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Abstract. We propose to determine the displacement field u: I ⊂ R → R of a 1-D bar extended in
a hard device by minimizing a non-local energy functional of the type

�[u] :=
∫
I
U

(
u′(x) + 1

K

∑
xi∈Ju

[u](xi) ρ(x − xi )

)
dx +

∑
xi∈Ju

ϕ([u](xi)),

where K is a material parameter, [u](xi) denotes the jump of u at xi and Ju ⊂ I the set of all jump
points. For appropriate choices of the bulk energy U(·), of the surface energy ϕ(·) and of the weight
function ρ(·), we prove an existence theorem for minimizers in the space SBV(I) of special bounded
variation functions and we qualitatively discuss their form by investigating the corresponding Euler–
Lagrange equations. We show that for sufficiently large values of the bar elongation, minimizers of
the energy are discontinuous and, most of all, the non-local term [u](xi )ρ(x − xi ) influences the
relative position among the jump points, a finding that is of crucial importance to reproduce the
experimental evidence.

Mathematics Subject Classifications (2000): 74A45, 74A50, 74R20.
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1. Introduction and Setting

The gross response of a great variety of different types of materials, ranging from
quasi-brittle solids to ductile metals, is governed by an underlying microscopic
transition indicated by the localization of exceptionally large strains in layers of
evanescent thickness, which can be modelled as surfaces of discontinuity for the
deformation field. In general, two limit cases can be distinguished. In cleavage frac-
tures, characteristic of a brittle response, it is the component of the displacement
vector normal to such surface that suffers discontinuity, whereas in shear fractures
(or slip layers), indicative of plastic deformation, discontinuity exists only in the
tangential component. The response of bars whose lateral dimensions are small
with respect to their length is usually described by one-dimensional theories in
which the occurrence of fracturing, whether it be of the cleavage or shear type, is
modelled by the discontinuity in the displacement field.
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Although fractures are as a rule irreversible, consistent 1-D models have been
conceived of through a variational approach, which has the great advantage of natu-
rally providing equilibrium relations and boundary conditions. With reference to an
axis x coinciding with the axis of the bar, the interval I ⊂ R is made to represent
the natural undistorted state of the body, and the scalar function u: I → R, the
average axial displacement for particles of the cross section initially at x. Follow-
ing the original idea by Dugdale [11] and Barenblatt [3], substantial progress has
recently been achieved by equating the bar equilibrium configurations with the
stationary and minimum points of strain energies of the form∫

I
U

(
u′
a(x)

)
dx +

∑
xi∈Ju

ϕ
([u](xi)

)
. (1.1)

Here u′
a denotes the absolutely continuous part of the generalized derivative Du (in

the sense of distribution) of the displacement field u, [u](xi ) represents the jump
of u(x) at x = xi , while Ju ⊂ I is the set of all jump points of u. The function
U(·), referred to as the “bulk” strain energy density, interprets the elasticity of the
material between two consecutive discontinuities, whereas ϕ(·), the “fracture” or
“interfacial” energy, models the energy expended in overcoming the intermolecular
forces at the jump surfaces. By considering a simple quadratic expression for U(·)
and varying only the shape of ϕ(·), a broad spectrum of different response types,
ranging from brittle to plastic, has been obtained by Del Piero [8, 9]. His study
suggests that the essence of the difference in the material’s mechanical properties
depends mainly on the type of resistance that the crack surfaces offer to their
separation. This dichotomy between “bulk” and “fracture” response is evident in
functionals of the type (1.1), where the two contributions are clearly separated.

Nevertheless, experimental observations have provided a wealth of evidence
that the effects of strain localization are not confined to the discontinuity surfaces
alone. In general, localized deformations affect the material response throughout
a whole neighborhood, so that fractures might interact decisively with each other.
Such an effect has been discussed in [14, 15] for elastic-plastic metal bars. In this
case, it was observed that yielding of one layer produces a condition equivalent to
a stress concentration at the boundary of the yielded portion, which influences the
behavior of the neighboring parts and produces a chain reaction. At the mesoscopic
level, as represented in Figure 1, this causes the orderly formation of slip bands,

Figure 1. Stretched copper–aluminun crystal (from an experiment by Elam [12]).
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which at the macroscopic level are responsible for the well-known oscillations
in the stress-strain diagram usually referred to as the Portevin–Le Chatelier ef-
fect [15]. The case of quasi-brittle materials is governed by other causes, though
similar “non-local” effects are in play, since the opening of a macro-crack is accom-
panied by the appearance of a cloud of micro-cracks in its neighborhood, usually
referred to as the process zone, which may strongly affect the material properties
of nearby portions (experimental evidence is reported in [6]).

Attempts to describe the interactions between fractures through models of the
type (1.1), for example, by trying to incorporate into ϕ(·) the energy expended to
deform the bar portions surrounding a crack, may lead to incomplete results. In fact,
the location of the discontinuity surfaces remains undetermined in model (1.1),
since it is clear that the energy level does not change if the jump points are moved
along the bar, provided the size of the jump remains the same. On the other hand,
we believe that the surprising regularity with which localized-strain layers develop
deserves closer examination, as it may prove to be decisive in understanding the
material behavior.

Here, we propose to determine the displacement field u: I ⊂ R → R of a 1-D
bar stretched in a hard device by minimizing a non-local energy functional of the
type ∫

I
U

(
u′
a(x) + 1

K

∑
xi∈Ju

[u](xi )ρ(x − xi)

)
dx +

∑
xi∈Ju

ϕ
([u](xi )

)
, (1.2)

where K is a material parameter and ρ is a weight function. The underlying idea for
this model consists in accounting for any possible non-local effects of fracturing by
introducing the term [u](xi)ρ(x − xi) into the argument for the bulk energy U(·).
By properly defining constant K, the integral of ρ can be set equal to one, so that ρ
and K represent the shape and strength of the non-local contribution: values of K

approaching 1 are representative of strong interactions, whereas for K → ∞ the
functional (1.2) reduces to (1.1).

The aim of this paper is to furnish a mathematical description of the minimiza-
tion problem for functional (1.2). But, before doing this, in Section 2 we present a
simple problem in linear elasticity, which should provide, albeit tentatively, a moti-
vation for having considered energies of the type (1.2), allowing at the same time a
physical interpretation of the weight function ρ(·). Successively, after having stated
the problem in more precise mathematical terms in Section 3, in Section 4 we shall
prove an existence theorem for a wide range of choices of the bulk and surface
energies U(·) and ϕ(·). Due to the presence of possible discontinuities, the natural
space in which we settle the variational problem is the space SBV(I) of functions of
special bounded variation, refined by physical restrictions (i.e., conditions u′

a � −1
and [u] � 0, assuring the injectivity of deformations) on the class of admissible
functions, that come into play in our existence proof. In Section 5 we set forth the
necessary conditions for minimizers by considering the first variation of (1.2) and
the corresponding Euler–Lagrange equations. The possible shape of minimizers for
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bars stretched in a hard device are finally discussed in Section 6, where it is shown
how the presence of the non-local term restricts the position of possible fractures
along the bar.

2. Set-up and Motivation

There is perhaps a common characteristic in the response of tensile bars made
of different materials such as metals, ceramics, polymers or geomaterials. After
a first, pseudo-linear elastic period, they all show a more or less abrupt deviation
from linearity, which careful experiments reveal to be the consequence of strain
localization in layers of evanescent thickness. In other words, deformation occurs
locally and does not take place uniformly throughout the length of the bar: when
one element or layer yields, it strains several per cent almost instantly and then
nearly stops, while the yielding is transferred to other portions.

The simplest way to represent in full the strain-localization process is prob-
ably the cohesive-crack model introduced in the early sixties by Barenblatt [3]
and Dugdale [11]. A cohesive crack is nothing else than a fictitious crack able to
transfer stress from one face to the other. In different materials there are different
physical sources for cohesive cracks and it is remarkable that essentially the same
model holds for many distinct micro-mechanisms [17]. In crystalline solids the
source is at the nano-scale: cohesive forces recall the atomic attraction forces and
fracture energy represents the work expended to push atoms beyond the sphere
of interatomic activity. In conglomerates such as ceramics, rocks or concrete, the
explanation is mesoscopic, i.e. grain bridging or aggregate frictional interlock; in
clay or wood cohesive forces may arise from crack overlapping and in fibrous com-
posites from fiber bridging [4]. But also metals, whose plastic properties are due
to slip concentrated in thin (Lüder) bands, can be set in this category. Slip layers,
in substance, are equivalent to cohesive cracks, since the relative translation of the
atomic lattice produces a discontinuity in the displacement field without definite
rupture. This is why, in the following, the term “crack” should be understood in a
sense much broader than “material separation”.

