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Zusammenfassung

Im Jahr 2005 erzielten C. De Lellis und S. Müller eine quantitative Stabilitäts-
aussage über den klassischen Nabelpunktsatz der Differentialgeometrie. Für glatte,
geschlossene und zusammenhängende Flächen Σ im R3, bewiesen sie folgende Ab-
schätzung im kritischen Exponenten Zwei:

([DLM05, (1)]) inf
λ∈R

‖A − λ id‖L2(Σ) ≤ C
∥∥A − tr A

2
id
∥∥

L2(Σ)
.

Dabei bezeichnet A die zweite Fundamentalform von Σ, und C > 0 ist eine von der
Fläche unabhängige Konstante.

Ziel der vorliegenden Arbeit ist es, obige Abschätzung auf höhere Dimensionen
n, sowie allgemeine, nicht–kritische Exponenten p der Lebesgue–Norm zu erweitern.
Wir betrachten glatte, geschlossene und zusammenhängende Hyperflächen des Rn+1

und unterscheiden die beiden Fälle 1 < p ≤ n und p > n. Im ersten Fall gelingt uns
die Verallgemeinerung für konvexe Hyperflächen, wohingegen wir im zweiten Fall die
zusätzliche Annahme treffen müssen, dass die Lp–Norm der zweiten Fundamental-
form einer (von uns bestimmbaren) Schranke genügt.

Des Weiteren ermitteln wir in obiger L2–Ungleichung die optimale Konstante
für konvexe Hyperflächen des Rn+1.

Schliesslich beweisen wir noch die Notwendigkeit der Konvexitätsannahme, wann
immer 1 ≤ p < n ist.



Abstract

In 2005, C. De Lellis and S. Müller obtained a quantitative rigidity result re-
garding the classical theorem of differential geometry about surfaces all whose points
are umbilical. For smooth, closed and connected surfaces Σ in R3, they proved the
following estimate in the critical exponent two:

([DLM05, (1)]) inf
λ∈R

‖A − λ id‖L2(Σ) ≤ C
∥∥A − tr A

2
id
∥∥

L2(Σ)
.

Here, A denotes the second fundamental form of Σ, and C > 0 is a constant which
is independent of the surface.

The goal of the present work is to generalise the above estimate to higher di-
mensions n and general non–critical exponents p of the Lebesgue norm. We consider
smooth, closed and connected hypersurfaces in Rn+1 and distinguish the two cases
1 < p ≤ n and p > n. In the first case, we obtain the generalisation for convex
hypersurfaces, whereas in the second we need to make the additional assumption
that the Lp–norm of the second fundamental form satisfy some bound (which we are
able to preset).

Furthermore, we establish the optimal constant in the above L2–inequality for
convex hypersurfaces in Rn+1.

Finally, we also prove that the hypothesis of convexity is necessary, whenever
1 ≤ p < n.
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1. Introduction

1.1. The Nabelpunktsatz. A point on a smooth surface in Euclidean space
is called umbilical if the two principal curvatures in this point coincide. According
to the classical Nabelpunktsatz (German for “umbilical theorem”), if all the points
of a smooth, connected surface are umbilical, then this surface is either a subset
of a plane or of a sphere (see, e.g., [dC76, §3.2, Prop.4, p.147], [Str88, §3.5(2),
p.122], [Küh08, Thm.3.14, p.51] or [Pre10, Prop.8.2.9, p.191]). This is one of the
first rigidity results in differential geometry of type local to global, in that a local
(or even pointwise) condition has a global consequence. The word rigidity can be
interpreted in two ways here. Either by saying that the two obvious cases are the
only ones occurring, or by pointing out that the curvature cannot vary across the
surface.

There are many generalisations of the Nabelpunktsatz in various directions.
For instance, there is an n–dimensional version (see [Spi99, Lem.1, p.8]), and the

xi
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smoothness hypothesis can be weakened (see, e.g., [BF36, §5], [Har47, Thm.1] and
[Pau08]). Also, there are versions applying to submanifolds of higher co–dimension
in Rn+1 (see [Spi99, Thm.26, p.75]), or even in spaces of constant curvature (see
[Spi99, Thms.27&29, pp.75&77]).

A natural question to ask about all rigidity results is whether the conclusion is
stable. For the Nabelpunktsatz this shall mean: does the assumption that all points of
a closed surface be nearly umbilical entail that this surface must be nearly a sphere?
Here we exclude the planar conclusion by restricting attention to closed surfaces,
i.e. compact ones without boundary. Of course, one needs to give a more precise
meaning to the word nearly, both in the hypotheses and in the conclusion. To do
this, we observe that the ratio of the principal curvatures of a sphere is identically
one. Thus, for a strictly convex surface, we obtain a rough measure for a point q

not to be umbilical by considering η(q) = λmax(q)
λmin(q)

− 1, where λmin(q) and λmax(q)
denote the minimal and maximal principal curvature in q, respectively. Note that
we assume strict convexity in order to ensure that η(q) is well–defined everywhere.
On the other hand, we can say that the surface is close to a sphere, if it lies in a thin
spherical shell, and we measure that by considering the difference ρ = R

r
− 1, where

0 < r < R are the radii of the two bounding spheres. Now we can ask:

• Does uniform smallness of η imply smallness of ρ? (qualitative question)

• Is there a universal constant C > 0 such that ρ ≤ C supq∈Σ η(q), for all
compact, strictly convex surfaces Σ ⊂ R3? (quantitative question)

These questions are obviously well–posed in higher dimensions, as well.

1.2. The Russian school. A. V. Pogorelov in [Pog67], complemented by
H. Guggenheimer [Gug69], answers both of these questions in the affirmative — the
monograph [Pog73, §VII.9] revisits these results. Here, one should also mention the
work by Yu. E. Borovskĭı [Bor67,Bor68], who achieves a positive answer to the first
question with different methods, as well as Yu. A. Volkov and N. S. Nevmeržickĭı
([Vol63], [Nev69] and reference 134 in [Res94]), whose papers we were not able to
see (like A. I. Fet’s related stability result [Fet63] — see also work by V. I. Diskant,
such as [Dis71], as well as further references given in [Sch89]).

After these first results, several mathematicians endeavoured in generalising
A. V. Pogorelov’s theorem, among which D. Koutroufiotis [Kou71], J. D. Moore
[Moo73] and, much later, K. Leichtweiss [Lei99], who all consider curvature–quant-
ities other than the ratio between the principal curvatures (the latter author gives
an explicit constant estimating the global deviation given the local one — see also
R. Schneider [Sch88, Thm.2] and B. Andrews [And94, Thm.5.1&Lem.5.4], who
obtain related results as corollaries).

Others took more interest in weakening the sense in which the quantity η is small.
One possibility of doing so is to assume this condition to hold only in some form of
average, for instance by replacing the sup–norm with an Lp–norm. Then one asks
whether smallness of ‖η‖Lp implies smallness of ρ, or even seeks a precise estimate of
the form ρ ≤ C ‖η‖Lp . For convex hypersurfaces of Rn+1, Yu. G. Reshetnyak [Res68]
and S. K. Vodop′yanov [Vod70] achieve this for a slightly different control–quantity
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— a detailed exposition is given in Reshetnyak’s book [Res94, Ch.6]. Not only do
they conclude the qualitative stability of the Nabelpunktsatz in this weak setting, but
they also obtain a quantitative estimate under a suitable smallness assumption on
the right–hand side.

1.3. G. Huisken’s question. In 2003, G. Huisken asked C. De Lellis and
S. Müller whether one could establish a similar result when replacing ‖η‖L2 by the
L2–norm of the traceless part of the second fundamental form of a smooth, closed
and connected, but otherwise arbitrary surface in R3. The question was motivated
by applications to foliations of asymptotically flat three–manifolds by surfaces of
prescribed mean curvature (see [Met07] and subsequent works [LMS09, LM10],
where the result mentioned below is crucial for ensuring that the leaves be close to
spheres).

We now expose why one might want to look at this quantity. Let Σ ⊂ Rn+1 be a
smooth hypersurface endowed with the Riemannian metric g induced by the ambient
Euclidean space. Recall that the second fundamental form A is the quadratic form
on the tangent bundle whose eigenvalues are the principal curvatures, and the mean
curvature H is its trace. Consequently, the traceless part

◦
A = A − H

n
g of the second

fundamental form constitutes a measure for the deviation of each single principal
curvature from the arithmetic mean of all of them. Clearly, an umbilical point q is
then characterised by the vanishing of

◦
A(q), and spheres are characterised by being

closed and having
◦

A vanish globally, as a consequence of the Nabelpunktsatz.
For a sphere of radius R, all the principal curvatures are equal to 1

R
, and thus,

putting λ = H
n

, where H is the mean of H over Σ, the quadratic form A − λg
vanishes precisely on spheres. From the viewpoint of stability, then, it is some norm
of this quadratic form which one seeks to control with some norm of the traceless
part of the second fundamental form. In [DLM05], C. De Lellis and S. Müller
were able to provide such an estimate in an L2–sense for surfaces, thereby answering
G. Huisken’s question in the affirmative. In addition, and under an appropriate
smallness assumption on ‖ ◦

A‖L2 , they obtained in a quantitative way the closeness to
a sphere in the norm of the Sobolev space W 2,2. Only one year later, they sharpened
that previous result by proving even quantitative C0–closeness (see [DLM06]). Their
remarkable theorems are quite involved and require a very subtle analysis. This is
due to the fact that the quantities considered are measured in the so–called critical
norm, which we now explain.

1.4. Critical, sub–critical and super–critical exponents. The way we
understand the distinction between critical, sub–critical and super–critical in this
context is as follows. If the Lp–norm of a quantity tends to zero when we en-
large Σ homothetically (we say we are “blowing up”), then we call the exponent p
super–critical. If, however, that norm explodes under this rescaling, the exponent is
called sub–critical. The critical case is characterised by the scaling invariance of the
Lp–norm of that quantity. Intuitively, in the super–critical case, high–frequency os-
cillations in the quantity get over–compensated by the rescaled norm under blowing
up. Put differently, our quantity might have slightly better regularity than we could
originally expect. On the other hand, in the sub–critical case, the regularity might
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be poor. Thus, it may require additional assumptions to be able to prove theorems
in the sub–critical situation which are valid in the super–critical one. The borderline
case (i.e. the critical one) is, usually, the hardest one to treat, since neither of the
non–critical cases gives any indication on what the minimal assumptions could be.
From this point of view alone, the work of C. De Lellis and S. Müller is, indeed,
astounding.

1.5. The main estimate. The aim of this thesis is to provide a generalisation
of the estimate outlined above ([DLM05, (1)]) to arbitrary dimensions and all non–
critical exponents. The sought–after result would be of the form: For every n ≥ 2 and
p ∈ (1, +∞), there exists a constant C > 0, such that, for every closed hypersurface
Σ ⊂ Rn+1, the inequality

(main estimate) inf
λ∈R

‖A − λg‖Lp(Σ) ≤ C ‖ ◦
A‖Lp(Σ)

holds. Note that this estimate is, in general, not true, but we can show it under
certain additional hypotheses on Σ. A detailed description of our results is given in
the next section.

1.6. Historical note. The Nabelpunktsatz is sometimes attributed to G. Dar-
boux (e.g. in [Res94]). However, it appears that the first author to prove this result
is J.–B.–C.–M. Meusnier de Laplace in his sole mathematical Mémoire [MdL85,
Prob.III, §34, pp.500–502], presented in 1776 and printed in 1785. Moreover, Dar-
boux himself gives credit to Meusnier regarding it ([Dar96, Vol.1, Ch.III.1, §175,
p.270]). Meusnier, in turn, emphasises the influence of earlier work by L. Euler
[Eul67]. G. Monge, one of Meusnier’s teachers, also obtains the Nabelpunktsatz using
related methods and at about the same time ([Mon00, no.26]; see also his later treat-
ise [Mon50]) — this is why some authors like J. V. Boussinesq [Bou90, no.I.II.194,
p.264] attribute the result to Monge. For further reading, we suggest [Hil20],
[Eis20], [Str33] and [Tru96], as well as Darboux’s Éloge on Meusnier [Dar12].

2. Presentation of our results

In this work, unless otherwise stated, n ≥ 2 and Σ ⊂ Rn+1 denotes a smooth,
closed and connected hypersurface of Rn+1. Thus, Σ is orientable. In order to
simplify the presentation of our arguments, we additionally require the hypersurface
to have unit n–dimensional volume. This bears no restriction, however, since all our
results are easily reformulated to apply to hypersurfaces of arbitrary area.

2.1. Chapter 1. The super–critical case p > n. We set out to prove the
main estimate for general dimensions n and exponents p > n, and show C0–closeness
to a sphere if ‖ ◦

A‖Lp(Σ) is small (N.B.: in contrast to the results of C. De Lellis
and S. Müller, no quantitative estimate was obtained). Unfortunately, we could
not establish the main estimate for a constant on the right–hand side that is fully
independent of the hypersurface under consideration. More precisely, we prove that
the estimate holds true with a constant C depending only on n, p and some c0 > 0,
whenever ‖A‖Lp(Σ) ≤ c0.
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The idea of our proof is as follows. We first show that an inequality analogous
to the main estimate holds locally, i.e. in “appropriate” charts. This is done by
establishing a partial differential equation satisfied by the components of the second
fundamental form A in terms of the components of its traceless part

◦
A. Then we

invoke the classical Calderón–Zygmund inequality ( [CZ56]), which basically tells
us that the Lp–norm of the Hessian of a function can be bounded by the Lp–norm
of its Laplacian. Incidentally, the use of this famous result is also a key step in
S. K. Vodop′yanov’s approach ([Res94, ch.6]), which otherwise relies on methods
completely different from ours. Using the bound on ‖A‖Lp(Σ), we show that we can
cover Σ with a controlled number of such “appropriate” charts with large enough
overlap. The global main estimate then follows from the local one.

2.2. Chapter 2. The sub–critical case 1 ≤ p < n. The idea here is to
apply the same strategy as in the super–critical case. While in Chapter 1 we could
conclude as described above, we need to make additional assumptions in the case at
hand. It turns out that assuming convexity of Σ is sufficient.

Observing that the main estimate in the present situation is trivially fulfilled
whenever its right–hand side is not small, we can assume without loss of generality
that some preset bound c′

0 > 0 on ‖ ◦
A‖Lp(Σ) be given. But in the non–super–critical,

convex case this implies a bound c0 on ‖A‖Lp(Σ), thus eliminating the disappointing
restriction encountered before.

However, the passage from local to global, namely the generation of a suitable
covering, proved to be fairly laborious. This is due to the fact that we could no longer
use the additional regularity obtained for p > n to show that the desired charts have
a certain minimal size. To achieve the same here, we need to rule out the possibility
that the hypersurface be close to degenerate. We do this by proving that Σ must be
contained in a spherical shell whose radii depend only on n, p and our preset bound
c0. Notice, though, that we did not show a quantitative version of this circumstance,
i.e., we do not know how the deviation of the ratio of these two radii from one is
controlled by the Lp–norm of

◦
A. Moreover, even if we feel that the non–degeneracy

should hold in the case p = 1 as well, we could not establish it there. In turn, our
considerations work equally well for proving the main estimate in the critical case
p = n, even though requiring convexity in that situation seems exaggerated.

2.3. Chapter 3. L2–theory. Here we treat a special non–super–critical case,
namely the one when p = 2. Our central result is the main estimate with an ex-
plicit constant for hypersurfaces Σ of non–negative Ricci curvature (which, in the
Euclidean case, is equivalent to convexity — see Proposition 3.2). The proof of this
theorem is very short and based on an elegant strategy employed by C. De Lellis and
P. M. Topping in [DLT10]. The key idea is to solve a suitable Poisson problem on
Σ.

Afterwards, we exhibit a geometric flow approach due to G. Huisken (privately
communicated to C. De Lellis) which is tailored to the critical two–dimensional case.
This yields an alternative proof of our estimate and applies to strongly mean convex
boundaries of star–shaped domains. These assumptions are, in fact, strictly weaker
than ours, and they are enough to retrieve the same constant we obtained before.
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We then endeavour to adapt this technique to the higher dimensional situation,
where we face a sub–critical problem. Despite assuming convexity again, our reas-
oning only delivers a much larger constant than expected in the main estimate.
Nevertheless, we find the argument instructive.

2.4. Chapter 4. Optimality. In this chapter, we subject our results to some
optimality considerations. We start by demonstrating that the constant found in our
L2–estimate of Chapter 3 is optimal among Ricci–positive hypersurfaces. We do this
by showing the existence of a suitable deformation of a round sphere. Afterwards, by
constructing an explicit counter–example, we prove that the assumption of having
non–negative Ricci curvature is optimal for all sub–critical exponents p ∈ [1, n).
Finally, restricting ourselves to the critical two–dimensional case, we show that our
optimal constant cannot work for generic surfaces, thereby relating our result to
the one of C. De Lellis and S. Müller. That last counter–example is due in part to
P. M. Topping and C. De Lellis, whereas for the previous, the latter and S. Müller
should be credited as well.

2.5. Complements. We conclude this work with two appendices. The first
one contains three little lemmas which are all true in a slightly more general context
than the one in which they are applied in the text and might be of independent
interest. The second appendix, in contrast, contains work which has no effect on the
topics just described. It is concerned with a preliminary step towards generalising
the present results to hypersurfaces in Riemannian manifolds of non–negative Ricci
curvature. More precisely, we give several L2–integral quantities on a spherical cap
or on its boundary, and calculate their second variation under a volume–preserving
deformation. The chosen quantities appear both in the “Almost–Schur Lemma” of
C. De Lellis and P. M. Topping ([DLT10]), as well as in this thesis. Admittedly,
the obtained formulæ are rather unmanageable, even in a special case in which a lot
of simplifications occur. In fact, not even that situation gave us a hint on how to
proceed, and no result is obtained so far. We produce these calculations in spite of
that, just in case someone might find them useful.

3. Discussion of our work, open problems

3.1. Weaknesses. In the previous section, we already mentioned two major
shortcomings of our results, most prominently the necessity in the super–critical
case to require a bound on the Lp–norm of the second fundamental form. At this
point, we have no hope to overcome this restriction using our techniques. Also,
we pointed out our inability to prove a C0–estimate for the closeness to a sphere,
something which we expect to be of importance in possible applications.

For this last objection, however, we already made a first step into the right
direction, by concluding qualitative C0–closeness from our main estimate. In contrast
to the first drawback, then, this can be considered work in progress.

3.2. Implications. Perhaps the most satisfactory parts of the present work are
the two theorems treating the sub–critical cases. Our optimality results of Chapter 4
indicate their strengths. Indeed, not only were we able to provide the best possible
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constant in the L2–estimate of Chapter 3, but we also proved that assuming convexity
is necessary for general sub–critical exponents, as treated in Chapter 2. Both our
main theorems of these chapters are thus given under optimal hypotheses when p < n,
and the L2–theorem even gives an optimal statement.

In contrast, the main theorem of Chapter 1 about the general super–critical
case lacks this feature. Nevertheless, it appears to step out from the usual (convex)
context which we found in the literature. It would therefore seem a worthwhile goal
to strengthen this result.

3.3. On the optimal constant. Also, one should be able to extract useful
information by determining in general the optimal constant in the main estimate.
Regarding this constant, another route one might want to pursue is a further ana-
lysis of the critical two–dimensional case. In view of the results we present, one
might wonder about the most general hypotheses under which the constant we and
G. Huisken found would apply. We know now that mean convex and star–shaped
is sufficient, but this does not preclude the possibility of a more general condition
under which the optimal constant is valid. On a related note, it would be interesting
to investigate the size of the universal constant appearing in the original work of
C. De Lellis and S. Müller.

3.4. Beyond Euclidean? Finally, a widely open problem is whether it is pos-
sible to combine our work with the one of C. De Lellis and P. M. Topping [DLT10],
who prove an L2–estimate analogous to ours (note that the inequality below appears
to have been obtained already by B. Andrews in unpublished work — see [CLN06,
§B.3, pp.517–519] for an exposition; however, [DLT10] also show the optimality of
the constant appearing on the right–hand side). More precisely, for closed Rieman-
nian manifolds of non–negative Ricci curvature and dimension larger than two, they
prove ∥∥∥∥Ric −Scal

n
g

∥∥∥∥
L2

≤ n

n − 2

∥∥∥Ric −Scal
n

g
∥∥∥

L2
,

and show that the constant on the right–hand side is optimal (we wish to repeat
at this point, that the proof of our L2–estimate is, in fact, a simple adaptation of
theirs). A first, albeit very small, step in this direction is attached as the second
appendix.





Notations and conventions

The present work assumes a certain familiarity with Riemannian geometry and
generally follows standard notation — for background references, the reader may
consult the books recommended below.
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General remarks. In the whole text, the dimension n is assumed to be at
least two. The symbol Σ denotes a smooth, closed (i.e. compact, without boundary)
and connected hypersurface in Rn+1. The Riemannian metric g and the second
fundamental form A on Σ are the ones inherited from Euclidean Rn+1. We will, in
general, abuse notation for objects of the tangent bundle, insofar as we will identify
them with their respective push–forwards via the embedding of Σ into Rn+1. Also,
whenever we take norms or traces of quantities in the tensor bundle, we imply the
appropriate usage of the metric g (however, we often write trg for the trace–operator).
The same holds true for derivatives, unless stated otherwise. Moreover, whenever we
put indices on quantities of the tensor bundle without specifying the chart we use,
they will refer to some generic system of coordinates, and the metric g will be used
to raise and lower those indices (except for some cases we will point out).

Background reading. The author got his geometric education from several
different sources, among which [BG92], [dC76], [Mil97], [Lee97], [GHL04], [dC92]
and [Nic07b]. He also liked some expositions in [Bes87] and [O’N83], and enjoyed
reading parts of [Ber03]. For analytical questions of a general nature, he learnt a
lot from [Rud87], [Bar95], [Eva98], [GT01] and [EG92], whereas he recommends
the outstanding [Aub98], as well as [Jos08], for more specific questions on analysis
on manifolds (but see also the introductory text [Spi65]). Regarding convexity, he
found [Sch93] extremely helpful, as well as [Roc70]. Finally, for topics in functional
analysis, he usually uses [Bre83] and [Rud91].

xix



xx NOTATIONS AND CONVENTIONS

List of symbols. What follows is a list of generic symbols which we will use
frequently and, on many occasions, without specifying their meaning again. We
sometimes use subscripts to emphasise the context to which these symbols belong.

Br(x) The ball of radius r around x in the ambient space (usually Rn+1)
Dr(y) The ball of radius r around y in coordinate space (normally Rn)
volm The m–dimensional Hausdorff measure in Rn+1

〈 · , · 〉P The Euclidean scalar product in a linear subspace P ⊂ Rn+1

id The identity (1, 1)–tensor
δi

j The Kronecker delta
D The coordinate derivative of Euclidean space
g The Riemannian metric of Σ
dvolg The volume form associated to g
| · |g The Hilbert–Schmidt norm with respect to g, acting on sections

of the tensor bundle — we usually drop the subscript g
trg The trace with respect to g
∇ The Levi–Civita connection of g
∆ The Laplace–Beltrami operator with respect to ∇,

but sometimes also the usual Laplace operator
div The covariant divergence operator acting on symmetric two–tensor fields

or vector fields, but occasionally also the Euclidean divergence operator
Riem The Riemann curvature tensor associated to g
Ric The Ricci tensor obtained from Riem
Scal The scalar curvature obtained from Ric
ν The outer unit normal vector field to Σ in Rn+1, also called Gauss map
A The second fundamental form of Σ in Rn+1

H The mean curvature of Σ, H = trg A◦
A The traceless part of A,

◦
A = A − H

n
g

B:C The full contraction of the two smooth, symmetric two–tensor fields
B and C, i.e., in coordinates, B:C =

∑n

i,j,k,l=1
(g−1)ik(g−1)jlBijCkl

Also, for smooth functions ϕ : Σ → R, we set

ϕ =

∫

Σ

ϕ dvolg =
1

voln(Σ)

∫

Σ

ϕ dvolg

to denote the average of ϕ over the hypersurface Σ, but usually we do not specify
the volume form when we write an integral.

Sign conventions. If X, Y and Z denote any smooth vector fields on Σ, ex-
tended to a neighbourhood of Σ, then we put

Riem(X, Y )Z = ∇Y ∇XZ − ∇X∇Y Z − ∇∇Y X−∇X Y Z,

and

A(X, Y ) = −
〈
DXY, ν

〉
Rn+1

.
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These signs are chosen in such a way that the usual n–sphere Sn
R of radius R > 0

has scalar curvature ScalSn
R

= n(n+1)
R

, and that the second fundamental form A of
Σ has non–negative eigenvalues, whenever Σ bounds a convex domain.





CHAPTER 1

The super–critical case for generic

hypersurfaces

In this chapter, we prove our main estimate for generic n–dimensional hypersur-
faces of Rn+1 in the case p > n ≥ 2, and show that it implies qualitative C0–closeness
to a sphere. Unfortunately, the constant on the right–hand side of the estimate de-
pends on the Lp–norm over the hypersurface of the second fundamental form of the
hypersurface. At this point it is unclear to the author how to mend that.
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1. The main theorem of this chapter

Our goal is to prove

Theorem 1.1. Let n ≥ 2, p ∈ (n, +∞) and c0 > 0 be given. Then there is a
constant C > 0, depending only on n, p and c0, such that:
if Σ ⊂ Rn+1 is a smooth, closed and connected n–dimensional hypersurface with
induced Riemannian metric g and such that

(a) voln(Σ) = 1

and

(b) ‖A‖Lp(Σ) =

(∫

Σ

|A|p
) 1

p

≤ c0,

1
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then

(1.1) min
λ∈R

‖A − λg‖Lp(Σ) ≤ C ‖ ◦
A‖Lp(Σ) .

We prove the theorem in the next section, and show in Section 3 how it implies

Corollary 1.2 (to Theorem 1.1). Let n ≥ 2, p ∈ (n, +∞), c0 > 0 and ǫ > 0 be
given. Then there is a constant δ > 0, depending only on n, p, c0 and ǫ, such that:
if Σ ⊂ Rn+1 is a smooth, closed and connected n–dimensional hypersurface such that

(a) voln(Σ) = 1,

(b) ‖A‖Lp(Σ) ≤ c0

and

(c) ‖ ◦
A‖Lp(Σ) < δ,

then

dHD

(
Σ, ∂Bρ0(x)

)
< ǫ, for some x ∈ R

n+1,

where ρ0 = (voln(Sn))− 1
n and dHD denotes the Hausdorff distance in Euclidean

Rn+1.

The idea of the proof of Theorem 1.1 (performed in Section 2) is as follows.
We will show that an estimate analogous to (1.1) holds in charts where a portion of
Σ is given as the graph of a smooth function. This will be done by examining the
differential equation that each component of A satisfies in such charts in terms of
derivatives of

◦
A and applying the Calderón–Zygmund inequality. In order to get the

global estimate, we show that Σ can be covered by a controlled number of geodesic
balls with a certain size and overlap and such that each ball is contained in the graph
over a tangential plane of a smooth Lipschitz function. As will become clear in the
proof, we have to assume an upper bound for ‖A‖Lp(Σ) as well as p > n, so that we
can “patch together” the local estimates to obtain the global one.

In order to get the local estimate, we will make use of the following, rather sur-
prising result, which states that the partial derivatives (with respect to the Cartesian
coordinates of a chart in which a portion of Σ is given as a graph) of the second fun-
damental form A are entirely determined by the partial derivatives of its traceless
part

◦
A. The proof of this will be given in Section 4.

Lemma 1.3. Let U ⊂ Rn, n ≥ 2, be an open set and assume Σ is the graph of
a smooth function u : U → R (Σ is thus a smooth hypersurface in Rn+1). Let

φ : U → Rn+1, x 7→
(
x, u(x)

)
be the corresponding parametrisation. Denote by

D the derivation with respect to the Cartesian coordinates of Rn using the chart φ.
Then the partial derivatives in U of the second fundamental form A of Σ satisfy

(1.2) DkAi
j = Dk

◦
Ai

j +
1

n − 1

(
n∑

l=1

Dl

◦
Al

k

)
δi

j , ∀i, j, k,

where
◦

Ai
j = Ai

j − 1
n

∑n

l=1
Al

lδ
i
j are the components of the traceless part

◦
A of A.
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Remark 1.4. Notice that the statement of Lemma 1.3 would be a rather obvious
consequence of the Codazzi equations, if (1.2) were given with respect to the Levi–
Civita connection ∇. The point here is, of course, that the identity holds for the
usual “Euclidean partial derivatives” in the corresponding chart.

We will think of expression (1.2) as a system of partial differential equations,
where the unknowns are the components of A. The following proposition then yields
the local estimate. Its proof, which is deferred to Section 5, is done by taking the
trace of (1.2) to get an equation of the form Du = div f which, by the Calderón–
Zygmund inequality, admits the desired estimate.

Proposition 1.5. Let U ⊂ Rn, n ≥ 2, be an open set with 0 ∈ U , and assume Σ
is as in Lemma 1.3. Let R > 0 be such that DR(0) ⊂ U and assume p ∈ (1, +∞)
be given. Then there exists a constant C > 0, which depends only on n and p, and
there exists a λ ∈ R such that

(1.3) ‖A − λg‖Lp(DR/4(0)) ≤ C ‖ ◦
A‖Lp(DR(0)) .

Remark 1.6. Notice that, in contrast to (1.1), the constant C on the right–hand
side of (1.3) is independent of the second fundamental form A of the hypersurface Σ.
We will make use of this fact in the next chapter. Here, it is the lower bound on R,
required to be able to apply Lemma 1.7 (see below), that will introduce this dependence.
In addition, it is also this lower bound that will restrict the global theorem to the cases
p > n.

Now, to obtain the global estimate, we need the technical lemma below. It states
that we can cover Σ by a controlled number of geodesic balls in which a portion of
Σ is represented as a Lipschitz graph. As every smooth hypersurface can locally be
parametrised as the graph of a Lipschitz map, the important assumption will be that
there is a uniform upper bound on the Lipschitz constants of these maps, as well as
a uniform lower bound on the size of the domain on which the maps are defined. As
we will see in Section 2, the assumptions of Theorem 1.1 imply those of the lemma.
The proof of the latter, performed in Section 6, is based on the observation that
a geodesic sphere with small enough radius ρ is contained in the graph of one of
the Lischitz maps over a ring with radii related to ρ. Consequently, the volume of
small geodesic balls on Σ is controlled by the volume of Euclidean balls. Since Σ has
normalised area and is compact, the existence of the aforementioned cover is then
assured.

Lemma 1.7. Let Σ ⊂ Rn+1, n ≥ 2, be a smooth closed hypersurface with normalised
area, voln(Σ) = 1, and let r0 > 0 and L > 0 be given. Assume that, for each point
q ∈ Σ, there is an isometry Φq of Rn+1 and a smooth Lipschitz function uq : Dr0 (0) ⊂
Rn → R with Lipschitz constant at most L, such that Φq

(
Dr0(0), uq

(
Dr0 (0)

))
⊂ Σ

and Φq

(
0, uq(0)

)
= q.

Then, for every q ∈ Σ, the geodesic ball Bg
r0

(q) ⊂ Σ of radius r0 around q is contained

in Φq

(
Dr0 (0), uq

(
Dr0 (0)

))
, and there is a constant C, depending only on n, such
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that Σ can be covered with N such geodesic balls, where

(1.4) N ≤ C
(1 + L)2n

rn
0

.

2. Proof of Theorem 1.1

In this section we deduce the global rigidity estimate (1.1) from the local rigidity
estimate (Proposition 1.5) and the existence of a covering as described in Lemma 1.7.

2.1. Construction of Lipschitz charts. So let Σ be as in Theorem 1.1 and
pick any point q ∈ Σ. Without loss of generality, we may assume that q = 0 ∈ Rn+1

and TqΣ = Rn × {0} ⊂ Rn+1. By smoothness, a portion of Σ is then given as the
graph of a smooth function u : U ⊂ Rn → R with u(0) = 0 and Du(0) = 0, where D
denotes derivation with respect to the Cartesian coordinates of Rn. We can assume
that U is maximal, in the sense that if a portion of Σ can be represented as a graph
over V ⊃ U , then V = U necessarily.

In the proof of Lemma 1.3 (Section 4), we will see that, in the coordinates at
hand, the metric g of Σ, its inverse and the second fundamental form A of Σ are
given by (see equations (1.13), (1.14) and (1.15)):

gij = δij + DiuDju, gij = δij − DiuDju

1 + |Du|2
, Aij =

DiDju√
1 + |Du|2

,

respectively. Let

v =
Du√

1 + |Du|2
.

Notice that, by definition, |v| < 1. Moreover, if 0 < c < 1 and |v| ≤ c then
|Du| ≤ c/

√
1 − c2 < +∞, implying that u is Lipschitz with Lipschitz constant

L ≤ c/
√

1 − c2.
Define

R = sup

{
r > 0

∣∣∣∣∣ sup
e∈∂D1(0)

|v(re)| ≤ 1

2

}

as the maximal radius of a ball DR(0) ⊂ Rn such that the length of v is uniformly
bounded by 1/2. Clearly, R > 0 since v(0) = 0 and v is continuous. Also, R < +∞
since otherwise u would be defined on the whole of Rn and Σ would not be compact.
In fact, in view of equation (1.13) of Section 4 and our assumption that voln(Σ) = 1,

we must have R ≤
(
voln(Sn)

)− 1
n . Thus R is well–defined and u is at least defined

on DR(0). Moreover |v| ≤ 1/2 holds throughout DR(0), implying that u is uniformly
Lipschitz on DR(0) with constant 1/

√
3.

2.2. The local estimate. Applying Proposition 1.5 for p > n, we obtain a
constant C, depending only on n and p, and some λ ∈ R such that

‖A − λg‖Lp(Dr/4(0)) ≤ C ‖ ◦
A‖Lp(Dr(0)) , ∀r ≤ R.
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Remark 1.8. As we will see in the proof of Lemma 1.7 (Section 6), any geodesic
ball Bg

r (q) with centre q and radius r ≤ R is contained in the graph of u over Dr(0).
Moreover, since u is Lipschitz, the area voln(Bg

r (q)) of such a geodesic ball is con-
trolled by voln(Dr(0)). This will be useful later.

The first part of the remark yields the following local estimate: For all q ∈ Σ
there is a λ ∈ R such that for r ≤ R/4

(1.5) ‖A − λg‖Lp(Bg
r (q)) ≤ C ‖ ◦

A‖Lp(Σ) ,

where C depends only on n and p.

