of the equations, and in particular the slowly varying solution causing troubles is the same.
After realizing their mistake, Andersson and Mikayelyan came up with a clever competitor
argument which excludes that the linearization of minimizers might be (a multiple of) the
problematic slowly varying solution. In particular, in a revised version of their paper, they
claimed an adjusted proof of Theorem 1.1. Furthermore, since the remaining linear modes
have a faster decay, they indeed claimed that the arc is C2,κ and that the curvature vanishes
at the tip.

Theorem 1.2. Let u be as in Theorem 1.1. Then the function ψ is C2,κ and its second
derivative vanishes at 0.

While we are not able to follow all the details of their arguments, we believe that this
is just due to some technical problems and that their approach is overall correct. In this
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paper we propose some alternative methods that take care of a few technical issues and give
different proofs of the Theorems 1.1 and 1.2. In particular, even though the fundamental
reason for the regularity is still the same, we use three distinct ideas:

(i) First of all, in order to exclude the slowly varying solution of the linearized problem we
use a suitable cut-off argument on the usual Euler-Lagrange identity for inner variations.
This replaces computations of Andersson and Mikayelyan (which are rather involved)
with a clean simple identity between boundary integrals for critical points. In particular
suitable variants of Theorem 1.1 and Theorem 1.2 are in fact valid for critical points.
Our point of view gives an interesting link to another identity discovered by David
and Léger and Maddalena and Solimini. The one used in this paper and the one of
David-Léger-Maddalena-Solimini are in fact particular cases of a more general family
of identities found by applying the “truncation method” to isometries and conformal
transformations.

(ii) Rather than linearizing the equations for the Mumford-Shah minimizers, we linearize
the one for its harmonic conjugate. This has the advantage that the Neumann bound-
ary condition is replaced by the Dirichlet boundary condition, simplifying several
computations.

(iii) Finally, we take the change of variables approach of [22], inspired by the pioneering
work of Leon Simon [27], which avoids any discussion of the behavior of the solution at
the tip, prior to knowing Theorem 1.1, and the technicalities involved by comparing
functions defined on different domains.

As remarked in [22], a consequence of Theorem 1.1 is a strengthening of the conclusions in
[20, Proposition 5] that yields an energetic characterization of the Mumford-Shah conjecture
quoted above.

Proposition 1.3. The Mumford-Shah conjecture holds true for a local minimizer u in Ω if
and only if ∇u ∈ L4,∞

loc (Ω), i.e. if for all Ω′ ⊂⊂ Ω there is a constant K = K(Ω′) > 0 such
that for all λ > 0

|{x ∈ Ω′ : |∇u(x)| > λ}| ≤ Kλ−4.

2. Reduction to a single connected curve

Theorems 1.1 and 1.2 will be proved combining (a more precise version of) David’s
statement (C) with Theorem 2.1 below, which for simplicity we state when the domain Ω is
the unit disk (a corresponding version for Ω = Br(x) can be then proved by a simple scaling
argument). Theorem 2.1 is not comparable to Theorem 1.1 because:

• on the one hand it assumes the stronger property that the jump set of the critical point
is a single arc with one endpoint at the boundary ∂B1 and the other endpoint at the
origin;

• on the other hand it assumes that (u, Su) is a critical point, rather than a minimizer.
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We recall that a critical point (u, Su) satisfies the following two identities, which we will call,
respectively, outer and inner variational identities:∫

Ω\Su
∇u · ∇ϕ = 0 ∀ϕ ∈ C1

c (Ω,R) (3)∫
Ω\Su

(|∇u|2 div η − 2∇uT · ∇η · ∇u) = −
∫
Su

eT · ∇η · e dH1 ∀η ∈ C1
c (Ω,R2) , (4)

where e(x) is a unit tangent vector field to the rectifiable set Su. The first identity corresponds
to the stationarity of the energy with respect to the perturbation ut(x) := u(x) + tϕ(x). For
the second, if we define Φt(x) := x+ tη(x), then Φt is a diffeomorphism of Ω onto itself for
all sufficiently small t and (4) is equivalent to the condition d

dt
E(u ◦ Φt)

∣∣
t=0

= 0. We note in
passing that arguing by density (3) is in fact valid for every ϕ ∈ H1

0 (Ω)4, while (4) for every
η ∈ C1

0(Ω,R2). In fact (4) can be extended to η ∈ W 1,∞
0 (Ω,R2), but such extension would

require a discussion of how to interpret appropriately the derivative of a Lipschitz function
along tangent fields to rectifiable sets, which is not needed for our purposes.

Theorem 2.1. There are universal constants ε0, δ0, C > 0 with the following property. Let
u be a critical point of the Mumford-Shah functional in B1 whose singular set Su is given, in
cartesian coordinates, by

Su =
{
r(cosα(r), sinα(r)) : r ∈]0, 1[

}
(5)

for some smooth function α :]0, 1[→ R with

sup
r

(r|α′(r)|+ r2|α′′(r)|) ≤ ε0 . (6)

Then the curvature κ(r) of the curve Su at the point r(cosα(r), sinα(r)) satisfies the estimate

|κ(r)| ≤ Crδ0 . (7)

(7) is easily seen to give a C2 estimate for the curve Su and shows as well that the
curvature vanishes at the tip.

We next introduce the harmonic conjugate of u. First of all, given a vector x = (x1, x2) ∈
R2, we denote by x⊥ its counterclockwise rotation of 90 degrees x⊥ := (−x2, x1). Second,
observe that, by (3), the L2 vector field X := ∇u⊥ is curl-free in the distributional sense,
hence ∇u⊥ is the gradient of a function w which is unique up to addition of a constant5.

4We use the standard notation Hk for W k,2, for k ∈ N
5Note indeed that (3) is equivalent to

∫
X · (∇ϕ)⊥ = 0. Fix a family of standard mollifiers ϕε and observe

that, for every fixed σ < 1, provided ε > 0 is sufficiently small, Xε := X ∗ ϕε is smooth in Bσ and satisfies∫
ϕ curlXε = −

∫
Xε · ∇⊥ϕ = 0 for every ϕ ∈ C∞c (Bσ). This shows that Xε is curl-free in the classical sense

and hence the gradient of a smooth potential wσε , which we can assume to have average zero in Bσ. By H1

compactness, as ε ↓ 0, wσε converges, up to subsequences, to a H1 potential wσ for X on Bσ. Letting σ ↑ 1
and again using standard Sobolev space theory, we conclude the existence of w ∈ H1 such that ∇w = X.
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Next note that, since Su is smooth on B1 \ {0} and, by (3), u and w are harmonic on B1 \Su,
they both have smooth traces on Su \ {0} from both sides of Su. Being w in H1 the two
traces of w agree on Su \ {0} and thus w is continuous on Su \ {0} and therefore in B1 \ {0}.
Moreover, again by (3), u satisfies the Neumann boundary condition on Su \ {0}, which in
turn implies that the tangential derivative of the traces of w along Su \ {0} vanishes. Thus
w is constant on Su \ {0} and, by possibly adding a constant to it, we fix its value on the
curve to be equal to 0. Finally, note that we can apply Bonnet’s monotonicity formula, that
it is valid in particular for critical points (cf. [8, Theorem 3.1]), and thus conclude that∫

Br

|∇w|2 =

∫
Br\Su

|∇u|2 ≤ r

∫
B1

|∇u|2 .

In particular a simple scaling argument using regularity of harmonic functions implies that
‖∇w‖L∞(Br\Br/2) ≤ Cr−1/2. Hence w extends continuously to the point 0 (and in fact it
belongs to C1/2

loc (B1)). We can restate Theorem 2.1 using the harmonic conjugate as follows:

Theorem 2.2. There are universal constants ε0, δ0, C > 0 with the following property. Let
α :]0, 1[→ R be a smooth function with supr(r|α′(r)|+ r2|α′′(r)|) ≤ ε0 and set

K :=
{
r(cosα(r), sinα(r)) : r ∈]0, 1[

}
. (8)

Let w ∈ H1 ∩ C1/2(B1) be such that ∆w = 0 on B1 \K, w|K = 0 and the identity∫
Ω\K

(|∇w|2 div η − 2(∇w⊥)T · ∇η · ∇w⊥) = −
∫
K

e(x)T · ∇η · e(x) dH1(x) (9)

holds for every η ∈ C1
0(B1,R2). Then (7) holds.

3. Singular inner variations

Clearly if η is not compactly supported, the identity (4) is not valid any more. However,
consider the case in which B1 ⊂ Ω. We can then take a sequence of cut-off functions
ϕk ∈ C∞c (B1) with the property that ϕk ↑ 1B1 . Hence we can plug ϕkη into (4) and derive,
for k ↑ ∞, the analog of (4), which results into the same identity with some additional
boundary terms.

This procedure was first applied by Maddalena and Solimini in [26] to the vector field
η(x) = x to derive an interesting identity discovered independently by David and Léger in
[16]. The general statement is

Theorem 3.1. Let u be a critical point of the Mumford-Shah functional in Ω such that:

(a) Br ⊂ Ω;

(b) Su ∩ ∂Br is a subset of the regular part of Su;

(c) Su intersects ∂Br transversally in a finite number of points.
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Let η ∈ C1(Br,R2). Then:∫
Br\Su

(|∇u|2 div η − 2∇uT · ∇η · ∇u) +

∫
Br∩Su

eT · ∇η · e dH1

=

∫
∂Br\Su

(
|∇u|2η · ν − 2

∂u

∂ν
∇u · η

)
dH1 +

∑
p∈Su∩∂Br

e(p) · η(p) , (10)

where ν(x) = x
|x| is the exterior unit normal to the circle and e(p) is the tangent unit vector

to Su such that e(p) · p = |p|(e(p) · ν(p)) > 0.

