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ABSTRACT. We establish a first general partial regularity theorem for area minimizing cur-
rents mod(p), for every p, in any dimension and codimension. More precisely, we prove that
the Hausdorff dimension of the interior singular set of an m-dimensional area minimizing
current mod(p) cannot be larger than m — 1. Additionally, we show that, when p is odd, the
interior singular set is (m — 1)-rectifiable with locally finite (m — 1)-dimensional measure.

KEYWORDS: minimal surfaces, area minimizing currents mod(p), regularity theory, multi-
ple valued functions, blow-up analysis, center manifold.

AMS MATH SUBJECT CLASSIFICATION (2010): 49Q15, 49Q05, 49N60, 35B65, 35J47.

1. INTRODUCTION

1.1. Overview and main results. In this paper we consider currents mod(p) (where p > 2
is a fixed positive integer), for which we follow the definitions and the terminology of [15].
In particular, given an open subset Q C R™"" we will let %,,(Q2) and %,,(2) denote the
spaces of m~-dimensional integer rectifiable currents and m-dimensional integral flat chains
in Q, respectively. If C' C R™*" is a closed set (or a relatively closed set in 2), then %, (C)
(resp. Z,(C)) denotes the space of currents T' € Z,, (R™") (resp. T € Z,,,(R™1™)) with
compact support spt(7") contained in C. Currents modulo p in C are defined introducing an
appropriate family of pseudo-distances on .%,,(C): if S,T € %,,(C) and K C C' is compact,
then

FR(T — 8) = inf {M(R) + M(Z) : R € #n(K),Z € Bry1(K)
such that T'— S = R+ 0Z + pP for some P € ﬂ’m(K)} .

Two flat currents in C' are then congruent modulo p if there is a compact set K C C' such that
FP(T — S) = 0. The corresponding congruence class of a fixed flat chain 7" will be denoted
by [T], whereas if T and S are congruent we will write

T = Smod(p) .

The symbols Z2,(C) and .Z#P? (C) will denote the quotient groups obtained from %,,(C) and
Zm/(C) via the above equivalence relation. The boundary operator 9 has the obvious property
that, if 7= Smod(p), then 9T = 9S mod(p). This allows to define an appropriate notion of
boundary mod(p) as OP[T] := [0T]. Correspondingly, we can define cycles and boundaries
mod(p) in C:

e a current T € .%,,(C) is a cycle mod(p) if 9T = 0mod(p), namely if OP[T] = 0;
e a current ' € %#,,(C) is a boundary mod(p) if 35 € %,,+1(C) such that T =
0S5 mod(p), namely [T] = 9P[S].
1
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Note that every boundary mod(p) is a cycle mod(p). In what follows, the closed set C' will
always be sufficiently smooth, more precisely a complete submanifold ¥ of R™*" without
boundary and of class C!.

Remark 1.1. Note that the congruence classes [T'] depend on the set C', and thus our notation
is not precise in this regard. In particular, when two currents are congruent modulo p in
> C R™™ then they are obviously congruent in R but the opposite implication is
generally false, see also the discussion in [I7, Remark 3.1]. However, the two properties are
equivalent in the particular case of ¥’s which are Lipschitz deformation retracts of R™™" and
we will see below that, without loss of generality, we can restrict to the latter case in most
of our paper. For this reason we do not keep track of the ambient manifold in the notation
regarding the mod(p) congruence.

Definition 1.2. Let Q C R™'™ be open, and let ¥ C R™™ be a complete submanifold
without boundary of dimension m + 7 and class C'!'. We say that an m-dimensional integer
rectifiable current T' € %Z,,,(X) is area minimizing mod(p) in XN Q if

M(T) <M(T + S) for every S € Z, (2N X) which is a boundary mod(p). (1.1)

Recalling [I5], it is possible to introduce a suitable notion of mass mod(p) for classes [T]
mod(p), denoted by MP: MP([T]) is the infimum of those t € RU {400} such that for every
e > 0 there are a compact set K C ¥ and an S € %,,(X) with

FR(T-8)<e and M(S)<t+e.
Analogously, [15] defines the support mod(p) of the current T' € Z,,,(X), by setting

spt?(T) = ﬂ spt(R) .
R=T mod(p)

Clearly, the support depends only upon [T], and we can thus also use the notation spt?([T]).

With the above terminology we can talk about mass minimizing classes [T, because (]1.1J)
can be rewritten as

MP([T]) < MP([T] + 97[S]) for all [S] with spt?([S]) C QN X.
Our paper is devoted to the interior regularity theory for such objects.

Definition 1.3. Let T" be an area-minimizing current mod(p) in 2N3. A point ¢ € QNsptP(7T')
is called an interior regular point if there is a neighborhood U of ¢, a positive integer ) and
an oriented C'' embedded submanifold I' of ¥ N U such that

(i) TLU = Q[I'] mod(p);

(ii) T" has no boundary in X N U.
We will denote the set of interior regular points of T by Reg(T).

Observe that by definition an interior regular point is necessarily contained in spt?(7") and
it is necessarily outside spt?(97T). For this reason, it is natural to define the set of interior
singular points of T" as

Sing(T) := (2 Nspt?(T)) \ (Reg(T) U spt?(T)).

It is very easy to see that Sing(7") cannot be expected to be empty. Probably the following is the

best known example: consider the three points P; := (cos %, sin 2%) € R?for j=1,2,3 and

the three oriented segments o; in R? joining the origin with each of them. Then T := > [l
is area-minimizing mod (3) in R? and the origin belongs to Sing(T).
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As a first step to a better understanding of the singularities it is therefore desirable to give
a bound on the Hausdorff dimension of the singular set. The present work achieves the best
possible bound in the most general case, and in particular it answers a question of White, see
[T, Problem 4.20].

Theorem 1.4. Assume that p € N\{0,1}, that ¥ C R™T™ js a C>% submanifold of dimension
m + 1 for some positive ag, that Q C R™" js open, and that T € X (X) is area minimizing
mod(p) in QN . Then, H™ 1T%(Sing(T)) = 0 for every a > 0.

Prior to the present paper, the state of the art in the literature on the size of the singular
set for area minimizing currents mod(p) was as follows. We start with the results valid in any
codimension.

(a) For m = 1 it is very elementary to see that Sing(7") is discrete (and empty when
p=2);

(b) Under the general assumptions of Theorem Sing(7T') is a closed meager set in
(sptP(T) N Q) \ sptP(0T) by Allard’s interior regularity theory for stationary varifolds,
cf. [2] (in fact, in order to apply Allard’s theorem it is sufficient to assume that ¥ is of
class C?);

(c) For p = 2, H™2+%(Sing(T)) = 0 for every a > 0 by Federer’s classical work [I6];
moreover the same reference shows that Sing(7") consists of isolated points when m = 2;
for m > 2 the (m — 2)-rectifiability of Sing(7") was first proved in [22] and the recent
work [T9] implies in addition that Sing(7’) has locally finite H™ 2 measure, see below.

We next look at the hypersurface case, namely n = 1.

(d) When p = 2, H™ 2(Sing(7T)) = 0 even in the case of minimizers of general uniformly
elliptic integrands, see [20]; for the area functional, using [19], one can conclude
additionally that Sing(T') is (m — 3)-rectifiable and has locally finite H™~3 measure;

(e) When p =3 and m = 2, [24] gives a complete description of Sing(7"), which consists of
C1@ arcs where three regular sheets meet at equal angles;

(f) When p is odd, [26] shows that H"(Sing(7T")) = 0 for minimizers of a uniformly elliptic
integrand, and that H™17%(Sing(T")) = 0 for every o > 0 for minimizers of the area
functional;

(g) When p = 4, [25] shows that minimizers of uniformly elliptic integrands are represented
by immersed manifolds outside of a closed set of zero H™ 2 measure.

In view of the examples known so far it is tempting to advance the following

Conjecture 1.5. Let T be as in Theorem . Denote by Sing (T) the subset of interior flat
singular points, that is those points q € Sing(T") where there is at least one flat tangent cone;
see Sections and @ Then H™~*T*(Sing;(T)) = 0 for every o > 0.
Conjecture [I.5] is known to be correct for:
(a) m=1;
(b) p =2 and any m and n;
(c) pis odd and the codimension n = 1.
In all three cases, however, the conjecture follows from the much stronger fact that Sing;(7’)
is empty:
e the case (a) is an instructive exercise in geometric measure theory;
e the case (b) follows from Allard’s regularity theorem for stationary varifold;
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e the case (c) is a corollary of the main result in [26].

Note however that in all the other cases we cannot expect Sing;(7') to be empty. Indeed
the easiest case would be p = 4, m = 2 and n = 1. In this case it follows from the work
[25] that, if S; and S, are integral currents representative mod(2) (see (3.1)) which are area
minimizing mod(2), then 7' = S; 4+ S2 is a representative mod(4) which is area minimizing
mod(4). Consider now two smooth minimal graphs in By x R C R3, where uj,us : By — R
are the corresponding functions. Endow the graphs with the natural orientation, and let Sy
and S2 be the corresponding integral currents. Oriented minimal graphs in codimension 1
are then known to be area minimizing, both as integral currents and as currents mod(2). In
particular T' = S7 + So is then area minimizing mod(4). Observe therefore that, if u; and
ug are distinct, then Sing(7") is the intersection of the two graphs. It is easy to see that u;
and ug might be chosen so that u;(0) = u2(0) = 0, Vu;(0) = Vuz(0) = 0 and u; and ug are
anyway distinct. In particular 0 would be a singular point of 7" and the (unique) tangent cone
to T at 0 is the (oriented) two dimensional horizontal plane my = {23 = 0} with multiplicity 2.
In such example we thus have 0 € Sing (7).

In this paper we strengthen the result for p odd by showing that Conjecture [I.5]in fact
holds in any codimension. Indeed we prove the following more general theorem.

Theorem 1.6. Let T be as in Theorem and Q < % a positive integer. Consider the
subset Sing(T') of spt?(T') \ spt?(9T') which consists of interior singular points of T where
the density is Q (see Definition . Then H™ *+*(Singo(T)) = 0 for every a > 0.

The analysis of tangent cones (cf. Corollary implies that if p is odd then
L5)

Sing¢(T') C U Singq(7T') .
Q=1

We thus get immediately
Corollary 1.7. Conjecture holds for every p odd in any dimension m and codimension .

The fact above, combined with the techniques recently introduced in the remarkable work
[19], allows us to conclude the following theorem.

Theorem 1.8. Let T' be as in Theorem[I.4] and assume p is odd. Then Sing(T) is (m — 1)-
rectifiable, and for every compact K with K Nspt?(0T) = O we have H™ *(Sing(T) N K) < oco.

In turn the above theorem implies the following structural result.

Corollary 1.9. Let T be as in Theorem 1.4 and assume in addition that p is odd. Denote
by {A;}i the connected components of sptP(T) \ (spt?(9T) U Sing(T)). Then each A; is an
orientable smooth minimal submanifold of ¥ and there is a choice of (smooth) orientations
and multiplicities @Q; € [1,%] N N such that the following properties hold for every open
U €@ R™™ \ sptP(9T)
(a) Each T; = Q; [Ai] is an integral current in U and thus, having chosen an orientation
S for the rectifiable set Sing(T), we have

(OT3) LU = ©;SH™ '(Sing(T) N U)

for some integer valued Borel function ©;;
(b) >, M(T;LU) <0 and TLU =5, T;L.U mod(p);



REGULARITY OF AREA MINIMIZING CURRENTS MOD p 5

() o, M((0T;)LU) < o0, (OT)LU = 3;(0T;) LU mod(p) and
(OT)LU =" 0; SH™ ' L(Sing(T) NU);

in particular Y, ©;(q) is an integer multiple of p for H™ ‘-a.e. q € Sing(T)NU.
It is tempting to advance the following conjecture.
Conjecture 1.10. The conclusions of Theorem [1.8 hold for p even as well.

From the latter conjecture one can easily conclude an analogous structure theorem as in
Corollary Note that the conjecture is known to hold for p = 2 in every codimension (in
which case, in fact, we know that Sing(T") has dimension at most m — 2) and for p = 4 in
codimension 1.

1.2. Plan of the paper. The paper is divided into five parts: the first four parts contain
the arguments leading to the proof of Theorems [I.4) and [I.6] while the last part is concerned
with the proof of the rectifiability Theorem [I.8 and of Corollary [I.9] Each part is further
divided into sections. The proof of Theorems [I.4] and [I.6] is obtained by contradiction, and is
inspired by F. Almgren’s work on the partial regularity for area minimizing currents in any
codimension as revisited by the first-named author and E. Spadaro in [8 10, [IT]. In particular,
Part [1] contains the preliminary observations and reductions aimed at stating the contradiction
assumption for Theorems and whereas Part [2, Part 3| and Part [] are the counterpart
of the papers [8], [10], and [I1], respectively. An interesting feature of the regularity theory
presented in this work is that Almgren’s multiple valued functions minimizing the Dirichlet
energy are not the right class of functions to consider when one wants to approximate a
minimizing current mod(p) in a neighborhood of a flat interior singular point whenever the
density of the point is precisely g. Solving this issue requires (even in the codimension n = 1
case) the introduction of a class of special multiple valued functions minimizing a suitably
defined Dirichlet integral. The regularity theory for such maps (which we call linear theory) is
the content of our paper [7]. Applications of multivalued functions to flat chains mod(p) were
already envisioned by Almgren in [3], even though he considered somewhat different objects
than those defined in [7]. Because of this profound interconnection between the two theories,
the reading of [7] is meant to precede that of the present paper.

Acknowledgments. C.D.L. acknowledges the support of the NSF grants DMS-1946175
and DMS-1854147. A.M. was partially supported by INAAM GNAMPA research projects.
The work of S.S. was supported by the NSF grants DMS-1565354, DMS-RTG-1840314 and
DMS-FRG-1854344.

2. NOTATION

We add below a list of standard notation in Geometric Measure Theory, which will be used
throughout the paper. More notation will be introduced in the main text when the need arises.

B, (z) open ball in R™" centered at x € R™™" with radius r > 0;
wy, Lebesgue measure of the unit disc in R™;
|A| Lebesgue measure of A C R™+";
H™ m-dimensional Hausdorff measure in R™*";
Ay (R™7)  vector space of m-vectors in R™+7;
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1]l CITp)

T

TLA

(T, f,2)

SV [X]

Ay

Hy,
Lip(X,Y)
Lip(f)
(Ag(R™),G)
(o (R™),Gs)
n(S)

nof
Gr(u)
Tp

Gy

space of smooth differential m-forms with compact support in an open subset
U c R™™,
integral flat chains (modulo p) of dimension m;

integer rectifiable currents (modulo p) of dimension m; we write ' = [M, 7, 0] if
T is defined by integration with respect to 760 H™L M for a locally H™-rectifiable
set M oriented by the Borel measurable unit m-vector field ¥ with multiplicity 6;

integral currents (modulo p) of dimension m;

mass functional (mass modulo p);

Radon measure associated to a current 7' (to a class [T]) with locally finite mass
(mass modulo p);

Borel measurable unit m-vector field in the polar decomposition 7' = T || T|| of a
current with locally finite mass; if 7' = [M, 7, 6] is rectifiable, then T' = sgn(6) 7
| T||-a-e., so that T is an orientation of M:;

restriction of the current T to the set A: well defined for any Borel A when T
has locally finite mass, and for A open if T is any current;

slice of the current T" with the function f at the point z;
push-forward of the current 7' through the map f;

m-dimensional density of the measure p at the point x, given by O™ (u,z) :=
#(Br(2))

Wm ™M

same as ©™(||T||,z) if T is an m-dimensional current with locally finite mass;

rectifiable m-varifold defined by © H™ L M ® d7 s for a locally H™-rectifiable set
M and a locally H" L M-integrable multiplicity ©;

integral varifold associated to an integer rectifiable current 7" if T' = [M, 7, 0],
then v(T') = v(M,|0]);

first variation of the varifold V' in the direction of the vector field X;

second fundamental form of a submanifold ¥ C R™*";

lim, o+ when the limit exists;

mean curvature of a submanifold ¥ C R™*7;

space of Lipschitz functions f: X — Y, where X,Y are metric spaces;

Lipschitz constant of the Lipschitz function f;

metric space of classical Q-points in R";

metric space of special @Q-points in R";

average of the @-point S, so that if S = ZZQ:l [Si] € Ag(R™) then n(S) =
Q Y2, SieRry

average of the (possibly special) multiple valued function f;

set-theoretical graph of a (possibly multi-valued) function u;

integer rectifiable current associated (via push-forward) to the image of a (possibly
special) multiple valued function;

integer rectifiable current associated to the graph of a (possibly special) multiple
valued function.
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Part 1. Preliminary observations and blow-up sequence
3. PRELIMINARY REDUCTIONS

We recall first that, as specified in [I5, 4.2.26], for any S € %, (X) we can find a representative
mod(p), namely a T' € %, (X) congruent to S mod(p) such that

ITI(A) < g?-[m(A) for every Borel A C ¥. (3.1)

In particular, such a representative has multiplicity function 6 such that |8] < p/2 at || T||-a.e.
point, and it satisfies MP([T'LU]) = ||T||(U) for every open set U and spt(T) = spt?(T)
(observe in passing that the restriction to an open set U is defined for every current). It
is evident that if T' € %,,(X) is area minimizing mod(p) in Q N Y then T is necessarily
representative mod(p) in 2 N X, in the sense that holds true for every Borel A C QN .
For this reason, we shall always assume that T is representative mod(p), and that the
aforementioned properties concerning multiplicity, mass and support of T are satisfied. Note
also that such T is area minimizing mod(p) in any smaller open set U C 2. Moreover T is
area minimizing mod(p) in Q if and only if 7' is area minimizing mod(p) in 2. Also, for 2
sufficiently small the regularity of ¥ guarantees that ¥ N () is a graph, and thus, if in addition
Q is a ball, ¥ N Q is a Lipschitz deformation retract of R™*". A current S € %,,,(X N Q) is
thus a cycle mod(p) if and only if it is a cycle mod(p) in R™*". In these circumstances it does
not matter what the shape of the ambient manifold ¥ is outside €2 and thus, without loss of
generality, we can assume that ¥ is in fact an entire graph. By the same type of arguments
we can also assume that OP[T] = 0 in 2. We summarize these reductions in the following
assumption (which will be taken as a hypothesis in most of our statements) and in a lemma
(which will be used repeatedly).

Assumption 3.1. ¥ is an entire C*% (m + n)-dimensional graph in R™*™ with 0 < ag < 1,
and Q C R™*™ is an open ball. T is an m-dimensional representative mod(p) in 3 that is area
minimizing mod(p) in ¥ N and such that (07)LQ = 0 mod(p) in Q.

Lemma 3.2. Let Q, ¥ and T be as in Assumption [3.1 Let T' € %y (%) be such that
spt(T" = T) C Q and OT" = IT mod(p). Then

M(TLQ) <M(T'LQ). (3.2)
Theorem [1.4] is then equivalent to
Theorem 3.3. Under the Assumption[3.1] Sing(T) has Hausdorff dimension at most m — 1.

4. STATIONARITY AND COMPACTNESS

Another important tool that will be used repeatedly in the sequel is the fact that the
integral varifold v(7') induced by an area minimizing representative mod(p) 7' is stationary in
the open set 2N X \ spt?(97T).

Lemma 4.1. Let Q, X2 and T be as in Assumption . Then v(T) is stationary in ¥ N,
namely

v(T)[X]=0  forall X € CLQ,R™™) tangent to 3. (4.1)
More generally, for X € CL(Q,R™™) we have

ov(T)[X] = —/X - Hr(2) d||T|| (), (4.2)
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where the mean curvature vector Hp can be explicitly computed from the second fundamental
form As. of ¥. More precisely, if the orienting vector field of T is T'(x) = vi A ... A vy, and v;
are orthonormal, then

ﬁT(.’L') = ZAz(’Ui, Ui) . (43)
i=1

Proof. Consider a diffeomorphism @ of Q such that ®(X N Q) C ¥ NQ and @|o\ g = id|g\x
for some compact set K C X N . The current ®;7" satisfies spt(T — ®47") € X N . Moreover,
since O(®4T") = ®4(0T") and 0T = 0mod(p), also I(P4T") = 0mod(p), so that, in particular,

0(®4T") = 0T mod(p). (4.4)
From (3.2)), and setting V := v(T'), we then get
VI[(©2) = M(T'LQ) < M(®,TLQ) = [|2;V][(2) .

This easily implies that V is stationary in ¥ N Q.
The second claim of the Lemma follows then from the stationarity of V' in X, see for instance
[21]. O

Consider now an open ball B = Q C R™™" a sequence of Riemannian manifolds ¥ and
a sequence of currents T} such that each triple (2, X, Tk ) satisfies the Assumption In
addition assume that:

(a) ¥ converges locally strongly in C2 to a Riemannian submanifold ¥ of R™*™ which is
also an entire graph;

(b) supy, [|Tk[|(Br) = supy MP(T; L Bg) < oo;

(c) sup, MP(0(T,LBR)) < oc.
By the compactness theorem for integral currents mod(p) (cf. [15, Theorem (4.2.17)¥, p. 432]),
we conclude the existence of a subsequence, not relabeled, of a current T' € Z,,(R™*") and of
a compact set K D Bp such that

lim FP(T,LBgr—T) =0

k—o0
and
(0T)LBr =0 mod(p).

Let Us be the closure of the J-neighborhood of ¥ and consider that, for a sufficiently small
d > 0, the compact set K’ := Br N Us is a Lipschitz deformation retract of R™*". For k
sufficiently large, the currents Ty Bp are supported in K’ and [15, Theorem (4.2.17)"] implies
that spt(7') C K'. Since § can be chosen arbitrarily small, we conclude that spt(7T) C ¥ and
hence that T' € Zn(X).

At the same time, by Allard’s compactness theorem for stationary integral varifolds, we
can assume, up to extraction of a subsequence, that v(7T; L Br) converges to some integral
varifold V' in the sense of varifolds.

Proposition 4.2. Consider , %, Ty, 2,T and V as above. Then

(i) T is minimizing mod(p) in QN X, so that, in particular, T is representative mod(p);
(ii) V = v(T) is the varifold induced by T.
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Proof. Let us simplify the notation by writing T}, in place of T, Bg. Recall that Z1-(T,—T) —
0 for some compact set K O Bg. This means that there are sequences of rectifiable currents
Ry, S, and integral currents Qy E|With support in K such that

Ty, — T = Ry + 0Sk + pQk (4.5)
and
kli_}rglo (M(Ry) +M(Sk)) =0. (4.6)

As above, denote by Us the closure of the d-neighborhood of the submanifold ¥. Observe
next that, for every ¢ sufficiently small, Ks := Us N By is a Lipschitz deformation retract.
Moreover, for each k sufficiently large spt(7;) C Ks5. We can thus assume, without loss of
generality, the existence of a k(8) € N such that

spt(Ry), spt(Sk), spt(Qr) C K5  Vk > k(). (4.7)

Next, if we denote by Us ;. the closures of the d-neighborhoods of 3, due to their C? regularity
and C? convergence to ¥, for a § > 0 sufficiently small (independent of k) the nearest point
projections
Pk Us e — g
are well defined. Moreover,
limsup Lip(pgly, ) =1. (4.8)
ol0 o

We now show that T is area minimizing mod(p) in B N 3. Assume not: then there is a
p < R and a current 7' with spt(T —7') C B, N X such that
T = 9T mod(p)

and, for every s €]p, R|,
e:=M(TLB,) - M(TLB,) >0, (4.9)

where ¢ is independent of s because of the condition spt(T — 1) C B,.
Denote by d : R™*" — R the map x — |z| and consider the slices (S, d, s). By Chebyshev’s
inequality, for each k we can select an sj €]p, ?[ such that

M((Sk, d, s1)) < ﬁM(Sk) : (4.10)

Consider therefore the current:

T := Tp L(R™™\ By,) — (Sk,d, sp) + Rpl. By, + TL By, . (4.11)
Observe first that spt(Ty — Tk) cB Rip. Also, note that implies that 0.5 has finite mass.
Hence, by [21, Lemma 28.5(2)],

(Sk, d, sk) = O(Sk L Bs,) — (0Sk) . B, .
In particular, combining the latter equality with , we get
0Ty, : = O(T,LR™ "\ By,) + 0((Tx — T — Ry — pQi) L By,) + O(Ri L By,) + 9(TLBy,)
= 0T — pd(QrLBy,) + (T —T),

1Although the definition of flat convergence modulo p is given with @ flat chains, a simple density argument
shows that we can in fact take them integral.
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where in the second line we have used that spt(T —T') C B, C Bs,. Since AT —-T)=0
mod(p) in ¥ € R™", we conclude that &(T; —T;) = 0 mod(p) in R”*". However, considering
, for k large enough the currents T, Sk, R, Qr, T and T are all supported in the domain
of definition of the retraction py. Since (pg)sTi = T, we then have that 0(T), — (pk)ﬁTk) =0
mod(p) in ¥j. Consider also that, for each o > 0 fixed, there is a k() € N such that all the
currents above are indeed supported in U, when k > k(o). This implies in particular that,
by (.8),
lim inf M((py,);T3) = lim inf M(7}) .
k1Too kToo

Up to extraction of a subsequence, we can assume that s — s for some s € [p, %]. Recalling
the semicontinuity of the p-mass with respect to the flat convergence mod(p), we easily see
that (since the T}’s and T are all representative mod(p))

lim inf M(T; L By,) > M(T'LBy).
—00

Next, by the estimates (4.10) and (4.6) we immediately gain
lim inf (M(7}) — M(T;)) < —¢.
k1oo

Finally, since the map py is the identity on X, again thanks to (4.8) and to the observation
on the supports of T}, — T}, it turns out that spt((px)sZr — Tk) C X N Br for k large enough.
We thus have contradicted the minimality of T}.

Observe that, if in the argument above we replace T with 7T itself, we easily achieve that,
for every fixed p > 0, there is a sequence {s;} C|p, %[ converging to some s € [p, ?], with

the property that
liminf(M(TLB,, ) — M(T;LBy,)) > 0.

kToo

By this and by the semicontinuity of the p-mass under flat convergence, we easily conclude
that

lim ||T||(B,) = || T|(B,) for every p < R.
k—o0

The latter implies then that ||T;|| = ||| in the sense of measures in Bg. Consider now the
rectifiable sets Ej, F and the Borel functions ©y : Ey — N\ {0}, © : E — N\ {0} such that

1Tkl = Ok H"LE,, T =0H™LE.
Let T, E), (resp. T,E) be the approximate tangent space to Ej (resp. E) at H™-a.e. point gq.

The varifold v(T}) is then defined to be ©,H™ L £}, ® 61, g, . If the varifold limit V' is given

by ©H™LF ® ér,F, we then know that ||V|| = [|[V|| = ©'H™LF. But since ||[Vi| = |7k,
we then know that H™((F'\ E) U (E \ F)) = 0 and that ©' = © H™-almost everywhere. This
shows then that V = v(T). O

5. SLICING FORMULA mod(p)

In this section we prove a suitable version of the slicing formula for currents mod(p), which
will be useful in several contexts. We let .ZP (C') denote the group of integral currents mod(p),
that is of classes [T] € #%,(C) such that o [T] € # _,(C).
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Lemma 5.1. Let Q C R™"" be a bounded ball, let [T] € Z2(Q) be an integral current mod(p),
and let f: Q — R be a Lipschitz function. If T € %, (Q) is any rectifiable representative of
[T] and Z € Bm—1(Q) is any rectifiable representative of [0T), then the following holds for
a.e. t € R:
(i) (T, f,t) = 0(T{f <t}) = ZL{f <t} mod(p);
(ii) (T, f,t) is a representative mod(p) if T is a representative mod(p);
(iii) of T is a representative mod(p), and if 0T = 0 mod(p), then

M((T, f,t)) = MP(O(T'L{f < })).

Before coming to the proof of Lemma [5.1] we wish to point out two elementary consequences
of the theory of currents mod(p) which are going to be rather useful in the sequel.

Lemma 5.2. If T is an integer rectifiable m-dimensional current in R™+" and f : R™+t" — RF
is a Lipschitz map with k < m, then:

(i) T is a representative mod(p) if and only if the density of T is at most & ||T'||-a.e.
(ii) If T is a representative mod(p), then (T, f,t) is a representative mod(p) for a.e.
t € R*.
(iii) Ifn =0 and spt(T) C K for a compact set K, then F1.(T) = MP(T).
(iv) Let T be as in (i) and in particular T' = © [K], where © is integer valued. If we let

|O(2)|p :=min{|O(z) — kp| : k € Z}, (5.1)
then
MP(TLE) = / |©(x)|p dx for all Borel E C R™. (5.2)
E

Proof. (i) is an obvious consequence of Federer’s characterization in [I5]: an integer rectifiable
current T' of dimension m is a representative mod(p) if and only if |T||(E) < EH™(E) for
every Borel set E. By the coarea formula for rectifiable sets, this property is preserved for a.e.
slice and thus (ii) is immediate. Moreover, again by Federer’s characterization, if T is as in
(iv), and if k(x) = argmin{|O(x) — kp| : k € Z}, then setting ©'(z) := O(z) — k(x) p we have
that 7" = ©’ [K] is a representative mod(p) of T, and thus, since |©’| = |©|,, follows
directly from MP(TLE) = | T'||(E).
As for (iii), since T is a top-dimensional current, %Z,,+1(K) = {0}. We thus have

FP(T)=inf {M(R): T =R+ pP forsome R € %,(K)and P € %,,(K)} .