2.3. A lower bound on the size of the Lipschitz charts. In order to apply
Lemma 1.7 to get the global analogue of the above estimate, we now show that R is
bounded from below. For this we calculate:

Djvi = Dj
Diu√

1 + |Du|2
=

DjDiu√
1 + |Du|2

−
∑n

l=1
DiuDluDjDlu

(1 + |Du|)3/2

=

n∑

l=1

(
δil − DiuDlu

1 + |Du|2
)

DlDju√
1 + |Du|2

=

n∑

l=1

gilAlj = Ai
j .(1.6)

Thus |Dv| = |A| in every point of DR(0). We apply the Morrey–type estimate found
in Lemma A.1 of the appendix to v at x = 0, and we get with identity (1.6)

sup
y∈DR(0)

|v(y)|
|y|(p−n)/p

≤ C ‖Dv‖Lp(DR(0)) = C ‖A‖Lp(DR(0)) .

Now, by the maximality of R, there exists an e ∈ ∂D1(0) such that limrրR |v(re)| =
1/2. For y = Re, we therefore obtain

(1.7)
1/2

R(p−n)/p
≤ C ‖A‖Lp(DR(0)) .

Since ‖A‖Lp(Σ) ≤ c0 by assumption, we infer that there is a constant C, depending
only on n and p, such that, if we define

(1.8) R0 = Cc
−p/(p−n)
0 ,

then R ≥ R0.

Remark 1.9. Conversely, in view of the upper bound
(
voln(Sn)

)− 1
n on R com-

ing from the assumption that voln(Σ) = 1 (see (1.13) in Section 4), we infer from
inequality (1.7) that

‖A‖Lp(Σ) ≥
(
voln(Sn)

)n−p
np

2C′ ,

where C′ is the constant of Lemma A.1 that depends only on n and p. This obser-
vation will be useful in the proof of the qualitative C0–closeness in Section 3.
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2.4. Local to global. Taking r0 = R0/8 and L = 1/
√

3, we can now apply
Lemma 1.7 (twice — once both statements, then only the first) to obtain a covering
{Bg

r0
(qj)}

1≤j≤N
of Σ by geodesic balls of radius r0 such that, in each Bg

2r0
(qj), the

local estimate (1.5) holds for all r ≤ 2r0 = R0/4. By the triangle inequality, any
two balls of the covering that intersect will have the property that the balls with
same centres but twice the radius have an overlap that contains, at least, a geodesic
ball of radius r0. This will be useful to “patch together” the local estimates in
order to obtain the global one, since, obviously, λ depends on the geodesic ball
(cf. the proof of Proposition 1.5 in Section 5). Indeed, given that the covering of Σ

by
{

Bg
2r0

(qj)
}

1≤j≤N
has sufficiently large overlaps, the difference of the λs in two

neighbouring balls is controlled.
In fact, let Ω1, Ω2 ⊂ Σ with voln(Ω1 ∩ Ω2) > 0 and assume that there are

λ1, λ2 ∈ R such that ‖A − λ1g‖Lp(Ω1) ≤ β and ‖A − λ2g‖Lp(Ω2) ≤ β for some β

independent of Ω1 and Ω2. We have

|λ1 − λ2| = (|λ1 − λ2|p)
1
p =

(
1

voln(Ω1 ∩ Ω2)

∫

Ω1∩Ω2

|λ1 − λ2|p
) 1

p

=
1

voln(Ω1 ∩ Ω2)
1
p

‖λ1 − λ2‖Lp(Ω1∩Ω2)

=
1

nvoln(Ω1 ∩ Ω2)
1
p

‖λ1g − A + A − λ2g‖Lp(Ω1∩Ω2)

≤ 1

nvoln(Ω1 ∩ Ω2)
1
p

(
‖A − λ1g‖Lp(Ω1∩Ω2) + ‖A − λ2g‖Lp(Ω1∩Ω2)

)

≤ 2β

nvoln(Ω1 ∩ Ω2)
1
p

.

In particular, if Ω1 and Ω2 are two intersecting geodesic balls of radius r0 from the
cover, such that the intersection of the balls with doubled radius contains a geodesic
ball of radius r0, then the local estimate (1.5), together with Remark 1.8, yields a
constant C, depending only on n and p, such that

|λ1 − λ2| ≤ Cr
− n

p

0 ‖ ◦
A‖Lp(Σ) .

Consider a path joining the ball in the cover with the smallest λ, say λmin, to
the one with the largest λ, say λmax. Since the path can cross at most N distinct
balls, we find that

(1.9) |λmax − λmin| ≤ Cr
− n

p

0 N ‖ ◦
A‖Lp(Σ) ,

where the constant C depends only on n and p. Let Bg
j , j = 1, . . . , N , denote the

geodesic balls of the cover and λj their corresponding λs. By virtue of (1.9) above
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and the local estimate (1.5) we then have for any λ between λmin and λmax,

‖A − λg‖Lp(Σ) ≤
N∑

j=1

‖A − λg‖Lp(Bg
j

)

=

N∑

j=1

‖A − λjg + λjg − λg‖Lp(Bg
j

)

≤
N∑

j=1

(
‖A − λjg‖Lp(Bg

j
) + ‖λjg − λg‖Lp(Bg

j
)

)

≤
N∑

j=1

(
‖A − λjg‖Lp(Bg

j
) + n |λmax − λmin| voln(Bg

j )
1
p

)

≤
N∑

j=1

C1 ‖ ◦
A‖Lp(Σ)

(
1 + C2Nr

− n
p

0 (rn
0 )

1
p

)

≤
N∑

j=1

C3(1 + N) ‖ ◦
A‖Lp(Σ)

≤ CN2 ‖ ◦
A‖Lp(Σ) ,

where the constants C1, C2, C3 and C depend only on n and p. Using the upper
bound (1.4) on the number N of balls in the cover and the expression (1.8) for 4r0

we finally obtain

‖A − λg‖Lp(Σ) ≤ Cc
2np
p−n

0 ‖ ◦
A‖Lp(Σ) ,

where, again, C depends only on n and p. This proves Theorem 1.1. �

3. Proof of Corollary 1.2

In this section we want to show that any hypersurface Σ that fulfils the assump-
tions of Theorem 1.1 has to be C0–close to a sphere, whenever ‖ ◦

A‖Lp(Σ) is small
enough. We do this through a contradiction argument.

3.1. Preliminaries. Assume Corollary 1.2 were false. Then we would find a
sequence (Σk)k∈N of smooth, closed and connected hypersurfaces of Rn+1, satisfying
voln(Σk) = 1 and ‖A‖Lp(Σk) ≤ c0 independently of k, and such that

lim
k→∞

‖ ◦
A‖Lp(Σk) = 0,

and the hypersurfaces Σk do not converge (in the Hausdorff topology) to a ball
(notice that we do not even claim that there is a limit set). We shall show that this
is impossible.

We begin with the following observations. Applying Theorem 1.1 to each Σk,
we get, for every k ∈ N, a λk ∈ R such that

‖A − λkg‖Lp(Σk) ≤ C ‖ ◦
A‖Lp(Σk) ,
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where C > 0 depends only on n, p and c0. The sequence (λk)k∈N is bounded in R,
since

|λk| =
1√
n

‖λkg‖Lp(Σk) ≤ 1√
n

‖A‖Lp(Σk) +
1√
n

‖A − λkg‖Lp(Σk)

≤ 1√
n

‖A‖Lp(Σk) +
C√
n

‖ ◦
A‖Lp(Σk) ≤ c0√

n
+

C√
n

‖ ◦
A‖Lp(Σk) ,(1.10)

and the second term on the right–hand side converges to zero as k → ∞. Hence,
modulo picking a subsequence, we might without loss of generality assume that
limk→∞ λk = λ ∈ R. Notice also that, in view of Remark 1.9 in the proof of
Theorem 1.1 (Section 2), we have for each k, that ‖A‖Lp(Σk) ≥ δ, where δ > 0

depends only on n and p. It follows that

|λk| =
1√
n

‖λkg‖Lp(Σk) ≥ 1√
n

‖A‖Lp(Σk) − 1√
n

‖A − λkg‖Lp(Σk)

≥ δ√
n

− C√
n

‖ ◦
A‖Lp(Σk) ,(1.11)

whence
∣∣λ
∣∣ ≥ δ/

√
n > 0.

Returning to the main argument, we show how our assumptions imply that,
locally, the Σks have to converge to portions of spheres.

3.2. Local convergence. We pick, for each k ∈ N, an arbitrary point qk ∈ Σk.
Modulo translations and rotations, we can without loss of generality assume that
qk = 0 ∈ Rn+1, and that Tqk Σk = Rn × {0} ⊂ Rn+1 (cf. the proof of Theorem 1.1).
Then, from Section 2, we know that each Σk has a portion given as the graph of a
smooth 1/

√
3–Lipschitz function uk : DR(0) → R, where R depends only on n, p and

c0 (notice that, by our construction in the proof of Theorem 1.1, the functions uk are
Lipschitz up to the boundary of DR(0) ⊂ Rn). The sequence (uk)k∈N is therefore a
pointwise bounded, equicontinuous sequence in the space of continuous, real–valued
functions on the compact domain DR(0). Then the Ascoli–Arzelà–Theorem (see, e.g.,
[Rud91, Thm.A5, p.394]) implies the existence of a subsequence

(
ukl

)
l∈N

⊂ (uk)k∈N

that converges uniformly on DR(0) to a continuous function u.
Now define for each l, as in the proof of Theorem 1.1,

vl =
Dukl√

1 + |Dukl
|2

.

There, we had seen that Dj(vl)
i = (Aukl

)i
j for all i, j ∈ {1, . . . , n} (see eq. (1.6)).

Then, since |Dukl
| ≤ 1√

3
(implying that |vl| ≤ 1

2
) and, using our bound on the

Lp–norm of A,

‖Dvl‖L1(DR(0))
≤
(
voln

(
DR(0)

))1− 1
p
∥∥Aukl

∥∥
Lp(DR(0))

≤ c0

(
voln

(
DR(0)

))1− 1
p ,
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(vl)l∈N is bounded in W 1,1(DR(0);Rn). Consequently, by Rellich–Kondrachov (see,
e.g, [Eva98, Thm.1, §5.7, p.272]), there is a subsequence

(
vlm

)
m∈N

⊂ (vl)l∈N and a

(vector–valued) function v ∈ L1(DR(0);Rn) to which the vlm converge in L1.
For each m ∈ N and y ∈ DR(0), let wm(y) = vlm (y)−λy. Then the wm converge

in L1 to w = (v − λ · ). But thanks to Theorem 1.1, we also have

‖Dwm‖
L1(DR(0))

=
∥∥Dvlm − λ id

∥∥
L1(DR(0))

≤
(
voln

(
DR(0)

))1− 1
p

∥∥∥Auklm
− λguklm

∥∥∥
Lp(DR(0))

≤
(
voln

(
DR(0)

))1− 1
p

(
‖ ◦
A‖Lp(Σklm

) +
∥∥λklm

g − λg
∥∥

Lp(Σklm
)

)

m→∞−→ 0.

It follows, that Dw = 0 in the sense of distributions (see, e.g., [GT01, Thm.7.4,
p.150]), implying that w = c almost everywhere, for some c ∈ Rn (see, e.g., [LL97,
Thm.6.11, p.138]). By the L1–convergence of the vlm to v, we may then, after picking
a subsequence, assume without loss of generality that for almost every y ∈ DR(0),

(1.12) vlm(y) =
Duklm

(y)√
1 +

∣∣Duklm
(y)
∣∣2

m→∞−→ λy + c.

Since all the vlm are bounded in modulus by 1
2
, we first observe that

∣∣λy + c
∣∣ ≤ 1

2
for

all y ∈ DR(0), necessarily. Moreover, since the map z 7→ z√
1−|z|2

is (even uniformly)

continuous on D 1
2

(0) ⊂ D1(0), it follows that

Duklm
(y)

m→∞−→ λy + c√
1 − |λy + c|2

, for almost every y ∈ DR(0).

Since the Duklm
are uniformly bounded, the dominated convergence theorem (see,

e.g., [Rud87, Thm.1.34, p.26]) then yields that the above convergence also holds in
L1(DR(0)). In addition, the uklm

themselves obviously converge in L1 to u, as well.
Consequently, as before, we conclude that

Du =
λ · + c√

1 − |λ · + c|2
in the sense of distributions. But then we argue once more that there must be
constant b ∈ R such that, for almost every y ∈ DR(0),

u(y) = b −
√

1 − |λy + c|2.

Since we established already that u is continuous, the above identity holds in all of
DR(0). Thus, indeed, u parametrises a portion of a sphere of radius |λ|−1 and centre(

− c

λ
, b
)

.

We now show how we can easily obtain the global statement from Lemma 1.7.
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3.3. Local to global. Applying the same technique as in the proof of The-
orem 1.1 (Section 2), we cover each Σklm

with geodesic balls of radius 2r0 = R/4
such that neighbouring balls have large enough overlap. Then our local argument
shows that the centres of the two spherical portions to which

(
Σklm

)
m∈N

converges
in neighbouring balls have to coincide. We conclude immediately that the whole
sequence has to converge to a sphere of radius |λ|−1, which contradicts our assump-
tions. This finishes the proof of the corollary. �

4. Proof of Lemma 1.3

Let Σ ⊂ Rn+1 be as in Lemma 1.3. Σ is embedded into Rn+1 by the map

f : U → R
n+1, x 7→ fα(x) =

{
xα, α ∈ {1, . . . , n},

u(x), α = n + 1.

The metric of Σ in the given coordinates xi is obtained from gij =
∑n+1

α=1
Dif

αDjfα.
We adopt the convention that Greek indices run from 1 to n+1 (representing coordin-
ates in the ambient space Rn+1), whereas Latin ones run from 1 to n (representing
coordinates in the coordinate space Rn). Since

Dif
α =

{
δ α

i , α ∈ {1, . . . , n},

Diu, α = n + 1,

we get

(1.13) gij =

n∑

k=1

δ k
i δkj + DiuDju = δij + DiuDju.

It is easy to verify that the inverse of g is then given by

(1.14) gij = δij − DiuDju

1 + |Du|2
,

where |Du|2 =
∑n

i=1
DiuDiu.

Remark 1.10. In the above expressions (1.13) and (1.14), the indices on the right–
hand side refer to the coordinates in Rn+1. Therefore, they are raised and lowered
with the ambient metric δ. On the left–hand side, however, the indices are with
respect to the coordinate space Rn. Those indices are raised and lowered with g.

The Gauss map of Σ is given by

να =
1√

1 + |Du|2

{
Dαu, α ∈ {1, . . . , n},

−1, α = n + 1,
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where we have chosen the orientation such that det(Df, ν) < 0. Consequently,

Diν
α =





DiD
αu√

1 + |Du|2
+

−Dαu
(∑n

k=1

(
(DiD

ku)Dku + Dku(DiDku)
))

2(1 + |Du|2)3/2
,

α ∈ {1, . . . , n},

2
∑n

k=1
Dku(DiDku)

2(1 + |Du|2)3/2
,

α = n + 1,

from which we calculate the second fundamental form A of Σ:

(1.15) Aij =

n+1∑

α=1

Diν
αDjfα =

DiDju√
1 + |Du|2

.

To prove (1.2), we first calculate the Christoffel symbols of g:

Γk
ij =

1

2

n∑

l=1

gkl (Digjl + Djgil − Dlgij) =
DkuDiDju

1 + |Du|2
= vkAij ,

where v = Du√
1+|Du|2

. Note that v is the projection of the Gauss map ν onto the

tangent plane to U . Denoting by ∇ the Levi–Civita connection of g, we have for any
indices i, j and k

∇kAi
j = DkAi

j +

n∑

l=1

Γi
klA

l
j −

n∑

l=1

Γl
kjAi

l.

Using the Codazzi equations,

∇kAi
j = ∇jAi

k,

we obtain

DkAi
j = DjAi

k −
n∑

l=1

Γi
klA

l
j +

n∑

l=1

Γi
jlA

l
k,

which, inserting the expression for the Christoffel symbols, reads

DkAi
j = DjAi

k − vi

n∑

l,s=1

Aklg
lsAsj + vi

n∑

l,t=1

Ajlg
ltAtk

= DjAi
k.

Now denote by
◦

A the traceless part of A, i.e.
◦

Ai
j = Ai

j − 1
n

∑n

k=1
Ak

kδi
j . Clearly,

if i 6= j, we have for all k

DkAi
j = Dk

◦
Ai

j .

Consequently, we have for all k 6= i

DkAi
i = DiA

i
k = Di

◦
Ai

k.
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We finally calculate

DiA
i
i = Di

◦
Ai

i +
1

n

n∑

k=1

DiA
k

k

= Di

◦
Ai

i +
1

n

n∑

k=1
k 6=i

DiA
k

k +
1

n
DiA

i
i

=
1

1 − 1
n


Di

◦
Ai

i +
1

n

n∑

k=1
k 6=i

Dk

◦
Ak

i




=
n

n − 1

((
1 − 1

n

)
Di

◦
Ai

i +
1

n

n∑

k=1

Dk

◦
Ak

i

)

= Di

◦
Ai

i +
1

n − 1

n∑

k=1

Dk

◦
Ak

i.

This yields for arbitrary indices i, j and k:

DkAi
j = Dk

◦
Ai

j +
1

n

n∑

l=1
l 6=k

DkAl
lδ

i
j +

1

n
DkAk

kδi
j

= Dk

◦
Ai

j +
1

n

n∑

l=1
l 6=k

Dl

◦
Al

kδi
j +

1

n
Dk

◦
Ak

kδi
j +

1

n(n − 1)

n∑

l=1

Dl

◦
Al

kδi
j

= Dk

◦
Ai

j +
1

n

n∑

l=1

Dl

◦
Al

kδi
j +

1

n(n − 1)

n∑

l=1

Dl

◦
Al

kδi
j

= Dk

◦
Ai

j +
1

n − 1

n∑

l=1

Dl

◦
Al

kδi
j .

This proves (1.2) and thus Lemma 1.3. �

5. Proof of Proposition 1.5

Proposition 1.5 will follow directly from the following

Proposition 1.11. Let n ≥ 2, R > 0 and 1 < p < +∞. Let u ∈ C3(BR(0)) ∩
Lp(BR(0)) and f ∈ C3(BR(0);Rn×n) ∩ Lp(BR(0);Rn×n) be such that u solves on
BR(0) ⊂ Rn

(1.16) Du = div f,

i.e.

Diu =

n∑

k=1

Dkf
k

i.
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Then there is a constant C, depending only on n and p, such that

(1.17)

∥∥∥∥∥u −
∫

BR/4(0)

u

∥∥∥∥∥
Lp(BR/4(0))

≤ C ‖f‖Lp(BR(0)) ,

where
∫

BR/4(0)
u = voln(BR/4(0))−1

∫
BR/4(0)

u denotes the average of u on BR/4(0).

Indeed, Proposition 1.11 implies Proposition 1.5 if we take

u =

n∑

k=1

Ak
k and f =

n

n − 1

◦
A.

For then, by equation (1.2) of Lemma 1.3, u satisfies Du = div f , and (1.17) yields
∥∥∥∥∥

n∑

k=0

Ak
k −

∫

DR/4(0)

n∑

k=0

Ak
k

∥∥∥∥∥
Lp(DR/4(0))

≤ C ‖ ◦
A‖Lp(DR(0)) ,

for some constant C that depends only on n and p. Writing

λ =
1

n

∫

DR/4(0)

n∑

k=1

Ak
k,

we obtain

‖A − λg‖Lp(DR/4(0)) =

∥∥∥∥∥
◦

A +
1

n

(
n∑

k=1

Ak
k

)
g − λg

∥∥∥∥∥
Lp(DR/4(0))

≤ ‖ ◦
A‖Lp(DR/4(0)) +

n

n

∥∥∥∥∥

n∑

k=1

Ak
k −

∫

DR/4(0)

n∑

k=1

Ak
k

∥∥∥∥∥
Lp(DR/4(0))

≤ C ‖ ◦
A‖Lp(DR(0)) ,

which proves Proposition 1.5. �

Proof of Proposition 1.11. Let ϕ ∈ C∞(R; [0, 1]) be a smooth function with
the following properties:

(i) ∀x ∈ R, ϕ(−x) = ϕ(x),
(ii) ∀ |x| ≤ 1/2, ϕ(x) = 1,

(iii) ∀ |x| ≥ 1, ϕ(x) = 0,

and

(iv) If |x| = 1, then ϕ(x) = ϕ′(x) = ϕ′′(x) = 0.

Define

f̃(x) =

{
f(x)ϕ

( |x|
R

)
, |x| < R,

0, |x| ≥ R.
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Then ‖̃f‖Lp(Rn) ≤ ‖f‖Lp(BR(0)) and f̃ = Dĩf = 0, ∀i, on ∂BR(0). Moreover, u solves

Du = div f̃ in BR/2(0). Let w be the fundamental solution of
{

∆w = div div f̃, in BR(0),

w = 0, on ∂BR(0),

and denote by K the standard Dirichlet kernel in Rn. Then w is given by

w =

∫

BR(0)

K(y − x) divy divy f̃(y) dy

=

∫

BR(0)

n∑

k,l=1

K(y − x)Dk
yDl

y f̃
k

l(y) dy

=

∫

BR(0)

n∑

k,l=1

Dk
y Dl

yK(y − x)̃fkl(y) dy

=

∫

Rn

n∑

k,l=1

Dk
y Dl

yK(y − x)̃fkl(y) dy

=

n∑

k,l=1

1

nω̃n

∫

Rn

n(y − x)k(y − x)l − |y − x|2 δkl

|y − x|n+2
f̃
k

l(y) dy,

where ω̃n = voln(B1(0)) denotes the volume of the unit ball in Rn. It is straightfor-
ward to check that, for any k and l, the map

Ωkl : Rn → R, x 7→ nxkxl − |x|2 δkl

|x|2
,

which is homogeneous of degree 0, satisfies the cancellation property,∫

∂B1(0)

Ωkl = 0,

and the smoothness condition,

∫ 1

0

sup
|x−x′|≤δ

x,x′∈∂B1(0)

∣∣Ωkl(x) − Ωkl(x′)
∣∣

δ
dδ < +∞,

required to apply the Calderón–Zygmund inequality as in Theorem 3 of Chapter 2,
p.39, in [Ste70]. We get

(1.18) ‖w‖Lp(BR(0)) ≤ C‖̃f‖Lp(Rn) ≤ C ‖f‖Lp(BR(0))

for some constant C depending solely on n and p.
Now, for x ∈ BR/2(0), let

h(x) = u(x) − w(x).

Taking the Laplacian, we see that

∆h = ∆u − ∆w = div(div f̃) − div div f̃ = 0,
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i.e. h is harmonic in BR/2(0). Moreover, h solves in BR/2(0)

Dh = Du − Dw = div f̃ − Dw = div(̃f − w · id),

where id denotes the n×n identity matrix. Notice that, by our considerations above,

‖̃f − w · id‖Lp(BR/2(0)) ≤ ‖̃f‖Lp(BR/2(0)) + n ‖w‖Lp(BR/2(0)) ≤ C ‖f‖Lp(BR(0)) ,

where C depends only on n and p. Since h is harmonic, so is Dh, and we have by
the mean value property for all x ∈ BR/4(0), all ρ ∈ ( R

8
, R

4
) and all i

Dih(x) =

∫

Bρ(x)

Dih =

∫

Bρ(x)

div(̃f−w · id)i =
n

ρ

∫

∂Bρ(x)

n∑

k=1

(
f̃
k

i − wδk
i

)(
νext
)k

,

where the last equality follows from the Gauss Theorem and νext denotes the outward
unit normal to ∂Bρ(x). Thus, since ρ > R/8, we have for all x ∈ BR/4(0), all
ρ ∈ ( R

8
, R

4
) and all i

|Dih| ≤ 1

ω̃nρn

∫

∂Bρ(x)

∣∣∣(̃f − w · id)i

∣∣∣ ≤ 8n

ω̃nRn

∫

∂Bρ(x)

∣∣∣(̃f − w · id)i

∣∣∣ .

Integrating with respect to ρ and using the Hölder inequality we get

R

8
|Dih| ≤ 8n

ω̃nRn

∫ R
4

R
8

∫

∂Bρ(x)

∣∣∣(̃f − w · id)i

∣∣∣ dρ

=
8n

ω̃nRn

∥∥∥(̃f − w · id)i

∥∥∥
L1(BR/4(x)\BR/8(x))

≤ 8n

ω̃nRn

∥∥∥(̃f − w · id)i

∥∥∥
L1(BR/2(0))

≤ 8n

ω̃nRn

(
ω̃nRn

2n

)1−1/p ∥∥∥(̃f − w · id)i

∥∥∥
Lp(BR/2(0))

.

It follows that there is a constant C, depending only on n and p, such that for all
x ∈ BR/4(0)

|Dh| ≤ CR−1−n/p ‖f‖Lp(BR(0)) .

Using the Poincaré inequality for balls (see, e.g., [Eva98, Thm.2, §5.8.1, p.276]), we
obtain∥∥∥∥∥h −

∫

BR/4(0)

h

∥∥∥∥∥
Lp(BR/4(0))

≤ C1R ‖Dh‖Lp(BR/4(0))

≤ C2R
− n

p R
n
p ‖f‖Lp(BR(0)) = C2 ‖f‖Lp(BR(0)) ,

for some constants C1 and C2 depending on n and p. Since u = w + h and with the
help of the estimate (1.18) for the potential w, we arrive at

∥∥∥∥∥u −
∫

BR/4(0)

u

∥∥∥∥∥
Lp(BR/4(0))

≤ C ‖f‖Lp(BR(0)) ,
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for some constant C depending on n and p alone. This proves Proposition 1.11. �

6. Proof of Lemma 1.7

Let Σ ⊂ Rn+1 be as in Lemma 1.7 and choose q ∈ Σ. We first show some
estimates on the size of a geodesic ball Bg

ρ(q) with radius ρ ≤ r0 centred at q.
Without loss of generality, we may assume that q = 0 ∈ Rn+1 and that Σ is rotated
in such a way that a portion of it is parametrised as the graph of a smooth Lipschitz
function u : Dr0 (0) ⊂ Rn → R, with u(0) = 0 and Lipschitz constant Lip(u) ≤ L.

Claim 1. The geodesic sphere ∂Bg
ρ(q) with radius ρ ≤ r0 centred at q is contained

in the graph of u over the closed ring Dρ(0) \ Dρ/(1+L)(0).

Proof. Let dg(x, y) denote the geodesic distance from (x, u(x)) to (y, u(y)).
For each y such that (y, u(y)) ∈ ∂Bg

ρ(q) we have dg(0, y) = ρ. Moreover,

dg(0, y) ≥ |(y, u(y)) − (0, 0)| =
√

y2 + u(y)2 ≥ |y|
and

dg(0, y) ≤
∫ 1

0

√
g(∂tγ, ∂tγ) dt,

where γ is any curve γ : [0, 1] →
(

Dr0 (0), u
(
Dr0(0)

))
, t 7→ γ(t), joining (0, 0) and

(y, u(y)). The second estimate follows from the definition of dg(0, y) as the infimum of
the right–hand side taken over all such curves. Choosing γ(t) = (ty, u(ty)), we obtain
with the help of equation (1.13) in the proof of Lemma 1.3 (Section 4) and using
that u is Lipschitz (D denoting derivation with respect to the Cartesian coordinates
of Rn)

∫ 1

0

√
g(∂tγ, ∂tγ) dt =

∫ 1

0

(
|y|2 +

(
n∑

k=1

Dku(ty)yk

)2)1/2

dt

≤
∫ 1

0

(
|y|2 + |Du(ty)|2 |y|2

)1/2
dt ≤

∫ 1

0

|y|
√

1 + L2 dt

≤ |y| (1 + L).

Thus we have
|y| ≤ ρ and |y| ≥ ρ

1 + L
,

proving the claim. �

It follows immediately

Claim 2. The volume voln(Bg
ρ(q)) of the geodesic ball Bg

ρ(q) with radius ρ ≤ r0 and
centre q is bounded by

ω̃nρn

(1 + L)n
≤ voln(Bg

ρ(q)) ≤ (1 + L)ω̃nρn,

where ω̃n = voln(D1(0)) denotes the volume of the unit ball in Rn.
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Proof. From equation (1.13) in the proof of Lemma 1.3 (Section 4) follows that
the volume form σg on Bg

ρ(q) is given by

σg =
√

det g =

√
1 + |Du|2.

With Claim 1, we immediately get by the Lipschitz property of u

voln(Bg
ρ(q)) ≥

∫

Dρ/(1+L)(0)

√
1 + |Du|2 ≥ ω̃n

(
ρ

1 + L

)n

and

voln(Bg
ρ(q)) ≤

∫

Dρ(0)

√
1 + |Du|2 ≤ ω̃nρn

√
1 + L2 ≤ (1 + L)ω̃nρn,

which proves the Claim. �

An argument similar to the one in the proof of Claim 1 shows

Claim 3. Let x ∈ Dr0 (0), q′ = (x, u(x)) and 0 < ρ < r0 − |x|. Then the geodesic

ball Bg
ρ(q′) is contained in the graph of u over the open ring D|x|+ρ(0) \ D|x|−ρ(0).

Proof. For each y such that (y, u(y)) ∈ Bg
ρ(q′) we have dg(x, y) < ρ. Moreover,

dg(x, y) ≥ |(y, u(y)) − (x, u(x))| =

√
|y − x|2 + |u(y) − u(x)|2 ≥ |y − x| ≥

∣∣|y| − |x|
∣∣.

Consequently,
|x| − ρ < |y| < |x| + ρ,

proving the Claim. �

We now proceed with the proof of Lemma 1.7. Let r1 = r0
4(1+L)

and let

B =
{

Bg
r1

(qj)
∣∣ j ∈ J

}

be a maximal collection of pairwise disjoint geodesic balls in Σ of radius r1. We will
show that the number of balls in this collection is controlled. Moreover, we will show
that the collection

B̂ =
{

Bg
r0

(qj)
∣∣ j ∈ J

}

of geodesic balls of radius r0 but with same centres qj has the properties claimed
in the lemma to be proved. Clearly, the index set J is finite since Σ is compact.
Moreover,

Claim 4. The cardinality |J | of J is controlled by

|J | ≤ 4n

ω̃n

(1 + L)2n

rn
0

.

Proof. We know from Claim 2 that

voln(Bg
r1

(qj)) ≥ ω̃nrn
1

(1 + L)n
=

ω̃nrn
0

4n(1 + L)2n
.

Since voln(Σ) = 1 and the geodesic balls of radius r1 are pairwise disjoint, the claim
follows. �
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Claim 5. For every q ∈ Σ, there exist two distinct indices j1, j2 ∈ J, j1 6= j2, such
that

q ∈ Bg
r0

(qj1 ) ∩ Bg
r0

(qj2 ).

(In particular Σ ⊂ ∪j∈JBg
r0

(qj).)

Proof. Let q ∈ Σ be arbitrary. Again, without loss of generality, we may
assume that q = 0 ∈ Rn+1 and that a portion of Σ is given as the graph of a smooth
L–Lipschitz function u : Dr0 (0) ⊂ Rn → R with u(0) = 0.

By Claim 3, there must be a j1 ∈ J such that the graph of u over Dr1 (0)
intersects Bg

r1
(qj1 ) since, otherwise, by Claim 1, we could add the ball Bg

r1
(q) to B

to get a bigger collection of pairwise disjoint balls, contradicting the maximality of
B. Notice that, in view of Claim 3, Bg

r1
(qj1 ) will be contained in the graph of u over

D3r1 (0).
Similarly, there must be a j2 ∈ J , j2 6= j1, such that the graph of u over D5r1 (0)

intersects Bg
r1

(qj2 ) since, otherwise, we could fit a ball Bg
r1

(q̃), for some q̃ ∈ Σ, in the
graph of u over the ring D5r1 (0) \ D3r1 (0). By virtue of Claim 3, that ball would
then be disjoint from Bg

r1
(qj1 ), contradicting again the maximality of B.

Let y1 and y2 be such that qj1 = (y1, u(y1)) and qj2 = (y2, u(y2)). Then Claim 3
implies that |y1| < 2r1 and |y2| < 4r1.

By Claim 1, then, we have

dg(0, y1) ≤ |y1| (1 + L) <
r0

2
< r0

and

dg(0, y2) ≤ |y2| (1 + L) < r0.

Therefore q is contained in both Bg
r0

(qj1 ) and Bg
r0

(qj2 ), finishing the proof of the
Claim, and thus the proof of Lemma 1.7. �



CHAPTER 2

The sub–critical and critical cases for convex

hypersurfaces

In this chapter we prove our main estimate in the case p ∈ (1, n] (n ≥ 2) for n–
dimensional hypersurfaces that are the boundary of some convex domain in Rn+1. We
also establish the qualitative C0–closeness to a sphere. The ideas of the proofs are the
same as in the super–critical case in Chapter 1. However, we need a different method
to “patch together” the local estimates to obtain the global one. It is here then that
convexity plays the fundamental role. In fact, we are going to prove a similar result
to the one given by Pogorelov in [Pog73], obtaining an (n + 1)–dimensional ring of
controlled inner and outer radius that contains the studied hypersurface. This will
then enable us to apply Lemma 1.7 to conclude.

Due to the nature of the problem at hand, the restriction we faced in Chapter 1
regarding the necessity to preset a bound on ‖A‖Lp(Σ) can be avoided.
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1. The main results of this chapter

Our goal is to prove
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Theorem 2.1. Let n ≥ 2 and p ∈ (1, n] be given. Then there is a constant C > 0,
depending only on n and p, such that:
if Σ ⊂ Rn+1 is a smooth, closed n–dimensional hypersurface with induced Rieman-
nian metric g and such that Σ is the boundary of a convex domain in Rn+1, then

(2.1) min
λ∈R

‖A − λg‖Lp(Σ) ≤ C ‖ ◦
A‖Lp(Σ) .

Since both sides in (2.1) scale identically and none of the assumptions in the
theorem are scaling–dependent, we can without loss of generality assume that the
n–dimensional volume of Σ be normalised. It is thus sufficient to prove

Theorem 2.1′. Let n ≥ 2 and p ∈ (1, n] be given. Then there is a constant C > 0,
depending only on n and p, such that:
if Σ ⊂ Rn+1 is a smooth, closed n–dimensional hypersurface with induced Rieman-
nian metric g and such that

(a) voln(Σ) = 1

and

(b) Σ is the boundary of a convex domain in Rn+1,

then

(2.1) min
λ∈R

‖A − λg‖Lp(Σ) ≤ C ‖ ◦
A‖Lp(Σ) .

