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1. Introduction

1.1. Overview and main results. In this paper we consider currents mod(p) (where p ≥ 2
is a fixed positive integer), for which we follow the definitions and the terminology of [15].
In particular, given an open subset Ω ⊂ Rm+n, we will let Rm(Ω) and Fm(Ω) denote the
spaces of m-dimensional integer rectifiable currents and m-dimensional integral flat chains
in Ω, respectively. If C ⊂ Rm+n is a closed set (or a relatively closed set in Ω), then Rm(C)
(resp. Fm(C)) denotes the space of currents T ∈ Rm(Rm+n) (resp. T ∈ Fm(Rm+n)) with
compact support spt(T ) contained in C. Currents modulo p in C are defined introducing an
appropriate family of pseudo-distances on Fm(C): if S, T ∈ Fm(C) and K ⊂ C is compact,
then

F p
K(T − S) := inf

{
M(R) + M(Z) : R ∈ Rm(K) , Z ∈ Rm+1(K)

such that T − S = R+ ∂Z + pP for some P ∈ Fm(K)
}
.

Two flat currents in C are then congruent modulo p if there is a compact set K ⊂ C such that
F p
K(T − S) = 0. The corresponding congruence class of a fixed flat chain T will be denoted

by [T ], whereas if T and S are congruent we will write

T = Smod(p) .

The symbols Rp
m(C) and F p

m(C) will denote the quotient groups obtained from Rm(C) and
Fm(C) via the above equivalence relation. The boundary operator ∂ has the obvious property
that, if T = Smod(p), then ∂T = ∂Smod(p). This allows to define an appropriate notion of
boundary mod(p) as ∂p[T ] := [∂T ]. Correspondingly, we can define cycles and boundaries
mod(p) in C:

• a current T ∈ Fm(C) is a cycle mod(p) if ∂T = 0 mod(p), namely if ∂p[T ] = 0;
• a current T ∈ Fm(C) is a boundary mod(p) if ∃S ∈ Fm+1(C) such that T =
∂Smod(p), namely [T ] = ∂p[S].
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Note that every boundary mod(p) is a cycle mod(p). In what follows, the closed set C will
always be sufficiently smooth, more precisely a complete submanifold Σ of Rm+n without
boundary and of class C1.
Remark 1.1. Note that the congruence classes [T ] depend on the set C, and thus our notation
is not precise in this regard. In particular, when two currents are congruent modulo p in
Σ ⊂ Rm+n, then they are obviously congruent in Rm+n, but the opposite implication is
generally false, see also the discussion in [17, Remark 3.1]. However, the two properties are
equivalent in the particular case of Σ’s which are Lipschitz deformation retracts of Rm+n, and
we will see below that, without loss of generality, we can restrict to the latter case in most
of our paper. For this reason we do not keep track of the ambient manifold in the notation
regarding the mod(p) congruence.
Definition 1.2. Let Ω ⊂ Rm+n be open, and let Σ ⊂ Rm+n be a complete submanifold
without boundary of dimension m+ n̄ and class C1. We say that an m-dimensional integer
rectifiable current T ∈ Rm(Σ) is area minimizing mod(p) in Σ ∩ Ω if

M(T ) ≤M(T + S) for every S ∈ Rm(Ω ∩ Σ) which is a boundary mod(p). (1.1)
Recalling [15], it is possible to introduce a suitable notion of mass mod(p) for classes [T ]

mod(p), denoted by Mp: Mp([T ]) is the infimum of those t ∈ R ∪ {+∞} such that for every
ε > 0 there are a compact set K ⊂ Σ and an S ∈ Rm(Σ) with

F p
K(T − S) < ε and M(S) ≤ t+ ε .

Analogously, [15] defines the support mod(p) of the current T ∈ Rm(Σ), by setting
sptp(T ) :=

⋂
R=T mod(p)

spt(R) .

Clearly, the support depends only upon [T ], and we can thus also use the notation sptp([T ]).
With the above terminology we can talk about mass minimizing classes [T ], because (1.1)

can be rewritten as
Mp([T ]) ≤Mp([T ] + ∂p[S]) for all [S] with sptp([S]) ⊂ Ω ∩ Σ.

Our paper is devoted to the interior regularity theory for such objects.
Definition 1.3. Let T be an area-minimizing current mod(p) in Ω∩Σ. A point q ∈ Ω∩sptp(T )
is called an interior regular point if there is a neighborhood U of q, a positive integer Q and
an oriented C1 embedded submanifold Γ of Σ ∩ U such that

(i) T U = Q JΓK mod(p);
(ii) Γ has no boundary in Σ ∩ U .

We will denote the set of interior regular points of T by Reg(T ).
Observe that by definition an interior regular point is necessarily contained in sptp(T ) and

it is necessarily outside sptp(∂T ). For this reason, it is natural to define the set of interior
singular points of T as

Sing(T ) := (Ω ∩ sptp(T )) \ (Reg(T ) ∪ sptp(∂T )) .
It is very easy to see that Sing(T ) cannot be expected to be empty. Probably the following is the
best known example: consider the three points Pj := (cos 2πj

3 , sin 2πj
3 ) ∈ R2 for j = 1, 2, 3 and

the three oriented segments σj in R2 joining the origin with each of them. Then T := ∑
j JσjK

is area-minimizing mod (3) in R2 and the origin belongs to Sing(T ).
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As a first step to a better understanding of the singularities it is therefore desirable to give
a bound on the Hausdorff dimension of the singular set. The present work achieves the best
possible bound in the most general case, and in particular it answers a question of White, see
[1, Problem 4.20].

Theorem 1.4. Assume that p ∈ N\{0, 1}, that Σ ⊂ Rm+n is a C3,a0 submanifold of dimension
m+ n̄ for some positive a0, that Ω ⊂ Rm+n is open, and that T ∈ Rm(Σ) is area minimizing
mod(p) in Ω ∩ Σ. Then, Hm−1+α(Sing(T )) = 0 for every α > 0.

Prior to the present paper, the state of the art in the literature on the size of the singular
set for area minimizing currents mod(p) was as follows. We start with the results valid in any
codimension.

(a) For m = 1 it is very elementary to see that Sing(T ) is discrete (and empty when
p = 2);

(b) Under the general assumptions of Theorem 1.4, Sing(T ) is a closed meager set in
(sptp(T ) ∩ Ω) \ sptp(∂T ) by Allard’s interior regularity theory for stationary varifolds,
cf. [2] (in fact, in order to apply Allard’s theorem it is sufficient to assume that Σ is of
class C2);

(c) For p = 2, Hm−2+α(Sing(T )) = 0 for every α > 0 by Federer’s classical work [16];
moreover the same reference shows that Sing(T ) consists of isolated points when m = 2;
for m > 2 the (m− 2)-rectifiability of Sing(T ) was first proved in [22] and the recent
work [19] implies in addition that Sing(T ) has locally finite Hm−2 measure, see below.

We next look at the hypersurface case, namely n̄ = 1.
(d) When p = 2, Hm−2(Sing(T )) = 0 even in the case of minimizers of general uniformly

elliptic integrands, see [20]; for the area functional, using [19], one can conclude
additionally that Sing(T ) is (m− 3)-rectifiable and has locally finite Hm−3 measure;

(e) When p = 3 and m = 2, [24] gives a complete description of Sing(T ), which consists of
C1,α arcs where three regular sheets meet at equal angles;

(f) When p is odd, [26] shows that Hm(Sing(T )) = 0 for minimizers of a uniformly elliptic
integrand, and that Hm−1+α(Sing(T )) = 0 for every α > 0 for minimizers of the area
functional;

(g) When p = 4, [25] shows that minimizers of uniformly elliptic integrands are represented
by immersed manifolds outside of a closed set of zero Hm−2 measure.

In view of the examples known so far it is tempting to advance the following

Conjecture 1.5. Let T be as in Theorem 1.4. Denote by Singf (T ) the subset of interior flat
singular points, that is those points q ∈ Sing(T ) where there is at least one flat tangent cone;
see Sections 6 and 7. Then Hm−2+α(Singf (T )) = 0 for every α > 0.

Conjecture 1.5 is known to be correct for:
(a) m = 1;
(b) p = 2 and any m and n̄;
(c) p is odd and the codimension n̄ = 1.

In all three cases, however, the conjecture follows from the much stronger fact that Singf (T )
is empty:

• the case (a) is an instructive exercise in geometric measure theory;
• the case (b) follows from Allard’s regularity theorem for stationary varifold;
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• the case (c) is a corollary of the main result in [26].
Note however that in all the other cases we cannot expect Singf (T ) to be empty. Indeed
the easiest case would be p = 4, m = 2 and n̄ = 1. In this case it follows from the work
[25] that, if S1 and S2 are integral currents representative mod(2) (see (3.1)) which are area
minimizing mod(2), then T = S1 + S2 is a representative mod(4) which is area minimizing
mod(4). Consider now two smooth minimal graphs in B1 × R ⊂ R3, where u1, u2 : B1 → R
are the corresponding functions. Endow the graphs with the natural orientation, and let S1
and S2 be the corresponding integral currents. Oriented minimal graphs in codimension 1
are then known to be area minimizing, both as integral currents and as currents mod(2). In
particular T = S1 + S2 is then area minimizing mod(4). Observe therefore that, if u1 and
u2 are distinct, then Sing(T ) is the intersection of the two graphs. It is easy to see that u1
and u2 might be chosen so that u1(0) = u2(0) = 0, ∇u1(0) = ∇u2(0) = 0 and u1 and u2 are
anyway distinct. In particular 0 would be a singular point of T and the (unique) tangent cone
to T at 0 is the (oriented) two dimensional horizontal plane π0 = {x3 = 0} with multiplicity 2.
In such example we thus have 0 ∈ Singf (T ).

In this paper we strengthen the result for p odd by showing that Conjecture 1.5 in fact
holds in any codimension. Indeed we prove the following more general theorem.

Theorem 1.6. Let T be as in Theorem 1.4 and Q < p
2 a positive integer. Consider the

subset SingQ(T ) of sptp(T ) \ sptp(∂T ) which consists of interior singular points of T where
the density is Q (see Definition 7.1). Then Hm−2+α(SingQ(T )) = 0 for every α > 0.

The analysis of tangent cones (cf. Corollary 6.3) implies that if p is odd then

Singf (T ) ⊂
b p2 c⋃
Q=1

SingQ(T ) .

We thus get immediately

Corollary 1.7. Conjecture 1.5 holds for every p odd in any dimension m and codimension n̄.

The fact above, combined with the techniques recently introduced in the remarkable work
[19], allows us to conclude the following theorem.

Theorem 1.8. Let T be as in Theorem 1.4 and assume p is odd. Then Sing(T ) is (m− 1)-
rectifiable, and for every compact K with K ∩ sptp(∂T ) = ∅ we have Hm−1(Sing(T )∩K) <∞.

In turn the above theorem implies the following structural result.

Corollary 1.9. Let T be as in Theorem 1.4 and assume in addition that p is odd. Denote
by {Λi}i the connected components of sptp(T ) \ (sptp(∂T ) ∪ Sing(T )). Then each Λi is an
orientable smooth minimal submanifold of Σ and there is a choice of (smooth) orientations
and multiplicities Qi ∈ [1, p2 ] ∩ N such that the following properties hold for every open
U b Rm+n \ sptp(∂T )

(a) Each Ti = Qi JΛiK is an integral current in U and thus, having chosen an orientation
~S for the rectifiable set Sing(T ), we have

(∂Ti) U = Θi
~SHm−1 (Sing(T ) ∩ U)

for some integer valued Borel function Θi;
(b) ∑i M(Ti U) <∞ and T U = ∑

i Ti U mod(p);
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(c) ∑i M((∂Ti) U) <∞, (∂T ) U = ∑
i(∂Ti) U mod(p) and

(∂T ) U =
∑
i

Θi
~SHm−1 (Sing(T ) ∩ U) ;

in particular
∑
i Θi(q) is an integer multiple of p for Hm−1-a.e. q ∈ Sing(T ) ∩ U .

It is tempting to advance the following conjecture.

Conjecture 1.10. The conclusions of Theorem 1.8 hold for p even as well.

From the latter conjecture one can easily conclude an analogous structure theorem as in
Corollary 1.9. Note that the conjecture is known to hold for p = 2 in every codimension (in
which case, in fact, we know that Sing(T ) has dimension at most m − 2) and for p = 4 in
codimension 1.

1.2. Plan of the paper. The paper is divided into five parts: the first four parts contain
the arguments leading to the proof of Theorems 1.4 and 1.6, while the last part is concerned
with the proof of the rectifiability Theorem 1.8 and of Corollary 1.9. Each part is further
divided into sections. The proof of Theorems 1.4 and 1.6 is obtained by contradiction, and is
inspired by F. Almgren’s work on the partial regularity for area minimizing currents in any
codimension as revisited by the first-named author and E. Spadaro in [8, 10, 11]. In particular,
Part 1 contains the preliminary observations and reductions aimed at stating the contradiction
assumption for Theorems 1.4 and 1.6, whereas Part 2, Part 3, and Part 4 are the counterpart
of the papers [8], [10], and [11], respectively. An interesting feature of the regularity theory
presented in this work is that Almgren’s multiple valued functions minimizing the Dirichlet
energy are not the right class of functions to consider when one wants to approximate a
minimizing current mod(p) in a neighborhood of a flat interior singular point whenever the
density of the point is precisely p

2 . Solving this issue requires (even in the codimension n̄ = 1
case) the introduction of a class of special multiple valued functions minimizing a suitably
defined Dirichlet integral. The regularity theory for such maps (which we call linear theory) is
the content of our paper [7]. Applications of multivalued functions to flat chains mod(p) were
already envisioned by Almgren in [3], even though he considered somewhat different objects
than those defined in [7]. Because of this profound interconnection between the two theories,
the reading of [7] is meant to precede that of the present paper.
Acknowledgments. C.D.L. acknowledges the support of the NSF grants DMS-1946175

and DMS-1854147. A.M. was partially supported by INdAM GNAMPA research projects.
The work of S.S. was supported by the NSF grants DMS-1565354, DMS-RTG-1840314 and
DMS-FRG-1854344.

2. Notation

We add below a list of standard notation in Geometric Measure Theory, which will be used
throughout the paper. More notation will be introduced in the main text when the need arises.

Br(x) open ball in Rm+n centered at x ∈ Rm+n with radius r > 0;
ωm Lebesgue measure of the unit disc in Rm;
|A| Lebesgue measure of A ⊂ Rm+n;
Hm m-dimensional Hausdorff measure in Rm+n;

Λm(Rm+n) vector space of m-vectors in Rm+n;
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Dm(U) space of smooth differential m-forms with compact support in an open subset
U ⊂ Rm+n;

Fm, (F p
m) integral flat chains (modulo p) of dimension m;

Rm, (Rp
m) integer rectifiable currents (modulo p) of dimension m; we write T = JM,~τ, θK if

T is defined by integration with respect to ~τ θHm M for a locally Hm-rectifiable
set M oriented by the Borel measurable unit m-vector field ~τ with multiplicity θ;

Im, (I p
m) integral currents (modulo p) of dimension m;

M, (Mp) mass functional (mass modulo p);
‖T‖, (‖T‖p) Radon measure associated to a current T (to a class [T ]) with locally finite mass

(mass modulo p);
~T Borel measurable unit m-vector field in the polar decomposition T = ~T ‖T‖ of a

current with locally finite mass; if T = JM,~τ, θK is rectifiable, then ~T = sgn(θ)~τ
‖T‖-a.e., so that ~T is an orientation of M ;

T A restriction of the current T to the set A: well defined for any Borel A when T
has locally finite mass, and for A open if T is any current;

〈T, f, z〉 slice of the current T with the function f at the point z;
f]T push-forward of the current T through the map f ;

Θm(µ, x) m-dimensional density of the measure µ at the point x, given by Θm(µ, x) :=
limr→0+

µ(Br(x))
ωm rm when the limit exists;

ΘT (x), Θ(T, x) same as Θm(‖T‖, x) if T is an m-dimensional current with locally finite mass;
v(M,Θ) rectifiable m-varifold defined by ΘHm M ⊗ δT·M for a locally Hm-rectifiable set

M and a locally Hm M -integrable multiplicity Θ;
v(T ) integral varifold associated to an integer rectifiable current T : if T = JM,~τ, θK,

then v(T ) = v(M, |θ|);
δV [X] first variation of the varifold V in the direction of the vector field X;

AΣ second fundamental form of a submanifold Σ ⊂ Rm+n;
HΣ mean curvature of a submanifold Σ ⊂ Rm+n;

Lip(X,Y ) space of Lipschitz functions f : X → Y , where X,Y are metric spaces;
Lip(f) Lipschitz constant of the Lipschitz function f ;

(AQ(Rn),G) metric space of classical Q-points in Rn;
(AQ(Rn),Gs) metric space of special Q-points in Rn;

η(S) average of the Q-point S, so that if S = ∑Q
i=1 JSiK ∈ AQ(Rn) then η(S) =

Q−1 ∑Q
i=1 Si ∈ Rn;

η ◦ f average of the (possibly special) multiple valued function f ;
Gr(u) set-theoretical graph of a (possibly multi-valued) function u;

TF integer rectifiable current associated (via push-forward) to the image of a (possibly
special) multiple valued function;

Gu integer rectifiable current associated to the graph of a (possibly special) multiple
valued function.
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Part 1. Preliminary observations and blow-up sequence

3. Preliminary reductions

We recall first that, as specified in [15, 4.2.26], for any S ∈ Rm(Σ) we can find a representative
mod(p), namely a T ∈ Rm(Σ) congruent to S mod(p) such that

‖T‖(A) ≤ p

2 H
m(A) for every Borel A ⊂ Σ. (3.1)

In particular, such a representative has multiplicity function θ such that |θ| ≤ p/2 at ‖T‖-a.e.
point, and it satisfies Mp([T U ]) = ‖T‖(U) for every open set U and spt(T ) = sptp(T )
(observe in passing that the restriction to an open set U is defined for every current). It
is evident that if T ∈ Rm(Σ) is area minimizing mod(p) in Ω ∩ Σ then T is necessarily
representative mod(p) in Ω ∩ Σ, in the sense that (3.1) holds true for every Borel A ⊂ Ω ∩ Σ.
For this reason, we shall always assume that T is representative mod(p), and that the
aforementioned properties concerning multiplicity, mass and support of T are satisfied. Note
also that such T is area minimizing mod(p) in any smaller open set U ⊂ Ω. Moreover T is
area minimizing mod(p) in Ω if and only if T Ω is area minimizing mod(p) in Ω. Also, for Ω
sufficiently small the regularity of Σ guarantees that Σ ∩ Ω is a graph, and thus, if in addition
Ω is a ball, Σ ∩ Ω is a Lipschitz deformation retract of Rm+n. A current S ∈ Rm(Σ ∩ Ω) is
thus a cycle mod(p) if and only if it is a cycle mod(p) in Rm+n. In these circumstances it does
not matter what the shape of the ambient manifold Σ is outside Ω and thus, without loss of
generality, we can assume that Σ is in fact an entire graph. By the same type of arguments
we can also assume that ∂p[T ] = 0 in Ω. We summarize these reductions in the following
assumption (which will be taken as a hypothesis in most of our statements) and in a lemma
(which will be used repeatedly).

Assumption 3.1. Σ is an entire C3,a0 (m+ n̄)-dimensional graph in Rm+n with 0 < a0 ≤ 1,
and Ω ⊂ Rm+n is an open ball. T is an m-dimensional representative mod(p) in Σ that is area
minimizing mod(p) in Σ ∩ Ω and such that (∂T ) Ω = 0 mod(p) in Ω.

Lemma 3.2. Let Ω, Σ and T be as in Assumption 3.1. Let T ′ ∈ Rm(Σ) be such that
spt(T ′ − T ) ⊂ Ω and ∂T ′ = ∂T mod(p). Then

M(T Ω) ≤M(T ′ Ω) . (3.2)

Theorem 1.4 is then equivalent to

Theorem 3.3. Under the Assumption 3.1 Sing(T ) has Hausdorff dimension at most m− 1.

4. Stationarity and compactness

Another important tool that will be used repeatedly in the sequel is the fact that the
integral varifold v(T ) induced by an area minimizing representative mod(p) T is stationary in
the open set Ω ∩ Σ \ sptp(∂T ).

Lemma 4.1. Let Ω, Σ and T be as in Assumption 3.1. Then v(T ) is stationary in Σ ∩ Ω,
namely

δv(T )[X] = 0 for all X ∈ C1
c (Ω,Rm+n) tangent to Σ. (4.1)

More generally, for X ∈ C1
c (Ω,Rm+n) we have

δv(T )[X] = −
ˆ
X · ~HT (x) d‖T‖(x) , (4.2)
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where the mean curvature vector ~HT can be explicitly computed from the second fundamental
form AΣ of Σ. More precisely, if the orienting vector field of T is ~T (x) = v1 ∧ . . . ∧ vm and vi
are orthonormal, then

~HT (x) =
m∑
i=1

AΣ(vi, vi) . (4.3)

Proof. Consider a diffeomorphism Φ of Ω such that Φ(Σ ∩ Ω) ⊂ Σ ∩ Ω and Φ|Ω\K ≡ id|Ω\K
for some compact set K ⊂ Σ ∩Ω. The current Φ]T satisfies spt(T −Φ]T ) b Σ ∩Ω. Moreover,
since ∂(Φ]T ) = Φ](∂T ) and ∂T = 0 mod(p), also ∂(Φ]T ) = 0 mod(p), so that, in particular,

∂(Φ]T ) = ∂T mod(p). (4.4)

From (3.2), and setting V := v(T ), we then get

‖V ‖(Ω) = M(T Ω) ≤M(Φ]T Ω) = ‖Φ]V ‖(Ω) .

This easily implies that V is stationary in Σ ∩ Ω.
The second claim of the Lemma follows then from the stationarity of V in Σ, see for instance

[21]. �

Consider now an open ball BR = Ω ⊂ Rm+n, a sequence of Riemannian manifolds Σk and
a sequence of currents Tk such that each triple (Ω,Σk, Tk) satisfies the Assumption 3.1. In
addition assume that:

(a) Σk converges locally strongly in C2 to a Riemannian submanifold Σ of Rm+n which is
also an entire graph;

(b) supk ‖Tk‖(BR) = supk Mp(Tk BR) <∞;
(c) supk Mp(∂(Tk BR)) <∞.

By the compactness theorem for integral currents mod(p) (cf. [15, Theorem (4.2.17)ν , p. 432]),
we conclude the existence of a subsequence, not relabeled, of a current T ∈ Rm(Rm+n) and of
a compact set K ⊃ BR such that

lim
k→∞

F p
K(Tk BR − T ) = 0

and
(∂T ) BR = 0 mod(p) .

Let Uδ be the closure of the δ-neighborhood of Σ and consider that, for a sufficiently small
δ > 0, the compact set K ′ := BR ∩ Uδ is a Lipschitz deformation retract of Rm+n. For k
sufficiently large, the currents Tk BR are supported in K ′ and [15, Theorem (4.2.17)ν ] implies
that spt(T ) ⊂ K ′. Since δ can be chosen arbitrarily small, we conclude that spt(T ) ⊂ Σ and
hence that T ∈ Rm(Σ).

At the same time, by Allard’s compactness theorem for stationary integral varifolds, we
can assume, up to extraction of a subsequence, that v(Tk BR) converges to some integral
varifold V in the sense of varifolds.