Observe however that, since K is m-dimensional, .%,,(K) consists of the integer rectifiable
currents with support in K. A simple computation gives then

Zh) = [ 0@, dr
K
and we can use (iv) to conclude. O

Proof of Lemmal5.1. (ii) has been addressed already in Lemma and (iii) is a simple
consequence of Lemma [5.2{ and of (i) with the choice Z = 0.

We now come to the proof of (i). By [I7, Theorem 3.4], there exists a sequence { P}, of

integral polyhedral chains and currents Ry € %, (), Sk € Zm+1(2) and Qi € 5, (), with
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the following properties for every k£ > 1:

T — Py = R, + 05k + pQy (5.3)
1
P P _
MP(P,) < MP(T) + 1ok (5.4)
MP(OP,L Q) < MP(ITL Q) + ﬁ , (5.5)
M(Ry,) + M(Sk) < (5.6)

k2k
Since Py is an integral current, by the classical slicing theory (cf. for instance [21, Lemma
28.5(2)]), the following formula holds for a.e. ¢ € R:

(Pr, f,t) = 0 (Pe L{f < t}) — (0F:)L{f < t}. (5.7)

The identity (5.3)) implies that 0Sy has locally finite mass, and thus Sy is an integral current.
In particular, (Sk, f,t) = —(9Sk, f,t). Furthermore, the slicing formula holds true for Sy as
well, that is for a.e. ¢ € R one has:

(Sk, f,1) = 0 (S {f <t}) = (9S)L{f <t} (5:8)

Since Z = 0T mod(p), there exist currents Ry, € %Z,—1(Q), Sk € Zn(Q) and Q, € —1(Q)
such that for every k > 1:

Z — 0T = Ry, + 0Sy + pQ. , (5.9)
~ < 1
< —. .
M(Ri) + M(Sk) < o5 (5.10)
Combining (5.3]) and (5.9), we can therefore write:
Z — 0P, =0T — 0P, +Z — 0T
(5.11)

= Rk + 6(Rk + Sk) + p(an + Qk) .

The identity (5.11) implies that J(Ry + Sk) has locally finite mass, and thus in particular
R + S, is an 1ntegral current. Hence, for a.e. t € R the slicing formula holds true for Ry, + Sk,
that is:

(R + S, f, t) =0 ((Re+ Sp)L{f < t}) — (0B + 8 L{f < 1} (5.12)

From the identities and -, and using . -, and the slicing formula

for Qi we easily conclude that the following holds for ae. teR:
(T, f,ty —0(TL{f <t})+ ZL{f <t}
=RpL{f <t} — (S, f,t) + O(SkL{f < t}) + pQrL{f < t}. (5.13)
Now, Qy, L {f <t} is an integral current and thus, setting K := (), we can estimate
Fr(T, f,t) = (0(TL{f <t} = ZL{f < t})) < M(Rg) +M(Sk) + M((Sk, £, 1)) -
Since limy, (M(Rk) + M(gk)) = 0, it remains to show that, for a.e. t,

Jim M((S, f,t)) =0
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In order to see this, fix € > 0. By [2I, Lemma 28.5(1)], we have that there is a Borel set Ej,

with measure |Ex| < o3 such that

M((Sk, f.1)) < Llp(f)ikM(S'k) for all t € F}, . (5.14)

In particular, if we set E := |J;, E}, we have |E| < 2¢, and using (5.10) we see that
M((Sy, f,t)) < e 'Lip(f)k™'  forallt ¢ E.
Hence limy,_,oo M((Sk, f,t)) = 0 for all t ¢ E. Since ¢ is arbitrary, this concludes the proof. [

Remark 5.3. We are actually able to give a much shorter proof of Lemma (i), provided
one can prove that there exists an integral current 7" such that 7' = T mod(p). Indeed, in this
case, since T' is integral the classical slicing formula gives

(T, 1.6 =0 (TS < 1)) = (OT)L{f <1},
On the other hand, the conditions T =T mod(p) and oT =0T = Z mod(p) imply that there
are rectifiable currents R and ) such that T'=T 4+ pR and Z = 0T + pQ, and thus we deduce
(T, f,1) =0(TL{f <t}) = ZL{f <t; +p (-0 (RS <t}) + (R, [, 1) + QL{f < 1}) ,

as we wanted.

The existence of an integral representative in any integral class mod(p) is in fact a very
delicate question. If K is any given compact subset of R™*" then a class [T] € ZF.(K) does not
necessarily have a representative in .#,,(K) when m > 2; see [I7), Proposition 4.10]. Positive
answers have been given, instead, when m = 1 in the class .%,,(K) for any given compact K in
[17, Theorem 4.5], and in any dimension in the class |Jx #n(K) in the remarkable work [28].

6. MONOTONICITY FORMULA AND TANGENT CONES

From Lemma and the classical monotonicity formula for stationary varifolds, cf. [2] and
[21], we conclude directly the following corollary.

Corollary 6.1. Let T,Y and Q = By be as in Assumption . Then, if q € spt(T) N Q, the
following monotonicity identity holds for every 0 < s <r < R —|q|:

T — 112
T8 (0) - 5B - [ =)

B.(q)\B.(g) [T — al™*?

- / e / (z — g - () d|T||(x) dp., (6.1)
S Bp(’l)

d||T| (=)

where Y+ (z) denotes the component of the vector Y (x) orthogonal to the tangent plane of T
at x (which is oriented by T(x)). In particular:
C|lAs|lor ITII(Br(g))

(i) There is a dimensional constant C(m) such that the map r — e oo S
monotone increasing.
(ii) The limit
Or(0) iy ITI(B-0)
rl0 Wi, ™
exists and is finite at every point q € Bpg.
(iii) The map q — ©O7(q) is upper semicontinuous and it is a positive integer at H™-a.e.

q € spt(T). In particular spt(T) NBgr = {O7 > 1}.
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Next, we introduce the usual blow-up procedure to analyze tangent cones at ¢ € spt(7T).

Definition 6.2. Fix a point ¢ € spt(7) and define

tgr(T) == :c;q Vr>0.

We denote by T, , the currents
Tq’r = (Lqﬂf)ﬁT Vr>0.

Recalling Allard’s theory of stationary varifolds, we then know that, for every sequence
rr 4 0, a subsequence, not relabeled, of v(Ty,,,) converges locally to a varifold C' which is
a stationary cone in 73X (the tangent space to ¥ at ¢). Combined with Proposition we
achieve the following corollary.

Corollary 6.3. Let T,Y and Q = Bpg be as in Assumption let ¢ € spt(T) N Q, and
let ri, J 0. Then there is a subsequence, not relabeled, and a current Ty with the following
properties:
(i) ToLB, € Zm(1y%), 0Ty B, = 0 mod(p) for every p > 0;
(ii) ToL B, is a representative mod(p) and is area minimizing mod(p) in B, NT,% for
every p > 0y
(iii) To is a cone, namely (vo,)3To = Ty for every r > 0;
(iv) For every p > 0 there is r > p and K D B, such that
lim 0 (T,,..B, —T)LB,) =0.

k—oo
(v) If sptP(Ty) = spt(To) is contained in an m-dimensional plane g, then Ty = Q [mo] for

some Q € ZN[-L, 5.

Before coming to its proof, let us state an important lemma which will be used frequently
during the rest of the paper. See [14, Theorem 7.6] for a proof.

Lemma 6.4 (Constancy Lemma). Assume m C R™™ is an m-dimensional plane and let
Q C R™™ be an open set such that Q N7 is connected. Assume T' € By, (7) is a current such
that (OPT)_Q = 0. Finally let ¥ = v1 A ... A vy, for an orthonormal basis vy, ..., v, of .

Then there is a Q € Z N [=5, 8] such that TILLQ = QUH™L(Q2N7) mod(p).

Proof of Corollary[6.3. Note that (v) is an obvious consequence of the constancy lemma and
of (i). In order to prove the remaining statements, first extract a subsequence such that
Vi, = v(T},r,) converges to a stationary cone C' as above. Then observe that for every j € N,
using a classical Fubini argument and Lemma we find a radius p(j) € [j,7 + 1] such that

lim inf MP(O(Ty i L By(;))) = lim inf M((Ty,r,, |- |, p()))
< liminf [ T4, [|(Bj41 \ By) = wmO1(q)((7 +1)™ = j™).

Thus we can find a subsequence to which we can apply the compactness Proposition [£.2] By
a standard diagonal argument we can thus find a single subsequence r; with the following
properties:
(a) For each j there is a current TV € %, (T,%) such that
lim ff% (Tyr, L Byy —T7) = 0.

k—o0 j+1

(b) Each TV is a representative mod(p) and v(17) = CLB;).
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(c) Each TV is area minimizing mod(p) in B,(;).
Notice next that 771 B pi) = T* mod(p) for every i < j. If we then define the current

To:= Y T'L(Byu) \ Byi-1))
1€N
with p(—1) := 0, then the latter satisfies the conclusions (i), (ii) and (iv).
In the remaining part of the proof we wish to show (iii), after possibly changing Ty to
another representative mod(p) of the same class.

To this aim, consider that, by standard regularity theory for stationary varifolds, the
closed set R = spt(C) is countably m-rectifiable, it is a cone with vertex at the origin and
IC|l = ©c(z)H™ L R, where ©¢ is the density of the varifold C'. By the monotonicity formula
and v(T') = C we have

On (z) = O¢(z).
If x is a point where the approximate tangent T, R exists, we then conclude easily that, up
to subsequences, we can apply the same argument above and find that (7¢)z,, with ry [ 0
converges locally mod(p) to a current S satisfying the corresponding conclusions:
(i) SLB, € Zn(1,3) and 0S1_B, = 0 mod(p) for every p > 0;
(ii)” SLB, is a representative mod(p) and is area minimizing mod(p) in B, N 7% for every
p > 0;
(iv)” For every p > 0 there is r > p and K D B, such that

lim ZR(To)ar, L By = SLB,) = 0.
—00

However, for S we would additionally know that it is supported in T, R, which is an m-
dimensional plane. We then could apply the Constancy Lemma and conclude that, if vy, ..., vy,
is an orthonormal basis of T, R, then ©¢(z) € NN [1, £] and, for any p > 0,
either SLB, =0O¢(@)vi A...ANvp, H"LT, RN B, mod(p)
or SLB,=—-0¢(z)vi A...ANv,, H"LT,RNB, mod(p) .
In particular we conclude that there is a Borel function ¢ : spt(C') = R — {—1,1} such that
To=cOcTH" R, (6.2)

where ¥(z) is an orienting Borel unit m-vector for T, R. Clearly, since R is a cone, we can
choose ¥(z) with the additional property that ¢(x) = ¥(Az) for every positive A. Also, since
the varifold C is a cone, the density O¢ is 0-homogeneous as well. Moreover, at all points x
where ©¢(x) = & we can arbitrarily set e(x) = 1, since this would neither change the class
mod(p), nor the fact that Ty is representative mod(p).

Fix now a radius s > 0 such that the conclusions of Lemma [5.1| hold with T' = Ty, f = ||,
and t = s, and consider the cone T" := (Tp, | - |, s) x {0}. Observe that (T — TyL. Bs) =0
mod(p). We now make the following simple observation: if Z € Z,,(R™"") with spt(Z)
compact is such that 9Z = 0 mod(p) in R™*", then 9(Z x {0}) = Z mod(p). The proof is
in fact a simple consequence of the definition, since 0Z = 0 mod(p) implies the existence of

integer rectifiable currents Q,(Cl) and Q,(f) and flat currents (J; such that

02 = pQi+ Q) +0Q;”
and

M(QY) +M(QY) — 0.
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Using the general formula 0(A x 0) = A — (0A) x 0 we then obtain
0(Z x0)=Z —pQx x 0 — QM x {0} + 9(Q? x 0) — Q¥
which by
M(QY x {0} + Q) + M(QP x 0) = 0
implies that indeed 0(Z % 0) = Z mod(p).
We apply the above observation to Z = T — Ty_B,. In that case we conclude however

that the cone
Z %0 is identically 0,

because it is an (m+ 1)-dimensional rectifiable current supported in the countably m-rectifiable
set R. We thus must necessarily have that 77 — Ty Bs = Omod(p). Applying the argument
of the previous paragraph, we of course again conclude that

T = OcTH™_RNB;. (6.3)

Consider now, as above, a point x € B, where the approximate tangent plane to R exists.
Then (T”"),,, converges, as r | 0, to &'(z) O¢(x) v(x) H™ LT, R, whereas (Tp),,, converges, as
r 10, to e(x) Oc(x) v(z) H™ LT, R. However the two limits must be congruent mod(p) and,
in case O¢(x) < £, this necessarily implies (x) = £'(x).

Fix now X > 0. Since T’ is a cone and s is arbitrary, we conclude that for H™ a.e.
€ RN{O¢ < £} we must necessarily have e(z) = ¢'(x) = €'(Az) = e(Az). On the other hand
we already have e(z) = e(Az) = 1 if ©¢(z) = §. Hence we have concluded that e(Az) = (x)
for H™-a.e. € R. In particular (co,);70 = To. The arbitrariness of A implies now the desired
conclusion (iii) and completes the proof of the corollary. O

7. STRATA AND BLOW-UP SEQUENCE

Definition 7.1 (Q-points). For every @ € N\ {0}, we will let Dg(T") denote the points of
density @ of the current 7', namely

Do(T) :={q€Q: O7(q) = Q}.
We also set
Regq(T) := Reg(T) NDg(T) and Singg(T') := Sing(T') N Dg(T).
Theorem is thus equivalent to

Theorem 7.2. Under Assumption for every Q < & the set SingQ(T) has Hausdorff
dimension at most m — 2.

Before proceeding, we need to recall the following definition.

Definition 7.3. An integral m-varifold V' is called a k-symmetric cone (where 0 < k < m) if
it can be written as the product of a k-dimensional plane passing through the origin times an
(m — k)-dimensional cone. The largest plane passing through the origin such that the above
holds is called the spine of V. If V is stationary, then the standard stratification of V is

Slcstc...csm, (7.1)

where
S*:= {q e spt(V) : no tangent cone to V at ¢ is (k 4 1)-symmetric}. (7.2)
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As a consequence of Corollary and of the classical Almgren’s stratification theorem, we
have now the following

Proposition 7.4. Let T,% and Q be as in Assumption [3.1] and consider the set

Z = Qnspt(T) \ U Do(T).
QeN\{0},Q<%

Then H™1+%(Z) = 0 for every a > 0.

Proof. By Lemma the varifold V' = v(T) is stationary in ¥ N, thus we can consider the
stratification of V' as in and (7.2). If ¢ € S™\ 8™! then there is at least one tangent
cone to V at ¢ which is supported in a flat plane mg. Then there is a current Ty as in Corollary
obtained as a limit Tj,, for an appropriate 74 | 0, which satisfies v(Tp) = V. Thus by
the constancy lemma 7, (0) = ©1(g) must belong to [1, 5] N N. This implies that Z C S™~1.
Our statement then follows immediately from the well known fact that dimy S* < k for every
0<k<m. OJ

We shall also need the following elementary yet fundamental lemmas. Given v € R™™ we
will adopt the notation 7, := ¢, 1, so that 7,(z) := x — v.

Lemma 7.5. Assume T € %, (R™™) is an m-dimensional integer rectifiable current such
that 0T = 0mod(p) and the associated varifold v(T) is a k-symmetric cone with spine
R* x {0} € R™™. Then

(1o )41 = T'mod(p) for every v € RF x {0}, (7.3)
and there exists an (m — k)-dimensional cone T such that
T =[RF] x T" mod(p). (7.4)

Furthermore, if T is a representative mod(p) then so is T'; in this case, v(T) = v( [[Rk]] xT"),
and v(T") has trivial spine. Finally, if T is locally area minimizing mod(p), then so is T".

Proof. Write T' = [M, T, 0], so that v(T') = v(M, |0]). Since v(T) is a k-symmetric cone with
spine R* x {0}, the locally H™-rectifiable set M is a cone which is invariant with respect to
R* x {0}, in the sense that there exists a locally H™ *-rectifiable set M’ C R™*"~k such that
M = RF x M'. Furthermore, || is a 0-homogeneous function such that |0|(z + v) = |0|(z)
for every v € R* x {0}. By the properties of M, modulo changing the sign of 6, we can
also assume that the orienting unit m-vector field 7 is a 0-homogeneous function such that
7(z +v) = 7(z) for every v € R¥ x {0}.

Now, given two Lipschitz and proper maps f,g: R™*" — R™" and letting h: [0, 1] x
R™*™ 5 R™T" he the linear homotopy from f to g, namely the function defined by

h(t, x) == (1 —t) f(z) +tg(z),
the homotopy formula (see [2I, Equation 26.22]) states that

9T — [T = 0hy([(0,1)] x T') + hy([(0,1)] x OT) . (7.5)
Since T = 0 mod(p), yields
9T — F;T = Ohy([(0, )] x T) mod(p). (7.6)

Now, let v € R* x {0}, and apply (7.6 with
flx)==x and g(x) =1y(x) =2 —v.
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We can compute, for any w € @Hm(R x RM*1);

ha(1(0. D] % T)(w) : = ([0, )] x T)(h'w)
/ dt / ), [y )e (2 A (@) )T ()
/dt/ ).v A T(@)) d|T]|(z) = 0,

where we have used that v € RF x {0}, T(x) € Ap(Tan(M, z)) at |T|-a.e. x, and M is
invariant with respect to R* x {0}. Using that w can be chosen arbitrarily, we conclude (7.3))
from (|7.6]).

Next, let p: R™*"” — R™+" he the orthogonal projection operator onto R¥ x {0}. Using

standard properties of the slicing of integer rectifiable currents (see e.g. [I5, Theorem 4.3.2(7)])
and (7.3), we can conclude then that

(10)¢(T, P, 2 +v) = ()¢ T, P, 2) = (T, p,2) mod(p), (7.7)
for every z,v € R¥ x {0} such that the slices exist, or, equivalently, that
(T',p, 2) = (Tw—2)4(T, p,w) mod(p) (7.8)

for every z,w € R* x {0} such that the slices exist. Fix z such that (T,p,z) exists, and
let 7" € B (R™T"7F) be such that (T, p,z) = (7-.);1" after identifying R™+7=k with
{0} x R™*7=k_ Then, the current T := [R¥] x T’ satisfies

(T —T,p,2) =0 mod(p) for HF-a.e. z € R¥ x {0}. (7.9)

Observe that we may write

T=07H"_M, =07H™ LM, (7.10)
for a 0-homogeneous function  such that 6(x + v) = (z) for every v € R¥ x {0}. Also notice
that, since M is invariant with respect to RF x {0} and p is the orthogonal projection onto
R* x {0}, if we identify R¥ x {0} with R* and if we set ¢ := p|,,, then Jy¢p(x) > 0 for H™-a.e.
x € M, where Jy¢(x) is the k-dimensional Jacobian of ¢, defined by

Jed(a) = (det (do(e) 0 d(a)")) " do(a): TuM — BE

at all points x € M such that T, M exists.

By the considerations above, the standard slicing theory of rectifiable currents (see e.g.
[15, Theorem 4.3.8]) implies that for H*-a.e. z € R¥ x {0} the set M, := M Np~(z) is
(m — k)-rectifiable and

<T7 P, Z> = [[Mza ¢, 9’Mz]] ’ (T,p,z> = [{Mza ¢, é‘Mz]] (7'11)

for a Borel measurable unit (m — k)-vector field ¢ = ¢, which is uniquely determined by 7 and
d¢. If z € R¥ x {0} is such that both (7.9) and (7.11) hold, then

0(z) = 6(x) mod(p) at H™ F-ae z € M,. (7.12)

By Fubini’s theorem, the conclusion in (7.12) holds at H™-a.e. z € M, so that (7.4)) follows
from (7.10]) and the definition of T
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If T is a representative mod(p), then (T, p, z) is a representative mod(p) for H-a.e. z €
R* x {0}, and thus we can choose z such that the corresponding 7” is a representative mod(p).
With this choice, T is a representative mod(p) as well, and since f(x) = 6(z) mod(p) for
H™-a.e. z € M we deduce that

0(x) = e(z) O(x) with e(z) € {—1,1}, for H™-a.e. x € M, (7.13)
where £(x) = 1 or |#(z)| = £. As a consequence, || = |§] H™L M-a.e., which in turn implies
that v(T') = v(T'). The last conclusion of the lemma is elementary, and the details of the
proof are omitted. 0

Lemma 7.6. Assume Ty € X (R™T™) is an m-dimensional locally area minimizing current
mod(p) without boundary mod(p) which is a cone (in the sense of Corollary|6.9 (iii)). Suppose,
furthermore, that v(Ty) is (m — 1)-symmetric but not m-symmetric (namely not flat). Then,

Proof. Let Ty = [M, 7, 0], so that v(Ty) = v(M,|6]). Since v(Tp) is (m — 1)-symmetric but
not m-symmetric, by Lemma [7.5| Ty = [7]] x Tjy mod(p), where 7 is the (m — 1)-dimensional
spine of v(7p), and T} is a one-dimensional cone which has no boundary mod(p) and is locally
area minimizing mod(p). Since O(7},0) = O(Tp,0), we can reduce the proof of the lemma to
the case when m = 1.

Thus we can assume that Ty = >, Q; [¢;], where ¢4, ..., ¢y are pairwise distinct oriented
half lines in R'*" with the origin as common endpoint and the Q;’s are integers. Without loss
of generality we can assume that 0 [¢;] = — [0]. Observe that

oy, 0)= 3 3" Il

and that Y, @Q; = 0 mod(p) since T has no boundary mod(p). If 3, Q; = 0, then Ty would
be an integral current without boundary, which in turn would have to be area minimizing.
But since Tj is by assumption not flat, this is not possible. Thus ), Q); = kp for some nonzero
integer k. This clearly implies

> 1Qil > [klp > p,
i
which in turn yields ©(Tp,0) > £. O

We are now ready to state the starting point of our proof of Theorem and Theorem
which will be achieved by contradiction.

Proposition 7.7 (Contradiction sequence). Assume Theorem 1s false. Then there are
integers my,n > 1 and 2 < Q < % and reals oo, > 0 with the following property. There are

(i) T,% and Q as in Assumption such that 0 € Singq(T));
(ii) a sequence of radii ri, | 0 and an m-dimensional plane mo such that v(Ty,, ) converges
toV=QH" L7y ® Ory;
(iii) limp oo HT2Y*(Dg(To,r,,) N B1) > 1.
If Theorem is false then either there is a sequence as above or, for Q = &, there is a
sequence as above where (iii) is replaced by

(iii)s limg—oo HZ (Do (To ) N B1) > 1.
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Proof. Suppose first that Theorern is false. Fix p € N\ {0, 1}, and let m > 1 be the smallest
integer for which the assertion of Theorem [3.3]is false. Observe that m > 1. Fix thus a T, %
and ) satisfying Assumption for which there is an a > 0 with H™~1T%(Sing(T)) > 0.
Then, by Proposition there must be a @ € NN [1, §] such that H™~ ' (Sing(T)) > 0.
By [21, Theorem 3.6], H™~'**-a.e. point in Singq(T') has positive HZ 1T *-upper density:
fix a point ¢ with this property, and assume, without loss of generality, that ¢ = 0 and that
(0T)L.B; = 0 mod(p). Then, there exists a sequence of radii 7 such that r; | 0 as k — oo
and such that
HT 1 (Sing (T) N Byy,)

k—o00 Tzn—l—i—a

lim H ' (Sing(Th,r,) N B1) = lim

k—00

>0 (7.14)

Moreover, we can assume that the sequence of stationary varifolds v(7p,,) converges to a
stationary cone C' C TpX. Consider the compact sets {@ka > @} N B and assume, without
loss of generality, that they converge in the Hausdorff sense to a compact set K. As it is well
known, by the monotonicity formula for stationary varifolds we must have O¢(q) > @ for
every ¢ € K. On the other hand, this implies that every point ¢ € K belongs to the spine
of the cone C; see [27]. In turn, by the upper semicontinuity of the H” "1t measure with
respect to Hausdorff convergence of compact sets, we have

H2(K) > limsup HZ ' T*(Dg(Tor,,) N B1) > 0. (7.15)

k—o0

Recall that the spine of the cone C' is however a linear subspace of R™*" cf. again [27]. This
implies in turn that C' must be supported in a plane, which completes the proof under the
assumption that Theorem is false.

Now, let us suppose Theorem is false. Then, we can find p,m,n and Q < &, together
with Q, %, T as in Assumption and « > 0 such that Hm_2+“(SingQ(T)) > 0. Arguing as
above, we can then find a point ¢ € Sing, (T) with positive H7~2+*upper density, and we
can suppose, without loss of generality, that ¢ = 0. Then, there is a sequence of radii r; with
rr 4 0 as k — oo such that:

« the blow-up sequence Ty, converges, in the sense of Corollary (iv), to a current

Ty € Zm(THY) satisfying properties (i), (ii), and (iii) of Corollary 6.3

o limy oo HI2T(Sing g (To,, ) N B1) > 0;

o the sequence of varifolds v(Tp,, ) converges to a stationary cone C' in TpX;

« C= V(T()).

« the spine of C' is a linear subspace of Tp> having dimension at least m — 1.

Now, if the spine of C'is (m — 1)-dimensional, then C' is (m — 1)-symmetric but not flat,

hence forcing ©(7p,0) > & by Lemma which is a contradiction to the fact that 0 € Dg(T")
with Q < g. Thus, C is supported in an m-dimensional plane, and the proof is complete. [
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Part 2. Approximation with multiple valued graphs

Following the blueprint of Almgren’s partial regularity theory for area minimizing currents,
we now wish to show that any area minimizing current modulo p can be efficiently approximated,
in a region where it is “sufficiently flat”, with the graph of a multiple valued function which
minimizes a suitably defined Dirichlet energy. Suppose that, in the region of interest, the
current is a @-fold cover of a given m-plane m, where @ € [1,5]. The “classical” theory
of Dir-minimizing @-valued functions as in [I2] is powerful enough to accomplish the task
whenever @ < £ (which is always the case when p is odd). If p is even and @ = &, on the
other hand, Almgren’s Q)-valued functions are not anymore the appropriate maps, and we will
need to work with the class of special multiple valued function defined in [7].

8. FIRST LIPSCHITZ APPROXIMATION

From now on we denote by B, (z, ) the disk B,(z) N (z + m), where 7 is some linear m-
dimensional plane. The symbol C,(z, ), instead, will always denote the cylinder B, (x, ) x k.
If we omit the plane m we then assume that 7 = mp := R™ x {0}, and the point z will be
omitted when it is the origin. Let e; be the unit vectors in the standard basis. We will regard
mp as an oriented plane and we will denote by 7y the m-vector e; A ... A e, orienting it.
We denote by p, and p# the orthogonal projection operators onto, respectively, = and its
orthogonal complement 7+. If we omit the subscript we then assume again that 7 = .

We will make the following

Assumption 8.1. ¥ C R™*" is a C? submanifold of dimension m +n =m +n — [, which is
the graph of an entire function ¥ : R+ — R/ satisfying the bounds

HD\I/HO < Co and A := ||A2||() < co, (81)

where cg is a positive (small) dimensional constant. T is a representative mod(p) of dimension
m with spt(T') C ¥ and which, for some open cylinder Cy,(z) (with » < 1) and some positive
integer Q < Z, satisfies

piT = Q [By(z)Jmod(p) and (9T)L Car(x) = 0mod(p). (8.2)
We next define the following relevant quantities.

Definition 8.2 (Excess measure). For a current 7' as in Assumption we define the
cylindrical excess E(T, Cyy(x)), the excess measure er and its density drp:

B(T. Cur(w) 1= o (IT(Car(@)) = QB @)
er(A) :=||T|[(A x R") — Q|A] for every Borel A C By, ()
dr(y) := limsup ﬂs%)) = limsup E(T, Cs(y)) .
s—0 Wms s—0

The subscript 7 will be omitted whenever it is clear from the context.
We define the height function of T in the cylinder Cy,(x) by

h(T, Cyr(2), mo) := sup{|p™(q) — P ()| : ¢, ¢ € spt(T) N Cyp()}.

Note that, since T is a representative mod(p), we have ||T'|| = ||T||,, where ||T||, denotes
the Radon measure on R™*" defined by the mass mod(p). However, it is false in general
that ||psT||(A) = Q|A]|, since pyT' is not necessarily a representative mod(p). The excess



22 CAMILLO DE LELLIS, JONAS HIRSCH, ANDREA MARCHESE, AND SALVATORE STUVARD

written above can thus be rewritten as wy,! (4r)™™ (| T||,(Car(z)) — [|PsT||p(Car(z))), but not
as wit (47) ™™ (IT|(Car(2)) — |psT||(Car(x))), which is the standard cylindrical excess in the
classical regularity theory for area minimizing currents. Of course, since ||psT||, < ||ps7|| as
measures, this “excess mod(p)” is, in general, larger than the classical excess.

Definition 8.3. In general, given a measure p on a domain 2 C R™ we define its noncentered
maximal function as
Bs(z
my(y) = sup {M(S(m)) 1y € By(z) C Q} :
Win S
If f is a locally Lebesgue integrable non-negative function, we denote by mf the maximal
function of the measure f.£™.