Proof. Fix η ∈ C1(Br,R2) and ϕk ∈ C∞c (Br). Since ∇(ϕkη) = ϕk∇η+ η⊗∇ϕk, the identity
(4) applied to the test field ϕkη ∈ C1

c (Br,R2) can be rewritten as∫
Br\Su

(|∇u|2 div η − 2∇uT · ∇η · ∇u)ϕk +

∫
Su∩Br

(
eT · ∇η · e

)
ϕk dH1

=−
∫
Br\Su

(
|∇u|2∇ϕk · η − 2

(
∇ϕk · ∇u

)(
∇u · η

))
−
∫
Su∩Br

(
e · η

)(
e · ∇ϕk

)
dH1 .

(11)

In order to simplify further our computations assume additionally that ϕk(x) = gk(|x|) for
some smooth function gk of one variable such that gk ≡ 1 on [r(1− 1

k
), r], |g′k| ≤ 2kr−1 and

gk ↑ 1[0,1[. Thus the left hand side of (11) converges to the first line of (10) by dominated
convergence. Observe next that ∇ϕk

∗→ µ = −νH1 ∂Br in the sense of measures on Ω
and that, although ∇u is discontinuous on Su, it is right and left continuous on it in the
corona Br(1+σ) \ Br(1−σ) for any sufficiently small σ. Since |µ|(Su) = 0 the first integral in
the right hand side of (11) converges to the first integral in the second line of (10). As for
the last term, enumerate the points {p1, . . . , pN} = Su ∩ ∂Br. For every sufficiently small σ
the set (Br \Br(1−σ)) ∩ Su consists of finitely many connected components γ1, . . . , γN such
that pi = γi ∩ ∂Br. We next compute

lim
k→∞

∫
γi

(
e · η

)(
e · ∇ϕk

)
dH1︸ ︷︷ ︸

=:Ik(i)

.

Observe that for each t ∈ [r(1 − 1
k
), r] and each i ∈ {1, . . . , N}, γi ∩ ∂Bt consists of a

single point pi(t). Moreover choose e(p) on each γi in such a way that it is continuous and
e(pi) · ν(pi) = e(pi) · pi > 0. Using the coarea formula with the function d(x) = |x| we get

Ik(i) =

∫ r

r(1− 1
k

)

(
e(pi(t)) · η(pi(t))

)(
e(pi(t)) ·

pi(t)

|pi(t)|

)
g′k(t)

1

|∇d(pi(t)) · e(pi(t))|
dt .

Observe that ∇d(pi(t)) · e(pi(t)) = e(pi(t)) · pi(t)|pi(t)| and that the latter is a positive number if
pi(t) is sufficiently close to pi(1) = pi. Moreover the function h(t) =

(
e(pi(t)) · η(pi(t))

)
is
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continuous and h(1) = e(pi) · η(pi). Therefore we have

Ik(i) =

∫ 1

1− 1
k

(
e(pi(t)) · η(pi(t))

)
g′k(t) dt

= e(pi) · η(pi)

∫ 1

1− 1
k

g′k(t) dt+

∫ 1

1− 1
k

(h(t)− h(1))g′k(t) .

Recalling that
∫ 1

1− 1
k
g′k(t) dt = −1 and that ‖g′k‖0 ≤ 2k, the continuity of h shows that

limk Ik(i) = −e(pi) · η(pi).

There are two interesting particular classes of vector fields that one could use as tests in
(10). First of all, if η is conformal, then |v|2div η(x)− 2vT · ∇η(x) · v = 0 for every x ∈ B1

and for every v ∈ R2. Therefore the first bulk integral in (10) disappears. A very particular
family of conformal vector fields η is of course given by constant vector fields and rotations:
for the first ∇η vanishes and for the second ∇η is a (constant) skewsymmetric matrix and
thus vT ·∇η ·v vanishes for every vector v ∈ R2. We thus derive the following simple corollary
of Theorem 3.1

Corollary 3.2. Let u be a as in Theorem 3.1. If η ∈ C1(Br,R2) is conformal, then∫
Br∩Su

eT · ∇η · e dH1 =

∫
∂Br\Su

(
|∇u|2η · ν − 2

∂u

∂ν
∇u · η

)
dH1 +

∑
p∈Su∩∂Br

e(p) · η(p) .

(12)

In particular, for every constant vector v we have

0 =

∫
∂Br\Su

(
|∇u|2v · ν − 2

∂u

∂ν

∂u

∂v

)
dH1 +

∑
p∈Su∩∂Br

e(p) · v (13)

and if τ denotes the tangent to the unit circle, then

0 =
∑

p∈Su∩∂Br

e(p) · τ(p)− 2

∫
∂Br\Su

∂u

∂ν

∂u

∂τ
dH1 . (14)

The David-Léger-Maddalena-Solimini identity is given when η(x) = x in (12):

1

r
H1(Su ∩Br) =

∫
∂Br\Su

((
∂u

∂τ

)2

−
(
∂u

∂ν

)2
)
dH1 +

∑
p∈Su∩∂Br

e(p) · ν(p) . (15)

Next, consider the situation in which Su ∩ ∂B1 consists of a single point p. We can then take
a suitable linear combination of (13) and (14) to derive a boundary integral identity which
does not involve the set Su.
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Corollary 3.3. Let u be as in Theorem 3.1 and assume that Su ∩ ∂Br is a singleton {p}.
Then, ∫

∂Br\{p}

(
|∇u(q)|2ν(q) · τ(p) + 2

∂u

∂ν
(q)∇u(q) · (τ(q)− τ(p))

)
dH1(q) = 0 . (16)

We will use the latter identity to exclude the “lowest mode” in the series expansion of
solutions of the linearized equation (51), cf. Section 7. This, loosely speaking, corresponds
to the competitor argument used by Andersson and Mikayelyan in [7] to exclude a similar
term in the linearization considered there. Its advantage over the argument used in [7] is,
however, that only boundary integrals of the actual critical points are involved and we do
not need to discuss any harmonic extension of competitors.

4. Rescaling and reparametrization

Before starting our considerations, we must introduce the model “tangent function” of a
local minimizer at a loose end, which in polar coordinates is given by

Rsq(φ, r) :=
√

2r
π

cos φ
2

(17)

and whose singular set SRsq is the open half line {(t, 0) : t ∈ R+} (in cartesian coordinates).

Observe that Rsq is, up to the prefactor
√

2
π
, the real part of a branch of the complex

square root. We will likewise use the notation Isq for the imaginary part of the same branch
multiplied by the same prefactor, namely

Isq(φ, r) :=
√

2r
π

sin φ
2
. (18)

It was conjectured by De Giorgi that Rsq is the unique global minimizer in R2. In
particular its restriction to any bounded open set is a minimizer in the sense introduced
above. This last property was proved in a remarkable book by Bonnet and David, see [9].

4.1. Rescalings
From now on till the very last section, u will always denote a critical point of the

Mumford-Shah energy in B1 satisfying the assumptions of Theorem 2.1. Keeping the
notation introduced there, for ρ > 0 set

uρ(φ, r) := ρ−
1/2 u(φ+ α(ρ r), ρ r), (19)

αρ(r) := α(ρ r) . (20)

Lemma 4.1. For every δ > 0 and for every k ∈ N there is ε1 > 0 such that if u and α are
as in Theorem 2.1 with ε0 ≤ ε1, then

‖uρ − Rsq‖Ck([0,2π]×[1/2,2]) + ‖αρ‖Ck([1/2,2]) ≤ δ ∀ ρ ≤ 1

4
. (21)
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Proof. The statement follows easily from the blow-up technique of Bonnet, see [8], and the
higher differentiability theory of [4].

Corollary 4.2. For every δ > 0 and for every k ∈ N there is ε1 > 0 with the following
property. If u and α satisfy the assumptions of Theorem 2.1 with ε0 ≤ ε1, then

sup
[0,2π]×]0,1/2[

ri−
1/2|∂jφ∂

i
r

(
u(φ+ α(r), r)− Rsq(φ, r)

)
| ≤ δ ∀ i+ j ≤ k, (22)

sup
]0,1/2[

ri|α(i)(r)| ≤ δ ∀ i ≤ k . (23)

Proof. Observe first that
(αρ)(i)(r) = ρiα(i)(ρr) .

Taking the supremum in r ∈ [1/2, 2] in the latter identity, we easily infer

ρi‖α(i)‖C0([ρ/2,2ρ]) = ‖(αρ)(i)‖C0([1/2,2]) ,

and hence conclude (23) from Lemma 4.1.
Next, from (19) and the 1/2-homogeneity of Rsq we conclude

u(φ+ α(r), r)− Rsq(φ, r) = ρ
1/2
(
uρ
(
φ, r

ρ

)
− Rsq

(
φ, r

ρ

))
.

Differentiating the latter identity j times in θ and i times in r, we conclude

∂ir∂
j
φ (u(φ+ α(r), r)− Rsq(φ, r)) = ρ

1/2−i∂ir∂
j
φ (uρ − Rsq)

(
φ, r

ρ

)
Substitute first ρ = r and take then the supremum in φ and r to achieve (22), again from
Lemma 4.1.

4.2. Reparametrization
We next introduce the functions

ϑ(t) :=α(e−t) = αe
−t

(1) (24)
%(t) :=e−t

(
cosϑ(t), sinϑ(t)

)
(25)

f(φ, t) :=e
t/2w
(
φ+ ϑ(t), e−t

)
= we

−t
(φ, 1) , (26)

rsq(φ) :=Rsq(φ, 1). (27)

Isq(φ, r) :=
√

2r
π

sin
(
φ
2

)
(28)

isq(φ) :=Isq(φ, 1). (29)

In the next lemma we derive a system of partial differential equations for the functions
f and ϑ, exploiting the Euler-Lagrange conditions satisfied by u and Su (cf. (3) and (4)).
We also rewrite the estimates of Corollary 4.2 in terms of the new functions. It is more
convenient to work with w rather than u, because of the homogeneous Dirichlet boundary
condition satisfied by w on Su instead of its Neumann counterpart satisfied by u.