Proposition 4.2. Consider Ω,Σk, Tk,Σ, T and V as above. Then
(i) T is minimizing mod(p) in Ω ∩ Σ, so that, in particular, T is representative mod(p);
(ii) V = v(T ) is the varifold induced by T .
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Proof. Let us simplify the notation by writing Tk in place of Tk BR. Recall that F p
K(Tk−T )→

0 for some compact set K ⊃ BR. This means that there are sequences of rectifiable currents
Rk, Sk and integral currents Qk 1 with support in K such that

Tk − T = Rk + ∂Sk + pQk (4.5)
and

lim
k→∞

(M(Rk) + M(Sk)) = 0 . (4.6)

As above, denote by Uδ the closure of the δ-neighborhood of the submanifold Σ. Observe
next that, for every δ sufficiently small, Kδ := Uδ ∩ BR is a Lipschitz deformation retract.
Moreover, for each k sufficiently large spt(Tk) ⊂ Kδ. We can thus assume, without loss of
generality, the existence of a k̄(δ) ∈ N such that

spt(Rk), spt(Sk), spt(Qk) ⊂ Kδ ∀k ≥ k̄(δ) . (4.7)
Next, if we denote by Uδ,k the closures of the δ-neighborhoods of Σk, due to their C2 regularity
and C2 convergence to Σ, for a δ > 0 sufficiently small (independent of k) the nearest point
projections

pk : Uδ,k → Σk

are well defined. Moreover,
lim
σ↓0

sup
k

Lip(pk|Uσ,k) = 1 . (4.8)

We now show that T is area minimizing mod(p) in BR ∩ Σ. Assume not: then there is a
ρ < R and a current T̂ with spt(T − T̂ ) ⊂ Bρ ∩ Σ such that

∂T̂ = ∂T mod(p)
and, for every s ∈]ρ,R[,

ε := M(T Bs)−M(T̂ Bs) > 0 , (4.9)
where ε is independent of s because of the condition spt(T − T̂ ) ⊂ Bρ.

Denote by d : Rm+n → R the map x 7→ |x| and consider the slices 〈Sk, d, s〉. By Chebyshev’s
inequality, for each k we can select an sk ∈]ρ, R+ρ

2 [ such that

M(〈Sk, d, sk〉) ≤
2

R− ρ
M(Sk) . (4.10)

Consider therefore the current:
T̂k := Tk (Rm+n \Bsk)− 〈Sk, d, sk〉+Rk Bsk + T̂ Bsk . (4.11)

Observe first that spt(Tk− T̂k) ⊂ BR+ρ
2

. Also, note that (4.5) implies that ∂Sk has finite mass.
Hence, by [21, Lemma 28.5(2)],

〈Sk, d, sk〉 = ∂(Sk Bsk)− (∂Sk) Bsk .

In particular, combining the latter equality with (4.5), we get

∂T̂k : = ∂(Tk Rm+n \Bsk) + ∂((Tk − T −Rk − pQk) Bsk) + ∂(Rk Bsk) + ∂(T̂ Bsk)
= ∂Tk − p∂(Qk Bsk) + ∂(T̂ − T ) ,

1Although the definition of flat convergence modulo p is given with Qk flat chains, a simple density argument
shows that we can in fact take them integral.



10 CAMILLO DE LELLIS, JONAS HIRSCH, ANDREA MARCHESE, AND SALVATORE STUVARD

where in the second line we have used that spt(T̂ − T ) ⊂ Bρ ⊂ Bsk . Since ∂(T̂ − T ) = 0
mod(p) in Σ ⊂ Rm+n, we conclude that ∂(T̂k−Tk) = 0 mod(p) in Rm+n. However, considering
(4.7), for k large enough the currents T̂k, Sk, Rk, Qk, T and T̂ are all supported in the domain
of definition of the retraction pk. Since (pk)]Tk = Tk, we then have that ∂(Tk − (pk)]T̂k) = 0
mod(p) in Σk. Consider also that, for each σ > 0 fixed, there is a k̄(σ) ∈ N such that all the
currents above are indeed supported in Uσ,k when k ≥ k̄(σ). This implies in particular that,
by (4.8),

lim inf
k↑∞

M((pk)]T̂k) = lim inf
k↑∞

M(T̂k) .

Up to extraction of a subsequence, we can assume that sk → s for some s ∈ [ρ, R+ρ
2 ]. Recalling

the semicontinuity of the p-mass with respect to the flat convergence mod(p), we easily see
that (since the Tk’s and T are all representative mod(p))

lim inf
k→∞

M(Tk Bsk) ≥M(T Bs) .

Next, by the estimates (4.10) and (4.6) we immediately gain

lim inf
k↑∞

(M(T̂k)−M(Tk)) ≤ −ε .

Finally, since the map pk is the identity on Σk, again thanks to (4.8) and to the observation
on the supports of T̂k − Tk, it turns out that spt((pk)]T̂k − Tk) ⊂ Σk ∩BR for k large enough.
We thus have contradicted the minimality of Tk.

Observe that, if in the argument above we replace T̂ with T itself, we easily achieve that,
for every fixed ρ > 0, there is a sequence {sk} ⊂]ρ, R+ρ

2 [ converging to some s ∈ [ρ, R+ρ
2 ], with

the property that
lim inf
k↑∞

(M(T Bsk)−M(Tk Bsk)) ≥ 0 .

By this and by the semicontinuity of the p-mass under flat convergence, we easily conclude
that

lim
k→∞

‖Tk‖(Bρ) = ‖T‖(Bρ) for every ρ < R.

The latter implies then that ‖Tk‖
∗
⇀ ‖T‖ in the sense of measures in BR. Consider now the

rectifiable sets Ek, E and the Borel functions Θk : Ek → N \ {0}, Θ : E → N \ {0} such that

‖Tk‖ = ΘkHm Ek , ‖T‖ = ΘHm E .

Let TqEk (resp. TqE) be the approximate tangent space to Ek (resp. E) at Hm-a.e. point q.
The varifold v(Tk) is then defined to be ΘkHm Ek ⊗ δTqEk . If the varifold limit V is given
by Θ′Hm F ⊗ δTqF , we then know that ‖Vk‖

∗
⇀ ‖V ‖ = Θ′Hm F . But since ‖Vk‖ = ‖Tk‖,

we then know that Hm((F \E) ∪ (E \ F )) = 0 and that Θ′ = Θ Hm-almost everywhere. This
shows then that V = v(T ). �

5. Slicing formula mod(p)

In this section we prove a suitable version of the slicing formula for currents mod(p), which
will be useful in several contexts. We let I p

m(C) denote the group of integral currents mod(p),
that is of classes [T ] ∈ Rp

m(C) such that ∂p [T ] ∈ Rp
m−1(C).
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Lemma 5.1. Let Ω ⊂ Rm+n be a bounded ball, let [T ] ∈ I p
m(Ω) be an integral current mod(p),

and let f : Ω→ R be a Lipschitz function. If T ∈ Rm(Ω) is any rectifiable representative of
[T ] and Z ∈ Rm−1(Ω) is any rectifiable representative of [∂T ], then the following holds for
a.e. t ∈ R:

(i) 〈T, f, t〉 = ∂(T {f < t})− Z {f < t}mod(p);
(ii) 〈T, f, t〉 is a representative mod(p) if T is a representative mod(p);
(iii) if T is a representative mod(p), and if ∂T = 0 mod(p), then

M(〈T, f, t〉) = Mp(∂(T {f < t})) .

Before coming to the proof of Lemma 5.1 we wish to point out two elementary consequences
of the theory of currents mod(p) which are going to be rather useful in the sequel.

Lemma 5.2. If T is an integer rectifiable m-dimensional current in Rm+n and f : Rm+n → Rk
is a Lipschitz map with k ≤ m, then:

(i) T is a representative mod(p) if and only if the density of T is at most p
2 ‖T‖-a.e.

(ii) If T is a representative mod(p), then 〈T, f, t〉 is a representative mod(p) for a.e.
t ∈ Rk.

(iii) If n = 0 and spt(T ) ⊂ K for a compact set K, then F p
K(T ) = Mp(T ).

(iv) Let T be as in (iii) and in particular T = Θ JKK, where Θ is integer valued. If we let

|Θ(x)|p := min{|Θ(x)− kp| : k ∈ Z} , (5.1)

then

Mp(T E) =
ˆ
E
|Θ(x)|p dx for all Borel E ⊂ Rm. (5.2)

Proof. (i) is an obvious consequence of Federer’s characterization in [15]: an integer rectifiable
current T of dimension m is a representative mod(p) if and only if ‖T‖(E) ≤ p

2H
m(E) for

every Borel set E. By the coarea formula for rectifiable sets, this property is preserved for a.e.
slice and thus (ii) is immediate. Moreover, again by Federer’s characterization, if T is as in
(iv), and if k(x) = arg min{|Θ(x)− kp| : k ∈ Z}, then setting Θ′(x) := Θ(x)− k(x) p we have
that T ′ = Θ′ JKK is a representative mod(p) of T , and thus, since |Θ′| = |Θ|p, (5.2) follows
directly from Mp(T E) = ‖T ′‖(E).

As for (iii), since T is a top-dimensional current, Rm+1(K) = {0}. We thus have

F p
K(T ) = inf {M(R) : T = R+ pP for some R ∈ Rm(K) and P ∈ Fm(K)} .

Observe however that, since K is m-dimensional, Fm(K) consists of the integer rectifiable
currents with support in K. A simple computation gives then

F p
K(T ) =

ˆ
K
|Θ(x)|p dx

and we can use (iv) to conclude. �

Proof of Lemma 5.1. (ii) has been addressed already in Lemma 5.2, and (iii) is a simple
consequence of Lemma 5.2 and of (i) with the choice Z = 0.

We now come to the proof of (i). By [17, Theorem 3.4], there exists a sequence {Pk}∞k=1 of
integral polyhedral chains and currents Rk ∈ Rm(Ω), Sk ∈ Rm+1(Ω) and Qk ∈ Im(Ω), with
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the following properties for every k ≥ 1:

T − Pk = Rk + ∂Sk + pQk , (5.3)

Mp(Pk) ≤Mp(T ) + 1
k2k , (5.4)

Mp(∂Pk Ω) ≤Mp(∂T Ω) + 1
k2k , (5.5)

M(Rk) + M(Sk) ≤
2
k2k . (5.6)

Since Pk is an integral current, by the classical slicing theory (cf. for instance [21, Lemma
28.5(2)]), the following formula holds for a.e. t ∈ R:

〈Pk, f, t〉 = ∂ (Pk {f < t})− (∂Pk) {f < t}. (5.7)

The identity (5.3) implies that ∂Sk has locally finite mass, and thus Sk is an integral current.
In particular, ∂〈Sk, f, t〉 = −〈∂Sk, f, t〉. Furthermore, the slicing formula holds true for Sk as
well, that is for a.e. t ∈ R one has:

〈Sk, f, t〉 = ∂ (Sk {f < t})− (∂Sk) {f < t} . (5.8)

Since Z = ∂T mod(p), there exist currents R̃k ∈ Rm−1(Ω), S̃k ∈ Rm(Ω) and Q̃k ∈ Im−1(Ω)
such that for every k ≥ 1:

Z − ∂T = R̃k + ∂S̃k + pQ̃k , (5.9)

M(R̃k) + M(S̃k) ≤
1
k2k . (5.10)

Combining (5.3) and (5.9), we can therefore write:
Z − ∂Pk = ∂T − ∂Pk + Z − ∂T

= R̃k + ∂(Rk + S̃k) + p(∂Qk + Q̃k) .
(5.11)

The identity (5.11) implies that ∂(Rk + S̃k) has locally finite mass, and thus in particular
Rk + S̃k is an integral current. Hence, for a.e. t ∈ R the slicing formula holds true for Rk + S̃k,
that is:

〈Rk + S̃k, f, t〉 = ∂
(
(Rk + S̃k) {f < t}

)
−
(
∂(Rk + S̃k)

)
{f < t} . (5.12)

From the identities (5.3) and (5.11), and using (5.7), (5.8), (5.12), and the slicing formula
for Qk we easily conclude that the following holds for a.e. t ∈ R:

〈T, f, t〉 − ∂(T {f < t}) + Z {f < t}
=R̃k {f < t} − 〈S̃k, f, t〉+ ∂(S̃k {f < t}) + pQ̃k {f < t} . (5.13)

Now, Q̃k {f < t} is an integral current and thus, setting K := Ω, we can estimate

F p
K(〈T, f, t〉 − (∂ (T {f < t} − Z {f < t})) ≤M(R̃k) + M(S̃k) + M(〈S̃k, f, t〉) .

Since limk

(
M(R̃k) + M(S̃k)

)
= 0, it remains to show that, for a.e. t,

lim
k→∞

M(〈S̃k, f, t〉) = 0 .
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In order to see this, fix ε > 0. By [21, Lemma 28.5(1)], we have that there is a Borel set Ek
with measure |Ek| ≤ ε

2k such that

M(〈S̃k, f, t〉) ≤ Lip(f)2k
ε

M(S̃k) for all t 6∈ Ek . (5.14)

In particular, if we set E := ⋃
k Ek, we have |E| ≤ 2ε, and using (5.10) we see that

M(〈S̃k, f, t〉) ≤ ε−1Lip(f)k−1 for all t 6∈ E .
Hence limk→∞M(〈S̃k, f, t〉) = 0 for all t 6∈ E. Since ε is arbitrary, this concludes the proof. �

Remark 5.3. We are actually able to give a much shorter proof of Lemma 5.1(i), provided
one can prove that there exists an integral current T̃ such that T̃ = T mod(p). Indeed, in this
case, since T̃ is integral the classical slicing formula gives

〈T̃ , f, t〉 = ∂
(
T̃ {f < t}

)
− (∂T̃ ) {f < t}.

On the other hand, the conditions T̃ = T mod(p) and ∂T̃ = ∂T = Z mod(p) imply that there
are rectifiable currents R and Q such that T = T̃ + pR and Z = ∂T̃ + pQ, and thus we deduce
〈T, f, t〉 = ∂ (T {f < t})− Z {f < t}+ p (−∂ (R {f < t}) + 〈R, f, t〉+Q {f < t}) ,

as we wanted.
The existence of an integral representative in any integral class mod(p) is in fact a very

delicate question. If K is any given compact subset of Rm+n then a class [T ] ∈ I p
m(K) does not

necessarily have a representative in Im(K) when m ≥ 2; see [17, Proposition 4.10]. Positive
answers have been given, instead, when m = 1 in the class Im(K) for any given compact K in
[17, Theorem 4.5], and in any dimension in the class ⋃K Im(K) in the remarkable work [28].

6. Monotonicity formula and tangent cones

From Lemma 4.1 and the classical monotonicity formula for stationary varifolds, cf. [2] and
[21], we conclude directly the following corollary.

Corollary 6.1. Let T,Σ and Ω = BR be as in Assumption 3.1. Then, if q ∈ spt(T ) ∩ Ω, the
following monotonicity identity holds for every 0 < s < r < R− |q|:

r−m‖T‖(Br(q))− s−m‖T‖(Bs(q))−
ˆ

Br(q)\Bs(q)

|(x− q)⊥|2
|x− q|m+2 d‖T‖(x)

=
ˆ r

s
ρ−m−1

ˆ
Bρ(q)

(x− q)⊥ · ~HT (x) d‖T‖(x) dρ , (6.1)

where Y ⊥(x) denotes the component of the vector Y (x) orthogonal to the tangent plane of T
at x (which is oriented by ~T (x)). In particular:

(i) There is a dimensional constant C(m) such that the map r → eC‖AΣ‖0r ‖T‖(Br(q))
ωmrm

is
monotone increasing.

(ii) The limit

ΘT (q) := lim
r↓0

‖T‖(Br(q))
ωmrm

exists and is finite at every point q ∈ BR.
(iii) The map q 7→ ΘT (q) is upper semicontinuous and it is a positive integer at Hm-a.e.

q ∈ spt(T ). In particular spt(T ) ∩BR = {ΘT ≥ 1}.
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Next, we introduce the usual blow-up procedure to analyze tangent cones at q ∈ spt(T ).

Definition 6.2. Fix a point q ∈ spt(T ) and define

ιq,r(x) := x− q
r

∀ r > 0 .

We denote by Tq,r the currents
Tq,r := (ιq,r)]T ∀ r > 0 .

Recalling Allard’s theory of stationary varifolds, we then know that, for every sequence
rk ↓ 0, a subsequence, not relabeled, of v(Tq,rk) converges locally to a varifold C which is
a stationary cone in TqΣ (the tangent space to Σ at q). Combined with Proposition 4.2 we
achieve the following corollary.

Corollary 6.3. Let T,Σ and Ω = BR be as in Assumption 3.1, let q ∈ spt(T ) ∩ Ω, and
let rk ↓ 0. Then there is a subsequence, not relabeled, and a current T0 with the following
properties:

(i) T0 Bρ ∈ Rm(TqΣ), ∂T0 Bρ = 0 mod(p) for every ρ > 0;
(ii) T0 Bρ is a representative mod(p) and is area minimizing mod(p) in Bρ ∩ TqΣ for

every ρ > 0;
(iii) T0 is a cone, namely (ι0,r)]T0 = T0 for every r > 0;
(iv) For every ρ > 0 there is r ≥ ρ and K ⊃ Br such that

lim
k→∞

F p
K(Tq,rk Br − T0 Br) = 0 .

(v) If sptp(T0) = spt(T0) is contained in an m-dimensional plane π0, then T0 = Q Jπ0K for
some Q ∈ Z ∩ [−p

2 ,
p
2 ].

Before coming to its proof, let us state an important lemma which will be used frequently
during the rest of the paper. See [14, Theorem 7.6] for a proof.

Lemma 6.4 (Constancy Lemma). Assume π ⊂ Rm+n is an m-dimensional plane and let
Ω ⊂ Rm+n be an open set such that Ω ∩ π is connected. Assume T ∈ Rm(π) is a current such
that (∂pT ) Ω = 0. Finally let ~v = v1 ∧ . . . ∧ vm for an orthonormal basis v1, . . . , vm of π.
Then there is a Q ∈ Z ∩ [−p

2 ,
p
2 ] such that T Ω = Q~vHm (Ω ∩ π) mod(p).

Proof of Corollary 6.3. Note that (v) is an obvious consequence of the constancy lemma and
of (i). In order to prove the remaining statements, first extract a subsequence such that
Vk = v(Tq,rk) converges to a stationary cone C as above. Then observe that for every j ∈ N,
using a classical Fubini argument and Lemma 5.1 we find a radius ρ(j) ∈ [j, j + 1] such that

lim inf
k

Mp(∂(Tq,rk Bρ(j))) = lim inf
k

M(〈Tq,rk , | · |, ρ(j)〉)

≤ lim inf
k
‖Tq,rk‖(Bj+1 \Bj) = ωmΘT (q)((j + 1)m − jm) .

Thus we can find a subsequence to which we can apply the compactness Proposition 4.2. By
a standard diagonal argument we can thus find a single subsequence rk with the following
properties:

(a) For each j there is a current T j ∈ Rm(TqΣ) such that
lim
k→∞

F p

Bj+1
(Tq,rk Bρ(j) − T j) = 0 .

(b) Each T j is a representative mod(p) and v(T j) = C Bρ(j).
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(c) Each T j is area minimizing mod(p) in Bρ(j).
Notice next that T j Bρ(i) = T i mod(p) for every i ≤ j. If we then define the current

T0 :=
∑
i∈N

T i (Bρ(i) \Bρ(i−1)) ,

with ρ(−1) := 0, then the latter satisfies the conclusions (i), (ii) and (iv).
In the remaining part of the proof we wish to show (iii), after possibly changing T0 to

another representative mod(p) of the same class.
To this aim, consider that, by standard regularity theory for stationary varifolds, the

closed set R = spt(C) is countably m-rectifiable, it is a cone with vertex at the origin and
‖C‖ = ΘC(x)Hm R, where ΘC is the density of the varifold C. By the monotonicity formula
and v(T ) = C we have

ΘT0(x) = ΘC(x) .
If x is a point where the approximate tangent TxR exists, we then conclude easily that, up
to subsequences, we can apply the same argument above and find that (T0)x,rk with rk ↓ 0
converges locally mod(p) to a current S satisfying the corresponding conclusions:

(i)’ S Bρ ∈ Rm(TqΣ) and ∂S Bρ = 0 mod(p) for every ρ > 0;
(ii)’ S Bρ is a representative mod(p) and is area minimizing mod(p) in Bρ ∩TqΣ for every

ρ > 0;
(iv)’ For every ρ > 0 there is r ≥ ρ and K ⊃ Br such that

lim
k→∞

F p
K((T0)x,rk Br − S Br) = 0 .

However, for S we would additionally know that it is supported in TxR, which is an m-
dimensional plane. We then could apply the Constancy Lemma and conclude that, if v1, . . . , vm
is an orthonormal basis of TxR, then ΘC(x) ∈ N ∩ [1, p2 ] and, for any ρ > 0,

either S Bρ = ΘC(x)v1 ∧ . . . ∧ vmHm TxR ∩Bρ mod(p)
or S Bρ = −ΘC(x)v1 ∧ . . . ∧ vmHm TxR ∩Bρ mod(p) .

In particular we conclude that there is a Borel function ε : spt(C) = R→ {−1, 1} such that
T0 = εΘC ~vHm R , (6.2)

where ~v(x) is an orienting Borel unit m-vector for TxR. Clearly, since R is a cone, we can
choose ~v(x) with the additional property that ~v(x) = ~v(λx) for every positive λ. Also, since
the varifold C is a cone, the density ΘC is 0-homogeneous as well. Moreover, at all points x
where ΘC(x) = p

2 we can arbitrarily set ε(x) = 1, since this would neither change the class
mod(p), nor the fact that T0 is representative mod(p).

Fix now a radius s > 0 such that the conclusions of Lemma 5.1 hold with T = T0, f = |·|,
and t = s, and consider the cone T ′ := 〈T0, | · |, s〉 ××{0}. Observe that ∂(T ′ − T0 Bs) = 0
mod(p). We now make the following simple observation: if Z ∈ Rm(Rm+n) with spt(Z)
compact is such that ∂Z = 0 mod(p) in Rm+n, then ∂(Z ××{0}) = Z mod(p). The proof is
in fact a simple consequence of the definition, since ∂Z = 0 mod(p) implies the existence of
integer rectifiable currents Q(1)

k and Q(2)
k and flat currents Qk such that

∂Z = pQk +Q
(1)
k + ∂Q

(2)
k

and
M(Q(1)

k ) + M(Q(2)
k )→ 0 .
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Using the general formula ∂(A×× 0) = A− (∂A)×× 0 we then obtain

∂(Z ×× 0) = Z − pQk ×× 0−Q(1)
k ××{0}+ ∂(Q(2)

k ×× 0)−Q(2)
k ,

which by
M(Q(1)

k ××{0}+Q
(2)
k ) + M(Q(2)

k ×× 0)→ 0
implies that indeed ∂(Z ×× 0) = Z mod(p).

We apply the above observation to Z = T ′ − T0 Bs. In that case we conclude however
that the cone

Z ×× 0 is identically 0,
because it is an (m+1)-dimensional rectifiable current supported in the countably m-rectifiable
set R. We thus must necessarily have that T ′ − T0 Bs = 0 mod(p). Applying the argument
of the previous paragraph, we of course again conclude that

T ′ = ε′ΘC ~vHm R ∩Bs . (6.3)
Consider now, as above, a point x ∈ Bs where the approximate tangent plane to R exists.
Then (T ′)x,r converges, as r ↓ 0, to ε′(x) ΘC(x)~v(x)Hm TxR, whereas (T0)x,r converges, as
r ↓ 0, to ε(x) ΘC(x)~v(x)Hm TxR. However the two limits must be congruent mod(p) and,
in case ΘC(x) < p

2 , this necessarily implies ε(x) = ε′(x).
Fix now λ > 0. Since T ′ is a cone and s is arbitrary, we conclude that for Hm a.e.

x ∈ R∩{ΘC <
p
2} we must necessarily have ε(x) = ε′(x) = ε′(λx) = ε(λx). On the other hand

we already have ε(x) = ε(λx) = 1 if ΘC(x) = p
2 . Hence we have concluded that ε(λx) = ε(x)

for Hm-a.e. x ∈ R. In particular (ι0,λ)]T0 = T0. The arbitrariness of λ implies now the desired
conclusion (iii) and completes the proof of the corollary. �

7. Strata and blow-up sequence

Definition 7.1 (Q-points). For every Q ∈ N \ {0}, we will let DQ(T ) denote the points of
density Q of the current T , namely

DQ(T ) := {q ∈ Ω : ΘT (q) = Q} .

We also set
RegQ(T ) := Reg(T ) ∩DQ(T ) and SingQ(T ) := Sing(T ) ∩DQ(T ).

Theorem 1.6 is thus equivalent to

Theorem 7.2. Under Assumption 3.1, for every Q < p
2 the set SingQ(T ) has Hausdorff

dimension at most m− 2.