Another noteworthy feature, as already mentioned in the Introduction, is that
cracks nucleate in a precise order, at surprisingly regular intervals. This is a clear
sign of a reciprocal interference. In classical linear elastic 2-D or 3-D fracture
mechanics, this is captured by the elastic interaction produced by distinct fractures,
but the effect degenerates in the one-dimensional case, at least for models of the
type (1.1). This section is in the direction of trying to motivate, with a simple exam-
ple, why introducing in the bulk energy a non-local term of the displacement jump
only, as in (1.2), should provide a comprehensive view of the crack-interaction phe-
nomenon. The model that follows is necessarily explanatory rather than exhaustive
at this time, but it is expected that at least some of the questions mentioned will be
clarified by further studies.
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Consider a three-dimensional tensile bar with length L and constant cross sec-
tion. A Cartesian system (x, y, z) is assumed with x directed according to the bar
axis so that, if � ⊂ R

2 and I ⊂ R denote the undistorted cross section and the
interval [0, L], respectively, the bar natural undistorted reference configuration is
B ≡ I × � = {(x, y, z): x ∈ I, (y, z) ∈ �}. The displacement field leading to
the deformed configuration will be represented by u of components u1, u2 and u3

in the x, y and z direction, whereas εij = 1
2(ui,j + uj,i) and σij , i, j = 1, 2, 3, will

denote the strain and stress components.
The shape of an equilibrium crack is certainly very complicated, but from a

purely descriptive point of view, we may consider the same model originally pro-
posed by Hillerborg [16] for quasi-brittle materials, where a rough crack is ideal-
ized as a flat crack, at right angle to the specimen axis. In mathematical terms, the
occurrence of a Hillerborg crack is detected by a jump in the axial component of
the displacement field. Thus, denoting with [u1](·, y, z) the jump of u1(·, y, z), the
fracture opening at point (y, z) of the cracked cross section x = ξ is represented
by [u1](ξ, y, z).

For convenience, we think of decomposing the actual strain εij in the cracked
bar in the form

εij = ε0
ij + εs

ij , (2.1)

where ε0
ij represents the state of strain if no cracks were present, whereas εs

ij is
the perturbation due to the presence of cracks. In particular, if the bulk material is
homogeneous isotropic and linear-elastic, the state of stress of an uncracked bar
is uniaxial and defined by the only axial component σ11 ≡ σ0. The corresponding
strain thus reads

ε0
ij =

(
1 + ν

E
δi1δj1 − ν

E
δij

)
σ0, (2.2)

where δik denotes the Kronecker’s symbol and E and ν are the Young’s modulus
and Poisson’s ratio, respectively.

In the classical linear-elastic-fracture-mechanics (LEFM) framework, the sec-
ond term εs

ij may be easily evaluated. In fact, due to the linear character of the
equations, εs

ij coincides with the strain field when the crack faces are opened by a
pressure σ0. Thus, referring to the undistorted configuration as customary in LEFM,
εs
ij can be calculated through a surface integral extended to the crack plane once

the appropriate Green function is known.� The case of a cohesive crack may appear
slightly different, since a definite material separation is absent. Nevertheless, ex-
perimental tests on plastic as well as quasi-brittle materials have clearly evidenced
that strain localization produces distortions in a neighborhood of the process layer,
which result in a condition equivalent to a stress concentration at the boundary of
the neighboring portions. Such a distortion may be due to an abrupt change of the

� This procedure, classical in LEFM, is explained in detail, for example, in Chapter 8.4 of [5].
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cross section, to elastic material portions embedded in plastically bent lamellae, or
to the breaking up of the internal crystalline structure. In metals, the effect of the
stress-concentration at the boundary of a slip plane is considered responsible for the
gap between the upper and lower yield point, for the progressive and equidistant
appearance of slip bands, and for the stress oscillations at yielding [7]. Similar
effects on quasi-brittle materials have been discussed at length in the recent book
by Bažant and Planas [4].

It is plausible to assume that the amount of distortion at the borders of a cohe-
sive crack is proportional to crack opening. Since the surrounding portions remain,
presumably, elastic, we may calculate the strain field ε

s,ξ
ij (x, y, z) at (x, y, z) due

to the formation of one crack at x = ξ through an expression of the type,

ε
s,ξ

ij (x, y, z) =
∫
�

G̃ij

[
(x, y, z), (ξ, η, ζ )

][u1](ξ, η, ζ ) dη dζ. (2.3)

Here G̃ij [(x, y, z), (ξ, η, ζ )] is the appropriate Green’s function, representing the
strain components at (x, y, z) when a unitary distortion is nucleated at (ξ, η, ζ ). At
this stage, we are not interested in finding the exact form of G̃ij but, nevertheless,
interesting properties can be deduced from arguments of a very general nature.

First of all, by De-Saint Venant’s principle, we know that G̃ij [(·, ·, ·), (ξ, η, ζ )]
practically vanishes at a distance from (ξ, η, ζ ) of the same order of the bar diam-
eter.

Furthermore, suppose that cracks nucleate at a distance of several diameters
far from the bar ends.� For what the determination of G̃ij [(x, y, z), (ξ, η, ζ )] is
concerned, it is not a significant error to consider the two half-bars x < ξ and
x > ξ to be semi-infinite. Thus, the plane x = ξ can be considered a plane of
geometrical as well as of mechanical symmetry. It follows that the Green’s function
may be written in the form

G̃ij

[
(x, y, z), (ξ, η, ζ )

] = Gij

[
(y, z), (η, ζ ), x − ξ

]
. (2.4)

Finally, we may suppose that Gij [(y, z), (η, ζ ), x − ξ ] is not influenced by the
presence of other cracks, even when they lie in a neighborhood of x = ξ . This
assumption may be justified in the case of elastic plastic materials, whose plastic
deformation is due to lattice slipping. We can reasonably expect that the elastic
properties of a homogeneous crystalline lattice are not affected when the slipping
amount equals a multiple of the interatomic distance. In fact, despite some atoms
are substituted by others, the atomic spacing remains unaffected. Thus, the effect of
a distortion at x = ξ can go undisturbed through a slip plane. A similar conclusion
holds, more or less accurately according to the specific case, for quasi-brittle ma-
terials. In fact, since cohesive cracks induce no definite material separation [4], it

� At this point, we are not dealing with the very difficult issue of the border effects, i.e. when
cracks form close to the bar ends. The periodic boundary conditions (6.2) considered later on, will
allow to bypass this crucial problem.
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is not unrealistic to assume that elastic strains can “flow” also through the cracked
surface.

Assume now that cracks open maintaining fixed the fracture-surface profile. If
this is represented by f (η, ζ ), we can write

[u1](ξ, η, ζ ) = f (η, ζ )[u1](ξ), (2.5)

where [u1](ξ) denotes the average jump in the x direction, i.e.

[u1](ξ) = 1

A

∫
�

[u1](ξ, η, ζ ) dη dζ, (2.6)

being A the cross-sectional area.
Expression (2.3), taking into account (2.4), thus becomes

ε
s,ξ

ij (x, y, z) = [u1](ξ)
∫
�

Gij

[
(y, z), (η, ζ ), x − ξ

]
f (η, ζ ) dη dζ. (2.7)

But if the Green’s function is not altered by the presence of neighboring discon-
tinuities, the effect of multiple cracks, provided the strain remains small and the
local rotation moderate, can be considered by superimposing the strain field they
generate. Thus, we can write in (2.1)

εs
ij (x, y, z) =

∑
ξ∈%

ε
s,ξ

ij (x, y, z), (2.8)

where ε
s,ξ
ij (x, y, z) is given by (2.7) and % denotes the set of jump points for u1.

Since the material is linear elastic, the strain energy density is a positive-definite
continuous bilinear function of the actual strain fields εij (x, y, z), i.e. 1

2Cijklεij εkl ,
where Cijkl denotes the elasticity tensor. For convenience, we will indicate in the
following with a (·), as in (2.6), the mean value in the cross section. Since Cijkl =
Cklij , we can write from (2.1) and (2.8)

1

2
Cijklεij εkl = 1

2
Cijklε

0
ij ε

0
kl + Cijkl

(∑
ξ∈%

ε
s,ξ

ij

)
ε0
kl

+ 1

2
Cijkl

(∑
ξ∈%

ε
s,ξ

ij

)(∑
ξ ′∈%

ε
s,ξ ′
kl

)
. (2.9)

For homogeneous isotropic elastic bodies, Cijkl takes the form

Cijkl = λδij δkl + 2µδikδjl, (2.10)

where λ and µ are Lamè’s constants, related to the Young’s modulus E and the
Poisson’s ratio ν by

E = µ(3λ + 2µ)

λ + µ
, ν = λ

2(λ + µ)
. (2.11)
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In this case, recalling (2.2), the first term on the right-hand side of (2.9) reads

Cijklε
0
ij ε

0
kl = Cijklε

0
ij ε

0
kl = E(ε0

11)
2, (2.12)

where ε0
11 = σ0/E.