Notice that, in view of the following Lemma which we prove at the end of this
section, we can choose any constant c0 > 0 and assume without loss of generality
that ‖ ◦

A‖Lp(Σ) ≤ c0 (the author is grateful to C. De Lellis for having brought this to
his attention).

Lemma 2.2. Let n ≥ 2 and p ∈ [1, n] be given. Then there exists a constant C > 0
depending only on n and p such that:
if Σ ⊂ Rn+1 is a smooth hypersurface bounding a convex domain and such that
voln(Σ) = 1, then ∫

Σ

|A|p ≤ C

(
1 +

∫

Σ

| ◦
A|p
)

.

Indeed, if ‖ ◦
A‖Lp(Σ) > c0, we would conclude

min
λ∈R

‖A − λg‖Lp(Σ) ≤ ‖A‖Lp(Σ) ≤ C
1
p

(
1 + ‖ ◦

A‖p
Lp(Σ)

) 1
p

≤ C
1
p
(
c−p

0 + 1
) 1

p ‖ ◦
A‖Lp(Σ) ,

and Theorem 2.1′ would be proved. It is therefore enough to prove the weaker

Theorem 2.3. Let n ≥ 2, p ∈ (1, n] and c0 > 0 be given. Then there is a constant
C > 0, depending only on n, p and c0, such that:
if Σ ⊂ Rn+1 is a smooth, closed n–dimensional hypersurface with induced Rieman-
nian metric g and such that

(a) voln(Σ) = 1,
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(b) Σ is the boundary of a convex domain in Rn+1

and

(c) ‖ ◦
A‖Lp(Σ) =

(∫

Σ

| ◦
A|p
) 1

p

≤ c0,

then

min
λ∈R

‖A − λg‖Lp(Σ) ≤ C ‖ ◦
A‖Lp(Σ) .

The idea of its proof is exactly the same as the one in the proof of Theorem 1.1
of the previous chapter. However, there is one difference. Then, in order to apply
the technical Lemma 1.7 that yields a suitable covering of the hypersurface with
geodesic balls, we had to obtain a uniform lower bound on the radii of the balls over
which the hypersurface can locally be represented as a Lipschitz graph with given
Lipschitz constant. We did this by invoking a Morrey–type estimate (Lemma A.1),
which, obviously, does not apply here. It turns out, though, that we can apply
Lemma 1.7 directly, thanks to convexity. In fact, as shall be sufficient, we will prove
that a hypersurface of the type considered in Theorem 2.3 above is contained in an
(n + 1)–dimensional ring (or spherical shell) where we have (some) control over the
inner and the outer radius (namely that they depend only on the data given in the
assumptions of the theorem).

We thereby generalise a result given by A. Pogorelov in [Pog73, §VII.9, p.493],
who proves a theorem stating in a quantitative manner that a convex two–dimensional
surface, for which the ratio of the two principal radii of curvature is sufficiently close
to one in each point, must be close to a round sphere, in the sense that it lies between
two concentric spheres such that the ratio of their radii is also close to one. More
precisely, we prove

Proposition 2.4. Let n ≥ 2, p ∈ (1, n] and c0 ∈ (0, +∞) be given. Then there exist
R > r > 0, depending only on n, p and c0 such that:
if U ⊂ Rn+1 is open, convex, has smooth boundary and satisfies

voln(∂U) = 1 and

∫

∂U

| ◦
A|p ≤ c0,

then there exists an x ∈ Rn+1 such that Br(x) ⊂ U ⊂ BR(x).

In the next section, we quickly demonstrate how this proposition is used to obtain
Theorem 2.3, whereas in Section 3, we prove Corollary 2.5 below, which concludes
qualitative C0–closeness to a sphere from the main estimate. The rest of the chapter
will then be devoted to proving Proposition 2.4.

Corollary 2.5 (to Theorem 2.1′ and Proposition 2.4). Let n ≥ 2, p ∈ (1, n] and
ǫ > 0 be given. Then there is a constant δ > 0, depending only on n, p and ǫ, such
that:
if Σ ⊂ Rn+1 is a smooth, closed n–dimensional hypersurface such that

(a) voln(Σ) = 1,

(b) Σ bounds a convex domain in Rn+1
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and

(c) ‖ ◦
A‖Lp(Σ) < δ,

then

dHD

(
Σ, ∂Bρ0(x)

)
< ǫ, for some x ∈ R

n+1,

where ρ0 = (voln(Sn))− 1
n and dHD denotes the Hausdorff distance in Euclidean

Rn+1.

Remark 2.6. The avid reader might notice while working through this chapter,
that the chain of implications may easily be adapted to the convex super–critical
case to obtain the analogue of the (weaker) Theorem 2.3. Since we do not need
(and do not get) any control on the deviation from one of the ratio of the radii
found in Proposition 2.4, we can just use Hölder’s inequality for the assumed bound
on ‖ ◦

A‖p
Lp(Σ)

, to establish that Σ is contained in a spherical shell whose radii R >

r > 0 depend only on n and c0. Afterwards, we use these radii as in the proof of
Theorem 2.3 to cover Σ appropriately. By its qualitative nature, Corollary 2.5 then
also extends to all exponents p. However, we do not see how to obtain the equivalent
of the (stronger) Theorem 2.1′ in that situation, nor how the above reasoning would
help when seeking quantitative C0–closeness in the convex super–critical case.

Proof of Lemma 2.2. For all q ∈ Σ, let 0 < λ1(q) ≤ λ2(q) ≤ · · · ≤ λn(q) de-
note the eigenvalues of the second fundamental form A (i.e. the principal curvatures)
in q. We then have, for all i, j ∈ {1, . . . , n},

(∫

Σ

|λi − λj |p
) 1

p

≤
(∫

Σ

∣∣∣λi − 1

n
H

∣∣∣
p
) 1

p

+

(∫

Σ

∣∣∣λj − 1

n
H

∣∣∣
p
) 1

p

≤ 2

(∫

Σ

| ◦
A|p
) 1

p

.

On the other hand (1 ≤ p ≤ n),

∫

Σ

λp
1 ≤ voln(Σ)

n−p
n

︸ ︷︷ ︸
=1

(∫

Σ

λn
1

) p
n

≤
(∫

Σ

λ1 · · · λn

) p
n

=

(∫

Σ

det A

) p
n

.

But, since Σ bounds a convex region (cf., e.g., [Sch93, eqn.(2.5.29), p.112] or [CL57,
theorems 3 or 4]),

∫

Σ

det A =

∫

Σ

det dν =

∫

Sn

1 = voln(Sn),
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where we denoted by ν the outer unit normal of Σ (i.e. its Gauss map). We conclude
(∫

Σ

|A|p
) 1

p

=

(∫

Σ

(
λ2

1 + · · · + λ2
n

) p
2

) 1
p

≤
(∫

Σ

(λ1 + · · · + λn)p

) 1
p

=

(∫

Σ

(
(λ1 − λ1) + · · · + (λn − λ1) + nλ1

)p
) 1

p

≤
n∑

i=2

(∫

Σ

(λi − λ1)p

) 1
p

+ n

(∫

Σ

λp
1

) 1
p

≤ 2(n − 1)

(∫

Σ

| ◦
A|p
) 1

p

+ n
(
voln(Sn)

) p
n ,

from which the desired estimate follows taking, e.g.,

C = 2p max

{
2p(n − 1)p, np

(
voln(Sn)

) p2

n

}
.

�

2. Proof of Theorem 2.3

Let Σ be as in Theorem 2.3. The only thing we need to check is how Proposi-
tion 2.4 implies the assumptions of Lemma 1.7, the rest of the proof being exactly
as in Section 2 of Chapter 1. More precisely, we need to ensure that, for each point
q ∈ Σ, there is a smooth Lipschitz function u : Dr0 (0) ⊂ Rn → R on a ball of radius
r0 > 0 and with Lipschitz constant L > 0, such that r0 and L do not depend on
the point q under consideration (nor, indeed, on Σ), and such that a portion of Σ
containing q can be parametrised as the graph of u.

So fix q ∈ Σ, denote by Ω ⊂ Rn+1 the open convex domain enclosed by Σ
and let ei, i ∈ {1, . . . , n + 1}, refer to the standard basis vectors in Rn+1. By
Proposition 2.4, there are R > r > 0 such that Br(x) ⊂ Ω ⊂ BR(x) for some x ∈ Ω.
Without loss of generality, we may assume that x = 0 and that q = − |q| en+1. We
then have r ≤ |q| ≤ R. Now denote by π1

−|q| =
{

y ∈ Rn+1
∣∣ 〈y, en+1〉 = − |q|

}
the

n–dimensional hyperplane parallel to the span of {e1, . . . , en} and passing through
q. Then a portion of Σ containing q can be written as the graph of a smooth
convex function u on Dr = Br(q) ∩ π1

−|q|. Moreover, we have ‖u‖L∞(Dr) ≤ R,
since Br(0) ⊂ Ω ⊂ BR(0). It is then easy to see that u is L–Lipschitz on Dρ, for
all ρ ∈

(
0, r

2

]
, with L = 4R

r
(see, for example, [RV74, Theorem A]). Since q was

arbitrary, the assumptions of Lemma 1.7 are met.
As a result, we can cover Σ with N geodesic balls of radius 2r0 = r/8, where N

depends only on n, p and (through L and r0) on c0, and such that the local estimate
(1.5) holds for all r ≤ r0. Moreover, the elements of this cover will have large enough
overlap, in the sense that the intersection of two neighbouring balls of the cover will
contain a geodesic ball of radius r0. This then enables us to argue, once again, that
the λs in (1.5) differ at most by C′ ‖ ◦

A‖Lp(Σ), where C′ depends only on n, p and
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c0 (compare with (1.9)). The global estimate then follows. For more details, review
the end of the proof laid out in Section 2 of Chapter 1. �

3. Proof of Corollary 2.5

As was the case for the proof of Theorem 2.3 in the last section, we want to
follow as closely as possible the argument of the super–critical case (cf. Section 3 of
Chapter 1).

3.1. Preliminaries. Assume, by contradiction, that Corollary 2.5 were false.
Then we would find a sequence (Uk)k∈N

of open convex subsets of Rn+1 with smooth
boundaries, satisfying, for each k ∈ N, voln (∂Uk) = 1 and

∫
∂Uk

| ◦
A|p ≤ c0 for some

c0 > 0 independent of k, and such that

lim
k→∞

‖ ◦
A‖Lp(∂Uk) = 0.

Modulo translating each set Uk, Proposition 2.4 together with Lemma 2.2 implies
the existence of R > r > 0 such that

Br(0) ⊂ Uk ⊂ BR(0) (∀k).

Picking a subsequence, if necessary, we can without loss of generality assume that the
closures Uk converge (in the Hausdorff topology) to a closed convex set V ⊂ Rn+1

(see Blaschke’s selection theorem, as in, e.g., [Sch93, Thm.1.8.6, p.50]). Clearly, we
will have

Br(0) ⊂ V ⊂ BR(0),

so that V is non–degenerate. We shall prove that our assumptions imply that ∂V is
a sphere.

Before we begin, we make similar observations as in the proof of Corollary 1.2.
Applying Theorem 2.1′ to each ∂Uk, we get, for every k ∈ N, a λk ∈ R such that

‖A − λkg‖Lp(∂Uk) ≤ C ‖ ◦
A‖Lp(∂Uk) ,

where C > 0 depends only on n and p. Then, using Theorem 2.1′ and Lemma 2.2,
we obtain (cf. eq. (1.10))

|λk| ≤
(
C′(1 + cp

0)
) 1

p

√
n

+
Cc0√

n
,

where C′ > 0 is the constant from Lemma 2.2 that depends only on n and p. Thus,
(λk)k∈N is a bounded sequence in R, and, modulo picking a subsequence, we may
without loss of generality assume that limk→∞ λk = λ ∈ R.

Also, as we will see in the proof of Proposition 2.4 in the next section, there is a
constant δ > 0, depending only on n and p, such that, for each k ∈ N, ‖A‖Lp(∂Uk) ≥ δ

(we apply Corollary 2.8, proved in Section 5, after using Lemma 2.2). With The-
orem 2.1′, it then follows that (cf. eq. (1.11))

|λk| ≥ δ√
n

− C√
n

‖ ◦
A‖Lp(∂Uk) ,

whence |λ| ≥ δ/
√

n > 0.
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We now start by establishing the convergence to a sphere locally.

3.2. Local convergence. We proceed as in the proof of Corollary 1.2 and
construct charts in which portions of ∂Uk are represented by graphs of Lipschitz
maps.

Consider any orthonormal system (x1, . . . , xn, xn+1) at the origin of Rn+1, and
let C− =

{
xn+1 ≤ 0, (x1)2 + · · · + (xn)2 ≤ r2

}
be the half–infinite cylinder of radius

r pointing into the negative xn+1–direction. Since Br(0) ⊂ Uk, it follows that ∂Uk ∩
C− must be the graph of a function

uk : Dr(0) → R,

where Dr(0) =
{

y ∈ Rn
∣∣ |y| ≤ r

}
. Obviously, the uk will be convex, and Uk ⊂

BR(0) implies that ‖uk‖
L∞(Dr(0))

≤ R. It is easy to show that this forces the uk to

be 4R
r

–Lipschitz on D r
2

(0) (see, e.g., [RV74, Thm.A]).
We now argue verbatim as in Section 3, replacing the Lipschitz constant there

by 4R
r

and the radius of the ball by r
2
, to conclude that, locally, a subsequence of

(∂Uk)k∈N converges to portions of spheres. More precisely, in the present situation
(using that we already know that the Uk converge) we establish that ∂V ∩ C′

−,
C′

− =
{

xn+1 ≤ 0, (x1)2 + · · · + (xn)2 ≤ r2/2
}

, is the portion of a sphere of radius
|λ|−1. We now use this to obtain the global statement.

3.3. Local to global. If we consider a rotation Φ of Rn+1, we can argue in
exactly the same way as above to conclude that also ∂V ∩ Φ(C′

−) is the portion
of a sphere of radius |λ|−1. Choosing Φ close enough to the identity, we obtain
that ∂V ∩ C′

− ∩ Φ(C′
−) has large enough overlap to establish that the centres of

the spheres containing ∂V ∩ C′
− and ∂V ∩ Φ(C′

−) must coincide. We then conclude
immediately that V is a ball of radius |λ|−1, which contradicts our assumption.
Hence the corollary holds. �

4. Proof of Propostion 2.4

We will, in fact, prove the slightly weaker (notice the bound on
∫

∂U
|A|p replacing

the bound on
∫

∂U
| ◦
A|p)

Proposition 2.7. Let n ≥ 2, p ∈ (1, n] and c0 ∈ (0, +∞) be given. Then there exist
R > r > 0, depending only on n, p and c0 such that:
if U ⊂ Rn+1 is open, convex, has smooth boundary and satisfies

voln(∂U) = 1 and

∫

∂U

|A|p ≤ c0,

then there exists an x ∈ Rn+1 such that Br(x) ⊂ U ⊂ BR(x).

In view of Lemma 2.2 in the first section, this is, indeed, sufficient for obtaining
Proposition 2.4. The proof of Proposition 2.7, on the other hand, will be carried
out by induction over n ≥ 2. At the induction step, the following corollary, giving a
lower bound on

∫
∂U

|A|p, will play a crucial role



26 2. THE SUB–CRITICAL AND CRITICAL CASES FOR CONVEX SURFACES

Corollary 2.8 (to Proposition 2.7). Let n ≥ 2 and p ∈ (1, n] be given. Then there
is a constant δ > 0 depending only on n and p such that:
if U ⊂ Rn+1 is open, convex, has smooth boundary and satisfies voln(∂U) = 1, then∫

∂U

|A|p ≥ δ.

We prove it in Section 5. Also, we show the two sought–after inclusions of
Proposition 2.7 in two separate lemmas, the proofs of which are deferred to sections 6
and 7, respectively.

Lemma 2.9. Let n ≥ 2, p ∈ (1, n] and c0 ∈ (0, +∞) be given. Then there exists a
constant D > 0, depending only on n, p and c0, such that:
if U ⊂ Rn+1 is open, convex, has smooth boundary and satisfies

voln(∂U) = 1 and

∫

∂U

|A|p ≤ c0,

then diam U ≤ D (where diam U denotes the diameter of U in Rn+1).

Lemma 2.10. Let n ≥ 2, p ∈ (1, n] and c0 ∈ (0, +∞) be given. Then there exists a
constant r > 0, depending only on n, p and c0, such that:
if U ⊂ Rn+1 is open, convex, has smooth boundary and satisfies

voln(∂U) = 1 and

∫

∂U

|A|p ≤ c0,

then there is an x ∈ Rn+1 such that Br(x) ⊂ U .

Clearly, both lemmas together imply Proposition 2.7. Also, Lemma 2.10 will
be a consequence of Lemma 2.9. The proof of Lemma 2.9 in dimension n, on the
other hand, will rely on us having proved Corollary 2.8 (and thus Proposition 2.7)
for all dimensions n′ ∈ {2, . . . , n − 1}, except for when n = 2. The reason why we
did not split off the induction basis to a separate statement, is that the method used
for proving the two–dimensional case is also useful in some n–dimensional cases. For
an easier understanding of how our induction argument works, we give the following
overview on the chains of implications.

• Induction base (n = 2):

Lem.2.9
∣∣
2

=⇒ Lem.2.10
∣∣

2︸ ︷︷ ︸
=⇒ Prop.2.7

∣∣
2

• Induction step ((n − 1) 7→ n)
{

Prop.2.7
∣∣

n′

}
n′∈{2,...,n−1}

=⇒
{

Cor.2.8
∣∣

n′

}
n′∈{2,...,n−1}

=⇒ Lem.2.9
∣∣

n
=⇒ Lem.2.10

∣∣
n︸ ︷︷ ︸

=⇒ Prop.2.7

∣∣
n

�
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5. Proof of Corollary 2.8

The following proof is a variant of the one of Corollary 2.5 (cf. Section 3).
Nevertheless, we expose it in full detail to accommodate those readers who eagerly
skipped the qualitative C0–closeness in order to learn how to prove Theorem 2.1′,
first.

5.1. Preliminaries. Assume, by contradiction, that the Corollary were not
true. Then there must be a sequence

(
Uj

)
j∈N

of open, convex subsets of Rn+1 with

smooth boundaries, satisfying, for all j ∈ N, voln(∂Uj) = 1 and
∫

∂Uj
|A|p ≤ c0 for

some c0 > 0 independent of j, and such that

lim
j→∞

∫

∂Uj

|A|p = 0.

Modulo translating each set Uj , Proposition 2.7 then implies the existence of R >
r > 0 such that

Br(0) ⊂ Uj ⊂ BR(0) (∀j).

Picking a subsequence, if necessary, we can then assume that the closures Uj converge
(in the Hausdorff topology) to a closed convex set V ⊂ Rn+1 (see Blaschke’s selection
theorem, Theorem 1.8.6 on p.50, in [Sch93]). Clearly, we will have

Br(0) ⊂ V ⊂ BR(0),

i.e., V is non–degenerate. We shall prove that our assumptions imply that ∂V is
contained in an affine subspace of Rn+1, contradicting the above inclusions because
of the convexity of V . We first argue locally, showing that, for every q ∈ ∂V , there
is a neighbourhood W of q and an affine space E ⊂ Rn+1, such that ∂V ∩ W ⊂ E.

5.2. Local convergence. Consider any orthonormal system
(
x1, . . . , xn, xn+1

)

at the origin 0 ∈ Rn+1, and let C− =
{

xn+1 ≤ 0, (x1)2 + · · · + (xn)2 ≤ r2
}

be the
half–infinite cylinder of radius r pointing into the negative xn+1–direction. Since
Br(0) ⊂ Uj , it follows that ∂Uj ∩ C− must be the graph of a function

uj : Dr(0) → R,

where Dr(0) =
{

y ∈ Rn
∣∣ |y| ≤ r

}
. Obviously, the uj will be convex, and Uj ⊂

BR(0) implies that ‖uj‖
L∞
(

Dr(0)
) ≤ R. It is easy to show that this forces the uj

to be 4R
r

–Lipschitz on D r
2

(0) (see, for example, [RV74, Theorem A]), and hence,
by smoothness, ‖Duj‖

L∞
(

Dr/2(0)
) ≤ 4R

r
. Now remember that, for the graph of

a function ϕ, the second fundamental form Aϕ is given by (see also the proof of
Lemma 1.3 in Section 4 of Chapter 1)

Aϕ =
Hess ϕ√
1 + |Dϕ|2

,

so that

|Hess ϕ| ≤ |Aϕ|
√

1 + |Dϕ|2.
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As a consequence, ‖Duj‖
L∞
(

Dr/2(0)
) ≤ 4R

r
and limj→∞

∫
∂Uj

|A|p = 0 imply that

‖Hess uj‖
Lp
(

Dr/2(0)
) ≤

∥∥Auj

∥∥
Lp
(

Dr/2(0)
)
√

1 + 16
R2

r2

j→∞−→ 0.

Since all uj are smooth, 4R
r

–Lipschitz and bounded by R on Dr/2(0), (uj)j∈N

is a pointwise bounded, equicontinuous sequence in the space of continuous, real–
valued functions on the compact domain Dr/2(0). Then the Ascoli–Arzelà–Theorem
(see, e.g., [Rud91, Thm.A5, p.394]) implies the existence of a subsequence (ujk )k∈N

that converges uniformly on Dr/2(0) to a continuous function u. Since the ujk are
Lipschitz and ujk −→ u (k → ∞) uniformly, u will be Lipschitz with the same
constant ( 4R

r
). Now, for any i ∈ {1, . . . , n}, we have

‖Diujk ‖
L∞
(

Dr/2(0)
) ≤ 4R

r
(∀k)

and

‖D(Diujk )‖
L1
(

Dr/2(0)
) ≤

(
voln

(
Dr/2(0)

))1−1/p ‖D(Diujk )‖
Lp
(

Dr/2(0)
) k→∞−→ 0.

Consequently, by Rellich–Kondrachov (see, e.g., [Eva98, Thm.1, §5.7, p.272]), there

is a subsequence (ujkl
)l∈N ⊂ (ujk )k∈N and an L1–function vi such that Diujkl

l→∞−→ vi

in L1
(
Dr/2(0)

)
. Moreover, since D(Diujkl

)
l→∞−→ 0 in L1, we have that Dvi = 0 in

the sense of distributions (see, e.g., [GT01, Thm.7.4, p.150]), implying that vi = ci

almost everywhere for some constant ci ∈ R (see, e.g., [LL97, Thm.6.11, p.138]).

But since ujkl

l→∞−→ u uniformly, and hence in L1, as well as Diujkl

l→∞−→ vi in
L1, we conclude that Diu = ci in the sense of distributions. As a consequence,
D
(
u(x) −

∑n

i=1
cix

i
)

= 0 in the sense of distributions, and we conclude that u(x) −∑n

i=1
cix

i = b almost everywhere for some constant b ∈ R. By the continuity of u,
we see that u(x) = b +

∑n

i=1
cix

i everywhere, so that u is, in fact, an affine function.
Writing C′

− =
{

xn+1 ≤ 0, (x1)2 + · · · + (xn)2 ≤ r2/4
}

, it then follows that ∂V ∩ C′
−

is contained in an affine hyperplane E. In the next step, we show how to conclude
the global statement.

5.3. Local to global. If we consider a rotation Φ of Rn+1, we can argue in the
same way as above to show that ∂V ∩ Φ(C′

−) is contained in an affine hyperplane
F . But if Φ is sufficiently close to the identity, ∂V ∩ C′

− ∩ Φ(C′
−) will have positive

area, from which we conclude that E = F . It is then immediate to see that ∂V is,
as a whole, contained in the affine hyperplane E, which is exactly what we claimed.

As already mentioned, this, together with the convexity of V , is incompatible
with the inclusions

Br(0) ⊂ V ⊂ BR(0),

thus finishing the proof of the corollary. �
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6. Proof of Lemma 2.9

6.1. Some notation. Before starting the proof, we introduce some notations.
Assume (x1, . . . , xn+1) is any orthonormal system in Rn+1. For m ∈ {1, . . . , n + 1},
let Pm : Rn+1 → Rm, (x1, . . . , xn+1) 7→ (xn−m+2, . . . , xn+1), denote the projection
onto the last m coordinates. For r ∈ Rm, we define πm

r as the codimension m
hyperplane

{
x ∈ Rn+1

∣∣ Pm(x) = r
}

, and ωm
0 as the orthogonal complement (πm

0 )⊥

of πm
0 in Rn+1. ωm

0 is thus the m–dimensional hyperplane passing through the origin
with the first n − m + 1 coordinates that vanish. For θ > 0, let

Rm(θ) =

{
(θλ1, . . . , θλm)

∣∣∣∣
m∑

i=1

|λi| ≤ 1

}

denote the standard m–dimensional cross–polytope (or hyperrhombus) of length θ in
Rm (it is the convex hull of the 2m points given by ±θ times the standard basis vec-
tors). We have volm

(
Rm(θ)

)
= 2m

m!
θm. Notice that, for all y ∈ Rm \ Rm(θ), we have

that |y| > θ√
m

. Finally, denote by Rm(θ) the embedding
{

x ∈ ωm
0

∣∣ Pm(x) ∈ Rm(θ)
}

of Rm(θ) into Rn+1.

6.2. Preliminaries. Let n ≥ 2, p ∈ (1, n] and c0 > 0 be given. If n ≥ 3,
we shall assume that Proposition 2.7 has already been proved for all dimensions
n′ ∈ {2, . . . , n − 1}. Since, for all p̃ ∈

(
1, min{2, p}

]
, we have by Hölder’s inequality

that (∫

∂U

|A|p̃
) 1

p̃

≤
(∫

∂U

|A|p
) 1

p

,

for any open convex set U ⊂ Rn+1 with smooth boundary and voln(∂U) = 1, we
may as well assume without loss of generality that p ∈ (1, 2].

We prove Lemma 2.9 by contradiction. So assume the statement were false.
Then there must be a sequence (Uk)k∈N of open, convex sets with smooth boundary
satisfying

(a) voln(∂Uk) = 1,

(b)

∫

∂Uk

|A|p ≤ c0,

(c) diam Uk
k→∞−→ +∞.

For all k, let dk = diam Uk. Modulo translations and rotations in Rn+1, we can
without loss of generality assume that

(
0, . . . , 0, ± dk

2

)
∈ Uk. Let R1

k = R1
(

dk
2

)
=[

− dk
2

, dk
2

]
and R1

k = R1
(

dk
2

)
. Thus we assume that, ∀k ∈ N, R1

k ⊂ Uk, since Uk is
convex.

If n − 1 ≥ 2, let
δ1

k = max
r∈R1

k

diam
(
Uk ∩ π1

r

)
.

Then there are two possibilities:

(i) either lim sup
k→∞

δ1
k

dk
= 0,
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(ii) or lim sup
k→∞

δ1
k

dk
> 0.

But since δ1
k ≤ dk, we may in fact assume that, after perhaps picking a subsequence,

we are presented with one of the following two alternatives

(i) either lim
k→∞

δ1
k

dk
= 0,

(ii) or there is a constant σ2 ∈ (0, 1] such that lim
k→∞

δ1
k

dk
= σ2.

Now let us assume we are in the second case. Then, for k large enough, we have
σ2
2

dk ≤ δ1
k ≤ dk. Let rk ∈ R1

k be such that diam
(
Uk ∩ π1

rk

)
= δ1

k (R1
k is compact).

Then, modulo rotations (in Rn+1 that leave the (n+1)st component invariant) and a
restriction to the tail of the sequence, we can without loss of generality assume that(
0, . . . , 0, σ2

4
dk, rk

)
∈ Uk, ∀k ∈ N. Since

(
0, . . . , 0, ± dk

2

)
∈ Uk, the convexity of Uk

then implies that
(
0, . . . , 0, σ2

8
dk, 0

)
∈ Uk (for rk ∈ R1

k implicates |rk| ≤ dk
2

), and thus

also that
(
0, . . . , 0, σ2

16
dk, ± dk

4

)
∈ Uk (cf. Figure 2.1). As a result, modulo translations

(in Rn+1 that leave the last component invariant), we can without loss of generality
assume that, ∀k ∈ N,

(
0, . . . , 0, ± σ2

16
dk, 0

)
∈ Uk and

(
0, . . . , 0, 0, ± dk

4

)
∈ Uk. By

convexity, the convex hull of these four points is then also contained in Uk, and we
obtain that there must be a constant c2 ∈ (0, 1] such that R2(c2dk) ⊂ Uk for all k

(take, e.g., c2 = min
{

σ2
16

, 1
4

}
). Let R2

k = R2(c2dk) and R2
k = R2(c2dk). We thus

assume that R2
k ⊂ Uk, ∀k ∈ N.

If n − 2 ≥ 2, let

δ2
k = max

r∈R2
k

diam
(
Uk ∩ π2

r

)
.

Then there are, again, two possibilities:

(i) either lim sup
k→∞

δ2
k

dk
= 0,

(ii) or lim sup
k→∞

δ2
k

dk
> 0.

In the second case, we can argue in an analogous manner to obtain that, without
loss of generality, we may assume the existence of a constant c3 ∈ (0, 1] such that
R3

k = R3(c3dk) ⊂ Uk, ∀k ∈ N.
Continuing this argument inductively, it is easy to see that, after an appropri-

ate application of translations and rotations, as well as after picking a convenient
subsequence, we may without loss of generality assume that

there exists an m ∈ {1, . . . , n − 1} and a constant cm ∈ (0, 1] such that, for
all k ∈ N,

Rm(cmdk) ⊂ Uk;

moreover, if m ≤ n − 2, then

lim sup
k→∞

max
r∈Rm(cmdk)

diam (Uk ∩ πm
r )

dk
= 0.
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xn

xn+1

b

b

b

dk
2

− dk
2

b

+

+

σ2dk
4

rk

b
σ2dk

8

+

+

dk
4

− dk
4

b

b

b

σ2dk
16

Figure 2.1.

As we shall see shortly, even if m = n − 1, the second statement still holds true.

6.3. The actual proof. Let Rm
k = Rm(cmdk) and Rm

k = Rm(cmdk).

Claim 1. For all k ∈ N, we have

max
r∈Rm

k

voln−m (∂Uk ∩ πm
r ) ≤ 2(m!)

(cm)m(dk)m
.

Proof. For each k ∈ N, let

µk = max
r∈Rm

k

voln−m (∂Uk ∩ πm
r )

and ρk be the point in Rm
k where this maximum is attained (Rm

k is compact).
Let R̃m

k denote the translation of Rm
(

cm
2

dk

)
into the point ρk

2
, and let R̃m

k =
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{
x ∈ ωm

0

∣∣ Pm(x) ∈ R̃m
k

}
. Notice that R̃m

k ⊂ Rm
k and R̃m

k ⊂ Rm
k ⊂ Uk. Observe

also that, for any y ∈ R̃m
k , we have yk +2(y −yk) ∈ Rm

k , where yk ∈ R̃m
k is such that

Pm(yk) = ρk (cf. Figure 2.2). Now, for any y ∈ R̃m
k \ {yk}, denote by Ck(y) the cone

with base ∂Uk ∩ πm
ρk

and tip 2y − yk. Then, by convexity, Ck(y) ⊂ Uk. Moreover,
since Uk ∩ πm

ρk
is convex, Ck(y) ∩ πm

Pm(y) bounds a convex region and we must have

voln−m

(
Ck(y) ∩ πm

Pm(y)

)
≤ voln−m

(
∂Uk ∩ πm

Pm(y)

)
.

+

+

+

+

b

b

b

cmdk

−cmdk

cmdk−cmdk

b

b

0

ρk

ρk
2

Pm(y)

Pm(2y − yk)

Rm
k

R̃m
k

Figure 2.2.

Remark 2.11. The fact that vol(∂M) ≤ vol(∂N), whenever M is a convex subset of
the open set N (and assuming both have smooth boundary) follows from the definition
of the Hausdorff measure and the fact that the nearest point projection onto M is
norm–non–increasing — see, e.g., [BH99, Prop.2.4(4), p.177], and also [Cha06,
Ex.III.12(i), p.161].
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On the other hand, we have by construction

voln−m

(
Ck(y) ∩ πm

Pm(y)

)
=

1

2
voln−m

(
∂Uk ∩ πm

ρk

)
=

µk

2
.

As a consequence, we get for all y ∈ R̃m
k :

voln−m

(
∂Uk ∩ πm

Pm(y)

)
≥ µk

2
.

But then the coarea formula (see, e.g., [Cha06, §III.8] or [Fed69, §3.2]) yields

1 = voln(∂Uk) ≥ voln

({
y ∈ ∂Uk

∣∣ Pm(y) ∈ R̃m
k

})

=

∫

r∈R̃m
k

voln−m (∂Uk ∩ πm
r ) dr ≥ µk

2
volm

(
R̃m

k

)
.

And since

volm

(
R̃m

k

)
= volm

(
Rm
(

cm

2
dk

))
=

2m

m!

(
cm

2
dk

)m

=
(cm)m(dk)m

m!
,

the claim follows immediately. �

Define
δk = max

r∈Rm(cmdk)
diam (Uk ∩ πm

r ) ,

and let rk ∈ Rm
k = Rm(cmdk) be such that diam

(
Uk ∩ πm

rk

)
= δk (Rm

k is compact).

If m ≤ n − 2, we have limk→∞
δk
dk

= 0 by assumption. If, however, m = n − 1 (as is
necessarily the case when n = 2), then Claim 1 yields

lim
k→∞

vol1
(
∂Uk ∩ πn−1

r

)
= 0, ∀r ∈ Rn−1

k .

But, for each r ∈ Rn−1
k , ∂Uk ∩ πn−1

r is a simple closed C∞–curve in the two–
dimensional hyperplane πn−1

r , whence

diam
(
Uk ∩ πn−1

r

)
≤ 1

2
vol1

(
∂Uk ∩ πn−1

r

)
.

It follows that limk→∞
δk
dk

= 0 also in the case m = n − 1.
Now let

ηk =
√

mδk.

Since limk→∞
ηk
dk

= 0, we may, modulo picking a subsequence that contains only the
tail, without loss of generality assume that ηk < cm

2
dk, ∀k ∈ N. Define

R̂m
k = Rm (cmdk − ηk) and R̂m

k = Rm (cmdk − ηk) .