10



Lemma 4.3. If u satisfies the assumptions of Theorem 2.1 and ϑ, f are given by (24) and
(26), then 

ft =
f

4
+ fφφ + ftt +

(
ϑ̇fφ + ϑ̇2fφφ − 2ϑ̇ftφ − ϑ̈fφ

)
f(0, t) = f(2π, t) = 0

ϑ̈− ϑ̇− ϑ̇3

(1 + ϑ̇2)5/2
= f 2

φ(2π, t)− f 2
φ(0, t) .

(30)

Moreover, for every fixed σ, δ > 0 and k ∈ N, the following estimates hold provided ε0 in
Theorem 2.1 is sufficiently small:

‖ϑ(i)‖C0([σ,∞[) ≤ δ for all i ≤ k, (31)

‖∂iφ∂
j
t (f − isq)‖C0([0,2π]×[σ,∞[) ≤ δ for all i+ j ≤ k. (32)

Proof. Let us first introduce the unit tangent and normal vector fields to Su denoted by e(t)
and n(t):

e(t) :=
%̇(t)

|%̇(t)|
, n(t) := e⊥(t)

where, given v = (v1, v2) ∈ R2, v⊥ = (−v2, v1), namely v → v⊥ is the rotation of π
2

counterclockwise. Moreover, we will denote by ∇u+ and ∇u− the traces of ∇u on Su where
± is identified by the direction in which the vector n is pointing. More precisely, if p ∈ Su,
then

∇u+(p) = lim
s↓0
∇u(p+ sn(p))

∇u−(p) = lim
s↓0
∇u(p− sn(p)) .

Observe that, under the assumptions of Lemma 4.1, e(t) is pointing “inward”, i.e. towards
the origin, and hence for p = %(t) = (e−t(cos(ϑ(t)), sin(ϑ(t))) we have

∇u+(p) = lim
φ↑2π
∇u(e−t(cos(ϑ(t) + φ), sin(ϑ(t) + φ)) (33)

∇u−(p) = lim
φ↓0
∇u(e−t(cos(ϑ(t) + φ), sin(ϑ(t) + φ)) , (34)

we refer to Figure 4.2 for a visual illustration.
Since u : B1 ⊂ R2 → R is a critical point of the E energy,

4u = 0 on B1

∂u
∂n

= 0 on Su
k = −|∇u+|2 + |∇u−|2 on Su .

(35)

11



x1

x2

p = %(t)
e(p)

n(p)

+

−

Figure 1: The tangent vector e(p) and the normal vector e(p) and a point p ∈ Su. Since t 7→ |%(t)| is a
decreasing function, e(p) points towards the origin. Consequently the convention for the symbols ± on traces
of functions is as illustrated in the picture.

where k is the curvature of Su given by

k =
1

|%̇(t)|
ė(t) · n(t) .

In particular, the harmonic conjugate w of u satisfies
4w = 0 on B1

w = 0 on Su
k = −|∇w+|2 + |∇w−|2 on Su .

(36)

Recalling that
w(φ, r) = r

1/2f(φ− ϑ(− ln r),− ln r), (37)
we compute

wr = r−
1/2

(
f

2
− ft + ϑ̇fφ

)
, wφ = r

1/2fφ. (38)

Next we recall the formula for the Laplacian in polar coordinates:

4w = 0 ⇐⇒ r−2wφφ + r−1(rwr)r = 0.

By means of (38) we get
r−2wφφ = r−

3/2fφφ ,

and

r−1(rwr)r =r−1

(
r
1/2

(
f

2
− ft + ϑ̇fφ

))
r

=r−
3/2

(
f

4
− ft

2
+
ϑ̇fφ
2

)
+ r−

1/2

(
−r−1ft

2
+ r−1ϑ̇

fφ
2

)
+ r−

1/2
(
r−1ftt − 2r−1ϑ̇ftφ − r−1ϑ̈fφ + r−1ϑ̇2fφφ

)
=r−

3/2

(
f

4
− ft + ϑ̇fφ + ftt − 2ϑ̇ftφ − ϑ̈fφ + ϑ̇2fφφ

)
.

12



In conclusion, we get

ft =
f

4
+ fφφ + ftt +

(
ϑ̇fφ + ϑ̇2fφφ − 2ϑ̇ftφ − ϑ̈fφ

)
. (39)

Next, recalling equality (37), we may rewrite the Dirichlet condition in the new coordinates
simply as

f(0, t) = f(2π, t) = 0 . (40)

Finally, we derive the equation satisfied by the scalar curvature k. To this end take into
account that

%̇(t) =− e−t(cosϑ(t), sinϑ(t)) + e−tϑ̇(t)(− sinϑ(t), cosϑ(t))

=− %(t) + ϑ̇(t)%⊥(t) , (41)

and thus differentiating (41) we get

%̈(t) =− %̇+ ϑ̈%⊥ + ϑ̇%̇⊥ . (42)

On the other hand, explicitely we have

%̇(t)⊥ = −e−t(− sinϑ(t), cosϑ(t))− e−tϑ̇(t)(cosϑ(t), sinϑ(t))

= −%⊥(t)− ϑ̇(t)%(t) . (43)

Hence, we conclude

k =
1

|%̇(t)|

(
d

dt

%̇(t)

|%̇(t)|

)
· %̇
⊥(t)

|%̇(t)|
=
%̈(t) · %̇⊥(t)

|%̇(t)|3

=
(ϑ̇+ ϑ̇3 − ϑ̈)|%(t)|2

(1 + ϑ̇2)3/2|%(t)|3
= r−1 ϑ̇+ ϑ̇3 − ϑ̈

(1 + ϑ̇2)3/2
. (44)

As

|∇u|2 = |∇w|2 = (wr)
2 + r−2(wφ)2 = r−1

(
f

2
+ ϑ̇fφ − ft

)2

+ r−1f 2
φ

we get
ϑ̇+ ϑ̇3 − ϑ̈
(1 + ϑ̇2)3/2

= −

[(
f

2
+ ϑ̇fφ − ft

)2

+ f 2
φ

]∣∣∣∣∣
2π

0

. (45)

Thus, by taking into account (40) and (45) we conclude the third equation in (30).
In terms of ϑ the bound of α in (23) reads as

sup
t∈[σ,∞[

|ϑ(i)(t)| ≤ Ci δ for every i ≤ k.

Indeed, differentiating i times the identity ϑ(t) = α(e−t) we get

ϑ(i)(t) =
i∑

j=1

bi,je
−jtα(j)(e−t) ,

13



with bi,j ∈ R.
Instead, the bound (32) is a consequence of the linearity and continuity of the harmonic

conjugation operator, i.e. the circular Hilbert transform, together with the decay (22).
Indeed, the latter translates into

sup
φ
|∂iφ∂

j
t (g − rsq)| ≤ Ci δ for every t ∈ [σ,∞[ and i+ k ≤ k,

having set g(φ, t) := et/2u
(
φ + ϑ(t), e−t

)
. Therefore, using the 1/2-homogeneity of Rsq, we

infer

g(φ, t)− rsq(φ) = e
t/2
(
u(φ+ α(e−t), e−t)− Rsq(φ, e−t)

)
=: e

t/2h(φ, e−t) . (46)

We conclude that (22) can be reformulated as

sup
r∈]0,1/2[

ri−
1/2‖∂jθ∂

i
rh(·, r)‖C0 ≤ Ci δ.

On the other hand, differentiating (46) yields

∂jφ∂
i
t(g(φ, t)− rsq(φ)) =

i∑
`=0

bi,` e
t/2−`t[∂jφ∂

`
th](φ, e−t) ,

for some bi,` ∈ R. Setting r = e−t, we then conclude

‖∂iφ∂
j
t (g − rsq)‖C0([0,2π]×[σ,∞[) ≤ δ for all i+ j ≤ k ,

and thus (32) follows at once.

5. First linearization

In this section we consider a sequence (uj, αj) as in Theorem 2.1 where condition (6)
holds for a vanishing sequence ε0(j) ↓ 0. Without loss of generality we assume αj(e−a) = 0
for some a ≥ 0. We next define ϑj, %j and fj as in (24)-(26). Furthermore we fix T0 > 0 and
define:

f oj (φ, t) := 1
2
(fj(φ, t)− fj(2π − φ, t)) (47)

δj := ‖f oj ‖H2([0,2π]×[a,a+T0]) + ‖ϑ̇j‖H1([a,a+T0]) (48)
vj(φ, t) := δ−1

j f oj (φ, t) (49)
λj(t) := δ−1

j ϑj(t) (50)

Remark 5.1. It is moreover convenient to introduce the following terminology: a function h
on [0, 2π]× [a, b] will be called even if h(φ, t) = h(2π−φ, t) and odd if h(φ, t) = −h(2π−φ, t).
Moreover, a general h can be split into the sum of its odd part hoj(φ, t) := h(φ,t)−h(2π−φ,t)

2
and

its even part hej(φ, t) = h(φ,t)+h(2π−φ,t)
2

. Note finally that, if h is even (resp. odd), then ∂jφ∂
k
t h

is odd (resp. even) for j odd and even (resp. odd) for j even.
14



Next, we show that limits of (vj, λj) solves a linearization of (30). In addition, for future
purposes it is also necessary to take into account the linearization of (10) (actually it suffices
to consider (16)).