The first Lipschitz approximation is given by the following proposition, according to which
a representative mod(p) T as in Assumption can be realized as the graph of a Lipschitz
continuous multiple valued function in regions where the maximal function of its excess
measure is suitably small. As already motivated, the approximating function needs to be a
special multi-valued function whenever p is even and @ = £. Concerning special multi-valued
functions, we will adopt the notation introduced in [7]: in particular, the space of special Q-
points in R™ is denoted ./ (R"™), G is the metric on it, and |S| := G4(S, Q [0]) if S € an(R™).
Given a function u: Q — @o(R™) (possibly classical, namely with target Ag(R"™)), we will let
Gr(u) and G,, denote the set-theoretic graph of u and the integer rectifiable current associated

with it, respectively; see [7, Definition 4.1]. Also, we will let osc(u) denote the quantity
= inf oo = inf s ) o : 8.3
ose(u) = Wf [[lu© qlllz=) = f 1G:(u(@), QlaD)llr= @) (8.3)

Remark 8.4. The definition given in (8.3) for the quantity osc(u) is the special multi-valued
counterpart of the definition provided in [§] for the Ag(R™)-valued case. In [I0], on the other
hand, the following comparable definition for the oscillation is used:

osco(u) = sup{|v —w| : z,y € Q, v € spt(u(x)), w € spt(u(y))}.
More precisely one has
1
B osco(u) < osc(u) < v/Qosco(u) .

To see the first inequality, let z,y € Q and v € spt(u(z)),w € spt(u(y)); then, for any ¢ € R™
we have

[v—w| <Jv—gq|+|w—q| <fulx) ©ql+|uly) © gl <2[luo glll=@)-

Taking the infimum over all g € R™ gives the claimed inequality. For the second inequality, fix
any arbitrary y € £ and g € spt(u(y)). Then, for any = € 2 we have

lu(z) © ¢ < VQosco(u).

Taking the supremum over all x € Q and afterwards the infimum in ¢ € spt(u(y)) gives the
desired bound.

Proposition 8.5 (Lipschitz approximation). There exists a constant C = C(m,n,Q) > 0
with the following properties. Let T and WU be as in Assumptz’on in the cylinder Cys(x).
Set E :=E(T, Cys(x)), let 0 < 6 < 1 be such that 16™E < §, and define

K := {mep < §} N Bas(x).



REGULARITY OF AREA MINIMIZING CURRENTS MOD p 23

Then, there is a Lipschitz map u defined on Bsgs(x) and taking either values in Ag(R™), if
Q <&, orin dg(R"), if Q =15, for which the following facts hold.

(i) Gr(u) C X;

(ii) Lip(u) < C (62 4 ||D¥||o) and osc (u) < Ch(T, Cys(z), m0) + Cs| DY||o.
(i) GuL(K x R™) =TL (K x R™) mod(p);

(iv) Forrg:=16Y/E/d < 1 we have

|B,(z) \ K| < ? eT({meT >N Br+ms(a:)) Vr<3s. (8.4)

We remark that in Proposition [8.5) we are not assuming that 7" is area minimizing modulo
p. The proof of the proposition will require a suitable BV estimate for 0-dimensional slices
mod(p), which is the content of the next section. This Jerrard-Soner type estimate is in
fact a delicate point of the present paper, since the approach of [8] (which relies on testing
the current with a suitable class of differential m-forms) is unavailable in our setting, since
Assumption only guarantees 07"l Cys(z) = O0mod(p) and not 0T Cys(x) = 0.

9. A BV ESTIMATE FOR SLICES MODULO p

Recall that Z,(C) denotes the group of k-dimensional integral flat chains supported in a
closed set C'.

Definition 9.1. We define the groups
X :={Z e % (R"): Z =208 for some S € Z(R")} ,
XP:={Z c F(R"): Z =08+ pP for some S € % (R"), P € F,(R")} .
On X we define the distance function
dr(Th,Th) = F(Th — T») := inf {M(S) : S € Z1(R") such that T} — T, = S},
whereas on X? we set
drr(Th,Ty) = FP(Th — T3) := inf {M(S) : S € % (R") such that Ty — To = dS + pP
for some P € Z(R")}.

Remark 9.2. Note that the following properties are satisfied:

(i) both X and XP are subgroups of .Zy(R"), with X C X?;

(1) XP ={T € Fo(R") : T = Smod(p) for some S € X}, the non-trivial inclusion being
a consequence of [I7, Corollary 4.7]. Hence, the quotient groups X/mod(p) and
X?/mod(p) coincide and they are characterized by X/mod(p) = XP/mod(p) = XP,
where

XP:={[T] € ZL(R™): T = 0Smod(p) for some S € %, (R")} ;

(i3i) for T € X (resp. T € XP), one has F(T) > .Z(T) ( resp. FP(T) > .ZP(T));
(iv) (X,dr) is a complete metric space; the pseudo-metric dzr induces a complete metric
space structure on the quotient X?, which we still denote dz».

In the rest of the section we will use the theory of BV maps defined over Euclidean domains
and taking values in metric spaces, as established in Ambrosio’s foundational paper [4].
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Lemma 9.3. Assume T is a one-dimensional integer rectifiable current satisfying Assumption

in Cy (that is, set m =1, x = 0 and r = 1 in Assumption , and let Ty be the slice
(T,p,t) € Zo(R™) for a.e. t € By =] —4,4[. Then, the map ®:t € J :=| — 4,4 [pﬁLTt}
is in BV (J, XP), and moreover

|D®|(I)? < 2e7(I)||T||(I x R™)  for every Borel set I C .J. (9.1)

Proof. Let us first observe that since (0T)L. C4 = 0mod(p) then by Lemma 5.1 for a.e. t € J
we have

T, = 0(TL{p < t}) mod(p), (9.2)
and thus ®(t) = [(?pﬁL (TL{p < t})} € XP. Fix now to € J such that (9.2)) holds. Again by
Lemma for a.e. t €lt, 4] we have B(t) - @(to) = [Opg- (T((to, 1) x R™))]. So

FP(D(t) — (to)) < M(pg (TL((to, 1) x R™))). (9.3)
Arguing analogously for the ¢ € (—4,y) and integrating allows to conclude
4
| dm(@. o) dr < cMTLC), (94)
—4

which shows that ® € L(J, XP).

Next, we pass to the proof of (9.1). Without loss of generality, assume I = (a,b) to be an
interval with a and b Lebesgue points for ®. It is a consequence of [I5, Theorem 4.5.9] (see
also [I3], Section 8.1]) that |D®|(I) equals the classical essential variation essvar(®) given by

N
ess var(®) := sup { Zd]-‘p(@(ti),q)(ti_l)> ra<tp<ti <...ty<b
=1 (9.5)

with tg,...,tny Lebesgue points for <I>}.

Let tg,...,ty be as in (9.5)), and let e denote the constant unit 1-vector orienting R x {0} C
R+ Then, one has

N N N
Zd]:p (Q(tz)> q)(ti—l)) = pr(pé_th - pé_Tti—l) S ZM(p#(TL((ti—latl) X Rn)))
i=1 i=1 i

=1
< / T — (T, e)el d|IT|| = / V1= (F.e2d|T]
I xR I xR
<vz[ Vi-(@.eam

I xR
< VR2(|IT|I(I x R™) — |p:T||(I x R™)Z (|T||(I x R™))?
< V2(er(D): (|T|I(I x R™)?,

where the first inequality has been deduced analogously to (9.3, and the last one follows from
lpsT|l, < |lpyT’|| as measures. This shows (9.1)) and concludes the proof. O
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10. COMPARISON BETWEEN DISTANCES

Another delicate point in the proof of Proposition is that Lemma [9.3]is not powerful
enough to guarantee the Lipschitz continuity of the approximating map u. To that aim, we
shall need to combine the Jerrard-Soner type estimate (9.1)) with the result of Theorem [10.1]
below.

Let @ and p be positive integers with @ < &, and fix any A, B € Ag(R™). Observe that
A,B € #y(R"). Furthermore, the flat chain A — B is an element of the subgroup X of
Definition so that we can compute F(A — B). Next, let us consider the flat chain A + B.
In the case when Q = §, we claim that A + B € X?, so that we can compute FP(A + B).
Indeed, fix any z € R™, and let h,: (0,1) x R™ — R"™ be the function defined by

hy(t,x) ==z + t(x — 2).
Then, the cone over A+ B with vertex z, that is the 1-dimensional integral current R given by
R:=2zx (A+ B) = (h.);([(0,1)] x (A+ B))
satisfies
OR=A+B-2Q[z]=A+B-pl],

which proves our claim. Furthermore, the above argument also shows that

FP(A+B)<MR)=FA-Q [z])) + F(B-Q [=]) - (10.1)
Having this in mind, we extend the norm F to A + B by setting
F(A+ B) := ierﬁgfn{]:(A—Q[[z]])+}'(B—Q[[z]])} when Q =%, (10.2)
so that ((10.1)) implies that
FP(A+ B) < F(A+ B) for every A, B € Ag(R™) when Q = 5. (10.3)

We can now state the main result of this section.

Theorem 10.1. Let p and Q be positive integers with Q < §. Let A := ZlQ:l[[AZ]] and
B:=Y%9 [Bj] in Ag(R™), and let o € {—1,1}. If
(a) either o =1,
(b) oro=—1and Q =5,
then
FP(A—oB)=F(A—-0oB). (10.4)

In order to reach a proof of Theorem [10.1] we will need some preliminary results. First,
for a given S € %, (R™), we say that S has the property (NC) (no cycles) if there exists no
0 # R € %(R") such that OR = 0 and

M(S) = M(R) + M(S — R).

We recall that .#,,(R™*") denotes the space of m-dimensional integral currents in R”*".
Given S € 4 (R") satisfying the property (NC'), we call a good decomposition of S a writing

N
S=30;5;,
j=1
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where 6; € N, each §; is the integral current given by S; = [v;] for v; a simple Lipschitz curve
of finite length, S; # Sy if j # k and moreover

M(S) = ZejM(Sj), M(0S) = ZejM(aSj). (10.5)

The existence of a good decomposition for a current S € .#1(R") satisfying the property (NC')
is a direct consequence of [15] 4.2.25]. We say that a good decomposition S = Z;-V:l 6;S; has the
property (NT'C) (no topological cycles) if there exists no function f: {1,..., N} — {—1,0,1},
f #£ 0, such that

o) (Z f(j)Sj) =0. (10.6)

Lemma 10.2. For any S € #1(R™) with the property (NC) there exists S' € #1(R™) with
the property (NC') and a good decomposition of S' that satisfies S’ = 95, M(S") < M(S),
and that has the property (NTC).

Proof. Let S € .#1(R™), and assume without loss of generality that S # 0. Among all currents
S’ € #1(R™) with the property (NC') and such that 95" = 95 and M(S’) < M(S), and among

all possible good decompositions of S’ not satisfying the property (NT'C) fix a current S’ and
a decomposition

N
! / !
§'=0;5;
=1

such that the quantity N is minimal. Observe that necessarily N > 1.
Let f: {1,...,N} = {—1,0,1} be a function such that (10.6)) holds. Define:

j- € argmin{&é : fy) =-1}
and
i € argmin{d : £(j) = 1},
Observe that since S’ has the property (NC'), the sets {6 : f(j) = —1} and {0 : f(j) = +1}
are non-empty.
Now, consider the quantities

M_:= > M(S))
js fG)=-1
and
My := > M(S)).
Js fG)=+1

Clearly, if M, > M_ then the current
Sho=8"=0; " f(j)S;
J
satisfies MI(S”,) < M(S") < M(S). If instead My < M_ then the current
ST =840, f(j)S]
J

satisfies M(S”) < M(S’) < M(S). In any of the two cases, S’ = 95’ = 95, and the obvious
resulting decomposition of S’ has at most N — 1 indexes. Hence, by minimality, the one of
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the two which does not increase the mass necessarily has the property (NT'C'). This concludes
the proof. O
Lemma 10.3. Let S € #1(R") and 0 # Z € Zy(R™) be such that:

(H1) A—B=0S+pZ;
(H2) S has the property (NC) and there exists a good decomposition

N
S=Y0;S;
j=1

with the property (NTC).
Then, there exists jo € {1,...,N} such that 0Sj, = [x] — [y] with z,y € spt(Z) and 0;, > &.

Proof. Let S and Z be as above. Firstly, we claim that the set of indexes j € {1,..., N} such
that 05; = [«] — [y] with z,y € spt(Z) is non-empty. We write

M M
Z =[N - [P,
/=1 /=1

where the N;’s (resp. the Pp’s) are not necessarily distinct, so that

Q M Q M
98 =Y [Al+p) [Pl - (Z[{Biﬂ +PZ[[Ne]]) :
i=1 =1 =1 /=1

Consider any of the points P,. By , the multiplicity of 95 in P, is at least p, and
furthermore, since Q@ < £, there exist j € {1,..., N} and ¢ € {1,..., M} such that 0S; =
[P] — [Ne], which proves our claim.

Next, assume by contradiction that for every j such that 0.5; is supported on spt(Z) one
has 0; < L. Fix, for instance, the point P;. Arguing as above, after possibly reordering the
indexes (both in the family {S;} and {N,}), we conclude that there exist N; and Sy such that
081 = [P1] — [N1]. Moreover, by hypothesis, §; < . This ensures that we can find P, and Sy
such that 053 = [P2] — [IV1], and again 62 < §. The procedure can be iterated as long as the
new points Pyyq (resp. Nyyq) are distinct from the previous ones. Since the decomposition of
S has the property (NT'C) by hypothesis (H2), this would imply that the procedure can be
iterated indefinitely, which gives the desired contradiction. O

Proof of Theorem [10.1. Let us first consider case (a), with o = 1.
It suffices to prove that
F(A—-B) < FP(A-B), (10.7)
because the other inequality is obvious.
Suppose by contradiction that

FP(A—-B) < F(A-B), (10.8)
and let S € #(R") and 0 # Z € Zp(R") be such that
A—-—B=0S+pZ and M(S)< F(A- B).
We claim that there exist currents S' € #(R") and Z! € %,(R") such that
A—-B=0S"+pz', M(S")<F(A-B) and M(Z')=M(Z)-2. (10.9)

The conclusion trivially follows from the claim.
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We proceed with the proof of . First observe that if S has a cycle R then the current
S’ := 5 — R satisfies A — B = 05" 4+ pZ and M(S’) = M(S) — M(R) < F(A — B). Therefore,
we can assume without loss of generality that S has the property (NC'). Next, applying
Lemma [10.2) we can also assume that S has a good decomposition

N
§=> 08
=1

which satisfies the property (NT'C). Now, by Lemma there exists jo € {1,..., N} such
that 05, = [z] — [y] with z,y € spt(Z) and 6;, > 5. Let S' := S — pS;,. We have
98" = 0S8 — p[] + plyl,
and thus
A—-B=0S"+pZ",
where Z' := Z + [z] — [y]. The conclusion M(Z') = M(Z) — 2 simply follows from (10.5)).
Finally, we get

< YOS + 16— pIM(S,) < 5" (S T M(S) < F(A - B),
J#Jo J=1
where the second inequality follows from 6;, > £.
Let us now consider instead case (b), when 0 = —1 and @ = . We know from that
FP(A+ B) < F(A+ B),

where F(A + B) is defined by ((10.2). Assume by contradiction that FP(A + B) < F(A + B).
That is, there exist S € #(R™) and Z € %(R") such that

A+B=0S+pZ, and M(S)< F(A+ B). (10.10)

Observe that it cannot be Z = 0. Also, by Lemma [I0.2] there is no loss of generality in
assuming that S admits a good decomposition

N
S=30;5;
j=1

having the property (NT'C). Now, if M(Z) = 1 then there exists z € R" such that Z = [z].
In that case, if we set R := z x (A + B) then we have
OR=A+B—p[z] =

and

F(A+B) < M(R) = F(A—Q[2]) + F(B — Q[2])
Q

= (|4 — 2| + B — 2]) < M(9),
i=1

thus contradicting ((10.10).
On the other hand, if M(Z

) 2
{1,...,N} such that 0S;, = [z]—
St:= S —pSj, we have

2 (and thus in fact M(Z
Iy

>
| with z,y € spt(Z) and

3) then there exists jo €
0;, > 5. Hence, setting

A+ B=09S'+pz',
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with Z! := Z + [2] — [y], M(Z') = M(Z) — 2 and M(S') < M(S). In order to complete the
proof, it suffices to iterate this argument producing currents S*, Z*¥ until M(Z*) = 1.
O

11. PROOF OF PROPOSITION

Since the statement is scaling and translation invariant, there is no loss of generality
in assuming * = 0 and s = 1. Consider the slices T, := (T,p,z) € Z(R™") for a.e.
x € R™ x {0} and use [I5, Theorem 4.3.2(2)] and [5], Corollary 2.23] to conclude that

M(T,) < lim LEI(C- ()

m — = <mer(z)+Q forae. z. (11.1)
r m

Now, since mer(z) < § < 1 for every x € K, we conclude that M(7) < Q + 1 for a.e. x € K.
On the other hand, setting M(z) := M(T}) for x € By we have the simple inequality

M 2" By = [|pyT|| = [lpsT [l = QL™ By, (11.2)

so that we deduce
M(T,) = M(z) > Q for a.e. x € By. (11.3)
From and we infer then that M(7,) = @ for a.e. = € K. Hence, there
are Q functions g;: K — R” such that pé‘Tm = 2?:1 oi(x) [gi(x)] for a.e. =z € K, with
oi(z) € {=1,1}. In fact, since ||psT|| > QL™ By, the values of o;(x), for fixed z, are
independent of ¢, and thus pﬁsz =o(x) Z?:l [gi(x)]. Furthermore, since pyT" = Q[B4] mod(p),

it has to be o(z)Q = @ mod(p) as integers. We therefore have to distinguish between two
cases:

(A) Q@ < §. In this case, the condition o(x)Q = Q mod(p) is satisfied if and only if
o(z) = 1. Hence, the functions g; allow to define a measurable map g: K — Ag(R")
by setting

Q
g(x) =) lgi(=)].
i=1

(B) @ = £. In this case, any measurable choice of o: K — {—1,1} would satisfy the
condition o(z)Q = @ mod(p). On the other hand

Q
g(x) := (Z[[gi(ﬂf)}],a(fv))
i=1

defines a measurable function g: K — ag(R").

11.1. Lipschitz estimate. Fix j € {1,...,m}, and let p;: R™™™ — R™"! be the orthogonal
projection onto the (m — 1)-plane given by span(eq,...,ej—1,€j41,...,€n). For almost every
z € R™~1 consider the one-dimensional slice 77 := (T, p;, z), and observe that
M(T7)dz < M(T).
Rm—1

Observe that T7 satisfies Assumption with m =1 for a.e. 2. Let now p; be the orthogonal
projection p;: R™*™™ — span(e;), and for almost every ¢t € R let (Tg)t = (T¢,pj,t). By
Lemma the map ®7: t p#‘ (T¢), is BV (R, X?), and moreover

|D®I|(1)? < 2e,(I)||TZ||(I x R™)  for every Borel set I C By Nspan(e;). (11.4)
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Now, observe that

®L(t) =pg (T7), = pF ((T,55:2),p5t) = (~1)" P (T, B, (). 2, 8)) = (1) 7D T,

where z(j, z,t) == (21,...,2j-1,t, Zj+1, ..., Zm) € R™. By [13] formula (79)], we can therefore
conclude that the map ®: x € R™ — P; T is in BV(R™, XP). Furthermore, if for every Borel
set A C By, for every j € {1,...,m} and for every z = (21,...,2j-1, Zj4+1,- - -, 2m) € R™"1 we
denote A7 :={t € R: (21,...,2j-1,t,2j+1,---,2m) € A}, we have

|D®|(A Z/m_ |D®| (A7) dz

e Z [ (o) (11 ) -

< ﬁz (/Rm 1 sz(A;‘)dzf (/le T3] (A x R™) dz)2
< Jim (er(A)2 (IT)I(A x R™)?

Thus, from the definition of excess measure modulo p we deduce
|D®|(B:(y))? < 2m*er(B:(y)) (QBr(y)| + er(B.(y))) ,
for any B,(y) C By. Hence, if we define the maximal function
mDo|(z) = sup (Do BrW)
x€By(y)CBy 1B (y)]
we can conclude that
(m|D®|(x))? < 2m? (QmeT(:U) + (meT(x))Q) < 0§ for every x € K.
By [6, Lemma 7.3], one immediately obtains
FP(D(z) — ®(y)) < C6'/ |z —y| for every z,y € K Lebesgue point of ®.

On the other hand, for a.e. 2 € K we can regard ®(z) = g(z) € Ag(R") if @ < § or
®(x) = o(x)go(x) with o(z) € {—1,1} and go(z) € Ag(R™) if @ = §. In any case, Theorem
implies that in fact

F(®(x) — ®(y)) < C6'|lz —y| for every x,y € K Lebesgue point of ®.

Now, first consider the case @ < §. Writing ®(-) = g(-), we observe that

o‘G'P

1/
F(g(x)—g(y)) = min Z\gz ~90()(¥)| = min (Z 19i(2) = 9oy (Y )!2) =G(9(x),9()),

where Pg denotes the group of permutations of {1,...,Q}.
If @ =&, instead, we have ®(-) = o(-)go(-). If o(z) = o(y), then the same computation
produces

Flo(@)go(x) — o(y)90(y)) = G(g0(x), 90(y)) = Gs(9(2), 9(y))-
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If, on the other hand, o(z) # o(y), and to fix the ideas say that o(z) = 1 and o(y) = —1, then
Flg0(x) +90(y)) : = nf {F(go(z) — QL=]) + Flgo(y) — QI=])}
> inf {G(o0(), QI=]) + Glooly), QID)}

> inf (g(go(q:),Q[[z]])2+g(go(y)aQ[[Zﬂ)2)1/2.

zER™
Now observe that

G(go(2), Q[2])* + G(g0(v), Q[])?
= [go(z) ©m 0 go(x)]> + |g0(y) © Mo go(y) > + QIm 0 go(x) — 2> + Qlm o goly) — 2|
Thus

inf (G(g0(x), QI0)” + G(ou(w). Q1))

z€R™

= [go(z) ©m o go(@)]* + |g0(y) ©mo go(y)]* + %In o go(z) —mogo(y)*.

1
> igs(QO(x)’QO(y))2 :
This shows that g € Lip(K, Ag(R™)) (resp. g € Lip(K, o/ (R™)) with Lip(g) < C3"2.

11.2. Conclusion. Next, in case Q < £, write
g(x) = > [(hi(x), ¥(x, hi(x)))].

Obviously, z — h(z) := Y_;[hi(x)] € Ag(R™) is a Lipschitz map on K with Lipschitz constant
< €62 Recalling [12, Theorem 1.7], we can extend it to a map h € Lip(Bs, Ag(R™))
satisfying Lip(h) < C 8/ (for a possibly larger C) and osc (h) < Cosc (h). Finally, set

(@) =3 _[(hi(@), (=, hi(@)))]-

The same computations of [8, Section 3.2] then show the Lipschitz and the oscillation bound
in Claim (ii) of the Proposition.

For Q = £ we argue analogously, using this time the Extension Corollary [7, Corollary 5.3]
in place of [12, Theorem 1.7].

Note that the points (i) and (iii) of the proposition are obvious by construction. Next
observe that, since mer is lower semicontinuous, K is obviously closed. Let U := {mep > ¢}
be its complement. Fix r < 3 and for every point 2 € U N B, consider a ball B* of radius r(z)
which contains = and satisfies ep(B*) > dwy,r(z)™. Since er(B*) < E we obviously have

()<’"—E< <1
T .
r\x wm(s 0

Now, by the definition of the maximal function it follows clearly that B* C U N By4y,. In
turn, by the 5r covering theorem we can select countably many pairwise disjoint B*¢ such
that the corresponding concentric balls B’ with radii 5r(z;) cover U N B,.. Then we get

m

5" 5
UNB,| <5™> wmr(z)™ < = > ep(B™) < TeT(U N Briry) -

This shows claim (iv) of the proposition and completes the proof.
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12. FIRST HARMONIC APPROXIMATION

Remark 12.1 (Good system of coordinates). Let T" be as in Assumption in the cylinder
Cy(z). If the excess E = E(T,Cy,(x)) is smaller than a geometric constant, then without
loss of generality we can assume that the function ¥: R™+" — R! parametrizing the manifold
¥ satisfies U(0) = 0, |[D¥||o < C(E'” +rA) and ||D?¥||p < CA. This can be shown using
a small variation of the argument outlined in [8, Remark 2.5]. First of all we introduce a
suitable notion of nonoriented excess. Given the plane my we consider the m-vector 7y of mass
1 which gives the standard orientation to it. We then let

IT(y) = molno := min{|T(y) — 7ol |T(y) + 7o}, (12.1)
where |- | is the norm associated to the standard inner product on the space A,,(R™"™") of
m-vectors in R, and define

1 o
E™(T,C = T(y) — molo, dIIT || (y) - 12.2
(T, Car(x)) 2uhn<4r>nzt/;4r@gr () = molo dIITII(y) (12.2)

Consider next the orthogonal projection p : R™*t" — 7y and the corresponding slices (T, p, )
with y € By,(z). For a.e. y, such a slice is an integral 0-dimensional current and we let
M(y) € N be its mass. Once again (cf. (11.2))), we observe that under the Assumption [8.1| we
have

M.Z™L By () = [|psT|| = [[p:T |l = QL™ L Bar ().

Thus, an elementary computation gives

Emauh4w>=IQTmcMw»—/“

Wi (47)™ Buy (@)

M(y) dy)

< gy (IT1(Car @) = [RT(Cor (@)
< gy (TI(Car(@) = [T (Car (@)

=E(T,Cy(z)) =E.
At this point we find clearly a point g € spt(7") N Cy,(x) such that
min{|T(q) — 7o, |T(q) — (~70)[} < CE"*
and we can proceed with the very same argument of [8, Remark 3.5].
’ 2m
such that 32 = < 1. If the coordinates are fixed as in Remark then the Lipschitz

approximation of T" provided by Proposition corresponding to the choice § = E?8 will be
called the EP-Lipschitz approximation of T in Cz,(z).

Definition 12.2 (E®-Lipschitz approximation). Let 3 € (0 L ), let T be as in Proposition

In the following theorem, we show that the minimality assumption on the current 7" and the
smallness of the excess imply that the EA-Lipschitz approximation of 7' in Cs; (x) is close to a
Dirichlet minimizer h, and we quantify the distance between u and h in terms of the excess.

Theorem 12.3. For every n, > 0 and every 8 € (0, ﬁ) there exist constants €, > 0 and
C > 0 with the following property. Let T and W be as in Assumption [8.1] in the cylinder
Cus(), and assume that T is area minimizing mod(p) in there. Let u be the EP-Lipschitz
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approzimation of T in Bss(x), and let K be the set satisfying all the properties of Proposition
for 5= E?P. If E<e, and sA < 5*E%, then
er(Bsgz \ K) < n.Es™, (12.3)
and
Dir(u, Bas(z) \ K) < Cn.Es™. (12.4)

Moreover, there exists a map h defined on Bss(x) and taking either values in Ag(R™), if
Q < 5§, orin doR™), if Q =&, for which the following facts hold:

((1% h(z) = (h(z), ¥(x, h(x)) with h Dirichlet minimizing;

3—2/ Go(u, h)? +/ (|Du| — |Dh|)? < n.Es™ (12.5)
Bau(a) Bou(a)
/ |ID(nou) —D(noh)> < n.Es™. (12.6)
Bas(x)

Remark 12.4. There exists a dimensional constant ¢ such that, if £ < ¢ and sA < E'2,
then the EP-Lipschitz approximation u of T in Cs,(x) satisfies:

Lip(u) < CEP | (12.7)

Dir(u, Bss(z)) < C Es™. (12.8)

Equation ([12.7]) follows from property (ii) of the Lipschitz approximation in Proposition
the choice of § = E?8, and the scaling of A. The estimate in (12.8), instead, is a consequence

of the Taylor expansion of the mass of multiple valued graphs deduced in [7, Corollary 13.2].
Indeed, the remainder term in equation [7, Equation (13.5)] can be estimated by

_ 1
/ " Ru(Dus) < C Dul* < € E* Dir(u, Bay (x)) < = Dir(u, Bys())
Bau() 5 Bas(2) 4

for suitably small E. Hence, [7, Equation (13.5)] yields

1_. m
1 Dir(w, B3s(2)) < [|[Gul|(Css(2)) — Qum(3s)
< (IT[I(Css(2)) = Qum(3s)™) + [[Gull((Bss(x) \ K) x R")
< wpm E (35)™ + C E* | Bay(2) \ K| < C E s™
by property (iv) in Proposition
Proof. Let us first observe that (12.3]) implies (12.4)): indeed, the estimate (8.4)) implies:
Dir(u, Bau(r) \ K) < Lip(u)?| Bos(2) \ K| < Cer(Bs, () \ K).

Then, note that we can embed Ag(R") naturally and isometrically into .y (R™) using the
map T' € Ag(R™) — (T,1). Hence, without loss of generality we may assume that u takes values
in @g(R™). Furthermore, each Lipschitz approximation is of the form u(z) = (u(x), ¥(z,u))
with @ taking values in @/ (R").