Before proceeding, we need to recall the following definition.

Definition 7.3. An integral m-varifold V is called a k-symmetric cone (where 0 ≤ k ≤ m) if
it can be written as the product of a k-dimensional plane passing through the origin times an
(m− k)-dimensional cone. The largest plane passing through the origin such that the above
holds is called the spine of V . If V is stationary, then the standard stratification of V is

S0 ⊂ S1 ⊂ · · · ⊂ Sm, (7.1)
where

Sk := {q ∈ spt(V ) : no tangent cone to V at q is (k + 1)-symmetric}. (7.2)
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As a consequence of Corollary 6.3 and of the classical Almgren’s stratification theorem, we
have now the following

Proposition 7.4. Let T,Σ and Ω be as in Assumption 3.1 and consider the set
Z := Ω ∩ spt(T ) \

⋃
Q∈N\{0},Q≤ p2

DQ(T ) .

Then Hm−1+α(Z) = 0 for every α > 0.

Proof. By Lemma 4.1, the varifold V = v(T ) is stationary in Σ ∩ Ω, thus we can consider the
stratification of V as in (7.1) and (7.2). If q ∈ Sm \ Sm−1 then there is at least one tangent
cone to V at q which is supported in a flat plane π0. Then there is a current T0 as in Corollary
6.3, obtained as a limit Tq,rk for an appropriate rk ↓ 0, which satisfies v(T0) = V . Thus by
the constancy lemma ΘT0(0) = ΘT (q) must belong to [1, p2 ] ∩ N. This implies that Z ⊂ Sm−1.
Our statement then follows immediately from the well known fact that dimH Sk ≤ k for every
0 ≤ k ≤ m. �

We shall also need the following elementary yet fundamental lemmas. Given v ∈ Rm+n, we
will adopt the notation τv := ιv,1, so that τv(x) := x− v.

Lemma 7.5. Assume T ∈ Rm(Rm+n) is an m-dimensional integer rectifiable current such
that ∂T = 0 mod(p) and the associated varifold v(T ) is a k-symmetric cone with spine
Rk × {0} ⊂ Rm+n. Then

(τv)]T = T mod(p) for every v ∈ Rk × {0} , (7.3)
and there exists an (m− k)-dimensional cone T ′ such that

T = JRkK× T ′ mod(p) . (7.4)
Furthermore, if T is a representative mod(p) then so is T ′; in this case, v(T ) = v(

q
Rk

y
×T ′),

and v(T ′) has trivial spine. Finally, if T is locally area minimizing mod(p), then so is T ′.

Proof. Write T = JM,~τ, θK, so that v(T ) = v(M, |θ|). Since v(T ) is a k-symmetric cone with
spine Rk × {0}, the locally Hm-rectifiable set M is a cone which is invariant with respect to
Rk ×{0}, in the sense that there exists a locally Hm−k-rectifiable set M ′ ⊂ Rm+n−k such that
M = Rk ×M ′. Furthermore, |θ| is a 0-homogeneous function such that |θ|(x + v) = |θ|(x)
for every v ∈ Rk × {0}. By the properties of M , modulo changing the sign of θ, we can
also assume that the orienting unit m-vector field ~τ is a 0-homogeneous function such that
~τ(x+ v) = ~τ(x) for every v ∈ Rk × {0}.

Now, given two Lipschitz and proper maps f, g : Rm+n → Rm+n, and letting h : [0, 1] ×
Rm+n → Rm+n be the linear homotopy from f to g, namely the function defined by

h(t, x) := (1− t) f(x) + t g(x) ,
the homotopy formula (see [21, Equation 26.22]) states that

g]T − f]T = ∂h](J(0, 1)K× T ) + h](J(0, 1)K× ∂T ) . (7.5)
Since ∂T = 0 mod(p), (7.5) yields

g]T − f]T = ∂h](J(0, 1)K× T ) mod(p) . (7.6)
Now, let v ∈ Rk × {0}, and apply (7.6) with

f(x) = x and g(x) = τv(x) = x− v .
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We can compute, for any ω ∈ D1+m(R× Rm+n):

h](J(0, 1)K× T )(ω) : = (J(0, 1)K× T )(h]ω)

=
ˆ 1

0
dt

ˆ
〈ω(h(t, x)), [dh(t,x)]](e1 ∧ ~T (x))〉 d‖T‖(x)

= −
ˆ 1

0
dt

ˆ
〈ω(h(t, x)), v ∧ ~T (x)〉 d‖T‖(x) = 0 ,

where we have used that v ∈ Rk × {0}, ~T (x) ∈ Λm(Tan(M,x)) at ‖T‖-a.e. x, and M is
invariant with respect to Rk × {0}. Using that ω can be chosen arbitrarily, we conclude (7.3)
from (7.6).

Next, let p : Rm+n → Rm+n be the orthogonal projection operator onto Rk × {0}. Using
standard properties of the slicing of integer rectifiable currents (see e.g. [15, Theorem 4.3.2(7)])
and (7.3), we can conclude then that

(τv)]〈T,p, z + v〉 = 〈(τv)]T,p, z〉 = 〈T,p, z〉 mod(p) , (7.7)

for every z, v ∈ Rk × {0} such that the slices exist, or, equivalently, that
〈T,p, z〉 = (τw−z)]〈T,p, w〉 mod(p) (7.8)

for every z, w ∈ Rk × {0} such that the slices exist. Fix z such that 〈T,p, z〉 exists, and
let T ′ ∈ Rm−k(Rm+n−k) be such that 〈T,p, z〉 = (τ−z)]T ′ after identifying Rm+n−k with
{0} × Rm+n−k. Then, the current T̃ := JRkK× T ′ satisfies

〈T − T̃ ,p, z〉 = 0 mod(p) for Hk-a.e. z ∈ Rk × {0} . (7.9)
Observe that we may write

T = θ ~τ Hm M , T̃ = θ̃ ~τ Hm M , (7.10)
for a 0-homogeneous function θ̃ such that θ̃(x+ v) = θ̃(x) for every v ∈ Rk × {0}. Also notice
that, since M is invariant with respect to Rk × {0} and p is the orthogonal projection onto
Rk ×{0}, if we identify Rk ×{0} with Rk and if we set φ := p|M , then Jkφ(x) > 0 for Hm-a.e.
x ∈M , where Jkφ(x) is the k-dimensional Jacobian of φ, defined by

Jkφ(x) :=
(
det

(
dφ(x) ◦ dφ(x)T

))1/2
, dφ(x) : TxM → Rk

at all points x ∈M such that TxM exists.
By the considerations above, the standard slicing theory of rectifiable currents (see e.g.

[15, Theorem 4.3.8]) implies that for Hk-a.e. z ∈ Rk × {0} the set Mz := M ∩ p−1(z) is
(m− k)-rectifiable and

〈T,p, z〉 =
q
Mz, ζ, θ|Mz

y
, 〈T̃ ,p, z〉 =

r
Mz, ζ, θ̃

∣∣∣
Mz

z
(7.11)

for a Borel measurable unit (m− k)-vector field ζ = ζz which is uniquely determined by ~τ and
dφ. If z ∈ Rk × {0} is such that both (7.9) and (7.11) hold, then

θ(x) = θ̃(x) mod(p) at Hm−k-a.e. x ∈Mz . (7.12)
By Fubini’s theorem, the conclusion in (7.12) holds at Hm-a.e. x ∈M , so that (7.4) follows
from (7.10) and the definition of T̃ .
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If T is a representative mod(p), then 〈T,p, z〉 is a representative mod(p) for Hk-a.e. z ∈
Rk ×{0}, and thus we can choose z such that the corresponding T ′ is a representative mod(p).
With this choice, T̃ is a representative mod(p) as well, and since θ̃(x) = θ(x) mod(p) for
Hm-a.e. x ∈M we deduce that

θ̃(x) = ε(x) θ(x) with ε(x) ∈ {−1, 1}, for Hm-a.e. x ∈M , (7.13)

where ε(x) = 1 or |θ(x)| = p
2 . As a consequence, |θ̃| = |θ| Hm M -a.e., which in turn implies

that v(T̃ ) = v(T ). The last conclusion of the lemma is elementary, and the details of the
proof are omitted. �

Lemma 7.6. Assume T0 ∈ Rm(Rm+n) is an m-dimensional locally area minimizing current
mod(p) without boundary mod(p) which is a cone (in the sense of Corollary 6.3 (iii)). Suppose,
furthermore, that v(T0) is (m− 1)-symmetric but not m-symmetric (namely not flat). Then,
Θ(T0, 0) ≥ p

2 .

Proof. Let T0 = JM,~τ, θK, so that v(T0) = v(M, |θ|). Since v(T0) is (m− 1)-symmetric but
not m-symmetric, by Lemma 7.5 T0 = JπK× T ′0 mod(p), where π is the (m− 1)-dimensional
spine of v(T0), and T ′0 is a one-dimensional cone which has no boundary mod(p) and is locally
area minimizing mod(p). Since Θ(T ′0, 0) = Θ(T0, 0), we can reduce the proof of the lemma to
the case when m = 1.

Thus we can assume that T0 = ∑
iQi J`iK, where `1, . . . , `N are pairwise distinct oriented

half lines in R1+n with the origin as common endpoint and the Qi’s are integers. Without loss
of generality we can assume that ∂ J`iK = − J0K. Observe that

Θ(T0, 0) = 1
2
∑
i

|Qi|

and that ∑iQi = 0 mod(p) since T0 has no boundary mod(p). If ∑iQi = 0, then T0 would
be an integral current without boundary, which in turn would have to be area minimizing.
But since T0 is by assumption not flat, this is not possible. Thus ∑iQi = kp for some nonzero
integer k. This clearly implies ∑

i

|Qi| ≥ |k|p ≥ p ,

which in turn yields Θ(T0, 0) ≥ p
2 . �

We are now ready to state the starting point of our proof of Theorem 3.3 and Theorem 7.2,
which will be achieved by contradiction.

Proposition 7.7 (Contradiction sequence). Assume Theorem 7.2 is false. Then there are
integers m,n ≥ 1 and 2 ≤ Q < p

2 and reals α, η > 0 with the following property. There are
(i) T,Σ and Ω as in Assumption 3.1 such that 0 ∈ SingQ(T );
(ii) a sequence of radii rk ↓ 0 and an m-dimensional plane π0 such that v(T0,rk) converges

to V = QHm π0 ⊗ δπ0;
(iii) limk→∞Hm−2+α

∞ (DQ(T0,rk) ∩B1) ≥ η.
If Theorem 3.3 is false then either there is a sequence as above or, for Q = p

2 , there is a
sequence as above where (iii) is replaced by
(iii)s limk→∞Hm−1+α

∞ (DQ(T0,rk) ∩B1) ≥ η.
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Proof. Suppose first that Theorem 3.3 is false. Fix p ∈ N\{0, 1}, and let m ≥ 1 be the smallest
integer for which the assertion of Theorem 3.3 is false. Observe that m > 1. Fix thus a T,Σ
and Ω satisfying Assumption 3.1 for which there is an α > 0 with Hm−1+α(Sing(T )) > 0.
Then, by Proposition 7.4, there must be a Q ∈ N ∩ [1, p2 ] such that Hm−1+α(SingQ(T )) > 0.

By [21, Theorem 3.6], Hm−1+α-a.e. point in SingQ(T ) has positive Hm−1+α
∞ -upper density:

fix a point q with this property, and assume, without loss of generality, that q = 0 and that
(∂T ) B1 = 0 mod(p). Then, there exists a sequence of radii rk such that rk ↓ 0 as k → ∞
and such that

lim
k→∞

Hm−1+α
∞ (SingQ(T0,rk) ∩B1) = lim

k→∞

Hm−1+α
∞ (SingQ(T ) ∩Brk)

rm−1+α
k

> 0 (7.14)

Moreover, we can assume that the sequence of stationary varifolds v(T0,rk) converges to a
stationary cone C ⊂ T0Σ. Consider the compact sets {ΘT0,rk

≥ Q} ∩B1 and assume, without
loss of generality, that they converge in the Hausdorff sense to a compact set K. As it is well
known, by the monotonicity formula for stationary varifolds we must have ΘC(q) ≥ Q for
every q ∈ K. On the other hand, this implies that every point q ∈ K belongs to the spine
of the cone C; see [27]. In turn, by the upper semicontinuity of the Hm−1+α

∞ measure with
respect to Hausdorff convergence of compact sets, we have

Hm−1+α
∞ (K) ≥ lim sup

k→∞
Hm−1+α
∞ (DQ(T0,rk) ∩B1) > 0 . (7.15)

Recall that the spine of the cone C is however a linear subspace of Rm+n, cf. again [27]. This
implies in turn that C must be supported in a plane, which completes the proof under the
assumption that Theorem 3.3 is false.

Now, let us suppose Theorem 7.2 is false. Then, we can find p,m, n and Q < p
2 , together

with Ω,Σ, T as in Assumption 3.1, and α > 0 such that Hm−2+α(SingQ(T )) > 0. Arguing as
above, we can then find a point q ∈ SingQ(T ) with positive Hm−2+α

∞ -upper density, and we
can suppose, without loss of generality, that q = 0. Then, there is a sequence of radii rk with
rk ↓ 0 as k →∞ such that:

• the blow-up sequence T0,rk converges, in the sense of Corollary 6.3 (iv), to a current
T0 ∈ Rm(T0Σ) satisfying properties (i), (ii), and (iii) of Corollary 6.3;

• limk→∞Hm−2+α
∞ (SingQ(T0,rk) ∩B1) > 0;

• the sequence of varifolds v(T0,rk) converges to a stationary cone C in T0Σ;
• C = v(T0).
• the spine of C is a linear subspace of T0Σ having dimension at least m− 1.

Now, if the spine of C is (m− 1)-dimensional, then C is (m− 1)-symmetric but not flat,
hence forcing Θ(T0, 0) ≥ p

2 by Lemma 7.6, which is a contradiction to the fact that 0 ∈ DQ(T )
with Q < p

2 . Thus, C is supported in an m-dimensional plane, and the proof is complete. �
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Part 2. Approximation with multiple valued graphs

Following the blueprint of Almgren’s partial regularity theory for area minimizing currents,
we now wish to show that any area minimizing current modulo p can be efficiently approximated,
in a region where it is “sufficiently flat”, with the graph of a multiple valued function which
minimizes a suitably defined Dirichlet energy. Suppose that, in the region of interest, the
current is a Q-fold cover of a given m-plane π, where Q ∈

[
1, p2

]
. The “classical” theory

of Dir-minimizing Q-valued functions as in [12] is powerful enough to accomplish the task
whenever Q < p

2 (which is always the case when p is odd). If p is even and Q = p
2 , on the

other hand, Almgren’s Q-valued functions are not anymore the appropriate maps, and we will
need to work with the class of special multiple valued function defined in [7].

8. First Lipschitz approximation

From now on we denote by Br(x, π) the disk Br(x) ∩ (x+ π), where π is some linear m-
dimensional plane. The symbol Cr(x, π), instead, will always denote the cylinder Br(x, π)×π⊥.
If we omit the plane π we then assume that π = π0 := Rm × {0}, and the point x will be
omitted when it is the origin. Let ei be the unit vectors in the standard basis. We will regard
π0 as an oriented plane and we will denote by ~π0 the m-vector e1 ∧ . . . ∧ em orienting it.
We denote by pπ and p⊥π the orthogonal projection operators onto, respectively, π and its
orthogonal complement π⊥. If we omit the subscript we then assume again that π = π0.

We will make the following

Assumption 8.1. Σ ⊂ Rm+n is a C2 submanifold of dimension m+ n̄ = m+ n− l, which is
the graph of an entire function Ψ : Rm+n̄ → Rl satisfying the bounds

‖DΨ‖0 ≤ c0 and A := ‖AΣ‖0 ≤ c0 , (8.1)
where c0 is a positive (small) dimensional constant. T is a representative mod(p) of dimension
m with spt(T ) ⊂ Σ and which, for some open cylinder C4r(x) (with r ≤ 1) and some positive
integer Q ≤ p

2 , satisfies
p]T = Q JB4r(x)K mod(p) and (∂T ) C4r(x) = 0 mod(p) . (8.2)

We next define the following relevant quantities.

Definition 8.2 (Excess measure). For a current T as in Assumption 8.1 we define the
cylindrical excess E(T,C4r(x)), the excess measure eT and its density dT :

E(T,C4r(x)) := 1
ωm(4r)m (‖T‖(C4r(x))−Q|B4r(x)|) ,

eT (A) := ‖T‖(A× Rn)−Q|A| for every Borel A ⊂ B4r(x)

dT (y) := lim sup
s→0

eT (Bs(y))
ωmsm

= lim sup
s→0

E(T,Cs(y)) .

The subscript T will be omitted whenever it is clear from the context.
We define the height function of T in the cylinder C4r(x) by

h(T,C4r(x), π0) := sup{|p⊥(q)− p⊥(q′)| : q, q′ ∈ spt(T ) ∩C4r(x)}.

Note that, since T is a representative mod(p), we have ‖T‖ = ‖T‖p, where ‖T‖p denotes
the Radon measure on Rm+n defined by the mass mod(p). However, it is false in general
that ‖p]T‖(A) = Q|A|, since p]T is not necessarily a representative mod(p). The excess
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written above can thus be rewritten as ω−1
m (4r)−m (‖T‖p(C4r(x))− ‖p]T‖p(C4r(x))), but not

as ω−1
m (4r)−m (‖T‖(C4r(x))− ‖p]T‖(C4r(x))), which is the standard cylindrical excess in the

classical regularity theory for area minimizing currents. Of course, since ‖p]T‖p ≤ ‖p]T‖ as
measures, this “excess mod(p)” is, in general, larger than the classical excess.

Definition 8.3. In general, given a measure µ on a domain Ω ⊂ Rm we define its noncentered
maximal function as

mµ(y) := sup
{
µ(Bs(z))
ωmsm

: y ∈ Bs(z) ⊂ Ω
}
.

If f is a locally Lebesgue integrable non-negative function, we denote by mf the maximal
function of the measure fLm.

The first Lipschitz approximation is given by the following proposition, according to which
a representative mod(p) T as in Assumption 8.1 can be realized as the graph of a Lipschitz
continuous multiple valued function in regions where the maximal function of its excess
measure is suitably small. As already motivated, the approximating function needs to be a
special multi-valued function whenever p is even and Q = p

2 . Concerning special multi-valued
functions, we will adopt the notation introduced in [7]: in particular, the space of special Q-
points in Rn is denoted AQ(Rn), Gs is the metric on it, and |S| := Gs(S,Q J0K) if S ∈ AQ(Rn).
Given a function u : Ω→ AQ(Rn) (possibly classical, namely with target AQ(Rn)), we will let
Gr(u) and Gu denote the set-theoretic graph of u and the integer rectifiable current associated
with it, respectively; see [7, Definition 4.1]. Also, we will let osc(u) denote the quantity

osc(u) := inf
q∈Rn

‖|u	 q|‖L∞(Ω) = inf
q∈Rn

‖Gs(u(x), QJqK)‖L∞(Ω) . (8.3)

Remark 8.4. The definition given in (8.3) for the quantity osc(u) is the special multi-valued
counterpart of the definition provided in [8] for the AQ(Rn)-valued case. In [10], on the other
hand, the following comparable definition for the oscillation is used:

oscC(u) := sup{|v − w| : x, y ∈ Ω, v ∈ spt(u(x)), w ∈ spt(u(y))} .
More precisely one has

1
2 oscC(u) ≤ osc(u) ≤

√
Q oscC(u) .

To see the first inequality, let x, y ∈ Ω and v ∈ spt(u(x)), w ∈ spt(u(y)); then, for any q ∈ Rn
we have

|v − w| ≤ |v − q|+ |w − q| ≤ |u(x)	 q|+ |u(y)	 q| ≤ 2‖|u	 q|‖L∞(Ω).

Taking the infimum over all q ∈ Rn gives the claimed inequality. For the second inequality, fix
any arbitrary y ∈ Ω and q ∈ spt(u(y)). Then, for any x ∈ Ω we have

|u(x)	 q| ≤
√
Q oscC(u).

Taking the supremum over all x ∈ Ω and afterwards the infimum in q ∈ spt(u(y)) gives the
desired bound.

Proposition 8.5 (Lipschitz approximation). There exists a constant C = C(m,n,Q) > 0
with the following properties. Let T and Ψ be as in Assumption 8.1 in the cylinder C4s(x).
Set E := E(T,C4s(x)), let 0 < δ < 1 be such that 16mE < δ, and define

K :=
{
meT ≤ δ

}
∩B3s(x) .
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Then, there is a Lipschitz map u defined on B3s(x) and taking either values in AQ(Rn), if
Q < p

2 , or in AQ(Rn), if Q = p
2 , for which the following facts hold.

(i) Gr(u) ⊂ Σ;
(ii) Lip(u) ≤ C

(
δ

1/2 + ‖DΨ‖0
)
and osc (u) ≤ Ch(T,C4s(x), π0) + Cs‖DΨ‖0.

(iii) Gu (K × Rn) = T (K × Rn) mod(p);
(iv) For r0 := 16 m

√
E/δ < 1 we have

|Br(x) \K| ≤ 5m
δ

eT
(
{meT ≥ δ} ∩Br+r0s(x)

)
∀ r ≤ 3 s. (8.4)

We remark that in Proposition 8.5 we are not assuming that T is area minimizing modulo
p. The proof of the proposition will require a suitable BV estimate for 0-dimensional slices
mod(p), which is the content of the next section. This Jerrard-Soner type estimate is in
fact a delicate point of the present paper, since the approach of [8] (which relies on testing
the current with a suitable class of differential m-forms) is unavailable in our setting, since
Assumption 8.1 only guarantees ∂T C4s(x) = 0 mod(p) and not ∂T C4s(x) = 0.

9. A BV estimate for slices modulo p

Recall that Fk(C) denotes the group of k-dimensional integral flat chains supported in a
closed set C.

Definition 9.1. We define the groups

X := {Z ∈ F0(Rn) : Z = ∂S for some S ∈ R1(Rn)} ,
X̃p := {Z ∈ F0(Rn) : Z = ∂S + pP for some S ∈ R1(Rn), P ∈ F0(Rn)} .

On X we define the distance function

dF (T1, T2) = F(T1 − T2) := inf
{
M(S) : S ∈ R1(Rn) such that T1 − T2 = ∂S

}
,

whereas on X̃p we set
dFp(T1, T2) = Fp(T1 − T2) := inf

{
M(S) : S ∈ R1(Rn) such that T1 − T2 = ∂S + pP

for some P ∈ F0(Rn)
}
.

Remark 9.2. Note that the following properties are satisfied:
(i) both X and X̃p are subgroups of F0(Rn), with X ⊂ X̃p;

(ii) X̃p = {T ∈ F0(Rn) : T = Smod(p) for some S ∈ X}, the non-trivial inclusion being
a consequence of [17, Corollary 4.7]. Hence, the quotient groups X/mod(p) and
X̃p/mod(p) coincide and they are characterized by X/mod(p) = X̃p/mod(p) = Xp,
where

Xp := {[T ] ∈ F p
0 (Rn) : T = ∂Smod(p) for some S ∈ R1(Rn)} ;

(iii) for T ∈ X (resp. T ∈ X̃p), one has F(T ) ≥ F (T ) ( resp. Fp(T ) ≥ F p(T ));
(iv) (X,dF ) is a complete metric space; the pseudo-metric dFp induces a complete metric

space structure on the quotient Xp, which we still denote dFp .