Proposition 5.2. Let (uj, αj) as in Theorem 2.1 where condition (6) holds for a vanishing
sequence ε0(j) ↓ 0. Assume αj(e−a) = 0 and define ϑj, %j and fj as in (24)-(26) and vj and
λj as above. Then, up to subsequences,

(a) vj converges weakly in H2([0, 2π]× [a, a+ T0]) and uniformly to some odd v;

(b) λj converges uniformly to some λ in [a, a+ T0];

(c) the convergences are, respectively, in C2,α([0, 2π]× [a + σ, a + T0 − σ]) for vj and in
C2,α([a+ σ, a+ T0 − σ]) for λj for all σ ∈ (0, T0/2), α ∈ (0, 1).

Moreover, the pair (v, λ) solves the following linear system of PDEs in [0, 2π]× [a, a+ T0]

vt − vtt = v
4

+ vφφ + (λ̇− λ̈)isqφ

v(0, t) = v(2π, t) = 0

λ̇(t)− λ̈(t) = 2
√

2
π
vφ(0, t)

λ(0) = 0 .

(51)

and satisfies the following integral condition for every σ ∈ (a, a+ T0):∫ 2π

0

[(
v
2
− vt

)
(φ, σ)

(
cos 3φ

2
+ cos φ

2

)
+ vφ(φ, σ)

(
sin 3φ

2
+ sin φ

2

)]
dφ+

√
π
2
λ̇(σ) = 0 . (52)

Proof of Proposition 5.2. First of all, by a simple rescaling argument we can assume a = 0.
(a) and (b) are obvious consequences of the bounds on (λj, vj) (and of the fact thatH2([0, 2π]×
[0, T0]) (resp. H2([0, T0])) embeds compactly in C([0, 2π]× [0, T0]) (resp. C([0, T0])). Observe
that, by assumption, λj(0) = 0 and thus λ(0) = 0 is a consequence of the uniform convergence.
Likewise the boundary condition v(0, ·) = v(2π, 0) = 0 is also a consequence of uniform
convergence and vj(0, ·) = vj(0, ·) = 0.

We next observe that the PDE in (30) is linear in the unknown f . Hence, setting
fj = f ej + δjvj , we can take the odd part of each sides of the equation and, using Remark 5.1
infer

vj,tt + vj,φφ = −vj
4

+ (vj)t + (λ̈j − λ̇j)f ej,φ + 2λ̇jf
e
j,tφ − δ2

j λ̇
2
jvj,φφ (53)

Observe that f ej → isq in C2([0, 2π]× [0, T ]) and in Ck([0, 2π]× [σ, T − σ]) for every k and
every σ > 0 by Lemma 4.3. Passing into the limit we therefore conclude easily that v solves
the PDE in the first line of (51).
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We now rewrite the equation above in the following way:

(1 + δ2
j λ̇

2
j)vj,tt + vj,φφ = −vj

4
+ vj,t + (λ̈j − λ̇j)f ej,φ + 2λ̇jfj,tφ︸ ︷︷ ︸

=:Gj

(54)

Observe that, by our assumptions, the left hand side is an elliptic operator with a uniform
bound on the ellipticity constants and a uniform bound on the C1/2 norm of the coefficients.

We next write the third equation in (30) in terms of λj, vj and f ej :

λ̇j − λ̈j = δ2
j λ̇

3
j + 4(1 + δ2

j λ̇
2
j)

5/2f ej,φ(0, t)vj,φ(0, t) . (55)

Observe that, by the trace theorems, vj,φ(0, ·) enjoys a uniform bound in H1/2. Clearly, by
the C2 convergence of f ej to isq we get that the third equation in (51) holds. Moreover, by
the Sobolev embedding we conclude that the right hand side has a uniform control in Lq for
every q <∞, in particular the same bound is enjoyed by λ̈j − λ̇j and, using that ‖λ̇j‖C0 is
bounded, we conclude that λ̇j has a uniform W 1,q bound for every q <∞.

Inserting the new estimates in (54) we can get a uniform bound on ‖Gj‖Lq([0,2π]×[0,T ]) for
every q <∞. Using elliptic regularity we conclude a uniform bound for ‖vj‖W 2,q([0,2π]×[σ,T−σ]).
We now can use Morrey’s embedding to get a uniform estimate on ‖vj‖C1,α([0,2π]×[2σ,T−2σ]) for
every α < 1. We now turn again to (55), to conclude that the right hand side has a uniform
Cα bound in [2σ, T − 2σ] for every α > 0. This gives uniform C1,α bounds on the coefficient
of the elliptic operator in the left hand side of (54) and uniform Cα bounds on the right
hand side of (54). We can thus infer a uniform C2,α bound in [0, 2π] × [3σ, T − 3σ] on vj
from elliptic regularity.

It thus remains to prove (52). The latter will come from (16). First of all, we fix σ,
set r0 := e−σ and observe that ∂Br0 ∩ Suj consists of a single point pj. We can thus apply
Corollary 3.3. Hence using the relation between harmonic conjugates, we rewrite (16) as∫

∂Br0\{pj}

(
|∇wj(q)|2ν(q) · τ(pj)− 2

∂wj
∂τ

(q)∇wj(q) · (ν(q)− ν(pj))

)
dH1(q) = 0 .

Next, we assume without loss of generality that pj = 0 and rewrite the latter equality using
polar coordinates:∫ 2π

0

(
r0w

2
j,r −

1

r0

w2
j,φ

)
(φ, r0) sinφ r0 dφ︸ ︷︷ ︸

=:Aj

− 2

∫ 2π

0

(wj,rwj,φ) (φ, r0)(1 + cosφ) dφ︸ ︷︷ ︸
=:Bj

= 0 (56)

We next write wj in terms of vj, γj and λj as

wj(r, φ) = r
1/2f ej (φ− δjλj(− ln r),− ln r) + δjr

1/2vj(φ− δjλj(− ln r),− ln r) ,
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Note that, having normalized so that pj = 0, we conclude that λj(− ln r0) = λj(σ) = 0.
Using the latter we compute:

∂wj
∂r

(φ, r0) = r
−1/2
0

(
f ej
2
− fj,t

)
(φ, σ)︸ ︷︷ ︸

=:aj(φ)

+δj r
−1/2
0

(
λ̇j(σ)√

2π
cos

φ

2
+
vj(φ, σ)

2
− vj,t(φ, σ)

)
︸ ︷︷ ︸

=:bj(φ)

+o(δj)

(57)
∂wj
∂φ

(φ, r0) = r
1/2
0 f ej,φ︸ ︷︷ ︸

=:cj(φ)

+δj r
1/2
0 vj,φ(φ, σ)︸ ︷︷ ︸

=:dj(φ)

. (58)

Note now that the function a2
j − 1

r0
c2
j is even. Since sinφ is odd, we thus conclude

Aj = 2δj

∫ 2π

0

(
r0aj(φ)bj(φ)− r−1

0 cj(φ)dj(φ)
)

sinφ dφ + o(δj) .

Letting j →∞ we obtain

lim
j→∞

δ−1
j Aj =

√
2

π

∫ 2π

0

(
sin

φ

2

(
λ̇(σ)√

2π
cos

φ

2
+
v(φ, σ)

2
− vt(φ, σ)

)
− cos

φ

2
vφ(φ, σ)

)
sinφ dφ .

(59)

Similarly, ajcj is odd and therefore
∫
ajcj(1 + cosφ) dφ = 0, from which we conclude

Bj = 2δj

∫ 2π

0

(aj(φ)dj(φ) + bj(φ)cj(φ))(1 + cosφ) dφ+ o(δj) .

Hence

lim
j→∞

δ−1
j Bj

=

√
2

π

∫ 2π

0

(
sin

φ

2
vφ(φ, σ) + cos

φ

2

(
λ̇(σ)√

2π
cos

φ

2
+
v(φ, σ)

2
− vt(φ, σ)

))
(1 + cosφ) dφ .

(60)

Combining (59) and (60) with (56) we conclude

0 =
λ̇(σ)

2π

∫ 2π

0

(sin2 φ− (1 + cosφ)2) dφ−
√

2

π

∫ 2π

0

vφ(φ, σ)

(
sin

φ

2
+ sin

3φ

2

)
dφ

−
√

2

π

∫ 2π

0

(v
2

(φ, σ)− vt(φ, σ)
)(

cos
φ

2
+ cos

3φ

2

)
dφ .

Using
∫ 2π

0
(sin2 φ− (1 + cosφ)2)dφ = −2π, we conclude (52).
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6. Spectral analysis

In this section we will find a suitable representation of odd solutions of (51) on a domain
[0, 2π]× [0, T ], based on the spectral analysis of a closely related linear PDE. Next we consider
the change of variables

ζ(φ, t) := v(φ, t)− λ(t)isqφ(t) = v(φ, t)− λ(t)√
2π

cos
φ

2
. (61)

Lemma 6.1. The pair (v, λ) ∈ H2 ×H3 solves (51) if and only if ζ(·, t) is odd, ζ(0, 0) = 0

ζ(0, t) = − λ(t)√
2π
, and ζ solves the following partial differential equation with Ventsel boundary

conditions: 
ζtt + ζφφ + ζ

4
− ζt = 0

ζφ(0, t) + π
2

(
ζ
4
(0, t) + ζφφ(0, t)

)
= 0 .

(62)

Taking into account standard regularity theory, the lemma is reduced to elementary
computations which are left to the reader. We aim at representation for ζ, i.e. a representation
as a series of functions in φ with coefficients depending on t for which we can reduce (62) to
an independent system of ODEs for the coefficients. To that aim we introduce the space

O := {g ∈ H1(]0, 2π[) : g(φ) = −g(2π − φ)} , (63)

The representation is detailed in the following

Proposition 6.2.