Finally, since the statement is scale invariant we may assume x =0 and s = 1.
We will now show the following.
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Given any sequence of currents T}, supported in manifolds ¥ = Gr(¥y) and corresponding
Lipschitz approximations uy satisfying all the assumptions in Bs with

1
Ey—0 and Ajp=o0(E}) as k — oo,

then the following conclusions hold:

()

er,(Bs \ Kx) = o(Ej)

(ii) One of the following holds true: either there is a single Dirichlet minimzing map
h € Wh2(Bs, /o(R™)) such that
2

Bs

1 1 _\2
Gs(E, 2uy, h)? + ( E_?|Duy| — |Dh|) =o(1 foralls<§;
k k 9

or there are Dirichlet minimizing maps h; € WLQ(B%,.AQ]. (R™) with j = 1,...,J,

> @ = @, and sequences {yjk}ren € R™ such that if we consider the sequence of
maps in W12(Bs, @, (R")) given by
2

hy = (Z [yj ® Rl 70>

with o € {—1,1} fixed we have

B,

1 - _1 AN 5
Gs(E, 2y, hi)? + | E, 2|Duy| — |Dhi| ) = o(1 for all s < =.
k k 9

For sufficiently large k the conclusion of the Theorem therefore holds, since we can replace in
_ - _1 1_
point (ii) uy by uy and hy, by hy = (hg, E), > V(-, EZ hy)). This can be seen as follows. Recall

that by remark

12.1

1
we have | DU, + ||D?* W, = O(E?). As a first step, we may replace

_1 - -
in (ii) (B, ?|Dug| — |Dh|)? by |E; | Diig|> — | Dh|?|. Indeed, for any sequence of non-negative
measurable functions ay, by we have

1 1
2 2
/|ak—bk|2 S /\az—ba = /|ak+bk’ |ak—bk] S 2 </|bk‘2> </|ak —bk‘2> +/|ak—bk|2;
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hence |la — bg |, = o(1) if and only if ||(ag)? — (bk)?||; = o(1). Thus it remains to show that

1o
B! 5. ’|D‘1Jk(-, ug)* — |DVg(-, B} hk)|2‘ is 0(1). We compute explicitly:
Q , 1
S5 [ |Ipwt b - ipw, B
— ZE /

_1 _1 . . _1
+Ek20,§(x) (Ek2|Duz|+/ Ek1|Du;|2> + E, *Ci(x) <|Dh |+/ E2|Dh ) ,
Bs

. . . 1_. 1_.
(@) + Dy ¥ (x, uy,) Dyl — | Do Wi (-, BZ h) + Dy (x, B hi,)

1_.
o)) = 1D Wi, B hi) P

where the measurable functions C’i (), j = 1,2, consist of a product of two first derivatives of
U}, and hence HC’]H = O(Ey)). Since E; 'Dir(ay, Bs), Dir(hy, Bs) are uniformly bounded
2 2

by (12.8), the last two integrals are o(1).
The remaining term can be estimated by

[

fEn

Bs j=1

. 1_ .
(@)1 = 1DV, B hy) 2

_1 1_.
DUy (-, k) + Dy, E?hk) 2 DU (-, L) — DypWp(-, EZRL)

< c/ o ||D‘I/kH0HDQ\I/kHogs(E]:%ﬂkyﬁk) = o(1).
Bs

12.1. Construction of the maps h or h;. Let ¢ be the isometry defined in [7, Proposition
2.6], and define (vy, wg,m o uy) = t o ug. As in [7, Definition 2.7], we set

BY = {.CCEB%: 0k| = |uf ©moiy| >0} and
B* = {l‘EBgZ |wy| = |u, ©mnou >0}.

We distinguish if the limit
lim sup min{|B¥ |, |B* |} =: b

k—o0

satisfies b > 0 or b = 0.

Case b > 0 : After translating the currents T}, vertically we may assume without loss of
generality that st nou, = 0 for all k. Since both v, and wy vanish on sets of measure at
3
least b > 0, we claim that there exists a constant C = (' such that

/ |ﬂk|2 < CyEyL. (12.9)

Bs
2
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Indeed, observe that the classical Poincaré inequality gives

/ |ﬁk|2:/ |ﬁk@noﬂk|2+Q/ I o |
Bs Bs Bs
2

2 2
=/ |Uk:|2+/ |wk|2+Q/ m o |
Bs Bs Bj
2 2 2

<G [ DlalP+Cy [ 1D+, [ |Drowf? < CDia, By).
B B Bs

5
2

which implies (12.9)) again by (12.8)).

Modulo passing to an appropriate subsequence, we therefore have that

5 5
2 2

_1 _
Ek ZZ_Lk — h
weakly in W12(Bs, o(R™)).
2

Case b =0 : We assume that |B¥| — 0, the other case being equivalent. Consider the map

u; in Wh2(Bs, Ag(R™)). When needed, we may identify @ with (u,1) taking values in
B 2

o(R™). We note that

Dir(u; , Bs) < CDir(u, Bs) < CEy;

2 2

2
=

o __ _ _2 __ o) _2
gs(uk,u';)z = /k |y, @nouk]2 < ]Bﬁ\l 2 (/k |y, 6nouk]2 > < C\Bﬂl 7 B, = o(Ey).
Bs B* B*

3

We used in the last line Poincaré’s inequality for @, that is vanishing on a set of uniformly
positive measure. Now we can apply the concentration compactness lemma, [8, Proposition
1

4.3], to the sequence Ek_ 522,"5 and deduce the existence of translating sheets
he =Y [yjx ® hjl
J

with maps h; € leQ(Bg, Ag,;(R™)) and points y;; € R™ such that the following properties
are satisfied:

_1 _
‘QS(EkQa,t,hk) -0 (12.10)
2
lim inf / Eleukﬂ2/ |Dhi|* | >0 (12.11)
k—o0 BjsnKj, Bs
2
_1 AN _

limsup/ (Ek2|Du;||th|) < lim sup (B 'Dir(if , By) — Dir(he, Bg)) . (1212)
k—o0 B k—00 2 2

5
2
12.2. Lipschitz approximation of the competitors to 4 and hj. We fix a radius s < %

To be able to interpolate later between h (hy) and 1y, and similarly between the currents
T}, and Gy, , by using a Fubini type argument we may fix s <t < g such that for some C > 0
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: 5
depending on 3 — s we have

_1
/ gs(Ek 2ﬂkah)2
OBy

lim sup
k—o0

- 5 + E; ' Dug* + |Dh)* < C incase b>0, (12.13)
g (E_aﬂkaﬁ)
S k 9

1

E 20 )2 -
lim sup/ G (By "tk hi) 5 + E; | Dug|* + [Dhy|? < C incase b=0, (12.14)
k—o0 OBy 1 7

Gs(E,, *ug, i)

2
MP (T, — Gy, 1)) < CMP((Ty, — G, )LC3) < CE. (12.15)

where, in , f is the function defined by f(y,z) := |y| for (y,2) € mp x m5. Also, in
12.14) we identified as before hj with the map (hy,1) taking values in (R™) and used
12.10)); in (12.15]) we used the conclusions of Proposition as well as the Taylor expansion
in |7, Equation (13.5)].

Now let us fix an arbitrary € > 0.

Case b > 0: Given any competitor ¢ € WLQ(B%, o(R™)) to h that agrees with h outside

of Bs, we may apply the Lipschitz approximation Lemma for special multi-valued maps [7,
Lemma 5.5] to h and ¢ in order to obtain Lipschitz continuous maps h° and ¢ for which the
inequalities [7, Equations (5.20) & (5.21)] hold true with €2 in place of e.

Case b = 0: We apply the same procedure as in the case of b > 0. Given competitors

¢j € WH(Bs, Ag,(R™)) to h; that agree with h; outside of By we may apply the Lipschitz
2 :

approximation lemma to each h; and ¢; in order to obtain Lipschitz continuous maps A5 and

c; such that the inequalities [7, Equations (5.20) & (5.21)] hold true with 2 in place of .
Furthermore we define

Wi =2 [yjn & h]
J
= lvired]
J
12.3. Interpolating functions. The argument below does not distinguish between the cases

b>0,b=0. To handle them simultaneously, we just consider the trivial sequence hi = h in
the case when b > 0.

For each k we fix now an interpolating map ¢ € W12(B; \ B(i—2)1, @o(R™)) by means of
Luckhaus’ Lemma [7, Lemma 5.4] such that

1 _
vr(x) = B, uk(x) and ¢ ((1 —e)x) = hi(z) for all x € 9B

_ C 1
/ |Dpr|? < Ce (/ B Dug)? + |Dhi|2> + / Gs(E,, 2y, hi)?
B:\B(1_c)s OBy € JoB,
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Observe that by our choice of the Lipschitz approximation Bi we have

/ |Dpp|? < Ce for large k (depending on €) . (12.16)
B\B(1_¢)t

Moreover, observe that, by construction, lim supj,_,, Lip(h5) < CZ, where C is a constant
depending on ¢ but independent of k. Also, again for large values of k£ (depending on our fixed
‘Loo(aBt) -

£):
<Ce+CE7T 4.
Hence, from [7, Equation (5.19)] we conclude that

Go(Ey ik, b)) Go(Ey ik, ) + CLip(E, @) + C Lip(h)

<C’

L2(0By)

Lip(pp) < C-Ef P+ C.<C. B, (12.17)

where the last inequality is a consequence of the fact that E,f o as k T o0.
1

In particular we can define competitors to E,; 24y, on By by
) i () for (1—e)t <|z| <t
ee(z) =9,
(%)  for |z < (1 —e)t

We observe that by our construction we have

J

We have used ([12.11]), the closeness of the Dirichlet energies of ¢; and ¢ and (12.16). As we have
seen in the calculations below point (i) above, we can use the fact that || D[, + || D*¥y||, =

lim inf E; 'Dir(ug, By N K},) — Dir(é, By) > (Z Dir(hj, Bt) — Dir(c;, Bt)) — Ce. (12.18)
—00 :

1 1 1
O(E?) to pass to uy and wy, = (EY ¢, Yi(-, B2 ¢)) still satisfying

lim inf E; ! (Dir(ug, By N Ky) — Dir(wg, By)) > <§ 'Dir(h;, B;) — Dir(c;, Bt)) — Ce.
—00 ;
J
(12.19)

12.4. Interpolating Currents. By our choice of ¢, (12.15)), and the fact that the boundary
operator commutes with slicing we have

(T, — Gy, f,t) =0.

Using [15, (4.2.10)"], we can fix an isoperimetric filling Sj, which can be assumed to be
representative mod(p), such that
98y, = (T, — G, f,t) mod(p)
and
m(1—283)
M(Si) = MP(Sg) < CMP((T), — G, f, 1)1 < CE, ™' = o(Ey)
by the choice of 3.
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12.5. Dirichlet minimality. We can now finally define a competitor to T}, by
Zy, =T L(Cy \ Ct) + Sk + G, -
Observe that, by the hypotheses on T}, Lemma [5.1, and the choice of Sy, we have
0 Z), = — (T £,5)] + [(Tk — G £,8)] + (o £,8)] = 0.

Let us observe that by construction, and using once again the Taylor expansion of the mass of
a special multi-valued graph [7, Equation (13.5)], we compute:

1.
er, (Bt) — §D1r(uk, BN Kk) =erq, (Bt \ Kk) + O(Ek) ,
1. 1.
ez, (Bi) — §D1r(wk, By) < M(Sk) +eg,, (Bt) — QDlr(wk, B;) < o(Ey),

where in the last equality we have used that Dir(wy, B;) = O(E}) whereas Lip(wy) < Ce E,f ,
so that

1 _ ,
€G,, — §Dil“(wk,3t) = / > Ry(Duwj,) < CEMP =0o(E) ask1 .
By minimality of T in C3 we then have
0>M(TpL.C3) — M(ZC3)
= e, (By) — ez, (Bi)

.. .
> 5 (Dir(ug, By N K},) — Dir(wg, By)) + er, (B \ Ki) — o(Ek) .
Hence dividing by E} and taking the lim sup as £ — oo we deduce by (|12.19)

k—o0

1
0> (Z Dir(hj, By) — Dir(cj,Bt>) + lim sup By er, (B \ Kj).
J

Since ¢ is arbitrary:
(i) Choosing cj = hj, we see that limsup,_,., E} ‘er, (B; \ Ki) = 0;

(ii) By the arbitrariness of ¢; we conclude the Dirichlet minimality of h;. Afterwards
by ([2:11) we deduce that limsupy_,., E; 'Dir(uy, By N K;) — Dir(hg, B;) = 0. In
combination with (12.12]) we obtain the second part of (ii), thus completing the proof.

O

13. IMPROVED EXCESS ESTIMATE AND HIGHER INTEGRABILITY

So far, Proposition [8.5] and Theorem [I2.3] have shown that if T" is as in Assumption [8.]
then there is a Lipschitz continuous multiple valued function (possibly special, in case p is
an even integer and @ = %) whose graph coincides with the current in a region where the
excess measure is suitably small in a uniform sense; furthermore, if 7" is also area minimizing
mod(p) then such an approximating Lipschitz multiple valued function is almost Dirichlet
minimizing, and both the Dirichlet energy of the approximating function and the excess of the
original current in the “bad region” decay faster than the excess. The goal of this section is to
exploit the closeness of the Lipschitz approximation to a Dir-minimizer in order to deduce
extra information concerning the behavior of the excess measure of 7. We begin observing
that the classical result on the higher integrability of the gradient of a harmonic function
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extends not only to classical multiple valued functions, as it is shown in [8, Theorem 6.1}, but
also to special multiple valued functions.

Theorem 13.1. There exists p > 2 such that for every Q' € Q C R™ open domains, there is
a constant C' > 0 such that

[ Dull oy < C ||Dull 2y for every Dir-minimizing u € Wh2(Q, og(R™)).

Proof. The proof is the very same presented in [8, Theorem 6.1]: one only has to replace
the Almgren embedding & for Ag(R"™) used in there with the new version of the Almgren
embedding ¢ for <75 (R") introduced in [7, Theorem 5.1]. O

As a direct corollary of the first harmonic approximation and the higher integrability of the
gradient we obtain the following result.

Corollary 13.2. For every n > 0 there exist an € > 0 and a constant C' > 0 with the property
that, if T satisfies Assumption 8.1 and is area minimzing mod(p) in the cylinder Cys(z) with
E < ¢ then for every A C By with |AN Bs| < ¢|Bs| we have

er(A4) < (nE + CA282> s (13.1)

Proof. By scaling and translating we may assume without loss of generality that x = 0 and
s=1. Wefix 8 = ﬁ and 7, > 0 to be determined below. Now let e, = e,(3, 1) taken from

Theorem We distinguish the following two cases: either A < e, F 3 or A >¢eF % In the
latter case the inequality holds trivially with C' = ;2 because

er(A) < E <e?A%
In the first case, we can apply the first harmonic approximation, Theorem [12.3] Now let
h(z) = (h(z), ¥(x,h(x))), with h Dirichlet minimizing, the associated map as in (i). By (12.3)
we directly conclude that
er(A\ K) <n.FE, (13.2)
where K is, as usual, the “good set” for the EP-Lipschitz approximation of 7' in Cs as in

Proposition 85 In order to estimate the ey measure of the portion of A inside K, we observe
that

1 1
eT(AmK)—/ |DhJ?| = eGu(AﬂK)—/ |Dh/?
2 Jank 2 Jank
1 1
<leg,(ANK) — 2/,4 |Dul?| + 3 )/A |Du|?* — | Dh)?
NK NnK

=141
The first addendum can be bounded by the Taylor expansion of mass by

I < C'Lip(u)? / |Du|? < CEY25,
ANK

the second can be estimated using (12.5) and |Du|? — |Dh|? = (|Du| + |Dh|)(|Du| — |Dh|) by

1 1
2 2 1
I<c (/ |Dul? + \Dh|2> ’ (/ (|Du| — |Dh|)2) * < On?E.
ANK ANK



REGULARITY OF AREA MINIMIZING CURRENTS MOD p 41
Recall that A < ¢, E2 implies that ||[DV¥|| < C Ez. Hence we have
/ |Dh|* = / |Dh|? + | Dy (x, h) + Dy (x, h)Dh|?
ANK ANK
< (1 +CE)/ |Dh|> + CE|ANK|

ANK

Using the higher integrability for Dirichlet minimizers we can estimate further
2
[ e <iank ([ hp)”
ANK ANK
< AN K|1—§/ DA< ClANK|' 3B,
By
Collecting all the estimates we get in conclusion

er(A) < er(A\ K) + |er(An K) — ;/AmeDhF

1
+/ |Dh|?
2 Jank
1
< (n* +CE* 4 Cn2 +C;AmK11‘§> E.

Hence, the estimate in ([13.1]) follows also in this case after suitably choosing € and 7, depending
on 7. ([l

For the following proof, we introduce the centered maximal function for a general radon
measure g on R™ by setting

B
mep(z) := sup (B (x))
>0 Wms™

Observe that one has the straightforward comparison between the centered and non-centered
maximal functions

mep(e) < mp(z) < 27 mop(a).

Although the two quantities are therefore comparable, we decided to work for this proof with

the centered version since in our opinion the geometric idea becomes more easily accessible.

Furthermore we note that since the map x — % is lower semicontinuous, x — m.u(x) is

m
lower semicontinuous as it is the supremum of a family of lower semicontinuous functions.

Theorem 13.3. There exist constants 0 < g < 1, C,e > 0 with the following property. If T
is area minimzing mod(p) in the cylinder Cy4 and satisfies Assumption with E < € then

/B (min{mce, 1})?de < CeCA’ EIHa, (13.3)
2
In particular this implies the following estimate

/ (m.e)?de < CeCA plta
Bon{m.e<1}

Remark 13.4. Observe that the excess measure e can be decomposed as

e=d.2L" + esing
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where £ denotes the Lebesgue measure in R™, e,y L £ and d is the excess density as
in Definition Since d(z) < m.e(z) for every x € By, we have

/B2 (min{m.e, 1})?de > /32(min{d, 1})9de > /BZ(min{d, 1})9ddx,

so that formula ((13.3)) in particular implies the following higher integrability of the excess
density:

/ d'"dy < CeCA BV < OB (13.4)
{dSl}ﬂBg
Proof. Let us first observe that given any measure y on R™ we have that, for any fixed » > 0
and t > 0, if
m
1(Bs(2)) (3> ¢ Vs> dr
W 8™ 4
then for some constant C' depending on m we have
C t
Be@) 0 s manty) > 0 < S (Bu@ 0 {ysment) > £1). (139)
This can be seen as follows: we first note that for y € B,(z) we have
4r\" p(Bar(z)) :
#(By(y) _ {(;") R if 5+ [z — ] < 4r
T em Ha—y[\™ p(Bot|z—y|(®) .
Wiy 8™ (s 2=y ) wm(S:-lCE—nym if s+ |x —y| > 4r.

Hence, we deduce that if s > 3r then wBs(y) < t: in other words, if #BsW) - ¢ then we must

Wm 8™ wWm 8™

have Bs(y) C Bay(x). This implies that

Br(x) N {Z/: mcﬂ(y) > t} = Br(x) N {y: mcMLBM(x)(y) > t}a
so that (13.5) follows by a variation of the classical maximal function estimate applied to
plp,, (x)
Furthermore we recall that by classical differentiation theory of radon measures [] one has
as well
1 (Br(z) N {y: mep(y) < t}) < ¢Br(z) N {y: mep(y) <t} (13.6)
In what follows, for the sake of simplicity, we will work with the measure e = el B4, which
is defined on the whole R™.

Step 1: For every n > 0 there exist positive constants A, e, C' with the property that if
e(By(x)) _ 1

wWms™ T A

t
r = sup {s: } and X <e (13.7)

then
e (By(x)N{y: mee(y) > t}) (13.8)

< <2w;1n+ ca?(Ze (B {u: meely) > 2&}))m> e (B {u: meets) > 1 })

2The variation in use here can be deduced in a straightforward fashion from the classical estimate for the
whole space: apply the classical estimate (see e.g. [I8, Theorem 2.19 (2)]) to the measure fi := pl {m.p > £}
and note that since p < i + £ #™ we have {mcp >t} C {m.a > £}

3Note for each y € B,(z) N {m.u < t} one has liminf, o % < t, hence follows for instance from
[18, Lemma 2.13 (1)].
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Proof of Step 1: Let n > 0 be given, and let € > 0 be given by Corollary in correspon-
m

dence with this choice of 1. Also fix A > (%) . By the definition of r and the continuity of

measures along increasing and decreasing sequence of sets, we easily see that

e(B,(z)) _ e(Br(z)) = ¢ > e(L(i)) for all s > r. (13.9)

W™ Wi ™ A WS

Thus we can apply (13.5) with x = e, thus deducing that

C t C
B,(2) 0 {y: mee(y) > 1}] < e <B4r(:p) " {y: mee(y) > 2}) < Swm(ar)™
Since % < g, if we choose A > @ then we can apply Corollary , which, together with
(13.9), yields

e(B,(z)N{y: mee(y) > t}) <w, 4 ™ne(By(z))+CA*r™ 2 < w lne(B,(z))+CA%r™ 2,
(13.10)
Using (13.6) and (13.9), namely the identity fwn,r™ = e(B,(z)) we have

e (B 0 {ys mee) < 51 ) < 1B < Se(B ).

This implies that
A 2\

W™ = ?e(Br(ac)) < —e (BT(x) N {y: mee(y) > 2&}) :

Using this estimate in (13.10)) we deduce ([13.8)).

Step 2: For every n > 0 there exist positive constants A, e, C' such that if

t
42mE§X§€ and r <3

3=

then, setting 7 :=r +4 (%) , we have

e(B,N{y: mee(y) >t}) <cp <77+ CA? <2);E>W> e (Br N {y: me(y) > 22;\}) :

where cg denotes the Besicovitch constant in R™.

Proof of Step 2: For each x € B, N {y: m.e(y) >t} we let

' _e(Bs(x)) _t
rx'zsup{s'u},’,ns'rnz)\ .
We must have 0 < r, < 1, since mee(z) > ¢ > ¢/, and since for each = € B3 we have
W s™ A 4

We apply the Besicovitch covering theorem to the family

B:={B, (x): x € B.N{y: mee(y) > t}}
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and obtain sub-collections By, ..., B., of balls such that each subfamily is pairwise disjoint
and

cB
B, N{y: mee(y) >t} C U U B, (z).
J=1 Br, (z)€B;

Since for each of these balls we have wy, r;™ = %e(BrI (z)) < %Ewmélm, we deduce
B, (z) C Br. Hence the result follows from
cp
e(B,N{y: mee(y) >t}) < Z e (B, (z)N{y: mce(y) > t}),

)

1 B'rz (I) EBZ'

where we used that by Step 1 e(0B;, () = 0 for each of these balls, and then applying ((13.8)
of Step 1 to each.

Step 3: For every n > 0 there are constants C| A, € such that for every k > 2 with

(2M*E <e and r<

N | Ut

we have

e (BT N{y: mee(y) > (QA)kE}) < (CBn)k€CA2 e (Br—i-% N{y: mee(y) > 2)\E}) (13.12)
Proof of Step 3: This is obtained by iterating Step 2. More precisely, for each 2 <1 < k we
set

T =T )

t = 2N'E, L 1
L= (23 rl_1::7“1+4<’\t—lE)m:rl+(;l’\ml for2<I<k-—1.

)m

Using f(r,t) := e(B, N{y: mee(y) > t}) and ca := gg‘; we may write (13.11]) as

INEN "o 1\ 5=
flri,t) < epn <1 +ca (L‘l) ) f(rie1,ti-1) = epn <1 +ca (2)\> ) f(ri—1,tiea).
Now ([13.12)) is a consequence of the following estimates (A is sufficient large)
+ 4N zk:(QA)*L <7t 4xm i(z\)*i <r4x
T =T m m T m m r —
1 ’ 1=2 B =2 B 2

k 1\ 5=
[Icsn <1 +ca (> ) < (cpn)kelen
s 2\

In particular, the first estimates ensures that we may apply step 2 for each pair (¢;,r;).
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Conclusion: First we fix n > 0 sufficiently small, so that cgn < 1, and afterwards ¢ > 0
such that a := (2)\)7cpn < 1. Now we observe that with (2\)*E < e) < (2A)**1E we have

/ (min{m_.e, A\e})?de
Ban{(2)\)2E<mc e}

(mee)? de + / (@n+E)" de

ko
S /
k=2 J B2N{(2A\)* E<m,e<(2\)Ft1E} Bon{(2X\)Fo+1 E<m e}

ko+1 ko+1

< (AN1ET Y (20) % e(By N {mee > (2N)FE}) < (AN)1E%CA" B(w,a™) Y df
k=2 k=2

< CQCA2E1+q.

Combining this with
/ (mce)?de < (2))* E%e(By N {m.e < 2\E}) < CE'™?
Ban{m.e<(2)\)2E}

proves the result, modulo choosing a smaller value for e. ]

14. ALMGREN’S STRONG APPROXIMATION THEOREM

We can finally state and prove the main Lipschitz approximation result for area minimizing
currents mod(p), which contains improved estimates with respect to Proposition

Theorem 14.1 (Almgren’s strong approximation). There exist constants €,7y,C > 0 (depend-
ing on m,n,n,Q) with the following property. Let T be as in Assumption in the cylinder
Cy (), and assume it is area minimizing mod(p). Also assume that E = E(T, Cy,(z)) < €.
Then, there are u: By(x) = Ag(R") if Q < &, oru: B.(xz) — @(R") if Q =%, and a closed
set K C By(x) such that:

Gr(u) C X, (14.1)
Lip(u) < C(E 4+ A%?)Y  and  osc(u) < Ch(T,Cy (), m0) + Cr(E? +rA),  (14.2)
G, (K xR")=TL (K x R")mod(p), (14.3)
|Br(2) \ K| < |IT|((Br(2) \ K) x R") < C(E +r? A% (14.4)

< (E+r?A)™m vo<o<1.  (14.5)

I71/(Cor()) = Quim(omy™ =5 [ 1Duf

The key improvement with respect to the conclusions of Proposition[8.5]lies in the superlinear
power of the excess in (14.4) and (14.5). In turn, this gain is a consequence of the following
improved excess estimate, analogous to [8, Theorem 7.1].

Theorem 14.2 (Almgren’s strong excess estimate). There exist constants €y, v«,C > 0
(depending on m,n,n, Q) with the following property. Assume T satisfies Assumption and
is area minimizing mod(p) in Cy. If E := E(T,Cy) < &4, then

er(A) < C(E™ 4 |A|™)(E + A?)  for every Borel A C By . (14.6)

Let us assume for the moment the validity of Theorem [14.2] and let us then show how
Theorem [I4.1] follows.
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Proof of Theorem[I4.1l As usual, since the statement is scale-invariant, we may assume z = 0

and r = 1. Choose § < min {%, ﬁ}, where v* is given by Theorem (14.2] Let u be the

EP-Lipschitz approximation of T, so that (14.1]) and (14.3)) are an immediate consequence of

Proposition Also the estimates in (14.2)) follow in a straightforward fashion if we choose
v < 8 and we recall that |[DW¥|ly < C(E"> + A). Now we come to the proof of the volume
estimate (14.4). Set A := {meT > EQB} N Byjs. By (8.4), we have that |A| < CE'"28. In
order to improve the estimate, we use Almgren’s strong excess estimate: indeed, equation
(14.6|) implies that

er(A) < CE(1+ E-%7)(E + A?), (14.7)

so that when we plug (14.7) back into (8.4]) we have
1B\ K| < CE*Perp(A) < CE2/017)(1 4 E*7)(E 4+ A?) < CE"PUH)(E + A?)
and the inequality
[Bi\ K| < C(E+A*)'™
follows with min{~. — 28(1 + 7), 8} > 0 because of our choice of §. (14.4)) is then a simple
consequence of
IT((B1\ K) x R") <er(Bi\ K) +Q|B1\ K.

Finally, we take any 0 < ¢ < 1 and we estimate:

TG () ~ Qumo™ — 5 [ 1D

< er(Bo \ K) + 0, (Bo \ K) + e, (Bo) — 5 / Dul?