Passing to the second term in (2.9), we observe from (2.2) that ε0
ij = [(1 +

ν)(δi1δj1 − νδij )]ε0
11. Thus, using (2.7), we obtain for a homogeneous isotropic

body, for which (2.10) and (2.11) hold,

Cijkl

(∑
ζ∈%

ε
s,ξ

ij

)
ε0
kl

= 1

A

∫
�

Cijkl

(∫
�

∑
ξ∈%

[u1](ξ)Gij

[
(y, z), (η, ζ ), x − ξ

]
f (η, ζ ) dη dζ

)
ε0
kl dy dz

=
∑
ξ∈%

[u1](ξ)Eε0
11

A

∫
�

∫
�

G11
[
(y, z), (η, ζ ), x − ξ

]
f (η, ζ ) dη dζ dy dz. (2.13)

It is convenient to introduce a kernel ρ(x − ξ) and a positive constant K such that

ρ(x − ξ)

K
= 1

A

∫
�

∫
�

G11
[
(y, z), (η, ζ ), x − ξ

]
f (η, ζ ) dη dζ dy dz, (2.14)

where K is selected so that
∫ +∞
−∞ ρ(x − ξ) dx = 1. Because of (2.14) we can write

Cijkl

(∑
ζ∈%

ε
s,ξ
ij

)
ε0
kl =

∑
ξ∈%

[u1](ξ)Eε0
11
ρ(x − ξ)

K
. (2.15)

It may be useful to recall, in passing, that by De Saint-Venant’s principle the
measure of the support of ρ(·) is of the same order as the bar diameter.

Finally, for what the final term in (2.9) is concerned, we can write from (2.7)

Cijkl

(∑
ξ∈%

ε
s,ξ

ij

)(∑
ξ ′∈%

ε
s,ξ ′
kl

)
= 1

A
Cijkl

∑
ξ∈%

∑
ξ ′∈%

[u1](ξ)[u1](ξ ′)
∫
�

∫
�

Gij

[
(y, z), (η, ζ ), x − ξ

]
×Gkl

[
(y, z), (η, ζ ), x − ξ ′]f 2(η, ζ ) dη dζ dy dz. (2.16)

We now imagine that the resulting cracks are at quite a distance the one from
the other, i.e. |ξ ′ − ξ | > D, ∀ξ, ξ ′ ∈ % with ξ �= ξ ′, where D is of the same
order as the bar diameter. This assumption will be verified a posteriori later on,
when we will find that minimizers of the energy functional resulting from this
hypothesis, at least in the case of strong interaction (see Section 6), will indeed
prescribe a certain minimum spacing between any two consecutive cracks. In short,
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even neglecting in (2.16) the mixed terms containing [u1](ξ)[u1](ξ ′) with ξ �= ξ ′,
the interaction contribution given by (2.13) is sufficient to maintain the cracks
sufficiently far apart. From De Saint-Venant’s principle, we thus can write

∫
�

∫
�

Gij

[
(y, z), (η, ζ ), x − ξ

]
Gkl

[
(y, z), (η, ζ ), x − ξ ′]

× f 2(η, ζ ) dη dζ dy dz ∼= 0 for ξ �= ξ ′, (2.17)

and, consequently,

Cijkl

(∑
ξ∈%

ε
s,ξ

ij

)(∑
ξ ′∈%

ε
s,ξ ′
kl

)
∼= 1

A
Cijkl

∑
ξ∈%

[u1]2(ξ)

∫
�

∫
�

Gij

[
(y, z), (η, ζ ), x − ξ

]
×Gkl

[
(y, z), (η, ζ ), x − ξ

]
f 2(η, ζ ) dη dζ dy dz

= E
∑
ξ∈%

(
[u1](ξ) ρ̂(x − ξ)

K̂

)2

, (2.18)

where ρ̂(·) is a weight function, similar to that defined in (2.15), and K̂ is an
appropriate constant. Recall that, again by De Saint-Venant’s principle, the support
of ρ̂(·) is of the same order as the bar diameter.

Collecting all these results, we can write

1

2
Cijklεij εkl

= 1

2
E(ε0

11)
2 +

∑
ξ∈%

[u1](ξ)Eε0
11
ρ(x − ξ)

K
+ 1

2
E

∑
ξ∈%

(
[u1](ξ) ρ̂(x − ξ)

K̂

)2

= 1

2
E

[
ε0

11 +
∑
ξ∈%

[u1](ξ)ρ(x − ξ)

K1

]2

+ 1

2
E

∑
ξ∈%

(
[u1](ξ) ρ̂(x − ξ)

K̂

)2

− 1

2
E

(∑
ξ∈%

[u1](ξ)ρ(x − ξ)

K

)2

. (2.19)

But, recall again that we have supposed the cracks sufficiently far apart one from
the other and at a distance from the bar ends (see footnote � on page 6). We thus
find, again by De Saint-Venant’s principle, that



10 C. DE-LELLIS AND G. ROYER-CARFAGNI∫
I

1

2
E

{∑
ξ∈%

(
[u1](ξ) ρ̂(x − ξ)

K̂

)2

−
(∑

ξ∈%

[u1](ξ)ρ(x − ξ)

K

)2}
dx

∼=
∑
ξ∈%

g
([u1](ξ)

)
, (2.20)

where g(·) is quadratic. In other words, the assumption of sufficient spacing among
the cracks allows one to neglect in (2.20) the mixed terms containing [u1](ξ)[u1](ξ ′),
∀ξ, ξ ′ ∈ % with ξ �= ξ ′.

The strain energy stored in the bar, defined as

Eb = 1

2

∫
B

Cijklεij εkl dx dy dz = 1

2

∫
I

(∫
�

Cijklεij εkl dy dz

)
dx

= 1

2
A

∫
I

Cijklεij εkl dx,

from (2.12), (2.15), (2.18), (2.19) and (2.20) thus results

Eb = 1

2
EA

∫
I

(
ε0

11 +
∑
ξ∈%

[u1](ξ)ρ(x − ξ)

K1

)2

dx +
∑
ξ∈%

g
([u1](ξ)

)
. (2.21)

To this expression, which represents the work necessary to deform the elastic
portions in between the cracks (bulk energy), the work expended to overcome
the intermolecular forces and physically open the crack must be added (fracture
energy). In general, following [8], by introducing the molecular potential θ(·) the
fracture energy term can be written in the form

Ef =
∫
�

θ
([u1](ξ, η, ζ )

)
dη dζ, (2.22)

or, recalling (2.5),

Ef =
∫
�

θ
(
f (η, ζ )[u1](ξ)

)
dη dζ = -

([u1](ξ)
)
.

Consequently, defining ϕ(·) as

ϕ
([u1](ξ)

) = -
([u1](ξ)

) + g
([u1](ξ)

)
, (2.23)

we obtain for the total energy an expression of the type

E[u1] = 1

2
EA

∫
I

(
ε0

11 +
∑
ξ∈%

[u1](ξ)ρ(x − ξ)

K

)2

dx + ϕ
([u1](ξ)

)
. (2.24)

In this expression, the kernel ρ(·) models the non-local effect produced by the
elastic distortions that accompany the crack growth, whereas ϕ(·) is “apparently”
the surface energy. Indeed, we deduce more accurately from (2.23), that ϕ(·) is the
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sum of two contributions: the “true” fracture energy, -([u1](ξ)), and the aliquot
g([u1](ξ)), which results from the distortions produced at the crack surfaces.

3. The Variational Problem for a Hard Device

Motivated by the analysis of the previous section, we conceive one-dimensional
models for tensile bars defined, in general, through deformation energies of the
type

�[u] :=
∫
I
U

(
u′(x) + 1

K

∑
xi∈Ju

[u](xi )ρ(x − xi)

)
dx +

∑
xi∈Ju

ϕ
([u](xi )

)
. (3.1)

Here, in the reference system x, the interval I ≡ [0, L] ⊂ R denotes the bar
natural undistorted reference-configuration, u(x) is the displacement in the positive
x direction of particles initially at x, U : R → R is a regular function representative
of the bulk part of the energy, ϕ: R

+ → R is the “interfacial” term, Ju is the set
of jump points of u and [u](xi) the jump of u at xi ∈ Ju. The most important
peculiarity of (3.1) is that the bulk energy is a function not only of the “regular”
gradient u′, but also of a non-local term defined by singular part [u] and the kernel
ρ: R → R, a function identically zero outside the interval (−l0, l0), with� l0 � L.
By appropriately defining the constant K we can always set∫ l0

−l0

ρ(t) dt = 1. (3.2)

Since discontinuous displacement fields are envisaged, the natural space where
to settle the variational problem is the space of real valued functions of bounded
variation BV(I). The generalized derivative Du of u is a measure on I and, ac-
cording to [1] (see also [2]), we can decompose Du in the form

Du = u′
a + Dcu + Dju = u′

a + Dsu, (3.3)

where u′
a , Dcu and Dju denote the absolutely continuous part of Du with respect to

the Lebesgue’s measure dx (an equivalent notation for u′
a, sometimes used in this

paper, is Dau), the Cantor part and the jump part of Du, respectively. Consequently,
Dsu = Dcu+Dju represents the singular part of Du (with respect to the Lebesgue’s
measure dx).