ζ(φ, t) =
∞∑
k=0

ak(t)ζk(φ) (64)

where:

(a) C−1
∑

k a
2
k(t) ≤ ‖ζ(·, t)‖2

H1 ≤ C
∑

k a
2
k(t) for a universal constant C;

(b) The functions ζk are defined in Section 6.2;

(c) For k ≥ 2, the coefficients ak satisfy ak(t) = 〈ζ(·, t), ζk〉 for the bilinear symmetric form
〈·, ·〉 defined in Section 6.1 (cf. (67)), while the coefficients a0(t) and a1(t) are given
by a0(t) = L0(ζ(·, t)) and a1(t) = L1(ζ(·, t)) for appropriately defined linear bounded
functionals L0,L1 : O → R.

Next, if ζ ∈ H2([0, 2π]× [0, T ]) is odd and solves (62) then ζ ∈ C∞([0, 2π]× (0, T )) and for
every k ≥ 2 the coefficients ak(t) in the expansion satisfy a′′k(t)− a′k(t) = (ν2

k − 1
4
)ak(t), where

the number νk’s are given in Lemma 6.5.

The proof is an obvious consequence of Proposition 6.6, which will be the main focus of
this section.
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6.1. The Ventsel boundary condition
For every g ∈ O we look for solutions h ∈ O of the following equation:

hφφ = g

hφ(0) = −π
2

(
h(0)

4
+ hφφ(0)

)
.

(65)

The following is an elementary fact of which we include the proof for the reader’s convenience.

Lemma 6.3. For every g ∈ O there is a unique solution h := A (g) ∈ O of (65). In fact
the operator A : O → O is compact.

Proof. h ∈ O solves the first equation in (65) if and only if

h(φ) = hφ(π)(φ− π) +

∫ φ

π

∫ τ

π

g(s) ds dτ︸ ︷︷ ︸
=:G(φ)

. (66)

On the other hand the initial condition holds if and only if

hφ(π)

(
π2

8
− 1

)
= G′(0) +

π

2

(
G(0)

4
+G′′(0)

)
.

Since G is determined by g, the latter determines uniquely hφ(π) and thus shows that there
is one and only one solution h = A (g) ∈ O of (65). Moreover, we obviously have

‖A (g)‖H3 ≤ C‖g‖H1 ,

which shows that the operator is compact.

We next introduce in O a continuous bilinear map

〈u, v〉 :=

∫ 2π

0

uφvφ −
1

4

∫ 2π

0

uv . (67)

If 〈·, ·〉 were a scalar product on O, A would be a self-adjoint operator on O with respect to
it and we would conclude that there is an orthonormal base made by eigenfunctions of A .
Unfortunately 〈·, ·〉 is not positive definite. This causes some technical complications.

Lemma 6.4. The bilinear map 〈·, ·〉 satisfies the following properties:

(a) 〈v, v〉 ≥ 0 for every v ∈ O;

(b) 〈v, v〉 = 0 if and only if v(φ) = µ cos φ
2
for some constant µ;

(c) 〈v, cos φ
2
〉 = 0 for every v ∈ O;
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(d) 〈A (v), w〉 = 〈v,A (w)〉 for every v, w ∈ O.

Proof. (a) & (b) First observe that (a) is equivalent to

1

4

∫ 2π

0

v2 ≤
∫ 2π

0

v2
φ . (68)

If we write v using the Fourier series expansion v(φ) =
∑∞

k=1 αk cos kφ
2
, the inequality becomes

obvious and it is also clear that equality holds if and only if αk = 0 for every k ≥ 2.

(c) Let z(φ) := cos φ
2
and observe that z

4
+ zφφ = 0 and that zφ(0) = zφ(2π) = 0. We

therefore compute

〈w, z〉 =

∫ 2π

0

wφzφ −
1

4

∫ 2π

0

zw = wzφ

∣∣∣2π
0
−
∫ 2π

0

w
(
zφφ +

z

4

)
= 0 .

(d) Consider z = A (v) and u = A (w). We then compute

〈A (v), w〉 =〈z, uφφ〉 =

∫ 2π

0

zφuφφφ −
1

4

∫ 2π

0

zuφφ

=zφuφφ

∣∣∣2π
0
−
∫ 2π

0

zφφuφφ −
1

4
zuφ

∣∣∣2π
0

+
1

4

∫ 2π

0

zφuφ

=zφuφφ

∣∣∣2π
0
− zφφuφ

∣∣∣2π
0

+

∫ 2π

0

zφφφuφ −
1

4
zuφ

∣∣∣2π
0

+
1

4
zφu
∣∣∣2π
0
− 1

4

∫ 2π

0

zφφu

= zφ

(
uφφ +

u

4

)∣∣∣2π
0
− uφ

(
zφφ +

z

4

)∣∣∣2π
0

+ 〈zφφ, u〉

=− 2

π
zφuφ

∣∣∣2π
0

+
2

π
zφuφ

∣∣∣2π
0

+ 〈v,A (w)〉 = 〈v,A (w)〉 .

6.2. Spectral decomposition
We are now ready to prove the following spectral analysis. First of all we start with the

following

Lemma 6.5. If µ is a real number and h ∈ O a solution of the following eigenvalue problem
hφφ = µh

hφ(0) = −π
2

(
h(0)

4
+ hφφ(0)

) (69)

then

(a) µ < 0 and if we set µ = −ν2 for ν > 0, then ν is a positive solution of

ν cos νπ =
π

2

(
1

4
− ν2

)
sin νπ . (70)
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(b) h is a constant multiple of sin(ν(φ− π)).

(c) The positive solutions of (70) are given by an increasing sequence {νk}k ∈ N in which
ν1 = 1

2
, ν2 >

3
2
and

lim
k→∞

νk
k

= 1 (71)

We will postpone the proof of the lemma and introduce instead the following notation.
For k = 1 we set ζ1(φ) = cos φ

2
, while for k > 1 we let ζk := ck sin(νk(φ − π)), where ck is

chosen so that 〈ζk, ζk〉 = 1. Furthermore we set ζ0(φ) := (φ− π) sin φ
2
, the relevance of the

latter function is that it solves
ζφφ = − ζ

4
+ ζ1

ζφ(0) = −π
2

(
ζ(0)

4
+ ζφφ(0)

)
.

(72)

In particular if we restrict the second derivative operator on the 2-dimensional vector space
generated by ζ1 and ζ0, its matrix representation is given by(

−4 0
1 −4 .

)
Consequently the operator A is not diagonalizable in O, which is the reason why its spectral
analysis is somewhat complicated.

Proposition 6.6. The set {ζk} ⊂ O is an Hilbert basis for O, namely for every ζ ∈ O there
is a unique choice of coefficients {ak} such that

ζ =
∞∑
k=0

akζk , (73)

where the series converges in H1. The coefficients ak in (73) are determined by

ak = 〈ζ, ζk〉 for all k ≥ 2, (74)

while a0 and a1 are continuous linear functionals on O.

Proof of Lemma 6.5. First of all, consider µ = 0. An odd solution of (69) must then take
necessarily the form c(φ−π) and the boundary condition would imply c = 0. If µ > 0 observe
that a nontrivial function ζ ∈ O solving (69) would also satisfy A (ζ) = ζ

µ
. If µ = ν2 > 0 for

ν > 0, then h(φ) = c(eν(φ−π)− e−ν(φ−π)) for some constant c. If c 6= 0 the boundary condition
becomes

ν
(
e−νπ + eνπ

)
= −π

2

(
1

4
+ ν2

)(
e−νπ − eνπ

)
. (75)

The latter identity is equivalent to

e2πν(π + 4πν2 − 8ν) = π + 4πν2 + 8ν . (76)
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If we make the substitution x = 2πν, we then are seeking for zeros of the function

Φ(x) = ex(π2 + x2 − 4x)− π2 − x2 − 4x = 0 .

The derivative is given by

Φ′(x) = ex(x2 − 2x+ π2 − 4)− 2(2 + x) ,

the second derivative by

Φ′′(x) = ex(x2 + π2 − 6)− 2 ≥ 3ex − 2 > 0 .

In particular Φ is convex and Φ′(0) = π2 − 8 > 0. Thus Φ is strictly increasing and, since
Φ(0) = 0, it cannot have positive zeros.

Consider now µ = −ν2 for ν > 0. A solution of the PDE in (69) must then be a linear
combination of sin ν(φ − π) and cos ν(φ − π): the requirement that h ∈ O excludes the
multiples of cos ν(φ− π) in the linear combination.

For h(φ) = sin ν(φ− π) the boundary condition becomes

ν cos(−νπ) = −π
2

(
1

4
− ν2

)
sin(−νπ) , (77)

which is equivalent to (70). If we introduce the unknown x = πν, then the equation becomes

Ψ(x) := 8x cosx−
(
π2 − 4x2

)
sinx = 0 .

Since Ψ′(x) = (4x2 + 8 − π2) cosx, Ψ′ has a single zero in the open interval ]0, π
2
[. Since

Ψ(0) = Ψ(π
2
) = 0, we infer that there is no zero of Ψ in the open interval ]0, π

2
[, i.e. any

positive ν satisfying (77) cannot be smaller than 1
2
. Moreover, as Ψ′ is strictly negative on

]π
2
, 3

2
π[ and Ψ(3

2
π) < 0 < Ψ(2π), the next solution ν lies in ]3

2
, 2[.

Next, there is a unique solution νk ∈]k − 1, k[, for every k ≥ 3. Indeed, Ψ((k − 1)π) ·
Ψ(k π) < 0 and Ψ′ has a single zero in the open interval ](k − 1) π, kπ[. Therefore (νk)k
satisfies (71).