Then we have

Claim 2. For all k ∈ N, r ∈ R̂m
k and q ∈ ∂Uk ∩ πm

r , the angle ∠ (ν(q), πm
0 ) between

the outer unit normal ν(q) to ∂Uk in q and the hyperplane πm
0 is less than or equal

to π
4

.



34 2. THE SUB–CRITICAL AND CRITICAL CASES FOR CONVEX SURFACES

Proof. Fix r ∈ R̂m
k and q ∈ ∂Uk ∩πm

r , and let y ∈ R̂m
k be such that Pm(y) = r.

The outer unit normal ν(q) to ∂Uk in q then decomposes as ν(q) = ν′ + ν′′, where
ν′ ∈ πm

0 and ν′′ ∈ (πm
0 )⊥ = ωm

0 . Clearly,
∣∣ν′∣∣ = cos

(
∠ (ν(q), πm

0 )
)

and

∣∣ν′′∣∣ = sin
(
∠ (ν(q), πm

0 )
)

=

√
1 − |ν′|2.

If ν′′ = 0, then there is nothing to prove, so assume ν′′ 6= 0. Let y∗ ∈ Rm
k be such

that r∗ = Pm(y∗) ∈ ∂Rm
k and y∗−y

|y∗−y| = ν′′

|ν′′| (this is possible, since Rm
k contains a ball

of radius ηk√
m

around every r̃ ∈ R̂m
k ) — cf. Figure 2.3. Notice that |y∗ − y| ≥ ηk√

m
,

since y ∈ R̂m
k .

πm
r

ωm
0

b

b

b

Rm
k

R̂m
k

y⋆

y q

ν

ν′

ν′′

length ≥ ηk√
m

length ≤ δk

Σ

Figure 2.3.
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Now, since Uk is convex, we have Uk ⊂
{

z ∈ Rn+1
∣∣ 〈z − q, ν(q)〉 ≤ 0

}
, where,

once more, 〈·, ·〉 denotes the standard scalar product in Rn+1. Hence,

0 ≥ 〈y∗ − q, ν(q)〉 = 〈y∗ − y, ν(q)〉 + 〈y − q, ν(q)〉 ,

since y∗ ∈ Uk. But, by construction, we have

〈y∗ − y, ν(q)〉 =
|y∗ − y|

|ν′′|
〈
ν′′, ν′′〉 = |y∗ − y|

√
1 − |ν′|2.

Moreover, noticing that q − y ∈ πm
0 , we have (observe that 〈q − y, ν(q)〉 ≥ 0, since

y ∈ Uk)
〈q − y, ν(q)〉 =

〈
q − y, ν′〉 ≤ |q − y|

∣∣ν′∣∣ .
We therefore get

cotan
(
∠ (ν(q), πm

0 )
)

=
|ν′|√

1 − |ν′|2
≥ |y∗ − y|

|q − y| ≥ ηk√
m |q − y| =

δk

|q − y| .

But given that q, y ∈ Uk ∩ πm
r and diam(Uk ∩ πm

r ) ≤ δk, we obtain the desired
inequality cotan

(
∠ (ν(q), πm

0 )
)

≥ 1. �

We now wish to prove:

Claim 3.

lim inf
k→∞

voln

(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y ∈ R̂m

k

})
> 0.

Proof. Assume first that

lim
k→∞

voln

(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y 6∈ R̂m

k

})
= 0.

Then there is nothing to prove, since, in that case,

lim inf
k→∞

voln

(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y ∈ R̂m

k

})

= lim inf
k→∞

voln(∂Uk)︸ ︷︷ ︸
=1

− lim sup
k→∞

voln

(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y 6∈ R̂m

k

})
= 1.

So suppose that lim supk→∞ voln

(
∂Uk ∩

{
y ∈ Rn+1

∣∣ y 6∈ R̂m
k

})
> 0. Modulo tak-

ing a subsequence, we may without loss of generality assume that there is a vc ∈ (0, 1)
such that, for every k ∈ N, we have

voln

(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y 6∈ R̂m

k

})
≥ vc.

From the coarea formula, we then have

vc ≤ voln

(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y 6∈ R̂m

k

})
=

∫

r 6∈R̂m
k

voln−m (∂Uk ∩ πm
r ) dr

≤
n+1∑

i=n−m+2

∫

|ρ|≥ cmdk−ηk√
m

voln−1

(
∂Uk ∩

{
y = (y1, . . . , yn+1) ∈ R

n+1
∣∣ yi = ρ

})
dρ,
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since Rm(θ) contains the m–cube of length θ√
m

. Notice that all the integrals are
well–defined, since the integrands vanish for arguments of integration with length
greater than dk. Since the right–hand side of the above inequality is invariant under
renumbering of the coordinates, we may, modulo reflections, without loss of generality
assume that

∫ − cmdk−ηk√
m

−dk

voln−1(∂Uk ∩ π1
ρ) dρ ≥ vc

2m
.

Consequently, for each k ∈ N, there must be a ρk ∈
[
−dk, − cmdk−ηk√

m

]
such that

(2.2) voln−1(∂Uk ∩ π1
ρk

) ≥ vc

2
√

m
(
(
√

m − cm)dk + ηk

) ≥ vc√
m(2

√
m − cm)dk

,

since we had assumed that ηk ≤ cm
2

dk.
Now remember that, by assumption, (0, . . . , 0, cmdk) ∈ Uk, since Rm

k ⊂ Uk.
Thus, by the convexity of Uk, the whole cone Ck with base ∂Uk ∩ π1

ρk
and tip

(0, . . . , 0, cmdk) must be contained in Uk. Moreover, since ∂Uk ∩ π1
ρk

is convex, we
must have

(2.3) voln−1(∂Uk ∩ π1
ρ) ≥ voln−1(Ck ∩ π1

ρ) =
cmdk − ρ

cmdk − ρk
voln−1(∂Uk ∩ π1

ρk
)

for all ρ ∈ (ρk, cmdk]. But then the coarea formula yields (since R1(cmdk−ηk) ⊂ R̂m
k )

voln

(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y ∈ R̂m

k

})

≥ voln
(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y ∈ R1(cmdk − ηk)

})

≥ voln

(
∂Uk ∩

{
y = (y1, . . . , yn+1) ∈ R

n+1
∣∣ yn+1 ∈ [0, cmdk − ηk]

})

=

∫ cmdk−ηk

0

voln−1(∂Uk ∩ π1
ρ) dρ

(2.2)&(2.3)

≥
∫ cmdk−ηk

0

cmdk − ρ

cmdk − ρk
· vc√

m(2
√

m − cm)dk
dρ

=
vc

2
√

m(2
√

m − cm)(cmdk − ρk)dk

(
(cmdk)2 − (ηk)2

)

≥ vc(cm)2

2
√

m(2
√

m − cm)(1 + cm)
− vc

2
√

m(2
√

m − cm)(1 + cm)

(
ηk

dk

)2

,

where the last line follows from ρk ≥ −dk. Remembering that lim supk→∞
ηk
dk

= 0,
we see that the claim holds. �

Henceforth we shall, modulo picking a subsequence, without loss of generality
assume that v0 ∈ (0, 1) is such that

voln

(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y ∈ R̂m

k

})
≥ v0 ∀k ∈ N.
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The following final claim then yields a contradiction to the assumption
∫

∂Uk

|A|p ≤ c0.

Claim 4.

lim inf
k→∞

∫

∂Uk

|A|p = +∞.

Proof. Fix k ∈ N. For all r ∈ R̂m
k , let Γn−m

k,r = ∂Uk ∩ πm
r . In the following,

denote by A the second fundamental form of Γn−m
k,r in πm

r , and by ν the Gauss map
of Γn−m

k,r in πm
r . We have to distinguish the two cases: m = n − 1 and m ≤ n − 2.

If m = n − 1 (which is necessarily the case when n = 2), Γ1
k,r is a simple closed

C∞–curve in πn−1
r . Consequently, there are two points q1 and q2 in Γ1

k,r such that
ν(q1) = −ν(q2). Corollary A.4, proved in the appendix, then gives

∫

γ

|A| ≥ |ν(q1) − ν(q2)| = 2,

for each of the two arcs γ ⊂ Γ1
k,r joining q1 and q2. As a consequence,

∫

Γ1
k,r

|A| ≥ 2.

Using Lemma A.2 of the appendix, together with Claim 2, then yields
∫

Γ1
k,r

|A| ≥ 1√
2

∫

Γ1
k,r

|A| ≥
√

2.

It thus follows from the coarea formula that
∫

∂Uk

|A| ≥
∫

∂Uk∩
{

y∈Rn+1

∣∣y∈R̂n−1
k

} |A| =

∫

R̂n−1
k

(∫

Γ1
k,r

|A|
)

dr

≥
√

2voln−1

(
R̂n−1

k

)
.

Since k ∈ N was arbitrary and

voln−1

(
R̂n−1

k

)
= voln−1

(
Rn−1(cn−1dk − ηk)

) k→∞−→ +∞,

we conclude that, indeed,

lim inf
k→∞

∫

∂Uk

|A|p ≥ lim inf
k→∞



(

voln(∂Uk)︸ ︷︷ ︸
=1

)1−p
(∫

∂Uk

|A|
)p


 = +∞,

if m = n − 1.
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Now assume that m ≤ n − 2, and denote by Γ̃n−m
k,r the rescaling of Γn−m

k,r such

that voln−m

(
Γ̃n−m

k,r

)
= 1. Also, let Ã be the second fundamental form of Γ̃n−m

k,r in

πm
r . Clearly, we have

|Ã| =
(

voln−m

(
Γn−m

k,r

)) 1
n−m |A|.

As a consequence, using Claim 2 with Lemma A.2, we obtain
∫

Γ̃n−m
k,r

|Ã|p =
(

voln−m

(
Γn−m

k,r

)) p
n−m

−1
∫

Γn−m
k,r

|A|p

≤
(√

2
)p
(

voln−m

(
Γn−m

k,r

)) p
n−m

−1
∫

Γn−m
k,r

|A|p .

Remember that we had assumed p ∈ (1, 2] ⊂ (1, n − m], and that Proposition 2.7 is
already proved for every n′ ∈ {2, . . . , n − 1}. We may thus apply Corollary 2.8 to
Γ̃n−m

k,r , yielding

∫

Γn−m
k,r

|A|p ≥ 2− p
2

(
voln−m

(
Γn−m

k,r

))1− p
n−m

∫

Γ̃n−m
k,r

|Ã|p

≥ 2− p
2

(
voln−m

(
Γn−m

k,r

))1− p
n−m

δ,

for some δ > 0 depending only on (n−m) ∈ {2, . . . , n−1} and p. The coarea formula
then yields

∫

∂Uk

|A|p ≥
∫

∂Uk∩
{

y∈Rn+1

∣∣y∈R̂m
k

} |A|p =

∫

r∈R̂m
k

(∫

Γn−m
k,r

|A|p
)

dr

≥ 2− p
2 δ

∫

r∈R̂m
k

(
voln−m

(
Γn−m

k,r

)(
voln−m

(
Γn−m

k,r

))− p
n−m

)
dr

Claim 1

≥ 2− p
2 δ

(
2(m!)

(cm)m(dk)m

)− p
n−m

voln

(
∂Uk ∩

{
y ∈ R

n+1
∣∣ y ∈ R̂m

k

})

︸ ︷︷ ︸
Claim 3

≥v0>0

≥ 2−p( 1
2

+ 1
n−m )

(
(cm)m

m!

) p
n−m

δv0(dk)
pm

n−m
k→∞−→ +∞,

from which

lim inf
k→∞

∫

∂Uk

|A|p = +∞.

This proves the claim also in the case m ≤ n − 2, and Lemma 2.9 is shown. �
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7. Proof of Lemma 2.10

Let n ≥ 2, p ∈ (1, n] and c0 > 0 be given, and assume the Lemma were false.
Then there exists a sequence (Uk)k∈N of open, convex subsets of Rn+1 having smooth
boundary, containing the origin, satisfying, for all k ∈ N,

(a) voln(∂Uk) = 1,

(b)

∫

∂Uk

|A|p ≤ c0,

(c) Uk ⊂ BR(0) (for some R > 0, depending only on n, p and c0, by virtue
of Lemma 2.9),

and with the property that
(d) the Uk converge, in the sense of Hausdorff, to a compact convex set V

contained in an n–dimensional hyperplane in Rn+1.
(As in the proof of Corollary 2.8, the fact that we can assume that the Uk — or,
at least, a subsequence thereof — converge is a consequence of Blaschke’s selection
theorem ([Sch93, Thm.1.8.6, p.50]), whereas the fact that the limit must be contained
in a hyperplane follows from our contradiction assumption, namely that

lim
k→∞

sup
x∈Uk

sup
{

ρ > 0
∣∣ Bρ(x) ⊂ Uk

}
= 0.)

Claim 1. dim(V ) = n

Proof. Assume, by contradiction, that dim(V ) ≤ n−1, and consider, for ǫ > 0,
the tubular neighbourhood Vǫ =

{
x ∈ Rn+1

∣∣ dist(x, V ) < ǫ
}

of V . Vǫ is an open,
convex subset of Rn+1 which, by convergence, contains Uk for k large enough. On
the other hand, since we assumed that dim(V ) ≤ n − 1, we must have

lim
ǫց0

voln(∂Vǫ) = 0,

for V is bounded. Hence, choosing ǫ small enough, we can assume that voln(∂Vǫ) ≤ 1
2
.

But given that Uk ⊂ Vǫ, the convexity of Uk implies

voln(∂Uk) ≤ voln(∂Vǫ) ≤ 1

2
, whenever ǫ is small enough and k large enough,

(cf. Remark 2.11 on p. 32). This, however, contradicts voln(∂Uk) = 1 (∀k ∈ N), and
the claim is proved. �

Without loss of generality, we may assume that V ⊂
{

(z, 0) ∈ Rn+1
∣∣ z ∈ Rn

}
=

π1
0 . We define

I =
{

x ∈ π1
0

∣∣∣ Bη(x) ∩ π1
0 ⊂ V for some η > 0

}
,

the “interior”, and

B = V \ I,

the “boundary” of V in π1
0 . For x = (z, 0) ∈ π1

0 (z ∈ Rn), let

lx =
{

(z, ρ)
∣∣ ρ ∈ R

}
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denote the “vertical” line passing through x. Then we have

Claim 2. For any compact K ⊂ I, any x = (z, 0) ∈ K and any k ∈ N large enough,

lx ∩Uk is a closed, non–degenerate segment joining the points
(
z, a(z)

)
and

(
z, b(z)

)
,

where a(z) < b(z).

Proof. Fix a compact set K ⊂ I . Clearly, by convexity, lx ∩ ∂Uk will never
consist of more than two points, regardless of the x ∈ π1

0 we choose. But assume
that, for each k, there were an xk = (zk, 0) ∈ K such that lxk ∩ ∂Uk consists of at
most one point. Then

(i) either lxk ∩ Uk = ∅,
(ii) or lxk is tangent to ∂Uk.

Consider, for each k ∈ N, the projection Vk = Pm(Uk) of Uk onto π1
0 . Then Vk is a

convex subset of π1
0 which is relatively open in π1

0 , and, in both of the cases above,
xk = (zk, 0) 6∈ Vk (but, possibly, xk ∈ Vk). Then the theorem of Hahn–Banach (see,
e.g., Theorem I.6 on p.5 in [Bre83]) ensures the existence of a unit vector ek ∈ Sn−1

such that

Vk ⊂
{

(w, 0) ∈ R
n+1

∣∣∣ 〈(w − zk), ek〉
Rn ≤ 0

}
,

where 〈·, ·〉
Rn denotes the standard scalar product in Rn. Defining the half–spaces

Sk =
{

(w, r) ∈ R
n+1

∣∣∣ r ∈ R and 〈(w − zk), ek〉
Rn ≤ 0

}
,

we conclude that Uk ⊂ Sk for each k. Modulo picking a subsequence, we may
without loss of generality assume that there is a unit vector e ∈ Sn−1 and a point

x = (z, 0) ∈ K such that ek
k→∞−→ e and zk

k→∞−→ z (Sn−1 and K are compact). Then,
since the Uk converge to V , it follows that

V ⊂
{

(w, 0) ∈ R
n+1

∣∣∣ 〈(w − z), e〉
Rn ≤ 0

}
.

But since x = (z, 0) ∈ K ⊂ I , there is an η > 0 such that Bη(x) ∩ π1
0 ⊂ V , which

contradicts the inclusion above (e.g.,
(
z + η

2
e, 0
)

∈ V , but
〈((

z + η
2

e
)

− z
)

, e
〉

Rn
=

η
2

> 0). �

Now let K ⊂ I be compact. For all x = (z, 0) ∈ K, let

ν+
k (x) be the outer unit normal to ∂Uk in

(
z, b(z)

)

and

ν−
k (x) be the outer unit normal to ∂Uk in

(
z, a(z)

)
.

Then we have

Claim 3.

lim
k→∞

max
x∈K

{∣∣ν+
k (x) − (0, . . . , 0, 1)

∣∣+
∣∣ν−

k (x) − (0, . . . , 0, −1)
∣∣
}

= 0.
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Proof. We restrict ourselves to showing that

lim
k→∞

max
x∈K

{∣∣ν+
k (x) − (0, . . . , 0, 1)

∣∣
}

= 0,

the other limit following completely analogously. For each k ∈ N, let xk = (zk, 0) ∈ K
be such that

∣∣ν+
k (xk) − (0, . . . , 0, 1)

∣∣ = max
x∈K

{∣∣ν+
k (x) − (0, . . . , 0, 1)

∣∣
}

(K is compact). By the convexity of Uk, we have that

Uk ⊂ Tk =
{

y ∈ R
n+1

∣∣∣
〈
y −

(
zk, b(zk)

)
, ν+

k (xk)
〉

≤ 0
}

.

But since
(
zk, a(zk)

)
∈ Uk and a(zk) < b(zk), this implies that

(2.4)
〈
ν+

k (xk), (0, . . . , 0, 1)
〉

≥ 0 ∀k ∈ N.

Now assume ν+ is the limit of a subsequence of
(
ν+

k (zk)
)

k∈N
(Sn−1 is compact), and

x = (z, 0) ∈ K is the limit of a further subsequence of (xk)k∈N =
(
(zk, 0)

)
k∈N

(K is
compact). It then follows that

V ⊂ T =
{

y ∈ R
n+1

∣∣∣
〈
y − (z, 0), ν+

〉
≤ 0
}

.

But, since (z, 0) ∈ K ⊂ I , there is a η > 0 such that
(
z + ηe, 0

)
∈ I , ∀e ∈ Sn−1.

Consequently, ν+ must be orthogonal to π1
0 , from which

either ν+ = (0, . . . , 0, 1) or ν+ = (0, . . . , 0, −1).

(2.4) then yields ν+ = (0, . . . , 0, 1), which is precisely what we wanted to show. �

Now consider, for every ǫ ∈ (0, 1), the sets

Bǫ =
{(

(1 − ǫ)z, 0
) ∣∣∣ (z, 0) ∈ B

}
,

Iǫ =
{

(ρz, 0)
∣∣∣ (z, 0) ∈ B, 0 ≤ ρ ≤ 1 − ǫ

}

and

Cǫ =
{

(z, r)
∣∣∣ (z, 0) ∈ Iǫ, r ∈ R

}

(remember that we had assumed 0 ∈ V ). Set

Σi
k,ǫ = ∂Uk ∩ Cǫ and Σe

k,ǫ = ∂Uk \ Σi
k,ǫ (ǫ ∈ (0, 1), k ∈ N).

Then we have

Claim 4.

lim
ǫց0

lim
k→∞

voln
(
Σe

k,ǫ

)
= 0.
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Proof. From claims 2 and 3, we conclude that

(2.5) lim
k→∞

voln
(
Σi

k,ǫ

)
= 2voln (Iǫ) .

This can be seen as follows. Claim 2 tells us that Σi
k,ǫ is the union of two graphs over

the compact set Iǫ ⊂ I , namely those of the functions a(z) and b(z) ((z, 0) ∈ Iǫ). By
Claim 3, both of these functions converge, as k → ∞, to a constant (in fact, both
converge to 0) on all of Iǫ. This implies the above assertion.
Considering then, as in the proof of Claim 1, the tubular neighbourhood Vδ ={

x ∈ Rn+1
∣∣ dist(x, V ) < δ

}
(δ > 0) of V , we know that Uk ⊂ Vδ for k large enough

(with respect to δ), whence (Uk is convex)

voln (∂Uk) ≤ voln (∂Vδ) (k large enough).

But since we also have

lim
δց0

voln (∂Vδ) = 2voln(V ),

we conclude that

(2.6) 1 = lim sup
k→∞

voln (∂Uk)︸ ︷︷ ︸
=1

≤ 2voln(V ).

Taking into account that limǫց0 voln (Iǫ) = voln(V ), as well as that voln
(
Σi

k,ǫ

)
≤

voln (∂Uk) = 1, the combination of (2.6) with (2.5) yields, on one hand, that

voln(V ) =
1

2

and, on the other hand, that

lim
ǫց0

lim
k→∞

voln
(
Σi

k,ǫ

)
= 1,

from which the claim follows. �

Fix ǫ ∈ (0, 1) and k ∈ N. For every x = (z, 0) ∈ Bǫ, pick a unit normal ν(x) to
Bǫ in π1

0 .

Remark 2.12. Of course, Bǫ might not be smooth, but since it is the boundary (in
π1

0) of a convex set (Iǫ), we know from [Roc70, Thm.25.5, p.246], that ν(x) will be
uniquely defined except for a set of zero (n − 1)–dimensional Hausdorff measure.

Consider, for each x = (z, 0) ∈ Bǫ, the two–dimensional half–plane

τ +(x) =
{

x + (0, . . . , 0, s) + tν(x)
∣∣∣ s, t ≥ 0

}
.

Then the intersection

γk,x = τ +(x) ∩ ∂Uk

of τ +(x) with ∂Uk is, by Claim 2, a curve in τ +(x) joining
(
z, a(z)

)
with

(
z, b(z)

)

(x = (z, 0)). Thus, by the coarea formula (see, again, [Cha06, §III.8] or [Fed69,
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§3.2]), and taking into account Remark 2.12, we have

lim inf
k→∞

∫

Σe
k,ǫ

|A| = lim inf
k→∞

∫

Bǫ

(∫

γk,x

|A|
)

dx ≥ lim inf
k→∞

∫

Bǫ

∣∣ν+
k (x) − ν−

k (x)
∣∣ dx

≥ voln−1(Bǫ) = (1 − ǫ)n−1voln−1(B),

where the first inequality follows from Corollary A.4 of the appendix, whereas the
second is a consequence of Claim 3. We conclude

(2.7) lim inf
ǫց0

lim inf
k→∞

∫

Σe
k,ǫ

|A| ≥ voln−1(B) > 0.

On the other hand, given that
∫

∂Uk
|A|p ≤ c0 and p > 1 by assumption, Hölder’s

inequality yields

∫

Σe
k,ǫ

|A| ≤
(
voln−1

(
Σe

k,ǫ

))1− 1
p

(∫

Σe
k,ǫ

|A|p
) 1

p

≤ c
1
p

0

(
voln−1

(
Σe

k,ǫ

))1− 1
p .

Using Claim 4, we then conclude

lim sup
ǫց0

lim sup
k→∞

∫

Σe
k,ǫ

|A| = 0,

which contradicts (2.7). Our assumption at the beginning of the proof must therefore
be wrong, and the lemma is proved. �





CHAPTER 3

The L
2–theory

In this chapter we prove our main estimate in the L2–case for n–dimensional
hypersurfaces of Rn+1 with non–negative Ricci curvature (which is equivalent to
being convex). The method thereby used mimics an argument in [DLT10]. Af-
terwards, we give an alternative proof due to G. Huisken of this estimate in the
two–dimensional case under the assumption that the surface is mean convex and
constitutes the boundary of a star–shaped domain. Finally, we exhibit how that last
proof lends itself to generalisation to the n–dimensional case.
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1. The case Ric ≥ 0

We first prove the L2–estimate for hypersurfaces that have non–negative Ricci
curvature, with the constant C =

√
n

n−1
on the right–hand side. As we shall see

in the next chapter, that constant is optimal. There, we will also prove that the
assumption Ric ≥ 0 is optimal whenever n ≥ 3 (i.e. in the sub–critical case).

Theorem 3.1. Let n ≥ 2 be given and set C =
√

n
n−1

. Then we have:

if Σ is a smooth, closed, connected hypersurface in Rn+1 with induced Riemannian
metric g and non–negative Ricci curvature, then

(3.1)

(∫

Σ

∣∣∣∣A − 1

n

(
1

voln(Σ)

∫

Σ

H

)
g

∣∣∣∣
2
) 1

2

≤ C

(∫

Σ

∣∣∣A − H

n
g

∣∣∣
2
) 1

2

.

45
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In particular, the above estimate holds for smooth, closed hypersurfaces which are the
boundary of a convex set in Rn+1.

Proof. The following argument is an adaptation of the proof of Theorem 0.1
in [DLT10] (see also [CLN06, §B.3, pp.517–519]).

Let
◦

A = A − 1

n
Hg and H =

1

voln(Σ)

∫

Σ

H,

and write the square of the left–hand side of (3.1) as

∫

Σ

∣∣∣∣A − H

n
g

∣∣∣∣
2

=

∫

Σ

∣∣∣∣
(

A − H

n
g
)

+

(
H − H

n
g

)∣∣∣∣
2

(3.2)

=

∫

Σ

| ◦
A|2 +

2

n

∫

Σ

(
H − H

) n∑

i,j=1

gij ◦
Aij +

1

n

∫

Σ

∣∣H − H
∣∣2

=

∫

Σ

| ◦
A|2 +

1

n

∫

Σ

∣∣H − H
∣∣2 .

Let ϕ be the unique smooth solution of the following Poisson problem on Σ (for
existence, uniqueness and regularity see, e.g., [Aub98, Thm.4.7, p.104]):





∆ϕ = H − H,
∫

Σ

ϕ = 0.

We then have
∫

Σ

∣∣H − H
∣∣2 =

∫

Σ

(
H − H

)
∆ϕ =

∫

Σ

(
H − H

) n∑

i=1

∇i∇iϕ = −
∫

Σ

n∑

i=1

∇iH∇iϕ.

By virtue of the Codazzi equations we find

∇iH =

n∑

l=1

∇iA
l
l =

n∑

l=1

∇lA
l
i =

n∑

l=1

∇l

◦
Al

i +
1

n

n∑

l=1

∇lHδl
i =

n

n − 1

n∑

l=1

∇l

◦
Al

i.

Thus
∫

Σ

∣∣H − H
∣∣2 = − n

n − 1

∫

Σ

n∑

i,l=1

∇l

◦
Al

i∇iϕ =
n

n − 1

∫

Σ

◦
A: Hess ϕ.

Since
◦

A is trace–free, we have

◦
A: Hess ϕ =

◦
A:
(

Hess ϕ − 1

n
∆ϕg

)
,
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and thus, by Cauchy–Schwarz,
∫

Σ

∣∣H − H
∣∣2 =

n

n − 1

∫

Σ

◦
A:
(

Hess ϕ − 1

n
∆ϕg

)

≤ n

n − 1

(∫

Σ

| ◦
A|2
) 1

2
(∫

Σ

∣∣∣Hess ϕ − 1

n
∆ϕg

∣∣∣
2
) 1

2

=
n

n − 1

(∫

Σ

| ◦
A|2
) 1

2
(∫

Σ

|Hess ϕ|2 − 1

n

∫

Σ

|∆ϕ|2
) 1

2

.

Since
∫

Σ

|Hess ϕ|2 =

∫

Σ

n∑

i,j=1

∇i∇jϕ∇i∇jϕ = −
∫

Σ

n∑

i,j=1

∇jϕ∇i∇i∇jϕ(3.3)

= −
∫

Σ

n∑

i,j=1

∇jϕ∇i∇j∇iϕ

= −
∫

Σ

n∑

i,j=1

∇jϕ∇j∇i∇iϕ −
∫

Σ

n∑

i,j=1

∇jϕ Ric i
j ∇iϕ

=

∫

Σ

|∆ϕ|2 −
∫

Σ

Ric (∇ϕ, ∇ϕ) ,

we have
∫

Σ

∣∣H − H
∣∣2 ≤ n

n − 1

(∫

Σ

| ◦
A|2
) 1

2
(

n − 1

n

∫

Σ

|∆ϕ|2 −
∫

Σ

Ric (∇ϕ, ∇ϕ)

) 1
2

≤ n

n − 1

(∫

Σ

| ◦
A|2
) 1

2
(

n − 1

n

∫

Σ

|∆ϕ|2
) 1

2

=
(

n

n − 1

) 1
2

(∫

Σ

| ◦
A|2
) 1

2
(∫

Σ

|∆ϕ|2
) 1

2

=
(

n

n − 1

) 1
2

(∫

Σ

| ◦
A|2
) 1

2
(∫

Σ

∣∣H − H
∣∣2
) 1

2

,

where we have used the assumption Ric ≥ 0. Therefore
∫

Σ

∣∣H − H
∣∣2 ≤ n

n − 1

∫

Σ

| ◦
A|2 ,

and so ∫

Σ

∣∣∣∣A − H

n
g

∣∣∣∣
2

≤
∫

Σ

| ◦
A|2 +

1

n − 1

∫

Σ

| ◦
A|2 =

n

n − 1

∫

Σ

| ◦
A|2 ,

as claimed. �
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2. Why Ric ≥ 0 and convexity are the same

In this section we present an argument, recently brought to the author’s at-
tention by C. De Lellis, which concludes that every smooth, closed and connected
hypersurface of Rn+1 with non–negative Ricci curvature must be convex. Although
this seems to be a well–known fact (cf., e.g., [Des92]), we could not yet find a proof
in the literature, and expose C. De Lellis’ argument for the sake of completeness.

Proposition 3.2. Let n ≥ 2 and suppose Σ a smooth, closed and connected hyper-
surface of Rn+1. Then the following are equivalent:

(i) Ric ≥ 0 everywhere on Σ;
(ii) A ≥ 0 everywhere on Σ.

In particular, if either of the above conditions hold, Σ is convex.

Proof (by C. De Lellis). Denote by λ1, . . . , λn the eigenvalues of A. In view
of the contracted Gauss equations, Ric = HA − A2, it is immediate to see that
condition (ii) implies condition (i). The interesting question is therefore the converse
implication.

We first argue on a pointwise level. Ric ≥ 0 implies that, for every i ∈ {1, . . . , n},
we have (

n∑

j=1

λj

)
λi ≥ λ2

i ≥ 0.

Thus, each principal curvature λi needs to be of the same sign than the mean
curvature H . We conclude that, in each point of the hypersurface, Ric ≥ 0 im-
plies semi–definiteness of A. In other words, for each q ∈ Σ, one of the following
three situations hold:

(a) A(q) > 0,

(b) A(q) < 0

or

(c) A(q) = 0.

We now want to obtain the global statement by arguing that A cannot change
sign. Suppose this were not true, i.e., assume there were points q+ ∈ Σ and q− ∈ Σ,
such that A(q−) < 0 < A(q+). Clearly, by continuity, it follows that

voln (U+) > 0, where U+ =
{

q ∈ Σ
∣∣ A(q) > 0

}
⊂ Σ,

and

voln (U−) > 0, where U− =
{

q ∈ Σ
∣∣ A(q) < 0

}
⊂ Σ.

For e ∈ Sn and c ∈ R, consider the hyperplane

Te(c) =
{

x ∈ R
n+1

∣∣ 〈x, e〉 = c
}

.

Furthermore, let

ce = min
{

c ∈ R

∣∣∣ Te(c) ∩ Σ 6= ∅
}
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denote the smallest value c ∈ R for which Te(c) intersects Σ. Clearly, Σ will then
lie on one side of Te(ce), and Σ ∩ Te(ce) 6= ∅. Geometrically, Te(ce) is a supporting
hyperplane of Σ, and we must have that A(q) ≥ 0, whenever q ∈ Te(ce) ∩ Σ. Since e
was arbitrary, we conclude

ν
({

q ∈ Σ
∣∣ A(q) ≥ 0

})
= Sn.

But, since for all q ∈ Σ, we have TqΣ = Tν(q)S
n, the maps A( · , · ) and

〈
dν( · ), ·

〉

are equal, and Sard’s theorem (see, e.g., [DFN85, Thm.10.2.1, p.79]) applied to
ν : Σ → Sn ensures that

voln

(
ν
({

q ∈ Σ
∣∣ A(q) = 0

}))
= 0,

whence
ν(U+) = Sn \ N,

for some null–set N ⊂ Sn.
Moreover, since almost every value of ν is regular and Σ is compact, the number

vol0
(
ν−1( · )

)
of pre–images under ν is finite for almost every point in Sn, as well as

locally constant. In view of the area formula (see, e.g., [Fed69, §3.2]),

0 <

∫

U−

|det A| =

∫

ν(U−)

vol0
(
ν−1( · ) ∩ U−

)
,

we then conclude that
voln

(
ν(U−)

)
> 0.

From these considerations follows that the set

B =
{

e ∈ Sn
∣∣ ∃q+ ∈ U+, q− ∈ U− such that ν(q+) = ν(q−) = e

}
⊂ Sn

has strictly positive measure. Now, for e ∈ Sn, consider the map fe : Σ → R,
q 7→ 〈q, e〉. Then the critical points of fe are given by the set

Ce =
{

q ∈ Σ
∣∣ ν(q) = ±e

}
⊂ Σ.

We show that fe is a Morse function for almost every e ∈ Sn. To do this, we have
to check that Hess fe(q) has full rank whenever q ∈ Ce. But there, we have

Hess fe(q) = ∓A(q) (q ∈ Ce),

and we conclude that fe is a Morse function whenever

Ce ⊂
{

q ∈ Σ
∣∣ det A(q) 6= 0

}
,

i.e., whenever e and −e are regular values of ν. But since the set of singular values
of ν has measure zero, we conclude that, for almost all e ∈ Sn, the map fe is a Morse
function. In particular, since voln(B) > 0, there is an e ∈ B for which fe is Morse,
and we get by construction

∃q+ ∈ Σ such that ν(q+) = e and Hess fe(q+) > 0,

and

∃q− ∈ Σ such that ν(q−) = e and Hess fe(q−) < 0.



50 3. THE L2–THEORY

On the other hand, we saw that fe must have the absolute minimum ce in a point
q0 ∈ Te(ce) ∩ Σ for which we have Hess fe(q0) > 0. Moreover, ν(q0) = −e, whence
q0 6= q+. By construction, then, fe has two distinct local minima.