In the rest of the section we will use the theory of BV maps defined over Euclidean domains
and taking values in metric spaces, as established in Ambrosio’s foundational paper [4].
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Lemma 9.3. Assume T is a one-dimensional integer rectifiable current satisfying Assumption
8.1 in C4 (that is, set m = 1, x = 0 and r = 1 in Assumption 8.1), and let Tt be the slice
〈T,p, t〉 ∈ R0(R1+n) for a.e. t ∈ B4 =]− 4, 4[. Then, the map Φ: t ∈ J :=]− 4, 4[ 7→

[
p⊥] Tt

]
is in BV (J,Xp), and moreover

|DΦ|(I)2 ≤ 2eT (I)‖T‖(I × Rn) for every Borel set I ⊂ J. (9.1)

Proof. Let us first observe that since (∂T ) C4 = 0 mod(p) then by Lemma 5.1 for a.e. t ∈ J
we have

Tt = ∂ (T {p < t}) mod(p) , (9.2)

and thus Φ(t) =
[
∂p⊥] (T {p < t})

]
∈ Xp. Fix now t0 ∈ J such that (9.2) holds. Again by

Lemma 5.1, for a.e. t ∈]t0, 4[ we have Φ(t)− Φ(t0) =
[
∂p⊥] (T ((t0, t)× Rn))

]
. So

Fp(Φ(t)− Φ(t0)) ≤M(p⊥] (T ((t0, t)× Rn))). (9.3)

Arguing analogously for the t ∈ (−4, t0) and integrating allows to conclude
ˆ 4

−4
dFp(Φ(t),Φ(t0)) dt ≤ CM(T C4) , (9.4)

which shows that Φ ∈ L1(J,Xp).

Next, we pass to the proof of (9.1). Without loss of generality, assume I = (a, b) to be an
interval with a and b Lebesgue points for Φ. It is a consequence of [15, Theorem 4.5.9] (see
also [13, Section 8.1]) that |DΦ|(I) equals the classical essential variation ess var(Φ) given by

ess var(Φ) := sup
{ N∑
i=1

dFp(Φ(ti),Φ(ti−1)) : a ≤ t0 < t1 < . . . tN ≤ b

with t0, . . . , tN Lebesgue points for Φ
}
.

(9.5)

Let t0, . . . , tN be as in (9.5), and let e denote the constant unit 1-vector orienting R×{0} ⊂
R1+n. Then, one has

N∑
i=1

dFp(Φ(ti),Φ(ti−1)) =
N∑
i=1
Fp(p⊥] Tti − p⊥] Tti−1) ≤

N∑
i=1

M(p⊥] (T ((ti−1, ti)× Rn)))

≤
ˆ
I×Rn

|~T − 〈~T , e〉e| d‖T‖ =
ˆ
I×Rn

√
1− 〈~T , e〉2 d‖T‖

≤
√

2
ˆ
I×Rn

√
1− 〈~T , e〉 d‖T‖

≤
√

2 (‖T‖(I × Rn)− ‖p]T‖(I × Rn))
1
2 (‖T‖(I × Rn))

1
2

≤
√

2(eT (I))
1
2 (‖T‖(I × Rn))

1
2 ,

where the first inequality has been deduced analogously to (9.3), and the last one follows from
‖p]T‖p ≤ ‖p]T‖ as measures. This shows (9.1) and concludes the proof. �



REGULARITY OF AREA MINIMIZING CURRENTS MOD p 25

10. Comparison between distances

Another delicate point in the proof of Proposition 8.5 is that Lemma 9.3 is not powerful
enough to guarantee the Lipschitz continuity of the approximating map u. To that aim, we
shall need to combine the Jerrard-Soner type estimate (9.1) with the result of Theorem 10.1
below.

Let Q and p be positive integers with Q ≤ p
2 , and fix any A,B ∈ AQ(Rn). Observe that

A,B ∈ F0(Rn). Furthermore, the flat chain A − B is an element of the subgroup X of
Definition 9.1, so that we can compute F(A−B). Next, let us consider the flat chain A+B.
In the case when Q = p

2 , we claim that A + B ∈ X̃p, so that we can compute Fp(A + B).
Indeed, fix any z ∈ Rn, and let hz : (0, 1)× Rn → Rn be the function defined by

hz(t, x) := z + t(x− z).
Then, the cone over A+B with vertex z, that is the 1-dimensional integral current R given by

R := z ×× (A+B) := (hz)](J(0, 1)K× (A+B))
satisfies

∂R = A+B − 2Q JzK = A+B − p JzK ,
which proves our claim. Furthermore, the above argument also shows that

Fp(A+B) ≤M(R) = F(A−Q JzK) + F(B −Q JzK) . (10.1)
Having this in mind, we extend the norm F to A+B by setting

F(A+B) := inf
z∈Rn
{F(A−QJzK) + F(B −QJzK)} when Q = p

2 , (10.2)

so that (10.1) implies that
Fp(A+B) ≤ F(A+B) for every A,B ∈ AQ(Rn) when Q = p

2 . (10.3)
We can now state the main result of this section.

Theorem 10.1. Let p and Q be positive integers with Q ≤ p
2 . Let A := ∑Q

i=1JAiK and
B := ∑Q

i=1JBiK in AQ(Rn), and let σ ∈ {−1, 1}. If
(a) either σ = 1,
(b) or σ = −1 and Q = p

2 ,
then

Fp(A− σB) = F(A− σB) . (10.4)

In order to reach a proof of Theorem 10.1, we will need some preliminary results. First,
for a given S ∈ R1(Rn), we say that S has the property (NC) (no cycles) if there exists no
0 6= R ∈ R1(Rn) such that ∂R = 0 and

M(S) = M(R) + M(S −R).
We recall that Im(Rm+n) denotes the space of m-dimensional integral currents in Rm+n.

Given S ∈ I1(Rn) satisfying the property (NC), we call a good decomposition of S a writing

S =
N∑
j=1

θjSj ,
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where θj ∈ N, each Sj is the integral current given by Sj = JγjK for γj a simple Lipschitz curve
of finite length, Sj 6= Sk if j 6= k and moreover

M(S) =
∑
j

θjM(Sj), M(∂S) =
∑
j

θjM(∂Sj). (10.5)

The existence of a good decomposition for a current S ∈ I1(Rn) satisfying the property (NC)
is a direct consequence of [15, 4.2.25]. We say that a good decomposition S = ∑N

j=1 θjSj has the
property (NTC) (no topological cycles) if there exists no function f : {1, . . . , N} → {−1, 0, 1},
f 6≡ 0, such that

∂

 N∑
j=1

f(j)Sj

 = 0. (10.6)

Lemma 10.2. For any S ∈ I1(Rn) with the property (NC) there exists S′ ∈ I1(Rn) with
the property (NC) and a good decomposition of S′ that satisfies ∂S′ = ∂S, M(S′) ≤M(S),
and that has the property (NTC).

Proof. Let S ∈ I1(Rn), and assume without loss of generality that S 6= 0. Among all currents
S′ ∈ I1(Rn) with the property (NC) and such that ∂S′ = ∂S and M(S′) ≤M(S), and among
all possible good decompositions of S′ not satisfying the property (NTC) fix a current S′ and
a decomposition

S′ =
N∑
j=1

θ′jS
′
j

such that the quantity N is minimal. Observe that necessarily N ≥ 1.
Let f : {1, . . . , N} → {−1, 0, 1} be a function such that (10.6) holds. Define:

j− ∈ argmin{θ′j : f(j) = −1}
and

j+ ∈ argmin{θ′j : f(j) = +1}.
Observe that since S′ has the property (NC), the sets {θ′j : f(j) = −1} and {θ′j : f(j) = +1}
are non-empty.

Now, consider the quantities
M− :=

∑
j : f(j)=−1

M(S′j)

and
M+ :=

∑
j : f(j)=+1

M(S′j).

Clearly, if M+ ≥M− then the current
S′+ := S′ − θj+

∑
j

f(j)S′j

satisfies M(S′+) ≤M(S′) ≤M(S). If instead M+ ≤M− then the current

S′− := S′ + θj−
∑
j

f(j)S′j

satisfies M(S′−) ≤M(S′) ≤M(S). In any of the two cases, ∂S′± = ∂S′ = ∂S, and the obvious
resulting decomposition of S′± has at most N − 1 indexes. Hence, by minimality, the one of
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the two which does not increase the mass necessarily has the property (NTC). This concludes
the proof. �

Lemma 10.3. Let S ∈ I1(Rn) and 0 6= Z ∈ R0(Rn) be such that:
(H1) A−B = ∂S + pZ;
(H2) S has the property (NC) and there exists a good decomposition

S =
N∑
j=1

θjSj

with the property (NTC).
Then, there exists j0 ∈ {1, . . . , N} such that ∂Sj0 = JxK− JyK with x, y ∈ spt(Z) and θj0 ≥

p
2 .

Proof. Let S and Z be as above. Firstly, we claim that the set of indexes j ∈ {1, . . . , N} such
that ∂Sj = JxK− JyK with x, y ∈ spt(Z) is non-empty. We write

Z =
M∑
`=1

JN`K−
M∑
`=1

JP`K,

where the N`’s (resp. the P`’s) are not necessarily distinct, so that

∂S =
Q∑
i=1

JAiK + p
M∑
`=1

JP`K−

 Q∑
i=1

JBiK + p
M∑
`=1

JN`K

 .
Consider any of the points P`. By (10.5), the multiplicity of ∂S in P` is at least p, and
furthermore, since Q ≤ p

2 , there exist j ∈ {1, . . . , N} and `′ ∈ {1, . . . ,M} such that ∂Sj =
JP`K− JN`′K, which proves our claim.

Next, assume by contradiction that for every j such that ∂Sj is supported on spt(Z) one
has θj < p

2 . Fix, for instance, the point P1. Arguing as above, after possibly reordering the
indexes (both in the family {Sj} and {N`}), we conclude that there exist N1 and S1 such that
∂S1 = JP1K− JN1K. Moreover, by hypothesis, θ1 <

p
2 . This ensures that we can find P2 and S2

such that ∂S2 = JP2K− JN1K, and again θ2 <
p
2 . The procedure can be iterated as long as the

new points P`+1 (resp. N`+1) are distinct from the previous ones. Since the decomposition of
S has the property (NTC) by hypothesis (H2), this would imply that the procedure can be
iterated indefinitely, which gives the desired contradiction. �

Proof of Theorem 10.1. Let us first consider case (a), with σ = 1.
It suffices to prove that

F(A−B) ≤ Fp(A−B), (10.7)
because the other inequality is obvious.

Suppose by contradiction that
Fp(A−B) < F(A−B), (10.8)

and let S ∈ I1(Rn) and 0 6= Z ∈ R0(Rn) be such that
A−B = ∂S + pZ and M(S) < F(A−B).

We claim that there exist currents S1 ∈ I1(Rn) and Z1 ∈ R0(Rn) such that
A−B = ∂S1 + pZ1, M(S1) < F(A−B) and M(Z1) = M(Z)− 2. (10.9)

The conclusion trivially follows from the claim.
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We proceed with the proof of (10.9). First observe that if S has a cycle R then the current
S′ := S −R satisfies A−B = ∂S′ + pZ and M(S′) = M(S)−M(R) < F(A−B). Therefore,
we can assume without loss of generality that S has the property (NC). Next, applying
Lemma 10.2 we can also assume that S has a good decomposition

S =
N∑
j=1

θjSj

which satisfies the property (NTC). Now, by Lemma 10.3 there exists j0 ∈ {1, . . . , N} such
that ∂Sj0 = JxK− JyK with x, y ∈ spt(Z) and θj0 ≥ p

2 . Let S1 := S − pSj0 . We have

∂S1 = ∂S − pJxK + pJyK,

and thus
A−B = ∂S1 + pZ1,

where Z1 := Z + JxK− JyK. The conclusion M(Z1) = M(Z)− 2 simply follows from (10.5).
Finally, we get

M(S1) ≤
∑
j 6=j0

θjM(Sj) + |θj0 − p|M(Sj0) ≤
N∑
j=1

θjM(Sj)
(10.5)= M(S) < F(A−B),

where the second inequality follows from θj0 ≥
p
2 .

Let us now consider instead case (b), when σ = −1 and Q = p
2 . We know from (10.3) that

Fp(A+B) ≤ F(A+B) ,
where F(A+B) is defined by (10.2). Assume by contradiction that Fp(A+B) < F(A+B).
That is, there exist S ∈ I1(Rn) and Z ∈ R0(Rn) such that

A+B = ∂S + pZ , and M(S) < F(A+B). (10.10)
Observe that it cannot be Z = 0. Also, by Lemma 10.2 there is no loss of generality in

assuming that S admits a good decomposition

S =
N∑
j=1

θjSj

having the property (NTC). Now, if M(Z) = 1 then there exists z ∈ Rn such that Z = JzK.
In that case, if we set R := z ×× (A+B) then we have

∂R = A+B − pJzK = ∂S ,

and
F(A+B) ≤M(R) = F(A−QJzK) + F(B −QJzK)

=
Q∑
i=1

(|Ai − z|+ |Bi − z|) ≤M(S) ,

thus contradicting (10.10).
On the other hand, if M(Z) ≥ 2 (and thus in fact M(Z) ≥ 3) then there exists j0 ∈

{1, . . . , N} such that ∂Sj0 = JxK−KyK with x, y ∈ spt(Z) and θj0 ≥
p
2 . Hence, setting

S1 := S − pSj0 we have
A+B = ∂S1 + pZ1 ,
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with Z1 := Z + JxK− JyK, M(Z1) = M(Z)− 2 and M(S1) ≤M(S). In order to complete the
proof, it suffices to iterate this argument producing currents Sk, Zk until M(Zk) = 1.

�

11. Proof of Proposition 8.5

Since the statement is scaling and translation invariant, there is no loss of generality
in assuming x = 0 and s = 1. Consider the slices Tx := 〈T,p, x〉 ∈ R0(Rm+n) for a.e.
x ∈ Rm × {0} and use [15, Theorem 4.3.2(2)] and [5, Corollary 2.23] to conclude that

M(Tx) ≤ lim
r→0

‖T‖(Cr(x))
ωmrm

≤meT (x) +Q for a.e. x. (11.1)

Now, since meT (x) ≤ δ < 1 for every x ∈ K, we conclude that M(Tx) < Q+ 1 for a.e. x ∈ K.
On the other hand, setting M(x) := M(Tx) for x ∈ B4 we have the simple inequality

M Lm B4 ≥ ‖p]T‖ ≥ ‖p]T‖p = QLm B4 , (11.2)
so that we deduce

M(Tx) = M(x) ≥ Q for a.e. x ∈ B4 . (11.3)
From (11.1) and (11.3) we infer then that M(Tx) = Q for a.e. x ∈ K. Hence, there
are Q functions gi : K → Rn such that p⊥] Tx = ∑Q

i=1 σi(x) Jgi(x)K for a.e. x ∈ K, with
σi(x) ∈ {−1, 1}. In fact, since ‖p]T‖ ≥ QLm B4, the values of σi(x), for fixed x, are
independent of i, and thus p⊥] Tx = σ(x)∑Q

i=1Jgi(x)K. Furthermore, since p]T = QJB4K mod(p),
it has to be σ(x)Q ≡ Q mod(p) as integers. We therefore have to distinguish between two
cases:

(A) Q < p
2 . In this case, the condition σ(x)Q ≡ Q mod(p) is satisfied if and only if

σ(x) = 1. Hence, the functions gi allow to define a measurable map g : K → AQ(Rn)
by setting

g(x) :=
Q∑
i=1

Jgi(x)K .

(B) Q = p
2 . In this case, any measurable choice of σ : K → {−1, 1} would satisfy the

condition σ(x)Q ≡ Q mod(p). On the other hand

g(x) :=

 Q∑
i=1

Jgi(x)K, σ(x)


defines a measurable function g : K → AQ(Rn).

11.1. Lipschitz estimate. Fix j ∈ {1, . . . ,m}, and let p̂j : Rm+n → Rm−1 be the orthogonal
projection onto the (m− 1)-plane given by span(e1, . . . , ej−1, ej+1, . . . , em). For almost every
z ∈ Rm−1, consider the one-dimensional slice T jz := 〈T, p̂j , z〉, and observe thatˆ

Rm−1
M(T jz ) dz ≤M(T ).

Observe that T jz satisfies Assumption 8.1 with m = 1 for a.e. z. Let now pj be the orthogonal
projection pj : Rm+n → span(ej), and for almost every t ∈ R let

(
T jz
)
t := 〈T jz ,pj , t〉. By

Lemma 9.3, the map Φj
z : t 7→ p⊥]

(
T jz
)
t is BV (R, Xp), and moreover

|DΦj
z|(I)2 ≤ 2e

T jz
(I)‖T jz ‖(I × Rn) for every Borel set I ⊂ B4 ∩ span(ej). (11.4)
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Now, observe that

Φj
z(t) = p⊥]

(
T jz

)
t

= p⊥] 〈〈T, p̂j , z〉,pj , t〉 = (−1)m−jp⊥] 〈T,p, x(j, z, t)〉 = (−1)m−jp⊥] Tx(j,z,t),

where x(j, z, t) := (z1, . . . , zj−1, t, zj+1, . . . , zm) ∈ Rm. By [13, formula (79)], we can therefore
conclude that the map Φ: x ∈ Rm 7→ p⊥] Tx is in BV (Rm, Xp). Furthermore, if for every Borel
set A ⊂ B4, for every j ∈ {1, . . . ,m} and for every z = (z1, . . . , zj−1, zj+1, . . . , zm) ∈ Rm−1 we
denote Ajz := {t ∈ R : (z1, . . . , zj−1, t, zj+1, . . . , zm) ∈ A}, we have

|DΦ|(A) ≤
m∑
j=1

ˆ
Rm−1

|DΦj
z|(Ajz) dz

(9.1)
≤
√

2
m∑
j=1

ˆ
Rm−1

(
e
T jz

(Ajz)
) 1

2
(
‖T jz ‖(Ajz × Rn)

) 1
2 dz

≤
√

2
m∑
j=1

(ˆ
Rm−1

e
T jz

(Ajz) dz
) 1

2
(ˆ

Rm−1
‖T jz ‖(Ajz × Rn) dz

) 1
2

≤
√

2m (eT (A))
1
2 (‖T‖(A× Rn))

1
2 .

(11.5)

Thus, from the definition of excess measure modulo p we deduce

|DΦ|(Br(y))2 ≤ 2m2eT (Br(y)) (Q|Br(y)|+ eT (Br(y))) ,

for any Br(y) ⊂ B4. Hence, if we define the maximal function

m|DΦ|(x) := sup
x∈Br(y)⊂B4

|DΦ|(Br(y))
|Br(y)| ,

we can conclude that

(m|DΦ|(x))2 ≤ 2m2
(
QmeT (x) + (meT (x))2

)
≤ Cδ for every x ∈ K.

By [6, Lemma 7.3], one immediately obtains

Fp(Φ(x)− Φ(y)) ≤ Cδ1/2|x− y| for every x, y ∈ K Lebesgue point of Φ.

On the other hand, for a.e. x ∈ K we can regard Φ(x) = g(x) ∈ AQ(Rn) if Q < p
2 or

Φ(x) = σ(x)g0(x) with σ(x) ∈ {−1, 1} and g0(x) ∈ AQ(Rn) if Q = p
2 . In any case, Theorem

10.1 implies that in fact

F(Φ(x)− Φ(y)) ≤ Cδ1/2|x− y| for every x, y ∈ K Lebesgue point of Φ.

Now, first consider the case Q < p
2 . Writing Φ(·) = g(·), we observe that

F(g(x)−g(y)) = min
σ∈PQ

Q∑
i=1
|gi(x)−gσ(i)(y)| ≥ min

σ∈PQ

 Q∑
i=1
|gi(x)− gσ(i)(y)|2

1/2

= G(g(x), g(y)),

where PQ denotes the group of permutations of {1, . . . , Q}.
If Q = p

2 , instead, we have Φ(·) = σ(·)g0(·). If σ(x) = σ(y), then the same computation
produces

F(σ(x)g0(x)− σ(y)g0(y)) ≥ G(g0(x), g0(y)) = Gs(g(x), g(y)).
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If, on the other hand, σ(x) 6= σ(y), and to fix the ideas say that σ(x) = 1 and σ(y) = −1, then
F(g0(x) + g0(y)) : = inf

z∈Rn
{F(g0(x)−QJzK) + F(g0(y)−QKzK)}

≥ inf
z∈Rn

{G(g0(x), QJzK) + G(g0(y), QKzK)}

≥ inf
z∈Rn

(
G(g0(x), QJzK)2 + G(g0(y), QJzK)2

)1/2
.

Now observe that
G(g0(x), QJzK)2 + G(g0(y), QJzK)2

= |g0(x)	 η ◦ g0(x)|2 + |g0(y)	 η ◦ g0(y)|2 +Q|η ◦ g0(x)− z|2 +Q|η ◦ g0(y)− z|2 .
Thus

inf
z∈Rn

(
G(g0(x), QJzK)2 + G(g0(y), QJzK)2

)
= |g0(x)	 η ◦ g0(x)|2 + |g0(y)	 η ◦ g0(y)|2 + Q

2 |η ◦ g0(x)− η ◦ g0(y)|2 .

≥ 1
2Gs(g0(x), g0(y))2 .

This shows that g ∈ Lip(K,AQ(Rn)) (resp. g ∈ Lip(K,AQ(Rn)) with Lip(g) ≤ Cδ1/2.

11.2. Conclusion. Next, in case Q < p
2 , write

g(x) =
∑
i

J(hi(x),Ψ(x, hi(x)))K.

Obviously, x 7→ h(x) := ∑
iJhi(x)K ∈ AQ(Rn̄) is a Lipschitz map on K with Lipschitz constant

≤ C δ
1/2. Recalling [12, Theorem 1.7], we can extend it to a map h̄ ∈ Lip(B3,AQ(Rn̄))

satisfying Lip(h̄) ≤ C δ1/2 (for a possibly larger C) and osc (h̄) ≤ Cosc (h). Finally, set
u(x) :=

∑
i

J(h̄i(x),Ψ(x, h̄i(x)))K.

The same computations of [8, Section 3.2] then show the Lipschitz and the oscillation bound
in Claim (ii) of the Proposition.

For Q = p
2 we argue analogously, using this time the Extension Corollary [7, Corollary 5.3]

in place of [12, Theorem 1.7].
Note that the points (i) and (iii) of the proposition are obvious by construction. Next

observe that, since meT is lower semicontinuous, K is obviously closed. Let U := {meT > δ}
be its complement. Fix r ≤ 3 and for every point x ∈ U ∩Br consider a ball Bx of radius r(x)
which contains x and satisfies eT (Bx) > δωmr(x)m. Since eT (Bx) ≤ E we obviously have

r(x) < m

√
E

ωmδ
< r0 < 1 .

Now, by the definition of the maximal function it follows clearly that Bx ⊂ U ∩ Br+r0 . In
turn, by the 5r covering theorem we can select countably many pairwise disjoint Bxi such
that the corresponding concentric balls B̂i with radii 5r(xi) cover U ∩Br. Then we get

|U ∩Br| ≤ 5m
∑
i

ωmr(xi)m ≤
5m
δ

∑
i

eT (Bxi) ≤ 5m
δ

eT (U ∩Br+r0) .

This shows claim (iv) of the proposition and completes the proof.
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12. First harmonic approximation

Remark 12.1 (Good system of coordinates). Let T be as in Assumption 8.1 in the cylinder
C4r(x). If the excess E = E(T,C4r(x)) is smaller than a geometric constant, then without
loss of generality we can assume that the function Ψ: Rm+n̄ → Rl parametrizing the manifold
Σ satisfies Ψ(0) = 0, ‖DΨ‖0 ≤ C(E1/2 + rA) and ‖D2Ψ‖0 ≤ CA. This can be shown using
a small variation of the argument outlined in [8, Remark 2.5]. First of all we introduce a
suitable notion of nonoriented excess. Given the plane π0 we consider the m-vector ~π0 of mass
1 which gives the standard orientation to it. We then let

|~T (y)− π0|no := min{|~T (y)− ~π0|, |~T (y) + ~π0|} , (12.1)
where | · | is the norm associated to the standard inner product on the space Λm(Rm+n) of
m-vectors in Rm+n, and define

Eno(T,C4r(x)) = 1
2ωm(4r)m

ˆ
C4r(x)

|~T (y)− π0|2no d‖T‖(y) . (12.2)

Consider next the orthogonal projection p : Rm+n → π0 and the corresponding slices 〈T,p, y〉
with y ∈ B4r(x). For a.e. y, such a slice is an integral 0-dimensional current and we let
M(y) ∈ N be its mass. Once again (cf. (11.2)), we observe that under the Assumption 8.1 we
have

M Lm B4r(x) ≥ ‖p]T‖ ≥ ‖p]T‖p = QLm B4r(x) .
Thus, an elementary computation gives

Eno(T,C4r(x)) = 1
ωm(4r)m

(
‖T‖(C4r(x))−

ˆ
B4r(x)

M(y) dy
)

≤ 1
ωm(4r)m (‖T‖(C4r(x))− ‖p]T‖(C4r(x)))

≤ 1
ωm(4r)m (‖T‖(C4r(x))− ‖p]T‖p(C4r(x)))

= E(T,C4r(x)) = E .