Notice that the convolution product is well defined also for singular functions.
If we set Dju(x) ≡ 0 in the sense of distributions for x /∈ [0, L], we have in
particular

(ρ ∗ Dju)(x) =
∫ +∞

−∞
ρ(x − z)Dju(z) =

∑
xi∈Ju

[u](xi)ρ(x − xi). (3.4)

� Recall again the key role played by De Saint-Venant’s principle in Section 2.
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Consequently, we can write (3.1) with a more convenient mathematical notation in
the form

�[u] :=
∫
I
U

(
u′
a + 1

K
ρ ∗ Dju

)
dx +

∑
xi∈Ju

ϕ
([u](xi )

)
. (3.5)

Suppose now that the bar is gradually stretched in a hard device so that its total
length becomes (β + 1)L. Thus, the quantity β � 0 represents the average strain
and Du must satisfy an integral condition of the form

βL =
∫
I

Du =
∫
I
u′
a dx +

∫
I

Dcu +
∑
xi∈Ju

[u](xi). (3.6)

We shall then consider the variational problem

min
u∈A

�[u], (3.7)

consisting in minimizing the strain energy �[u] in the class A of admissible func-
tions

A =
{
u ∈ SBV(I): u(0) = 0,

∫
I

Du = βL, Du � κ

}
. (3.8)

It should be observed that A is a subset of the space of special bounded-variation
functions SBV . We will demonstrate that for a wide choice of functions U(·) and
ϕ(·), �[u] has a minimum in A. However, it is important to mention that the inte-
gral condition

∫
I Du = βL and the lower bound Du � κ in (3.8), together, assure

the boundedness of the class A, which will be used in our proof. Indeed, without
condition Du � κ , we would be forced to assume more restrictive hypotheses
on ϕ(·) in order to prove existence. From a physical point of view, we recall that for
κ = −1 such lower bound expresses the injectivity condition for the deformation
associated to u. In general, for the existence of minimizers it is sufficient to assume
that Du is bounded from below.

4. Existence of Minimizers for the Variational Problem

We now address the question of the existence of minimizers for the variational
problem presented in Section 3. In particular, we demonstrate the following:

THEOREM 1 (Existence of minimizers). Let U : R → R and ϕ: R
+ → R be

positive functions such that U is convex, ϕ is subadditive and, in addition,

lim
t→0+

ϕ(t)

t
= +∞, (4.1)

and

lim
t→+∞

U(t)

t
= +∞. (4.2)
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Moreover, let ρ(·) be continuous and with compact support. Then the minimum
problem defined in (3.7), (3.5) and (3.8) admits at least a solution.

Before addressing the proof of the theorem, we notice that the classA is bounded
in BV(I). Indeed, let us choose any u ∈ A. Then, its generalized derivative can
be decomposed in the form Du = Du+ − Du−, being Du+ and (−Du−) the
positive and the negative part of Du. Since Du � κ , we have

∫
I Du− � |κ|L

and, consequently,

βL =
∫
I

Du =
∫
I

Du+ −
∫
I

Du− �
∫
I

Du+ − |κ|L.

Hence,∫
I

|Du| =
∫
I

Du+ +
∫
I

Du− � (β + |κ|)L + |κ|L,

which together with condition u(0) = 0 implies the boundedness of A.
Proof. The proof of the theorem uses, with appropriate modifications, the ideas

contained in a fundamental theorem by Ambrosio (Closure Theorem for SBV in [1]).
Essentially, it consists in verifying that
(a) the functional �[u] defined in (3.5) is lower-semicontinuous in A for the

weak∗ topology in BV(I);
(b) for any sequence (un) ⊂ A that weakly∗ converges to some u /∈ A, we have

lim
n→∞ �[un] = +∞. (4.3)

In fact, provided these two conditions hold, consider any minimizing sequence
(un) ⊂ A. Since A is bounded, its weak∗ closure A is weakly∗ compact. Thus
(un) converges, up to a subsequence, to some u ∈ A. But, because of condition (b),
u ∈ A and, because of condition (a), �[u] � lim inf �[un]; we then conclude that
u is a minimizer.

Since it is always possible to restate the variational problem defined in (3.7),
(3.5) and (3.8) in term of the new function u(x) = u(x) − κx, without loosing
generality, for the proof of (a) and (b) it is sufficient to consider the case κ = 0 in
(3.8), so that from now on we consider Du � 0.

We start by proving (a). Let (un) ⊂ A be a sequence weakly∗ – BV converging
to some u ∈ A. Then, there are only three possibilities:
(1) Dsun converges to a measure that is not singular;
(2) Daun converges to a measure that is not absolutely continuous;
(3) Dsun converges to Dsu and Daun converges to Dau.

In case 1 the sequence (Dsun) converges to a measure µ that is not singular with
respect to the Lebesgue’s measure, that is µ = µ(1) + µ(2) where µ(1) is singular
with respect to dx but µ(2) is not vanishing and absolutely continuous (with respect
to dx). We can then split un into three terms, i.e. un = u(0)

n + u(1)
n + u(2)

n such that
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Dsu
(0)
n = 0, Dau

(1)
n = Dau

(2)
n = 0 and the sequence (Dsu

(1)
n ) converges to µ(1)

whereas (Dsu
(2)
n ) converges to µ(2). Thus,

lim inf
n→∞

∫
I

Dsu
(2)
n �= 0, (4.4)

and

lim
n→∞ sup

x∈I

[
u(2)
n

]
(x) = 0. (4.5)

Now, let us call En
1 ⊂ I and En

2 ⊂ I the sets where Dsu
(1)
n and Dsu

(2)
n are concen-

trated; expressions (4.4) and (4.5), together with (4.1) and (4.2) imply that

lim
n→∞

∑
xi∈En

2

ϕ
([
u(2)
n

]
(xi)

) = +∞.

We also observe that, because of the singularity of µ(2) with respect to µ(1), we
have

lim
n→∞

∫
En

1

∣∣Dsu
(2)
n

∣∣ = lim
n→∞

∫
En

1

Dsu
(2)
n = 0.

Consequently,

lim inf
n→∞

∑
xi∈Jun

ϕ
([un](xi)

)
= lim inf

n→∞

( ∑
xi∈En

1

ϕ
([
u(1)
n

]
(xi)

) +
∑
xk∈En

2

ϕ
([
u(1)
n

]
(xk)

)) = +∞.

This implies the sequentially lower-semicontinuity of �[·] for sequences of this
type.

In case 2, the sequence (Daun) converges to a measure that is not absolutely
continuous with respect to dx. We can now decompose un in the form un =
u(α)
n + u

(γ )
n where Dsu

(α)
n = 0 but Dau

(α)
n converges to a (positive) measure µ

that is singular with respect to dx. Then, defining for some λ ∈ R
+ the set En

λ ≡
{x ∈ I: Dau

(α)
n � λ}, we have

lim inf
n→∞

∫
En

λ

Dau
(α)
n dx = lim inf

n→∞

∫
I

Dau
(α)
n dx �

∫
I
µ > 0. (4.6)

Thus, recalling that U(·) is bounded from below, that ρ ∗ Dsun is equibounded
in L∞ and that Daun = Dau

(α)
n + Dau

(γ )
n � Dau

(α)
n (since Dau

(γ )
n � 0), we obtain

recalling (4.6)

lim inf
n→∞

∫
I
U

(
Daun + 1

K
ρ ∗ Dsun

)
dx � lim inf

n→∞

∫
I
U

(
Dau

(α)
n + C1

)
dx

� lim inf
n→∞

∫
En

λ

U
(
Dau

(α)
n + C1

)
dx, (4.7)
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for some constant C1. But condition (4.2) implies that for every A ∈ R
+ there is

a λ such that

U
(
Dau

(α)
n (x) + C1

)
� A

(
Dau

(α)
n (x) + C1

)
, ∀x ∈ En

λ.

Using (4.6) and (4.7), we find

lim inf
n→∞

∫
En

λ

U
(
Dau

(α)
n + C1

)
dx � lim inf

n→∞

∫
En

λ

A
(
Dau

(α)
n + C1

)
dx � A

∫
I
µ.

Thus, from the arbitrariness of A, we obtain that lim inf �[un] → +∞ as n → ∞,
from which the sequential lower-semicontinuity of �[·] in case 2 follows.