" C 2\14+~ . 2 2
< C(E + A% 4 O|B, \ K|+ CLip(u)? | |Dyl
Bs

< C(E+ AYH', O

We turn now to the proof of Theorem [I4.2] We will use in an essential way the minimality
mod(p) of T, and in order to do that we need to construct a suitable competitor. In this
process, a key role will be played by the following result, analogous to [8, Proposition 7.3]
Proposition 14.3. Let g € (0, ﬁ), and assume that T satisfies Assumptz'on and is area
minimizing mod(p) in Cy. Let u be its E°-Lipschitz approzimation. Then, there exist constants
g,7,C > 0 and a subset of radii B C [9/8,2] with measure |B| > 1/2 with the following property.
IfE(T,Cy) < €, then for every o € B there exists a Q-valued map g € Lip(B,, Ag(R"™)) if
Q < & or g e Lip(B,, @o(R")) if Q = § such that

9lop, = ulgp, . Lip(g) < C(E+1°A%P  spt(g(z)) C S Va € By, (14.8)
and

/ |Dg|2§/ |Dul? + C(E + A%, (14.9)
B, B,NK

Proof. The proof is obtained by a “regularization by convolution” procedure, analogous to
that of [8, Proposition 7.3], modulo using the embedding ¢ of [7, Theorem 5.1] in place of
£ O
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Proof of Theorem[1.3. Choose 8 := 4, and let B C [9/5,2] be the set of radii provided by
Proposition [14.3] By a standard Fubini type argument analogous to what has been used in
deriving and the isoperimetric inequality mod(p), we deduce that there exists s € B
and an integer rectifiable current R which is representative mod(p) such that

2m—1

OR = (T — Gy, ¢,s)mod(p) and M(R) < CE?m—2,

where u is the EA-Lipschitz approximation of T' and ¢(z) = |x|. Now, let g be the Lipschitz
map given in Proposition corresponding with the choice o = s. Since g|y5 = ulyp , it
also holds (G, — Gy, ¢, s) = 0mod(p). Furthermore, since (0G,4)L Cs = 0mod(p), and since
g takes values in X, the current G4 C; + R is a competitor for T in Cj, and thus, using [7,
Equation (4.1)], the minimality of T yields for some v > 0:

1
ITN(Cs) <[1Ggl-Cs + R[|(Cs) < QBs| + 2/ |Dgl? + CE™7
By

) , 2 2 (14.10)
< Q\leJr/ |Dul* + CEY(E + A®).
2 JB.nKk
On the other hand, again by [7, Equation (4.1)] we also have:
ITN(Cs) = [TI((Bs \ K) x R") + |G|/ (Bs N K) x R")
(14.11)

1
> | TI((Bs \ K) x R™) + Q| By N K| + = / \Dul? — CEMY |
2 B.NK

s

Combining (14.10)) and (14.11]) we conclude that er (B \ K) < CEY(E + A?). Now, we are
able to prove the estimate (14.6)). Let A C Boj be any Borel set. We get:
1
er(4) = er(ANK) +er(A\ K) < 5 / |Dul?> + CE'™ + ep(B, \ K)
ANK
1
/ |Du|?> + CE"(E + A?). (14.12)
2 Jank
On the other hand, observe that | Du|(x)? < Cm.e(z) < CE?’ on K, and therefore m.e(z) < 1
on K if E is suitably small. Let ¢ > 0 be the exponent given by Theorem [I3.3] we deduce

from (13.3]) that

IN

ANK

and thus the Holder inequality produces
2
/ Dul’ < (/ Du|2(”q)) TANK[TE < CBlAN K| (14.13)
ANK ANK

Plugging (14.13)) into (14.12)), we finally conclude ((14.6)), by possibly choosing a smaller
v > 0.
O

As a corollary of Theorem and of Theorem [12.3] we obtain the following result.

Theorem 14.4. Let v be the constant of Theorem (14.1. Then, for every 7 > 0 there is a

constant € > 0 with the following property. Assume T as in Assumption[8.1] is area minimizing
mod(p) in Cyr(z), E = E(T,Cy(z)) < & and rA < EE'. If u is the map in Theorem
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and we fiz good Cartesian coordinates, then there exists a Dir-minimizing h: B,.(z) — Ag(R™)

if Q < orh: By(z) —» dg(R") if Q = L such that h:= (h,¥(-, h)) satisfies

7“_2/ g(u,h)2+/ (yDu\—\Dh|)2+/ |ID(nou) —D(noh)|> <pEr™. (14.14)
Br(x) B (x) B, (z)

15. STRONG APPROXIMATION WITH THE NONORIENTED EXCESS

In this section we show that it is possible to draw the same conclusions of the previous
section replacing the cylindrical excess E(T, Cy,(x)) with the nonoriented E"°(T, Cy,(z))
defined in . This will be vital, because in the remaining part of the paper we will in fact
use mostly the nonoriented excess, which is structurally more suited to the arguments needed
in the construction of the center manifold. Recall that in the classical regularity theory for
integral currents the cylindrical excess already possesses the required structural features; see
[8, Remark 2.5].

Theorem 15.1. There exist constants ,7y,C > 0 (depending on m,n,n, Q) with the following
property. Let T be as in Assumptz'on in the cylinder Cy.(x), and assume it is area mini-
mizing mod(p). Also assume that E = E(T, Cy4p(z)) < 5 and that E™ := E"(T, Cy,(z)) < e.
Then

E(T,Ca.(2)) < CE™(T,Cyy(z)) + CA%%. (15.1)
and in particular all the conclusions of Theorem (and of Them"em provided r>A? <
£2E < & for a suitable £(77) > 0) hold in B,(x) with estimates where E™ replaces E.

Before coming to the proof we state a simple variant of Theorem [14.1], where the estimates
are inferred in a radius which is just slightly smaller than the starting one.

Proposition 15.2. There are a constant C' > 1 and a € > 0 with the following property.
Let v be as in Theorem|(14.1. Fix a cylinder Cyr(z) and a current T which satisfies all the
assumptions of Theorem with the stronger bound E := E(T,Cy(x)) < £. Choose w
such that (1 —wm)(1 +~) =1+ 3 and set p = r(1 — C(E + r?A%)*). Then there are a
map w: Byy(x) = AgR™) if Q < &, or u: Byy(x) — d(R"™) if Q = &, and a closed set
K C By,(x) such that:

Gr(u) C X,

Lip(v) < C(E 4+ r?A%)?  and osc(u) < Ch(T, Cay(x), ) + Cr(E” +rA),

G, L(K xR") =TL (K x R")mod(p),

|Bip() \ K| < | T|[((Bap(x) \ K) x R") < O(E + r*A%) /2,

I7(Cny(a)) =~ Quinldop)™ = 5 [ Duf

Biosp(z)

<(E4r?A)H/20m vy <o <.

(15.6)

Proof. For every point y € By, (1—(g4r242)«)(7) and a corresponding cylinder C¥ := Cy,(g4,2a2) (Y),
note that

eT(B4r(E+r2A2)“’(y)) 2 A 2\ — 1—
< (F AY)TTCE(T, Cy, < EpT
wom @y (B 1 r2azyme = (B A BT Cu(e)) <

Thus, by choosing ¢ suitably small compared to ¢ in Theorem [14.1] we fall under its
assumptions. In particular, we find a function u¥ defined on the ball BY := B, (gy,2a2)(y)

E(T,CY) =
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set K'Y for which the following conclusions hold:

Gr(vw’) C X, (15.7)
Lip(w¥) < C(E 4 A2%p2)d=m)r (15.8)
Guwl(KY xR") =TL(KY xR") mod(p), (15.9)
|BY\ KY| < ||T||(BY\ KY) x R") < C(E + r?A2)(=m«)(1+7)| gy| | (15.10)

We now consider the regular lattice (r(E + r2A2%)¥)/(y/m)Z™ and for each element y of the
lattice contained in By,.(1—(g4r2A2)~)(7) We consider the corresponding ball BY. Accordingly,
we get a collection B of balls satisfying the following properties:
(0o1) B covers By,(x);
(02) The cardinality of B is bounded by C(E + r2A?)~™ for a geometric constant C =
C(m);
(03) Each element of B intersects at most N elements of B for a geometric constant
N = N(m);
(04) Every pair z,w € By,(x) with |z — w| < ¢(m)r(E + r>A?)* is contained in a single
ball B, where c(m) is a positive geometric constant;
(05) For each pair z,w € By,(x) with £ := |2 — w| > ¢(m)r(E + r>A?)“ there is a chain of
balls B',..., BY € B such that
(c1) N<Clr Y(E+1r2A2)~% for C = C(m);
(c2) z € B! and w € BY;
(c3) |B' N B > &(m)r™(E + r2A%)™ for every i = 1,..., N — 1 for a geometric
constant ¢(m) > 0.
We now consider for each B* = BYi the corresponding sets K% := KY and functions u® := u¥.
We next define the sets

K'=K\ |J ®B\K).
j:BINBi£)D
We then set K := J; K' and observe that, by (02), (03) and (15.10)), we must have

|Bap(2) \ K| < | TI((Bay(w) \ K) x R") <3 TI((B'\ K') x R")

< Cp™(E + r?A2)1-m@)(147) — Cpm(B 4+ 2 A2)1H/2 (15.11)

Next, we find a globally defined function g on K by setting g, = v’ xi- This function
certainly enjoys the estimate Lip(g|:) < C(E +72A2)1=m9)7 < C(E 4+ 12A2)7/2 on each K'.
So, taken two points z,w € K with |z —w| < ¢(m)r(E + r?A?)“ we get, by (04), the estimate

G(9(2). g(w)) < CE+2A? Pzl (resp. Gulg(2).g(w)) < C(E +r?A%]z —w]) |

If £ := |z —w| > c(m)r(E + TA2A2)‘W, we use the chain of balls B of (05) and remark that,
thanks to the estimate on |B*\ K'|, we can guarantee the existence of intermediate points
y; € KN K towards the estimate

G(9(2). g(w) < CE+? A% Pz—w|  (resp. Gulgl2),g(w)) < O(E +r* A%z — w]) |
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This proves that g has the global Lipschitz bound C(E 4 r2A2?)"/2 on K. Furthermore,
since the graph G, is mod(p) equivalent to the current 7" in the cylinder K x R", we have
osc(g) < Ch(T,Cur(x),m), see Remark Now we can proceed as in Proposition or
Theorem More precisely, we write g = > ;[(h, ¥(-, h))], with h: K — Ag(R™) if Q < &
or h: K — @p(R") if Q = §. The map h satisfies Lip(h) < C(E + r2A%)7/2 and osc(h) <
Ch(T, Cyy (), m). Hence, taking advantage of [12, Theorem 1.7] if Q < & or [7, Corollary 5.3]
when @ = £, we can extend h to a map h: By,(z) — Ag(R") (resp. h: Byy(z) — “o(R™))
which again satisfies Lip(h) < C(E 4 r2A2)7/? and osc(h) < Ch(T, Cy, (), 7). Finally, we
set u := >_;[h, ¥(-, h)], thus achieving

Lip(u) < C[(E +12A%)2 + ||[DV||g],  osc(u) < Ch(T,Cy(x),m0) + Cr || DY .

The estimate in ((15.3) is then a consequence of the choice of coordinates discussed in Remark
I2.1

Finally, the estimate (15.6) is a consequence of the other ones, following the argument
already given for (14.5). Since (15.2]) and ([15.4]) are obvious by construction, this completes
the proof. O

Proof of Theorem[15.1]. First of all we observe that it is enough to prove (15.1)). Indeed, if &
is sufficiently small, from ([15.1)) we conclude that we can apply Theorem to any cylinder

Cy(r/a)(y) with y € B,.(x). Since B,(x) can be covered with a finite number C(m) of balls
B, /4(yz-) with centers y; € B,(x), the existence of a suitable Lipschitz approximation over
B, (z) follows easily. Theorem can then be concluded by arguing as done for Theorem
123l

In order to show ([15.1]) we start observing that, by scaling and translating, we can assume
x =0 and r = 1. We then argue in several steps.

Step 1. First of all we claim that, for every § > 0 there is ¢ sufficiently small such
that E(T, C3) < §. Otherwise, by contradiction, there would be a sequence {T}}72, of area
minimizing currents mod(p) satisfying the hypotheses in Assumption in C4 together
with E(T},C4) < % for which E"(T},Cs) — 0 and MP(T;L.C3) > (Q + §)w,3™. In
particular, because of the uniform bound on the excess, we can assume that T} converge, up
to subsequences, to a T' which is an area minimizing current mod(p) and satisfies Assumption
By convergence of the MP in the interior, we also know that

MP(TLC3) > (Q + §)wn3™. (15.12)

On the other hand, since we can assume by Proposition that v(Tp L Cyq) — v(T'L Cy)
as varifolds, and since the nonoriented excess is continuous in the varifold convergence, we
must have E"°(T,C4) = 0. Moreover, since T is a representative mod(p) we must have
IT1(Cs) < wm(Q + 3)4™ by the hypothesis that E(T},Cs) < 3 for every k. The first
condition implies that T is supported in a finite number of planes parallel to 3. By the
constancy Lemma [6.4] we can assume that 7" is a sum of integer multiples of m-dimensional
disks of radius 4 parallel to B4(0, 7). We thus have that the sum of the moduli of such
integers must be at most ). This contradicts .

Step 2. First of all, if £ := E(T,C3) < A?, then there is nothing to prove. Hence, without
loss of generality assume that

E > A2,
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Now apply Proposition to obtain a Lipschitz map v : B3_cps — Ag(R") if @ < § and
u: B3_cpe = do(R") if Q =L, and a closed set K C Bs_cpw(x) such that:

Lip(u) < CE"?, (15.13)

G, (K xR") = TL (K x R")mod(p), (15.14)

|Bs_cpe \ K| < CEYT/2 (15.15)

IT)(C3_cpe) — Qum (3 — CE¥)™ — 1/ |Dul?| < CE'Y~2. (15.16)
2 B3 _cpw

Now we set r; :==3 — CE*¥, E; := E(T,C,,) and we consider the following three alternatives:
(a) By < A%
(b) E1 > max{Z, 6 A?};
(c) £>E > A2

In the first case, assuming ¢ sufficiently small, since Cy C C,,, we have concluded our desired

estimate ((15.1). In the second case observe first that from the estimates above we easily
conclude

ITI(Cr, \ (K x B") < CEM 2 < cy 0.
Consider now that, using 7L K x R" = G, L K x R™ and standard computations, we have
n 1 'l
71K x B = QUK = 5 [ 1T () = ml2,dIT]
KxRn®

We thus can combine these two estimates and claim

v /2 E
By =E(T,C,,) < CE? L Er(T,C,,) < 71 + CE™(T,Cy). (15.17)

In particular we easily get
E(T,Cy) < CE(T,C,,) < CE"™(T,Cy),

and again we have proved ([15.1)).
Finally, if we are in case (c) we iterate the step above and get a Lipschitz approximation

in the cylinder C,, where ry =3 — CEY — CEY and the new excess is Fy := E(T,C,,). We
keep iterating this procedure which we stop at a certain radius

k
rn=3-C> EY,
1=0

if either £, < A? or Ej, > % Observe that as long as the procedure does not end we have
the recursive property E; < E"Q‘l. We can thus estimate

[o.¢]
ry>3—CE®Y 27" >3- CC(w)E”.
i=0
Since w is a fixed exponent, provided 6 > F is sufficiently small (which from the first step can
be achieved by choosing ¢ sufficiently small), we have r; > 2. Thus, if the procedure stops we
have proved (15.1)). If the procedure does not stop, since E; — 0 we conclude easily that:
(i) A=0;
(i) If we set roo := limy_yo0 7%, then 2 < ro, and E(7,C,_ ) = 0.
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This implies that [|T|(C,.) = Qwmrd. Given that py7T'LC, = Q[B,.(0,m)] mod(p),
this is only possible if the current 7" in C,_ consists of a finite number of disks parallel to
B, (0,m) counted with integer multiplicities #; so that ), |6;| = Q. In particular, since
2 < rs, obviously E(T, Cy) = 0 < E"(T, Cy4), which shows the validity of even in this
case. O
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Part 3. Center manifold and approximation on its normal bundle

This part of the paper deals with the construction of the center manifold. As it is the case
with the proof of the partial regularity result for area minimizing currents in codimension
higher than one, one might now attempt a proof of Theorems [3.3] and [7.2] carrying on the
following program:

(1) Apply Almgren’s strong approximation Theorem to construct a sequence of
Lipschitz maps uj, approximating Tp ., : here, rj is the contradiction sequence of radii
appearing in Proposition and the maps uy take values in Ag(mg) or in /(g )
depending on whether @ < & or Q = &, respectively;

(2) Apply Theorem to show that, after suitable normalization, a subsequence of the
ug, converges to a multiple valued map uo, minimizing the Dirichlet energy (as in [12]
if Q<8 orasin [7] if Q =15);

(3) Use (iii) (resp. (iii)s) in Proposition |7.7] to infer that us has a singular set of positive
H™ 2+ measure (resp. of positive H™ 1+ measure), thus contradicting the linear
theory in [12] if Q@ < £ or in [7] if Q@ = £, respectively.

The obstacle towards the success of this program is making point (3) work, namely, showing
that the “large” singular set of the currents persists in the limit as the approximating functions
ug converge to Uso. As it was just stated, this is false: at this stage, nothing forces us to
actually exhibit any singularities. The center manifold construction is needed precisely to
address this issue: when we approximate the current from the center manifold, we “subtract
the regular part” of the Dir-minimizer in the limit, which in turn allows us to close the
contradiction argument.

In the first section of this part we will outline the arguments and present the statements of
the main results. The subsequent sections will then be devoted to the proofs.

16. OUTLINE AND MAIN RESULTS

16.1. Preliminaries for the construction of the center manifold.

Notation 16.1 (Distance and nonoriented distance between m-planes). Throughout this
part, mo continues to denote the plane R™ x {0}, with the standard orientation given by
To=e1 A...NAen. Given a k-dimensional plane 7w in R™™", we will in fact always identify
7 with a simple unit k-vector ¥ = v A ... A v orienting it (thereby making a distinction
when the same plane is given opposite orientations). By a slight abuse of notation, given
two k-planes 71 and 7o, we will sometimes write | — 2| in place of |7 — 72|, where the
norm is induced by the standard inner product in Ay(R™*"). Furthermore, for a given integer
rectifiable current 7', we recall the definition of |T(y) — 7g|no from (12.1). More in general, if
71 and 7 are two k-planes, we can define |11 — m2|n, by

|7T1 — 7T2|no = min{\ﬁ"l — 7?2|, |7_I"1 —|—7?2|} .
It is understood that |m — ma|n, does not depend on the choice of the orientations 7 and 7.

Definition 16.2 (Excess and height). Given an integer rectifiable m-dimensional current
T which is a representative mod(p) in R™*" with finite mass and compact support and an
m-plane 7, we define the nonoriented excess of T in the ball B,.(x) with respect to the plane
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E™(T,B,(z),7) := (2w ™) " / T — w2, d||T| . (16.1)

B, (z)

The height function in a set A C R™*™ with respect to 7 is

h(T7 A: 7T) = sup ’p7rL (J’.) — PrL (y)’ :
zyEspt(T)NA

Definition 16.3 (Optimal planes). We say that an m-dimensional plane 7w optimizes the
nonoriented excess of T in a ball B, (z) if

E"(T,B,(x)) := mTin E"(T,B,(x),7) = E™(T,B,(z), ) (16.2)
and if, in addition:

among all other 7’ s.t. holds, | — 7| is minimal. (16.3)
Observe that in general the plane optimizing the nonoriented excess is not necessarily unique

and h(7,B,(z),7) might depend on the optimizer 7. Since for notational purposes it is
convenient to define a unique “height” function h(7', B, (z)), we call a plane 7 as in (16.2]) and

(116.3) optimal if in addition
h(T,B,(x)) := min {h(T, B, (), 7) : 7 satisfies (16.2) and (16.3)} = h(T,B,(z),7), (16.4)
i.e. m optimizes the height among all planes that optimize the nonoriented excess. However

(16.4) does not play any further role apart from simplifying the presentation.

Remark 16.4. Observe that there are two differences with [I0, Definition 1.2]: first of all
here we consider the nonoriented excess; secondly we have the additional requirement .
In fact the point of is to ensure that the planes 7 “optimizing the nonoriented excess”
always satisfy |7 — mo| = |7 — 70| no-

We are now ready to formulate the main assumptions of the statements in this section.

Assumption 16.5. ¢y €]0,1] is a fixed constant and ¥ C By /7 C R™" is a C3%0 (m + n)-
dimensional submanifold with no boundary in B; ;7. We moreover assume that, for each

q € %, ¥ is the graph of a C3° map ¥, : T,X N B m — T,%+. We denote by c(X) the
number sup ey, [ D%l 2.0 T is an m-dimensional integer rectifiable current of R™*" which
is a representative mod(p) and with support in ¥ N By v T U is area-minimizing mod(p) in ¥
and moreover

O(1°,0) =Q and IT°LBg 4, =0 mod(p), (16.5)
IT°[(Bg /i) < (wmQ(6v/m)™ +&3) p™ Vp <1, (16.6)

E™ (T07B6\/E> =E" (T *, Bsm» 7ro) : (16.7)
mg = max {C(E)Q,E"O (TO,Bﬁﬁ)} <er <. (16.8)

Here, @ is a positive integer with 2 < @ < |§], and €3 is a positive number whose choice will
be specified in each subsequent statement.

Constants depending only upon m, n,n and ) will be called geometric and usually denoted
by C(].
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Remark 16.6. Note that (16.8) implies A := [|As|[cox) < Coma/Q, where Ay, denotes, as
usual, the second fundamental form of > and Cj is a geometric constant. Observe further that

for ¢ € ¥ the oscillation of ¥, is controlled in T, N By 7 by C’Om(l)/ %

In what follows we set [ := n —n. To avoid discussing domains of definitions it is convenient
to extend ¥ so that it is an entire graph over all T;3. Moreover we will often need to
parametrize ¥ as the graph of a map ¥ : R™*? — R!. However we do not assume that
R™F x {0} is tangent to ¥ at any g and thus we need the following lemma.

Lemma 16.7. There are positive constants Co(m,n,n) and co(m,n,n) such that, provided
g9 < ¢, the following holds. If ¥ is as in Assumptz'on then we can (modify it outside
Bs,/m and) extend it to a complete submanifold of R™™ which, for every q € ¥, is the graph
of a global C3¥° map U, : T,% — T, 5 with | DY || 2.2 < Com(l)/Q. TO is still area-minimizing
mod(p) in the extended manifold and in addition we can apply a global affine isometry which
leaves R™ x {0} fized and maps ¥ onto ¥/ so that

IR™ % {0} — TpY| < Comy? (16.9)
and ¥ is the graph of a C*>%° map ¥ : R™+" — R with W(0) = 0 and | DY||p2.c0 < Comé/Q.

From now on we assume w.l.o.g. that ¥’ = 3. The next lemma is a standard consequence
of the theory of area-minimizing currents (we include the proofs of Lemma and Lemma
in Section [17| for the reader’s convenience).

Lemma 16.8. There are positive constants Co(m,n,n, Q) and co(m,n,n, Q) with the following
property. If T is as in Assumption gg < co and T = TOLB23\/E/4, then:

(Pro)sTL Ciy 20 70) = @ | Buiayimo(0,m0)|  mod(p) (16.11)
and (T, Cs (0,m0)) < Comy™" . (16.12)

In particular, for each x € Bnmﬂ(o,wo) there is a point q € spt(T') with px,(q) = x.

16.2. Construction of the center manifold. From now we will always work with the
current T of Lemma [16.8] We specify next some notation which will be recurrent in the paper
when dealing with cubes of my. For each j € N, 47 denotes the family of closed cubes L of g
of the form

[al,a1+2€] X ... X [am,am—i-%] X {0} C mo, (16.13)
where 2/¢ = 2177 =: 2/(L) is the side-length of the cube, a; € 2'7/Z Vi and we require in
addition —4 < a; < a; + 2¢ < 4. To avoid cumbersome notation, we will usually drop the
factor {0} in and treat each cube, its subsets and its points as subsets and elements of
R™. Thus, for the center xy, of L we will use the notation x7, = (a1 +¥¢,. .., an + £), although
the precise one is (a1 +¢,...,am +£,0,...,0). Next we set € := U, ey €7. If H and L are
two cubes in € with H C L, then we call L an ancestor of H and H a descendant of L. When
in addition ¢(L) = 2¢(H), H is a son of L and L the father of H.

Definition 16.9. A Whitney decomposition of [—4,4]™ C my consists of a closed set I' C
[—4,4]™ and a family # C € satisfying the following properties:

(wl) TUUrey L = [—4,4]™ and I does not intersect any element of #;
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(w2) the interiors of any pair of distinct cubes L1, Ly € # are disjoint;
(w3) if L1, Ly € # have nonempty intersection, then $¢(L1) < £(Lo) < 24(Ly).

Observe that (wl) - (w3) imply
sep(I,L) :==inf{lz —y|:x € L,y e T} > 2{(L) forevery Le¥. (16.14)

However, we do not require any inequality of the form sep (T, L) < C¢(L), although this would
be customary for what is commonly called a Whitney decomposition in the literature.

The algorithm for the construction of the center manifold involves several parameters which
depend in a complicated way upon several quantities and estimates. We introduce these
parameters and specify some relations among them in the following

Assumption 16.10. C., C}, B2, 62, My are positive real numbers and Ny is a natural number
for which we assume always

1
B2 = 499 = min {2, 17010} ,  where 71 is the exponent in the estimates of Theorem [14.1
m
(16.15)

My > Co(m,n,7,Q) >4 and mMy2" N <1. (16.16)

As we can see, 2 and do are fixed. The other parameters are not fixed but are subject
to further restrictions in the various statements, respecting the following “hierarchy”. As
already mentioned, “geometric constants” are assumed to depend only upon m,n,n and Q.
The dependence of other constants upon the various parameters p; will be highlighted using
the notation C' = C(p1,p2,...).

Assumption 16.11 (Hierarchy of the parameters). In all the coming statements:

(a) My is larger than a geometric constant (cf. (16.16]) or larger than a costant C(d2),
see Proposition |16.29;

(b) Ny is larger than C(f32, 02, Mp) (see for instance and Proposition [16.32));

(¢) Ce is larger than C(B2, 02, Mo, No) (see the statements of Proposition [16.13] Theorem
and Proposition ;

(d) C is larger than C(Ss, 02, My, Ny, Ce) (see Propositions [16.13| and [16.26]);

(e) 9 is smaller than ¢(f2, d2, Moy, No, Ce, C) (which will always be positive).

The functions C' and ¢ will vary in the various statements: the hierarchy above guarantees
however that there is a choice of the parameters for which all the restrictions required in the
statements of the next propositions are simultaneously satisfied. To simplify our exposition,
for smallness conditions on e as in (e) we will use the sentence “e5 is sufficiently small”.

Thanks to Lemma for every L € €, we may choose y; € w3 so that pr = (z1,y1) €
spt(T) (recall that x, is the center of L). yz, is in general not unique and we fix an arbitrary
choice. A more correct notation for p; would be x, + yr. This would however become rather
cumbersome later, when we deal with various decompositions of the ambient space in triples
of orthogonal planes. We thus abuse the notation slightly in using (z,y) instead of x + y and,

consistently, o x 7 instead of Ty ® 7.

Definition 16.12 (Refining procedure). For L € € we set rp, := Myy/m{(L) and By, :=
Bé4r, (pr,). We next define the families of cubes . C € and # = #. U ¥}, U #;, C € with the
convention that .77 = S NEI, #7 =W NE7 and W = HNEI for O = h,n,e. We define
Wi =.9" = for i < Ng. We proceed with j > Ny inductively: if no ancestor of L € 67 is in
W, then
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(EX) L € #J if E™(T,Bp) > Comg £(L)%2%;

(HT) L e # if L ¢ #J and h(T,By) > Cyymy " 0(L)'P2;

(NN) Lewjif L ¢ #J U but it intersects an element of #7~1;
if none of the above occurs, then L € .#7. We finally set

r=[-44"\JL=) U L (16.17)
Lew j=No LesI
Observe that, if j > Ny and L € .7 U #7, then necessarily its father belongs to .#7~1.

Proposition 16.13 (Whitney decomposition). Let Assumptions|16.5 and|16.10 hold and let
g9 be sufficiently small. Then (T, %) is a Whitney decomposition of [—4,4]™ C my. Moreover,

for any choice of My and Ny, there is C* := C*(My, No) such that, if Ce > C* and Cp, > C*C,,
then

Wi =0  forall j < Ny+6. (16.18)
Finally, the following estimates hold with C = C(B2, 02, My, No, Ce, Cp):

E™(T,B;) < Cemy ((J)> 22 and h(T,B,) < Cymy™"((J)P VJie.”, (16.19)
E™(T,Br) < Cmy((L)> % and h(T,By) < CmJ™ L)' VYLew . (16.20)

We will prove Proposition [16.13] in Section Next, we fix two important functions
P,0: R™ = R.

Assumption 16.14. ¢ € C>°(By) is radial, [ ¢ = 1 and [ |z|?o(z)dz = 0. For A > 0 g,

denotes, as usual, x — A""o(%). U € Cé’o([—%, %]m, [0,1]) is identically 1 on [—1,1]™.

o will be used as convolution kernel for smoothing maps z defined on m-dimensional planes
7 of R™*". In particular, having fixed an isometry A of R™ onto , the smoothing will be
given by [(z 0 A) x )] o A7L. Observe that since o is radial, our map does not depend on the
choice of the isometry and we will therefore use the shorthand notation z * gy.

Definition 16.15 (m-approximations). Let L € .U %# and 7w be an m-dimensional plane. If
T Csar, (pr, ) fulfills the assumptions of Theorem in the cylinder Csa,, (pr, ), then
the resulting map u given by the theorem, which is defined on Bs,, (pr,7) and takes values
either in Ag(rt) (if @ < B) or in #(nt) (if @ = B) is called a w-approzimation of T in
Csy, (pr, 7). The map h Bz, (pr,m) — 7t given by h = (m o u) * ggz) will be called the
smoothed average of the w-approximation.

Definition 16.16 (Reference plane 7). For each L € . U# we let 7, be an optimal plane
in By, (cf. Definition [16.3)) and choose an m-plane 7;, C T}, ¥ which minimizes |7, — 7 |.