But since Σ is connected, one of the Morse inequalities yields (see, e.g., [DFN90,
§16] or [Nic07a, §2.3])

µ1 − 2 ≥ µ1 − µ0 ≥ b1 − b0 = b1 − 1,

from which µ1 ≥ 1. Here, bi and µi denote the Betti numbers and the Morse numbers,
respectively, and we have used that b1 ≥ 0, b0 = 1 (by connectedness) and µ0 ≥ 2
(since fe has, at least, two local minima). Consequently, fe needs to have at least
one saddle point of index 1. This, however, is impossible, since all the critical points
of fe have either index 0 (minima) or index n (maxima), by construction. Thus our
assumption that there is a point in which A < 0 was false, and the proposition is
proved. �

3. G. Huisken’s proof for two–dimensional mean–convex surfaces that

bound a star–shaped domain

In this section we prove the L2–estimate (3.1) for two–dimensional surfaces that
are mean convex and bound a star–shaped domain in R3. The method hereby used
was suggested by G. Huisken and uses inverse mean curvature flow. The additional
assumptions recover the optimal constant C =

√
2 (cf. Proposition 4.1 of the next

chapter). However, as we are also going to show in Chapter 4, the constant C =
√

2
does not work for generic surfaces (compare with [DLM05]). We wish to stress here
that the following proof takes care of a more general situation than the corresponding
result in Section 1 (H > 0 and star–shaped versus Ric ≥ 0, i.e. convex), except for
the fact that our requirement is weak (non–strict inequality). However, it seems an
easy, albeit tedious matter to generalise Theorem 3.3 below to the case H ≥ 0 by
approximation with (H > 0)–surfaces (compare also with [HI08, Theorem 2.5] for
weakening of H > 0 to H ≥ 0 in the case of strict star–shapedness).

Theorem 3.3 (Huisken). If Σ is the smooth, closed boundary of a star–shaped do-
main in R3 with induced Riemannian metric g, and has everywhere strictly positive
mean curvature H, then

(3.4)

(∫

Σ

∣∣∣∣A − 1

2

(
1

vol2(Σ)

∫

Σ

H

)
g

∣∣∣∣
2
) 1

2

≤
√

2

(∫

Σ

∣∣∣A − H

2
g
∣∣∣
2
) 1

2

.

The proof presented below differs only slightly from the one proposed by G. Huisken
to C. De Lellis at a summer school in Rome (Italy) in 2005.

3.1. Preliminaries. For M an n–dimensional, smooth, closed manifold and
T > 0, a solution to the inverse mean curvature flow (IMCF) is given by a smooth
family of embeddings F : M × [0, T ] → Rn+1, such that

∂tF (x, t) =
1

H(x, t)
ν(x, t), x ∈ M, t ∈ [0, T ],
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where H(x, t) > 0 and ν(x, t) are the mean curvature and the exterior unit normal of
F (M, t) in the point F (x, t). In 1990, Gerhardt [Ger90] and Urbas [Urb90] proved
independently that, if the initial data F (M, 0) = Σ is the smooth boundary of a
star–shaped domain, then the IMCF has a smooth solution for all times t > 0 which
approaches a homothetically expanding spherical solution as t → +∞.

Consequently, the following approach to proving Theorem 3.3 seems promising.
Consider the functional

F(Σ) =

∫

Σ

| ◦
A|2 − 1

2

∫

Σ

(
H − 1

vol2(Σ)

∫

Σ

H

)2

on the set of smooth, closed surfaces of R3. Notice that it is scale–invariant, and that
the positivity of F(Σ) is equivalent to inequality (3.4). Also, F(S2) = 0. In view
of the results about IMCF mentioned above, it is then sufficient to prove that F is
non–increasing along the flow starting at the surface Σ which bounds a star–shaped
domain.

3.2. Proof of Theorem 3.3. If Σ is the smooth, closed boundary of a star–
shaped (with respect to, say, the origin) domain in R3 with H > 0, let Σt denote the
smooth, global solution constructed in [Ger90] or [Urb90] of the IMCF starting at
Σ0 = Σ. Then the rescaled surfaces 4π

vol2(Σt)
Σt converge to the round sphere S2(0)

as t → +∞. If we introduce, for any smooth function ϕ : Σ × [0, +∞) → R, the
notation

ϕ =
1

vol2(Σt)

∫

Σt

ϕ,

then the following lemma immediately implies the theorem.

Lemma 3.4. For all t ≥ 0 we have

d

dt
F(Σt) = −H

∫

Σt

| ◦
A|2
H

.

Indeed, F(Σt) is then non–increasing along the IMCF. And since F is scale–
invariant and limt→+∞ F(Σt) = F(S2) = 0, we conclude that F(Σt) ≥ 0 for all
t ≥ 0 and, in particular, that F(Σ) ≥ 0. This proves Theorem 3.3. �

3.3. Proof of Lemma 3.4. We wish to remark that the functional F con-
sidered here is a special case of the functional given by (4.2), to be studied in Sec-
tion 1 of Chapter 4. The calculations for its first variation performed there are, of
course, valid also in the setting at hand, and we recover from (4.3s) with f = 1/H ,
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n = 2 and C =
√

2 that, for all t ≥ 0,

d

dt
F(Σ) =

∫

Σ

| ◦
A|2 − 2

∫

Σ

Hess
1

H
:

◦
A − 2

∫

Σ

A2:
◦

A

H
(3.5)

− 1

2

∫

Σ

(
H − H

)2
+

∫

Σ

(
H − H

)
∆

1

H
+

∫

Σ

|A|2 H − H

H

=

∫

Σ

| ◦
A|2 − 2

∫

Σ

Hess
1

H
:A +

∫

Σ

H∆
1

H
− 2

∫

Σ

A2:
◦

A

H

− 1

2

∫

Σ

H2 +
1

2
H

∫

Σ

H +

∫

Σ

H∆
1

H

− H

∫

Σ

∆
1

H
+

∫

Σ

|A|2 − H

∫

Σ

|A|2
H

= 2

∫

Σ

| ◦
A|2 − 2

∫

Σ

A2:
◦

A

H
− H

∫

Σ

| ◦
A|2
H

− 2

∫

Σ

Hess
1

H
:A + 2

∫

Σ

H∆
1

H
− H

∫

Σ

∆
1

H
.

Now, since Σ is closed,
∫

Σ
∆ϕ vanishes for any C2–function ϕ on Σ. Also, in view

of the Codazzi equations, we have
∫

Σ

Hess ϕ:A =

∫

Σ

2∑

i,j=1

∇i∇jϕAi
j = −

∫

Σ

2∑

i,j=1

∇jϕ∇iA
i
j

= −
∫

Σ

2∑

i,j=1

∇jϕ∇jAi
i =

∫

Σ

2∑

i,j=1

∇j∇jϕAi
i =

∫

Σ

H∆ϕ.

Finally, recalling that every two–dimensional Riemannian manifold is Einstein (i.e. its
Ricci curvature is a multiple of its metric, Ric = Scal

2
g), we see that Ric :

◦
A = 0. But

since the (once contracted) Gauss equations tell us that Ric = HA−A2, we conclude
that

A2:
◦

A

H
= A:

◦
A = | ◦

A|2 .

Putting these three observations together simplifies (3.5) to

d

dt
F(Σ) = −H

∫

Σ

| ◦
A|2
H

,

as required. �

4. The flow approach to n dimensions

The purpose of this section is to investigate how G. Huisken’s method explained
in Section 3 can be generalised to the n–dimensional case. As it turns out, requiring
merely H > 0 for the boundary of a star–shaped domain is not enough, but we
have to assume that the domain is strictly convex. Moreover, we cannot recover
the optimal constant C =

√
n

n−1
(cf. Proposition 4.1), but only get the result for
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C =
√

n, and the reason for this remains unclear until now. Otherwise, the method
generalises quite straightforwardly, although a much more careful inspection of the
rate of change of the considered functional is necessary.

4.1. The setup. Our goal will be to prove

Theorem 3.5. Let n ≥ 3 be given. Then we have:
if Σ is the smooth, closed boundary of a strictly convex domain in Rn+1 with induced
Riemannian metric g, then

(3.6)

(∫

Σ

∣∣∣∣A − 1

n

(
1

voln(Σ)

∫

Σ

H

)
g

∣∣∣∣
2
) 1

2

≤ √
n

(∫

Σ

∣∣∣A − H

n
g
∣∣∣

2
) 1

2

.

According to [Urb91, Theorem 1.1], the inverse mean curvature flow with Σ as
initial data has a smooth, global (i.e. which exists for all t ≥ 0) solution Σt which
converges (as t → +∞) to a round sphere after rescaling to constant volume. As in
the previous section, we want to consider a scale–invariant functional which vanishes
on spheres and represents the sought–after inequality (3.6). We then show that this
functional is monotone along the IMCF.

More precisely, consider the functional

F(Σ) = (n − 1)

∫

Σ

| ◦
A|2 − 1

n

∫

Σ

(
H − H

)2

on the set of smooth, closed hypersurfaces of Rn+1, where, again, H = 1
voln(Σ)

∫
Σ

H .
It is immediate to see that F(Σ) is non–negative if and only if inequality (3.6) holds
(use (3.2)). Notice also that F(Sn) = 0. We rescale F to the scale–invariant quantity

H(Σ) = vol
− n−2

n
n (Σ)F(Σ) = vol

− n−2
n

n (Σ)

(
(n − 1)

∫

Σ

| ◦
A|2 − 1

n

∫

Σ

(H − H)2

)
.

By the same arguments as in the proof of Theorem 3.3, the following proposition
then immediately implies Theorem 3.5.

Proposition 3.6. For Σ, Σt an H as above, we have

d

dt
H(Σt) ≤ 0.

Proof of Proposition 3.6. In the next subsection, we shall show the follow-
ing lemma giving the rate of change of H(Σt) along the IMCF.

Lemma 3.7. For Σ, Σt and H as above, we have

d

dt
H(Σt) = −2vol

− n−2
n

n (Σt)

(
1

n
H

∫

Σt

| ◦
A|
H

+ (n − 2)

∫

Σt

|∇H |2
H2

+ (n − 1)

∫

Σt

trg A3

H
− 2n − 1

n

∫

Σt

|A|2 +
1

n

∫

Σt

H2

)
.
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The first two terms in parentheses in the above expression being obviously non–
negative, we have to focus our attention on the three terms on the second line to
see that H(Σt) is non–increasing. If we denote by λ1, . . . , λn the eigenvalues of A
(i.e. the principal curvatures of Σt), and introduce

µi =
λi

H
=

λi∑n

j=1
λj

(i ∈ {1, . . . , n}),

then the sign of d
dt

H(Σt) immediately follows from the lemma below (the proof of
which will be performed in Subsection 4.3), since it implies

(n − 1)
trg A3

H
− 2n − 1

n
|A|2 +

1

n
H2 ≥ 0.

Lemma 3.8. If n ≥ 3, then the function

g(µ) = (n − 1)

n∑

i=1

µ3
i − 2n − 1

n

n∑

i=1

µ2
i +

1

n

is non–negative on the domain π =
{

µ ∈ Rn
∣∣ ∑n

i=1
µi = 1, µi ≥ 0

}
and vanishes

only if all the µi equal 1
n

or one µi vanishes whereas the others all equal 1
n−1

.

Clearly, then, Lemma 3.7 and Lemma 3.8 imply the proposition. �

4.2. Proof of Lemma 3.7. As in the proof of Lemma 3.4, the calculations of
Section 1, Chapter 4, can be used also here. From (4.3c) (with f = 1/H) we recover
the well–known fact that

d

dt
voln(Σt) = voln(Σt)

under inverse mean curvature flow, whence

(3.7)
d

dt
H(Σt) = vol

− n−2
n

n (Σt)
(

d

dt
F(Σt) − n − 2

n
F(Σt)

)
.

Using (4.3s) (with C =
√

n and f = 1/H) we get

d

dt
F(Σt) − n − 2

n
F(Σt) = (n − 1)

∫

Σt

| ◦
A|2 − 2(n − 1)

∫

Σt

Hess
1

H
:

◦
A

− 2(n − 1)

∫

Σt

A2:
◦

A

H
− 1

n

∫

Σt

(H − H)2

+
2

n

∫

Σt

(H − H)∆
1

H
+

2

n

∫

Σt

|A|2 − 2

n
H

∫

Σt

|A|2
H

− (n − 1)(n − 2)

n

∫

Σt

| ◦
A|2 +

n − 2

n2

∫

Σt

(H − H)2
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= (n − 1)
(

1 − n − 2

n

)∫

Σt

| ◦
A|2 − 1

n

(
1 − n − 2

n

)∫

Σt

(H − H)2

+
2

n

∫

Σt

|A|2 − 2(n − 1)

∫

Σt

A2:
◦

A

H
− 2

n
H

∫

Σt

|A|2
H

− 2(n − 1)

∫

Σt

Hess
1

H
:

◦
A +

2

n

∫

Σt

(H − H)∆
1

H

= 2
n − 1

n

∫

Σt

|A|2 − 2
n − 1

n2

∫

Σt

H2 − 2

n2

∫

Σt

H2 +
2

n2
H

∫

Σt

H

+
2

n

∫

Σt

|A|2 − 2(n − 1)

∫

Σt

trg A3

H
+ 2

n − 1

n

∫

Σt

|A|2

− 2

n
H

∫

Σt

|A|2
H

− 2(n − 1)

∫

Σt

Hess
1

H
:A

2
n − 1

n

∫

Σt

H∆
1

H
+

2

n

∫

Σt

H∆
1

H
− 2

n
H

∫

Σt

∆
1

H

= −2(n − 1)

∫

Σt

trg A3

H
+ 2

2n − 1

n

∫

Σt

|A|2 − 2
1

n

∫

Σt

H2

− 2

n
H

∫

Σt

| ◦
A|2
H

− 2(n − 1)

∫

Σt

Hess
1

H
:A + 2

∫

Σt

H∆
1

H

− 2

n
H

∫

Σt

∆
1

H
.

Using that Σt is closed, we recover, as in the proof of Lemma 3.4, that
∫

Σt
∆ϕ

vanishes for any C2–function ϕ on Σt and that
∫

Σt

Hess ϕ:A =

∫

Σt

n∑

i,j=1

∇i∇jϕAi
j = −

∫

Σt

n∑

i,j=1

∇jϕ∇iA
i
j

= −
∫

Σt

n∑

i,j=1

∇jϕ∇jAi
i =

∫

Σt

n∑

i,j=1

∇j∇jϕAi
i =

∫

Σt

H∆ϕ,

where the Codazzi equations have been used. Similarly, we compute
∫

Σt

H∆
1

H
= −

∫

Σt

n∑

i=1

∇iH∇i
1

H
=

∫

Σt

n∑

i=1

∇iH
∇iH

H2
=

∫

Σt

|∇H |2
H2

,

so that we finally arrive at

d

dt
F(Σt) − n − 2

n
F(Σt) = −2

(
(n − 1)

∫

Σt

trg A3

H
− 2n − 1

n

∫

Σt

|A|2 +
1

n

∫

Σt

H2

)

− 2

n
H

∫

Σt

| ◦
A|2
H

− 2(n − 2)

∫

Σt

|∇H |2
H2

,

which, together with (3.7), immediately implies Lemma 3.7. �
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4.3. Proof of Lemma 3.8. Let α = mini µi denote the smallest µi and define

βi = µi − α (i ∈ {1, . . . , n}),

which are all non–negative. Notice that at least one βi has to vanish. Since µ ∈ π,
we have that

n∑

i=1

βi = 1 − nα and α ∈
[
0,

1

n

]
.

Now write

g(µ) = (n − 1)

n∑

i=1

(α + βi)
3 − 2n − 1

n

n∑

i=1

(α + βi)
2 +

1

n

= n(n − 1)α3 − (2n − 1)α2 +
1

n
+ (n − 1)

n∑

i=1

β3
i

+ 3(n − 1)α

n∑

i=1

β2
i + 3(n − 1)α2

n∑

i=1

βi

− 2n − 1

n

n∑

i=1

β2
i − 2α

2n − 1

n

n∑

i=1

βi

= (1 − nα)
(

−(n − 1)α2 + α +
1

n

)

+ (1 − nα)
(

3(n − 1)α2 − 2α
2n − 1

n

)

+ (n − 1)

n∑

i=1

β3
i +

(
3(n − 1)α − 2n − 1

n

) n∑

i=1

β2
i

=
1

n
(1 − nα)2(1 − 2(n − 1)α)

+ (n − 1)

n∑

i=1

β3
i +

(
3(n − 1)α − 2n − 1

n

) n∑

i=1

β2
i .

Using that

n∑

i=1

β2
i =

n∑

i=1

β
3/2
i β

1/2
i ≤

√√√√
n∑

i=1

β3
i

√√√√
n∑

i=1

βi =
√

1 − nα

√√√√
n∑

i=1

β3
i ,

i.e.

n∑

i=1

β3
i ≥ 1

1 − nα

(
n∑

i=1

β2
i

)2

,
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yields

g(µ) ≥ 1

n
(1 − nα)2(1 − 2(n − 1)α)

+
n − 1

1 − nα

(
n∑

i=1

β2
i

)2

+
(

3(n − 1)α − 2n − 1

n

) n∑

i=1

β2
i ,

where equality holds only if all βi vanish, or all non–zero ones are identical.
Consider now the function

φ : x 7→ n − 1

1 − nα
x2 +

(
3(n − 1)α − 2n − 1

n

)
x,

which is minimal when

x = xcrit = (1 − nα)

(
2n − 1

2n(n − 1)
− 3

2
α

)

and monotonically increasing on [xcrit, +∞). We then have

g(µ) ≥ 1

n
(1 − nα)2(1 − 2(n − 1)α) + φ

(
n∑

i=1

β2
i

)
.

Using that at least one βi vanishes, we can estimate

n∑

i=1

βi ≤
√

n − 1

√√√√
n∑

i=1

β2
i ,

so that
n∑

i=1

β2
i ≥ 1

n − 1

(
n∑

i=1

βi

)2

=
(1 − nα)2

n − 1
.

Notice that equality holds only if all the βi vanish, or (n − 1) of them are non–zero
and identical.

Since
(1 − nα)2

n − 1
≥ xcrit ∀α ≥ − 1

n(n − 3)

and α ≥ 0 by assumption, we see that

g(µ) ≥ 1

n
(1 − nα)2(1 − 2(n − 1)α) + φ

(
(1 − nα)2

n − 1

)

=
n − 2

n(n − 1)
α(1 − nα)2

≥ 0,

where the second equality holds only if α ∈ {0, 1/n} and the first, as already men-
tioned, only if all βi vanish, or all except one of them are non–zero and equal. In
view of the definitions of α and βi, this leaves precisely the two asserted possibilities
and thus concludes the proof. �





CHAPTER 4

About the optimality of some of our results

This chapter is dedicated to producing a few optimality results around the mat-
ters discussed so far. We first show that the constant C =

√
n

n−1
on the right–hand

side of (3.1) is, in fact, optimal among Ricci–positive (i.e. convex) hypersurfaces.
We then argue that the condition Ric ≥ 0 is optimal whenever we are in the sub–
critical setting (i.e. when p < n). Finally, we establish that the constant C =

√
2 is

not the appropriate one for all two–dimensional surfaces, thereby demonstrating the
importance of the additional assumptions in, both, Theorem 3.1 and Theorem 3.3.

Notice that the given counterexamples do not assume unit n–volume. However,
this is irrelevant, since both sides of the main estimate scale identically.
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Proposition 4.1. Let n ≥ 2 and C <
√

n
n−1

be given. Then there is a deformation

Σ of the standard sphere Sn such that

(4.1)

(∫

Σ

∣∣∣∣A − 1

n

(
1

voln(Σ)

∫

Σ

H

)
g

∣∣∣∣
2
) 1

2

> C

(∫

Σ

∣∣∣A − H

n
g
∣∣∣

2
) 1

2

.

Moreover, Σ can be chosen arbitrarily close to Sn, ensuring that RicΣ > 0.

59
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We will prove this proposition by a geometric flow technique.

1.1. Preliminaries. On the set of smooth closed hypersurfaces in Rn+1 we
introduce the functional

(4.2) F(Σ) = (C2 − 1)

∫

Σ

| ◦
A|2 − 1

n

∫

Σ

(
H − 1

voln(Σ)

∫

Σ

H

)2

.

It is immediate to see that F(Σ) is negative if and only if inequality (4.1) holds
(compare with (3.2) of the previous chapter). Notice also that F(Sn) = 0.

Let F0 : Sn → Rn+1 denote the canonical embedding of Sn into Rn+1. Given
a smooth, real–valued function f on Sn, we consider the family of hypersurfaces Σt

given by the embeddings F : Sn × [0, T ] → Rn+1 for some T > 0 and such that
{

F (Sn, 0) = F0(Sn),

∂tF (x, t) = f(x)νt(x) (x ∈ Sn),

where νt(x) denotes the outer unit normal of Σt in F (x, t) (the existence of such an
F should follow from, for instance, [Car65, §§35–48]).

In what follows, we will calculate the second derivative of F(Σt) at t = 0 and
show that we can choose an f : Sn → R such that





d
dt

F(Σt)
∣∣
t=0

= 0,

d2

dt2 F(Σt)

∣∣∣
t=0

< 0.

This shows that we can deform Sn slightly to obtain a surface that satisfies (4.1),
which proves the optimality of (3.1) (obviously, by continuity, the deformation of Sn

thus obtained will have non–negative Ricci curvature for t small enough).
In the sequel, we shall omit the subscript t for the sake of readability.

1.2. The first variation of F. We choose any coordinate patch and compute

∂tgij = ∂t 〈∂iF, ∂jF 〉 = 〈∂i∂tF, ∂jF 〉 + 〈∂iF, ∂j∂tF 〉 = 2fAij ,(4.3a)

∂tg
ij = −

n∑

k,l=1

gikgjl∂tgkl

(4.3a)

= −2fAij ,(4.3b)

∂t

√
det g =

1

2
√

det g
∂t det g =

1

2
√

det g
det g trg (∂tg)

(4.3a)

= f trg(A)
√

det g(4.3c)

= fH
√

det g.

On the other hand,

∂t∂iF = (∂if)ν + f(∂iν) = (∂if)ν + f

n∑

k=1

Ak
i∂kF,(4.3d)

∂tν =

n∑

i,j=1

〈∂tν, ∂iF 〉 gij∂jF = −
n∑

i,j=1

〈ν, ∂t∂iF 〉 gij∂jF
(4.3d)

= −∇f.(4.3e)
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Consequently,

∂tAij = ∂t 〈∂iν, ∂jF 〉 = 〈∂i∂tν, ∂jF 〉 + 〈∂iν, ∂t∂jF 〉(4.3f)
(4.3d)&(4.3e)

= − 〈∂i∇f, ∂jF 〉 + f

n∑

k=1

Ak
jAki = − Hessij f + f(A2)ij

and

∂tH =

n∑

i,j=1

(∂tg
ij)Aij +

n∑

i,j=1

gij(∂tAij)
(4.3b)&(4.3f)

= −∆f − f |A|2 ,(4.3g)

from which

∂t

◦
Aij = ∂tAij − 1

n
(∂tH)gij − 1

n
H(∂tgij)(4.3h)

(4.3a),(4.3f)&(4.3g)

= − Hessij f +
1

n
∆fgij + f

(
(A2)ij − 1

n
HAij

)

+
1

n
f
(
|A|2 gij − HAij

)

= − Hessij f +
1

n
∆fgij + f(A

◦
A)ij

+
1

n
f

((
| ◦
A|2 +

H2

n

)
gij − H

( ◦
Aij +

1

n
Hgij

))
,

= − Hessij f +
1

n
∆fgij + f(A

◦
A)ij +

1

n
f | ◦

A|2 gij − 1

n
fH

◦
Aij ,

∂t |A|2 = 2

n∑

i,j,k,l=1

gikAkl

(
(∂tg

jl)Aij + gjl(∂tAij)
)

(4.3i)

(4.3b)&(4.3f)

= −4f

n∑

i,j,l=1

Ai
lA

ljAji − 2 Hess f :A + 2

n∑

i,j,k=1

fAijA k
j Aki

= −2 Hess f :A − 2f trg(A3)

and

∂t | ◦
A|2 = ∂t

(
|A|2 − 1

n
H2
)

= ∂t |A|2 − 2

n
H(∂tH)(4.3j)

(4.3g)&(4.3i)

= −2 Hess f :A − 2f trg(A3) +
2

n
H∆f +

2

n
fH |A|2

= −2 Hess f :
◦

A − 2fA2:
◦

A.

By (4.3c), we have for any smooth function ϕ : Sn × [0, T ] → R

(4.3k)
d

dt

∫

Σ

ϕ
(4.3c)

=

∫

Σ

fHϕ +

∫

Σ

∂tϕ.
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As a consequence, we get

(4.3l)
d

dt

∫

Σ

| ◦
A|2
(4.3j)&(4.3k)

=

∫

Σ

fH | ◦
A|2 − 2

∫

Σ

Hess f :
◦

A − 2

∫

Σ

fA2:
◦

A.

On the other hand, if we introduce the notation

ϕ =
1

voln(Σ)

∫

Σ

ϕ,

we have

(4.3m)
d

dt
ϕ

(4.3k)&(4.3n)

=
1

voln(Σ)

(∫

Σ

fH(ϕ − ϕ) +

∫

Σ

∂tϕ

)
,

since

(4.3n)
d

dt

1

voln(Σ)
= − 1

vol2n(Σ)

d

dt

∫

Σ

1
(4.3k)

= − 1

vol2n(Σ)

∫

Σ

fH.

Therefore,

∂t(ϕ − ϕ)
(4.3m)

= ∂tϕ − (∂tϕ) − (fH(ϕ − ϕ))(4.3o)

and

d

dt

∫

Σ

(ϕ − ϕ)2

(4.3k)&(4.3o)

=

∫

Σ

fH(ϕ − ϕ)2 + 2

∫

Σ

(ϕ − ϕ) (∂t(ϕ − ϕ))(4.3p)

=

∫

Σ

fH(ϕ − ϕ)2 + 2

∫

Σ

(ϕ − ϕ)∂tϕ,

where we have used that
∫

Σ
(ϕ − ϕ) = 0. It follows that

∂t(H − H)
(4.3g)&(4.3o)

= −∆f − f |A|2 + (∆f + f |A|2) − (fH(H − H))(4.3q)

and

d

dt

∫

Σ

(H − H)2

(4.3g)&(4.3p)

=

∫

Σ

fH(H − H)2 − 2

∫

Σ

(H − H)∆f − 2

∫

Σ

f |A|2 (H − H).

(4.3r)

Putting all this together finally yields

d

dt
F(Σ)

(4.3l)&(4.3r)

= (C2 − 1)

(∫

Σ

fH | ◦
A|2 − 2

∫

Σ

Hess f :
◦

A − 2

∫

Σ

fA2:
◦

A

)(4.3s)

− 1

n

(∫

Σ

fH(H − H)2 − 2

∫

Σ

(H − H)∆f − 2

∫

Σ

f |A|2 (H − H)

)
.



1. THE OPTIMALITY OF THE CONSTANT C =
√

n
n−1

IN THEOREM 3.1 63

Since
◦

A vanishes on Sn = Σ|t=0, whereas H is constant there, we immediately see
that, for any f ,

d

dt

∣∣∣
t=0

F(Σ) = 0.

Consequently, Sn is a critical point of F and it makes sense to study the second
order variation of F at t = 0. This is precisely what we wish to do next.

1.3. The second variation of F. If we denote by η the canonical metric on
Sn, we have at t = 0

g|t=0 = η,

A|t=0 = η,

H |t=0 = n,
◦

A|t=0 = 0

and

(H − H)|t=0 = 0.

Omitting any subscript Sn on quantities or operators which are now evaluated on
Sn = Σt

∣∣
t=0

rather than on Σt, we obtain from (4.3h), (4.3j) and (4.3q)

∂t|t=0

◦
A

(4.3h)

= − Hess f +
1

n
(∆f)η,(4.4a)

∂t|t=0 | ◦
A|2

(4.3j)

= 0,(4.4b)

∂t|t=0 (H − H)
(4.3q)

= −∆f − f |η|2 + (∆f + f |η|2)(4.4c)

and

∂t|t=0 (H − H)2 = 2
(
(H − H)(∂t(H − H))

)∣∣
t=0

= 0.(4.4d)

In view of the vanishing of
◦

A and (H − H) at t = 0, these are sufficient to compute
the second variation of F . Indeed, from (4.3s) we obtain using the identities above

d2

dt2

∣∣∣∣
t=0

F(Σ) = (C2 − 1)

(
−2

∫

Sn

Hess f :
(

− Hess f +
1

n
η∆f

)
(4.4e)

− 2

∫

Sn

fη2:
(

− Hess f +
1

n
η∆f

))

− 1

n

(
−2

∫

Sn

∆f
(
−∆f − fn2 + (∆f + fn2)

)

− 2

∫

Sn

fn2
(
−∆f − fn2 + (∆f + fn2)

)
)
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= (C2 − 1)

(
2

∫

Sn

Hess f :
◦

Hessf + 2

∫

Sn

f∆f − 2

∫

Sn

n

n
f∆f

)

− 2

n

(∫

Sn

∆f
(
∆f + nf − (∆f + nf)

)

+

∫

Sn

nf
(
∆f + nf − (∆f + nf)

)
)

= 2(C2 − 1)

∫

Sn

| ◦
Hessf |2 − 2

n

∫

Sn

(
∆f + nf − (∆f + nf)

)2
,

where
◦

Hessf = Hess f − 1
n

(∆f)g is the traceless part of Hess f , and we have used
that

∫
Sn(ϕ − ϕ) = 0 for any smooth function ϕ on Sn.

1.4. Proof of Proposition 4.1. By the same calculation as in (3.3) of Sec-
tion 1, Chapter 3, we have
∫

Sn

|Hess f |2 =

∫

Sn

(∆f)2 −
∫

Sn

Ric(∇f, ∇f) =

∫

Sn

(∆f)2 − (n − 1)

∫

Sn

|∇f |2 ,

since Ric = (n − 1)η on Sn. Consequently,
∫

Sn

| ◦
Hessf |2 =

n − 1

n

∫

Sn

(∆f)2 − (n − 1)

∫

Sn

|∇f |2 .

On the other hand, if we assume that f = 0, we obtain through partial integration
∫

Sn

(
∆f + nf − (∆f + nf)

)2
=

∫

Sn

(∆f)2 + 2n

∫

Sn

f∆f + n2

∫

Sn

f2

− 1

voln(Sn)

(∫

Sn

∆f + n

∫

Sn

f

)2

=

∫

Sn

(∆f)2 − 2n

∫

Sn

|∇f |2 + n2

∫

Sn

f2.

Hence, (4.4e) is equivalent to

d2

dt2

∣∣∣∣
t=0

F(Σ) = 2
(

C2 n − 1

n
− 1
)∫

Sn

(∆f)2 − 2n
(

C2 n − 1

n
− 1
)∫

Sn

|∇f |2
(4.5)

+ 2

(∫

Sn

|∇f |2 − n

∫

Sn

f2

)

= 2
(

C2 n − 1

n
− 1
)∫

Sn

(
(∆f)2 − n |∇f |2

)
+ 2

∫

Sn

(
|∇f |2 − nf2

)
,

as long as we require
∫

Sn f = 0.
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Now let f be a spherical harmonic of order k, where k > 1 will be chosen below,
and set α =

(
C2 n−1

n
− 1
)
. f satisfies −∆f = k(k+n−1)f , f = 0, and (4.5) becomes

d2

dt2

∣∣∣∣
t=0

F(Σ) = 2α
(
k2(k + n − 1)2 − nk(k + n − 1)

) ∫

Sn

f2(4.6)

+ 2 (k(k + n − 1) − n)

∫

Sn

f2

= 2

(∫

Sn

f2

)(
αk(k + n − 1)

(
k(k + n − 1) − n

)

+
(
k(k + n − 1) − n

))

= 2(k − 1)(k + n)

(∫

Sn

f2

)(
αk(k + n − 1) + 1

)
.

For k > 1, this quantity is negative whenever

αk(k + n − 1) + 1 < 0,

which can be achieved as soon as

k >

√
(n − 1)2

4
+

n

n − C2(n − 1)
− n − 1

2
,

since we had assumed that α =
(
C2 n−1

n
− 1
)

< 0. As a result, there exists a function

on Sn such that d2

dt2

∣∣∣
t=0

F(Σ) < 0 and the Proposition is proved. �

2. The optimality of the assumption Ric ≥ 0 for the general sub–critical

estimate

In this section we prove that, for p ∈ [1, n), there are surfaces for which estimate
(3.1) fails (for any constant) if we don’t assume the Ricci curvature to be non–
negative. This will be a direct consequence of the following proposition which is an
easy generalisation of Proposition 7.1 in [DLM05].

Proposition 4.2 (De Lellis, Müller, P.). Let n ≥ 2 be given. There exists a family
of smooth, closed, connected hypersurfaces Σǫ ⊂ Rn+1 such that:

C ≥ voln(Σǫ) ≥ c > 0, for every ǫ > 0;(4.7a)

lim
ǫց0

voln({q ∈ Σǫ| Ric(q) < 0}) = 0;(4.7b)

lim
ǫց0

∫

Σǫ

| ◦
A|p = 0, for every p ∈ [1, n);(4.7c)

Σǫ converges in the Hausdorff topology(4.7d)

to the union of two round spheres;
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and

lim
ǫց0

(
inf

λ

∫

Σǫ

|A − λg|p
)

> 0, for every p ∈ [1, n).(4.7e)

In particular, this immediately implies

Corollary 4.3. Assume n > 2. Then, for every C > 0 and every δ > 0 we can find
a smooth, closed hypersurface Σ in Rn+1 such that

(∫

Σ

∣∣∣∣A − H

n
g

∣∣∣∣
2
) 1

2

> C

(∫

Σ

| ◦
A|2
) 1

2

,

and where the portion of Σ on which the Ricci curvature is negative has n–dimensional
volume smaller than δ.

The proof of Proposition 4.2 presented below follows closely the construction in
[DLM05]. The idea is to consider two round spheres of radii 1 and 1/2, respectively,
and glue them together with a small hyperbolic neck so that the Lp–norm of the
second fundamental form on that neck becomes arbitrarily small. As in [DLM05],
we choose a catenoidal neck to simplify the computations.