Finally, in case 3, assume that the sequence (Daun) converges to Dau and
(Dsun) converges to Dsu. We recall that if a sequence of measures (µn) weakly∗-
converges to a measure µ, then ρ ∗ µn converges strongly in L1 to ρ ∗ µ (this can
be easily verified when ρ is of class C1 by integrating by parts and can then be
proved for a general ρ by approximating it with C1 functions in the L∞ norm).
Consequently, we have that

lim inf
n→∞

∫
I
U

(
Daun + 1

K
ρ ∗ Dsun

)
dx �

∫
I
U

(
Dau + 1

K
ρ ∗ Dsu

)
dx. (4.8)

Moreover, from the subadditivity hypothesis on ϕ(·) we conclude that (see for
instance [2])

lim inf
n→∞

∑
xi∈Jun

ϕ
([un](xi)

)
�

∑
xi∈Ju

ϕ
([u](xi )

)
. (4.9)

From the exam of the three aforementioned cases, the sequential lower-semicon-
tinuity of �[·] in general follows and so condition (a) is satisfied.

We then pass to consider condition (b). Thus suppose that a sequence (un) ⊂ A
weak∗-BV converges to some u∗, with u∗ ∈ A. Using arguments completely similar
to those used in the discussion of cases 1 and 2, it can be shown that if Du∗ has
non-vanishing Cantor part, then

lim inf
n→∞ �[un] = +∞. (4.10)

In fact, if Dsun converges to a measure that has nonzero Cantor part, we can apply
the argument of case 1; on the other hand, when Daun converges to a measure with
nonzero Cantor part, we may reason as in case 2. This concludes the proof of the
theorem. ✷

5. Necessary Conditions for Minimizers

We now turn to the characterization of solutions of (3.7), by considering the first
variation of the functional �[u]. For simplicity, we will examine only the case
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when κ = 0 in (3.8); the extension to the general case κ �= 0 is more com-
plicated but conceptually similar. Let then u∗ be a minimizer for the variational
problem (3.7). We consider variations of the form

u∗ + 6u = u∗ + εv, (5.1)

where v is a fixed function and ε is a small positive quantity, i.e. ε > 0. Obviously,
because of the definition (3.8) of the class A of admissible functions, v must satisfy
the integral condition∫

I
Dv(x) = 0. (5.2)

A necessary condition for u∗ to be a minimizer is

lim inf
ε→0+

�[u∗ + εv] − �[u∗]
ε

� 0, (5.3)

and, in the following, we will specify this condition for particular choices of the
function v. For convenience we will set

e∗(x) := Dau
∗(x) + 1

K
ρ ∗ Dju

∗, (5.4)

and define

I> :=
{
x ∈ I: lim sup

ε→0

1

2ε

∫ x+ε

x−ε

Dau
∗ > 0

}
. (5.5)

Then, the necessary conditions for minimizers are expressed by the following:

THEOREM 2 (Euler–Lagrange equations). Let us suppose that u∗ is a solution
of the problem defined in (3.7), (3.5) and (3.8) for κ = 0. Then the following
conditions hold:
(1)

U ′(e∗(x)
) = const = N0 ∀x ∈ I>,

and U ′(e∗(x)) � N0 ∀x ∈ I\I>;
(2) if we denote by ρ− the function ρ−(x) = ρ(−x) then(

1

K
ρ− ∗ U ′(e∗)

)
(x1) + ϕ′([u∗](x1)

) =
(

1

K
ρ− ∗ U ′(e∗)

)
(x2) + ϕ′([u∗](x2)

)
,

for every x1, x2 ∈ Ju∗;
(3) for every x1 ∈ Ju∗ we have

U ′(e∗(x1)
)

�
(

1

K
ρ− ∗ U ′(e∗)

)
(x1) + ϕ′([u∗](x1)

) ∀x1 ∈ I\I>,

and equality holds if x1 ∈ I>;
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(4) defining
◦
Ju∗= Ju∗ ∩ ]0, L[, then

d

dx

[
1

K
ρ− ∗ U ′(e∗)

]
(x1) = 0, ∀x1 ∈ ◦

J u∗;

if x1 = 0 the sign � holds and if x1 = L the sign � holds.

Proof. Case 1. Consider in (5.1) 6u = εvη(x) such that Dvη = Davη, Dsvη = 0
and vη weakly∗ converges in BV to a step function jumping at x = x1 (Dvη

converges to a Dirac’s mass centered at x1). Clearly, if x1 ∈ I> two sided variations
are allowed for appropriate vη and for sufficiently small ε, whereas if x ∈ I\I>

only one-sided variation is allowed. From (5.3) we obtain conditions

U ′(e∗(x)
) = const = N0 ∀x ∈ I>, (5.6)

and

U ′(e∗(x)
)

� N0 ∀x ∈ I\I>. (5.7)

Case 2. Assuming that u∗ has at least two points of discontinuity, consider now
6u = εv2(x) where v2(x) is such that Dv2 = δx1 − δx2 . Here δx1 and δx2 denote
Dirac’s masses centered at x1 and x2 respectively, where x1 and x2 are two distinct
jump points for u∗. Since now two-sided variations are allowed, from (5.3) we
obtain∫

I

(
1

K
ρ ∗ (δx1 − δx2)

)
U ′(e∗) dx + ϕ′([u∗](x1)

) − ϕ′([u∗](x2)
) = 0.

Thus, recalling the well-known formula∫
I

(
1

K
ρ ∗ (δx1 − δx2)

)
U ′(e∗) dx =

∫
I

(
1

K
ρ− ∗ U ′(e∗)

)
(δx1 − δx2) dx,

where

ρ−(x) = ρ(−x),

we find (
1

K
ρ− ∗ U ′(e∗)

)
(x1) + ϕ′([u∗](x1)

)
=

(
1

K
ρ− ∗ U ′(e∗)

)
(x2) + ϕ′([u∗](x2)

)
, (5.8)

for every x1, x2 in Ju∗ .
Case 3. Supposing that u∗ has at least one discontinuity point, let D6u =

εv′
η(x) − εδx2, where x2 is a jump point for u∗ and vη(x) has been defined as



18 C. DE-LELLIS AND G. ROYER-CARFAGNI

in case 1 but with unit average, so that (5.2) is automatically satisfied. From (5.3)
we find∫

I
U ′(e∗)

(
v′
η(x) − 1

K
ρ ∗ δx2

)
dx − ϕ′([u∗](x2)

)
� 0.

As v′
η(x) ⇀ δx1 for η → ∞, we distinguish again the cases when x1 ∈ I> and

when x1 /∈ I>. If x1 ∈ I> two sided variations are allowed, so that we obtain

U ′(e∗(x1)
) =

(
1

K
ρ− ∗ U ′(e∗)

)
(x2) + ϕ′([u∗](x2)

) ∀x1 ∈ I>, (5.9)

whereas if x /∈ I> we find

U ′(e∗(x1)
)

�
(

1

K
ρ− ∗ U ′(e∗)

)
(x2) + ϕ′([u∗](x2)

) ∀x1 ∈ I\I>. (5.10)

Case 4. Finally, assuming again that there exists at least one jump point x1

for u∗, consider variations 6u such that D6u = [u∗](x1)δx1+ε − [u∗](x1)δx1 . This
is equivalent to perturbing the position of the jump point from x1 to x1 + ε. If x1 is
sufficiently far from the extremities of the bar, we obtain from (5.3)∫

I
U ′(e∗)

(
1

K
ρ ∗ δ′

x1

)
dx =

∫
I

1

K
ρ− ∗ U ′(e∗)δ′

x1
dx

= −
∫ L

0

d

dx

[
1

K
ρ− ∗ U ′(e∗)

]
δx1 dx = 0,

which implies

d

dx

[
1

K
ρ− ∗ U ′(e∗)

]
(x1) = 0 ∀x1 ∈ ◦

J u∗. (5.11)

If instead the jump point coincides with the lower extremity of the bar, i.e. x1 ≡ 0,
analogously to condition (5.11) we find

d

dx

[
1

K
ρ− ∗ U ′(e∗)

]
(x1) � 0 if x1 ≡ 0. (5.12)

On the other hand when x1 ≡ L we obtain

d

dx

[
1

K
ρ− ∗ U ′(e∗)

]
(x1) � 0 if x1 ≡ L. (5.13)

This concludes the proof of the theorem. ✷

6. The Shape of Minimizers. Discussion

As the value of the bar average strain β, characterizing the class (3.8) of admissible
functions, is gradually increased starting from β = 0, the shape of minimizers for
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the problem defined in (3.7) and (3.5) may correspondingly be different in type.
Intuitively, the bar prefers to be uniformly stretched when β is moderate, whereas,
for larger values, discontinuous deformations may be energetically more favorable.
Optimal values for jumps are expected since, two competing terms appear in the
energy expression (3.5): the surface energy ϕ(·), which because of (4.1) penal-
izes small discontinuities, and the bulk energy U(·) that, being a function of the
convolution term ρ ∗ Dju, is by (4.2) superlinear in the jump amount. The crucial
question to be addressed now is whether the presence of the non-local term ρ ∗Dju

can possibly predict, or at least restrict, the jump position, that in models of the type
(1.1) remains completely arbitrary.