The following lemma, which will be proved in Section deals with graphs of multivalued
functions f in several systems of coordinates.

Lemma 16.17. Let the assumptions of Proposition [16.13 hold and assume Ce > C* and
Cy > C*C. (where C* is the constant of Proposition . For any choice of the other
parameters, if €3 is sufficiently small, then T'_Csay, (pr,7L) satisfies the assumptions of
Theorem for any L € W U .. Moreover, if fr is a mp-approximation, denote by
hy, its smoothed average and by hy the map prLZ(IA’LL), which takes values in the plane

np =T, XN 7ri-, i.e. the orthogonal complement of mr, in T, . If we let hy, be the map
x € By, (pr,7r) v hi(x) == (hp(z), ¥y, (2, hi(2))) € 52 x T, 5+, then there is a smooth
map gr, : Bay, (pL, m0) — ng such that Gy, = Gy, LCyr, (L, m0).
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For the sake of simplicity, in the future we will sometimes regard gy, as a map gr,: Bar, (z1,70) —
Wd‘ rather than as a map gr: Bar, (pr,m0) — 7T0L. In particular, we will sometimes con-
sider gr(x) with « € Bay, (x1,m0) even though the correct writing is the more cumbersome

gr((z,yL))-

Definition 16.18 (Interpolating functions). The maps Az and g7, in Lemma [16.17| will be
called, respectively, the tilted L-interpolating function and the L-interpolating function. For
each j let 27 := .7 ULy #" and for L € 27 define 91(y) := 19(%). Set

i U
5y im bep VLOL g o (16.21)
ZLEWj 7
let #;(y) be the first 7 components of ¢;(y) and define ¢;(y) := (¢;(y), ¥(y, ¢;(vy))), where ¥
is the map of Lemma ¢; will be called the glued interpolation at the step j.

Theorem 16.19 (Existence of the center manifold). Assume that the hypotheses of the Lemma
hold and let k := min{eg/2, B2/4}. For any choice of the other parameters, if €9 is
sufficiently small, then

(i) IDgilloes < Cmy® and oo < Cmy™", with C = C(By, 82, Mo, No, Ce, Ci)-
(ii) if L € # and H is a cube concentric to L with ((H) = 3¢(L), then ¢; = ¢ on H
for any 5,k > i+ 2.
(iii) @; converges in C3 to a map ¢ and M = Gr(plj—gapm) is a C3* submanifold of X.

Definition 16.20 (Whitney regions). The manifold M in Theorem is called a center
manifold of T relative to mo, and (L', #') the Whitney decomposition associated to M. Setting
®(y) := (y,9(y)), we call ®(T") the contact set. Moreover, to each L € # we associate a
Whitney region £ on M as follows:

(WR) £:=®(HN[-1,I]™), where H is the cube concentric to L with ¢(H) = 1£¢(L).

We will present a proof of Theorem [I6.19] in Section [I9]

16.3. The M-normal approximation and related estimates. In what follows we assume
that the conclusions of Theorem apply and denote by M the corresponding center
manifold. For any Borel set V C M we will denote by |V| its H"-measure and will write [, f
for the integral of f with respect to H"™ L V. B,(q) denotes the geodesic open balls in M.

Assumption 16.21. We fix the following notation and assumptions.
(U) U:i={z eR™": 3y =p(z) e M with |z —y| <1 and (z —y) L M}.
(P) p: U — M is the map defined by (U).
(R) For any choice of the other parameters, we assume €5 to be so small that p extends to
C%%(U) and p~(y) = y + B1(0, (TyM)~) for every y € M.
(L) We denote by 9;U := p~1(dM) the lateral boundary of U.

The following is then a corollary of Theorem [16.19] and the construction algorithm; see
Section [20] for the proof.

Corollary 16.22. Under the hypotheses of Theorem and of Assumption |16.21 we have:

(i) sptP(A(TLU)) C U, spt(TL[—1, 1™ x R") C U, and py(TLU) = Q [M] mod(p);

(i) spt((T,p, ®(q))) C {y : |[®(q) —y| < Cmé/me(L)HBQ} for every q € L € W, where
C= 0(627621M01N0>Ceach)7.
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(ili) (T, p,q) = Q[q] for every q € ().

The next main goal is to couple the center manifold of Theorem [16.19 with a good
approximating map defined on it.

Definition 16.23 (M-normal approximation). An M-normal approximation of T' is given by
a pair (K, F') with the following properties. K C M is closed and contains ®(I' N [—%, %]m)
Moreover:

(a) If @ = &, F is a Lipschitz map which takes values in /g (R™*") and satisfies the
requirements of [7, Assumption 11.1].
(b) If @ < &, F is a Lipschitz map which takes values in Ag(R™*") and has the special
form F(z) =3, [z + Ni(z)].
In both cases we require that
(A1) spt(Tp) C X;
(A2) Tl p~'(K) = T p~!(K) mod(p),
where T is the integer rectifiable current induced by F’; see [7), Definition 11.2]. The map N
(for the case Q = £ see [7, Assumption 11.1]) is the normal part of F'.

In the definition above it is not required that the map F' approximates efficiently the current

outside the set ®(I' N [—%, %]m) However, all the maps constructed will approximate 1" with
a high degree of accuracy in each Whitney region: such estimates are detailed in the next

theorem, the proof of which will be tackled in Section [20]

Theorem 16.24 (Local estimates for the M-normal approximation). Let v2 := J, with y the
constant of Theorem[I].1. Under the hypotheses of Theorem [16.19 and Assumption [16.21]
if € is suitably small (depending upon all other parameters), then there is an M-normal
approzimation (IC,F') such that the following estimates hold on every Whitney region L
associated to a cube L € W, with constants C' = C(fa, d2, My, No, Ce, Ch):

Lip(N|z) < Cm20(L)? and |N|gllco < Cmy* 0(L)P2, (16.22)
L\ K|+ [ITr = Tlly(p~"(£)) < Cmyg20(L)™ 2472, (16.23)
/[; |IDN|? < Cmg £(L)™+2202 (16.24)

Moreover, for any a > 0 and any Borel V C L, we have (for C' = C(f32, 2, My, No, Ce, Ch))
/ ImoN| < Cmyg (z(L)m+3+"2/3 + aﬁ(L)%W/zyvy) + S/ Go(N,QnoN])*™, (16.25)
% 1%
where L = s in case p = 2Q), and it is empty otherwise.

From ((16.22) - (|16.24]) it is not difficult to infer analogous “global versions” of the estimates.

Corollary 16.25 (Global estimates). Let M’ be the domain ®([—%,2]™) and N the map of
Theorem |16.24. Then, (again with C' = C (B2, d2, Mo, No, Ce, Cy,))

Lip(N|a) < Cm  and  |N|allco < Cmy™, (16.26)
M\ K|+ | Tp = Tp(p~ (M) < Cmy™, (16.27)

/ IDN* < Cmy. (16.28)
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16.4. Separation and domains of influence of large excess cubes. We now analyze
more in detail the consequences of the various stopping conditions for the cubes in #". We
first deal with L € #,.

Proposition 16.26 (Separation). There is a constant C*(My) > 0 with the following property.
Assume the hypotheses of Theorem |16.24| and in addition C’,%m > CtC,. If ey is sufficiently
small, then the following conclusions hold for every L € #},:

(S1) O(T,q) < Q — 3 for every q € Big,, (pL);
(S2) LNH =0 for every H € #,, with ((H) < 3¢(L);

(83) Gn(N (), Q[noN(2)]) > LCumg*"UL)*% for every & € ®(Bymyry(xL,m0)),
where 1= s if p=2Q or = otherwise.

A simple corollary of the previous proposition is the following.

Corollary 16.27. Given any H € #;, there is a chain L = Ly, L1, ...,L; = H such that:

(a) Lo € #e and L; € Wy, for alli > 0;
(b) LiNnL; 1 # 0 and K(LZ) = %E(Lz_l) for all i > 0.

In particular, H C Bs /) (7L, m0).
We use this last corollary to partition #7,.

Definition 16.28 (Domains of influence). We first fix an ordering of the cubes in #; as
{J; }ien so that their sidelengths do not increase. Then H € #;, belongs to #;,(Jy) (the domain
of influence of Jy) if there is a chain as in Corollary with Lo = Jy. Inductively, #;,(J;)
is the set of cubes H € #;, \ U<, #,,(J;) for which there is a chain as in Corollary with
Lo = J,.

16.5. Splitting before tilting. The following proposition contains a “typical” splitting-
before-tilting phenomenon: the key assumption of the theorem (i.e. L € #;) is that the excess
does not decay at some given scale (“tilting”) and the main conclusion implies a certain
amount of separation between the sheets of the current (“splitting”); see Section [21| for the
proof.

Proposition 16.29. (Splitting I) There are functions C1(d2),Ca(My, 62) such that, if My >
C1(62), Ce > Ca(My, 62), if the hypotheses of Theorem hold and if o is chosen sufficiently
small, then the following holds. If L € W, q € my with dist(L,q) < 4y/m{(L) and Q =
@(Bg(L)/4(q, 7'('0)), then (with C, Cg = C(,Bg, 52, Mo, NQ, Ce, Ch))

Comgol(L)™ 2722 < ¢(L)™E"(T,B) < C / IDN?, (16.29)
/|DN|2 < CU(L)™E™(T,Br) < C3((L / INJ2. (16.30)

16.6. Persistence of multiplicity Q points. We next state two important properties
triggered by the existence of ¢ € spt(T") with O(T, q) = @, both related to the splitting before
tilting. Their proofs will be discussed in Section [22]

Proposition 16.30. (Splitting II) Let the hypotheses of Theorem hold and assume e
is sufficiently small. For any o, a,& > 0, there is e3 = e3(a, @, &, B2, 62, My, No, Ce, C) > 0
as follows.
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When Q < §, if for some s <1
sup{{(L): L € #,LN Bss(0,m) # 0} <s, (16.31)
HIH({O(T, ) = QN By) > as™ 2t (16.32)
and min {s,my} < e3, then,
sup {{(L) : L € #¢. and LN Bgg16(0,m0) # 0} < és.
When Q = §, the same conclusion can be reached if (16.32)) is replaced by
HI I ({O(T, ) = Q} N By) > as™ 1, (16.33)

Proposition 16.31. (Persistence of Q-points) Assume the hypotheses of Proposition
hold. For every na > 0 there are 5,0 > 0, depending upon ns, Ba, 82, My, No, C. and Ch,
such that, if o is sufficiently small, then the following property holds. If L € #,, {(L) < ¢,
O(T,q) = Q and dist(px,(P(q)), L) < 4y/m (L), then

][ Go(N,Q[noN])? < ELT’an/ IDN?, (16.34)
Ber() (p(a)) (L)% By (0l@))

where 0 = s if p = 2Q or = otherwise.

16.7. Comparison between center manifolds. We list here a final key consequence of the
splitting before tilting phenomenon. ¢o, denotes the map z +— .

Proposition 16.32 (Comparing center manifolds). There is a geometric constant Cy and a
function ¢s(B2, d2, My, Ny, Ce, Cr) > 0 with the following property. Assume the hypotheses of
Proposition|16.29, Ng > Cp, cs := ﬁ and g9 1s sufficiently small. If for some r €]0,1][:
(a) €(L) < csp for every p > r and every L € W with L N B,(0,m) # 0;
(b) E"(T, B¢, /m,) < €2 for every p > r; .
(c) there is L € W such that £(L) > csr and L N B.(0,79) # 0;
then
(i) the current T' := (10,,)y T Bg, s and the submanifold ¥ := 10,-(¥) N By s satisfy the
assumptions of Theorem for some plane w in place of my;
(ii) for the center manifold M" of T' relative to m and the M’-normal approzimation N’

as in Theorem we have

/M . IN']> > & max {E"(T", Bg /), c(X)?} . (16.35)
lm 9

17. HEIGHT BOUND AND FIRST TECHNICAL LEMMAS

We can now discuss the proofs of the main results outlined in the previous section. We
begin with a mod(p) version of the sheeting lemma appearing in [10, Theorem A.1].

Theorem 17.1. Let p, Q, m, n and n be positive integers, with Q) < g. Then there are
e(Q,m,p,n,n) >0, w(@,m,p,n,n) >0, and Cy(Q, m,n,n) with the following property. For
r >0 and C = C,(x¢) = C,(x0,m) assume:

(h1) ¥ and T are as in Assumption[3.1};

(h2) OT'LC =0 mod(p), (Pr 1T C = Q [B;(Pr,(x0), m0)] mod(p), and E := E(T,C) < e.
Then there are k € N\ {0}, points {y1,...,yx} C R"™ and integers Q1,...,Qy such that:
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(i) having set o := Co(E + AQ)ﬁ and p :=1r(1 — 2(E + A%)¥), the open sets
Si :=R™ x (y;+] — ro,rol")
are pairwise disjoint and

spt(T') N Cp(zg) C U S;;

(i) (Pro)t[TL(Cp(x0) N'S;i)] = Qi [Bp(Pro(20),m0)] mod(p) Vi € {1,...,k}, with Q; € Z.
When @Q < g all Q; must be positive, whereas for Q = g either they are all positive or
they are all negative; in any case, >_;|Qi| = Q;
(iii) for every q € spt(T") N C,(xg) we have O(T,q) < max; |Q;| + %
If we keep the same assumptions with E replaced by E™ := E" (T, C), the conclusions hold if
we set p:=r(1—n—2(E+ A?)¥), where n > 0 is any fized constant (in turn ¢ will depend
also on n).

Remark 17.2. The proof that we are going to present is substantially different from the one
in [I0, Theorem A.1], and it could be easily adapted to the case of area minimizing integral
currents as well. The statement above is sufficient for our purposes; nonetheless, the proof
is actually going to give us more. In particular, in dimension m > 3 the result holds with a
better estimate on the bandwidth of the various S;, namely with o = Cy (E + AQ)% in place

of o =Cy(E+ AQ)ﬁ. In dimension m = 2, the proof below also produces the height bound
with the optimal estimate featuring o = O(E"/?), but only in the cylinder C'r (20).

Proof. In the rest of the proof we denote by p the orthogonal projection onto mp = R™ x {0}.
The last part of the statement, where FE is replaced with E™ follows from Theorem [15.1
Moreover, we assume xg = 0 and r = 1 after appropriate translation and rescaling. We also
observe, as in the proof of [I0, Theorem A.1] that (iii) is a corollary of the interior monotonicity
formula (the only ingredients of the argument in there are the stationarity of the varifold
induced by T; := T'L(C, N'S;) and the inequality M(T;) < wp, p™(|Qi] + E)).

We therefore focus on (i) and (ii) and since the case @ < & is entirely analogous, for the sake
of simplicity we assume @ = 5. We first prove (i). We start by considering an approximation
as in Proposition . We thus find an exponent w > 0 (which depends only on @, m and
n), a Lipschitz map u : By_ (a2 — @Q(R") and a K C By_(g;a2)~ with the following
properties:

(i) Lip(u) < C(E+ A?)*;
(ii) GuL K x R" =TL K x R" mod(p);

(i) [TI((By_ (s a2 \ K) x RY) < C(E + A2)1+,

We consider first the case m > 2. Recall the Poincaré inequality and find a point Ty € #5(R"™)
such that

y

where 2% = 2™ Define next the set K* := {z € Bi_(pia2) : Gs(u(z), Ty) < C(E + AQ)%},
where C'is a constant which will be later chosen sufficiently large. Using (17.1]) and Chebyshev’s
inequality, we easily conclude

|By_(i a2y \ K*| "3 (B + A%)72 < C(E+ A%)ms. (17.2)

<C(E+A%2, (17.1)

1—(E+A2)W) -

1/2*
Gs(To, u(@))* dﬂf) < C[|Dullr2(5

1—(E+A2)w
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In particular, for any fixed 7, if C' is chosen large enough, we reach the estimate
By _(paze \ K*| < 0(E+A2). (17.3)
Consider now the set K := K N K* and observe that, by choosing e sufficiently small, we reach
ITI((By (s azpe \ K) x RY) < 25(E + A?). (17.4)

To fix ideas assume now that Ty = ( 3-]:1 k; [p;] ,1), where the p;’s are pairwise distinct and
all k; are positive. Let spt(Ty) = {p1,...ps}. From (ii) and the definition of K, it follows
easily that dist(spt(Tp), p~(spt((T,p,z)) < C(E + AQ)% for z € K. Define thus the sets
— 1 — 1

U= Ui{(z.y) : ly—pjl SCE+A?)w} and U= Uj{(2,y) : [y —p;| < (C+1)(E+A?)m},
then

ITI(Cy— (a2 \ U) < |TI((B1—(gyaze \ K) x R") < 27(E + A?). (17.5)
If ¢ € Ci_y(g4a2)~ \ U, then B(E+A2)% (q) C Ci_(g+a2)~ \ U (we are imposing here w < 1y

and by the monotonicity formula ||T||(B 01 (9) = co(E+ A?), where cq is a geometric

E+A
constant. This is however incompatible Ezvith as soon as 27 is chosen smaller than co,
thus showing that spt(7) N Cy_y (pya2y C U’. We can now subdivide U’ in a finite number of
disjoint stripes S; of width C (E + AQ)%7 where C is larger than C' by a factor which depends
only on @. This shows therefore the claim (i) of the theorem when m > 2.

The case m = 2 is slightly more subtle. Observe first that | Du|? < min{m.e, 1} and hence
we can use the same argument as in the proof of Theorem to achieve

/ |Du?1+9) < oplta (17.6)
K

The subtlety is in losing at most (E + A2) in the radius of the ball; as usual, the price to
pay is a slightly worse estimate, cf. (17.6) with (13.3)). Since |B)_(gya2) \ K| < Bt if we
choose ¢ small enough we easily reach the estimate

N

IN

|Dull2+20( CE

1—(E+A2)w)

In particular, if we set in this case K* := {r € Bi_(ga2) : Gs(u(z),Tp) < C(E + AQ)%}
then from Morrey’s embedding follows that K* = B;_ (g2, provided C is chosen large

enough. ([17.3) is thus trivially true and the rest of the argument remains unchanged.
We now come to claim (ii). By the constancy theorem, it is easy to see that

Ps(TLCy_spiazyw NSi) = Qi [Bi_s(pia2)] mod(p),
for some integer Q; € {—(Q —1),...,—1,0,1,...,Q}. However, recall that for z € K:
e the support S of the current Z;(x) := (T, p, x)L Ci_y(g4a2)~ N'S; consists of at most
() points;
e cither all points in .S have positive integer multiplicity, or they all have negative integer
multiplicity;
e M(Zi(z)) <Q.
We thus conclude that each @; is nonzero and that |Q;| = M(Z;(z)). Now, since M((T, p,z)) =
@, we must have Y |Q;| = Q. On the other hand

Z pﬁ(TL0172(E+A2)w ns;) = pﬁ(TLclfQ(EJrAQ)) =Q [[3172(E+A2)“’ﬂ mod(p) .
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Hence ), Q; = Q mod(p). Hence we conclude that either all );’s are positive or they are all
negative. ]

Before coming to the proofs of the Lemmas [16.7|and (16.17)), we wish to make the following
elementary remark, which will be used throughout the rest of the paper:

Proposition 17.3. There are dimensional constants e(m,n) >0 and C(m,n) > 0 with the
following property. Consider an oriented m-dimensional plane m C R™™™ and an oriented
(m + d)-dimensional plane II C R™" where d € {0,...,n}. Let 7’ C II be an oriented
m-dimensional plane for which |m — 7’| = min,cyy |7 — 7|, and assume|r — 7’| < e. Then

|7 = Pri(7)|no = |7 — pui(7)| < Clm — 7]
In particular:

(Eq) if a and 8 are m-dimensional oriented planes of R™™ for which |o — B| is smaller
than a positive geometric constant, then |a — B|no = |a — f|.

The proposition is a simple geometric observation, and its proof is left to the reader.

Proof of Lemma[16.7. The argument given in [I0, Section 4] of [10, Lemma 1.5] for the
existence of the global extension of ¥ and the minimality of 7 in the extended manifold
works in our case as well, with straightforward modifications.

We now come to the proof of (16.9), which again follows that given in [I0} Section 4] of [10,
Lemma 1.5], but needs some extra care. First of all, by Assumption and Remark
A< C’om(l]/2 < Cp. Then, by the monotonicity formula, ||7°||(B1) > c¢o > 0 and so there is
q € spt(TY) N By such that
E™(T°, By, 7o)

17](B1)

1T%(q) — o5, < Co < Comy .

Now, both fo(q) and —fo(q) orient a plane contained in 7,%. We can thus apply Proposition
17.3| provided my is sufficiently small. From it we conclude that pr,s(mo) is an m-dimensional

plane with |p7, s (o) — 0| < Coma/ ?. From this inequality we then conclude following literally
the final arguments of [10, Proof of Lemma 1.5]. O

Proof of Lemma[16.8. We follow the proof of [10, Lemma 1.6] given in [I0, Section 4]. First
of all we notice that, once and are established, follows from Theorem
since we clearly have that E"(T, Cyy sy /25 m0) < CE™(T° By Jim» o). Moreover, recall
that there is a set of full measure A C Bj, s such that (T, pry,x) is an integer rectifiable

current for every x € A. For any such x we have thus (T, pr,,z) = Z;] (@) ki(x) [p;] where
P1,---,PJ(x) is a finite collection of points and each k;(z) is an integer. In particular we must
have )7, k;(z) = Q mod(p) and since 1 < Q < L, at least one k;(x) must be nonzero, which
means in turn that spt((T), pry,)) # 0. Hence we conclude that spt(T) Npy) (z) # 0 for every
x € A, and by the density of A we conclude that spt(7) N p;ol (x) # 0 for every x € Bs /-
We next come to and (16.11). As in the proof of [I0, Lemma 1.6], we argue by
contradiction and assume that one among (|16.10) and fails for a sequence Tk? of
currents which satisfy Assumption with e = e5(k) | 0. The compactness property given
by Proposition ensures the existence of a subsequence, not relabeled, converging to a
current T2, in the .7 P norm for every compact K C By m: 1n fact Proposition ensures

also that T2, is area minimizing mod(p) in a suitable (m + 72)-dimensional plane (the limit of
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the Riemannian manifolds ¥;) and that the varifolds induced by T,g converge to the varifold
induced by T2. In particular, 972, = 0 mod(p) in Bg sm and the tangent plane to T 9 s
parallel to 7o || T, ||-almost everywhere.

Observe that by upper semicontinuity of the density, implies that 0 is a point of
density @ for T2. On the other hand implies that ||T£OH(BG\/H) < Qwin (64/m)™.
Hence, by the monotonicity formula, T2, must be a cone. Observe that if ¢ € spt(T) is a
point where the approximate tangent space 7, exists, since T is a cone, we must have that
q € mg. Thus q € mp for |T%|]-a.e. g, which in turn implies that spt(7%) C m. In conclusion
TY = Q[By Jml mod(p), and moreover the varifold convergence holds in the whole R™*™.

Again by the monotonicity formula, Spt(T]g) is converging locally in the sense of Hausdorff
to spt(T2). In particular if we set T} := T,SLB23m/4, for k large T}, will have no boundary
mod(p) in Cyy, /- Hence it must be which fails for an infinite number of k’s. On the
other hand we certainly have (Pr)sTkL Ci1 /2 = Qk[B11,/m/2] mod(p). Notice that by the
varifold convergence we have HT,SH(CH\/E/Q \ B3 /m/4) = 0 as k — oo. In particular the limit
of the currents (Pr,)s Tk Cy1 /2 is the same as the limit of the currents (pm)ﬁT,?LCH\/rnﬂ
and thus it must be Q; = @ mod(p) for k large enough. O

18. TILTING OF PLANES AND PROOF OF PROPOSITION [16.13]

Following [10], the first important technical step in the proof of the existence of the center
manifold is to gain a control on the tilting of the optimal planes as the cubes get refined. The
following proposition corresponds to |10, Proposition 4.1].

Proposition 18.1 (Tilting of optimal planes). Assume that the hypotheses of Assumptions
[16.5 and|16.10 hold, that C. > C* and Cy, > C*C., where C*(My, No) is the constant of the
previous section. If eo is sufficiently small, then

(i) Bu CBL CBy s forall H/L € W U with H C L.

Moreover, if H/L € # U.% and either H C L or HN L # 0 and @ < ((H) < {(L), then
the following holds, for C = C(Ba, 02, My, Ny, Ce) and C = C(B2,d2, My, Ny, Ce, Ch):
(ii) |7 — mr| < Cmy0(H) %2 ;
(iii) |mg — 7p| < Cmy0(L)1=%;
(iv) |mg — mo| < Cmy*;
)
)

(v) (T, Cs6rp, (pr, o)) < Cmy*"€(H) and spt(T) N Csgryy (prr,70) € By

(vi) For m = mp,7g, W(T, Cssr, (pr,m)) < Cma/Qmﬁ(L)Hﬁ? and spt(T) N Cser, (pr,7) C
B;.

In particular, the conclusions of Proposition hold.

Proof. First of all we observe that, if we replace (ii), (iii) and (iv) with
(i)no |g — Trlno < Cmg20(H)1 =02,

(iii)no |mg — mplne < Cmy*0(L)1=%2, and

(iv)no |7y — molne < C_’m(l)/Q,

then the arguments given in the [I0, Proof of Proposition 4.1] can be followed literally with

minor adjustments. Indeed those arguments depend only on:

e the monotonicity formula;
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e the triangle inequality |a —v| < |a — 8] + |8 — 7];
e the elementary geometric observation that, for every subset F and every pair of
m-planes « and (8, we have the inequality

h(T,E,a) < h(T,E, ) + Cdiam (E)|a — |,

where C' is a geometric constant.

However, it can be easily verified that all such properties remain true if we replace | - | with
|+ Ino-

We next come to (ii), (iii) and (iv). First observe that both 7y and the (oriented) m-plane
with the same support and opposite orientation belong to 7}, 3. For this reason, the definition
of g implies that |7y — g |no = |7y — 7g|, thus allowing us to infer (ii) from (ii)no.

Next, recall that we have |y —mo| = |7 —70|no, cf. Remark Hence (iv)no implies (iv).
Now, combining (iv) for two planes H and L as in statement (iii) of the proposition, we conclude
that |7y — wp| < |mg — mo| + |7 — mo| < C’m(l)/z. Hence, again assuming that &5 is sufficiently
small, we can apply Proposition in particular conclusion (Eq): |7y — 7p| = [7g — 7L |no-
Thus (iii) is a consequence of (iii)no. O

Arguing as in [10, Section 4.3] we get the following existence theorem with very minor
modifications (the only adjustment that needs to be taken into consideration is that the
identities [10} (4.9)], L0 (4.10)] and the subsequent analogous ones must be replaced with the
same equalities mod(p)):

Proposition 18.2 (Existence of interpolating functions). Assume the conclusions of the
Proposition [18.1] apply. The following facts are true provided e is sufficiently small. Let

H,L e # U.% be such that either H C L or HNL # () and Z(Q—L) <{U(H)<{U(L). Then,

(i) form =7g, g, (Px)sTL Caor, (Pr, ) = Q [B3ar, (pr,m))] mod(p) and T satisfies the
assumptions of(15.1) in the cylinder Csar, (pr,T);

(ii) Let fur be the my-approzimation of T in Csy, (pr,7n) and hur == (Mo fur) * 0ur)
be its smoothed average. Set sy = g N'T,, Y and consider the maps

x i_z(a;) = prHz(h) - € xy
T = hHL(x) = (h($)>\PPH($’h(33))) € xpg X (TPH(E))J_-

Then there is a smooth g1, : By, (pr,m0) = 75 8-t. Ggyp = Ghyp L Cary (DL, m0)-

Definition 18.3. hy and gy will be called, respectively, tilted (H, L)-interpolating function
and (H, L)-interpolating function.

Observe that the tilted (L, L)-interpolating function and the (L, L)-interpolating function
correspond to the tilted L-interpolating function and to the L-interpolating function of
Definition [16.18] Obviously, Lemma [16.17]is just a particular case of Proposition [I8:2] As in
Definition we will set hy, := hrr and g1, := g1

19. THE KEY CONSTRUCTION ESTIMATES

Having at disposal the Existence Proposition |18.2| we can now come to the main estimates
on the building blocks of the center manifold, which in fact correspond precisely to [10),
Proposition 4.4] and are thus restated here only for the reader’s convenience.
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Proposition 19.1 (Construction estimates). Assume the conclusions of Propositions m
(md apply and set k = min{Ba/4,e0/2}. Then, the following holds for any pair of cubes
H,L e 27 (cf. Definition|16.18), where C = C(B2, 02, Moy, Ny, Ce, Cp):

1am

(1) lgullcosy < Cmy™ and || Dgullc2x(p) < Cmg, for B = By, (z,m);
(ii) if HNL # 0, then ||gu —9cllci(s,, @rm0) < Cm(l)/2£(H)3+”_i for every i € {0,...,3};
(i) |Dgri(wn) — Dgp(a1)| < Omyl*|ey — o]

(iv) llgr — yallco < Cmy* ™ 0(H) and |7 — Tig gy (1) Gan| < Cmg €(H)'"%2 VY € H;

(v) if L' is the cube concentric to L € #J with (L") = 3¢(L), then

lei — gLl < Cmo LY/ forall > G

The proof of Theorem assuming the validity of Proposition is given in [10} Section
4.4, Proof of Theorem 1.17]. As for the proof of Proposition we discuss briefly why the
arguments given in [I0, Section 5] apply in our case as well. First of all, the key tool in the
proof, namely [10, Proposition 5.2], is valid under our assumptions for the following reason.
The proof given in [10, Section 5.1] is based on the following facts:

e The first variation of T vanishes, and this allows to estimate the first variation of
G = Gy,, asin [10, Eq. (5.4)];

e The estimates claimed in [10, Egs. (5.5)—(5.9)] are valid because of Theorem and
the Taylor expansion of [7, Corollary 13.2].

e Using the decomposition 6G; = 6(G+LB") 4+ (G- LB™) + QI(GyosL By) we can
show the validity of [10, Eq. (5.11)].