At this point we find clearly a point q ∈ spt(T ) ∩C4r(x) such that

min{|~T (q)− ~π0|, |~T (q)− (−~π0)|} ≤ CE1/2

and we can proceed with the very same argument of [8, Remark 3.5].

Definition 12.2 (Eβ-Lipschitz approximation). Let β ∈
(
0, 1

2m

)
, let T be as in Proposition

8.5 such that 32E
1−2β
m < 1. If the coordinates are fixed as in Remark 12.1, then the Lipschitz

approximation of T provided by Proposition 8.5 corresponding to the choice δ = E2β will be
called the Eβ-Lipschitz approximation of T in C3s(x).

In the following theorem, we show that the minimality assumption on the current T and the
smallness of the excess imply that the Eβ-Lipschitz approximation of T in C3s(x) is close to a
Dirichlet minimizer h, and we quantify the distance between u and h in terms of the excess.

Theorem 12.3. For every η∗ > 0 and every β ∈ (0, 1
2m) there exist constants ε∗ > 0 and

C > 0 with the following property. Let T and Ψ be as in Assumption 8.1 in the cylinder
C4s(x), and assume that T is area minimizing mod(p) in there. Let u be the Eβ-Lipschitz
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approximation of T in B3s(x), and let K be the set satisfying all the properties of Proposition
8.5 for δ = E2β. If E ≤ ε∗ and sA ≤ ε∗E

1
2 , then

eT (B5s/2 \K) ≤ η∗Esm , (12.3)
and

Dir(u,B2s(x) \K) ≤ Cη∗Esm . (12.4)
Moreover, there exists a map h defined on B3s(x) and taking either values in AQ(Rn), if
Q < p

2 , or in AQ(Rn), if Q = p
2 , for which the following facts hold:

(i) h(x) = (h̄(x),Ψ(x, h̄(x)) with h̄ Dirichlet minimizing;
(ii)

s−2
ˆ
B2s(x)

Gs(u, h)2 +
ˆ
B2s(x)

(|Du| − |Dh|)2 ≤ η∗Es
m (12.5)

ˆ
B2s(x)

|D(η ◦ u)−D(η ◦ h)|2 ≤ η∗Es
m . (12.6)

Remark 12.4. There exists a dimensional constant c such that, if E ≤ c and sA ≤ E
1/2,

then the Eβ-Lipschitz approximation u of T in C3s(x) satisfies:

Lip(u) ≤ C Eβ , (12.7)
Dir(u,B3s(x)) ≤ C E sm . (12.8)

Equation (12.7) follows from property (ii) of the Lipschitz approximation in Proposition 8.5,
the choice of δ = E2β , and the scaling of A. The estimate in (12.8), instead, is a consequence
of the Taylor expansion of the mass of multiple valued graphs deduced in [7, Corollary 13.2].
Indeed, the remainder term in equation [7, Equation (13.5)] can be estimated byˆ

B3s(x)

∑
i

R̄4(Dui) ≤ C
ˆ
B3s(x)

|Du|4 ≤ C E2β Dir(u,B3s(x)) < 1
4 Dir(u,B3s(x))

for suitably small E. Hence, [7, Equation (13.5)] yields
1
4Dir(u,B3s(x)) ≤ ‖Gu‖(C3s(x))−Qωm(3s)m

≤ (‖T‖(C3s(x))−Qωm(3s)m) + ‖Gu‖((B3s(x) \K)× Rn)
≤ ωmE (3s)m + C E2β |B3s(x) \K| ≤ C E sm

by property (iv) in Proposition 8.5.

Proof. Let us first observe that (12.3) implies (12.4): indeed, the estimate (8.4) implies:

Dir(u,B2s(x) \K) ≤ Lip(u)2|B2s(x) \K| ≤ C eT (B 5
2 s

(x) \K).

Then, note that we can embed AQ(Rn) naturally and isometrically into AQ(Rn) using the
map T ∈ AQ(Rn) 7→ (T, 1). Hence, without loss of generality we may assume that u takes values
in AQ(Rn). Furthermore, each Lipschitz approximation is of the form u(x) = (ū(x),Ψ(x, ū))
with ū taking values in AQ(Rn̄).

Finally, since the statement is scale invariant we may assume x = 0 and s = 1.
We will now show the following.
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Given any sequence of currents Tk supported in manifolds Σk = Gr(Ψk) and corresponding
Lipschitz approximations uk satisfying all the assumptions in B3 with

Ek → 0 and Ak = o(E
1
2
k ) as k →∞,

then the following conclusions hold:

(i)

eTk(B 5
2
\Kk) = o(Ek)

(ii) One of the following holds true: either there is a single Dirichlet minimzing map
h̄ ∈W 1,2(B 5

2
,AQ(Rn̄)) such that

ˆ
Bs

Gs(E
− 1

2
k ūk, h̄)2 +

(
E
− 1

2
k |Dūk| − |Dh̄|

)2
= o(1) for all s < 5

2;

or there are Dirichlet minimizing maps hj ∈ W 1,2(B 5
2
,AQj (Rn̄) with j = 1, . . . , J ,∑

j Qj = Q, and sequences {yj,k}k∈N ∈ Rn̄ such that if we consider the sequence of
maps in W 1,2(B 5

2
,AQ(Rn̄)) given by

h̄k :=

∑
j

Jyj,k ⊕ hjK , σ



with σ ∈ {−1, 1} fixed we have

ˆ
Bs

Gs(E
− 1

2
k ūk, h̄k)2 +

(
E
− 1

2
k |Dūk| − |Dh̄k|

)2
= o(1) for all s < 5

2 .

For sufficiently large k the conclusion of the Theorem therefore holds, since we can replace in
point (ii) ūk by uk and h̄k by hk = (h̄k, E

− 1
2

k Ψk(·, E
1
2
k h̄k)). This can be seen as follows. Recall

that by remark 12.1, we have ‖DΨk‖0 +
∥∥D2Ψk

∥∥
0 = O(E

1
2
k ). As a first step, we may replace

in (ii) (E−
1
2

k |Dūk| − |Dh̄|)2 by |E−1
k |Dūk|2 − |Dh̄|2|. Indeed, for any sequence of non-negative

measurable functions ak, bk we have

ˆ
|ak−bk|2 ≤

ˆ
|a2
k−b2k| =

ˆ
|ak+bk| |ak−bk| ≤ 2

(ˆ
|bk|2

) 1
2
(ˆ
|ak − bk|2

) 1
2

+
ˆ
|ak−bk|2 ;
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hence ‖ak − bk‖2 = o(1) if and only if
∥∥(ak)2 − (bk)2∥∥

1 = o(1). Thus it remains to show that

E−1
k

´
Bs

∣∣∣∣|DΨk(·, ūk)|2 − |DΨk(·, E
1
2
k h̄k)|2

∣∣∣∣ is o(1). We compute explicitly:

Q∑
i=1

E−1
k

ˆ
Bs

∣∣∣∣|DΨk(·, ūik)|2 − |DΨk(·, E
1
2
k h̄

i
k)|2

∣∣∣∣
=

Q∑
i=1

E−1
k

ˆ
Bs

∣∣∣∣|DxΨk(·, ūik) +DyΨ(x, ūik)Dūik|2 − |DxΨk(·, E
1
2
k h̄

i
k) +DyΨ(x,E

1
2
k h̄

i
k)E

1
2 Dh̄ik|2

∣∣∣∣
≤

Q∑
i=1

ˆ
Bs

E−1
k

∣∣∣∣|DxΨk(·, ūik))|2 − |DxΨk(·, E
1
2
k h̄

i
k)|2

∣∣∣∣
+ E

− 1
2

k C1
k(x)

(
E
− 1

2
k |Dū

i
k|+
ˆ
Bs

E−1
k |Dū

i
k|2
)

+ E
− 1

2
k C2

k(x)
(
|Dh̄ik|+

ˆ
Bs

E
1
2
k |Dh̄

i
k|2
)
,

where the measurable functions Cjk(x), j = 1, 2, consist of a product of two first derivatives of
Ψk, and hence

∥∥∥Cjk∥∥∥0
= O(Ek)). Since E−1

k Dir(ūk, B 5
2
),Dir(h̄k, B 5

2
) are uniformly bounded

by (12.8), the last two integrals are o(1).
The remaining term can be estimated by
ˆ
Bs

Q∑
i=1

E−1
k

∣∣∣∣|DxΨk(·, ūik))|2 − |DxΨk(·, E
1
2
k h̄

i
k)|2

∣∣∣∣
≤
ˆ
Bs

Q∑
i=1

E
− 1

2
k

∣∣∣∣DxΨk(·, ūik) +DxΨk(·, E
1
2
k h̄

i
k)
∣∣∣∣ E− 1

2
k

∣∣∣∣DxΨk(·, ūik)−DxΨk(·, E
1
2
k h̄

i
k)
∣∣∣∣

≤ C
ˆ
Bs

E
− 1

2
k ‖DΨk‖0

∥∥∥D2Ψk

∥∥∥
0
Gs(E

− 1
2

k ūk, h̄k) = o(1) .

12.1. Construction of the maps h̄ or hj. Let ι be the isometry defined in [7, Proposition
2.6], and define (v̄k, w̄k,η ◦ ūk) = ι ◦ ūk. As in [7, Definition 2.7], we set

Bk
+ := {x ∈ B 5

2
: |v̄k| = |ū+

k 	 η ◦ ūk| > 0} and

Bk
− := {x ∈ B 5

2
: |w̄k| = |ū−k 	 η ◦ ūk| > 0} .

We distinguish if the limit
lim sup
k→∞

min{|Bk
+|, |Bk

−|} =: b

satisfies b > 0 or b = 0.

Case b > 0 : After translating the currents Tk vertically we may assume without loss of
generality that

ffl
B 5

2
η ◦ ūk = 0 for all k. Since both v̄k and w̄k vanish on sets of measure at

least b > 0, we claim that there exists a constant C = Cb such thatˆ
B 5

2

|ūk|2 ≤ CbEk . (12.9)
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Indeed, observe that the classical Poincaré inequality givesˆ
B 5

2

|ūk|2 =
ˆ
B 5

2

|ūk 	 η ◦ ūk|2 +Q

ˆ
B 5

2

|η ◦ ūk|2

=
ˆ
B 5

2

|v̄k|2 +
ˆ
B 5

2

|w̄k|2 +Q

ˆ
B 5

2

|η ◦ ūk|2

≤ Cb
ˆ
B 5

2

|D|v̄k||2 + Cb

ˆ
B 5

2

|D|w̄k||2 + Cb

ˆ
B 5

2

|Dη ◦ ūk|2 ≤ Cb Dir(ūk, B 5
2
) ,

which implies (12.9) again by (12.8).
Modulo passing to an appropriate subsequence, we therefore have that

E
− 1

2
k ūk → h̄

weakly in W 1,2(B 5
2
,AQ(Rn̄)).

Case b = 0 : We assume that |Bk
−| → 0, the other case being equivalent. Consider the map

ū+
k in W 1,2(B 5

2
,AQ(Rn̄)). When needed, we may identify ū+

k with (ū+
k , 1) taking values in

AQ(Rn̄). We note that

Dir(ū+
k , B 5

2
) ≤ C Dir(ūk, B 5

2
) ≤ CEk ;

ˆ
B 5

2

Gs(ūk, ū+
k )2 =

ˆ
Bk−

|ū−k 	 η ◦ ūk|
2 ≤ |Bk

−|1−
2

2∗

(ˆ
Bk−

|ū−k 	 η ◦ ūk|
2∗
) 2

2∗

≤ C|Bk
−|1−

2
2∗Ek = o(Ek).

We used in the last line Poincaré’s inequality for ū−k that is vanishing on a set of uniformly
positive measure. Now we can apply the concentration compactness lemma, [8, Proposition
4.3], to the sequence E−

1
2

k ū+
k and deduce the existence of translating sheets

h̄k =
∑
j

Jyj,k ⊕ hjK

with maps hj ∈ W 1,2(B 5
2
,AQj (Rn̄)) and points yj,k ∈ Rn̄ such that the following properties

are satisfied:∥∥∥∥Gs(E− 1
2

k ū+
k , h̄k)

∥∥∥∥
2
→ 0 (12.10)

lim inf
k→∞

ˆ
B 5

2
∩Kk

E−1
k |Dū

+
k |

2 −
ˆ
B 5

2

|Dh̄k|2
 ≥ 0 (12.11)

lim sup
k→∞

ˆ
B 5

2

(
E
− 1

2
k |Dū

+
k | − |Dh̄k|

)2
≤ lim sup

k→∞

(
E−1
k Dir(ū+

k , B 5
2
)−Dir(h̄k, B 5

2
)
)
. (12.12)

12.2. Lipschitz approximation of the competitors to h̄ and hj. We fix a radius s < 5
2 .

To be able to interpolate later between h̄ (h̄k) and ūk and similarly between the currents
Tk and Guk , by using a Fubini type argument we may fix s < t < 5

2 such that for some C > 0
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depending on 5
2 − s we have

lim sup
k→∞

ˆ
∂Bt

Gs(E
− 1

2
k ūk, h̄)2∥∥∥∥Gs(E− 1

2
k ūk, h̄)

∥∥∥∥2

2

+ E−1
k |Dūk|

2 + |Dh̄|2 ≤ C in case b > 0 , (12.13)

lim sup
k→∞

ˆ
∂Bt

Gs(E
− 1

2
k ūk, h̄k)2∥∥∥∥Gs(E− 1

2
k ūk, h̄k)

∥∥∥∥2

2

+ E−1
k |Dūk|

2 + |Dh̄k|2 ≤ C in case b = 0 , (12.14)

Mp(〈Tk −Guk , f, t〉) ≤ CMp((Tk −Guk) C3) ≤ CE1−2β
k , (12.15)

where, in (12.15), f is the function defined by f(y, z) := |y| for (y, z) ∈ π0 × π⊥0 . Also, in
(12.14) we identified as before h̄k with the map (h̄k, 1) taking values in AQ(Rn̄) and used
(12.10); in (12.15) we used the conclusions of Proposition 8.5 as well as the Taylor expansion
in [7, Equation (13.5)].

Now let us fix an arbitrary ε > 0.

Case b > 0: Given any competitor c̄ ∈W 1,2(B 5
2
,AQ(Rn̄)) to h̄ that agrees with h̄ outside

of Bs, we may apply the Lipschitz approximation Lemma for special multi-valued maps [7,
Lemma 5.5] to h̄ and c̄ in order to obtain Lipschitz continuous maps h̄ε and c̄ε for which the
inequalities [7, Equations (5.20) & (5.21)] hold true with ε2 in place of ε.

Case b = 0: We apply the same procedure as in the case of b > 0. Given competitors
cj ∈W 1,2(B 5

2
, AQj (Rn̄)) to hj that agree with hj outside of Bs we may apply the Lipschitz

approximation lemma to each hj and cj in order to obtain Lipschitz continuous maps hεj and
cεj such that the inequalities [7, Equations (5.20) & (5.21)] hold true with ε2 in place of ε.
Furthermore we define

h̄εk :=
∑
j

q
yj,k ⊕ hεj

y

c̄εk :=
∑
j

q
yj,k ⊕ cεj

y

12.3. Interpolating functions. The argument below does not distinguish between the cases
b > 0, b = 0. To handle them simultaneously, we just consider the trivial sequence h̄k = h̄ in
the case when b > 0.

For each k we fix now an interpolating map ϕk ∈W 1,2(Bt \B(1−ε)t,AQ(Rn̄)) by means of
Luckhaus’ Lemma [7, Lemma 5.4] such that

ϕk(x) = E
− 1

2
k ūk(x) and ϕk((1− ε)x) = h̄εk(x) for all x ∈ ∂Btˆ

Bt\B(1−ε)t

|Dϕk|2 ≤ Cε
(ˆ

∂Bt

E−1
k |Dūk|

2 + |Dh̄εk|2
)

+ C

ε

ˆ
∂Bt

Gs(E
− 1

2
k ūk, h̄

ε
k)2
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Observe that by our choice of the Lipschitz approximation h̄εk we haveˆ
Bt\B(1−ε)t

|Dϕk|2 ≤ Cε for large k (depending on ε) . (12.16)

Moreover, observe that, by construction, lim supk→∞ Lip(h̄εk) ≤ C∗ε , where C∗ε is a constant
depending on ε but independent of k. Also, again for large values of k (depending on our fixed
ε): ∥∥∥Gs(E−1/2

k ūk, h̄
ε
k)
∥∥∥
L∞(∂Bt)

≤ C
∥∥∥Gs(E−1/2

k ūk, h̄
ε
k)
∥∥∥
L2(∂Bt)

+ C Lip(E−1/2
k ūk) + C Lip(h̄εk)

≤ C ε+ C E
β−1/2
k + C∗ε .

Hence, from [7, Equation (5.19)] we conclude that

Lip(ϕk) ≤ CεEβ−
1/2

k + Cε ≤ CεEβ−
1/2

k , (12.17)

where the last inequality is a consequence of the fact that Eβ−1/2
k →∞ as k ↑ ∞.

In particular we can define competitors to E−
1
2

k ūk on Bt by

ĉk(x) :=
{
ϕk(x) for (1− ε)t ≤ |x| ≤ t
c̄εk( x

1−ε) for |x| ≤ (1− ε)t
We observe that by our construction we have

lim inf
k→∞

E−1
k Dir(ūk, Bt ∩Kk)−Dir(ĉk, Bt) ≥

∑
j

Dir(hj , Bt)−Dir(cj , Bt)

− Cε. (12.18)

We have used (12.11), the closeness of the Dirichlet energies of cj and cεj and (12.16). As we have
seen in the calculations below point (ii) above, we can use the fact that ‖DΨk‖0 +

∥∥D2Ψk

∥∥
0 =

O(E
1
2
k ) to pass to uk and wk = (E

1
2
k ĉk,Ψk(·, E

1
2
k ĉk)) still satisfying

lim inf
k→∞

E−1
k (Dir(uk, Bt ∩Kk)−Dir(wk, Bt)) ≥

∑
j

Dir(hj , Bt)−Dir(cj , Bt)

− Cε.
(12.19)

12.4. Interpolating Currents. By our choice of t, (12.15), and the fact that the boundary
operator commutes with slicing we have

∂p〈Tk −Guk , f, t〉 = 0.
Using [15, (4.2.10)ν ], we can fix an isoperimetric filling Sk, which can be assumed to be
representative mod(p), such that

∂Sk = 〈Tk −Guk , f, t〉mod(p)
and

M(Sk) = Mp(Sk) ≤ CMp(〈Tk −Guk , f, t〉)
m
m−1 ≤ C E

m(1−2β)
m−1

k = o(Ek)
by the choice of β.
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12.5. Dirichlet minimality. We can now finally define a competitor to Tk by
Zk := Tk (C4 \Ct) + Sk +Gwk .

Observe that, by the hypotheses on Tk, Lemma 5.1, and the choice of Sk, we have
∂pZk = − [〈Tk, f, t〉] + [〈Tk −Guk , f, t〉] + [〈Guk , f, t〉] = 0 .

Let us observe that by construction, and using once again the Taylor expansion of the mass of
a special multi-valued graph [7, Equation (13.5)], we compute:

eTk(Bt)−
1
2Dir(uk, Bt ∩Kk) = eTk(Bt \Kk) + o(Ek) ,

eZk(Bt)−
1
2Dir(wk, Bt) ≤M(Sk) + eGwk (Bt)−

1
2Dir(wk, Bt) ≤ o(Ek) ,

where in the last equality we have used that Dir(wk, Bt) = O(Ek) whereas Lip(wk) ≤ CεEβk ,
so that

eGwk
− 1

2Dir(wk, Bt) =
ˆ
Bt

∑
i

R̄4(Dwik) ≤ C E
1+2β
k = o(Ek) as k ↑ ∞ .

By minimality of Tk in C3 we then have
0 ≥M(Tk C3)−M(Zk C3)

= eTk(Bt)− eZk(Bt)

≥ 1
2 (Dir(uk, Bt ∩Kk)−Dir(wk, Bt)) + eTk(Bt \Kk)− o(Ek) .

Hence dividing by Ek and taking the lim sup as k →∞ we deduce by (12.19)

0 ≥ 1
2

∑
j

Dir(hj , Bt)−Dir(cj , Bt)

+ lim sup
k→∞

E−1
k eTk(Bt \Kk).

Since ε is arbitrary:
(i) Choosing cj = hj , we see that lim supk→∞E−1

k eTk(Bt \Kk) = 0;

(ii) By the arbitrariness of cj we conclude the Dirichlet minimality of hj . Afterwards
by (12.11) we deduce that lim supk→∞E−1

k Dir(uk, Bt ∩ Kt) − Dir(hk, Bt) = 0. In
combination with (12.12) we obtain the second part of (ii), thus completing the proof.

�

13. Improved excess estimate and higher integrability

So far, Proposition 8.5 and Theorem 12.3 have shown that if T is as in Assumption 8.1
then there is a Lipschitz continuous multiple valued function (possibly special, in case p is
an even integer and Q = p

2) whose graph coincides with the current in a region where the
excess measure is suitably small in a uniform sense; furthermore, if T is also area minimizing
mod(p) then such an approximating Lipschitz multiple valued function is almost Dirichlet
minimizing, and both the Dirichlet energy of the approximating function and the excess of the
original current in the “bad region” decay faster than the excess. The goal of this section is to
exploit the closeness of the Lipschitz approximation to a Dir-minimizer in order to deduce
extra information concerning the behavior of the excess measure of T . We begin observing
that the classical result on the higher integrability of the gradient of a harmonic function
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extends not only to classical multiple valued functions, as it is shown in [8, Theorem 6.1], but
also to special multiple valued functions.

Theorem 13.1. There exists p > 2 such that for every Ω′ b Ω ⊂ Rm open domains, there is
a constant C > 0 such that

‖Du‖Lp(Ω′) ≤ C ‖Du‖L2(Ω) for every Dir-minimizing u ∈W 1,2(Ω,AQ(Rn)).

Proof. The proof is the very same presented in [8, Theorem 6.1]: one only has to replace
the Almgren embedding ξ for AQ(Rn) used in there with the new version of the Almgren
embedding ζ for AQ(Rn) introduced in [7, Theorem 5.1]. �

As a direct corollary of the first harmonic approximation and the higher integrability of the
gradient we obtain the following result.

Corollary 13.2. For every η > 0 there exist an ε > 0 and a constant C > 0 with the property
that, if T satisfies Assumption 8.1 and is area minimzing mod(p) in the cylinder C4s(x) with
E ≤ ε then for every A ⊂ Bs with |A ∩Bs| ≤ ε|Bs| we have

eT (A) ≤
(
ηE + CA2s2

)
sm. (13.1)

Proof. By scaling and translating we may assume without loss of generality that x = 0 and
s = 1. We fix β = 1

4m and η∗ > 0 to be determined below. Now let ε∗ = ε∗(β, η∗) taken from
Theorem 12.3. We distinguish the following two cases: either A ≤ ε∗E

1
2 or A > ε∗E

1
2 . In the

latter case the inequality holds trivially with C = ε−2
∗ because

eT (A) ≤ E ≤ ε−2
∗ A2.