2.1. Preliminaries. Let I be a closed interval. We call a hypersurface Σ ⊂
Rn+1 hypersurface of revolution (around the xn+1–axis) if there exist two smooth
functions f and h on I , with f > 0 and (f ′)2 + (h′)2 > 0 on the interior intI of I ,
and such that Σ is parametrised by the map

F : Sn−1 × I → Rn+1

(x, t) 7→ (f(t)Φ(x), h(t)) ,

where Φ denotes the canonical embedding of Sn−1 into Rn. We call the curve φ :
I → R2, t 7→ (f(t), h(t)) the generating curve of Σ, and assume it is injective.

In the coordinates (x, t), the metric of Σ and its inverse are given by

g =

(
f2η 0
0 (f ′)2 + (h′)2

)
and g−1 =

(
f−2η−1 0

0 1
(f ′)2+(h′)2

)
,

where η denotes the canonical metric on Sn−1. Consequently,

(4.8a)
√

det g = fn−1
√

(f ′)2 + (h′)2
√

det η.

One easily checks that the outward unit normal on Σ is given by

ν =
1√

(f ′)2 + (h′)2

(
h′Φ, −f ′) .

Then one computes immediately

A =
1√

(f ′)2 + (h′)2

(
fh′η 0

0 f ′h′′ − f ′′h′

)
(4.8b)
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and

H =
(n − 1) h′

f
+ f ′h′′−f ′′h′

(f ′)2+(h′)2√
(f ′)2 + (h′)2

.(4.8c)

2.2. Detailed construction. For ǫ ∈
(
0, 2−(n−1)

]
, consider the three families

Su
ǫ , Cǫ and Sl

ǫ of hypersurfaces of revolution given by the parametrisations

FSu
ǫ

: Sn−1 ×
[
zu

ǫ , cu
ǫ +

1

2

]
, (x, t) 7→

(√
1

4
− (cu

ǫ − t)2Φ(x), t

)
,

FCǫ : Sn−1 ×
[
tl

ǫ, tu
ǫ

]
,

(x, t) 7→
(

n−1

√
ǫ cosh

(
(n − 1)t

ǫ

)
Φ(x),

∫ t

0

(
ǫ cosh

(
(n − 1)s

ǫ

))− n−2
n−1

ds

)
,

and

FSl
ǫ

: Sn−1 ×
[
cl

ǫ − 1, zl
ǫ

]
, (x, t) 7→

(√
1 − (cl

ǫ − t)2Φ(x), t
)

,

respectively, where

tu
ǫ =

ǫ

n − 1
arccosh

(
n
√

2

2 n
√

ǫ

)
, tl

ǫ = − ǫ

n − 1
arccosh

(
1

n
√

ǫ

)
,

zu
ǫ =

∫ tu
ǫ

0

(
ǫ cosh

(
(n − 1)s

ǫ

))− n−2
n−1

ds, zl
ǫ =

∫ tl
ǫ

0

(
ǫ cosh

(
(n − 1)s

ǫ

))− n−2
n−1

ds

and

cu
ǫ = zu

ǫ +

√
1

4
− ǫ2/n

22/n
, cl

ǫ = zl
ǫ −
√

1 − ǫ2/n.

The parameters c
u/l
ǫ , z

u/l
ǫ and t

u/l
ǫ were chosen such that, for each ǫ ∈

(
0, 2−(n−1)

]
,

Σǫ = Su
ǫ ∪ Cǫ ∪ Sl

ǫ is a closed hypersurface of revolution, generated by a C1–curve
which is piecewise C∞. Its constituents are a portion Su

ǫ of a sphere of radius 1/2

and a portion Sl
ǫ of a sphere of radius 1 (so that

◦
A
∣∣

S
u/l
ǫ

= 0), connected by a

catenoidal neck Cǫ (so that H
∣∣
Cǫ

= 0, as is immediately verified using (4.8c)). The

sets γu
ǫ = Su

ǫ ∩ Cǫ and γl
ǫ = Sl

ǫ ∩ Cǫ on which the constituents touch are (n − 1)–
dimensional spheres of radius n

√
ǫ and n

√
ǫ/2, respectively (see Figure 4.1).

Remark 4.4. It might not be completely obvious why the resulting surface should be
C1. At the top and bottom it is clear that only a coordinate singularity occurs. At

the two junctions γ
u/l
ǫ , however, a short computation shows that the tangent spaces

on both sides coincide. Hence we could re–parametrise the three generating curves to
get a single C1–curve (for instance as the graph over [cl

ǫ − 1, cu
ǫ + 1/2] in the variable

xn+1).
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Sl
ǫ

Cǫ

Su
ǫ

γl
ǫ

γu
ǫ

cl
ǫ

zl
ǫ

zu
ǫ

cu
ǫ

1

n
√

ǫ

n−1
√

ǫ

n
√

ǫ/2

1
2

Figure 4.1.

2.3. Proof of Proposition 4.2. We use the construction of the previous sub-
section. One immediately sees that, as ǫ ց 0,

zu
ǫ ց 0 , zl

ǫ ր 0 , cu
ǫ ց 1

2
and cl

ǫ ր −1.

Therefore, since the radii of γu
ǫ and γl

ǫ also converge to zero, we conclude that

(4.9) Su
ǫ and Sl

ǫ converge, respectively, to a sphere Su
0 of radius

1

2
and

to a sphere Sl
0 of radius 1, which are tangent at the origin in R

n+1.

Now observe that
(4.10a)

cosh

(
(n − 1)t

ǫ

)
∈
[
1, max

{
2− n−1

n ǫ− 1
n , ǫ− 1

n

}]
=
[
1, ǫ− 1

n

]
on
[
tl

ǫ, tu
ǫ

]
.

Moreover,

tu
ǫ − tl

ǫ =
ǫ

n − 1

(
arccosh

(
2− n−1

n ǫ− 1
n

)
+ arccosh

(
ǫ− 1

n

))

∈
[

ǫ

n(n − 1)
ln
(
2−(n−1)ǫ−2

)
,

ǫ

n(n − 1)
ln
(
2n+1ǫ−2

)]
,(4.10b)
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which can be seen using the trivial estimate

ln t ≤ arccosh t = ln
(

t +
√

t2 − 1
)

≤ ln(2t) ∀t ≥ 1.

As a consequence, setting ωn−1 = voln−1(Sn−1),

voln(Cǫ) =

∫

Cǫ

1 = ωn−1

∫ tu
ǫ

tl
ǫ

√
det g dt

(4.8a)
= ωn−1

∫ tu
ǫ

tl
ǫ

ǫ
1

n−1 cosh
n

n−1

(
(n − 1)t

ǫ

)
dt

(4.10a)&(4.10b)

≤ ωn−1

n(n − 1)
ǫ ln
(
2n+1ǫ−2

) ǫց0−→ 0,

(4.11)

which implies (4.7b) and, together with (4.9), (4.7d). Also, we immediately get
(4.7a). Thus it remains to show (4.7c) and (4.7e).

For (4.7c), we first use (4.8b) to obtain

|A|p
∣∣

Cǫ
= n

p
2 (n − 1)

p
2 ǫ− p

n−1 cosh− np
n−1

(
(n − 1)t

ǫ

)
.

Then, with (4.8a), we calculate
∫

Cǫ

|A|p = ωn−1

∫ tu
ǫ

tl
ǫ

|A|p
√

det g dt

= ωn−1

∫ tu
ǫ

tl
ǫ

n
p
2 (n − 1)

p
2 ǫ− p−1

n−1 cosh− n(p−1)
n−1

(
(n − 1)t

ǫ

)
dt.

Finally, we use (4.10a) and (4.10b) to conclude
∫

Cǫ

|A|p ∈
[
(n(n − 1))

p−2
2 ǫ ln

(
2−(n−1)ǫ−2

)
, (n(n − 1))

p−2
2 ǫ

n−p
n−1 ln

(
2−(n−1)ǫ−2

)]
.

Hence

(4.12) lim
ǫց0

∫

Cǫ

|A|p = 0,

and the fact that H vanishes on Cǫ, whereas
◦

A vanishes on Sl
ǫ and Su

ǫ , implies
immediately (4.7c).

For (4.7e), we use (4.9), (4.11) and (4.12) to get

lim
ǫց0

(
inf

λ

∫

Σǫ

|A − λg|p
)

= inf
λ

(∫

Sl
0

|A − λg|p +

∫

Su
0

|A − λg|p
)

= inf
λ

(
ωnn

p
2 |1 − λ|p +

ωnn
p
2

2n

∣∣∣1
2

− λ
∣∣∣

p
)

> 0.

As already mentioned in the previous subsection, the hypersurfaces Σǫ are only
C1. They are, however, hypersurfaces of revolution. The curves generating them
are C1 and piecewise C∞ (see Remark 4.4), bearing two jump discontinuities in
their higher derivatives. A standard smoothing argument therefore yields a family
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of hypersurfaces of revolution satisfying the requirements of Proposition 4.2. This
finishes the proof. �

Remark 4.5. The interested reader might wonder whether the surfaces just con-
structed fulfil (in the case n = 2) the assumptions of Theorem 3.3. In view of our
comments at the beginning of Section 3 in Chapter 3, we only need to check whether
these surfaces are star–shaped. However, an easy calculation shows that they are not,
as soon as

(√
1 − ǫ

r
arccosh

√
r

ǫ

)∣∣∣∣∣
r= 1

2

> 1.

But this is always true for ǫ small enough.

3. Generic two–dimensional surfaces fail to satisfy the L2–estimate with

C =
√

2

In this section we want to show that there are surfaces in R3 for which estimate
(3.4) fails, thereby demonstrating that additional assumptions, as in theorems 3.1
and 3.3, are essential. More precisely, we wish to prove the following proposition.

Proposition 4.6 (De Lellis, Topping, P.). There exists a family of smooth, closed,
connected surfaces Σǫ ⊂ R3 such that

C ≥ voln(Σǫ) ≥ c > 0, for every ǫ > 0;(4.13a)

Σǫ converges in the Hausdorff topology(4.13b)

to a double copy of a round sphere;

and

lim
ǫց0

∫

Σǫ

∣∣∣∣A − 1

2vol2(Σǫ)

(∫

Σǫ

H

)
g

∣∣∣∣
2

∫

Σǫ

| ◦
A|2

= 3.(4.13c)

The idea is very similar to the one in Section 2, the only difference being that,
this time, we attach two concentric spheres of almost the same radius by a catenoidal
neck. Of course, to do this smoothly enough (i.e. at least C1), there will be a
transition zone to take into account. Below we give the construction in detail.

3.1. Detailed construction. Let r > 0. We use the notations and calculations
of Section 2. For ǫ ∈ (0, r), consider the four families So

ǫ , Pǫ, Cǫ and Si
ǫ of surfaces
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of revolution given by the parametrisations

FSo
ǫ

: S1 × [cǫ − r − δǫ, zǫ] , (x, t) 7→
(√

(r + δǫ)2 − (cǫ − t)2Φ(x), t

)
,

FPǫ : S1 ×
[
−ρǫ −

√
ǫ

r
δǫ, −ρǫ

]
,

(x, t) 7→
(

−tΦ(x), zǫ + αǫ

((√
ǫ

r

δǫ

2

)2

−
(

t + ρǫ +
√

ǫ

r

δǫ

2

)2
))

,

FCǫ : S1 × [−zǫ, zǫ] , (x, t) 7→
(

ǫ cosh
(

t

ǫ

)
Φ(x), −t

)
,

and

FSi
ǫ

: S1 × [zǫ, r − cǫ] , (x, t) 7→
(√

r2 − (cǫ + t)2Φ(x), −t
)

,

respectively, where the parameters

zǫ = ǫ arccosh
(√

r

ǫ

)
, cǫ = −r

√
1 − ǫ

r
− zǫ,

δǫ =
2zǫ√
1 − ǫ

r

, αǫ =
1

2zǫ

and

ρǫ =
√

rǫ

were chosen such that, for each ǫ ∈ (0, r), Σǫ = Si
ǫ ∪ Cǫ ∪ Pǫ ∪ So

ǫ is a closed surface
of revolution, generated by a C1–curve which is piecewise C∞. Its constituents are a
portion Si

ǫ of a sphere of radius r inside a portion So
ǫ of a concentric sphere of radius

r + δǫ (so that
◦

A
∣∣

S
i/o
ǫ

= 0), connected by a catenoidal neck Cǫ (so that H
∣∣
Cǫ

= 0)

and a transitional region Pǫ the cross–section of which is a piece of parabola. The
sets γi

ǫ = Si
ǫ ∩ Cǫ, γm

ǫ = Cǫ ∩ Pǫ and γo
ǫ = So

ǫ ∩ Pǫ on which the constituents touch
are circles of radius ρǫ, ρǫ and ρǫ +

√
ǫ
r
, respectively (see Figure 4.2). Notice that a

remark analogous to Remark 4.4 holds here also.

3.2. Proof of Proposition 4.6. In the construction of the previous subsection,
letting ǫ ց 0, one immediately sees that

zǫ ց 0, cǫ ր −r and δǫ ց 0.

Since the radii of γi
ǫ, γm

ǫ and γo
ǫ also converge to zero, we conclude that

(4.14)

Si
ǫ and So

ǫ converge each to a sphere S0 of radius r, with opposite orientations.

We now prove that the areas of Pǫ and Cǫ converge to zero as ǫ ց 0. Let τǫ(t)
denote the derivative with respect to t of the second component of FPǫ , i.e.

τǫ(t) = − t + ρǫ

zǫ
− 1√

r
ǫ

− 1
.
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So
ǫ

Pǫ

Cǫ

Si
ǫ

γo
ǫγm

ǫ

γi
ǫ

zǫ

−zǫ

cǫ

ρǫ ρǫ +
√

ǫ
r
δǫ

r δǫ

Figure 4.2.

Then

τǫ(t) ∈
[

− 1√
r
ǫ

− 1
,

1√
r
ǫ

− 1

]
for t ∈

[
−ρǫ −

√
ǫ

r
δǫ, −ρǫ

]
.

Consequently, in view of (4.8a),

√
det g

∣∣∣
Pǫ

(t) = −t
√

1 + τ 2
ǫ (t) ≤ r√

r
ǫ

− 1
+

2zǫ

√
ǫ
r

1 − ǫ
r

for t ∈
[
−ρǫ −

√
ǫ

r
δǫ, −ρǫ

]
.

Thus

vol2(Pǫ) =

∫

Pǫ

1 ≤ 2π

(
r√

r
ǫ

− 1
+

2zǫ

√
ǫ
r

1 − ǫ
r

)√
ǫ

r

2zǫ√
1 − ǫ

r

=
4πrzǫ
r
ǫ

− 1
+

8πǫz2
ǫ

r
(
1 − ǫ

r

)3/2

ǫց0−→ 0.

Similarly, √
det g

∣∣∣
Cǫ

(t) = ǫ cosh2
(

t

ǫ

)
∈ [ǫ, r] for t ∈ [−zǫ, zǫ],

and so

vol2(Cǫ) =

∫

Cǫ

1 ≤ 4πrǫ arccosh

√
r

ǫ
≤ 4πrǫ ln

(
2

√
r

ǫ

)
= 2πrǫ ln

(
4r

ǫ

)
ǫց0−→ 0,

where we have used, once again,

ln t ≤ arccosh t = ln
(

t +
√

t2 − 1
)

≤ ln(2t) ∀t ≥ 1.

With (4.14), we conclude (4.13b) and (4.13a). It remains to show (4.13c).
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We begin with showing that limǫց0

∫
Σǫ

| ◦
A|2 = 8π. Since

◦
A
∣∣

S
i/o
ǫ

= 0, we infer

from (4.14) that limǫց0

∫
S

i/o
ǫ

| ◦
A|2 = 0. On Cǫ, (4.8b) and (4.8c) imply that

| ◦
A|2
∣∣∣
Cǫ

(t) =
2

ǫ2 cosh4
(

t
ǫ

) , t ∈ [−zǫ, zǫ].

Consequently, since
√

det g
∣∣∣

Cǫ

(t) = ǫ cosh2
(

t
ǫ

)
,

∫

Cǫ

| ◦
A|2 = 4π

∫ ǫ arccosh
√

r
ǫ

−ǫ arccosh
√

r
ǫ

dt

ǫ cosh2
(

t
ǫ

) = 8π

∫ √
r
ǫ

1

ds

s2
√

s2 − 1

= 8π

[√
1 − 1

s

]√
ǫ
r

s=1

= 8π

√
1 − ǫ

r

ǫց0−→ 8π.

Similarly, in view of (4.8a), (4.8b) and (4.8c), we have on Pǫ,

| ◦
A|2
√

det g
∣∣∣

Pǫ

(t) = − t

2
√

1 + τ 2
ǫ (t)

(
τǫ(t)

t
+

1

zǫ (1 + τ 2
ǫ (t))

)2

,

t ∈
[
−ρǫ −

√
ǫ

r
δǫ, −ρǫ

]
,

where, again, τǫ(t) is given by

τǫ(t) = − t + ρǫ

zǫ
− 1√

r
ǫ

− 1
.

For t ∈
[
−ρǫ −

√
ǫ
r
δǫ, −ρǫ

]
,

−t

2
√

1 + τ 2
ǫ (t)

∈
[√

ǫ
√

r − ǫ

2
,

√
rǫ

2
+

zǫ√
r
ǫ

− 1

]
.

Moreover,

τǫ(t)

t
∈
[

− 1

2zǫ +
√

r2 − rǫ
,

1√
r2 − rǫ

]
and

1

zǫ (1 + τ 2
ǫ (t))

∈
[

1 − ǫ
r

zǫ
,

1

zǫ

]
,

so that

τǫ(t)

t
+

1

zǫ (1 + τ 2
ǫ (t))

∈
[

1 − ǫ
r

zǫ
− 1

2zǫ +
√

r2 − rǫ
,

1

zǫ
+

1√
r2 − rǫ

]
.

For ǫ small enough, the lower bound is non–negative, and we can estimate

| ◦
A|2
√

det g
∣∣∣

Pǫ

≤
√

rǫ

2z2
ǫ

+
2

zǫ

√
r
ǫ

− 1
+

5

2
√

rǫ
(

r
ǫ

− 1
) +

zǫ

rǫ
(

r
ǫ

− 1
)3/2

.

Consequently,
∫

Pǫ

| ◦
A|2 ≤ 2πrǫ√

r2 − rǫzǫ

+
8πrǫ

r2 − rǫ
+

10πrǫzǫ

(r2 − rǫ)3/2
+

4πrǫz2
ǫ

(r2 − rǫ)2

ǫց0−→ 0,
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and we conclude that, indeed,

lim
ǫց0

∫

Σǫ

| ◦
A|2 = 8π.

In order to establish that

lim
ǫց0

∫

Σǫ

∣∣∣∣A − H

2
g

∣∣∣∣
2

= 24π,

where H = 1
vol2(Σǫ)

∫
Σǫ

H , we proceed in a completely analogous manner. First, on
Pǫ, we get
∫

Pǫ

H2 = 2π

∫ −√
rǫ

−√
rǫ− 2zǫ√

r
ǫ

−1

−t√
1 + τ 2

ǫ (t)

(
− τǫ(t)

t
+

1

zǫ (1 + τ 2
ǫ (t))

)2

dt

≤ 4πǫ
√

r√
r − ǫ

(
1

zǫ
+

2√
r2 − rǫ + 2zǫ

+
1√

r2 − rǫ
+

zǫ(√
r2 − rǫ + 2zǫ

)2

+
2zǫ(√

r2 − rǫ + 2zǫ

)√
r2 − rǫ

+
z2

ǫ(√
r2 − rǫ + 2zǫ

)2 √
r2 − rǫ

)

ǫց0−→ 0.

Since limǫց0 vol2(Pǫ) = 0, this also implies

lim
ǫց0

∣∣∣∣
∫

Pǫ

H

∣∣∣∣ ≤ lim
ǫց0

(
vol2(Pǫ)

∫

Pǫ

H2

)1/2

= 0.

Next, on S
i/o
ǫ , we calculate∫

Si
ǫ

H = −4π (zǫ − (cǫ − r)) = −4π
(

2zǫ + r
(

1 +

√
1 − ǫ

r

))
ǫց0−→ −8πr,

∫

Si
ǫ

H2 =
8π

r
(zǫ − (cǫ − r)) =

8π

r

(
2zǫ + r

(
1 +

√
1 − ǫ

r

))
ǫց0−→ 16π,

∫

So
ǫ

H = 4π (zǫ − (cǫ − r − δǫ))

= 4π

(
2zǫ

(
1 +

1√
1 − ǫ

r

)
+ r
(

1 +
√

1 − ǫ

r

))
ǫց0−→ 8πr

and
∫

So
ǫ

H2 =
8π

r + δǫ
(zǫ − (cǫ − r − δǫ))

=
8π

r + 2zǫ√
1− ǫ

r

(
2zǫ

(
1 +

1√
1 − ǫ

r

)
+ r
(

1 +

√
1 − ǫ

r

))
ǫց0−→ 16π,
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where we have used that, on a sphere of radius R, H = 2/R and
√

det g = R. Finally,
in view of H

∣∣
Cǫ

= 0, we conclude that

lim
ǫց0

∫

Σǫ

H = 0 and lim
ǫց0

∫

Σǫ

H2 = 32π.

Thus

lim
ǫց0

∫

Σǫ

∣∣∣∣A − H

2
g

∣∣∣∣
2

= lim
ǫց0

(∫

Σǫ

| ◦
A|2 +

1

2

∫

Σǫ

H2 − 1

2
H

∫

Σǫ

H

)

= 24π,

as claimed. This establishes (4.13c). As in Section 2, a standard smoothing argument
on the generating curves of the family Σǫ yields the full statement of Proposition 4.6.

�

Remark 4.7. One might be tempted to think that, by the same technique, we could
attach even more spheres inside the ones just constructed in order to obtain a bigger
quotient in (4.13c). However, a quick inspection reveals that

lim
ǫց0

∫

ΣN
ǫ

∣∣∣∣A − 1

2vol2(ΣN
ǫ )

(∫

ΣN
ǫ

H

)
g

∣∣∣∣
2

∫

ΣN
ǫ

| ◦
A|2

=





2, N odd,

2 + 1
N−1

, N even,

if we arrange that ΣN
ǫ converges to N ≥ 2 copies of a sphere S0 of radius r.





APPENDIX A

A few small lemmas

This appendix contains three little results that were used in the thesis but did
not really fit anywhere else. In particular, we feel that stating and proving them at
the locations where they were used would have broken too much the current train of
thoughts. Also, we think that they might be interesting on their own right.

Contents
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2. On the restriction of the second fundamental form to a

linear subspace 79

3. On the variation of the Gauss map along a curve in a

convex hypersurface 80

1. A Morrey–type estimate

In this section we want to show the following variation of Morrey’s embedding
theorem, valid for W 1,p–functions (p > n) on the open ball BR(0) of radius R > 0
around the origin in Rn (n ≥ 1).

Lemma A.1. If R > 0, n < p ≤ ∞, u ∈ W 1,p(BR(0)) and α = 1 − n/p, then there
is a constant C, depending only on n and p, such that

sup
x,y∈BR(0)

x 6=y

|u(x) − u(y)|
|x − y|α ≤ C ‖Du‖Lp(BR(0)) .

Proof. Since W 1,p ∩C∞ is dense in W 1,p for all p and on any domain (cf., e.g.,
[Eva98, Thm.2, §5.3.2, p.251]), we will henceforth assume that u ∈ W 1,p(BR(0)) ∩
C∞(BR(0)). The usual Morrey estimate is as follows (see, e.g., Corollary IX.14 on
p.168 in [Bre83]):

sup
x∈BR(0)

|u(x)| + sup
x,y∈BR(0)

x 6=y

|u(x) − u(y)|
|x − y|α ≤ CR

(
‖u‖Lp(BR(0)) + ‖Du‖Lp(BR(0))

)
,

where CR is a constant independent of u, but depending on the radius R of the ball
under consideration (as well as on n and p). The Lemma therefore states that the
Hölder semi–norm of u can be bounded only by the Lp norm of its derivative, and

77
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that this can be done independently of the size of the ball u is defined on. The proof
of this is done by a scaling argument.

Set v(x) = u(Rx). Then v ∈ W 1,p(B1(0))∩C∞(B1(0)). Moreover, we have that

sup
x∈B1(0)

|v(x)| = sup
x∈BR(0)

|u(x)| ,

sup
x,y∈B1(0)

x 6=y

|v(x) − v(y)|
|x − y|α = sup

x,y∈B1(0)
x 6=y

|u(Rx) − u(Ry)|
|Rx − Ry|α Rα

= Rα sup
x,y∈BR(0)

x 6=y

|u(x) − u(y)|
|x − y|α ,

‖v‖Lp(B1(0)) =

(∫

B1(0)

|v(x)|p dx

) 1
p

=

(
1

Rn

∫

B1(0)

|u(Rx)|p d(Rx)

) 1
p

= R− n
p ‖u‖Lp(BR(0)) ,

‖Dv‖Lp(B1(0)) =

(∫

B1(0)

|Dv(x)|p dx

) 1
p

=


 1

Rn

∫

B1(0)

∣∣D
(
u(Rx)

)
︸ ︷︷ ︸

= R(Du)(Rx)

∣∣p d(Rx)




1
p

=

(
Rp−n

∫

BR(0)

|Du(x)|p dx

) 1
p

= R
1− n

p ‖Du‖Lp(BR(0)) .

Now, denoting by ω̃n = voln
(
B1(0)

)
, we let

ũ(x) = u(x) − 1

ω̃nRn

∫

BR(0)

u(x′) dx′,

ṽ(x) = v(x) − 1

ω̃n

∫

B1(0)

v(x′) dx′.

Notice that ũ ∈ W 1,p(BR(0))∩C∞(BR(0)) and ṽ ∈ W 1,p(B1(0))∩C∞(B1(0)). Thus,
the usual Morrey embedding yields:

sup
x,y∈B1(0)

x 6=y

|ṽ(x) − ṽ(y)|
|x − y|α ≤ C1

(
‖ṽ‖Lp(B1(0)) + ‖Dṽ‖Lp(B1(0))

)
,
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where the constant C1 is independent of ṽ and of R. By construction, ṽ(x) − ṽ(y) =
v(x) − v(y) and Dṽ = Dv. Moreover, by our considerations above, ‖ṽ‖Lp(B1(0)) =

R−n/p ‖ũ‖Lp(BR(0)), since ṽ(x) = ũ(Rx). Applying the Poincaré Lemma for balls (cf.,
e.g., [Eva98, Thm.2, §5.8.1, p.276]), we obtain ‖ũ‖Lp(BR(0)) ≤ CP R ‖Du‖Lp(BR(0)),
where CP is independent of u and R. Putting all this together, we finally arrive at:

Rα sup
x,y∈BR(0)

x 6=y

|u(x) − u(y)|
|x − y|α ≤ C1(1 + CP )R

1− n
p ‖Du‖Lp(BR(0)) ,

which is the desired inequality, since α = 1 − n/p. �

2. On the restriction of the second fundamental form to a linear

subspace

In this section we wish to prove that the second fundamental form of the inter-
section of a convex hypersurface with a linear subspace is controlled in each point by
the second fundamental form of the hypersurface and the angle between the Gauss
map of the hypersurface and the linear subspace.

Let n ≥ 2 and Ω ⊂ Rn+1 be an open convex set with smooth boundary Σ =
∂Ω. Assume we are given a k–dimensional (k ∈ {2, . . . , n}) linear subspace Πk

x

of Rn+1 passing through x ∈ Ω. Set Σ = Σ ∩ Πk
x, and let ν and ν denote the

Gauss-maps of Σ in Rn+1 and Σ in Πk
x, respectively. Also, let A and A be the

second fundamental forms of Σ in Rn+1 and Σ in Πk
x, respectively. Finally, for each

q ∈ Σ ⊂ Σ, let α(q) ∈
[
− π

2
, π

2

]
denote the angle between ν in q and Πk

x. We have
cos α(q) = 〈ν(q), ν(q)〉

Rn+1 , where 〈·, ·〉
Rn+1 denotes the standard scalar product in

Rn+1. Moreover, cos α(q) 6= 0 (i.e., α(q) 6∈
{

− π
2

, π
2

}
), since x was an inner point of

Ω. The following holds.

Lemma A.2. In every point q ∈ Σ, we have

∣∣Aq

∣∣ ≤ 1

cos α(q)
|Aq| .

Proof. Without loss of generality, we may assume that x = 0. Since all the
considerations that follow are valid pointwise, we will drop subscripts or other ref-
erences to the point at hand. Notice that, in each point q ∈ Σ = Σ ∩ Πk

0 , we can
write

ν = cos αν + ν⊥,

where ν⊥ ∈
(
Πk

0

)⊥
is a vector in the orthogonal complement of Πk

0 . Let X and Y be
two arbitrary vector fields tangent to Σ and extended, first to vector fields tangent
to Σ, and then to vector fields in Rn+1, each time in a relative neighbourhood of Σ.
Denoting by D the standard derivation in Rn+1, we have, in every point of Σ:

A(X, Y ) = −
〈
D

X
Y , ν

〉
Rn+1

= − cos α
〈
D

X
Y , ν

〉
Rn+1

−
〈
D

X
Y , ν⊥〉

Rn+1

= − cos α
〈
D

X
Y , ν

〉
Rn+1

= cos αA(X, Y ),
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where we have used that D
X

Y ∈ Πk
0 if X, Y ∈ Πk

0 .
Now fix q ∈ Σ. If we choose an orthonormal basis (ǫ1, . . . , ǫn) in TqΣ such that
(ǫ1, . . . , ǫk) is an orthonormal basis in TqΣ that diagonalises A, we have

∣∣A
∣∣2 =

k∑

i=1

(
A(ǫi, ǫi)

)2
=

1

cos2 α

k∑

i=1

(A(ǫi, ǫi))
2

≤ 1

cos2 α

n∑

j=1

k∑

i=1

(A(ǫi, ǫj))2 ≤ 1

cos2 α

n∑

i,j=1

(A(ǫi, ǫj))2 =
1

cos2 α
|A|2 .

The lemma follows. �

3. On the variation of the Gauss map along a curve in a convex

hypersurface

In this section we establish that the difference of the Gauss map of a convex
hypersurface Σ between two points can be estimated in magnitude from above by
the integral of the largest principal curvature of Σ along any curve in Σ joining those
two points.

The following considerations are valid for any dimension n ≥ 1. 〈·, ·〉 denotes
the standard scalar product in Rn+1, and Greek indices refer to components in the
usual basis of Rn+1. For an immersion f : U ⊂ Rn → Rn+1, Latin indices refer
to components in the induced coordinate basis and D denotes differentiation with
respect to this basis.

Assume Σ = ∂Ω ⊂ Rn+1 is a smooth hypersurface, where Ω is an open con-
vex domain. Since Ω is convex, we can parametrise Σ by Sn (through projection).
Moreover (using stereographic projection), we can pick a point S ∈ Σ such that there
is a set U ⊂ Rn and an embedding f : U → Rn+1 with f(U) = Σ \ {S}. Let g
denote the Riemannian metric of Σ. Let A denote the second fundamental form of
Σ with eigenvalues λn ≥ . . . ≥ λ1 ≥ 0 and corresponding orthonormal eigenframe
(ǫ1, . . . , ǫn) (i.e.

∑n

j=1
Ai

j(ǫl)
j = λl(ǫl)

i). Finally, let ν : U → Rn+1 be the Gauss
map which associates to each coordinate value x the outer unit normal vector to Σ
based at f(x). Then the following is true:

Lemma A.3. For any points q1, q2 ∈ U and any path γ : [0, 1] → U joining them
(i.e. with γ(0) = q1 and γ(1) = q2), we have that

|ν(q2) − ν(q1)| ≤
∫

γ

λn.

Taking into consideration the pointwise inequality

λn =
√

λ2
n ≤

√√√√
n∑

j=1

λ2
j = |A| ,

we also have
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Corollary A.4. If U , q1, q2 and γ are as in the Lemma, then

|ν(q2) − ν(q1)| ≤
∫

γ

|A| .

Proof of Lemma A.3. For q1, q2 and γ as above, we have

(
ν(q2)

)α −
(
ν(q1)

)α
=

∫ 1

0

n∑

i=1

((
Diν

)α ◦ γ(t)
)

γ̇i(t) dt.

Thus

|ν(q2) − ν(q1)| ≤
∫ 1

0

∣∣∣∣∣

n∑

i=1

((
Diν

)
◦ γ(t)

)
γ̇i(t)

∣∣∣∣∣ dt.

Consider for any i, l ∈ {1, . . . , n} the pointwise equality
〈

Dif,

n∑

j=1

(ǫl)
jDjν

〉
= −

n∑

j=1

Aij(ǫl)
j = −

n∑

j,k=1

gikAk
j(ǫl)

j = −
n∑

k=1

gik(λl)(ǫl)
k

=

〈
Dif, −

n∑

k=1

(λl)(ǫl)
kDkf

〉
.

Since the normal part of Djν vanishes (0 = Dj1 = Dj 〈ν, ν〉 = 2 〈ν, Djν〉), we obtain
n∑

j=1

(ǫl)
jDjν =

n∑

k=1

(−λl)(ǫl)
kDkf (∀l).

Expanding γ̇ in the orthonormal eigenbasis (ǫl)l∈{1,...,n} of A, γ̇i =
∑n

l,r,s=1
grsγ̇r(ǫl)

s(ǫl)
i,

we obtain∣∣∣∣∣

n∑

i=1

γ̇iDiν

∣∣∣∣∣

2

=

n∑

i,j=1

〈
γ̇iDiν, γ̇jDjν

〉
=

n∑

i,j,l,r,s=1

γ̇j
〈
grsγ̇r(ǫl)

s(ǫl)
iDiν, Djν

〉

=

n∑

j,k,l,r,s=1

γ̇j
〈
(−λl)grsγ̇r(ǫl)

s(ǫl)
kDkf, Djν

〉

=

n∑

j,k,l,r,s=1

γ̇j(λl)grsγ̇r(ǫl)
s(ǫl)

k (− 〈Dkf, Djν〉)

=

n∑

j,k,l,r,s=1

γ̇j(λl)grsγ̇r(ǫl)
s(ǫl)

kAjk

=

n∑

j,k,l,r,s=1

γ̇j(λl)
2grsγ̇r(ǫl)

s(ǫl)
kgjk

=

n∑

j,k,l,r,s=1

(λl)
2grsγ̇r(ǫl)

sgjkγ̇j(ǫl)
k =

n∑

l=1

(λl)
2
(

g (γ̇, ǫl)
)2
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≤
n∑

l=1

(λn)2
(

g (γ̇, ǫl)
)2

= (λn)2

n∑

j,k,l,r,s=1

grsγ̇r(ǫl)
sgjkγ̇j(ǫl)

k

= (λn)2

n∑

j,k,r,s=1

n∑

l=1

n∑

l′=1

δll′grsγ̇r(ǫl)
sgjkγ̇j(ǫl′ )k

= (λn)2

n∑

j,k,r,s=1

n∑

l=1

n∑

l′=1

g(ǫl, ǫl′ )grsγ̇r(ǫl)
sgjkγ̇j(ǫl′)k

= (λn)2g

(
n∑

l,r,s=1

grsγ̇r(ǫl)
sǫl ,

n∑

j,k,l′=1

gjkγ̇j(ǫl′ )kǫl′

)

= (λn)2g(γ̇, γ̇),

where the inequality follows from 0 ≤ λ1 ≤ . . . ≤ λn. Consequently,∣∣∣∣∣

n∑

i=1

γ̇iDiν

∣∣∣∣∣ ≤ λn ‖γ̇‖g = λn

√
g(γ̇, γ̇).