Of course, different in type materials could be described for various choices of
the bulk and surface energies U(·) and ϕ(·) and of the kernel ρ(·). Here, in addition
to the hypotheses of Theorems 1 and 2, we will limit to discuss the paradigmatic
example where U(·) is quadratic, ϕ(·) is strictly concave and ρ(·) is positive,
symmetric and unimodal.� In particular, we consider the expressions

U(t) = 1

2
EAt2, ϕ(t) = 2EAa

√
K − 1

K

t

L
, (6.1)

where E and A denote the Young’s modulus and the cross section of the bar
respectively, while a is a material parameter having the dimensions of a length.

But before proceeding further, it is important to review the boundary conditions
at the bar ends, an issue that has been postponed up to now in order to simplify the
presentation. In general (see also [13]), the non-local spatial dependence protrudes
outside the reference domain when the non-local term is evaluated close to the
boundary, so that an “extension” of deformation should be somehow defined be-
yond the frontier. In general, it is assumed that the deformation gradient vanishes
outside the reference domain, but this choice may drastically affect the shape of
minimizers. Referring to our model to illustrate, we can easily check that if we
set Du ≡ 0 outside the reference interval I , it is energetically more convenient
to nucleate a jump point in proximity of one of the bar extremities instead of in
the interior of I . In fact, supposing on the contrary that this is not the case, we
can move the jump point to the border while maintaining fixed the jump amount.
Since now only “half” of the convolution term is active, it could be easily checked
that this second configuration, after a re-arrangement of Dau, lowers the energy.
Similarly, a succeeding jump should be located at the second end-point.

Here, however, we prefer not to consider this boundary effect, essentially be-
cause we believe that the bar end conditions deserve a deeper attention, which
goes beyond the aim of this paper. Indeed, while attempting to reproduce real
experiments on tensile bars, it is not clear what a realistic condition should be at the
extremities, where substantial portions are subjected to the action of the clamping

� That is, ρ(·) has only one maximum point, being increasing on the left-hand side and decreasing
on the right-hand side of such point. An example is the function ρ(t) defined as ρ(t) = 3/(4l0)
× (l20 − t2) for t ∈ (−l0, l0), ρ(t) = 0 otherwise.
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device. For example, slipping may occur between specimen and clamping jaws,
so that the assumption Du ≡ 0 outside I may lead to erroneous estimates. This
point is crucial since, as just noticed for our model, slightly different boundary
conditions may produce substantially different responses. This is why, at least at
this stage, we prefer to set such a difficulty aside. To this aim, we might think, for
example, that the bar is a circular ring wound on a drum of radius R. Supposing
that a device allows to continuously increase R, the average elongation of the ring
would be consequently augmented. Provided R is so large that the second order
strains due to the bar curvature are negligible and assuming no friction, the total
energy of the ring can still be represented by a functional of the type (3.5), where
now L = 2πR. From a mathematical point of view, this is equivalent to minimizing
the energy functional �[u] of (3.5) in the class

Ap =
{
u ∈ SBV loc(R): u(0) = 0,

∫
I

Du = βL,Du � 0, u is L-periodic

}
.

(6.2)

The conclusions of Theorems 1 and 2 remain valid even in this case and the corre-
sponding proofs are substantially the same as in Sections 4 and 5. However now,
because of the symmetry of the circular bar, no boundary effect is present and, by a
proper translation of I , we may always suppose that any jump occurs in the interior
of the reference interval.

In this context, let us now qualitatively discuss the main characteristics of mini-
mizers for different values of the average elongation β. As a matter of fact, explicit
analytical solutions are very difficult to obtain and this is why, here, we limit to
investigate only some qualitative properties of minimizers, whereas a more detailed
numerical analysis for some particular cases will be presented in a forthcoming pa-
per. Let’s then analyze the informations achievable from the Euler–Lagrange equa-
tions (Section 5). First of all, whenever the deformation is continuous (Dj u

∗ = 0),
we find from condition 1 in Theorem 2 that the only possible equilibrium con-
figuration corresponds to Dau

∗ = const = β. We can easily show that this is a
minimum point for sufficiently small β. In fact, comparing the functional �[u] of
(3.5) with

�̂[u] =
∫
I
U

(
u′
a(x)

)
dx +

∑
xi∈Ju

ϕ
([u](xi )

)
, (6.3)

from the hypothesis Du � 0 we certainly have �̂[u] � �[u] in A and, besides,
�[u] ≡ �̂[u] if Dju = 0. We know (compare [10]), that for small values of β

minimizers of �̂[u] have no singular part. Let then û∗ be a continuous minimizer
for �̂[u]. Since we can write

�
[
û∗] = �̂[û∗] � �̂[u] � �[u], ∀u ∈ A,

we find that û∗ also minimizes �[u].
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The situation is more complicated when β is augmented beyond a threshold
value, corresponding to the appearance of discontinuities. Now a few cases have
to be considered and, in particular, we have to distinguish two possibilities: either
the jump occurs in the region I>, where according to (5.5) Dau

∗ > 0, or the jump
occurs in the remaining part I\I>, where Dau

∗(x) = 0.
(a) If a jump arises in I>, we find from condition 1 of Theorem 2 that e∗(x) =

const = e0, where e∗ is defined by (5.4) and e0 = N0/EA. Thinking of decom-
posing e∗(x) in the form e∗(x) = Dau

∗ + e∗
J (x), where e∗

J (x) represents the
contribution due to the convolution terms, i.e.

e∗
J (x) =

∑
xj∈Ju

1

K
ρ ∗ Dju

∗(xj ), (6.4)

we find that the following condition holds:

e∗
J (x) < e0, ∀x ∈ I>.

This situation is evidenced on the left-hand side of Figure 2, where the graphs
of e∗(x) and e∗

J (x) are represented with continuous and dotted lines, respec-
tively. Moreover, noticing that condition 2 of Theorem 2 implies that
ϕ′([u](x1)) = ϕ′([u](x2)) for every x1, x2 ∈ Ju∗ ∩ I> (provided that the dis-
tance between xi and the boundary points of I> is big enough, i.e. greater than
l0), the strict concavity of ϕ gives that [u](x1) = [u](x2), i.e. all the jumps
must be of the same amount.

(b) For a jump located in I\I>, we have from condition 1 of Theorem 2 that
e∗(x) � e0. Then, using condition 3, we obtain the characterization

e∗
J (x) = e∗(x) � e0, ∀x ∈ I\I>,

which is illustrated by the corresponding graphs represented on the right-hand
side of Figure 2.

Figure 2. The two different configurations for minimizers: (a) Dau
∗(x) > 0 and e∗

J
(x) < e0;

(b) e∗(x) ≡ e∗J (x) and e∗J � e0 where Dau
∗(x) = 0.
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In conclusion, e∗ is constant in I> and greater than or equal to this value in
I\I>. When more then one jump is present, the corresponding amounts must
satisfy condition 2 of Theorem 2.

We may decide if the bar naturally prefers discontinuities either of the type (a) or
of the type (b) by considering only one jump point. For this configuration, we can in
principle easily determine, for fixed β, the optimal jump amount so as to minimize
the total energy, but the calculations are lengthy and, therefore, we report them in
the Appendix. In summary, the situation depends upon the value of the parameter α
defined as

α = K − 1

ρmaxL + K − 1
, (6.5)

where ρmax denotes the maximum value of ρ(·). In particular, three different cases
have to be analyzed according to whether 0 < α < 1

3 or 1
3 < α < 2

3 or α > 2
3 ,

but the borderline cases of practical interest are essentially only two: that of strong
interaction and that of very weak interaction. Such possibilities, as the name sug-
gests, depend upon the value of the parameter K, which controls the “strength” of
the non-local term in (3.5).

In the case of very weak interaction, i.e. when K is very large (K � ρmaxL),
we have α � 1. Reasoning as in the Appendix, there exists a threshold value for β,
say β = β such that for β < β the bar is uniformly strained (i.e. Dau

∗ ≡ β,
Dju

∗ ≡ 0), whereas for β > β the situation with one jump of definite amount is
energetically more favorable. The optimal jump amount, provided K is sufficiently
large, satisfies condition e∗

J (x) < e∗(x) with e∗(x) = e0, so that the configuration
is of the type (a).