The three ingredients above are then used to show the first estimate of [10, Proposition 5.2],
namely [10, Eq. (5.1)]. The derivation of the remaining part of [10, Proposition 5.2] is then a
pure PDE argument based only on [10, Eq. (5.1)].

In [10, Section 5.2] the [10, Proposition 4.4] is used to derive |10, Lemma 5.3|, which in
fact includes the conclusions (i) and (ii) of Proposition This derivation does not depend
anymore on the underlying current and thus the proof given in [I0, Section 5.2] works literally
in our case as well. The remaining part of Proposition is derived from [10, Lemma 5.5].
The latter is based solely on the estimates on the Lipschitz approximation (which are provided
by Theorem and on [I0, Lemma 5.5], whose role is taken, in our setting, by [7, Lemma
16.1].

20. EXISTENCE AND ESTIMATES ON THE M-NORMAL APPROXIMATION

Corollary can be proved following the argument of [I0, Section 6.1]. The only
adjustement needed is in the argument for claim (iii). Following the one of [I0 Section 6.1]
we conclude that at every ¢ € ®(T'), if we denote by 7 the oriented tangent plane to M at ¢,
then the current @ [7] is the unique tangent mod(p) of T at ¢, in the sense of Corollary
We then can use Proposition to conclude that ©(T, q) = Q.

For Theorem we can repeat the arguments of [I0 Section 6.2] in order to prove the
existence of the M-normal approximation and the validity of (16.22) and (16.23)). As for
we can repeat the arguments of [10, Section 6.3], whereas in order to get (16.24)) we
make the following adjustments to the first part of [L0, Section 6.3]. The paragraphs leading to
[10, Eq. (6.11)] are obviously valid in our setting. However [10, Eq. (6.11)] must be replaced
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with the following analogous estimate

/ T p ()~ M (p(2)) Rodl| T ()
p~ (L)
)

<
p (L

< / y )If(fr)—ﬁL\iodHTH(w)+Cmo€(L)m+2_252 (20.1)
p (L

() — M(p())2,dIT ] (x) + Cmy 2oLy 2+

From this one we proceed as in the rest of [10, Section 6.3] using the Taylor expansion of [7,
Proposition 13.3] in place of [9, Proposition 3.4].

21. SEPARATION AND SPLITTING BEFORE TILTING

The arguments for Proposition and Corollary can be taken from [I0, Section
7.1], modulo using Theorem in place of [10, Theorem A.1].

We next come to the proof of Proposition A first important ingredient is the Unique
continuation property of [I0, Lemma 7.1], which we will now prove it is valid for .@/g(R")
minimizers as well.

Lemma 21.1 (Unique continuation for Dir-minimizers). For every n € (0,1) and ¢ > 0,
there exists v > 0 with the following property. If w: R™ O By, — #g(R™) is Dir-minimizing,
Dir (w, B,) > ¢ and Dir (w, By,) = 1, then

Dir (w, Bs(q)) >~ for every Bs(q) C Bay with s > nr.

Proof. We follow partially the argument of [10, Section 7.2] for [I0, Lemma 7.1]. In particular,
the second part of the argument, which reduces the statement to the following claim, can be
applied with no alterations:
(UQ) if  is a connected open set and w € WH2(Q, @75 (R™)) is Dir-minimizing in any every
bounded ' CC €, then either w is constant or [, |Dw|? > 0 for every nontrivial open
J C Q.

However, the proof given in [10, Section 7.1] of (UC) when w € W2(Q, Ag(R")) cannot be
repeated in our case, since it uses heavily the fact that the singular sets of Ag(R")-valued
Dir-minimizers cannot disconnect the domain, a property which is not enjoyed by 2o (R")-
valued Dir-minimizers. We thus have to modify the proof somewhat, although the tools used
are essentially the same.
Assume by contradiction that there are a connected open set 2 C R™, a map w €
I/Vlif(Q, 2/g(R™)) and a nontrivial open subset J C €2 such that
(a) w is Dir-minimizing on every open Q' CC €;
(b) w is not constant, and thus [, |[Dw|* > 0 for some Q' CC Q;
(¢) [;|Dw|*=0.
Observe first that, from the classical unique continuation of harmonic functions, either 1o w is
constant, or it has positive Dirichlet energy on any nontrivial open subset of §2. Since however
the Dirichlet energy of m o w is controlled from above by that of w, (c) excludes the second
posssibility. Thus 1 o w is constant and hence, without loss of generality, we can assume
now=0.
Next assume, without loss of generality, that J is connected. Clearly, w is constantly equal
to some P € @/p(R™) on J. Since, without loss of generality, we could “flip the signs of the
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Dirac masses” which constitute the values of u, we can always assume that P = (>, [F], 1).
We then distinguish two cases.

First Case. The diameter of spt(P) is positive, namely |P; — P;| > 0 for some i # j. In
this case consider the interior U of the set {w = P}. We want to argue that U = 2, which
contradicts (b). Since Q is open and connected, it suffices to show that QU N = (). In order to
show this, consider a point x € OU. If x € €, using the continuity of the map w, we know that
in a sufficiently small ball B,(x) there is an Ag(R")-valued map z such that w(y) = (2(y),1)
for all y € B,(x). As such, z must be a Dir-minimizer to which we can apply [10, Section 7.2]:
since [}, |Dz[* = 0 for some nontrivial open J' C B,(x), we must have that z is constant on
B,(x). But then we would have B,(x) C U, thus contradicting the assumption that x € 9U.

Second Case. The remaining possibility is that P = Q [now(z)] = Q [0] (which equals
both (Q[0],1) and (Q [0],—1), since the latter points are identified in ./y(R™)). Define
therefore

K :={w=Q[0]},
and (since K D J) observe that |K| > 0. Consider now the set K of points 2 € R™ such that
KnNnB
0 < lim ’77;’;(:6)’ <1  for some ry | 01, (21.1)

and notice that K C K since w is continuous. The set K is necessarily nonempty. If it were
empty, we could first apply the classical characterization of Federer of sets of finite perimeter,
cf. [I5, Theorem 4.5.11], to infer that K is a set of finite perimeter, and subsequently we could
then apply the classical structure theorem of De Giorgi to conclude that, since the reduced
boundary of K would be empty, D1x = 0. The latter would imply that 1k is constant on
the connected set 2, namely that 0\ K has zero Lebesgue measure, which in turn would
contradict (b).

Fix a point € K. Clearly it must be pr(x) |Dwl|? > 0 for every p > 0, otherwise w would
be constant in a neighborhood of z and thus x would be an interior point of K. Denoting
I, () the frequency function of w at x as in [7, Definition 9.1], from [7, Theorem 9.2] we
must then have

00 > Ip:=lim I ,(r) > 0.
rl0

Define then the maps y — w,(y), whose positive and negative parts are given by
wr(y) =Y [ wf(ry +2)]
i

and observe that a subsequence of {w,, }ren, not relabeled, is converging to a nontrivial
wp € VVl?(Rm, 2o(R™)) which minimizes the Dirichlet energy on every ' CC R™ and is

Io—homoggneous.

Next define the sets K, := 7}, ' (K — ), where the maps w,, vanish identically, and observe
that, by , lim infy | K, N Bi| > 0. Since the sets K,, N B} are compact we can, without
loss of generality, assume that they convergence in the sense of Hausdorff to some set Ky. The
limiting map wp vanishes on such set because the w;, are converging locally uniformly to wy.
On the other hand it is elementary to see that the Lebesgue measure is upper semicontinuous

under Hausdorff convergence and we thus conclude |Kp| > 0.
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We can now repeat the procedure above on some point y # 0 where the Lebesgue density of
K does not exist or it is neither zero nor one. We find thus a corresponding tangent function
wy that has all the properties of wg, namely

e it is nontrivial,

e it vanishes identically on a set of positive measure,

e it is I;-homogeneous for some positive constant I,

e and it minimizes the Dirichlet energy on any bounded open set.

In addition w; is invariant under translations along the direction ﬁ Assuming, after rotations,
that such vector is e,, = (0,0,...,0,1), the function w; depends therefore only on the variables
Z1,...,ZTm—1 and can thus be treated as a function defined over R™ !, Iterating m — 2 more
times such procedure we achieve finally a function wy,—1 : R = @/p(R") with the following
properties:

(A) wy,—1 is identically @ [0] on some set of positive measure;

(B) f1_1 | Dwp—1[? > 0;

(C) wpy—1 is Dir-minimizing on |a, b] for every 0 < a < b < o0;

(D) wp—1 is a-homogeneous for some positive a > 0;

(E) nowy,—1 =0.
Because of (A) and (D), wy,—1 must be identically equal to @ [0] on at least one of two

half-lines | — 00, 0] and [0, co[. Without loss of generality we can assume this happens on the
] —00,0[. Let now wy,—1(1) = (3, [ei] ,€), where e € {—1,1}. By (D) we then have

Wm—1(z) = <Z[[cia:a]],5> Ve >0.

Observe that, because of (B), at least one of the ¢;’s is nonzero. Therefore € cannot be equal
to 1, otherwise wy,—1 would give an Ag(R")-valued Dir-minimizer on the real line with a
singularity, which is not possible. However, since (Q [0],1) = (Q[0],—1), if € equals —1 we
reach precisely the same contradiction. This completes the proof. O

We keep following the strategy of [10, Section 7.2] towards a proof of Proposition [16.29
First of all, we introduce some useful notation.

Definition 21.2. Let w: E — @o(R"), let ET, E~ and Ej be the canonical decomposition
of F induced by w and let w*,w™ and 7 o w the corresponding maps, as in [7, Definition 2.7].
For any f: E — R™ we denote by w @ f (resp. w © f) the #/5(R"™)-valued map which

e on ET coincides with (w™ @ f,1) (resp. (w™ & f,1)),
e on E~ coincides with (w™ @ f, —1) (resp. (w™ © f, —1)),
e and on Ej coincides with Q [n o w + f] (resp. Q[now — f].

Moreover we use the shorthand notation w for w & n o w.

We next show that if the energy of an .o/y(R")-valued Dir-minimizer w does not decay
appropriately, then the map must “split”, in other words w cannot be too small compared to
now. Asin [I0, Section 7.2], we fix A > 0 such that

(14 2)m+2) < 2% (21.2)

and we claim the following analog of [10, Proposition 7.2].
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Proposition 21.3 (Decay estimate for Dir-minimizers). For every n > 0, there is v > 0 with
the following property. Let w : R™ O B, — @g(R™) be Dir-minimizing in every ' CC By,
such that

/B Gs(Dw,Q [D(now)(0)] )2 > 22-m=2Djr (w, By,) . (21.3)
(142)r

Then, if we let w be as in Definition[21.4, the following holds:

1
v Dir (w, B142),) < Dir (w0, Bii4ayr) < poves |w|*> V¥ Bs(q) C B, with s >nr. (21.4)
Bs(q)

The proof of [10, Proposition 7.2] can be literally followed for our case using the Unique
continuation Lemma in combination with the next simple algebraic computation (which
is the counterpart of [10, Lemma 7.3]).

Lemma 21.4. Let B C R™ be a ball centered at 0, w € WH2(B, /o (R™)) Dir-minimizing
and w as in Definition We then have

@ [ 1Dmow) - Dow)OF = [ 6.(Dw, QDM e O] - Dir(w.B).  (215)
B B

The detail of the necessary modifications to the argument in [I0, Proof of Proposition 7.2]
towards proving Proposition 21.3] are left to the reader; we will instead show how to prove the
lemma above.

Proof. Let u := 1 ow and observe that it is harmonic. Thus, using the mean value property
of harmonic functions and a straightforward computation we get

2= ul? — u(0)]?. .
Q/B|Du—Du<o>| —Q/BID 2~ Q|B||Du(0)| (21.6)

On the other hand, using again the mean value property of harmonic functions, it is easy to
see that

/ G,(Dw, Q [Du(0) z | 90w . Q[Du)]? +@ [ Du- Du(o)P

Bg
and

G(Dw, Q [Du(0)])2 = /BE(|Dw€|2 —2QDu : Du(0) + Q| Du(0)[2).

Be

In particular, we get

/ Gs(Dw, Q [Du(0) / |Dw|? + Q|B||Du(0)|* — 2Q Du(0) : / Du
B
and again by the mean value property we conclude

/ Go(Dw, Q [Du(0) / Dwl? — Q| B||Du(0) 2. (21.7)



72 CAMILLO DE LELLIS, JONAS HIRSCH, ANDREA MARCHESE, AND SALVATORE STUVARD

Combining and we thus get
/ Go(Dw,Q [D(n o w)(O)])* - Q / (1 0 w) — D o w)(0)]?

= [ 6.0w.QIDuO)? - Q [ 1Du-Du)F = [ 1Duf~Q [ 1Duf
= [ 1pwk =@ [ ID@mew)?, (21.8)

Next, a simple algebraic computations shows

fiour = 32 [ 1wt ra [ 1pmew
- (/. \Dw€|2+Q|D(now)l2>+Q Do w)?

Bo
:/ |Dw|? +Q/ |D(n o w)| (21.9)
Clearly, (21.8) and ( give | and conclude the proof. O

Proof of Proposition [16.29, Havmg at hand the analogs of the tools used in [I0, Section 7.3],
we can following the argument given there for [10, Proposition 3.4]. In the first step of the
proof (namely [10, Step 1, p. 548]) we use [7, Corollary 13.2] in place of [9, Corollary 3.3],
we use Theorem in place of [8, Theorem 2.4] and we replace E with E™ in the various
formulas. We also replace G with G in case p = 2Q). We then follow [10, Step 2, p. 550],
where we use Lemma and Proposition in place of [10, Lemma 7.1 & Proposition
7.2] in case p = 2Q). In the final [I0, Step 3, p. 551] we use the reparametrization Theorem
[7, Theorem 15.1] in place of the corresponding [9, Theorem 5.1] and measure the distance
between m-planes using | - |, in place of | - |. O

22. PERSISTENCE OF MULTIPLICITY () POINTS

The proofs of Proposition [16.30] and Proposition [16.31] can be easily adapted to our case
from [I10, Proofs of Proposition 3.5 & Proposition 3.6] once we prove the following analog of
[8, Theorem 2.7]:

Theorem 22.1 (Persistence of Q-points). For every §,C* > 0, there is 5 €]0, 3| such that, for
every s < s, there exists é(s, C*, 3) > 0 with the following property. If T is as in Theorem
E™ .= E"(T,Cy, (7)) < &, r2A%2 < C*E™ and O(T, (p,q)) = Q at some (p,q) € CT/Q(@"),
then the approzimation f of Theorem[14.1] satisfies

/ G Qe J1)? S dr e, (22.1)

where = s if p=2Q or = otherwise.

In order to show Theorem we can follow literally [8 Section 9]. Indeed the proof in [8,
Section 9] relies on the Holder estimates for Dir minimizers (which are valid in the 275 (R™)
case by [7, Theorem 8.1]), the estimates on the Lipschitz approximation (given by Theorem
15.1 and the classical monotonicity formula in the slightly improved version of [§, Lemma A.1].
Although the latter is stated for stationary integral currents in a Riemannian manifold, it is
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easy to see that the proof is in fact valid for stationary varifolds and as such can be applied
to mod(p) area-minimizing currents. We formulate the precise theorem here for the reader’s
convenience.

Lemma 22.2. There is a constant C depending only on m, n and n with the following
property. If ¥ C R™" jis a C? (m + n)-dimensional submanifold with ||As||s < A, U is an
open set in R™T™ and V' an m-dimensional integral varifold supported in X2 which is stationary
in SNU, then for every & € SNU the function p — exp(CA2p?)p~™||V||(B,(£)) is monotone
on the interval |0, p[, where p := min{dist(z,dU), (CA)~'}.

Remark 22.3. The proof of Theorem can also be given following the alternative argument
of Spolaor in [23], which uses the Hardt-Simon inequality and the classical version by Allard
of Moser’s iteration for subharmonic functions on varifolds. While Spolaor’s argument is more
flexible and indeed works for integral currents which are not minimizing but sufficiently close
to minimizing ones in a suitably quantified way, we prefer to adhere to the strategy of [§]
because it is more homogeneous to our notation and terminology.

23. PROOF OF PROPOSITION [16.32

The proof follows the one of [10, Proposition 3.7] given in [I0, Section 9] with minor
modifications. The necessary tools used there, namely the splitting before tilting Propositions,
the height bound and the reparametrization theorem are all available from the previous
sections.
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Part 4. Blow-up and final argument
24. INTERVALS OF FLATTENING

Our argument for Theorem [3.3]is by contradiction, and we start therefore fixing a current T,
a submanifold X, an open set , an integer 2 < Q < &, positive reals o and 7 and a sequence
4 0 of radii as in Proposition In this section we proceed as in [I1), Section 2| and define
appropriate intervals of flattening |s;,t;], which are intervals over which we will construct
appropriate center manifolds. These intervals, which will be ordered so that t;11 < s; will
satisfy several properties, among which we anticipate the following fundamental one: aside
from finitely many exceptions, each radius r; belongs to one of the intervals. In particular, if
they are finitely many, then 0 is the left endpoint of the last one, whereas if they are infinitely
many, then ¢; | 0. The definition of these intervals is taken literally from [IT], Section 2.1], the
only difference being that we take advantage of Theorem in place of [10, Theorem 1.17].
However we repeat the details for the reader’s convenience.

Without loss of generality we assume that By m(O) C Q, and we fix a small parameter
3 €]0, e[, where g2 is the constant appearing in of Assumption Then, we take
advantage of Proposition [7.7] and of a simple rescaling argument to assume further that:

Tox =R™" x {0}, O(T,00=Q, ITLBg 7(0)=0mod(p), (24.1)
IT1I(Bg iy (0)) < (Q6v/m)™ +63) pm  forall p<1, (24.2)
(S NB; m(0) <es. (24.3)

We next define
R := {r €)0,1] : E"(T, Bg /5, (0)) < 3} , (24.4)

Observe that {0} UR is a closed set and that, since E"(T,Bg /7, ) — 0 as kT 0o, 1, € R
for k large enough.

The intervals of flattening will form a covering of R. We first define ¢y as the maximum of
R. We then define inductively sq, ...,%;,s; in the following way.

Let us first assume that we have defined ¢; and we wish to define s; (in particular this
part is applied also with j = 0 to define sp). We first consider the rescaled current Tj :=
((0,;)4T) L Bg /s Xj = to,t;(¥) N By /; moreover, consider for each j an orthonormal system
of coordinates so that, if we denote by my the m-plane R™ x {0}, then E"°(T}, By /m, m0) =
E"(T},Bg,/m) (alternatively we can keep the system of coordinates fixed and rotate the
currents 7).

Definition 24.1. We let M be the corresponding center manifold constructed in Theorem
applied to 7, and X; with respect to the m-plane my. The manifold M; is then the
graph of a map ¢; : mp O [~4,4]™ — 73, and we set ®;(x) := (z,¢j(x)) € m x mg. We
then let # ) be the Whitney decomposition of [—4,4]™ C 7 as in Definition applied to
T;. We denote by p; the orthogonal projection on the center manifold M, which, given the
C3* estimate on ¢, is well defined in a “slab” U of thickness 1 as defined in point (U) of

Assumption
Next we distinguish two cases:
(Go) For every L € #'U),
¢(L) < cgdist(0, L), (24.5)
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where ¢ 1= ﬁ, see Proposition [16.32, In this case we set s; = 0. Observe that in

this case the origin is included in the set I'; defined in ((16.17])).
(Stop) Assuming that (Go) fails, we fix an L with maximal diameter among those cubes of

#' ) which violate the inequality (24.5). We then set

S5 1= tji . (246)
Observe that, in both cases, for every p > 7 := s;/t; we have

(L) <cep  forall L e w9 with LN B,(0,m) # 0. (24.7)

We next come to the definition of ;1 once we know s;. If s; = 0, then we stop the
procedure and we end up with finitely many intervals of flattening. Otherwise we let t;;
be the maximum of RNJ0, s;]. Note that, since the vanishing sequence {r;} belongs to R
except for finitely many elements, Clearly the latter set is nonempty and thus ¢, is a positive
number. Observe also that, by (16.18)) of Proposition and using that 270 < ¢, by
(16.16)), we have ¢(L) < 276-No < & Thus S— <275, Th1s ensures that, in case (Go) never

holds (i.e. the intervals of ﬂattenmg are 1nﬁn1tely many), t; | 0.

Definition 24.2. We denote by F the (finite or countable) family of intervals of flattening as
defined above.

The following proposition is the analog of [I1], Proposition 2.2] and, since the proof is a minor
modification of the one given in [IT), Section 2.2] we omit it. Using the notation of Definition
16.12| we introduce the subfamilies 7/6(] ), 7/,1(] ) and V/n(] ). Recall also that, given two sets A and
B, we have defined their separation as the number sep(A, B) := inf{|z —y|: x € A,y € B}.
Proposition 24.3. Assuming €3 sufficiently small, then the following holds:

(i) s; < ;—% and the family F is either countable and t; | 0, or finite and I; =]0,t;] for
the largest j;

(ii) the union of the intervals of F cover R, and for k large enough the radii vy in
Proposition [7.7 belong to R;

(iii) of r E] 2. 3] and J € #9) intersects B := P (Br (qj)), with q; == ®;(0), then J is in
the domam of influence 7/ ( ) (see Deﬁnztzon §) of a cube H € 7/( D with
((H) <3csr and max{sep(H,B),sep(H,J)} <3Vml(H) < —;

(iv) E"°(T;,B,) < Coedr2=2%2 for every r E]t—J, 3[.
(v) sup{dist(:c M)+ x € spt(T;) Np; Y(B,(g;))} < Co (m )2mrl+52 for every r €]
where mO = max{c(XZ;)%, E"(T}, Bgm)}-

.73[?

S5
t .

25. FREQUENCY FUNCTIONS AND ITS VARIATIONS

As in [IT], Section 3] we introduce the following Lipschitz (piecewise linear) weight

1 for r € [0, 3],
¢(r):=S2—2r for reli 1],
0 for r € ]1,4o00].
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For every interval of flattening I; =|s;,t;] € F, we let N; be the normal approximation of
T; on the center manifold M; of Thereom As in [II], Section 3] we introduce the
corresponding frequency functions and state the main analytical estimate, which allows us to
exclude infinite order of contact of the normal approximations with the center manifolds M.

Definition 25.1 (Frequency functions). For every r €]0, 3] we define:

Dj<7ﬂ) . /./\/lj ¢ (dJT('q)) ‘DNJ‘Q(q) dq and Hj(r) T /./\/lj ¢/ (dJT(’q)) ’]\2425(]) dq’

where d;(q) is the geodesic distance on M; between ¢ and ®;(0), and dg is short for dH™(q).

If H;(r) > 0, we define the frequency function I;(r) := TI]{DJ_J'((TS)-

Theorem 25.2 (Main frequency estimate). If e3 is sufficiently small, then there exists a
geometric constant Co such that, for every [a,b] C [, 3] with H;ljq5 > 0, we have
J b

I;(a) < Co(1+1,(b)). (25.1)

To simplify the notation, in this section we drop the index j and omit the measure H™ in
the integrals over regions of M. The proof exploits four identities collected in Proposition
which is the analog of [I1], Proposition 3.5] and whose proof will be discussed in the next
sections. Following [I1) Section 3] we introduce further auxiliary functions in order to express
derivatives and estimates on the functions D, H and I. We also remind the reader that in
principle we must distinguish two situations:

o If Q < &, then the normal approximations are Ag(R™*™)-valued maps and thus all
the quantities considered here coincide literally with the ones defined in [I1} Section 3];
o If Q) = %’, then the normal approximations take values in @7 (R™"); in this case we
use the notational conventions of [7, Subsection 7.1] and thus, although at the formal
level the definitions of the various objects are identical, the notation is underlying the
fact that all integrals involved in the computations must be split into three domains to
be reduced to integrals of expressions involving the Ag(R™*™)-valued maps N*, N~

and @ [n o N]J.

Definition 25.3. We let 9; denote the derivative with respect to arclength along geodesics
starting at ®(0). We set

Q
B =~ [ o (42) L (N(0).0:Nila)da. (25.2)

i=1
Gy == [ ¢("2) i@ ON@ do and D)= [ 0 (42) VP ds. (253
As in [IT), Section 3] we observe that the estimate

D(r) < / IDN|? < Comor™2722  for every r e 12,3 (25.4)
Br(®(0))

is a consequence of the inequality (16.24])) in Theorem [16.24] Consider indeed that (24.7))
bounds the side of each Whitney region £ intersecting B, (®(0)) and that, on the contact

region I the map N vanishes identically: it suffices therefore to sum the estimates ((16.24))
over the aforementioned Whitney regions L.
We are now ready to state the key four identities, cf. [I1, Proposition 3.5]:
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Proposition 25.4 (First variation estimates). For every -3 sufficiently small there is a
constant C' = C(~3) > 0 such that, if €3 is sufficiently small, [a,b] C [,3] and I >1 on [a,b],
then the following inequalities hold for a.e. r € [a,b]:

B (r) = ==L H(r) - 2B(r)| < CH(), (25.5)
D(r) = 1" B(r)| < CD(r)' ™7 4 C=3 (1), (25.6)
‘D’(r) — mr_2 D(r) — T% G(r)‘ < CD(r) + CD(r)BD/(r) + CT_ID(T‘)H_’YB, (25.7)

S(r)+rY(r) <Cr?D(r) < Or*tme. (25.8)

Theorem follows from the latter four estimates and from through the compu-
tations given in [II), Section 3]. The proofs of the estimates and given in [IT,
Section 3] are valid in our case as well, since they do not exploit the connection between the
approximation and the currents, but they are in fact valid for any map N satisfying I > 1. We
therefore focus on and which are instead obtained from first variation arguments
applied to the area minimizing current T;. In our case the current is area minimizing mod(p),
however a close inspection of the proofs in [I1] shows that the computations in there can be
transferred to our case because the varifold induced by 7} is stationary (and the required
estimates relating the varifold induced by the graph of IN; in the normal bundle of M; and
the current T have been proved in the previous section).

In the rest of the section we omit the subscript j from T}, ¥;, M; and N;.

25.1. First variations. We recall the vector field used in [11]. We will consider:

e the outer variations, where X (q) = X,(q) := ¢ (M) (¢ —p(q))-
e the inner variations, where X (q) = X;(q) := Y (p(q)) with

Y(q) 1=d(q)¢<d(q)> 9 VgeM.

r r or
Note that X; is the infinitesimal generator of a one parameter family of bilipschitz homeomor-
phisms @, defined as ®.(q) := V.(p(¢)) + ¢ — p(q), where U, is the one-parameter family of
bilipschitz homeomorphisms of M generated by Y.

Consider now the map F(q) := >_; [¢ + Ni(q)] and the current T associated to its image:
in particular we are using the conventions of [9] in the case @ < £ (i.e. when N takes values
in Ag(R™™)) and the conventions introduced in [7, Definition 11.2] in the case Q@ = §
(i.e. when N takes values in @/ (R™%")). As in [I1, Section 3.3] we observe that, although
the vector fields X = X, and X = X, are not compactly supported, it is easy to see that
OT(X) = 0T(XT) + 6T (X+) = 6T(X 1), where X = XT + X+ is the decomposition of X in
the tangent and normal components to TX.

Then, we have

6T p(X)| < [0T#(X) — 6T(X)| + 6T (X )|

g/ ‘diva’ dHT||+/ ’div,fFX‘ d||TF\|+’/divaLd||T\|‘. (25.9)
spt(T)\Im(F) Im(F)\spt(T)

Errs

Erry

In order to simplify the notation we set @, (z) := ¢ (@) Next, we apply [9, Theorem 4.2] in
the case @ < § (this corresponds exactly to what done in [I1], Section 3.3] and [7, Theorem
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14.2] when @ = £ to conclude

Q 3
ST w(X,) :/ (¢r IDNP? + 3" N; © Ve, : DN;) + 3 Entf, (25.10)
M i=1 Jj=1

where the errors Err correspond to the terms Errj of [9, Theorem 4.2] in case @ < § and to
the analogous terms in [7, Theorem 14.2] when @ = £§. This implies

Err? = —Q/ er{Ham,mo N), (25.11)
M
[Ersg] < Co / e APIN 2, (25.12)
M
Ereg] < Co /M (INIIA] + IDNP2) (g IDNJ? + | Doy | DN|INY) (25.13)

where H ,q is the mean curvature vector of M. In particular we conclude

D(r) —r'E(r)| < 25: ‘Err? : (25.14)
j=1

where Err{ and Errg denote the terms Erry and Errs of (25.9) when X = X,.