Proof of Proposition 6.6. Let Y be the closure in H1 of the vector space V generated by
{ζk}k≥2. First of all observe that, for some constant C independent of k,

1 = 〈ζk, ζk〉 ≥ C−1‖ζk‖2
H1 ∀k ≥ 2 . (78)

Indeed set gk := sin νk(φ− π): (78) is then equivalent to say that the gk’s satisfy the same
inequality. An explicit computation shows that this is equivalent to∫ 2π

0

cos2 νk(φ− π) dφ− 1

4ν2
k

∫ 2π

0

sin2 νk(φ− π) dφ

≥ C−1

(∫ 2π

0

cos2 νk(φ− π) dφ+
1

ν2
k

∫ 2π

0

sin2 νk(φ− π) dφ

)
.
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For each fixed νk the fact that the inequality holds for a sufficiently large constant is an easy
consequence of the fact that

∫
cos2 νk(φ− π) is positive while

∫
sin2 νk(φ− π) is finite. On

the other hand by (71) both integrals converge to π as k ↑ ∞ and thus for a sufficiently large
k the inequality holds for C ≥ 2. Now, for k 6= j we have

〈ζk, ζj〉 = −ν2
k〈A (ζk), ζj〉 = −ν2

k〈ζk,A (ζj)〉 =
ν2
k

ν2
j

〈ζk, ζj〉

implying that 〈ζk, ζj〉 = 0.
We next claim that ζ1(φ) = cos φ

2
6∈ Y . Otherwise there is a sequence {vn} ⊂ V such that

vn → ζ1 strongly in H1. vn takes therefore the form vn =
∑N(n)

k=2 an,kζk. Using that 〈vn, vn〉
converges to 〈ζ1, ζ1〉 = 0. Thus we have

lim
n→∞

N(n)∑
k=2

a2
n,k = 0 . (79)

Now, given that the operator A is compact we also have that zn := A (vn)
4

converges strongly
in H1 to A (ζ1)

4
= − cos φ

2
. On the other hand

zn = −
N(n)∑
k=2

1

4ν2
k

an,kζk .

We then would have by item (c) of Lemma 6.5 and (78)

0 <‖ζ1‖2
H1 = lim

n→∞
‖zn‖2

H1 ≤ lim
n→∞

N(n)∑
k,j=2

|an,j||an,k|
16ν2

j ν
2
k

‖ζk‖H1‖ζj‖H1

≤C lim sup
n→∞

N(n)∑
k=2

|an,j|
j2

2

≤ C lim sup
n→∞

N(n)∑
k=2

1

k4

N(n)∑
j=2

a2
n,j ≤ C lim sup

n→∞

N(n)∑
j=2

a2
n,j

(79)
= 0 ,

Consider now the standard H1 scalar product (·, ·) on O and for every ζ ∈ Y let ζ = ζ⊥ + ζ‖

be the decomposition of ζ into a multiple of ζ1 and an element ζ⊥ orthogonal in the scalar
product (·, ·) to ζ1. Since ζ1 6∈ Y and Y is closed in H1, there is a constant α > 0 such that
‖ζ⊥‖2

H1 ≥ α‖ζ‖2
H1 . On the other hand using the Fourier expansion of ζ we easily see that

〈ζ, ζ〉 = 〈ζ⊥, ζ⊥〉 ≥ C−1‖ζ⊥‖2
H1 for some universal constant C > 0. In particular A is a

compact self-adjoint operator on Y , which implies that {ζk}k≥2 is an orthonormal basis on
the Hilbert space Y (endowed with the scalar product 〈·, ·〉).

Consider now the 2-dimensional vector space Z := {a0ζ0 +a1ζ1 : ai ∈ R}. If a0ζ0 +a1ζ1 =
z ∈ Z ∩ Y , using Lemma 6.4 and the fact that 〈y, ζ1〉 = 0 for every y ∈ Y , we can compute

〈z, ζj〉 = a0〈ζ0, ζj〉 = −ν2
j 〈a0ζ0,A (ζj)〉 = −ν2

j 〈a0A (ζ0), ζj〉 = 4ν2
j 〈a0ζ0, ζj〉 = 4ν2

j 〈z, ζj〉
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for every j ≥ 2. Since νj > 3
2
we infer that 〈z, ζj〉 = 0, i.e. that z = 0, since {ζj}j≥2 is

an orthonormal Hilbert basis of Y with respect to the scalar product 〈·, ·〉. We have thus
concluded that Z ∩ Y = {0}. The proof of the proposition will be completed once we show
that Z + Y = O. Consider an element ζ ∈ O and define

ζ̄ :=
〈ζ0, ζ〉
〈ζ0, ζ0〉

ζ0 +
∑
j≥2

〈ζj, ζ〉ζj .

It turns out that ζ̄ ∈ Z + Y and that ζ̂ := ζ − ζ̄ satisfies the condition 〈ζ̂ , z〉 = 0 for
every element z ∈ Z + Y =: X. We claim that the latter condition implies that ζ̂ is a
constant multiple of cos φ

2
. Indeed set X⊥ := {v : 〈v, w〉 = 0 ∀w ∈ X}. Then clearly

A (X⊥) ⊂ X⊥. Moreover A on X⊥ has only one eigenvalue, namely −4. Consider now
X⊥ 3 v 7→ Q(v, v) = 〈A (v),A (v)〉 = 〈A 2(v), v〉 and set

m := sup{Q(v, v) : v ∈ X⊥ and 〈v, v〉 = 1} , (80)

where at the moment m is allowed to be ∞ as well. If m = 0 we then have that A (v)
is a multiple of ζ1 for every v and this would imply that v itself is a multiple of ζ1. We
therefore assume that m is nonzero. Using the fact that Q(v, ζ1) = 0 for every v, we can find
a maximizing sequence with Fourier expansion

vk :=
∑
j≥1

ck,j cos
2j + 1

2
φ

for which we easily see that 〈vk, vk〉 ≥ C−1‖vk‖2
H1 . We can thus extract a subsequence

converging weakly to some v. v clearly belongs to X⊥ and, by the compactness of the
operator A is actually a maximizer of (80). The Euler-Lagrange condition implies then that
A 2(v) = mv + bζ1 for some real coefficients b. Consider now the vector space W generated
by ζ1, v and A (v). W is then either 2-dimensional or 3-dimensional and A maps it onto
itself. If W were three-dimensional, then the matrix representation of A |W in the basis ζ1, v
and A (v) would be  −4 0 0

0 1 0
α 0 m


Since the characteristic polynomial of the latter matrix is (x− 1)(x−m)(x+ 4), A would
have an eigenvalue different from −4 on W ⊂ X⊥, which is not possible. On the other hand
if W were 2-dimensional, then v and cos φ

2
would be a basis and the matrix representation of

A |W in that basis would be (
−4 0
α β

)
Since A |W cannot have an eigenvalue different than −4 this would force β = −4. We then
would have A (v) = −4v+αζ0. This would imply that v is an odd solution of vφφ+ v

4
= α cos φ

2
.

The general solution of the latter equation is given by c1 cos φ
2

+ c2 sin φ
2

+ α(φ− π) sin φ
2
, for
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real coefficients c1 and c2. The fact that v is odd implies c2 = 0, namely c1ζ1 + αζ0. The
fact that v is not colinear with ζ1 implies that α 6= 0, but on the other hand since v ∈ X⊥,
〈v, ζ1〉 = 0, which implies α = 0. We have reached a contradiction: X⊥ was thus the line
generated by ζ1, proving that indeed X = O.

7. The three annuli property

We now define a functional which will be instrumental in proving a suitable decay property
for coefficients of solutions of (51) and hence of (30).

Definition 7.1. Fix a constant c0 > 0 appropriately small (whose choice will be specified
later). Consider now any σ < s real numbers and a pair of functions (v, λ) such that

(i) v is odd, v ∈ H2([0, 2π]× [σ, s]) and v(0, t) = v(2π, t) = 0 for every t;

(ii) λ ∈ H2([σ, s]).

Define ζ as in (61) and let ak(t) be the coefficients in the representation (64) and νk the
numbers in Lemma 6.5. We then define the functionals

E(v, λ, σ, s) :=
∑
k≥2

∫ s

σ

(ν4
kak(t)

2 + a′′k(t)
2) dt (81)

F(v, λ, σ, s) :=

∫ s

σ

(λ̇(t)2 + λ̈(t)2 + a0(t)2 + a1(t)2 + a′′0(t)2 + a′′1(t)2) dt (82)

G(v, λ, σ, s) := max{E(v, λ, σ, s), c0F(v, λ, σ, s)} (83)

Proposition 7.2. There is a constant η > 0 such that the following property holds for every
solutions (v, λ) ∈ H2 of (51) on [0, 2π]× [0, 3] with v odd:

(a) If E(v, λ, 1, 2) ≥ (1− η)E(v, λ, 0, 1) then E(v, λ, 2, 3) ≥ (1 + η)E(v, λ, 1, 2).

Furthermore there is a positive constant c0 such that the following property holds for every
solutions (v, λ) ∈ H2 of (51) on [0, 2π]× [0, 3] with v odd and which satisfies (52):

(b) If G(v, λ, 1, 2) ≥ (1− η)G(v, λ, 0, 1) then G(v, λ, 2, 3) ≥ (1 + η)G(v, λ, 1, 2).

Proof. In order to prove claim (a) consider any of the functions ak(t) and a′′k(t) and call it
ω(t) and observe we know k ≥ 2 by assumption. From Proposition 6.2 and Lemma 6.5 it
follows that ω solves then the ODE

ω′′(t)− ω′(t)− cω(t) = 0 ,

where c is a constant which depends on k, but it satisfies the bound c ≥ c̄ > 0 for some
positive c̄ independent of k. The polynomial x2 − x− c has then a positive and a negative
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solution α+ and −α− (also depending on k) with α± ≥ α0 > 0. The function ω(t) is then
given by Deα+t + Ce−α

−t. A simple computations shows that

d2

dt2
(ω(t))2 ≥ ĉ(ω(t))2 ,

where the positive constant ĉ can be chosen to depend on α0 and in particular independent
of k. Summing the square of all the coefficients involved in the computation of E we find a
non negative function h(t) with the property that h′′(t) ≥ ĉh(t) and E(v, λ, s, σ) =

∫ σ
s
h(t) dt.