We now consider the case of strong interaction, i.e. when 1 <K � ρmaxL. This
situation is likely to be the most common in the practical cases because, noticing
that since

∫
ρ dx = 1 we certainly have ρmax2l0 � 1, from the hypothesis L � l0

we find that, for a wide range of values of K, condition K � ρmaxL is certainly
satisfied. In particular, whenever K < 1 + 1

2ρmaxL, we have 0 < α < 1
3 . Then,

following the calculations in the Appendix, we can define the threshold value

β3 = 1

α

(
a(K − 1)

ρmaxL2

)2/3

,

such that (i) for β < β3 the continuous deformation with Dau
∗ ≡ β and Dju

∗ ≡ 0
is energetically favorable; (ii) for β > β3 the configuration with one finite jump is
to be preferred. Now however, on the contrary to the previous case, we find that the
optimal jump [u∗] verifies (1/K)ρmax[u∗] > e∗

0, i.e. the bar configuration is now of
the type (b).

Let us then pass to the most interesting issue: what is the mutual influence be-
tween two cracks? The situation is quite different for the two aforementioned cases
of weak or strong interaction. Let us consider first the case of weak interaction
and consequently let x1, x2 ∈ Ju∗ ∩ I>. We show that the model does not restrict
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the relative position of x1 and x2. In fact, supposing that x1 and x2 are moved
arbitrarily close to one another in the interior of I> where e∗(x) = e0, we can
always� rearrange Dau

∗ so that e∗(x) still remains equal to e0 in I>. It is easily
verified that in this way the energy level remains unchanged. Complete overlapping
would lead to a different energy value because two jumps would merge into a
larger one, thus affecting the term ϕ(·), but apart from this any two jumps could
be placed as close as we like. This is not surprising, since the interaction due to
the non-local term ρ ∗ Dju disappears for large K. In the limit case K → ∞, the
functional (3.5) reduces to (6.3), for which we had already noticed the complete
freedom of movement for the jump points.

The scenario is quite different for strong interaction, i.e., we can demonstrate
that the location of the jump points cannot be completely arbitrary. Indeed, we
see that when two jumps appear, we are free to move one with respect to the
other, but their overlapping is restricted. To illustrate, suppose x1, x2 ∈ Ju∗\I>:
whenever |x1 −x2| < l0, we can easily verify that condition 4 of Theorem 2 cannot
be verified. More generally, if the total number of jumps in Ju∗\I> is less than
L/l0 − 1, then overlapping is similarly restricted. In fact, suppose by contradiction
that this is not the case. Then there exists a jump point y ∈ Ju∗\I> such that the
following (or a symmetric situation) occurs: Ju∗ ∩ (y, y + 2l0) = 0 and Ju∗ ∩
(y − l0, y) �= 0. Then, condition 4 of Theorem 2 would be violated at y. Moreover,
from this fact we have that, for any xj ∈ Ju∗ , the quantity ((1/K)ρ− ∗ U ′(e∗))(xj )

depends only on the height of the jump at xj . Therefore condition 2 in Theorem 2
can be written in the form F([u](xj )) = F([u](xk)) for every xj , xk ∈ Ju∗ , where
F(·) depends upon the shape of U , ϕ and ρ. From this condition, apart from patho-
logical cases, we find that the height of the jumps is forced to assume at most only
a finite number of values.

As a matter of fact, the case of weak interaction should be considered a border-
line case, where model (1.2) looses most of its significance. The reason for this can
be seen just referring to the paradigmatic example of Section 2. In particular, recall
that in (2.16) we neglected the mixed terms containing [u1](ξ)[u1](ξ ′), ξ �= ξ ′,
since we assumed, modulo a verification a posteriori, that the bar cracks were
sufficiently distant. This hypothesis is reasonable for the case of strong interaction,
when the first-order “interference” between the bar axial strain and the distortion
produced at a crack, interpreted by (2.13), is effective enough to maintain cracks
sufficiently far apart. But the hypothesis fails when the interaction is weak. In this
latter case, the strain energy functional (1.2) should be enriched by the mixed terms
in (2.16), representative of direct interactions among the cracks. This additional
contribution should provide certain restrictions and limit the possible jump loca-
tions, but the discussion of this circumstance necessitates consideration of a new
energy functional and we will not do this.

In summary, in the only significant case of strong interaction (K sufficiently
small), the presence of the non-local term (1/K)ρ∗Dj u in the argument of the bulk

� At least until the corresponding new value of e∗
J
(x), defined in (6.4), does not exceed e0.
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energy U(·) provides restrictions upon the relative position between consecutive
jumps of minimizers, in agreement with the experimental evidence discussed at
length in the Introduction. The analysis also shows that the field e∗(·), defined as
in (5.4), is affected by the appearance of possible discontinuities. More in detail,
the graph of e∗(·) shows a “bump” of the type represented on the right-hand side
of Figure 2 in a neighborhood of any discontinuity point, becoming constant only
at a distance of the same order as the support of ρ. We observe in passing that
the resulting shape of e∗(·) is similar to the strain field measured in the proximity
of a major crack in quasi-brittle materials, in a region usually referred to as the
“process zone” [6]. It is also worth mentioning that energy minimizers are dif-
ferent in type for different values of the average elongation β. For small βs, the
uniformly-deformed state minimizes the energy, but as β is augmented, disconti-
nuities appear. Although a correlation still needs to be established between such
mesoscopic transition and the bar gross response (this will be the subject of further
research), we observe that when a discontinuity point appears, the bar is released.
Consequently, the axial force diminishes, which is remindful of the well-known
phenomenon of serrated deformation at yielding in metallic bars, usually referred
to as the Portevin–Le Chatelier effect (see [14, 15]).

Of course the specific case here considered is far from being exhaustive of the
potentiality of the model. Apart from the possibility of varying U and ϕ in (3.5),
we believe that by simply modifying the shape of the kernel ρ, a wide variety of
material behaviors could be described. In particular, the case when ρ presents both
negative and positive parts should furnish more precise restriction on the position
of the discontinuity points throughout the bar, possibly reproducing with great
accuracy the surprising order evidenced in Figure 1.
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Appendix A. The Case of One Jump Point

Suppose that the minimizing displacement field u∗(x) has, at most, one jump point
at, say, x = x1. When ρ(·) is positive, symmetric and unimodal and, as in (6.1),

U(t) = 1

2
EAt2, ϕ(t) = 2EAa

√
K − 1

K

t

L
,

recalling the necessary conditions of Section 5 and the discussion of Section 6,
we find that there are only two possibilities to be considered. Defining, as in (5.4),
e∗(x) := Dau

∗(x) + (1/K)ρ ∗ Dju
∗, then either:
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(1) e∗(x) = e0 is constant in the bar,
(2) or e∗(x) = e0 is constant in the bar except in the open interval |x − x1| < 6,

where e∗(x) = (1/K)[u∗](x1)ρ(x − x1) > e0.
Case 1. If e = const = e0, then

Dau
∗(x) = e0 − [u∗](x1)

ρ(x − x1)

K
� 0. (A.1)

Since
∫
ρ dx = 1, the integral condition (3.6) states that

e0L − 1

K
[u∗](x1) = βL − [u∗](x1) (A.2)

so that

e0 = β − K − 1

KL
[u∗](x1).

Thus from inequality (A.1) we obtain the condition

[u∗](x1) � KβL

ρmaxL + K − 1
. (A.3)

Using (A.2) in the expression of the energy, we need to minimize

F
([u∗](x1)

) =
∫ L

0
U

(
β − K − 1

KL
[u∗](x1)

)
+ ϕ

([u∗](x1)
)

= 1

2
EAL

(
β − K − 1

KL
[u∗](x1)

)2

+ 2EAa

√
K − 1

KL
[u∗](x1),

(A.4)

for [u∗](x1) subjected to the inequality (A.3). It is convenient to define the variable
p as

p :=
√

K − 1

KL
[u∗](x1). (A.5)

With this choice the problem becomes that of minimizing, for given β, the function

f (p) = 1

2
EAL

(
β − p2

)2 + 2EAap, (A.6)

subject to the constraint, deriving from (A.3),

p �
√
αβ,

where, from (A.5),

α = K − 1

ρmaxL + K − 1
. (A.7)
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Differentiation of (A.6) with respect to p gives

f ′(p) = 2EA(p3L − βpL + a), (A.8)

f ′′(p) = 2EAL(3p2 − β). (A.9)

At the upper bound p = √
αβ we have

f (
√
αβ) = f (0) + 1

2
EA

√
αβ

[
4a − β

√
αβ(2 − α)L

]
, (A.10)

f ′(
√
αβ) = 2EA

[
a − β

√
αβ(1 − α)L

]
, (A.11)

f ′′(
√
αβ) = 2EALβ(3α − 1). (A.12)

Moreover, we notice from (A.7) that, since K � 1, we have 0 < α < 1. For
convenience, we also introduce the quantities

β1 =
(

a/L

α1/2(1 − α)

)2/3

, β2 =
(

4a/L

α1/2(2 − α)

)2/3

. (A.13)

We now need to distinguish three subcases.
Case 1a. Suppose that K < 1 + 1

2ρmaxL so that α < 1
3 . In this case, from

(A.13), we have also β1 < β2. From (A.9) f (p) is concave in the interval of
definition 0 < p <

√
αβ, and we observe from (A.8) that f ′(0) > 0. Moreover,

from (A.10), (A.11) and (A.12), it is easy to verify that when 0 < β < β1 we have
f (

√
αβ) > f (0) and f ′(

√
αβ) > 0. When instead β1 < β < β2, f (

√
αβ) >

f (0) but f ′(
√
αβ) < 0. Finally, when β > β2 we obtain f (

√
αβ) < f (0) but

f ′(
√
αβ) < 0. The corresponding graphs of f (p) − f (0) are represented in Fig-

ure 3 as a function of p. We deduce that if α < 1
3 , for β < β2, the most convenient

situation is when p = 0 (no jump). When instead β > β2, the situation of interest
is at the other extremum, i.e. p = √

αβ, to which, from (A.7), corresponds a jump
of amount [u∗](x1) = KLβ/(ρmaxL + K − 1).