We follow the same arguments with X = Xj, applying this time [9, Theorem 4.3] for Q < £
and [7, Theorem 14.3] for @ = . In particular using the formulas [T, (3.29)&(3.30)] for
divpY and DaY we conclude

5
D'(r) = (m — 2)r~'D(r) — 2 *G(r)| < CoD(r) + 3 B, (25.15)
j=1
where
Err} = —Q/ ((Hpm,mo N)divaY + (DyHaq,mo N)) , (25.16)
M
[Bxrh| < Cy / A2 (DY ||N[* +|Y||N|[DN]), (25.17)
M

Err| < Co /M (IYIIAIDNP(IN| + [DN|) + [DY|(|A| [N*IDN| + [DN|")) . (25.18)

and where Err} and Err{ denote the terms Erry and Errs of (25.9) when X = X;.

25.2. Error estimates. We next proceed as in [I1], Section 4]. First of all, since the structure
and estimates on the size of the cubes of the Whitney decomposition are exactly the same,
we can define the regions of [I1, Section 4.1] and deduce the same conclusions of [11, Lemma
4.4]. Next, since our estimates in Theorem have the same structure of [I0, Theorem
2.4], we conclude the validity of all the estimates in [11 Section 4.2]. In turn we can repeat
all the arguments in [I1], Section 4.3] to conclude the same estimates for the terms of type
Err¢, Err}, Errg, Errh, Err§, Errl, Errg, Err}, Errg. Some more care is needed to handle the term
Errl. First of all we split the latter error into the terms I; and I of [IT, Page 596]. The term
I is estimated in the same way. Fo r the term I we can use the same argument when @ < &
and hence F' is Ag-valued. However, we need a small modification in the case Q = &, when F'
is @/p-valued.
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As in [IT, Page 597] we start by introducing an orthonormal frame vy, ..., v, for T, 5+ of
class C?%0 (cf. [9, Appendix A]) and set

hé(i) = - Z(kayj(q)a Uk)
k=1

whenever v1 A ... Av,, = X is an m-vector of 1,3, with vq, ..., v, orthonormal.
Next, we recall the decomposition of M into M™, M~ and M and correspondingly, we
decompose the image of F' into

Img(F) :=Im(F) N p~ (M) (25.19)
Im, (F) :=Im(F)np {(M™) (25.20)
Im_(F) :=Im(F)np Y(M™). (25.21)
If ¢ € Im(F), as in |11}, Page 597] we set
. . N l .
W = T (M(P(@) and  hyg) = Db vi(p(a)).
j=1

If ¢ € Imp(F) UIm (F), as in [I1), Page 597] we set

l

hl = hi(Tr(q)) and hy=> hlv;(q).
j=1

We proceed however differently for ¢ € Im_(F'): in this case we set

l
hf] = h{](fTF(q)) and hg = th] vj(q).
i=1

Observe that, since for ¢ € Im_(F) we have —Tp(q) = Tp-(g), in practice we can follow
precisely the same computations of [I1, Page 597] in each of the regions Img(F'), Imy (F') and
Im_(F), to conclude

(Xi(q). hg) = (Xia). (hg — hp(e))) = D_(Xi(P(0). Dwj(p(a)) - ex (@)
J
+ D (0. Xi(@) (4 — b)) + O (la = p(a)?)
J
= D (Xi(p(a)). Dr;(p(9)) - ex ) (@)

+0 (1Tr(a) = M(P(0))lnola — P(@)] + lg ~ P(@)) (25.22)

Observe that the only difference with [II, (4.17)] is that |Tr(q) — M(p(q))|no replaces
ITr(q) — M(p(q))| in the last line of the above estimate. Next, for ¢ € spt(Tr), we can
bound |q — p(q)| < |N(q)| and |Tr(g) — M(p(q))|no < CIDN(p(q))|. We therefore conclude
the estimate

(Xi(9). hg) = D_(Xi(p(a)), Dvj(P(a)) - ex,) () by + O(N*(p(0)) + [DNI*(p(0))
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Combining the latter inequality with [7, Theorem 13.1] we can bound

Q
2/ (Y, hp)JF;
i=1YM

;= [ Xz

5. 1 Q ,
S S0 i) e (B @

+C | oulNP+1DNP)
j=1i=1 M

We can now proceed as in [I1, Page 598] to conclude the same estimate for Is.

26. BOUNDEDNESS OF THE FREQUENCY FUNCTION AND REVERSE SOBOLEV

We next show the counterpart of [11, Theorem 5.1].

Theorem 26.1 (Boundedness of the frequency functions). Let T' be as in Proposition . If
the intervals of flattening are jo < oo, then there is p > 0 such that

H;, >0 0n]0,p[ and limsupLj (r) < oco. (26.1)
r—0

If the intervals of flattening are infinitely many, then there is a number jo € N and a geometric
constant j1 € N such that

H; >0 on]2,27913[ for all j > jo, sup  sup Ii(r) < oo, (26.2)
/ Jj=Jjo re]%g—hg[
J

r? [5 |DN;|? :
Sup{min {Ij(r),W} 1 j > jo and max{z,;jl} <r< 3} < 00 (26.3)

(in the latter inequality we understand I;(r) = oo when H;(r) =0).

Proof. In the first case we can appeal to the same argument as in [I1, Page 599]. In the
second case we also proceed as in [I1], Page 599] and partition the extrema t; of the intervals
of flattening into two subsets: the class (A) formed by those t; such that ¢; = s;_1 and the
complementary class (B). As in [I1, Page 599] we can assume that j is large enough. In the first
case we proceed as in [I1, Page 599] where we substitute [10), Proposition 3.7] with Proposition
In case (B) by construction there is n; €]0, 1] such that E"°((co,t,)s7, B /m(14,)) > £3.
Up to extraction of a subsequence, we can assume that T; = (Loyt].)ﬁT converges to a cone S:
the convergence is strong enough to conclude that the excess of the cone is the limit of the
excesses of the sequence. Moreover (since S is a cone), the excess E™°(S, B, ) is independent
of r. We then conclude

2 < liminf E™(T;, Bs).
= ey BB

We then argue as in [I1, Page 601] using Lemma below in place of [I1, Lemma 5.2]. O

Lemma 26.2. Assume the intervals of flattening are infinitely many and r; E]%,S[ is a

subsequence (not relabeled) with lim; ||Nj| 25, \B, ,) = 0. If €3 is sufficiently small, then,
J

E"(T},B,,) — 0.

7']-/2

Proof. The argument is a modification of that of [I1, Lemma 5.2], which we include for the
reader’s convenience. First of all note that, by Proposition [24.3, E"°(T},B;;) — 0 if 7; — 0.
Hence, passing to a subsequence, we can assume the existence of a ¢ > 0 such that

rj >c and E"(1},Bg m) > c (26.4)
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After the extraction of a further subsequence, we can assume the existence of r such that

/ IN;|? — 0, (26.5)
B,.\ngr

and the existence of a mod(p) area-minimizing cone S such that (.04, )37 — S. Recall that
S is a representative mod(p). By , the cone S cannot be an integer multiple of an
m-~dimensional plane.

We argue as in [11, Pages 601-602] and conclude that, if M is the limit of a subsequence (not
relabeled) of the M, then there are two radii 0 < s < t such that spt(S) NB(0) \ B4(0) C M.
In particular, by the Constancy Theorem mod(p) we conclude that SLB:(0) \ B5(0) =
Qo [M NB¢(0) \ B4(0)] mod(p) for an integer Qo with [Qo| < §. Since S is a cone and a
representative mod(p) we can in fact infer that SLB:(0) = Qo [0] x [M N 9B:(0)] mod(p)
(in fact it can be easily inferred from the argument in [I1, Pages 601-602] that Qy = @,
although this is not needed in our argument). Since [0] x [M N 9B¢(0)] induces a stationary
varifold and M is the graph of a function with small C*° norm, we can applied Allard’s
Theorem to conclude that in fact [0] x [M N 9B.(0)] is smooth. This implies that the latter
is in fact [ N B¢(0)] for some m-dimensional plane 7, contradicting the fact that S is not a
flat cone. O

Finally, Theorem can be used as in [11, Section 5] to show [I1], Corollary 5.3], which
we restate in our context for the reader’s convenience.

Corollary 26.3 (Reverse Sobolev). Let T be as in Proposition . Then, there exists a
5

constant C' > 0 which depends on T but not on j such that, for every j and for every r G]E’ 1],
there is o €]3r,3r] such that

[ opNpEeS e, (26.6)
Bs(®;(0)) T JBy(2;(0))

J

27. FINAL CONTRADICTION ARGUMENT

In this section we complete the proof of Theorem showing that, by Proposition
under the assumption that the theorem is false, we get a contradiction. In particular fix
T,%,Q and 7, as in Proposition [7.7} We have already remarked that for each k there is an
interval of flattening I;(x) =|s;(),tj(x)] containing 7. We proceed as in [I1], Section 6] and
introduce the following new objects:

e We first apply Corollary [26.3 to r = ;7% and set 55, := tj(k)Ok, SO that tﬂg’“ €
3(k) 3(k)
1322, 3 2L
2" Tt b
e We set 7, := 35‘_9(’2).
J

e We rescale our geometric objects, namely B
(U1l) The currents Ty, the manifolds ¥; and the center manifolds M;j are given
respectively by

Tr = (t07)8Tjk) = (o752, 00 )4 T) - By i/, (27.1)
Ek = LO,fk(Ej(k)) = L()’,:ktj(m(z) (27.2)
Mk = [/O,fk (Mj(k)) . (27.3)
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(U2) In order to define the rescaled maps Ni on My, we need to distinguish two cases.
When @ < &, the map Nj, takes values in Ag(R™*") and is defined by

Q
Nie(q) =Y [r ' (Njm)i(ra)] -
1=1

In the case @ = £, the map N}, takes values in Ao(R™T") and is defined analo-
gously. The reader might either use the decomposition of M into M;L( k) ./\/lj_( k)
and (M) )o or, using the original notation in [7, Definition 2.2],

Q
Ni(q) = (Z [r= (N )i (rq)] 75(7"9)) :
i=1
where
Q
Nj(@ = | 2 [Njw):(@)] (@)
i=1
and () € {—1,1}.
Without loss of generality we can assume that TpX = R™*" x {0}, thus the ambient manifolds
) converge to R™*" x {0} locally in C%<°. Observe in addition that § < ﬁ < 1 and
J
hence it follows from Proposition [7.7|(ii) that

E"(T},B1) < CE™(T,B,,) — 0.
2

Indeed Proposition (ii) implies that T} converge to Q [mo] both in the sense of varifolds
and in the sense of currents mod(p). Finally, we recall that, by Proposition (iii)&(iii)s,

HIL 2 (Dg(Th) NBa) 2 Cor "I HLTH(Do(T) NB,) 20 >0 when Q <3
(27.4)

HI (Do (T)) N By) > Cory " UL (DQ(T)NB,,) > >0 when Q=15
(27.5)
where « is a positive number and Cj a geometric constant.

As in [IT], Section 6] we claim the counterpart of [IT, Lemma 6.1], namely Lemma[27.1] which
implies that M, converge locally to the flat m-plane mo. We also introduce the exponential
maps ey, : By C R™ ~ Ty My — My, denotes the exponential map at qx = ®;1(0)/7% ( here
and in what follows we assume, w.l.o.g., to have applied a suitable rotation to each T}, so
that the tangent plane Ty, M), coincides with R™ x {0}). We are finally ready to define the
blow-up maps N} : B3 C R™ — Ag(R™*"), when @ < & and NJ : By C R™ — a/p(R™™),
when Q = §:

Nh(a) = by Neew () (27.6)
where hk = |’NkHL2(B§)‘
2
Lemma 27.1 (Vanishing lemma). Let T}, 7%, My and ¥} be as above. We then have:

(i) min{m*® 7.} = 0; i
(ii) the rescaled center manifolds My, converge (up to subsequences) to mo = R™ x {0} in
CS’“/Z(B4) and the maps ey converge in C25/2 o the identity map id : Bs — Bs;
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(iii) there exists a constant C > 0, depending only on T, such that, for every k,

1

hg/g IDNy[* <O [ IDNQP? < C. (27.7)
k

3 B3
2 2

Proof. The argument for (i) can be taken from [I1, Proof of Lemma 6.1]. As for part (ii)
the argument given in [I1, Section 6] for the convergence of the center manifolds can be
shortened considerably observing that it is a direct consequence of Proposition M(V) and
the convergence of the currents Tj,. The C?*/2 convergence of the exponential maps follow
then immediately from [I1, Proposition A.4]. Finally, (iii) is an obvious consequence of

Corollary O

Having defined the blow-up maps, the final contradiction comes from the following state-
ments.

Theorem 27.2 (Final blow-up). Up to subsequences, the maps N} converge strongly in L* (B%)
to:
e a function N% : Bs — Ag({0} x R™ x {0}) when Q < &;
2 —
e a function NY, : B% — ({0} x R™ x {0}) when Q = £.
Such limit is Dir-minimizing in By for every t €]2,3[ and satisfies ”N&HL?(B

noNgOEO.

):1and

3
2

Theorem 27.3 (Large singular set). Let N2 be the map of Theorem and define
T:={z€B: Ny =Q[0]} .
Then

HIZ(Y) > ifQ <2, (27.8)

ifQ=1, (27.9)
where « and n are the positive constants in (27.4)), resp. (27.5).

The two theorems would contradict [12, Theorem 0.11] in case @ < § since, arguing as in
[TT], Section 6] we easily conclude that YT is a subset of the singularities of N2 . In the case
Q = § we infer instead from [7, Proposition 10.3] that N;° = Q [ o Ny°] on the whole Bjs,
which in turn would imply Np° = Q [0]. This however contradicts [|N;®||z2(p, ,,) = 1.

Hgmo—l—i-a('r) >

NI NI

27.1. Proof of Theorem Without loss of generality we may assume that g :=
f,;liij(k)(()) coincide all with the origin. We then define a new map Fj, on the geodesic ball

By C M,, distinguishing, as usual, the two cases Q < £ and Q = £. In the first case we
follow the definition of [I1], Section 7.1], namely we set

7

In the case @ = & the map Fy, takes values in o(R™T) and it is induced by N}, in the sense
explained at point (N) of [7, Assumption 11.1]. The argument given in [IT, Section 7.1] works
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in our case as well and implies the following estimates (where 7 is some positive exponent
independent of k)

Lip(Nils,,) < Ch] and  |[Nilloogs, ) < Cmd 7). (27.10)
MP((Tj, — Ti)(p; ' (Bg)) < Oh ™7, (27.11)
/ In o Ni| < Chi (27.12)

B

3

5
From these estimates we conclude the strong L? converge of (a subsequence of) N,I; to a
map NY, on Bsy taking values, respectively, on Ag({0} x R™ x {0}) (when Q < 5) and
({0} x R™ x {0}) (when Q = §). Moreover it is obvious that ”Ngo||L2(B3/2) =1 and that

1o N2 = 0. Therefore we are only left with proving that N2 is Dir-minimizing.

Proceeding as in the [I1} Section 7] we assume, without loss of generality, that the Dirichlet
energy of N2 is nontrivial (otherwise there is nothing to prove). Thus we can assume that
that there exists ¢y > 0 such that

coh? < / |DN|2. (27.13)
B3

[ and a function

We proceed as in [11, Section 7.2 & Section 7.3]: if there is a radius t € }%, %
) such that

f on B% (taking values in Ag(R") when Q < &, or in @/p(R") when Q = &
fles\B. = Nllpy\s, and Dir(f,B;) < Dir(NL, By) — 26,
2 2

for some § > 0, we then produce competitors Ny, for the maps Ny satisfying

Nk = Nk in B% \Bt, Lip(Nk) < Chz, |Nk| < C’(mlgfk)'y,

/ Ino Ni| < Chi and / IDN|? < / |DNg|* — oh3.
B3 B3 B3
2 2 2

Indeed the construction of the maps in [I1), Section 7.2 & Section 7.3] uses the left composition
of Ag-valued maps with classical maps in the sense of [I2, Section 1.3.1], which in the
Jg-valued case is substituted by the left composition as defined in [7, Subsection 7.3].
Consider next the map Fj, given by Fj(z) =Y; [z + (Ng)i(2)] in the case @ < § and by
the corresponding (ZZ [z + (Ny)i()] ,8(3:)) in the case Q = §. The current Tz coincides
with T on plzl(B% \ Bt). Define the function ¢y (g) = dist x4, (0, Px(q)) and consider for each

s € }t, %[ the slices <Tﬁk — T, @1, s). By (27.11)) we have

3
2 —
[ My~ T < 01
t

Thus we can find for each k a radius oy, € }t, %{ on which MP({Tz, — Tr, ry 0%)) < CthW.
Recall from Lemma (i), 8<Tpk — T, ¢k, o) = 0 mod(p). By the isoperimetric inequality
0

mod(p) (see [15], (4.2.10)"]) there is an integer rectifiable current Sy, which can be assumed to
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be representative mod(p), such that
9y = (T, ~Tisior, o) mod(p),  M(Sy) = MP(8y) < O™ and - spt(sy) € S
Our competitor current is, then, given by

Zi = T (py (M \ Boy)) + St +Tp, L(py, ' (Bn,))-

The computations given in [I1} Section 7.4] would then imply that the p-mass of Zj is strictly
smaller than the mass of T} for k large enough, even though Tj — Z; is a cycle mod(p)
supported in the ambient manifold ¥, which is a contradiction to T}, being a mass minimizing
current mod(p) in .

27.2. Proof of Theorem We argue by contradiction and assume that:

HI2H(T) < if Q <

N3

(27.14)

I3

HE () 5 Q=

Since Y is compact, we cover T with finitely many balls {B,,(x;)} in such a way that

Z Wm—2+a (4Ui)m_2+a <

)

Z Wm—1+o (40i)m_1+a <

2

Choose a ¢ > 0 so that the 55-neighborhood of T is covered by {By,(7;)}. Denote by A the
set of multiplicity @) points of T}, far away from the singular set Y:

A :={q € DQ(Tk) N By : dist(q,T) > 45}.

[Slgst

(27.15)

if Q<2 (27.16)

NS N3

ifQ=2 (27.17)

Clearly,
Hg—?—i—a (Ak)

v

when @ < &, (27.18)

ngo—l—l—a (Ak)

v
ISIESENIRS

when Q = 5. (27.19)

As in [I1], Section 6.2] we denote by V the neighborhood of T of size 2. Agruing as in [11],
Section 6.2, Step 1] we conclude the existence of a positive constant ¢ such that, for every fixed
parameter o < o, there is a ko(o) such that the following estimate holds for every k > ko(o).
In the case Q < § we have

1 L OWLQ o NP> I Y €St by (M) (27.20)
whereas in the case QQ = £ we have

]{320(:v) Gs(Ni, Q [mo Ni])* > 9hi V€S :=py, (M) (27.21)
Indeed the argument in [IT], Section 6.2] uses only the Holder continuity of the Dir-minimizing

map N2, (which is a consequence of [I2, Theorem 2.9] for Q <  and a consequence of [7,
Theorem 8.1] when @ = £) and the strong convergence proved in Theorem m
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Next, following [I1], Section 6.2, Step 2], for every ¢ € Ay, we define 2;(¢) = pr,(¢) (where
7 is the reference plane for the center manifold related to Tj)) and

Ze(q) = (Zk(0), 75, "0 (ThZk(a))) -

Observe that Z1(q) € My. We next claim the existence of a suitably chosen geometric constant
1> ¢p > 0 (in particular, independent of o) such that, when k£ is large enough, for each g € Ay
there is a radius g, < 20 with the following properties:

9 1 _
Coa hi m—2+« / ‘DNk|27 (2722)
g 0q Boy (#1(9))

B, (k(q)) C Bag,(q) - (27.23)

IN

The argument given in [I1), Section 6.2, Step 2] can be routinously modified in our case. In
particular we define the points gy, := 7xq, z) := 72k (q) and zp = TxZk(q) = (2k, Pjk)(2x)) and
discuss the three different possibilities depending on whether z; belongs to a cube L € #7 (k)

or to the contact set I'jy).

The first case, z, € L € V/hj(k) can be excluded with the same argument given in [I1, Section
6.2, Step 2|, where we replace [10, Proposition 3.1] with Proposition [16.26| because g is a
multiplicity @ point for the current T},).

Following the argument in [IT], Section 6.2, Step 2], when zj € %(k) U %](k) we find a
t(¢) < o with the property that

_ _ 9 _
Go(Ni, Q [m o Ni])? < _/ |DN,, |2 (27.24)
]{xt(q)m(q)) Awomt(@)™ 2 S5, @0(a)
(where O=sfor Q =% and 0= for Q < %) and
lg — zi(q)| < 5t(q). (27.25)

In the argument [IT], Section 6.2] we take care of substituing [10, Proposition 3.5], [I1, Lemma
6.1] and [I1], Proposition 3.6] respectively with Proposition Lemma and Proposition
16.311

In the case z; € I'j() we find a t(¢q) < o such that

W
th : (27.26)

][ Ga(Nk, Q [mo Ni])* <
Bsi(q) (Zk(q))

whereas we observe that holds trivially because the left hand side vanishes.

By (27.25), for any g, €]st(g), 20] the inclusion (27.23) holds. The argument is then closed
by showing that must hold for at least one g, €]5t(q),20]. The rest of the argument
in [IT) Section 6.2, Step 2] uses the Poincaré inequality in the Ag-valued setting to show that,
under the assumption that fails for every o €]st(q),20], and would
be incompatible with (27.20)). This argument then settles the proof of the existence of g,
satsifying 1’ when @ < §. Since the analogous Poincaré inequality can be easily
seen to hold in the @/p-valued case, we easily conclude that the same argument applies when

Q = 5 exploiting the case [J = s for (27.24)) and (27.26)) against (27.21)).
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From ([27.22)-(27.23) we can use the covering argument of [TT, Step 3] to conclude that the
inequality (27.18)) and (27.19) would force a large Dirichlet energy of Nj on Bjs, in particular

n _ Cop o / o2
— < —— | DNy for @ < &, (27.27)
2 Co 011% B% 2
Ch glta _
g < C(‘:W/B IDNi>  forQ=12, (27.28)
k 3

where Cp, o and ¥ are fixed (namely independent of o). Therefore, o can be chosen very
small, with the inequality being satisfied only for & > k(o). However, the arbitrariness of o
and (27.7)) would be incompatible with > 0, thus leading to the required contradiction.
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Part 5. Rectifiability of the singular set and structure theorem
28. RECTIFIABILITY OF THE SINGULAR SET: PROOF OF THEOREM

We start by introducing the term “area minimizing cones mod(p)” for area minimizing
currents mod(p) without boundary mod(p) which have a representative Ty which is a cone
in the sense of Corollary (iii). Such cone will be called flat if it is supported in some
m-dimensional plane 7 C R™". We recall that, by Corollary any flat area minimizing
cone mod(p) is congruent mod(p) to @ [r], where 7 is an m-dimensional plane and @ is an
integer with 0 < @ < Z. For odd p we then conclude that [Q] < %.

Recall the definition of k-symmetric cones given in Definition Following [19], we
introduce next the following terminology, which introduces a suitable notion of local almost
symmetry for a given integral varifold V.

Definition 28.1. An m-dimensional integral varifold V' is (k,¢)-symmetric in the ball B,(z)
if there is a k-symmetric cone C' such that the varifold distance between C'LB;(0) and
((teyr)$V)LB1(0) is smaller than .

Next, given a varifold V' with bounded mean curvature in an open set U, for every o > 0
and € > 0 we introduce the set

Sk (V) :={z espt(V)NU: Visnot (k+ 1,e)-symmetric in B,(z) for r €]0,0]}
The following is then a direct corollary of Lemma [7.6]

Corollary 28.2. Assume that T is as in Theorem and consider the varifold v(T) induced
by T. If p is odd, then for every compact K with K NsptP(OT) = 0 there are constants
e=¢e(m,n,p,K) >0 and o = o(m,n,p, K) > 0 such that

p—1

Sing(T)N K C O Sing (1) U S"Lo(v(T)) U S™2(v(T)).
Q=2
Proof. Consider a point
q € (Sing(T)NK) \ O Sing, (1) U S™2(v(T))
Q=2

We then know that at least one tangent cone in ¢ is (m — 1)-symmetric but not flat. Therefore
we know from Lemma that O(T,q) > . We also know that v(T') is a varifold with bounded
mean curvature (the L* bound depending only on the second fundamental form of ) and
that there is a o¢(K) > 0 such that dist(g,spt?(9T)) > o¢. In particular, by the monotonicity
formula, there is a (K, X) > 0 such that

VB @) 2 (5= 7)™ vrelo.ol. (28.1)
On the other hand, if v(T') were (m,e)-symmetric in B, (g), then there would be a positive
integer () and an oriented m-dimensional plane [7] such that the varifold distance between
((tgr)sv(T))LB1(0) and Qv([7])LB1(0) is smaller than . By the compactness Proposition
(observing that »~™M(T'B,(z)) can be bounded uniformly for x € K), when ¢ is sufficiently
small, @ [7] must be a representative of an area minimizing current mod(p) and as such we
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must have Q < %. In particular, if € is sufficiently small, we would conclude
p 3
VDI Brla) < (5 - 5 ) wnr™
This is however not possible because of (28.1)) and hence we deduce that ¢ € ST~ (v(T)). O

Proof of Theorem[1.8. Observe that, by Almgren’s stratification theorem, ™ 2(v(T)) has
Hausdorff dimension at most m — 2. Similarly,
p=1
2
U Sing (T')
Q=2
has Hausdorff dimension at most m — 2 by Theorem Since by [19, Theorem 1.4],

Sm=Lo(v(T)) N K has finite H™ ! measure and it is (m — 1)-rectifiable, the claim follows
from Corollary [28.2] O

29. STRUCTURE THEOREM: PROOF OF COROLLARY [1.9l

In this section we prove Corollary First of all observe that each connected component
A; is necessarily a regular submanifold because, by definition, it is contained in the set of
regular interior points of T'. Clearly A; is locally orientable, and it is simple to show that,

since p is odd, there is in fact a smooth global orientation. Clearly Tl A; = Q; [A;] mod(p)

for some integer multiplicity Q; € [-5, £] by the constancy lemma mod(p). On the other hand

we can reverse the orientation to assume that @Q; € [1, §]. Point (b) is then obvious because
TLU =3 ,T;L.U mod(p) and in fact

ITILU =S T (20.1)

Now consider U as in part (a) of the statement and observe that, by the monotonicity formula,
there are constants M (U) and p(U) > 0, such that

IT((B,(z)) < Mr™ Vx € U and Vr €]0, p(U)] .

Fix a T; and note that, by ,

IT)|(By(z)) < Mr™. (29.2)
Observe that o

spt((0T;)LU) C Sing(T)NU =: K,
and that, by Theorem the compact set K satisfies the bound
H™HK) < . (29.3)

We next claim that, by and ,

M((0T;)LU) < .

First of all fix 0 = % < @ and choose a finite cover of K with balls {Bf}j with radii r;-“

satisfying 2 rf <o= % such that

> o (rf) T <2HPTHK) < 2H™TH(K).
J

For each ball B jk we choose a smooth cutoff function cpé? which vanishes identically on B;-“ and
it is identically equal to 1 on the complement of the concentric ball QBJI-C with twice the radius.
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We choose cpf so that 0 < goé‘? <1 and ||dg0§?\|0 < C(rf)_l, where C' is a geometric constant.
We then define
k
=14
J

Recall that
M((0T))LU) = sup{dT(w) : [wll. < 1, w € DF(U)}

We therefore fix a smooth (m — 1)-form w with compact support in U and we are interested
in bounding 9T;(w) = Ti(dw). Observe that ©* 11 ||T;||]-a.e. on U. Hence we can write

Ti(dw) = lim Tj(¢*dw).
k—o00
On the other hand, since ¢*w is supported in an open set V cC U \ K we conclude
Ti(d(p*w)) = OTi(¢"w) = 0.
Hence we can estimate

Tyt dw)| = ITi(de* nw)] < 3T
J

(o)

t#j
&2 "
<O wlelldgfllo 1T:]1(2B]) "<~ CM|wle Z

J
< CM||wl||:H™ HK). (29.4)
Letting k£ 1 oo we thus conclude
| T3(dw)| < CM||wl|H™H(K).

This shows that (07;) LU has finite mass. Point (a) follows therefore from the Federer-Fleming
boundary rectifiability theorem.
In order to show (c), consider the set K’ of points ¢ € K where
e K has an approximate tangent plane 7, K;
e ¢ is a Lebesgue point for all ©;’s with ©;(q) € Z.
By a standard blow-up argument, it follows that, for every fixed ¢ € K’, any limit S of the

currents (1q,)4(T;) as 7 | 0 is an area-minimizing current on R™*" with boundary either
—0;(q) [T4K] or +0;(q) [T, K]. By the boundary monotonicity formula,

15181 o)) = 124y,

We therefore conclude that

7B, (q)) _  [9ia)

h%%)nf — w2 Wi, 5
Fix any natural number N. We then conclude from ([29.2)) that
T8 (9) || o 1T || -
M > lim > l
20 Z 23

In particular we conclude that

oM
Z\@ |<7 Vg e K'.
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This shows that

> M((0Ty)LU) < %Hmfl(m < .

Wm

This completes the proof of (¢) and of the structure theorem.
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