In particualr, h is convex. The claim can be thus reduced that, for some η > 0,∫ 2

1

h(t) dt ≥ (1− η)

∫ 1

0

h(t) dt =⇒
∫ 3

2

h(t) dt ≥ (1 + η)

∫ 2

1

h(t) dt . (84)

Arguing by contradiction, if this were to fail we could find a sequence of convex functions hj
normalized so that

∫ 2

1
hj(t) dt = 1 and∫ 2

1

hj(t) dt ≥ max

{
(1− j−1)

∫ 1

0

hj(t) dt, (1 + j−1)

∫ 3

2

hj(t) dt

}
By the convexity of hj we can extract a subsequence converging locally uniformly to a convex
function h, which satisfies h′′ ≥ ĉh in the sense of distributions. The latter function h would
moreover satisfy

1 =

∫ 2

1

h(t) dt ≥ max

{∫ 1

0

h(t) dt,

∫ 3

2

h(t) dt

}
.

Since h is continuous in (0, 3) there would then be three points 0 <s1 < 1 < s2< 2 < s3< 3
such that max{h(s1), h(s3)} ≤ h(s2). The convexity of h would then imply that h is constant
and, since the integral of h over [1, 2] is 1, the constant would have to be 1. But this would
contradict the inequality h′′ ≥ h.

Having shown (a) we now turn to (b). We claim that (b) holds for c0 sufficiently small.
Observe that if E(v, λ, 1, 2) ≥ c0F(v, λ, 1, 2), then (b) is simply implied by (a). Thus we may
assume G(v, λ, 1, 2) = c0F(v, λ, 1, 2). We argue by contradiction: for c0 = 1/j choose (vj, λj)
such that

G(vj, λj, 1, 2) ≥ max{(1− η)G(vj, λj, 0, 1), (1 + η)−1G(vj, λ,2, 3)} .

Using the linearity we can normalize it so that F(vj, λj, 1, 2) = 1. Observe that we have the
inequalities

1 = F(vj, λj, 1, 2) ≥ max{(1− η)F(vj, λj, 0, 1), (1 + η)−1F(vj, λj, 2, 3)} (85)
1 = F(vj, λj, 1, 2) ≥ jmax{E(vj, λj, 1, 2), (1− η)E(vj, λj, 0, 1), (1 + η)−1E(vj, λj, 2, 3)} .

(86)

From Proposition 6.2 we gain a uniform bound on ‖vj‖H2([0,2π]×[0,3]) and ‖λ̇j‖H1([0,3]) and
consequently (since λj(0) = 0) on ‖λj‖H2([0,3]). We then extract a sequence converging weakly
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to (v, λ) ∈ H2 which satisfies (51) and (52). Consider the functions v and ζ, which are the
limit of the corresponding maps constructed from vj. From (86) and (81) we conclude that
ζ(φ, t) = a0(t)ζ0(φ) + a1(t)ζ1(φ). Unraveling the definition of ζ we infer

v(φ, t) = a0(t)(φ− π) sin
φ

2
+ ā1(t) cos

φ

2
,

where ā1(t) = a1(t) + λ(t)√
2π
. However the boundary conditions v(0, t) = v(2π, t) = 0 imply

ā1 ≡ 0. We are thus left with the formula v(φ, t) = a0(t)(φ− π) sin φ
2
. Inserting in (51) we

get: 
a′′0(t)− a′0(t) = 0

λ̇(t)− λ̈(t) = −
√

2πa0(t)
λ(0) = 0 .

(87)

From the first equation we find a0(t) = c1 + c2e
t, while from the second we find λ(t) =

d1 −
√

2πc1t+ d2e
t − c2

√
2πtet, i.e. λ(t) = −

√
2πta0(t) + d1 + d2e

t. Using λ(0) = 0 we thus
get λ(t) = −

√
2πta0(t) + d(et − 1). We next use (52) to derive a further relation between a0

and λ. The latter reads as

(1
2
a0(t)− a′0(t))

∫ 2π

0

(φ− π) sin φ
2

(
cos 3φ

2
+ cos φ

2

)
dφ

+a0(t)

∫ 2π

0

(
sin φ

2
+ φ−π

2
cos φ

2

) (
sin 3φ

2
+ sin φ

2

)
dφ+

√
π
2
λ̇(t) = 0 . (88)

Observe that, given our formulas for a0 and λ, the left hand side is linear combination of
the functions 1, et, tet. However, the function tet appears only in λ̇(t). In particular its
coefficient must be 0. In turn this implies that a0 is constant and a′0 = 0, which implies that
the function et would appear only in the λ̇(t) part. We thus conclude that d = 0 as well. In
particular λ(t) = −

√
2πc1t and a0(t) = c1. Finally, since

∫ 2

1
(λ̇2 + a2

0) = 1, the constant c1

cannot vanish. We thus can, without loss of generality assume a0 = 1 and λ̇(t) = −
√

2π.
Taking all this into account, the condition (88) can be rewritten as

1

2

∫ 2π

0

(φ− π)(sin 2φ+ sinφ) dφ+

∫ 2π

0

(
sin2 φ

2
+ sin φ

2
sin 3φ

2

)
dφ− π = 0

Observe that
∫

sin2 φ
2

= π, so that the identity can be further simplified into

1

2

∫ 2π

0

(φ− π)(sin 2φ+ sinφ) dφ︸ ︷︷ ︸
=:I

+

∫ 2π

0

(
sin2 φ

2
cosφ dφ+ sin φ

2
cos φ

2
sinφ

)
dφ︸ ︷︷ ︸

=:II

= 0 .

We then compute

I = − (φ− π)

(
cos 2φ

4
+

cosφ

2

)∣∣∣∣2π
0

+

∫ 2π

0

(
cos 2φ

4
+

cosφ

2

)
dφ = −3π

2
.

II =
1

2

∫ 2π

0

((1− cosφ) cosφ+ sin2 φ) dφ = 0 ,

reaching a contradiction.
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8. Second linearization and proof of Theorem 2.1

The three annuli property of the previous section allows us to improve upon Proposition
5.2 and show that the sequence vj converges indeed on the whole [0,∞) and that the limit is
a decaying solution of the linearized problem.

Proposition 8.1. Let vj and λj be as in Proposition 5.2, where T0 is fixed to be 1. Then,
there is a pair (v, λ) ∈ C2

loc([0, 2π] × [0,∞)) with v odd and a subsequence, not relabeled,
such that (vj, λj) converges in C2([0, 2π] × [0, σ−1]) to (v, λ) for every σ > 0. Moreover,
(v, λ) solves (51), satisfies (52) and ‖v‖C2([k,k+1]) + ‖λ̇‖C1([k,k+1]) ≤ Ce−κk for some positive
universal constants C and κ and every k ∈ N \ {0}.

Using this second linearization procedure and again the spectral analysis for odd solutions
of (51) we will then conclude

Corollary 8.2. There is a constant δ0 with the following property. Assume u is as in
Theorem 2.1 and ϑ as in (24). Then |ϑ′(t)|+ |ϑ′′(t)| ≤ Ce−(1+δ0)t.

The latter implies easily Theorem 2.1.

8.1. Proof of Proposition 8.1
We start by observing that Proposition 5.2 and Proposition 7.2 gives easily the following

property:

• If u satisfies the assumptions of Theorem 2.1, ϑ, f are given by (24) and (26) and ε0 in
Theorem 2.1 is sufficiently small, then for every k ∈ N we have

if G(f o, ϑ, k + 1, k + 2) ≥ (1− η
2
)G(f o, ϑ, k, k + 1)

then G(f o, ϑ, k + 2, k + 3) ≥ (1 + η
2
)G(f o, ϑ, k + 1, k + 2). (89)

Indeed, assume the claim is false, no matter how small ε0 in Theorem 2.1 is chosen, and let
thus f oj , ϑj be a sequence which violates it when we choose ε0 = 1

j
. By translating in the

variable t (which just implies a rescaling of the variable r in the original problem), we can
assume that the claim fails at k = 0. Additionally, after applying a rotation we can assume
that ϑj(0) = 0, so that we can apply Proposition 5.2 with a = 0 and T0 = 3. Introduce δj , vj
and λj as in (48)-(50). Since the functional G is quadratic, we immediately see that we have

G(vj, λj, 1, 2) ≥ max

{(
1− η

2

)
G(vj, λj, 0, 1),

(
1 +

η

2

)−1

G(vj, λj, 2, 3)

}
. (90)

We can further renormalize G(vj, λj, 1, 2) = 1, and since

C−1(‖v‖H2([0,2π]×[σ,s]) + ‖λ̇‖H1([σ,s])) ≤ G(v, λ, σ, s) ≤ C(‖v‖H2([0,2π]×[σ,s]) + ‖λ̇‖H1([σ,s])) ,

we can apply Proposition 5.2 to extract a subsequence converging to some (v, λ). By the
C2,α convergence in [0, 2π]× [1, 2] for vj and in [1, 2] for λj, we conclude that

G(v, λ, 1, 2) = lim
j
G(vj, λj, 1, 2) ,
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and in particular that the pair (v, λ) is nontrivial.
On the other hand the functional G is lower semicontinuous with respect to the mentioned

convergences, and we thus infer from (90)

G(v, λ, 1, 2) ≥ max

{(
1− η

2

)
G(v, λ, 0, 1),

(
1 +

η

2

)−1

G(v, λ, 2, 3)

}
,

contradicting Proposition 7.2 being (v, λ) nontrivial.
Having completed the proof of (89), if for some k0 ∈ N we were to have

G(f o, ϑ, k0 + 1, k0 + 2) ≥
(

1− η

2

)
G(f o, ϑ, k0, k0 + 1) ,

from (89) we would infer that

G(f o, ϑ, j, j + 1) ≥
(

1 +
η

2

)j−(k0+1)

G(f o, ϑ, k0 + 1, k0 + 2) ∀j ≥ k0 + 1 .