This yields

|ν(q2) − ν(q1)| ≤
∫ 1

0

(
λn ◦ γ(t)

)
‖γ̇(t)‖g◦γ(t) dt =

∫

γ

λn.

�



APPENDIX B

On the second variation around a spherical cap

of some L
2–integral quantities along a

volume–preserving flow

This appendix contains some computations made in a first attempt to combine
the results of the present thesis with those of [DLT10]. More precisely, we consider
a spherical cap M with (totally–umbilical) boundary ∂M , and deform its metric in a
volume preserving manner (thus deforming the induced metric on ∂M , as well). On
M , we then consider the first and second variations of the L2–norms of the traceless
Ricci tensor, as well as of the difference between the scalar curvature and its mean
across M . Afterwards, we do the same on ∂M with the L2–norms of the traceless
Ricci tensor, as well as of the induced quantities

◦
A and H −H (H denoting the mean

of H across ∂M). We end by exposing a simpler situation.
The four involved quantities are precisely those relevant in [DLT10] and in this

work.
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2. The first and second variations of the quantities on M 85

3. The first and second variations of the quantities on ∂M 93

4. The special case h = fg 106

Consider a closed subset M of the (n + 1)–sphere Sn+1
R with radius R, such

that its boundary ∂M coincides with an n–sphere Sn
r of radius r. We want to look

at metric deformations of Sn+1
R which fix the volume of M . So, denoting by η̂ the

canonical metric of Sn+1
R , we consider the one–parameter family ĝt of metrics on

Sn+1
R which satisfies (at least locally around t = 0)

{
∂tĝt = ĥ,

ĝ0 = η̂,

where ĥ denotes a symmetric bilinear form on Sn+1
R such that

(B.1)

∫

M

tr̂
gt

ĥ dvol̂
gt

= 0.

83
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Let gt, η and h denote the restrictions of ĝt, η̂ and ĥ to M , respectively. Let g̃t

and η̃ denote the metrics induced by gt and η on ∂M , respectively. In what follows,
we wish to calculate the second variation with respect to the preceding flow of the
following L2–integral quantities on M and ∂M which are derived from the respective
metrics gt and g̃t and which are critical at t = 0.∫

M

‖ ◦
Ric‖2

g (see eqs. (B.19) and (B.42)),

∫

M

(
Scal −Scal

)2
(see eqs. (B.21) and (B.43)),

∫

∂M

‖ ◦
A‖2

g̃
(see eqs. (B.38)) and (B.44)),

∫

∂M

(
H − H

)2
(see eqs. (B.40)) and (B.45)),

∫

∂M

‖ ◦
Ric‖2

g (see eqs. (B.41) and (B.46)).

We start by setting up our notations and conventions.

1. Notations and conventions

For simplicity, we will suppress any explicit reference to the dependence of a
quantity on t. The following notations are used for some quantities derived from the
metric g:

Γ Christoffel symbols of the second kind
Riem Riemann tensor

Ric Ricci tensor◦
Ric Traceless part of Ric

Scal Scalar curvature
Vol Volume of M with respect to g

∇ Levi–Civita connection
∆ Laplace–Beltrami operator with respect to ∇

div Covariant divergence operator acting on symmetric two–tensor fields
or vector fields

∂ Coordinate derivative or coordinate vector fields

Here, we choose the following sign convention for the Riemannian curvature tensor:

Riem(X, Y )Z = ∇Y ∇XZ − ∇X∇Y Z − ∇∇Y X−∇X Y Z,

where X, Y and Z are vector fields on M . This way, the (n + 1)–sphere of radius R
has positive scalar curvature

Scal
η̂

=
n(n + 1)

R2
.

The boundary ∂M of M will be viewed as an embedded submanifold of M , its
induced metric will be denoted by g̃, and the quantities from above will be equipped
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with a tilde to designate those respective to (∂M, g̃). Furthermore, whenever we
work in local coordinates x0, . . . , xn near the boundary, we shall assume that x0

vanishes on ∂M . Greek indices will run from 0 to n, whereas Latin ones will run
from 1 to n. Indices will always be raised and lowered using the ambient metric g
and summation over repeated ones shall be understood implicitly. We introduce the
following notation for the extrinsic quantities inferred from the embedding of ∂M
into M :

ν Outer unit normal on ∂M
A Second fundamental form◦
A Traceless part of A
H Mean curvature

Here, we choose the following sign convention for the second fundamental form:

A(X̃, Ỹ ) = −g
(

∇
X̃

Ỹ , ν
)

,

where X̃ and Ỹ are vector fields on ∂M (extended to a neighbourhood of ∂M in M).
(Notice that in the case of a subset Ω of Rn+1 with smooth boundary ∂Ω, this sign
convention for the second fundamental form of the boundary ensures the equivalence
of its positive definiteness with the convexity of the enclosed volume Ω.)

Next, we introduce some notation for two–tensor fields B and C on M :

B:C Full contraction of B and C with respect to g, i.e. B:C = BµνCµν

trg B Trace of B with respect to g, i.e. trg B = g:B

‖B‖g Norm of B with respect to g, i.e. ‖B‖2
g = B:B

Similarly, we define for two–tensor fields B̃ and C̃ on ∂M :

B̃̃:C̃ Full contraction of B̃ and C̃ with respect to g̃,

i.e. B̃ :̃C̃ = B̃ij

(
g̃−1
)ik (

g̃−1
)jl

C̃kl

tr̃
g

B̃ Trace of B̃ with respect to g̃, i.e. tr̃
g

B̃ = g̃̃:B̃

‖B̃‖
g̃

Norm of B̃ with respect to g̃, i.e. ‖B̃‖2

g̃
= B̃ :̃B̃

Finally, the following integral notations will be used for the average of (smooth)
functions f over (M, g) and ϕ over (∂M, g̃), respectively:

f =

∫

M

f dvolg =
1

Vol

∫

M

f dvolg ,

ϕ =

∫

∂M

ϕ dvol̃
g

=
1

Ṽol

∫

∂M

ϕ dvol̃
g
.

2. The first and second variations of the quantities on M

We start from the evolution of g:

(B.2) ∂tgµν = hµν .
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Then, denoting by δ the Kronecker delta,

0 = ∂tδ
µ

λ = ∂t (gµνgνλ)
(B.2)
= (∂tg

µν) gνλ + gµνhνλ

=⇒ ∂tg
µν = −hµν .(B.3)

Also,

∂t

√
det g =

∂t det g

2
√

det g
=

det g

2
√

det g
trg (∂tg)

(B.2)

=
1

2
trg h

√
det g.(B.4)

Therefore,

(B.5) ∂tVol = ∂t

∫

M

dvolg
(B.4)
=

1

2

∫

M

trg h dvolg
(B.1)
= 0.

Furthermore,

∂tΓ
σ
αβ = ∂t

(
1

2
gστ (∂αgτβ + ∂βgτα − ∂τ gαβ)

)

(B.2),(B.3)

= −1

2
hστ (∂αgτβ + ∂βgτα − ∂τ gαβ) +

1

2
gστ (∂αhτβ + ∂βhτα − ∂τ hαβ)

=
1

2
gστ (∇αhτβ + ∇βhτα − ∇τ hαβ)

+
1

2
gστ
(
Γρ

ατ hρβ + Γρ
αβhτρ + Γρ

βτ hρα + Γρ
βαhτρ − Γρ

ταhρβ − Γρ
τβhαρ

)

− 1

2
hσ

ρgρτ (∂αgτβ + ∂βgτα − ∂τ gαβ)

=
1

2
gστ (∇αhτβ + ∇βhτα − ∇τ hαβ) + hσ

ρΓρ
αβ − hσ

ρΓρ
αβ

=
1

2
gστ (∇αhτβ + ∇βhτα − ∇τ hαβ) .(B.6)
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From this,

∂t Riem σ
αβγ = ∂t

(
∂βΓσ

αγ − ∂αΓσ
βγ + Γσ

βµΓµ
αγ − Γσ

αµΓµ
βγ

)

= ∂β∂tΓ
σ
αγ − ∂α∂tΓ

σ
βγ

+
(
∂tΓ

σ
βµ

)
Γµ

αγ + Γσ
βµ

(
∂tΓ

µ
αγ

)
−
(
∂tΓ

σ
αµ

)
Γµ

βγ − Γσ
αµ

(
∂tΓ

µ
βγ

)

= ∇β∂tΓ
σ
αγ − ∇α∂tΓ

σ
βγ

+
(
∂tΓ

σ
µγ

)
Γµ

βα +
(
∂tΓ

σ
αµ

)
Γµ

βγ −
(
∂tΓ

µ
αγ

)
Γσ

βµ

−
(
∂tΓ

σ
µγ

)
Γµ

αβ −
(
∂tΓ

σ
βµ

)
Γµ

αγ +
(
∂tΓ

µ
βγ

)
Γσ

αµ

+
(
∂tΓ

σ
βµ

)
Γµ

αγ + Γσ
βµ

(
∂tΓ

µ
αγ

)
−
(
∂tΓ

σ
αµ

)
Γµ

βγ − Γσ
αµ

(
∂tΓ

µ
βγ

)

= ∇β∂tΓ
σ
αγ − ∇α∂tΓ

σ
βγ

(B.6)

=
1

2
∇β (gστ (∇αhτγ + ∇γhτα − ∇τ hαγ))

− 1

2
∇α (gστ (∇βhτγ + ∇γhτβ − ∇τ hβγ))

=
1

2
gστ
(

∇β∇αhτγ − ∇α∇βhτγ + ∇β∇γhατ

− ∇α∇γhβτ − ∇β∇τ hαγ + ∇α∇τ hβγ

)
.

Applying the definition of the Riemann tensor along with the first Bianchi identities,
we obtain:

∂t Riem σ
αβγ =

1

2
gστ
(

− Riem µ
αβτ hµγ − Riem µ

αβγ hµτ

+ ∇γ∇βhατ − Riem µ
γβα hµτ − Riem µ

γβτ hαµ

− ∇α∇γhβτ − ∇β∇τ hαγ + ∇α∇τ hβγ

)

=
1

2
gστ
(

Riem µ
βτα hµγ + Riem µ

ταβ hµγ − Riem µ
αβγ hµτ

+ Riem µ
βαγ hµτ + Riem µ

αγβ hµτ + Riem µ
βγτ hµα

+ ∇γ∇βhτα − ∇α∇γhβτ − ∇β∇τ hαγ + ∇α∇τ hβγ

)

=
1

2
gστ
(

− 2 Riem µ
αβγ hµτ + Riem µ

αγβ hµτ + Riem µ
βτα hµγ

− Riem µ
ατβ hµγ − Riem µ

γβτ hµα

− ∇α∇γhβτ − ∇β∇τ hαγ + ∇α∇τ hβγ + ∇γ∇βhτα

)
.(B.7)
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Consequently,

∂t Riemαβγδ = (∂tgδσ) Riem σ
αβγ +gδσ

(
∂t Riem σ

αβγ

)

(B.2),(B.7)

= hδσ Riem σ
αβγ

− Riem µ
αβγ hµδ +

1

2
Riem µ

αγβ hµδ +
1

2
Riem µ

βδα hµγ

− 1

2
Riem µ

αδβ hµγ − 1

2
Riem µ

γβδ hµα

− 1

2
∇α∇γhβδ − 1

2
∇β∇δhαγ +

1

2
∇α∇δhβγ +

1

2
∇γ∇βhδα

=
1

2
Riem µ

αγβ hµδ +
1

2
Riem µ

βδα hµγ

− 1

2
Riem µ

αδβ hµγ − 1

2
Riem µ

γβδ hµα

− 1

2
∇α∇γhβδ − 1

2
∇β∇δhαγ

+
1

2
∇α∇δhβγ +

1

2
∇γ∇βhδα.(B.8)

Contracting over the second and fourth index, we get after relabelling:

∂t Ricαβ = (∂tg
στ ) Riemασβτ +gστ (∂t Riemασβτ )

(B.3),(B.8)

= − Riemαµβν hµν +
1

2
Ricαµ hµ

β +
1

2
Ricβµ hµ

α

− 1

2
∇α∇β trg h − 1

2
∆hαβ +

1

2
∇α div hβ +

1

2
∇β div hα.(B.9)

Contracting again yields:

∂t Scal =
(
∂tg

αβ
)

Ricαβ +gαβ (∂t Ricαβ)

(B.3),(B.9)

= − Ricαβ hαβ − Ricµν hµν + Ricαµ hαµ

− ∆ trg h + div div h

= − Ric :h − ∆ trg h + div div h(B.10)

So we have,

∂t

◦
Ricαβ = ∂t Ricαβ − 1

n + 1
(∂t Scal) gαβ − 1

n + 1
Scal (∂tgαβ)

(B.2),(B.9),(B.10)

= − Riemαµβν hµν +
1

2
Ricαµ hµ

β +
1

2
Ricβµ hµ

α

+
1

n + 1
Ric :hgαβ − 1

n + 1
Scal hαβ

− 1

2
∇α∇β trg h − 1

2
∆hαβ +

1

n + 1
∆ trg hgαβ

+
1

2
∇α div hβ +

1

2
∇β div hα − 1

n + 1
div div hgαβ.(B.11)
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On the other hand,

∂t ‖Ric‖2
g = 2 Ricµν gµα

(
∂tg

νβ
)

Ricαβ +2 Ricµν gµαgνβ (∂t Ricαβ)

(B.3),(B.9)

= −2 Ricνµ Ricµ
β hνβ − 2 Riemαµβν Ricαβ hµν + Ric α

β Ricαµ hβµ

+ Ric β
α Ricβµ hαµ − Ricαβ ∇α∇β trg h − Ricαβ ∆hαβ

+ Ricαβ ∇α div hβ + Ricαβ ∇β div hα

= −2 Riemαµβν Ricαβ hµν

− Ric :∇2 trg h − Ric :∆h + 2 Ric :∇ div h,(B.12)

and

∂t Scal2 = 2 Scal (∂t Scal)

(B.10)

= −2 Scal Ric :h − 2 Scal ∆ trg h + 2 Scal div div h,(B.13)

so that

∂t ‖ ◦
Ric‖2

g = ∂t

∥∥∥Ric − 1

n + 1
Scal g

∥∥∥
2

g
= ∂t

(
‖Ric‖2

g − 1

n + 1
Scal2

)

(B.12),(B.13)

= −2 Riemαµβν Ricαβ hµν + 2
1

n + 1
Scal Riemαµβν gαβhµν

− Ric :∇2 trg h − Ric :∆h + 2
1

n + 1
Scal ∆ trg h

+ 2 Ric :∇ div h − 2
1

n + 1
Scal div div h

= −2 Riemα β
µ ν

◦
Ricαβhµν

− ◦
Ric:∇2 trg h − ◦

Ric:∆h + 2
◦

Ric:∇ div h.(B.14)

As a result, omitting the volume element for simplicity,

∂t

∫

M

‖ ◦
Ric‖2

g

(B.4)

=
1

2

∫

M

trg h ‖ ◦
Ric‖2

g +

∫

M

∂t ‖ ◦
Ric‖2

g

(B.14)

=
1

2

∫

M

trg h ‖ ◦
Ric‖2

g − 2

∫

M

Riemα β
µ ν

◦
Ricαβhµν

−
∫

M

◦
Ric:∇2 trg h −

∫

M

◦
Ric:∆h + 2

∫

M

◦
Ric:∇ div h.(B.15)
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Also, we find that

∂t

(
Scal −Scal

)
= ∂t

(
Scal − 1

Vol

∫

M

Scal

)

(B.4),(B.5)

= ∂t Scal − 1

2Vol

∫

M

trg h Scal − 1

Vol

∫

M

∂t Scal

(B.10)

= − Ric :h − ∆ trg h + div div h − 1

2Vol

∫

M

trg h Scal

+
1

Vol

∫

M

Ric :h +
1

Vol

∫

M

∆ trg h − 1

Vol

∫

M

div div h,(B.16)

yielding:

∂t

∫

M

(
Scal −Scal

)2

(B.4)

=
1

2

∫

M

trg h
(
Scal −Scal

)2

+ 2

∫

M

(
Scal −Scal

) (
∂t

(
Scal −Scal

))

(B.16)

=
1

2

∫

M

trg h
(
Scal −Scal

)2 − 2

∫

M

(
Scal −Scal

)
(Ric :h)

− 2

∫

M

(
Scal −Scal

)
(∆ trg h)

+ 2

∫

M

(
Scal −Scal

)
(div div h) ,(B.17)

since
∫

M

(
Scal −Scal

)
= 0.

Now, at t = 0, (M, g)
∣∣
t=0

is a subset of the standard (n + 1)–sphere with radius
R, and we have

gαβ

∣∣
t=0

= ηαβ,

Riemαβγδ

∣∣
t=0

=
1

R2
(ηαγηβδ − ηαδηβγ) ,

Riemα β
µ ν

∣∣
t=0

=
1

R2
ηαβηµν − 1

R2
δα

νδβ
µ,

Ricαβ

∣∣
t=0

=
n

R2
ηαβ ,

Scal
∣∣
t=0

=
n(n + 1)

R2
,

◦
Ricαβ

∣∣
t=0

= 0.

Considering the two quantities
∫

M
‖ ◦
Ric‖2

g and
∫

M

(
Scal −Scal

)2
, the evolutions of

which are given by (B.15) and (B.17), respectively, we see that both vanish at t = 0.
Moreover, since both are non–negative at all times, we infer from their evolutions
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that they must be minimal initially. We are thus interested in their second variations
at t = 0. For this, we calculate:

∂t

∣∣
t=0

◦
Ricαβ

(B.11)

= − 1

R2
trη hηαβ +

1

R2
hαβ +

n

R2
hαβ +

n

(n + 1)R2
trη hηαβ − n

R2
hαβ

− 1

2
∇α∇β trη h − 1

2
∆hαβ +

1

n + 1
∆ trη hηαβ

+
1

2
∇α div hβ +

1

2
∇β div hα − 1

n + 1
div div hηαβ

=
1

R2

◦
hαβ − 1

2
∇α∇β trη h − 1

2
∆hαβ +

1

n + 1
∆ trη hηαβ

+
1

2
∇α div hβ +

1

2
∇β div hα − 1

n + 1
div div hηαβ ,(B.18)

where, for all t,
◦
h = h − 1

n+1
trg hg. Then, in view of the fact that

◦
Ric vanishes at

t = 0,

∂2
t

∣∣
t=0

∫

M

‖ ◦
Ric‖2

g

(B.15)

= −2

∫

M

(
Riemα β

µ ν

) ∣∣∣
t=0

(
∂t

∣∣
t=0

◦
Ricαβ

)
hµν

−
∫

M

(
∂t

∣∣
t=0

◦
Ricαβ

)
∇α∇β trη h −

∫

M

(
∂t

∣∣
t=0

◦
Ricαβ

)
∆hαβ

+ 2

∫

M

(
∂t

∣∣
t=0

◦
Ricαβ

)
∇α div hβ

(B.18)

= 0 +
2

R4

∫

M

h:
◦
h − 1

R2

∫

M

h:∇2 trη h − 1

R2

∫

M

h:∆h +
2

(n + 1)R2

∫

M

trη h (∆ trη h)

+
2

R2

∫

M

h:∇ div h − 2

(n + 1)R2

∫

M

trη h (div div h)

− 1

R2

∫

M

◦
h:∇2 trη h +

1

2

∫

M

∥∥∇2 trη h
∥∥2

η
+

1

2

∫

M

∆h:∇2 trη h

− 1

n + 1

∫

M

(∆ trη h)2 −
∫

M

∇2 trη h:∇ div h +
1

n + 1

∫

M

(div div h) (∆ trη h)

− 1

R2

∫

M

◦
h:∆h +

1

2

∫
∆h:∇2 trη h +

1

2

∫

M

‖∆h‖2
η

− 1

n + 1

∫

M

(∆ trη h)2 −
∫

M

∆h:∇ div h +
1

n + 1

∫

M

(div div h) (∆ trη h)

+
2

R2

∫

M

◦
h:∇ div h −

∫

M

∇2 trη h:∇ div h −
∫

M

∆h:∇ div h

+
2

n + 1

∫

M

(∆ trη h) (div div h) +

∫

M

‖∇ div h‖2
η

+

∫

M

∇β div hα∇α div hβ − 2

n + 1

∫

M

(div div h)2
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=
2

R4

∫

M

◦
h:h − 2

R2

∫

M

◦
h:∇2 trη h

− 2

R2

∫

M

◦
h:∆h +

4

R2

∫

M

◦
h:∇ div h

+
1

2

∫

M

∥∥∇2 trη h
∥∥2

η
+

1

2

∫

M

‖∆h‖2
η +

∫

M

‖∇ div h‖2
η

− 2

n + 1

∫

M

(∆ trη h)2 − 2

n + 1

∫

M

(div div h)2

+

∫

M

∇2 trη h:∆h − 2

∫

M

∇2 trη h:∇ div h

− 2

∫

M

∆h:∇ div h +

∫

M

∇β div hα∇α div hβ

+
4

n + 1

∫

M

(∆ trg h) (div div h) .(B.19)

Similarly, we calculate

∂t

∣∣
t=0

(
Scal −Scal

)(B.16)

= −∆ trη h + div div h − n

R2
trη h − n(n + 1)

2R2Vol

∫

M

trη h

︸ ︷︷ ︸
(B.1)

= 0

+
1

Vol

∫

M

∆ trη h − 1

Vol

∫

M

div div h +
n

R2Vol

∫

M

trη h

︸ ︷︷ ︸
(B.1)

= 0

= −∆ trη h + div div h − n

R2
trη h +

1

Vol

∫

M

∆ trη h

− 1

Vol

∫

M

div div h,(B.20)

so that (since Scal
∣∣
t=0

is constant on M)

∂2
t

∣∣
t=0

∫

M

(
Scal −Scal

)2

(B.17)

= − 2n

R2

∫

M

(
∂t

∣∣
t=0

(
Scal −Scal

))
trη h

− 2

∫

M

(
∂t

∣∣
t=0

(
Scal −Scal

))
∆ trη h

+ 2

∫

M

(
∂t

∣∣
t=0

(
Scal −Scal

))
div div h
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(B.20)

=
2n

R2

∫

M

trη h∆ trη h − 2n

R2

∫

M

trη h div div h

+
2n2

R4

∫

M

(trη h)2 − 2n

R2Vol

(∫

M

∆ trη h

)(∫

M

trη h

)

︸ ︷︷ ︸
(B.1)

= 0

+
2n

R2Vol

(∫

M

div div h

)(∫

M

trη h

)

︸ ︷︷ ︸
(B.1)

= 0

+ 2

∫

M

(∆ trη h)2 − 2

∫

M

∆ trη h div div h +
2n

R2

∫

M

trη h∆ trη h

− 2

Vol

(∫

M

∆ trη h

)2

+
2

Vol

(∫

M

∆ trη h

)(∫

M

div div h

)

− 2

∫

M

∆ trη h div div h + 2

∫

M

(div div h)2 − 2n

R2

∫

M

trη h div div h

+
2

Vol

(∫

M

∆ trη h

)(∫

M

div div h

)
− 2

Vol

(∫

M

div div h

)2

=
2n2

R4

∫

M

(trη h)2 +
4n

R2

∫

M

trη h∆ trη h

− 4n

R2

∫

M

trη h div div h + 2

∫

M

(∆ trη h)2

− 2

Vol

(∫

M

∆ trη h

)2

+ 2

∫

M

(div div h)2

− 2

Vol

(∫

M

div div h

)2

− 4

∫
∆ trη h div div h

+
4

Vol

(∫

M

∆ trη h

)(∫

M

div div h

)
(B.21)

3. The first and second variations of the quantities on ∂M

We shall now focus our attention to the boundary ∂M of M . Its induced metric
g̃ is given by

g̃ij = gij .

Also, the inverse of g̃ is quickly computed to be
(
g̃−1
)ij

= gij − νiνj ,

where ν denotes the outer unit normal field on ∂M given in our coordinates by

να = − g0α

√
g00

.
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Notice that, for any two–tensor field B on M , its restriction to ∂M satisfies

tr̃
g

B =
(
g̃−1
)ij

Bij = gijBij − νiνjBij = gστ Bστ − νσντ Bστ = trg B − B(ν, ν).

We start, again, by the evolution of the metric:

(B.22) ∂tg̃ij
(B.2)
= hij .

Then, similarly to the computation of (B.4),

(B.23) ∂t

√
det g̃ =

√
det g̃

2
tr̃

g
(∂tg̃)

(B.22)
=

1

2
(trg h − h(ν, ν))

√
det g̃,

Also, the outer unit normal evolves according to

∂tν
α =

g0α

2 (g00)3/2

(
∂tg

00
)

− 1√
g00

(
∂tg

0α
)

(B.3)

=
g0α

2 (g00)3/2

(
−g0σg0τ hστ

)
− 1√

g00

(
−g0σgατ hστ

)
=

1

2
νανσντ hστ − νσhα

σ

=
1

2
h(ν, ν)να −

(
h♯(ν)

)α
,

(B.24)

where
(
h♯(ν)

)α
= hα

σνσ. Consequently,

∂t

(
g̃−1
)ij

= ∂tg
ij −

(
∂tν

i
)

νj − νi
(
∂tν

j
)

(B.3),(B.24)

= −hij − h(ν, ν)νiνj +
(
h♯(ν)

)i
νj + νi

(
h♯(ν)

)j
(B.25)

On the other hand, similarly to the computation of (B.3), we have

(B.26) ∂t

(
g̃−1
)ij

= −
(
g̃−1
)ik (

g̃−1
)jl

hkl

Now, denoting by ∂α the coordinate vector fields, we get for the evolution of the
second fundamental form A:

∂tAij = ∂t (−g (∇i∂j , ν)) = ∂t

(
−Γσ

ijg (∂σ, ν)
)

= ∂t

(
Γσ

ij
δ0

σ√
g00

)

= ∂t

(
Γ0

ij√
g00

)
= − Γ0

ij

2 (g00)3/2

(
∂tg

00
)

+
1√
g00

∂tΓ
0
ij

(B.3),(B.6)

=
1

2
Γ0

ij
h00

(g00)3/2
+

g0τ

2
√

g00
(∇ihjτ + ∇jhiτ − ∇τ hij)

=
1

2
Aij

h00

g00
− 1

2
((∇h) (ν))ij − 1

2
((∇h) (ν))ji +

1

2
(∇νh)ij

=
1

2
Aijh(ν, ν) − 1

2
((∇h) (ν))ij − 1

2
((∇h) (ν))ji +

1

2
(∇νh)ij ,(B.27)



3. THE FIRST AND SECOND VARIATIONS OF THE QUANTITIES ON ∂M 95

where ((∇h) (ν))ij = ∇ihσjνσ. Therefore,

∂tH =
(

∂t

(
g̃−1
)ij
)

Aij +
(
g̃−1
)ij

∂tAij

(B.26),(B.27)

= −h̃:A +
1

2
h(ν, ν)H − tr̃

g
((∇h) (ν)) +

1

2
tr̃

g
(∇νh)

= −Ã:h +
1

2
h(ν, ν)H − trg ((∇h) (ν)) + (∇νh) (ν, ν)

+
1

2
trg (∇νh) − 1

2
(∇νh) (ν, ν)

= −Ã:h +
1

2
h(ν, ν)H − (div h) (ν) +

1

2
(∇νh) (ν, ν) +

1

2
∇ν trg h.(B.28)

As a consequence,

∂t

◦
Aij = ∂tAij − 1

n
(∂tH) g̃ij − 1

n
H (∂tg̃ij)

(B.22),(B.27),(B.28)

=
1

2
h(ν, ν)

◦
Aij +

1

n
Ã:hgij − 1

n
Hhij

− 1

2
((∇h) (ν))ij − 1

2
((∇h) (ν))ji +

1

n
div h(ν)gij

+
1

2
(∇νh)ij − 1

2n
∇ν trg hgij − 1

2n
(∇νh) (ν, ν)gij.(B.29)

Moreover,

∂t ‖ ◦
A‖2

g̃
= ∂t

(
‖A‖2

g̃
− 1

n
H2
)

= 2Aik

(
g̃−1
)kl

Ajl

(
∂t

(
g̃−1
)ij
)

+ 2Ã: (∂tA) − 2

n
H (∂tH)

(B.26),(B.27),(B.28)

= −2A2 :̃h + ‖A‖2

g̃
h(ν, ν) − 2Ã: ((∇h) (ν)) + Ã: (∇νh)

+
2

n
HÃ:h − 1

n
h(ν, ν)H2 +

2

n
H div h(ν)

− 1

n
H (∇νh) (ν, ν) − 1

n
H∇ν trg h

= − 2 (A
◦

A) :̃h + ‖ ◦
A‖2

g̃
h(ν, ν)

− 2
◦

Ã: ((∇h) (ν)) +
◦

Ã: (∇νh) ,(B.30)
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where, for any two–tensor fields B̃ and C̃ on ∂M , B̃C̃ is defined as (B̃C̃)ij =

B̃ik

(
g̃−1
)kl

C̃lj , and B̃2 = B̃B̃. Hence,

∂t

∫

∂M

‖ ◦
A‖2

g̃

(B.23)

=
1

2

∫

∂M

‖ ◦
A‖2

g̃
trg h − 1

2

∫

∂M

‖ ◦
A‖2

g̃
h(ν, ν) +

∫

∂M

∂t ‖ ◦
A‖2

g̃

(B.30)

=
1

2

∫

∂M

‖ ◦
A‖2

g̃
trg h − 1

2

∫

∂M

‖ ◦
A‖2

g̃
h(ν, ν) − 2

∫

∂M

(A
◦

A) :̃h

+

∫

∂M

‖ ◦
A‖2

g̃
h(ν, ν) − 2

∫

∂M

◦
Ã: ((∇h) (ν)) +

∫

∂M

◦
Ã: (∇νh)

=
1

2

∫

∂M

‖ ◦
A‖2

g̃
trg h +

1

2

∫

∂M

‖ ◦
A‖2

g̃
h(ν, ν)

− 2

∫

∂M

(A
◦

A) :̃h − 2

∫

∂M

◦
Ã: ((∇h) (ν)) +

∫

∂M

◦
Ã: (∇νh)(B.31)

Also, since for any smooth function f on ∂M ,

∂tf = ∂t

∫

∂M

f = ∂t

(
1

Ṽol

∫

∂M

f

)(B.32)

= − 1

Ṽol
2

(
∂t

∫

∂M

1

)∫

∂M

f +
1

Ṽol
∂t

∫

∂M

f

(B.23)

= −1

2

∫

∂M

(trg h − h(ν, ν))

∫

∂M

f +
1

2

∫

∂M

(trg h − h(ν, ν)) f +

∫

∂M

∂tf

=
1

2

∫

∂M

(
f − f

)
(trg h − h(ν, ν)) +

∫

∂M

∂tf,(B.33)

we have

∂t

(
H − H

)(B.33)

= ∂tH −
∫

∂M

∂tH − 1

2

∫

∂M

(
H − H

)
(trg h − h(ν, ν))

(B.28)

= −Ã:h +

∫

∂M

Ã:h +
1

2
h(ν, ν)H − 1

2

∫

∂M

h(ν, ν)H

− div h(ν) +

∫

∂M

div h(ν) +
1

2
(∇νh) (ν, ν) − 1

2

∫

∂M

(∇νh) (ν, ν)

+
1

2
∇ν trg h − 1

2

∫

∂M

∇ν trg h

− 1

2

∫

∂M

(
H − H

)
trg h +

1

2

∫

∂M

(
H − H

)
h(ν, ν).(B.34)
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Thus,

∂t

∫

∂M

(
H − H

)2

(B.23)

=
1

2

∫

∂M

(
H − H

)2
trg h − 1

2

∫

∂M

(
H − H

)2
h(ν, ν)

+ 2

∫

∂M

(
H − H

)
∂t

(
H − H

)

(B.34)

=
1

2

∫

∂M

(
H − H

)2
trg h − 1

2

∫

∂M

(
H − H

)2
h(ν, ν)

− 2

∫

∂M

(
H − H

)
Ã:h +

∫

∂M

(
H − H

)
Hh(ν, ν)

− 2

∫

∂M

(
H − H

)
(div h) (ν) +

∫

∂M

(
H − H

)
(∇νh) (ν, ν)

+

∫

∂M

(
H − H

)
∇ν trg h

=
1

2

∫

∂M

(
H − H

)2
trg h +

1

2

∫

∂M

(
H − H

)2
h(ν, ν)

− 2

∫

∂M

(
H − H

)
Ã:h + H

∫

∂M

(
H − H

)
h(ν, ν)

− 2

∫

∂M

(
H − H

)
(div h) (ν) +

∫

∂M

(
H − H

)
(∇νh) (ν, ν)

+

∫

∂M

(
H − H

)
∇ν trg h,(B.35)

where we have used that
∫

∂M

(
H − H

)
= 0.

Finally, just in the same way that we established (B.15), we have

∂t

∫

∂M

‖ ◦
Ric‖2

g

(B.23)

=
1

2

∫

∂M

trg h ‖ ◦
Ric‖2

g − 1

2

∫

∂M

h(ν, ν) ‖ ◦
Ric‖2

g +

∫

∂M

∂t ‖ ◦
Ric‖2

g

(B.14)

=
1

2

∫

∂M

trg h ‖ ◦
Ric‖2

g − 1

2

∫

∂M

h(ν, ν) ‖ ◦
Ric‖2

g

− 2

∫

∂M

Riemα β
µ ν

◦
Ricαβhµν −

∫

∂M

◦
Ric:∇2 trg h

−
∫

∂M

◦
Ric:∆h + 2

∫

∂M

◦
Ric:∇ div h.(B.36)
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Now, at t = 0, (∂M, g̃)
∣∣

t=0
is an n–sphere with radius r, and we have by our

choice of coordinates

g̃ij

∣∣
t=0

= η̃ij ( = ηij ),

R̃iemijkl

∣∣
t=0

=
1

r2
(η̃ik η̃jl − η̃ilη̃jk) ,

R̃icij

∣∣
t=0

=
n − 1

r2
η̃ij ,

S̃cal
∣∣

t=0
=

n(n − 1)

r2
,

˜◦
Ricij

∣∣
t=0

= 0.