In the first case, we can apply the first harmonic approximation, Theorem 12.3. Now let
h(x) = (h̄(x),Ψ(x, h̄(x))), with h̄ Dirichlet minimizing, the associated map as in (i). By (12.3)
we directly conclude that

eT (A \K) ≤ η∗E , (13.2)
where K is, as usual, the “good set” for the Eβ-Lipschitz approximation of T in C3 as in
Proposition 8.5. In order to estimate the eT measure of the portion of A inside K, we observe
that∣∣∣∣eT (A ∩K)− 1

2

ˆ
A∩K
|Dh|2

∣∣∣∣ =
∣∣∣∣eGu(A ∩K)− 1

2

ˆ
A∩K
|Dh|2

∣∣∣∣
≤
∣∣∣∣eGu(A ∩K)− 1

2

ˆ
A∩K
|Du|2

∣∣∣∣+ 1
2

∣∣∣∣ˆ
A∩K
|Du|2 − |Dh|2

∣∣∣∣
=: I + II

The first addendum can be bounded by the Taylor expansion of mass by

I ≤ C Lip(u)2
ˆ
A∩K
|Du|2 ≤ CE1+2β;

the second can be estimated using (12.5) and |Du|2 − |Dh|2 = (|Du|+ |Dh|)(|Du| − |Dh|) by

II ≤ C
(ˆ

A∩K
|Du|2 + |Dh|2

) 1
2
(ˆ

A∩K
(|Du| − |Dh|)2

) 1
2
≤ Cη

1
2∗ E.



REGULARITY OF AREA MINIMIZING CURRENTS MOD p 41

Recall that A ≤ ε∗E
1
2 implies that ‖DΨ‖ ≤ C E 1

2 . Hence we haveˆ
A∩K
|Dh|2 =

ˆ
A∩K
|Dh̄|2 + |DxΨ(x, h̄) +DyΨ(x, h̄)Dh̄|2

≤ (1 + C E)
ˆ
A∩K
|Dh̄|2 + C E|A ∩K|

Using the higher integrability for Dirichlet minimizers we can estimate further
ˆ
A∩K
|Dh̄|2 ≤ |A ∩K|1−

2
p

(ˆ
A∩K
|Dh̄|p

) 2
p

≤ C|A ∩K|1−
2
p

ˆ
B2

|Dh̄|2 ≤ C|A ∩K|1−
2
pE.

Collecting all the estimates we get in conclusion

eT (A) ≤ eT (A \K) +
∣∣∣∣eT (A ∩K)− 1

2

ˆ
A∩K
|Dh|2

∣∣∣∣+ 1
2

ˆ
A∩K
|Dh|2

≤
(
η∗ + CE2β + Cη

1
2∗ + C|A ∩K|1−

2
p

)
E.

Hence, the estimate in (13.1) follows also in this case after suitably choosing ε and η∗ depending
on η. �

For the following proof, we introduce the centered maximal function for a general radon
measure µ on Rm by setting

mcµ(x) := sup
s≥0

µ(Bs(x))
ωmsm

Observe that one has the straightforward comparison between the centered and non-centered
maximal functions

mcµ(x) ≤mµ(x) ≤ 2m mcµ(x).
Although the two quantities are therefore comparable, we decided to work for this proof with
the centered version since in our opinion the geometric idea becomes more easily accessible.
Furthermore we note that since the map x 7→ µ(Bs(x))

ωm sm is lower semicontinuous, x 7→mcµ(x) is
lower semicontinuous as it is the supremum of a family of lower semicontinuous functions.

Theorem 13.3. There exist constants 0 < q < 1, C, ε > 0 with the following property. If T
is area minimzing mod(p) in the cylinder C4 and satisfies Assumption 8.1 with E ≤ ε thenˆ

B2

(min{mce, 1})q de ≤ CeCA2
E1+q. (13.3)

In particular this implies the following estimateˆ
B2∩{mce≤1}

(mce)q de ≤ CeCA2
E1+q

Remark 13.4. Observe that the excess measure e can be decomposed as

e = d Lm + esing ,
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where Lm denotes the Lebesgue measure in Rm, esing ⊥ Lm and d is the excess density as
in Definition 8.2. Since d(x) ≤mce(x) for every x ∈ B2, we haveˆ

B2

(min{mce, 1})q de ≥
ˆ
B2

(min{d, 1})q de ≥
ˆ
B2

(min{d, 1})q d dx ,

so that formula (13.3) in particular implies the following higher integrability of the excess
density: ˆ

{d≤1}∩B2

d1+q dx ≤ CeCA2
E1+q ≤ CE1+q . (13.4)

Proof. Let us first observe that given any measure µ on Rm we have that, for any fixed r > 0
and t > 0, if

µ(Bs(x))
ωmsm

≤
(3

4

)m
t ∀s ≥ 4r

then for some constant C depending on m we have

|Br(x) ∩ {y : mcµ(y) > t}| ≤ C

t
µ

(
B4r(x) ∩

{
y : mcµ(y) > t

2

})
. (13.5)

This can be seen as follows: we first note that for y ∈ Br(x) we have

µ(Bs(y))
ωmsm

≤


(

4r
s

)m µ(B4r(x))
ωm(4r)m if s+ |x− y| ≤ 4r(

s+|x−y|
s

)m µ(Bs+|x−y|(x))
ωm(s+|x−y|)m if s+ |x− y| ≥ 4r.

Hence, we deduce that if s ≥ 3r then µ(Bs(y))
ωmsm

≤ t: in other words, if µ(Bs(y))
ωmsm

> t then we must
have Bs(y) ⊂ B4r(x). This implies that

Br(x) ∩ {y : mcµ(y) ≥ t} = Br(x) ∩ {y : mcµ B4r(x)(y) ≥ t} ,
so that (13.5) follows by a variation of the classical maximal function estimate applied to
µ B4r(x). 2

Furthermore we recall that by classical differentiation theory of radon measures 3 one has
as well

µ (Br(x) ∩ {y : mcµ(y) ≤ t}) ≤ t|Br(x) ∩ {y : mcµ(y) ≤ t}|. (13.6)
In what follows, for the sake of simplicity, we will work with the measure e = e B4, which

is defined on the whole Rm.
Step 1: For every η > 0 there exist positive constants λ, ε, C with the property that if

r := sup
{
s : e(Bs(x))

ωmsm
≥ t

λ

}
and t

λ
≤ ε (13.7)

then
e (Br(x) ∩ {y : mce(y) > t}) (13.8)

≤
(

2ω−1
m η + CA2

(2λ
t

e
(
Br(x) ∩

{
y : mce(y) > t

2λ

}))m+2
m

)
e
(
Br(x) ∩

{
y : mce(y) > t

2λ

})
2The variation in use here can be deduced in a straightforward fashion from the classical estimate for the

whole space: apply the classical estimate (see e.g. [18, Theorem 2.19 (2)]) to the measure µ̃ := µ {mcµ >
t
2}

and note that since µ ≤ µ̃+ t
2 Lm we have {mcµ > t} ⊂ {mcµ̃ >

t
2}.

3Note for each y ∈ Br(x) ∩ {mcµ ≤ t} one has lim infr↓0 µ(Br(y))
|Br(y)| ≤ t, hence (13.6) follows for instance from

[18, Lemma 2.13 (1)].
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Proof of Step 1: Let η > 0 be given, and let ε > 0 be given by Corollary 13.2 in correspon-
dence with this choice of η. Also fix λ >

(
4
3

)m
. By the definition of r and the continuity of

measures along increasing and decreasing sequence of sets, we easily see that

e(Br(x))
ωmrm

= e(Br(x))
ωmrm

= t

λ
>

e(Bs(x))
ωmsm

for all s > r. (13.9)

Thus we can apply (13.5) with µ = e, thus deducing that

|Br(x) ∩ {y : mce(y) > t}| ≤ C

t
e
(
B4r(x) ∩

{
y : mce(y) > t

2

})
≤ C

λ
ωm(4r)m.

Since t
λ ≤ ε, if we choose λ ≥ 4mC

ε then we can apply Corollary 13.2, which, together with
(13.9), yields

e (Br(x) ∩ {y : mce(y) > t}) ≤ ω−1
m 4−mη e(B4r(x))+CA2rm+2 ≤ ω−1

m η e(Br(x))+CA2rm+2.
(13.10)

Using (13.6) and (13.9), namely the identity t
λωmr

m = e(Br(x)) we have

e
(
Br(x) ∩

{
y : mce(y) ≤ t

2λ

})
≤ t

2λ |Br(x)| ≤ 1
2e(Br(x)).

This implies that

ωmr
m = λ

t
e(Br(x)) ≤ 2λ

t
e
(
Br(x) ∩

{
y : mce(y) > t

2λ

})
.

Using this estimate in (13.10) we deduce (13.8).
Step 2: For every η > 0 there exist positive constants λ, ε, C such that if

42mE ≤ t

λ
≤ ε and r ≤ 3

then, setting r̄ := r + 4
(
λE
t

) 1
m , we have

e (Br ∩ {y : mce(y) > t}) ≤ cB
(
η + CA2

(2λE
t

)m+2
m

)
e
(
Br̄ ∩

{
y : mce(y) > t

2λ

})
,

(13.11)
where cB denotes the Besicovitch constant in Rm.

Proof of Step 2: For each x ∈ Br ∩ {y : mce(y) > t} we let

rx := sup
{
s : e(Bs(x))

ωmsm
≥ t

λ

}
.

We must have 0 < rx ≤ 1
4 , since mce(x) > t ≥ t/λ, and since for each x ∈ B3 we have

e(Bs(x))
ωmsm

≤ 42mE ≤ t

λ
∀s ≥ 1

4 .

We apply the Besicovitch covering theorem to the family

B := {Brx(x) : x ∈ Br ∩ {y : mce(y) > t}}
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and obtain sub-collections B1, . . . ,BcB of balls such that each subfamily is pairwise disjoint
and

Br ∩ {y : mce(y) > t} ⊂
cB⋃
j=1

⋃
Brx (x)∈Bj

Brx(x) .

Since for each of these balls we have ωm rx
m = λ

t e(Brx(x)) ≤ λ
tEωm4m, we deduce

Brx(x) ⊂ Br̄. Hence the result follows from

e (Br ∩ {y : mce(y) > t}) ≤
cB∑
i=1

∑
Brx (x)∈Bi

e (Brx(x) ∩ {y : mce(y) > t}) ,

where we used that by Step 1 e(∂Brx(x) = 0 for each of these balls, and then applying (13.8)
of Step 1 to each.

Step 3: For every η > 0 there are constants C, λ, ε such that for every k ≥ 2 with

(2λ)kE ≤ ε and r ≤ 5
2

we have

e
(
Br ∩ {y : mce(y) > (2λ)kE}

)
≤ (cBη)keCA2 e

(
Br+ 1

2
∩ {y : mce(y) > 2λE}

)
(13.12)

Proof of Step 3: This is obtained by iterating Step 2. More precisely, for each 2 ≤ l ≤ k we
set

tl := (2λ)lE ,


rk := r ,

rl−1 := rl + 4
(
λE
tl

) 1
m = rl + 4λ

1
m

(2λ)
l
m

for 2 ≤ l ≤ k − 1 .

Using f(r, t) := e(Br ∩ {y : mce(y) > t}) and cA := CA2

cBη
we may write (13.11) as

f(rl, tl) ≤ cBη
(

1 + cA

(2λE
tl

)m+2
m

)
f(rl−1, tl−1) = cBη

(
1 + cA

( 1
2λ

)m+2
m

(l−1)
)
f(rl−1, tl−1).

Now (13.12) is a consequence of the following estimates (λ is sufficient large)

r1 = rk + 4λ
1
m

k∑
l=2

(2λ)−
l
m ≤ r + 4λ

1
m

∞∑
l=2

(2λ)−
l
m ≤ r + 1

2
k∏
l=2

cBη

(
1 + cA

( 1
2λ

)m+2
m

(l−1)
)
≤ (cBη)keCcA .

In particular, the first estimates ensures that we may apply step 2 for each pair (tl, rl).
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Conclusion: First we fix η > 0 sufficiently small, so that cBη < 1, and afterwards q > 0
such that a := (2λ)q cBη < 1. Now we observe that with (2λ)k0E ≤ ελ < (2λ)k0+1E we haveˆ

B2∩{(2λ)2E<mce}
(min{mce, λε})q de

≤
k0∑
k=2

ˆ
B2∩{(2λ)kE<mce≤(2λ)k+1E}

(mce)q de +
ˆ
B2∩{(2λ)k0+1E<mce}

(
(2λ)k0+1E

)q
de

≤ (4λ)qEq
k0+1∑
k=2

(2λ)qk e(B2 ∩ {mce > (2λ)kE}) ≤ (4λ)qEqeCA2
E(ωm4m)

k0+1∑
k=2

ak

≤ CeCA2
E1+q.

Combining this withˆ
B2∩{mce≤(2λ)2E}

(mce)q de ≤ (2λ)2qEqe(B2 ∩ {mce ≤ 2λE}) ≤ CE1+q

proves the result, modulo choosing a smaller value for ε. �

14. Almgren’s strong approximation theorem

We can finally state and prove the main Lipschitz approximation result for area minimizing
currents mod(p), which contains improved estimates with respect to Proposition 8.5.

Theorem 14.1 (Almgren’s strong approximation). There exist constants ε, γ, C > 0 (depend-
ing on m, n̄, n,Q) with the following property. Let T be as in Assumption 8.1 in the cylinder
C4r(x), and assume it is area minimizing mod(p). Also assume that E = E(T,C4r(x)) < ε.
Then, there are u : Br(x)→ AQ(Rn) if Q < p

2 , or u : Br(x)→ AQ(Rn) if Q = p
2 , and a closed

set K ⊂ Br(x) such that:

Gr(u) ⊂ Σ , (14.1)
Lip(u) ≤ C(E + A2r2)γ and osc (u) ≤ Ch(T,C4r(x), π0) + Cr(E1/2 + rA) , (14.2)
Gu (K × Rn) = T (K × Rn) mod(p) , (14.3)
|Br(x) \K| ≤ ‖T‖((Br(x) \K)× Rn) ≤ C(E + r2A2)1+γrm , (14.4)∣∣∣∣∣‖T‖(Cσr(x))−Qωm(σr)m − 1

2

ˆ
Bσr

|Du|2
∣∣∣∣∣ ≤ (E + r2A2)1+γrm ∀ 0 < σ < 1 . (14.5)

The key improvement with respect to the conclusions of Proposition 8.5 lies in the superlinear
power of the excess in (14.4) and (14.5). In turn, this gain is a consequence of the following
improved excess estimate, analogous to [8, Theorem 7.1].

Theorem 14.2 (Almgren’s strong excess estimate). There exist constants ε∗, γ∗, C > 0
(depending on m, n̄, n,Q) with the following property. Assume T satisfies Assumption 8.1 and
is area minimizing mod(p) in C4. If E := E(T,C4) < ε∗, then

eT (A) ≤ C(Eγ∗ + |A|γ∗)(E + A2) for every Borel A ⊂ B9/8 . (14.6)

Let us assume for the moment the validity of Theorem 14.2, and let us then show how
Theorem 14.1 follows.
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Proof of Theorem 14.1. As usual, since the statement is scale-invariant, we may assume x = 0
and r = 1. Choose β < min

{
1

2m ,
γ∗

2(1+γ∗)

}
, where γ∗ is given by Theorem 14.2. Let u be the

Eβ-Lipschitz approximation of T , so that (14.1) and (14.3) are an immediate consequence of
Proposition 8.5. Also the estimates in (14.2) follow in a straightforward fashion if we choose
γ ≤ β and we recall that ‖DΨ‖0 ≤ C(E1/2 + A). Now we come to the proof of the volume
estimate (14.4). Set A :=

{
meT > E2β

}
∩ B9/8. By (8.4), we have that |A| ≤ CE1−2β. In

order to improve the estimate, we use Almgren’s strong excess estimate: indeed, equation
(14.6) implies that

eT (A) ≤ CEγ∗(1 + E−2βγ∗)(E + A2) , (14.7)
so that when we plug (14.7) back into (8.4) we have

|B1 \K| ≤ CE−2βeT (A) ≤ CEγ∗−2β(1+γ∗)(1 + E2βγ∗)(E + A2) ≤ CEγ∗−2β(1+γ∗)(E + A2) ,
and the inequality

|B1 \K| ≤ C(E + A2)1+γ

follows with min{γ∗ − 2β(1 + γ∗), β} > 0 because of our choice of β. (14.4) is then a simple
consequence of

‖T‖((B1 \K)× Rn) ≤ eT (B1 \K) +Q|B1 \K| .
Finally, we take any 0 < σ < 1 and we estimate:∣∣∣∣∣‖T‖(Cσ(x))−Qωmσm −

1
2

ˆ
Bσ

|Du|2
∣∣∣∣∣

≤ eT (Bσ \K) + eGu(Bσ \K) +
∣∣∣∣∣eGu(Bσ)− 1

2

ˆ
Bσ

|Du|2
∣∣∣∣∣

(14.7)
≤ C(E + A2)1+γ + C|Bσ \K|+ CLip(u)2

ˆ
Bσ

|Du|2

≤ C(E + A2)1+γ . �

We turn now to the proof of Theorem 14.2. We will use in an essential way the minimality
mod(p) of T , and in order to do that we need to construct a suitable competitor. In this
process, a key role will be played by the following result, analogous to [8, Proposition 7.3]

Proposition 14.3. Let β ∈
(
0, 1

2m

)
, and assume that T satisfies Assumption 8.1 and is area

minimizing mod(p) in C4. Let u be its Eβ-Lipschitz approximation. Then, there exist constants
ε, γ, C > 0 and a subset of radii B ⊂ [9/8, 2] with measure |B| > 1/2 with the following property.
If E(T,C4) < ε, then for every σ ∈ B there exists a Q-valued map g ∈ Lip(Bσ,AQ(Rn)) if
Q < p

2 or g ∈ Lip(Bσ,AQ(Rn)) if Q = p
2 such that

g|∂Bσ = u|∂Bσ , Lip(g) ≤ C(E + r2A2)β, spt(g(x)) ⊂ Σ ∀x ∈ Bσ, (14.8)
and ˆ

Bσ

|Dg|2 ≤
ˆ
Bσ∩K

|Du|2 + C(E + A2)1+γ . (14.9)

Proof. The proof is obtained by a “regularization by convolution” procedure, analogous to
that of [8, Proposition 7.3], modulo using the embedding ζ of [7, Theorem 5.1] in place of
ξ. �
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Proof of Theorem 14.2. Choose β := 1
4m , and let B ⊂ [9/8, 2] be the set of radii provided by

Proposition 14.3. By a standard Fubini type argument analogous to what has been used in
deriving (12.15) and the isoperimetric inequality mod(p), we deduce that there exists s ∈ B
and an integer rectifiable current R which is representative mod(p) such that

∂R = 〈T −Gu, ϕ, s〉mod(p) and M(R) ≤ CE
2m−1
2m−2 ,

where u is the Eβ-Lipschitz approximation of T and ϕ(x) = |x|. Now, let g be the Lipschitz
map given in Proposition 14.3 corresponding with the choice σ = s. Since g|∂Bs = u|∂Bs , it
also holds 〈Gu −Gg, ϕ, s〉 = 0 mod(p). Furthermore, since (∂Gg) Cs = 0 mod(p), and since
g takes values in Σ, the current Gg Cs +R is a competitor for T in Cs, and thus, using [7,
Equation (4.1)], the minimality of T yields for some γ > 0:

‖T‖(Cs) ≤ ‖Gg Cs +R‖(Cs) ≤ Q|Bs|+
1
2

ˆ
Bs

|Dg|2 + CE1+γ

(14.9)
≤ Q|Bs|+

1
2

ˆ
Bs∩K

|Du|2 + CEγ(E + A2) .
(14.10)

On the other hand, again by [7, Equation (4.1)] we also have:
‖T‖(Cs) = ‖T‖((Bs \K)× Rn) + ‖Gu‖((Bs ∩K)× Rn)

≥ ‖T‖((Bs \K)× Rn) +Q|Bs ∩K|+
1
2

ˆ
Bs∩K

|Du|2 − CE1+γ .
(14.11)

Combining (14.10) and (14.11) we conclude that eT (Bs \K) ≤ CEγ(E + A2). Now, we are
able to prove the estimate (14.6). Let A ⊂ B9/8 be any Borel set. We get:

eT (A) = eT (A ∩K) + eT (A \K) ≤ 1
2

ˆ
A∩K
|Du|2 + CE1+γ + eT (Bs \K)

≤ 1
2

ˆ
A∩K
|Du|2 + CEγ(E + A2) . (14.12)

On the other hand, observe that |Du|(x)2 ≤ Cmce(x) ≤ CE2β onK, and therefore mce(x) ≤ 1
on K if E is suitably small. Let q > 0 be the exponent given by Theorem 13.3, we deduce
from (13.3) that ˆ

A∩K
|Du|2(1+q) ≤ CE1+q ,

and thus the Hölder inequality produces
ˆ
A∩K
|Du|2 ≤

(ˆ
A∩K
|Du|2(1+q)

) 2
1+q
|A ∩K|

q
1+q ≤ CE|A ∩K|

q
1+q . (14.13)

Plugging (14.13) into (14.12), we finally conclude (14.6), by possibly choosing a smaller
γ > 0.

�

As a corollary of Theorem 14.1 and of Theorem 12.3, we obtain the following result.

Theorem 14.4. Let γ be the constant of Theorem 14.1. Then, for every η̄ > 0 there is a
constant ε̄ > 0 with the following property. Assume T as in Assumption 8.1 is area minimizing
mod(p) in C4r(x), E = E(T,C4r(x)) < ε̄ and rA ≤ ε̄E1/2. If u is the map in Theorem 14.1
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and we fix good Cartesian coordinates, then there exists a Dir-minimizing h̄ : Br(x)→ AQ(Rn̄)
if Q < p

2 or h̄ : Br(x)→ AQ(Rn̄) if Q = p
2 such that h := (h̄,Ψ(·, h̄)) satisfies

r−2
ˆ
Br(x)

G(u, h)2 +
ˆ
Br(x)

(|Du| − |Dh|)2 +
ˆ
Br(x)

|D(η ◦ u)−D(η ◦ h)|2 ≤ η̄Erm . (14.14)

15. Strong approximation with the nonoriented excess

In this section we show that it is possible to draw the same conclusions of the previous
section replacing the cylindrical excess E(T,C4r(x)) with the nonoriented Eno(T,C4r(x))
defined in (12.2). This will be vital, because in the remaining part of the paper we will in fact
use mostly the nonoriented excess, which is structurally more suited to the arguments needed
in the construction of the center manifold. Recall that in the classical regularity theory for
integral currents the cylindrical excess already possesses the required structural features; see
[8, Remark 2.5].

Theorem 15.1. There exist constants ε, γ, C > 0 (depending on m, n̄, n,Q) with the following
property. Let T be as in Assumption 8.1 in the cylinder C4r(x), and assume it is area mini-
mizing mod(p). Also assume that E = E(T,C4r(x)) < 1

2 and that Eno := Eno(T,C4r(x)) ≤ ε.
Then

E(T,C2r(x)) ≤ CEno(T,C4r(x)) + CA2r2 . (15.1)
and in particular all the conclusions of Theorem 14.1 (and of Theorem 14.4, provided r2A2 ≤
ε̄2E ≤ ε̄3 for a suitable ε̄(η̄) > 0) hold in Br(x) with estimates where Eno replaces E.

Before coming to the proof we state a simple variant of Theorem 14.1, where the estimates
are inferred in a radius which is just slightly smaller than the starting one.

Proposition 15.2. There are a constant C ≥ 1 and a ε̄ > 0 with the following property.
Let γ be as in Theorem 14.1. Fix a cylinder C4r(x) and a current T which satisfies all the
assumptions of Theorem 14.1 with the stronger bound E := E(T,C4r(x)) ≤ ε̄. Choose ω
such that (1 − ωm)(1 + γ) = 1 + γ

2 and set ρ = r(1 − C(E + r2A2)ω). Then there are a
map u : B4ρ(x) → AQ(Rn) if Q < p

2 , or u : B4ρ(x) → AQ(Rn) if Q = p
2 , and a closed set

K ⊂ B4ρ(x) such that:
Gr(u) ⊂ Σ , (15.2)
Lip(u) ≤ C(E + r2A2)γ/2 and osc (u) ≤ Ch(T,C4r(x), π0) + Cr(E1/2 + rA) , (15.3)
Gu (K × Rn) = T (K × Rn) mod(p) , (15.4)
|B4ρ(x) \K| ≤ ‖T‖((B4ρ(x) \K)× Rn) ≤ C(E + r2A2)1+γ/2rm , (15.5)∣∣∣∣∣‖T‖(C4σρ(x))−Qωm(4σρ)m − 1

2

ˆ
B4σρ(x)

|Du|2
∣∣∣∣∣ ≤ (E + r2A2)1+γ/2rm ∀ 0 < σ < 1 .