However the latter contradicts the fact that f o(t, ·) and λ̇(t) converge smoothly to 0 for
t→∞.

We thus conclude that for every k ∈ N

G(f o, ϑ, k + 1, k + 2) ≤
(

1− η

2

)
G(f o, ϑ, k, k + 1) ,

in turn implying, by iteration, the existence of positive constants C and κ such that

‖f o‖H2([0,2π]×[k,k+1]) + ‖ϑ̇‖H1([k,k+1]) ≤ Ce−κk
(
‖f o‖H2([0,2π]×[0,1]) + ‖ϑ̇‖H1([0,1])

)
.

In turn, if (vj, λj) are as in the statement of the proposition, we infer

‖vj‖H2([0,2π]×[k,k+1]) + ‖λ̇j‖H1([k,k+1]) ≤ Ce−κk
(
‖vj‖H2([0,2π]×[0,1]) + ‖λ̇j‖H1([0,1])

)
= Ce−κk .

The conclusion of the proposition is then a simple application of Proposition 5.2 with [0, T0]
replaced by [k, k + 1], together with an obvious diagonal argument over k and j.

8.2. Proof of Corollary 8.2
First of all consider any limit (v, λ) as in Proposition 8.1 and let ζ be as in (61). By the

decay property of v and λ̇ we easily infer that

ζ(φ, t) = ā1 cos
φ

2
+
∞∑
k=2

āke
−µktζk(φ)

where the āk are constants and −µk is the negative solution of the quadratic polynomial
x2 − x− (ν2

k − 1
4
). Note also that ā1 is indeed limt→∞ λ(t). Recalling Lemma 6.5, we have
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νk ≥ ν2 >
3
2
when k ≥ 2 and thus we conclude that µk ≥ µ2 > 1 for all k ≥ 2. It is then easy

to check that we have the estimate

‖v‖C2([0,2π]×[T,2T ] + ‖λ̇‖C1([T,2T ]) ≤ Ce−µ2T
(
‖v‖H2([0,2π]×[0,1]) + ‖λ̇‖H1([0,1])

)
,

where C is a constant independent of T . Fix now T . Using Proposition 8.1 we then conclude
that, if u is as in Theorem 2.1 and ϑ and f as in Lemma 4.3 and ε0 sufficiently small
(depending on T ), then

‖f o‖C2([0,2π]×[T,2T ] + ‖ϑ̇‖C1([T,2T ]) ≤ 2Ce−µ2T
(
‖f o‖H2([0,2π]×[0,1]) + ‖ϑ̇‖H1([0,1])

)
≤ C̄e−µ2T

(
‖f o‖C2([0,2π]×[0,T ]) + ‖ϑ̇‖C1([0,T ])

)
,

where the constant C̄ is independent of T . By a simple rescaling argument, this actually
implies that

‖f o‖C2([0,2π]×[(k+1)T,(k+2)T ] + ‖ϑ̇‖C1([(k+1)T,(k+2)T ])

≤C̄e−µ2T
(
‖f o‖C2([0,2π]×[kT,(k+1)T ]) + ‖ϑ̇‖C1([kT,(k+1)T ])

)
∀k ∈ N .

Considering now that µ2 > 1, while the constant C̄ is independent of T , we can choose the
latter large enough so that C̄e−µ2T = e−(1+δ0)T for some positive δ0. We then can iterate the
latter inequality to infer

‖f o‖C2([0,2π]×[(k+1)T,(k+2)T ] + ‖ϑ̇‖C1([(k+1)T,(k+2)T ])

≤e−(1+δ0)kT
(
‖f o‖C2([0,2π]×[0,T ]) + ‖ϑ̇‖C1([0,T ])

)
.

This easily gives the conclusion of the corollary.

8.3. Proof of Theorem 2.1
Using the relation r = e−t and (44), (7) is an obvious consequence of Corollary 8.2.

References

[1] L. Ambrosio. Existence theory for a new class of variational problems, Arch. Rational Mech. Anal. 111
(1990), 291–322.

[2] L. Ambrosio, D. Pallara. Partial regularity of free-discontinuity sets I, Ann. Scuola Norm. Sup. Pisa (4)
24 (1997), 1–38.

[3] L. Ambrosio, N. Fusco, J. E. Hutchinson. Higher integrability of the gradient and dimension of the
singular set for minimisers of the Mumford-Shah functional. Calc. Var. Partial Differential Equations,
16 (2003) 187–215.

[4] L. Ambrosio, N. Fusco, D. Pallara. Higher regularity of solutions of free discontinuity problems, Diff. Int.
Eq. 12 (1999), 499–520.

[5] L. Ambrosio, N. Fusco, D. Pallara. Functions of bounded variation and free discontinuity problems, in
the Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000.

30



[6] J. Andersson, H. Mikayelyan. The asymptotics of the curvature of the free discontinuity set near the
cracktip for the minimizers of the Mumford-Shah functional in the plain. Preprint arXiv:1204.5328

[7] J. Andersson, H. Mikayelyan. Regularity up to the Crack-Tip for the Mumford-Shah problem. Preprint
arXiv:1512.05094

[8] A. Bonnet. On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré, Analyse Non
Linéaire 13 (4) (1996), 485–528.

[9] A. Bonnet, & G. David. Cracktip is a global Mumford-Shah minimizer, Astérisque, 274 (2001).
[10] B. Bourdin, G. Francfort, J.J. Marigo, The variational approach to fracture, J. Elasticity 91 (2008), no.

1–3, 5–148.
[11] T.H. Colding, C. De Lellis, W.P. Minicozzi II. Three circles theorems for Schrödinger operators on

cylindrical ends and geometric applications. Comm. Pure Appl. Math. 61 (2008), no. 11, 1540–1602.
[12] G. Dal Maso, G.A. Francfort, R. Toader. Quasistatic crack growth in nonlinear elasticity. Arch. Ration.

Mech. Anal. 176 (2005), no. 2, 165–225.
[13] G. Dal Maso, J.M. Morel, S. Solimini. A variational method in image segmentation: existence and

approximation results, Acta Math. 168 (1992), no. 1-2, 89–151.
[14] G. David. C1-arcs for minimizers of the Mumford-Shah functional. SIAM J. Appl. Math. 56 (1996), no.

3, 783–888.
[15] G. David. Singular sets of minimizers for the Mumford-Shah functional. Progress in Mathematics, 233.

Birkhäuser Verlag, Basel, 2005. xiv+581 pp. ISBN: 978-3-7643-7182-1; 3-7643-7182-X
[16] G. David, J.C. Léger. Monotonicity and separation for the Mumford-Shah problem, Ann. Inst. H.

Poincaré Anal. Non Linéaire 19 (2002), no. 5, 631–682.
[17] E. De Giorgi. Free discontinuity problems in calculus of variations. Frontiers in Pure and Applied

Mathemathics, 55—62, North Holland, Amsterdam, 1991.
[18] E. De Giorgi, L. Ambrosio. Un nuovo funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei

Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988), 199–210.
[19] E. De Giorgi, M. Carriero, A. Leaci. Existence theorem for a minimum problem with free discontinuity

set. Arch. Ration. Mech. Anal., 108 (1989), 195–218.
[20] C. De Lellis, M. Focardi. Higher integrability of the gradient for minimizers of the 2d Mumford-Shah

energy. J. Math. Pures Appl. (9) 100 (2013), no. 3, 391–409.
[21] C. De Lellis, M. Focardi, B. Ruffini. A note on the Hausdorff dimension of the singular set for minimizers

of the Mumford-Shah energy. Adv. Calc. Var. 7 (2014), issue 4, 539–545.
[22] C. De Lellis, M. Focardi. Endpoint regularity of 2d Mumford-Shah minimizers. Preprint arXiv:1502.02299.
[23] A. Lemenant. Regularity of the singular set for Mumford-Shah minimizers in R3 near a minimal cone,

Ann. Sc. Norm. Super. Pisa Cl. Sci. 10 (2011), no. 3, 561–609.
[24] J. L. Lions, E. Magenes. Problèmes aux limites non homogènes et applications. Vol. 1. (French) Travaux

et Recherches Mathématiques, No. 17 Dunod, Paris 1968 xx+372 pp.
[25] F. Maddalena, S. Solimini. Regularity properties of free discontinuity sets. Ann. Inst. H. Poincaré Anal.

Non Linéaire 18 (2001), no. 6, 675–685.
[26] D. Mumford, J. Shah. Optimal approximations by piecewise smooth functions and associated variational

problems. Comm. Pure Appl. Math. 42 (1989), no. 5, 577-–685.
[27] L. Simon. Asymptotics for a class of nonlinear evolution equations, with applications to geometric

problems. Ann. of Math. (2) 118 (1983), no. 3, 525–571.

31


	Introduction
	Reduction to a single connected curve
	Singular inner variations
	Rescaling and reparametrization
	Rescalings
	Reparametrization

	First linearization
	Spectral analysis
	The Ventsel boundary condition
	Spectral decomposition

	The three annuli property
	Second linearization and proof of Theorem 2.1
	Proof of Proposition 8.1
	Proof of Corollary 8.2
	Proof of Theorem 2.1