Figure 3. Graphs of f (p) − f (0) for (i) 0 < β < β1, (ii) β1 < β < β2 and (iii) β > β2.
Case α < 1/3.
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Case 1b. When 1 + 1
2ρmaxL < K < 1 + 2ρmaxL so that 1

3 < α < 2
3 , again

we have β1 < β2, but now from (A.9) f (p) is concave for 0 < p <
√

1/3 and
convex for

√
1/3 < p <

√
αβ. Again f ′(0) > 0 and, from (A.10), (A.11) and

(A.12), when 0 < β < β1 we have f (
√
αβ) > f (0) and f ′(

√
αβ) > 0; when

β1 < β < β2, f (
√
αβ) > f (0) and f ′(

√
αβ) < 0; when β > β2 we obtain

f (
√
αβ) < f (0) but f ′(

√
αβ) < 0. The graphs of f (p) − f (0) are drawn in

Figure 4. It can be verified that when β < β2 the only possible competitor for a
minimizer prescribes [u∗](x1) = 0, whereas when β > β2, we need to consider the
only case [u∗](x1) = KLβ/(ρmaxL + K − 1).

Case 1c. Finally, when K > 1 + 2ρmaxL we have α > 2
3 and consequently

β2 < β1. Again, f (p) is concave for 0 < p <
√

1/3 and convex for
√

1/3 <

p <
√
αβ. Now for 0 < β < β2 we have f (

√
αβ) > f (0) and f ′(

√
αβ) > 0;

when β2 < β < β1, f (
√
αβ) < f (0) and f ′(

√
αβ) > 0; when β > β1,

f (
√
αβ) < f (0) and f ′(

√
αβ) < 0. The analysis of the graphs of f (p) − f (0),

drawn in Figure 5, shows again the possibility of only one optimal value for p,

Figure 4. Graphs of f (p) − f (0) for (i) 0 < β < β1, (ii) β1 < β < β2 and (iii) β > β2.
Case 1/3 < α < 2/3.

Figure 5. Graphs of f (p) − f (0) for (i) 0 < β < β2, (ii) β2 < β < β1 and (iii) β > β1.
Case α > 2/3.
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say p = p, such that 0 � p �
√
αβ. In particular, p = √

αβ, that is [u∗](x1) =
KLβ/(ρmaxL + K − 1), for β � β1.

Case 2. In the second case, for some positive constants e0 and [u∗], the function
e∗(x) takes the form

e∗(x) = max

{
e0, [u∗]ρ(x − x1)

K

}
. (A.14)

Since ρ(·) is smooth, even and unimodal, then e∗(x) = e0 except for a neighbor-
hood |x − x1| < 6 of x1, where

e∗(x) = [u∗]ρ(x − x1)

K
> 0, Dau

∗ = 0.

The quantity 6 is defined by the equation

e0 = [u∗]ρ(6)

K
. (A.15)

Consequently the integral condition becomes∫
|x−x1|>6

[
e0 − [u∗]ρ(x − x1)

K

]
dx = βL − [u∗].

By substituting e0 from (A.15) we see that

[u∗] = KβL

K − ∫
|x−x1|>6

ρ(x − x1) dx + ρ(6)(L − 26)
, (A.16)

and

e0 = βLρ(6)

K − ∫
|x−x1|>6

ρ(x − x1) dx + ρ(6)(L − 26)
. (A.17)

Noticing that

d

d6

[
ρ(6)(L − 26) −

∫
|x−x1|>6

ρ(x − x1) dx

]
= ρ ′(6)(L − 26)

we obtain from (A.16) and (A.17) that, since ρ ′(6) < 0 because ρ(·) is assumed
unimodal,

d[u∗]
d6

= −KβLρ ′(6)(L − 26)

(K − ∫
|x−x1|>6

ρ(x − x1) dx + ρ(6)(L − 26))2
> 0 (A.18)

and

de0

d6
= βLρ ′(6)(K − ∫

|x−x1|>6
ρ(x − x1) dx)

(K − ∫
|x−x1|>6

ρ(x − x1) dx + ρ(6)(L − 26))2
< 0 (A.19)
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so that

de0

d6
= − 1

K(L − 26)

(
K −

∫
|x−x1|>6

ρ(x − x1) dx

)
d[u∗]
d6

. (A.20)

Now, recalling (A.14), define

g(6) =
∫

|x−x1|>6

U(e0) dx +
∫

|x−x1|<6

U

(
[u∗]ρ(x − x1)

K

)
dx

+ϕ
([u∗](x1)

)
. (A.21)

We need to minimize this expression for 0 � 6 � l0, being |x − x1| � l0 the
support of the function ρ(x −x1). From (A.18) and (A.19), using for U(·) and ϕ(·)
the expressions proposed in (6.1), recalling (A.15) and (A.20), we obtain

dg(6)

d6
= EA

ρ(6)

K2
[u∗]d[u∗]

d6

[∫
|x−x1|>6

ρ(x − x1) dx − K

+ 1

ρ(6)

∫
|x−x1|<6

ρ2(x − x1) dx + aK
√
K(K − 1)

[u∗]ρ(6)L

√
L

[u∗]

]
.

(A.22)

For 6 → l−0 we have that ρ(6) → 0 and, from (A.17), that [u∗] → βL.
Besides, from (A.18) we have also

d[u∗]
d6

→ − 1

K
βL(L − 2l0)ρ

′(l0).

Consequently, we have from (A.22) that

lim
6→l−0

dg(6)

d6

= −ρ ′(l0)
EA

K3
β2L2(L − 2l0)

{∫
|x−x1|<l0

ρ2(x − x1) dx + aK
√
K(K − 1)

L2(β)3/2

}
,

(A.23)

and this quantity is non-negative since ρ ′(l0) < 0.
Considering the case 6 → 0+, we find that ρ(6) → ρmax, [u∗] → KβL/

(ρmaxL+K−1) and d[u∗]/d6 → −KβLρ ′(0+)/(ρmaxL+K−1)2. Consequently,
we now find

lim
6→0+

dg(6)

d6
= lim

6→0+ −ρ ′(6)
EAρmaxβ

2L2

(ρmaxL + K − 1)3

(
1 − K + a(K − 1)2

ρmaxL
2(αβ)3/2

)
= 0, (A.24)
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Figure 6. Graphs of g(6) for (i) 0 < β < β3, (ii) β > β3.

where α has been defined in (A.7). Introducing

β3 = 1

α

(
a(K − 1)

ρmaxL2

)2/3

,

we distinguish two cases.
Case 2a. Let β < β3. Then dg(6)/d6 > 0 in a right neighborhood of 6 = 0.

Besides, noticing that

d

d6

(∫
|x−x1|>6

ρ(x − x1) dx + 1

ρ(6)

∫
|x−x1|<6

ρ2(x − x1) dx

)
= − ρ ′(6)

ρ2(6)

∫
|x−x1|<6

ρ2(x − x1) dx � 0

we obtain from (A.22) that dg(6)/d6 > 0 for 0 < 6 � l0. The graph of g(6)

is qualitatively represented in Figure 6(i). It follows that when β < β3 the only
possible competitor is the value 6 = 0. But since this configuration coincides with
the limit value [u∗](x1) = (KβL)/(ρmaxL + K − 1) in (A.3), we go back to the
discussion of case 1.

Case 2b. Let us assume instead that β > β3. Now dg(6)/d6 < 0 in a right
neighborhood of 6 = 0, whereas

dg(6)

d6

∣∣∣∣
6=l−0

> 0.

Thus, the graph of g(6) is now as in Figure 6(ii). It follows that there exists an
optimal value of the jump comprised between KβL/(ρmaxL + K − 1) and βL.

In summary, for β sufficiently small, no jump occurs and consequently u∗(x) is
a linear function (i.e. Dau

∗ = β). For larger values of β, an optimal value of the
jump can be calculated from an examination of the aforementioned cases.
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