(15.6)
Proof. For every point y ∈ B4r(1−(E+r2A2)ω)(x) and a corresponding cylinder Cy := C4r(E+r2A2)ω(y),
note that

E(T,Cy) =
eT (B4r(E+r2A2)ω(y))

ωm (4r)m (E + r2A2)mω ≤ (E + r2A2)−mω E(T,C4r(x)) ≤ E1−mω .

Thus, by choosing ε̄ suitably small compared to ε in Theorem 14.1 we fall under its
assumptions. In particular, we find a function uy defined on the ball By := Br(E+r2A2)ω(y)
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taking values into either AQ(Rn) or AQ(Rn) (depending on whether Q < p
2 or Q = p

2) and a
set Ky for which the following conclusions hold:

Gr(uy) ⊂ Σ , (15.7)
Lip(uy) ≤ C(E + A2r2)(1−mω)γ , (15.8)
Guy (Ky × Rn) = T (Ky × Rn) mod(p) , (15.9)
|By \Ky| ≤ ‖T‖(By \Ky)× Rn) ≤ C(E + r2A2)(1−mω)(1+γ)|By| . (15.10)

We now consider the regular lattice (r(E + r2A2)ω)/(
√
m)Zm and for each element y of the

lattice contained in B4r(1−(E+r2A2)ω)(x) we consider the corresponding ball By. Accordingly,
we get a collection B of balls satisfying the following properties:

(o1) B covers B4ρ(x);
(o2) The cardinality of B is bounded by C(E + r2A2)−mω for a geometric constant C =

C(m);
(o3) Each element of B intersects at most N elements of B for a geometric constant

N = N(m);
(o4) Every pair z, w ∈ B4ρ(x) with |z − w| ≤ c(m)r(E + r2A2)ω is contained in a single

ball Bi, where c(m) is a positive geometric constant;
(o5) For each pair z, w ∈ B4ρ(x) with ` := |z − w| ≥ c(m)r(E + r2A2)ω there is a chain of

balls B1, . . . , BN̄ ∈ B such that
(c1) N̄ ≤ C ` r−1(E + r2A2)−ω for C = C(m);
(c2) z ∈ B1 and w ∈ BN̄ ;
(c3) |Bi ∩ Bi+1| ≥ c̄(m) rm(E + r2A2)mω for every i = 1, . . . , N̄ − 1 for a geometric

constant c̄(m) > 0.
We now consider for each Bi = Byi the corresponding sets K̃i := Kyi and functions ui := uyi .
We next define the sets

Ki := K̃i \
⋃

j :Bj∩Bi 6=∅
(Bj \ K̃j) .

We then set K := ⋃
iK

i and observe that, by (o2), (o3) and (15.10), we must have

|B4ρ(x) \K| ≤ ‖T‖((B4ρ(x) \K)× Rn) ≤
∑
i

‖T‖((Bi \Ki)× Rn)

≤ Cρm(E + r2A2)(1−mω)(1+γ) = Cρm(E + r2A2)1+γ/2 . (15.11)

Next, we find a globally defined function g on K by setting g|Ki := ui
∣∣
Ki . This function

certainly enjoys the estimate Lip(g|Ki) ≤ C(E + r2A2)(1−mω)γ ≤ C(E + r2A2)γ/2 on each Ki.
So, taken two points z, w ∈ K with |z −w| ≤ c(m)r(E + r2A2)ω we get, by (o4), the estimate

G(g(z), g(w)) ≤ C(E+r2A2)γ/2|z−w|
(
resp. Gs(g(z), g(w)) ≤ C(E + r2A2)γ/2|z − w|

)
.

If ` := |z − w| ≥ c(m)r(E + r2A2)ω, we use the chain of balls Bi of (o5) and remark that,
thanks to the estimate on |Bi \Ki|, we can guarantee the existence of intermediate points
yi ∈ Ki ∩Ki+1 towards the estimate

G(g(z), g(w)) ≤ C(E+r2A2)γ/2|z−w|
(
resp. Gs(g(z), g(w)) ≤ C(E + r2A2)γ/2|z − w|

)
.
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This proves that g has the global Lipschitz bound C(E + r2A2)γ/2 on K. Furthermore,
since the graph Gg is mod(p) equivalent to the current T in the cylinder K × Rn, we have
osc(g) ≤ C h(T,C4r(x), π0), see Remark 8.4. Now we can proceed as in Proposition 8.5 or
Theorem 14.1. More precisely, we write g = ∑

iJ(h,Ψ(·, h))K, with h : K → AQ(Rn̄) if Q < p
2

or h : K → AQ(Rn̄) if Q = p
2 . The map h satisfies Lip(h) ≤ C(E + r2A2)γ/2 and osc(h) ≤

C h(T,C4r(x), π0). Hence, taking advantage of [12, Theorem 1.7] if Q < p
2 or [7, Corollary 5.3]

when Q = p
2 , we can extend h to a map h̄ : B4ρ(x) → AQ(Rn) (resp. h̄ : B4ρ(x) → AQ(Rn))

which again satisfies Lip(h̄) ≤ C(E + r2A2)γ/2 and osc(h̄) ≤ C h(T,C4r(x), π0). Finally, we
set u := ∑

iJh̄,Ψ(·, h̄)K, thus achieving

Lip(u) ≤ C [(E + r2A2)
γ
2 + ‖DΨ‖0] , osc(u) ≤ C h(T,C4r(x), π0) + C r ‖DΨ‖0 .

The estimate in (15.3) is then a consequence of the choice of coordinates discussed in Remark
12.1.

Finally, the estimate (15.6) is a consequence of the other ones, following the argument
already given for (14.5). Since (15.2) and (15.4) are obvious by construction, this completes
the proof. �

Proof of Theorem 15.1. First of all we observe that it is enough to prove (15.1). Indeed, if ε
is sufficiently small, from (15.1) we conclude that we can apply Theorem 14.1 to any cylinder
C4(r/4)(y) with y ∈ Br(x). Since Br(x) can be covered with a finite number C(m) of balls
Br/4(yi) with centers yi ∈ Br(x), the existence of a suitable Lipschitz approximation over
Br(x) follows easily. Theorem 14.4 can then be concluded by arguing as done for Theorem
12.3.

In order to show (15.1) we start observing that, by scaling and translating, we can assume
x = 0 and r = 1. We then argue in several steps.

Step 1. First of all we claim that, for every δ > 0 there is ε sufficiently small such
that E(T,C3) < δ. Otherwise, by contradiction, there would be a sequence {Tk}∞k=1 of area
minimizing currents mod(p) satisfying the hypotheses in Assumption 8.1 in C4 together
with E(Tk,C4) < 1

2 for which Eno(Tk,C4) → 0 and Mp(Tk C3) ≥ (Q + δ)ωm3m. In
particular, because of the uniform bound on the excess, we can assume that Tk converge, up
to subsequences, to a T which is an area minimizing current mod(p) and satisfies Assumption
8.1. By convergence of the Mp in the interior, we also know that

Mp(T C3) ≥ (Q+ δ)ωm3m . (15.12)

On the other hand, since we can assume by Proposition 4.2 that v(Tk C4) → v(T C4)
as varifolds, and since the nonoriented excess is continuous in the varifold convergence, we
must have Eno(T,C4) = 0. Moreover, since T is a representative mod(p) we must have
‖T‖(C4) ≤ ωm(Q + 1

2)4m by the hypothesis that E(Tk,C4) < 1
2 for every k. The first

condition implies that T is supported in a finite number of planes parallel to π0. By the
constancy Lemma 6.4 we can assume that T is a sum of integer multiples of m-dimensional
disks of radius 4 parallel to B4(0, π0). We thus have that the sum of the moduli of such
integers must be at most Q. This contradicts (15.12).

Step 2. First of all, if E := E(T,C3) ≤ A2, then there is nothing to prove. Hence, without
loss of generality assume that

E ≥ A2 .
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Now apply Proposition 15.2 to obtain a Lipschitz map u : B3−CEω → AQ(Rn) if Q < p
2 and

u : B3−CEω → AQ(Rn) if Q = p
2 , and a closed set K ⊂ B3−CEω(x) such that:

Lip(u) ≤ CEγ/2, (15.13)
Gu (K × Rn) = T (K × Rn) mod(p) , (15.14)
|B3−CEω \K| ≤ CE1+γ/2 , (15.15)∣∣∣∣∣‖T‖(C3−CEω)−Qωm(3− CEω)m − 1

2

ˆ
B3−CEω

|Du|2
∣∣∣∣∣ ≤ CE1+γ/2 . (15.16)

Now we set r1 := 3− CEω, E1 := E(T,Cr1) and we consider the following three alternatives:
(a) E1 ≤ A2;
(b) E1 ≥ max{E2 ,A2};
(c) E

2 ≥ E1 ≥ A2.
In the first case, assuming ε sufficiently small, since C2 ⊂ Cr1 , we have concluded our desired
estimate (15.1). In the second case observe first that from the estimates above we easily
conclude

‖T‖(Cr1 \ (K × Rn)) ≤ CE1+γ/2 ≤ CE1+γ/2
1 .

Consider now that, using T K × Rn = Gu K × Rn and standard computations, we have

‖T‖(K × Rn)−Q|K| = 1
2

ˆ
K×Rn

|~T (y)− π0|2no d‖T‖

We thus can combine these two estimates and claim

E1 = E(T,Cr1) ≤ CE1+γ/2
1 + Eno(T,Cr1) ≤ E1

2 + CEno(T,C4) . (15.17)

In particular we easily get
E(T,C2) ≤ CE(T,Cr1) ≤ CEno(T,C4) ,

and again we have proved (15.1).
Finally, if we are in case (c) we iterate the step above and get a Lipschitz approximation

in the cylinder Cr2 where r2 = 3− CEω − CEω1 and the new excess is E2 := E(T,Cr2). We
keep iterating this procedure which we stop at a certain radius

rk = 3− C
k∑
i=0

Eωi ,

if either Ek ≤ A2 or Ek ≥ Ek−1
2 . Observe that as long as the procedure does not end we have

the recursive property Ei ≤ Ei−1
2 . We can thus estimate

rk ≥ 3− CEω
∞∑
i=0

2−ω i ≥ 3− CC̄(ω)Eω .

Since ω is a fixed exponent, provided δ > E is sufficiently small (which from the first step can
be achieved by choosing ε sufficiently small), we have rk ≥ 2. Thus, if the procedure stops we
have proved (15.1). If the procedure does not stop, since Ek → 0 we conclude easily that:

(i) A = 0;
(ii) If we set r∞ := limk→∞ rk, then 2 ≤ r∞ and E(T,Cr∞) = 0.
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This implies that ‖T‖(Cr∞) = Qωmr
m
∞. Given that p]T Cr∞ = Q JBr∞(0, π0)K mod(p),

this is only possible if the current T in Cr∞ consists of a finite number of disks parallel to
Br∞(0, π0) counted with integer multiplicities θi so that ∑i |θi| = Q. In particular, since
2 ≤ r∞, obviously E(T,C2) = 0 ≤ Eno(T,C4), which shows the validity of (15.1) even in this
case. �
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Part 3. Center manifold and approximation on its normal bundle

This part of the paper deals with the construction of the center manifold. As it is the case
with the proof of the partial regularity result for area minimizing currents in codimension
higher than one, one might now attempt a proof of Theorems 3.3 and 7.2 carrying on the
following program:

(1) Apply Almgren’s strong approximation Theorem 14.1 to construct a sequence of
Lipschitz maps uk approximating T0,rk : here, rk is the contradiction sequence of radii
appearing in Proposition 7.7, and the maps uk take values in AQ(π⊥0 ) or in AQ(π⊥0 )
depending on whether Q < p

2 or Q = p
2 , respectively;

(2) Apply Theorem 14.4 to show that, after suitable normalization, a subsequence of the
uk converges to a multiple valued map u∞ minimizing the Dirichlet energy (as in [12]
if Q < p

2 or as in [7] if Q = p
2);

(3) Use (iii) (resp. (iii)s) in Proposition 7.7 to infer that u∞ has a singular set of positive
Hm−2+α measure (resp. of positive Hm−1+α measure), thus contradicting the linear
theory in [12] if Q < p

2 or in [7] if Q = p
2 , respectively.

The obstacle towards the success of this program is making point (3) work, namely, showing
that the “large” singular set of the currents persists in the limit as the approximating functions
uk converge to u∞. As it was just stated, this is false: at this stage, nothing forces u∞ to
actually exhibit any singularities. The center manifold construction is needed precisely to
address this issue: when we approximate the current from the center manifold, we “subtract
the regular part” of the Dir-minimizer in the limit, which in turn allows us to close the
contradiction argument.

In the first section of this part we will outline the arguments and present the statements of
the main results. The subsequent sections will then be devoted to the proofs.

16. Outline and main results

16.1. Preliminaries for the construction of the center manifold.

Notation 16.1 (Distance and nonoriented distance between m-planes). Throughout this
part, π0 continues to denote the plane Rm × {0}, with the standard orientation given by
~π0 = e1 ∧ . . . ∧ em. Given a k-dimensional plane π in Rm+n, we will in fact always identify
π with a simple unit k-vector ~π = v1 ∧ . . . ∧ vk orienting it (thereby making a distinction
when the same plane is given opposite orientations). By a slight abuse of notation, given
two k-planes π1 and π2, we will sometimes write |π1 − π2| in place of |~π1 − ~π2|, where the
norm is induced by the standard inner product in Λk(Rm+n). Furthermore, for a given integer
rectifiable current T , we recall the definition of |~T (y)− π0|no from (12.1). More in general, if
π1 and π2 are two k-planes, we can define |π1 − π2|no by

|π1 − π2|no := min {|~π1 − ~π2|, |~π1 + ~π2|} .

It is understood that |π1 − π2|no does not depend on the choice of the orientations ~π1 and ~π2.

Definition 16.2 (Excess and height). Given an integer rectifiable m-dimensional current
T which is a representative mod(p) in Rm+n with finite mass and compact support and an
m-plane π, we define the nonoriented excess of T in the ball Br(x) with respect to the plane
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π as

Eno(T,Br(x), π) := (2ωm rm)−1
ˆ

Br(x)
|~T − π|2no d‖T‖ . (16.1)

The height function in a set A ⊂ Rm+n with respect to π is
h(T,A, π) := sup

x,y ∈ spt(T )∩A
|pπ⊥(x)− pπ⊥(y)| .

Definition 16.3 (Optimal planes). We say that an m-dimensional plane π optimizes the
nonoriented excess of T in a ball Br(x) if

Eno(T,Br(x)) := min
τ

Eno(T,Br(x), τ) = Eno(T,Br(x), π) (16.2)

and if, in addition:
among all other π′ s.t. (16.2) holds, |π − π0| is minimal. (16.3)

Observe that in general the plane optimizing the nonoriented excess is not necessarily unique
and h(T,Br(x), π) might depend on the optimizer π. Since for notational purposes it is
convenient to define a unique “height” function h(T,Br(x)), we call a plane π as in (16.2) and
(16.3) optimal if in addition

h(T,Br(x)) := min
{
h(T,Br(x), τ) : τ satisfies (16.2) and (16.3)

}
= h(T,Br(x), π) , (16.4)

i.e. π optimizes the height among all planes that optimize the nonoriented excess. However
(16.4) does not play any further role apart from simplifying the presentation.

Remark 16.4. Observe that there are two differences with [10, Definition 1.2]: first of all
here we consider the nonoriented excess; secondly we have the additional requirement (16.3).
In fact the point of (16.3) is to ensure that the planes π “optimizing the nonoriented excess”
always satisfy |π − π0| = |π − π0|no.

We are now ready to formulate the main assumptions of the statements in this section.

Assumption 16.5. ε0 ∈]0, 1] is a fixed constant and Σ ⊂ B7
√
m ⊂ Rm+n is a C3,ε0 (m+ n̄)-

dimensional submanifold with no boundary in B7
√
m. We moreover assume that, for each

q ∈ Σ, Σ is the graph of a C3,ε0 map Ψq : TqΣ ∩ B7
√
m → TqΣ⊥. We denote by c(Σ) the

number supq∈Σ ‖DΨq‖C2,ε0 . T 0 is an m-dimensional integer rectifiable current of Rm+n which
is a representative mod(p) and with support in Σ∩ B̄6

√
m. T 0 is area-minimizing mod(p) in Σ

and moreover
Θ(T 0, 0) = Q and ∂T 0 B6

√
m = 0 mod(p), (16.5)

‖T 0‖(B6
√
mρ) ≤

(
ωmQ(6

√
m)m + ε2

2
)
ρm ∀ρ ≤ 1, (16.6)

Eno
(
T 0,B6

√
m

)
= Eno

(
T 0,B6

√
m, π0

)
, (16.7)

m0 := max
{
c(Σ)2,Eno

(
T 0,B6

√
m

)}
≤ ε2

2 ≤ 1 . (16.8)

Here, Q is a positive integer with 2 ≤ Q ≤ bp2c, and ε2 is a positive number whose choice will
be specified in each subsequent statement.

Constants depending only upon m,n, n̄ and Q will be called geometric and usually denoted
by C0.
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Remark 16.6. Note that (16.8) implies A := ‖AΣ‖C0(Σ) ≤ C0m
1/2
0 , where AΣ denotes, as

usual, the second fundamental form of Σ and C0 is a geometric constant. Observe further that
for q ∈ Σ the oscillation of Ψq is controlled in TqΣ ∩B6

√
m by C0m

1/2
0 .

In what follows we set l := n− n̄. To avoid discussing domains of definitions it is convenient
to extend Σ so that it is an entire graph over all TqΣ. Moreover we will often need to
parametrize Σ as the graph of a map Ψ : Rm+n̄ → Rl. However we do not assume that
Rm+n̄ × {0} is tangent to Σ at any q and thus we need the following lemma.

Lemma 16.7. There are positive constants C0(m, n̄, n) and c0(m, n̄, n) such that, provided
ε2 < c0, the following holds. If Σ is as in Assumption 16.5, then we can (modify it outside
B6
√
m and) extend it to a complete submanifold of Rm+n which, for every q ∈ Σ, is the graph

of a global C3,ε0 map Ψq : TqΣ→ TqΣ⊥ with ‖DΨq‖C2,ε0 ≤ C0m
1/2
0 . T 0 is still area-minimizing

mod(p) in the extended manifold and in addition we can apply a global affine isometry which
leaves Rm × {0} fixed and maps Σ onto Σ′ so that

|Rm+n̄ × {0} − T0Σ′| ≤ C0m
1/2
0 (16.9)

and Σ′ is the graph of a C3,ε0 map Ψ : Rm+n̄ → Rl with Ψ(0) = 0 and ‖DΨ‖C2,ε0 ≤ C0m
1/2
0 .

From now on we assume w.l.o.g. that Σ′ = Σ. The next lemma is a standard consequence
of the theory of area-minimizing currents (we include the proofs of Lemma 16.7 and Lemma
16.8 in Section 17 for the reader’s convenience).

Lemma 16.8. There are positive constants C0(m,n, n̄, Q) and c0(m,n, n̄, Q) with the following
property. If T 0 is as in Assumption 16.5, ε2 < c0 and T := T 0 B23

√
m/4, then:

∂T C11
√
m/2(0, π0) = 0 mod(p) (16.10)

(pπ0)]T C11
√
m/2(0, π0) = Q

r
B11
√
m/2(0, π0)

z
mod(p) (16.11)

and h(T,C5
√
m(0, π0)) ≤ C0m

1/2m
0 . (16.12)

In particular, for each x ∈ B11
√
m/2(0, π0) there is a point q ∈ spt(T ) with pπ0(q) = x.

16.2. Construction of the center manifold. From now we will always work with the
current T of Lemma 16.8. We specify next some notation which will be recurrent in the paper
when dealing with cubes of π0. For each j ∈ N, C j denotes the family of closed cubes L of π0
of the form

[a1, a1 + 2`]× . . .× [am, am + 2`]× {0} ⊂ π0 , (16.13)
where 2 ` = 21−j =: 2 `(L) is the side-length of the cube, ai ∈ 21−jZ ∀i and we require in
addition −4 ≤ ai ≤ ai + 2` ≤ 4. To avoid cumbersome notation, we will usually drop the
factor {0} in (16.13) and treat each cube, its subsets and its points as subsets and elements of
Rm. Thus, for the center xL of L we will use the notation xL = (a1 + `, . . . , am + `), although
the precise one is (a1 + `, . . . , am + `, 0, . . . , 0). Next we set C := ⋃

j∈N C j . If H and L are
two cubes in C with H ⊂ L, then we call L an ancestor of H and H a descendant of L. When
in addition `(L) = 2`(H), H is a son of L and L the father of H.

Definition 16.9. A Whitney decomposition of [−4, 4]m ⊂ π0 consists of a closed set Γ ⊂
[−4, 4]m and a family W ⊂ C satisfying the following properties:
(w1) Γ ∪

⋃
L∈W L = [−4, 4]m and Γ does not intersect any element of W ;
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(w2) the interiors of any pair of distinct cubes L1, L2 ∈ W are disjoint;
(w3) if L1, L2 ∈ W have nonempty intersection, then 1

2`(L1) ≤ `(L2) ≤ 2 `(L1).
Observe that (w1) - (w3) imply

sep (Γ, L) := inf{|x− y| : x ∈ L, y ∈ Γ} ≥ 2`(L) for every L ∈ W . (16.14)
However, we do not require any inequality of the form sep (Γ, L) ≤ C`(L), although this would
be customary for what is commonly called a Whitney decomposition in the literature.

The algorithm for the construction of the center manifold involves several parameters which
depend in a complicated way upon several quantities and estimates. We introduce these
parameters and specify some relations among them in the following
Assumption 16.10. Ce, Ch, β2, δ2,M0 are positive real numbers and N0 is a natural number
for which we assume always

β2 = 4 δ2 = min
{ 1

2m,
γ1
100

}
, where γ1 is the exponent in the estimates of Theorem 14.1,

(16.15)
M0 ≥ C0(m,n, n̄, Q) ≥ 4 and

√
mM027−N0 ≤ 1 . (16.16)

As we can see, β2 and δ2 are fixed. The other parameters are not fixed but are subject
to further restrictions in the various statements, respecting the following “hierarchy”. As
already mentioned, “geometric constants” are assumed to depend only upon m,n, n̄ and Q.
The dependence of other constants upon the various parameters pi will be highlighted using
the notation C = C(p1, p2, . . .).
Assumption 16.11 (Hierarchy of the parameters). In all the coming statements:

(a) M0 is larger than a geometric constant (cf. (16.16)) or larger than a costant C(δ2),
see Proposition 16.29;

(b) N0 is larger than C(β2, δ2,M0) (see for instance (16.16) and Proposition 16.32);
(c) Ce is larger than C(β2, δ2,M0, N0) (see the statements of Proposition 16.13, Theorem

16.19 and Proposition 16.29);
(d) Ch is larger than C(β2, δ2,M0, N0, Ce) (see Propositions 16.13 and 16.26);
(e) ε2 is smaller than c(β2, δ2,M0, N0, Ce, Ch) (which will always be positive).

The functions C and c will vary in the various statements: the hierarchy above guarantees
however that there is a choice of the parameters for which all the restrictions required in the
statements of the next propositions are simultaneously satisfied. To simplify our exposition,
for smallness conditions on ε2 as in (e) we will use the sentence “ε2 is sufficiently small”.