To recover the second fundamental form, remark that ∂M is umbilical in M , i.e.
◦

A =
0, or A = H

n
η̃. Plugging this into the Gauss equations,

R̃iemijkl = Riemijkl +AikAjl − AilAjk,

we conclude that

H = n

√
R2 − r2

Rr
,

A =

√
R2 − r2

Rr
η̃.

Considering the three quantities
∫

∂M
‖ ◦
A‖2

g̃
,
∫

∂M

(
H − H

)2
and

∫
∂M

‖ ◦
Ric‖2

g , the evol-

utions of which are given by (B.31), (B.35) and (B.36), respectively, we see that all
vanish at t = 0. Moreover, since these quantities are non–negative at all times, we in-
fer from their evolutions that they must be minimal initially. We are thus interested
in their second variations at t = 0. For this, we calculate:

∂t

∣∣
t=0

◦
Aij

(B.29)

= 0 +

√
R2 − r2

nRr
tr

η̃
hηij −

√
R2 − r2

Rr
hij

− 1

2
((∇h) (ν))ij − 1

2
((∇h) (ν))ji +

1

n
div h(ν)ηij

+
1

2
(∇νh)ij − 1

2n
∇ν trη hηij − 1

2n
(∇νh) (ν, ν)ηij

= −
√

R2 − r2

Rr
hij +

√
R2 − r2

nRr
trη hηij −

√
R2 − r2

nRr
h(ν, ν)ηij

− 1

2
((∇h) (ν))ij − 1

2
((∇h) (ν))ji +

1

n
div h(ν)ηij

+
1

2
(∇νh)ij − 1

2n
∇ν trη hηij − 1

2n
(∇νh) (ν, ν)ηij .(B.37)
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Then, in view of the fact that
◦

A vanishes at t = 0,

∂2
t

∣∣
t=0

∫

∂M

‖ ◦
A‖2

g̃

(B.31)

= −2

√
R2 − r2

Rr

∫

∂M

η̃kl

(
η̃−1
)li (

∂t

∣∣
t=0

◦
Aij

) (
η̃−1
)ks (

η̃−1
)jt

hst

− 2

∫

∂M

(
∂t

∣∣
t=0

◦
A
)

:̃ ((∇h) (ν)) +

∫

∂M

(
∂t

∣∣
t=0

◦
A
)

:̃ (∇νh)

(B.37)

= 2
R2 − r2

R2r2

∫

∂M

h̃:h − 2
R2 − r2

nR2r2

∫

∂M

trη h tr
η̃

h + 2
R2 − r2

nR2r2

∫

∂M

h(ν, ν) tr
η̃

h

+ 2

√
R2 − r2

Rr

∫

∂M

((∇h) (ν)) :̃h − 2

√
R2 − r2

nRr

∫

∂M

div h(ν) tr
η̃

h

−
√

R2 − r2

Rr

∫

∂M

(∇νh) :̃h +

√
R2 − r2

nRr

∫

∂M

(∇ν trη h) tr
η̃

h

+

√
R2 − r2

nRr

∫

∂M

((∇νh) (ν, ν)) tr
η̃

h

+ 2

√
R2 − r2

Rr

∫

∂M

((∇h) (ν)) :̃h − 2

√
R2 − r2

nRr

∫

∂M

(
tr

η̃
(∇h) (ν)

)
trη h

+ 2

√
R2 − r2

nRr

∫

∂M

(
tr

η̃
(∇h) (ν)

)
h(ν, ν)

+

∫

∂M

‖(∇h) (ν)‖2

η̃
+

∫

∂M

((∇h) (ν))ji

(
η̃−1
)ik (

η̃−1
)jl

((∇h) (ν))kl

− 2

n

∫

∂M

(div h(ν))
(

tr
η̃

(∇h) (ν)
)

−
∫

∂M

(∇νh) :̃ ((∇h) (ν))

+
1

n

∫

∂M

(∇ν trη h)
(

tr
η̃

(∇h) (ν)
)

+
1

n

∫

∂M

((∇νh) (ν, ν))
(

tr
η̃

(∇h) (ν)
)

−
√

R2 − r2

Rr

∫

∂M

(∇νh) :̃h +

√
R2 − r2

nRr

∫

∂M

(
tr

η̃
∇νh

)
trη h

−
√

R2 − r2

nRr

∫

∂M

(
tr

η̃
∇νh

)
h(ν, ν)

−
∫

∂M

((∇h) (ν)) :̃ (∇νh) +
1

n

∫

∂M

(div h(ν))
(

tr
η̃

∇νh
)

+
1

2

∫

∂M

‖∇νh‖2

η̃

− 1

2n

∫

∂M

(∇ν trη h)
(

tr
η̃

(∇νh)
)

− 1

2n

∫

∂M

((∇νh) (ν, ν))
(

tr
η̃

∇νh
)
.

Remember that the restriction to ∂M of any two–tensor field B on M satisfies
tr̃

g
B = trg B − B(ν, ν). Also, it is easy to see that, for any two–tensor fields B and

C on M restricted to ∂M ,

B̃:C = B:C − trg (B(ν, ·)C(ν, ·)) − trg (B(·, ν)C(·, ν)) + B(ν, ν)C(ν, ν).
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Then, defining X · Y = gµνXµY ν and |X|2g = X · X for any vectorfields X and Y on
M at any time t, we further obtain

∂2
t

∣∣
t=0

∫

∂M

‖ ◦
A‖2

g̃
= 2

R2 − r2

R2r2

∫

∂M

(
‖h‖2

η − 2 |h(ν)|2η + (h(ν, ν))2
)

− 2
R2 − r2

nR2r2

∫

∂M

(trη h − h(ν, ν))2

+ 4

√
R2 − r2

Rr

∫

∂M

((∇h) (ν):h − (∇νh) (ν) · h(ν) − (∇h) (ν, ν) · h(ν) + (∇νh) (ν, ν)h(ν, ν))

− 4

√
R2 − r2

nRr

∫

∂M

(div h(ν)) (trη h − h(ν, ν))

− 2

√
R2 − r2

Rr

∫

∂M

((∇νh) :h − 2 (∇νh) (ν) · h(ν) + (∇νh) (ν, ν)h(ν, ν))

+ 2

√
R2 − r2

nRr

∫

∂M

(∇ν trη h) (trη h − h(ν, ν)) + 2

√
R2 − r2

nRr

∫

∂M

(∇νh) (ν, ν) (trη h − h(ν, ν))

+

∫

∂M

(
‖(∇h) (ν)‖2

η − |(∇νh) (ν)|2η − |(∇h) (ν, ν)|2η + ((∇νh) (ν, ν))2
)

+

∫

∂M

(
((∇h) (ν))βα ((∇h) (ν))αβ − 2 (∇νh) (ν) · (∇h) (ν, ν) + ((∇νh) (ν, ν))2

)

+
1

2

∫

∂M

(
‖∇νh‖2

η − 2 |(∇νh) (ν)|2η + ((∇νh) (ν, ν))2
)

− 2

n

∫

∂M

(div h(ν))2

− 1

2n

∫

∂M

(∇ν trη h)2 +
2

n

∫

∂M

(div h(ν)) ((∇νh) (ν, ν))

+
2

n

∫

∂M

(div h(ν)) (∇ν trη h) − 1

n

∫

∂M

(∇ν trη h) ((∇νh) (ν, ν))

− 2

∫

∂M

(
(∇h) (ν): (∇νh) − |(∇νh) (ν)|2η − (∇νh) (ν) · (∇h) (ν, ν) + ((∇νh) (ν, ν))2

)

− 1

2n

∫

∂M

((∇νh) (ν, ν))2

= 2
R2 − r2

R2r2

∫

∂M

‖h‖2
η − 4

R2 − r2

R2r2

∫

∂M

|h(ν)|2η

+ 2(n − 1)
R2 − r2

nR2r2

∫

∂M

(h(ν, ν))2 + 4
R2 − r2

nR2r2

∫

∂M

(trη h) (h(ν, ν))

− 2
R2 − r2

nR2r2

∫

∂M

(trη h)2 + 4

√
R2 − r2

Rr

∫

∂M

(∇h) (ν):h

− 2

√
R2 − r2

Rr

∫

∂M

(∇νh) :h − 4

√
R2 − r2

Rr

∫

∂M

(∇h) (ν, ν) · h(ν)

+ 2

√
R2 − r2

Rr

∫

∂M

(∇νh) (ν, ν)h(ν, ν)

− 4

√
R2 − r2

nRr

∫

∂M

(div h(ν)) (trη h − h(ν, ν))

+ 2

√
R2 − r2

nRr

∫

∂M

(∇ν trη h) (trη h − h(ν, ν))

+ 2

√
R2 − r2

nRr

∫

∂M

((∇νh) (ν, ν)) (trη h − h(ν, ν))
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+

∫

∂M

‖(∇h) (ν)‖2
η +

1

2

∫

∂M

‖∇νh‖2
η

+

∫

∂M

((∇h) (ν))βα ((∇h) (ν))αβ − 2

∫

∂M

((∇h) (ν)) : (∇νh)

−
∫

∂M

|(∇h) (ν, ν)|2η − 2

n

∫

∂M

(div h(ν))2 − 1

2n

∫

∂M

(∇ν trη h)2

+
n − 1

2n

∫

∂M

((∇νh) (ν, ν))2 +
2

n

∫

∂M

(div h(ν)) ((∇νh) (ν, ν))

+
2

n

∫

∂M

(div h(ν)) (∇ν trη h) − 1

n

∫

∂M

(∇ν trη h) ((∇νh) (ν, ν)) .(B.38)

Similarly, we calculate (using that H
∣∣
t=0

is constant on ∂M)

∂t

∣∣
t=0

(
H − H

)(B.34)

= −
√

R2 − r2

Rr

(
trη h −

∫

∂M

trη h

)
+

√
R2 − r2

Rr

(
h(ν, ν) −

∫

∂M

h(ν, ν)

)

+ n

√
R2 − r2

2Rr

(
h(ν, ν) −

∫

∂M

h(ν, ν)

)
− div h(ν) +

∫

∂M

div h(ν)

+
1

2
(∇νh) (ν, ν) − 1

2

∫

∂M

(∇νh) (ν, ν) +
1

2
∇ν trη h − 1

2

∫

∂M

∇ν trη h

= −
√

R2 − r2

Rr
trη h +

√
R2 − r2

Rr

∫

∂M

trη h

+ (n + 2)

√
R2 − r2

2Rr
h(ν, ν) − (n + 2)

√
R2 − r2

2Rr

∫

∂M

h(ν, ν)

− div h(ν) +

∫

∂M

div h(ν) +
1

2
(∇νh) (ν, ν)

− 1

2

∫

∂M

(∇νh) (ν, ν) +
1

2
∇ν trη h − 1

2

∫

∂M

∇ν trη h(B.39)

to find

∂2
t

∣∣
t=0

∫

∂M

(
H − H

)2

(B.35)

= −2

√
R2 − r2

Rr

∫

∂M

(
∂t

∣∣
t=0

(
H − H

))
trη h

+ 2

√
R2 − r2

Rr

∫

∂M

(
∂t

∣∣
t=0

(
H − H

))
h(ν, ν)

+ n

√
R2 − r2

Rr

∫

∂M

(
∂t

∣∣
t=0

(
H − H

))
h(ν, ν)
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− 2

∫

∂M

(
∂t

∣∣
t=0

(
H − H

))
(div h(ν))

+

∫

∂M

(
∂t

∣∣
t=0

(
H − H

))
(∇ν trη h)

+

∫

∂M

(
∂t

∣∣
t=0

(
H − H

))
((∇νh) (ν, ν))

(B.39)

= 2
R2 − r2

R2r2

∫

∂M

(trη h)2 − 2
R2 − r2

ṼolR2r2

(∫

∂M

trη h

)2

− (n + 2)
R2 − r2

R2r2

∫

∂M

h(ν, ν) trη h

+ (n + 2)
R2 − r2

ṼolR2r2

(∫

∂M

h(ν, ν)

)(∫

∂M

trη h

)
+ 2

√
R2 − r2

Rr

∫

∂M

trη h div h(ν)

− 2

√
R2 − r2

ṼolRr

(∫

∂M

trη h

)(∫

∂M

div h(ν)

)
−

√
R2 − r2

Rr

∫

∂M

(∇νh) (ν, ν) trη h

+

√
R2 − r2

ṼolRr

(∫

∂M

(∇νh) (ν, ν)

)(∫

∂M

trη h

)
−

√
R2 − r2

Rr

∫

∂M

trη h∇ν trη h

+

√
R2 − r2

ṼolRr

(∫

∂M

trη h

)(∫

∂M

∇ν trη h

)

− (n + 2)
R2 − r2

R2r2

∫

∂M

h(ν, ν) trη h + (n + 2)
R2 − r2

ṼolR2r2

(∫

∂M

h(ν, ν)

)(∫

∂M

trη h

)

+ (n + 2)2 R2 − r2

2R2r2

∫

∂M

(h(ν, ν))2 − (n + 2)2 R2 − r2

2ṼolR2r2

(∫

∂M

h(ν, ν)

)2

− (n + 2)

√
R2 − r2

Rr

∫

∂M

h(ν, ν) div h(ν) + (n + 2)

√
R2 − r2

ṼolRr

(∫

∂M

h(ν, ν)

)(∫

∂M

div h(ν)

)

+ (n + 2)

√
R2 − r2

2Rr

∫

∂M

h(ν, ν) (∇νh) (ν, ν) − (n + 2)

√
R2 − r2

2ṼolRr

(∫

∂M

h(ν, ν)

)(∫

∂M

(∇νh) (ν, ν)

)

+ (n + 2)

√
R2 − r2

2Rr

∫

∂M

h(ν, ν)∇ν trη h − (n + 2)

√
R2 − r2

2ṼolRr

(∫

∂M

h(ν, ν)

)(∫

∂M

∇ν trη h

)

+ 2

√
R2 − r2

Rr

∫

∂M

trη h div h(ν) − 2

√
R2 − r2

ṼolRr

(∫

∂M

trη h

)(∫

∂M

div h(ν)

)

− (n + 2)

√
R2 − r2

Rr

∫

∂M

h(ν, ν) div h(ν) + (n + 2)

√
R2 − r2

ṼolRr

(∫

∂M

h(ν, ν)

)(∫

∂M

div h(ν)

)

+ 2

∫

∂M

(div h(ν))2 − 2

Ṽol

(∫

∂M

div h(ν)

)2

−
∫

∂M

(div h(ν)) ((∇νh) (ν, ν))

+
1

Ṽol

(∫

∂M

div h(ν)

)(∫

∂M

(∇νh) (ν, ν)

)
−
∫

∂M

(div h(ν)) (∇ν trη h)

+
1

Ṽol

(∫

∂M

div h(ν)

)(∫

∂M

∇ν trη h

)

−
√

R2 − r2

Rr

∫

∂M

trη h∇ν trη h +

√
R2 − r2

ṼolRr

(∫

∂M

trη h

)(∫

∂M

∇ν trη h

)

+ (n + 2)

√
R2 − r2

2Rr

∫

∂M

h(ν, ν)∇ν trη h − (n + 2)

√
R2 − r2

2ṼolRr

(∫

∂M

h(ν, ν)

)(∫

∂M

∇ν trη h

)

−
∫

∂M

(div h(ν)) (∇ν trη h) +
1

Ṽol

(∫

∂M

div h(ν)

)(∫

∂M

∇ν trη h

)

+
1

2

∫

∂M

(∇ν trη h) ((∇νh) (ν, ν)) − 1

2Ṽol

(∫

∂M

∇ν trη h

)(∫

∂M

(∇νh) (ν, ν)

)
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+
1

2

∫

∂M

(∇ν trη h)2 − 1

2Ṽol

(∫

∂M

∇ν trη h

)2

−
√

R2 − r2

Rr

∫

∂M

trη h (∇νh) (ν, ν) +

√
R2 − r2

ṼolRr

(∫

∂M

trη h

)(∫

∂M

(∇νh) (ν, ν)

)

+ (n + 2)

√
R2 − r2

2Rr

∫

∂M

h(ν, ν) (∇νh) (ν, ν) − (n + 2)

√
R2 − r2

2ṼolRr

(∫

∂M

h(ν, ν)

)(∫

∂M

(∇νh) (ν, ν)

)

−
∫

∂M

(div h(ν)) ((∇νh) (ν, ν)) +
1

Ṽol

(∫

∂M

div h(ν)

)(∫

∂M

(∇νh) (ν, ν)

)

+
1

2

∫

∂M

((∇νh) (ν, ν))2 − 1

2Ṽol

(∫

∂M

(∇νh) (ν, ν)

)2

+
1

2

∫

∂M

((∇νh) (ν, ν)) (∇ν trη h) − 1

2Ṽol

(∫

∂M

(∇νh) (ν, ν)

)(∫

∂M

∇ν trη h

)

= 2
R2 − r2

R2r2

∫

∂M

(trη h)2 − 2
R2 − r2

ṼolR2r2

(∫

∂M

trη h

)2

− 2(n + 2)
R2 − r2

R2r2

∫

∂M

h(ν, ν) trη h

+ 2(n + 2)
R2 − r2

ṼolR2r2

(∫

∂M

h(ν, ν)

)(∫

∂M

trη h

)

+ (n + 2)2 R2 − r2

2R2r2

∫

∂M

(h(ν, ν))2

− (n + 2)2 R2 − r2

2ṼolR2r2

(∫

∂M

h(ν, ν)

)2
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+ 4

√
R2 − r2

Rr

∫

∂M

trη h div h(ν)

− 4

√
R2 − r2

ṼolRr

(∫

∂M

trη h

)(∫

∂M

div h(ν)

)

− 2(n + 2)

√
R2 − r2

Rr

∫

∂M

h(ν, ν) div h(ν)

+ 2(n + 2)

√
R2 − r2

ṼolRr

(∫

∂M

h(ν, ν)

)(∫

∂M

div h(ν)

)

− 2

√
R2 − r2

Rr

∫

∂M

trη h∇ν trη h

+ 2

√
R2 − r2

ṼolRr

(∫

∂M

trη h

)(∫

∂M

∇ν trη h

)

+ (n + 2)

√
R2 − r2

Rr

∫

∂M

h(ν, ν)∇ν trη h

− (n + 2)

√
R2 − r2

ṼolRr

(∫

∂M

h(ν, ν)

)(∫

∂M

∇ν trη h

)

− 2

√
R2 − r2

Rr

∫

∂M

trη h (∇νh) (ν, ν)

+ 2

√
R2 − r2

ṼolRr

(∫

∂M

trη h

)(∫

∂M

(∇νh) (ν, ν)

)

+ (n + 2)

√
R2 − r2

Rr

∫

∂M

h(ν, ν) (∇νh) (ν, ν)

− (n + 2)

√
R2 − r2

ṼolRr

(∫

∂M

h(ν, ν)

)(∫

∂M

(∇νh) (ν, ν)

)
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+ 2

∫

∂M

(div h(ν))2 − 2

Ṽol

(∫

∂M

div h(ν)

)2

+
1

2

∫

∂M

(∇ν trη h)2 − 1

2Ṽol

(∫

∂M

∇ν trη h

)2

+
1

2

∫

∂M

((∇νh) (ν, ν))2 − 1

2Ṽol

(∫

∂M

(∇νh) (ν, ν)

)2

− 2

∫

∂M

(div h(ν)) (∇ν trη h)

+
2

Ṽol

(∫

∂M

div h(ν)

)(∫

∂M

∇ν trη h

)

− 2

∫

∂M

(div h(ν)) ((∇νh) (ν, ν))

+
2

Ṽol

(∫

∂M

div h(ν)

)(∫

∂M

(∇νh) (ν, ν)

)

+

∫

∂M

((∇νh) (ν, ν)) (∇ν trη h)

− 1

Ṽol

(∫

∂M

(∇νh) (ν, ν)

)(∫

∂M

∇ν trη h

)
.(B.40)
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Finally, and completely analogously to the derivation of (B.19), we obtain

∂2
t

∣∣
t=0

∫

∂M

‖ ◦
Ric‖2

g

(B.36)

= −2

∫

∂M

(
Riemα β

µ ν

) ∣∣∣
t=0

(
∂t

∣∣
t=0

◦
Ricαβ

)
hµν

−
∫

∂M

(
∂t

∣∣
t=0

◦
Ricαβ

)
∇α∇β trη h −

∫

∂M

(
∂t

∣∣
t=0

◦
Ricαβ

)
∆hαβ

+ 2

∫

∂M

(
∂t

∣∣
t=0

◦
Ricαβ

)
∇α div hβ

(B.18)

=
2

R4

∫

∂M

◦
h:h − 2

R2

∫

∂M

◦
h:∇2 trη h

− 2

R2

∫

∂M

◦
h:∆h +

4

R2

∫

∂M

◦
h:∇ div h

+
1

2

∫

∂M

∥∥∇2 trη h
∥∥2

η
+

1

2

∫

∂M

‖∆h‖2
η +

∫

∂M

‖∇ div h‖2
η

− 2

n + 1

∫

∂M

(∆ trη h)2 − 2

n + 1

∫

∂M

(div div h)2

+

∫

∂M

∇2 trη h:∆h − 2

∫

∂M

∇2 trη h:∇ div h

− 2

∫

∂M

∆h:∇ div h +

∫

∂M

∇β div hα∇α div hβ

+
4

n + 1

∫

∂M

(∆ trg h) (div div h) .(B.41)

4. The special case h = fg

For f a smooth function, the ansatz h = fg implicates on M :

trg h = (n + 1)f,
◦
h = 0, ∇2 trg h = (n + 1) Hess f, ∆ trg h = (n + 1)∆f,

∆h = (∆f) g, div h = ∇f, ∇ div h = Hess f, div div h = ∆f,

so that

∥∥∇2 trg h
∥∥2

g
= (n + 1)2 ‖Hess f‖2

g , ‖∆h‖2
g = (n + 1) (∆f)2 ,

∇2 trg h:∆h = (n + 1) (∆f)2 , ∇2 trg h:∇ div h = (n + 1) ‖Hess f‖2
g ,

∆h:∇ div h = (∆f)2 , ∇β div hα∇α div hβ = ‖Hess f‖2
g .



4. THE SPECIAL CASE h = fg 107

It follows that, in this case,

∂2
t

∣∣
t=0

∫

M

‖ ◦
Ric‖2

g

(B.19)

= 0 − 0 − 0 + 0

+
1

2
(n + 1)2

∫

M

‖Hess f‖2
η +

1

2
(n + 1)

∫

M

(∆f)2

+

∫

M

‖Hess f‖2
η − 2

n + 1
(n + 1)2

∫

M

(∆f)2

− 2

n + 1

∫

M

(∆f)2 + (n + 1)

∫

M

(∆f)2

− 2(n + 1)

∫

M

‖Hess f‖2
η − 2

∫

M

(∆f)2

+

∫

M

‖Hess f‖2
η +

4

n + 1
(n + 1)

∫

M

(∆f)2

=
1

2
(n − 1)2

(∫

M

‖Hess f‖2
η − 1

n + 1

∫

M

(∆f)2

)

=
1

2
(n − 1)2

∫

M

‖ ◦
Hessf‖2

η ,(B.42)

where
◦

Hessf denotes the traceless part of Hess f . Similarly,

∂2
t

∣∣
t=0

∫

M

(
Scal −Scal

)2

(B.21)

=
2n2

R4
(n + 1)2

∫

M

f2 +
4n

R2
(n + 1)2

∫

M

f∆f

− 4n

R2
(n + 1)

∫

M

f∆f + 2(n + 1)2

∫

M

(∆f)2

− 2

Vol
(n + 1)2

(∫

M

∆f

)2

+ 2

∫

M

(∆f)2

− 2

Vol

(∫

M

∆f

)2

− 4(n + 1)

∫

M

(∆f)2

+
4

Vol
(n + 1)

(∫

M

∆f

)2

=
2n2

R4
(n + 1)2

∫

M

f2 +
4n2

R2
(n + 1)

∫

M

f∆f

+ 2n2

∫

M

(∆f)2 − 2n2

Vol

(∫
∆f

)2

(B.1)

= 2n2

∫

M

((
n + 1

R
f + ∆f

)
−
(

n + 1

R
f + ∆f

))2

.(B.43)
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On the other hand, the ansatz h = fg yields on the boundary ∂M :

trg h = (n + 1)f, ∇ν trg h = (n + 1)∇νf,

h(ν) = fν♭, h(ν, ν) = f,

∇h = (∇f) g, (∇h) (ν) = (∇f) ν♭, (∇h) (ν, ν) = ∇f,

∇νh = (∇νf) g, (∇νh) (ν, ν) = ∇νf, div h(ν) = ∇νf,

where ν♭ is defined as (ν♭)α = gαβνβ. Consequently,

‖h‖2
g = (n + 1)f2, |h(ν)|2g = f2,

‖(∇h) (ν)‖2
g = |∇f |2g , (∇h(ν))βα (∇h(ν))αβ = (∇νf)2 ,

(∇h) (ν):h = f∇νf, (∇h) (ν):∇νh = (∇νf)2 ,

(∇h) (ν, ν) · h(ν) = f∇νf, |(∇h) (ν, ν)|2g = |∇f |2g ,

‖∇νh‖2
g = (n + 1) (∇νf)2 , (∇νh) :h = (n + 1)f∇νf.

It then follows that,

∂2
t

∣∣
t=0

∫

∂M

‖ ◦
A‖2

g̃

(B.38)

= 2(n + 1)
R2 − r2

R2r2

∫

∂M

f2 − 4
R2 − r2

R2r2

∫

∂M

f2

+ 2
n − 1

n

R2 − r2

R2r2

∫

∂M

f2 + 4
n + 1

n

R2 − r2

R2r2

∫

∂M

f2

− 2
(n + 1)2

n

R2 − r2

R2r2

∫

∂M

f2

+ 4

√
R2 − r2

Rr

∫

∂M

f∇νf − 2(n + 1)

√
R2 − r2

Rr

∫

∂M

f∇νf

− 4

√
R2 − r2

Rr

∫

∂M

f∇νf + 2

√
R2 − r2

Rr

∫

∂M

f∇νf

− 4
n

n

√
R2 − r2

Rr

∫

∂M

f∇νf + 2
n(n + 1)

n

√
R2 − r2

Rr

∫

∂M

f∇νf

+ 2
n

n

√
R2 − r2

Rr

∫

∂M

f∇νf

+

∫

∂M

|∇f |2
η̃

+
1

2
(n + 1)

∫

∂M

(∇νf)2 +

∫

∂M

(∇νf)2

− 2

∫

∂M

(∇νf)2 −
∫

∂M

|∇f |2
η̃

− 2

n

∫

∂M

(∇νf)2

− 1

2n
(n + 1)2

∫

∂M

(∇νf)2 +
n − 1

2n

∫

∂M

(∇νf)2 +
2

n

∫

∂M

(∇νf)2

+
2

n
(n + 1)

∫

∂M

(∇νf)2 − 1

n
(n + 1)

∫

∂M

(∇νf)2

= 0.(B.44)
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Similarly,

∂2
t

∣∣
t=0

∫

∂M

(
H − H

)2

(B.40)

= 2(n + 1)2 R2 − r2

R2r2

∫

∂M

f2 − 2(n + 1)2 R2 − r2

ṼolR2r2

(∫

∂M

f

)2

− 2(n + 1)(n + 2)
R2 − r2

R2r2

∫

∂M

f2 + 2(n + 1)(n + 2)
R2 − r2

ṼolR2r2

(∫

∂M

f

)2

+
(n + 2)2

2

R2 − r2

R2r2

∫

∂M

f2 − (n + 2)2

2

R2 − r2

ṼolR2r2

(∫

∂M

f

)2

+ 4(n + 1)

√
R2 − r2

Rr

∫

∂M

f∇νf − 4(n + 1)

√
R2 − r2

ṼolRr

(∫

∂M

f

)(∫

∂M

∇νf

)

− 2(n + 2)

√
R2 − r2

Rr

∫

∂M

f∇νf + 2(n + 2)

√
R2 − r2

ṼolRr

(∫

∂M

f

)(∫

∂M

∇νf

)

− 2(n + 1)2

√
R2 − r2

Rr

∫

∂M

f∇νf + 2(n + 1)2

√
R2 − r2

ṼolRr

(∫

∂M

f

)(∫

∂M

∇νf

)

+ (n + 1)(n + 2)

√
R2 − r2

Rr

∫

∂M

f∇νf

− (n + 1)(n + 2)

√
R2 − r2

ṼolRr

(∫

∂M

f

)(∫

∂M

∇νf

)

− 2(n + 1)

√
R2 − r2

Rr

∫

∂M

f∇νf + 2(n + 1)

√
R2 − r2

ṼolRr

(∫

∂M

f

)(∫

∂M

∇νf

)

+ (n + 2)

√
R2 − r2

Rr

∫

∂M

f∇νf − (n + 2)

√
R2 − r2

ṼolRr

(∫

∂M

f

)(∫

∂M

∇νf

)

+ 2

∫

∂M

(∇νf)2 − 2

Ṽol

(∫

∂M

∇νf

)2

+
(n + 1)2

2

∫

∂M

(∇νf)2

− (n + 1)2

2Ṽol

(∫

∂M

∇νf

)2

+
1

2

∫

∂M

(∇νf)2 − 1

2Ṽol

(∫

∂M

∇νf

)2

− 2(n + 1)

∫

∂M

(∇νf)2 + 2
n + 1

Ṽol

(∫

∂M

∇νf

)2

− 2

∫

∂M

(∇νf)2

+
2

Ṽol

(∫

∂M

∇νf

)2

+ (n + 1)

∫

∂M

(∇νf)2 − n + 1

Ṽol

(∫

∂M

∇νf

)2

=
n2

2

R2 − r2

R2r2

∫

∂M

f2 − n2

2

R2 − r2

ṼolR2r2

(∫

∂M

f

)2

− n2

√
R2 − r2

Rr

∫

∂M

f∇νf

+ n2

√
R2 − r2

ṼolRr

(∫

∂M

f

)(∫

∂M

∇νf

)

+
n2

2

∫

∂M

(∇νf)2 − n2

2Ṽol

(∫

∂M

∇νf

)2

=
n2

2

∫

∂M




(√
R2−r2

Rr
f − ∇νf

)

−
(√

R2−r2

Rr
f − ∇νf

)




2

.(B.45)
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Finally, in exactly the same way we obtained (B.42), we have

∂2
t

∣∣
t=0

∫

∂M

‖ ◦
Ric‖2

g

(B.41)

=
1

2
(n − 1)2

(∫

∂M

‖Hess f‖2
η − 1

n + 1

∫

∂M

(∆f)2

)

=
1

2
(n − 1)2

∫

∂M

‖ ◦
Hessf‖2

η .(B.46)
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[Bor67] Yurĭı E. Borovskĭı, Convex surfaces with a quasiconformal spherical mapping, Sibirsk.
Mat. Z̆. 8 (1967), 535–547. MR 0214759 (35 #5608) (cited on page xii)

[Bor68] , An estimate for convex surfaces with a quasiconformal spherical mapping,
Sibirsk. Mat. Ž. 9 (1968), 530–535. MR 0227399 (37 #2983) (cited on page xii)

[Bou90] Joseph V. Boussinesq, Cours d’analyse infinitésimale: à l’usage des personnes qui
étudient cette science en vue de ses applications mécaniques et physiques, vol. I-II,
Gauthier-Villard et fils, Paris, 1887-1890. (cited on page xiv)

[Bre83] Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la
Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris,
1983, Théorie et applications. [Theory and applications]. MR 697382 (85a:46001) (cited
on pages xix, 40 and 77)

[Car65] Constantin Carathéodory, Calculus of variations and partial differential equations of
the first order. Part I: Partial differential equations of the first order, Translated
by Robert B. Dean and Julius J. Brandstatter, Holden-Day Inc., San Francisco, 1965.
MR MR0192372 (33 #597) (cited on page 60)

[Cha06] Isaac Chavel, Riemannian geometry, second ed., Cambridge Studies in Advanced Math-
ematics, vol. 98, Cambridge University Press, Cambridge, 2006, A modern introduction.
MR 2229062 (2006m:53002) (cited on pages 32, 33 and 42)

[CL57] Shiing-shen Chern and Richard K. Lashof, On the total curvature of immersed mani-
folds, Amer. J. Math. 79 (1957), 306–318. MR 0084811 (18,927a) (cited on page 22)

[CLN06] Bennett Chow, Peng Lu, and Lei Ni, Hamilton’s Ricci flow, Graduate Studies in Math-
ematics, vol. 77, American Mathematical Society, Providence, RI, 2006. MR 2274812
(2008a:53068) (cited on pages xvii and 46)

111



112 BIBLIOGRAPHY

[CZ56] Alberto P. Calderón and Antoni Zygmund, On singular integrals, Amer. J. Math. 78

(1956), 289–309. MR 0084633 (18,894a) (cited on page xv)
[Dar96] Gaston Darboux, Leçons sur la théorie générale des surfaces et les applications

géométriques du calcul infinitésimal, vol. 1-4, Gauthier-Villard, Paris, 1887-1896. (cited
on page xiv)

[Dar12] , Notice historique sur le général Meusnier, Éloges académiques et discours:
vol. publ. par le Comité du jubilé scientifique de M. Gaston Darboux, A. Hermann et
fils, Paris, 1912, pp. 218–262. (cited on page xiv)

[dC76] Manfredo P. do Carmo, Differential geometry of curves and surfaces, Prentice-Hall
Inc., Englewood Cliffs, N.J., 1976, Translated from the Portuguese. MR 0394451 (52
#15253) (cited on pages xi and xix)

[dC92] , Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Bo-
ston Inc., Boston, MA, 1992, Translated from the second Portuguese edition by Francis
Flaherty. MR MR1138207 (92i:53001) (cited on page xix)

[Des92] Sharief Deshmukh, Hypersurfaces of nonnegative Ricci curvature in a Euclidean space,
J. Geom. 45 (1992), no. 1-2, 48–50. MR 1188097 (93m:53056) (cited on page 48)
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