Thanks to Lemma 16.8, for every L ∈ C , we may choose yL ∈ π⊥0 so that pL := (xL, yL) ∈
spt(T ) (recall that xL is the center of L). yL is in general not unique and we fix an arbitrary
choice. A more correct notation for pL would be xL + yL. This would however become rather
cumbersome later, when we deal with various decompositions of the ambient space in triples
of orthogonal planes. We thus abuse the notation slightly in using (x, y) instead of x+ y and,
consistently, π0 × π⊥0 instead of π0 ⊕ π⊥0 .
Definition 16.12 (Refining procedure). For L ∈ C we set rL := M0

√
m`(L) and BL :=

B64rL(pL). We next define the families of cubes S ⊂ C and W = We ∪Wh ∪Wn ⊂ C with the
convention that S j = S ∩ C j ,W j = W ∩ C j and W j

� = W� ∩ C j for � = h, n, e. We define
W i = S i = ∅ for i < N0. We proceed with j ≥ N0 inductively: if no ancestor of L ∈ C j is in
W , then
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(EX) L ∈ W j
e if Eno(T,BL) > Cem0 `(L)2−2δ2 ;

(HT) L ∈ W j
h if L 6∈ W j

e and h(T,BL) > Chm
1/2m
0 `(L)1+β2 ;

(NN) L ∈ W j
n if L 6∈ W j

e ∪W j
h but it intersects an element of W j−1;

if none of the above occurs, then L ∈ S j . We finally set
Γ := [−4, 4]m \

⋃
L∈W

L =
⋂
j≥N0

⋃
L∈S j

L. (16.17)

Observe that, if j > N0 and L ∈ S j ∪W j , then necessarily its father belongs to S j−1.
Proposition 16.13 (Whitney decomposition). Let Assumptions 16.5 and 16.10 hold and let
ε2 be sufficiently small. Then (Γ,W ) is a Whitney decomposition of [−4, 4]m ⊂ π0. Moreover,
for any choice of M0 and N0, there is C? := C?(M0, N0) such that, if Ce ≥ C? and Ch ≥ C?Ce,
then

W j = ∅ for all j ≤ N0 + 6. (16.18)
Finally, the following estimates hold with C = C(β2, δ2,M0, N0, Ce, Ch):

Eno(T,BJ) ≤ Cem0 `(J)2−2δ2 and h(T,BJ) ≤ Chm
1/2m
0 `(J)1+β2 ∀J ∈ S , (16.19)

Eno(T,BL) ≤ Cm0 `(L)2−2δ2 and h(T,BL) ≤ Cm1/2m
0 `(L)1+β2 ∀L ∈ W . (16.20)

We will prove Proposition 16.13 in Section 18. Next, we fix two important functions
ϑ, % : Rm → R.
Assumption 16.14. % ∈ C∞c (B1) is radial,

´
% = 1 and

´
|x|2%(x) dx = 0. For λ > 0 %λ

denotes, as usual, x 7→ λ−m%(xλ). ϑ ∈ C∞c
(
[−17

16 ,
17
16 ]m, [0, 1]

)
is identically 1 on [−1, 1]m.

% will be used as convolution kernel for smoothing maps z defined on m-dimensional planes
π of Rm+n. In particular, having fixed an isometry A of Rm onto π, the smoothing will be
given by [(z ◦A) ∗ %λ] ◦A−1. Observe that since % is radial, our map does not depend on the
choice of the isometry and we will therefore use the shorthand notation z ∗ %λ.
Definition 16.15 (π-approximations). Let L ∈ S ∪W and π be an m-dimensional plane. If
T C32rL(pL, π) fulfills the assumptions of Theorem 15.1 in the cylinder C32rL(pL, π), then
the resulting map u given by the theorem, which is defined on B8rL(pL, π) and takes values
either in AQ(π⊥) (if Q < p

2) or in AQ(π⊥) (if Q = p
2) is called a π-approximation of T in

C8rL(pL, π). The map ĥ : B7rL(pL, π) → π⊥ given by ĥ := (η ◦ u) ∗ %`(L) will be called the
smoothed average of the π-approximation.
Definition 16.16 (Reference plane πL). For each L ∈ S ∪W we let π̂L be an optimal plane
in BL (cf. Definition 16.3) and choose an m-plane πL ⊂ TpLΣ which minimizes |π̂L − πL|.

The following lemma, which will be proved in Section 18, deals with graphs of multivalued
functions f in several systems of coordinates.
Lemma 16.17. Let the assumptions of Proposition 16.13 hold and assume Ce ≥ C? and
Ch ≥ C?Ce (where C? is the constant of Proposition 16.13). For any choice of the other
parameters, if ε2 is sufficiently small, then T C32rL(pL, πL) satisfies the assumptions of
Theorem 15.1 for any L ∈ W ∪ S . Moreover, if fL is a πL-approximation, denote by
ĥL its smoothed average and by h̄L the map pTpLΣ(ĥL), which takes values in the plane
κL := TpLΣ ∩ π⊥L , i.e. the orthogonal complement of πL in TpLΣ. If we let hL be the map
x ∈ B7rL(pL, πL) 7→ hL(x) := (h̄L(x),ΨpL(x, h̄L(x))) ∈ κL × TpLΣ⊥, then there is a smooth
map gL : B4rL(pL, π0)→ π⊥0 such that GgL = GhL C4rL(pL, π0).
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For the sake of simplicity, in the future we will sometimes regard gL as a map gL : B4rL(xL, π0)→
π⊥0 rather than as a map gL : B4rL(pL, π0) → π⊥0 . In particular, we will sometimes con-
sider gL(x) with x ∈ B4rL(xL, π0) even though the correct writing is the more cumbersome
gL((x, yL)).

Definition 16.18 (Interpolating functions). The maps hL and gL in Lemma 16.17 will be
called, respectively, the tilted L-interpolating function and the L-interpolating function. For
each j let Pj := S j ∪

⋃j
i=N0

W i and for L ∈Pj define ϑL(y) := ϑ(y−xL`(L) ). Set

ϕ̂j :=
∑
L∈Pj ϑL gL∑
L∈Pj ϑL

on ]− 4, 4[m, (16.21)

let ϕ̄j(y) be the first n̄ components of ϕ̂j(y) and define ϕj(y) :=
(
ϕ̄j(y),Ψ(y, ϕ̄j(y))

)
, where Ψ

is the map of Lemma 16.7. ϕj will be called the glued interpolation at the step j.

Theorem 16.19 (Existence of the center manifold). Assume that the hypotheses of the Lemma
16.17 hold and let κ := min{ε0/2, β2/4}. For any choice of the other parameters, if ε2 is
sufficiently small, then

(i) ‖Dϕj‖C2,κ ≤ Cm
1/2
0 and ‖ϕj‖C0 ≤ Cm

1/2m
0 , with C = C(β2, δ2,M0, N0, Ce, Ch).

(ii) if L ∈ W i and H is a cube concentric to L with `(H) = 9
8`(L), then ϕj = ϕk on H

for any j, k ≥ i+ 2.
(iii) ϕj converges in C3 to a map ϕ andM := Gr(ϕ|]−4,4[m) is a C3,κ submanifold of Σ.

Definition 16.20 (Whitney regions). The manifoldM in Theorem 16.19 is called a center
manifold of T relative to π0, and (Γ,W ) the Whitney decomposition associated toM. Setting
Φ(y) := (y, ϕ(y)), we call Φ(Γ) the contact set. Moreover, to each L ∈ W we associate a
Whitney region L onM as follows:
(WR) L := Φ(H ∩ [−7

2 ,
7
2 ]m), where H is the cube concentric to L with `(H) = 17

16`(L).

We will present a proof of Theorem 16.19 in Section 19

16.3. TheM-normal approximation and related estimates. In what follows we assume
that the conclusions of Theorem 16.19 apply and denote by M the corresponding center
manifold. For any Borel set V ⊂M we will denote by |V| its Hm-measure and will write

´
V f

for the integral of f with respect to Hm V. Br(q) denotes the geodesic open balls inM.

Assumption 16.21. We fix the following notation and assumptions.
(U) U :=

{
x ∈ Rm+n : ∃! y = p(x) ∈M with |x− y| < 1 and (x− y) ⊥M

}
.

(P) p : U→M is the map defined by (U).
(R) For any choice of the other parameters, we assume ε2 to be so small that p extends to

C2,κ(Ū) and p−1(y) = y +B1(0, (TyM)⊥) for every y ∈M.
(L) We denote by ∂lU := p−1(∂M) the lateral boundary of U.

The following is then a corollary of Theorem 16.19 and the construction algorithm; see
Section 20 for the proof.

Corollary 16.22. Under the hypotheses of Theorem 16.19 and of Assumption 16.21 we have:
(i) sptp(∂(T U)) ⊂ ∂lU, spt(T [−7

2 ,
7
2 ]m × Rn) ⊂ U, and p](T U) = Q JMK mod(p);

(ii) spt(〈T,p,Φ(q)〉) ⊂
{
y : |Φ(q)− y| ≤ Cm1/2m

0 `(L)1+β2
}
for every q ∈ L ∈ W , where

C = C(β2, δ2,M0, N0, Ce, Ch);
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(iii) 〈T,p, q〉 = Q JqK for every q ∈ Φ(Γ).

The next main goal is to couple the center manifold of Theorem 16.19 with a good
approximating map defined on it.

Definition 16.23 (M-normal approximation). AnM-normal approximation of T is given by
a pair (K, F ) with the following properties. K ⊂M is closed and contains Φ

(
Γ ∩ [−7

2 ,
7
2 ]m

)
.

Moreover:
(a) If Q = p

2 , F is a Lipschitz map which takes values in AQ(Rm+n) and satisfies the
requirements of [7, Assumption 11.1].

(b) If Q < p
2 , F is a Lipschitz map which takes values in AQ(Rm+n) and has the special

form F (x) = ∑
i Jx+Ni(x)K.

In both cases we require that
(A1) spt(TF ) ⊂ Σ;
(A2) TF p−1(K) = T p−1(K) mod(p),

where TF is the integer rectifiable current induced by F ; see [7, Definition 11.2]. The map N
(for the case Q = p

2 see [7, Assumption 11.1]) is the normal part of F .

In the definition above it is not required that the map F approximates efficiently the current
outside the set Φ

(
Γ ∩ [−7

2 ,
7
2 ]m

)
. However, all the maps constructed will approximate T with

a high degree of accuracy in each Whitney region: such estimates are detailed in the next
theorem, the proof of which will be tackled in Section 20.

Theorem 16.24 (Local estimates for theM-normal approximation). Let γ2 := γ
4 , with γ the

constant of Theorem 14.1. Under the hypotheses of Theorem 16.19 and Assumption 16.21,
if ε2 is suitably small (depending upon all other parameters), then there is an M-normal
approximation (K, F ) such that the following estimates hold on every Whitney region L
associated to a cube L ∈ W , with constants C = C(β2, δ2,M0, N0, Ce, Ch):

Lip(N |L) ≤ Cmγ2
0 `(L)γ2 and ‖N |L‖C0 ≤ Cm

1/2m
0 `(L)1+β2 , (16.22)

|L \ K|+ ‖TF − T‖p(p−1(L)) ≤ Cm1+γ2
0 `(L)m+2+γ2 , (16.23)ˆ

L
|DN |2 ≤ Cm0 `(L)m+2−2δ2 . (16.24)

Moreover, for any a > 0 and any Borel V ⊂ L, we have (for C = C(β2, δ2,M0, N0, Ce, Ch))ˆ
V
|η ◦N | ≤ Cm0

(
`(L)m+3+β2/3 + a `(L)2+γ2/2|V|

)
+ C

a

ˆ
V
G�
(
N,Q Jη ◦NK

)2+γ2 , (16.25)

where � = s in case p = 2Q, and it is empty otherwise.

From (16.22) - (16.24) it is not difficult to infer analogous “global versions” of the estimates.

Corollary 16.25 (Global estimates). LetM′ be the domain Φ
(
[−7

2 ,
7
2 ]m

)
and N the map of

Theorem 16.24. Then, (again with C = C(β2, δ2,M0, N0, Ce, Ch))

Lip(N |M′) ≤ Cmγ2
0 and ‖N |M′‖C0 ≤ Cm

1/2m
0 , (16.26)

|M′ \ K|+ ‖TF − T‖p(p−1(M′)) ≤ Cm1+γ2
0 , (16.27)ˆ

M′
|DN |2 ≤ Cm0 . (16.28)
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16.4. Separation and domains of influence of large excess cubes. We now analyze
more in detail the consequences of the various stopping conditions for the cubes in W . We
first deal with L ∈ Wh.

Proposition 16.26 (Separation). There is a constant C](M0) > 0 with the following property.
Assume the hypotheses of Theorem 16.24 and in addition C2m

h ≥ C]Ce. If ε2 is sufficiently
small, then the following conclusions hold for every L ∈ Wh:

(S1) Θ(T, q) ≤ Q− 1
2 for every q ∈ B16rL(pL);

(S2) L ∩H = ∅ for every H ∈ Wn with `(H) ≤ 1
2`(L);

(S3) G�
(
N(x), Q Jη ◦N(x)K

)
≥ 1

4Chm
1/2m
0 `(L)1+β2 for every x ∈ Φ(B2

√
m`(L)(xL, π0)),

where � = s if p = 2Q or � = otherwise.

A simple corollary of the previous proposition is the following.

Corollary 16.27. Given any H ∈ Wn there is a chain L = L0, L1, . . . , Lj = H such that:
(a) L0 ∈ We and Li ∈ Wn for all i > 0;
(b) Li ∩ Li−1 6= ∅ and `(Li) = 1

2`(Li−1) for all i > 0.
In particular, H ⊂ B3

√
m`(L)(xL, π0).

We use this last corollary to partition Wn.

Definition 16.28 (Domains of influence). We first fix an ordering of the cubes in We as
{Ji}i∈N so that their sidelengths do not increase. Then H ∈ Wn belongs to Wn(J0) (the domain
of influence of J0) if there is a chain as in Corollary 16.27 with L0 = J0. Inductively, Wn(Jr)
is the set of cubes H ∈ Wn \ ∪i<rWn(Ji) for which there is a chain as in Corollary 16.27 with
L0 = Jr.

16.5. Splitting before tilting. The following proposition contains a “typical” splitting-
before-tilting phenomenon: the key assumption of the theorem (i.e. L ∈ We) is that the excess
does not decay at some given scale (“tilting”) and the main conclusion (16.30) implies a certain
amount of separation between the sheets of the current (“splitting”); see Section 21 for the
proof.

Proposition 16.29. (Splitting I) There are functions C1(δ2), C2(M0, δ2) such that, if M0 ≥
C1(δ2), Ce ≥ C2(M0, δ2), if the hypotheses of Theorem 16.24 hold and if ε2 is chosen sufficiently
small, then the following holds. If L ∈ We, q ∈ π0 with dist(L, q) ≤ 4

√
m`(L) and Ω =

Φ(B`(L)/4(q, π0)), then (with C,C3 = C(β2, δ2,M0, N0, Ce, Ch)):

Cem0`(L)m+2−2δ2 ≤ `(L)mEno(T,BL) ≤ C
ˆ

Ω
|DN |2 , (16.29)

ˆ
L
|DN |2 ≤ C`(L)mEno(T,BL) ≤ C3`(L)−2

ˆ
Ω
|N |2 . (16.30)

16.6. Persistence of multiplicity Q points. We next state two important properties
triggered by the existence of q ∈ spt(T ) with Θ(T, q) = Q, both related to the splitting before
tilting. Their proofs will be discussed in Section 22.

Proposition 16.30. (Splitting II) Let the hypotheses of Theorem 16.19 hold and assume ε2
is sufficiently small. For any α, ᾱ, α̂ > 0, there is ε3 = ε3(α, ᾱ, α̂, β2, δ2,M0, N0, Ce, Ch) > 0
as follows.
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When Q < p
2 , if for some s ≤ 1

sup
{
`(L) : L ∈ W , L ∩B3s(0, π0) 6= ∅

}
≤ s , (16.31)

Hm−2+α
∞

(
{Θ(T, ·) = Q} ∩Bs

)
≥ ᾱsm−2+α, (16.32)

and min
{
s,m0

}
≤ ε3, then,

sup
{
`(L) : L ∈ We and L ∩B19s/16(0, π0) 6= ∅

}
≤ α̂s .

When Q = p
2 , the same conclusion can be reached if (16.32) is replaced by

Hm−1+α
∞

(
{Θ(T, ·) = Q} ∩Bs

)
≥ ᾱsm−1+α . (16.33)

Proposition 16.31. (Persistence of Q-points) Assume the hypotheses of Proposition 16.29
hold. For every η2 > 0 there are s̄, ¯̀ > 0, depending upon η2, β2, δ2,M0, N0, Ce and Ch,
such that, if ε2 is sufficiently small, then the following property holds. If L ∈ We, `(L) ≤ ¯̀,
Θ(T, q) = Q and dist(pπ0(p(q)), L) ≤ 4

√
m`(L), then

−
ˆ
Bs̄`(L)(p(q))

G�
(
N,Q Jη ◦NK

)2 ≤ η2
`(L)m−2

ˆ
B`(L)(p(q))

|DN |2 , (16.34)

where � = s if p = 2Q or � = otherwise.

16.7. Comparison between center manifolds. We list here a final key consequence of the
splitting before tilting phenomenon. ι0,r denotes the map z 7→ z

r .

Proposition 16.32 (Comparing center manifolds). There is a geometric constant C0 and a
function c̄s(β2, δ2,M0, N0, Ce, Ch) > 0 with the following property. Assume the hypotheses of
Proposition 16.29, N0 ≥ C0, cs := 1

64
√
m

and ε2 is sufficiently small. If for some r ∈]0, 1[:
(a) `(L) ≤ csρ for every ρ > r and every L ∈ W with L ∩Bρ(0, π0) 6= ∅;
(b) Eno(T,B6

√
mρ) < ε2 for every ρ > r;

(c) there is L ∈ W such that `(L) ≥ csr and L ∩ B̄r(0, π0) 6= ∅;
then

(i) the current T ′ := (ι0,r)]T B6
√
m and the submanifold Σ′ := ι0,r(Σ)∩B7

√
m satisfy the

assumptions of Theorem 16.24 for some plane π in place of π0;
(ii) for the center manifoldM′ of T ′ relative to π and theM′-normal approximation N ′

as in Theorem 16.24, we haveˆ
M′∩B2

|N ′|2 ≥ c̄s max
{
Eno(T ′,B6

√
m), c(Σ′)2} . (16.35)

17. Height bound and first technical lemmas

We can now discuss the proofs of the main results outlined in the previous section. We
begin with a mod(p) version of the sheeting lemma appearing in [10, Theorem A.1].

Theorem 17.1. Let p, Q, m, n̄ and n be positive integers, with Q ≤ p
2 . Then there are

ε(Q,m, p, n̄, n) > 0, ω(Q,m, p, n̄, n) > 0, and C0(Q,m, n̄, n) with the following property. For
r > 0 and C = Cr(x0) = Cr(x0, π0) assume:

(h1) Σ and T are as in Assumption 3.1;
(h2) ∂T C = 0 mod(p), (pπ0)]T C = Q JBr(pπ0(x0), π0)K mod(p), and E := E(T,C) < ε.

Then there are k ∈ N \ {0}, points {y1, . . . , yk} ⊂ Rn and integers Q1, . . . , Qk such that:
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(i) having set σ := C0(E + A2) 1
2m and ρ := r(1− 2(E + A2)ω), the open sets

Si := Rm × (yi+ ]− rσ, rσ[n)
are pairwise disjoint and

spt(T ) ∩Cρ(x0) ⊂
⋃
i

Si ;

(ii) (pπ0)][T (Cρ(x0) ∩ Si)] = Qi JBρ(pπ0(x0), π0)K mod(p) ∀i ∈ {1, . . . , k}, with Qi ∈ Z.
When Q < p

2 all Qi must be positive, whereas for Q = p
2 either they are all positive or

they are all negative; in any case,
∑
i|Qi| = Q;

(iii) for every q ∈ spt(T ) ∩Cρ(x0) we have Θ(T, q) < maxi |Qi|+ 1
2 .

If we keep the same assumptions with E replaced by Eno := Eno(T,C), the conclusions hold if
we set ρ := r(1− η − 2(E + A2)ω), where η > 0 is any fixed constant (in turn ε will depend
also on η).

Remark 17.2. The proof that we are going to present is substantially different from the one
in [10, Theorem A.1], and it could be easily adapted to the case of area minimizing integral
currents as well. The statement above is sufficient for our purposes; nonetheless, the proof
is actually going to give us more. In particular, in dimension m ≥ 3 the result holds with a
better estimate on the bandwidth of the various Si, namely with σ = C0 (E + A2) 1

m in place
of σ = C0 (E + A2) 1

2m . In dimension m = 2, the proof below also produces the height bound
with the optimal estimate featuring σ = O(E1/2), but only in the cylinder C r

2
(x0).

Proof. In the rest of the proof we denote by p the orthogonal projection onto π0 = Rm × {0}.
The last part of the statement, where E is replaced with Eno follows from Theorem 15.1.
Moreover, we assume x0 = 0 and r = 1 after appropriate translation and rescaling. We also
observe, as in the proof of [10, Theorem A.1] that (iii) is a corollary of the interior monotonicity
formula (the only ingredients of the argument in there are the stationarity of the varifold
induced by Ti := T (Cρ ∩ Si) and the inequality M(Ti) ≤ ωm ρm(|Qi|+ E)).

We therefore focus on (i) and (ii) and since the case Q < p
2 is entirely analogous, for the sake

of simplicity we assume Q = p
2 . We first prove (i). We start by considering an approximation

as in Proposition 15.2. We thus find an exponent ω > 0 (which depends only on Q,m and
n), a Lipschitz map u : B1−(E+A2)ω → AQ(Rn) and a K ⊂ B1−(E+A2)ω with the following
properties:

(i) Lip(u) ≤ C (E + A2)ω;
(ii) Gu K × Rn = T K × Rn mod(p);
(iii) ‖T‖((B1−(E+A2)ω \K)× Rn) ≤ C(E + A2)1+ω.

We consider first the case m > 2. Recall the Poincaré inequality and find a point T0 ∈ AQ(Rn)
such thatˆ

B1−(E+A2)ω

Gs(T0, u(x))2∗ dx

1/2∗

≤ C‖Du‖L2(B1−(E+A2)ω ) ≤ C(E + A2)
1
2 , (17.1)

where 2∗ = 2m
m−2 . Define next the set K∗ := {x ∈ B1−(E+A2)ω : Gs(u(x), T0) ≤ C̄(E + A2) 1

m },
where C̄ is a constant which will be later chosen sufficiently large. Using (17.1) and Chebyshev’s
inequality, we easily conclude

|B1−(E+A2)ω \K∗| C̄
2m
m−2 (E + A2)

2
m−2 ≤ C (E + A2)

m
m−2 . (17.2)
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In particular, for any fixed η̄, if C̄ is chosen large enough, we reach the estimate
|B1−(E+A2)ω \K∗| ≤ η̄(E + A2) . (17.3)

Consider now the set K̄ := K ∩K∗ and observe that, by choosing ε sufficiently small, we reach
‖T‖((B1−(E+A2)ω \ K̄)× Rn) ≤ 2η̄(E + A2) . (17.4)

To fix ideas assume now that T0 = (∑J
j=1 kj JpjK , 1), where the pj ’s are pairwise distinct and

all kj are positive. Let spt(T0) = {p1, . . . pJ}. From (ii) and the definition of K̄, it follows
easily that dist(spt(T0),p⊥(spt(〈T,p, x)) ≤ C̄(E + A2) 1

m for x ∈ K̄. Define thus the sets
U := ⋃

j{(x, y) : |y− pj | ≤ C̄(E+ A2) 1
m } and U′ := ⋃

j{(x, y) : |y− pj | ≤ (C̄+ 1)(E+ A2) 1
m },

then
‖T‖(C1−(E+A2)ω \U) ≤ ‖T‖((B1−(E+A2)ω \ K̄)× Rn) ≤ 2η̄(E + A2) . (17.5)

If q ∈ C1−2(E+A2)ω \U′, then B
(E+A2)

1
m

(q) ⊂ C1−(E+A2)ω \U (we are imposing here ω ≤ 1
m),

and by the monotonicity formula ‖T‖(B
(E+A2)

1
m

(q)) ≥ c0(E + A2), where c0 is a geometric
constant. This is however incompatible with (17.5) as soon as 2η̄ is chosen smaller than c0,
thus showing that spt(T )∩C1−2 (E+A2)ω ⊂ U′. We can now subdivide U′ in a finite number of
disjoint stripes Si of width C̃(E + A2) 1

m , where C̃ is larger than C̄ by a factor which depends
only on Q. This shows therefore the claim (i) of the theorem when m > 2.

The case m = 2 is slightly more subtle. Observe first that |Du|2 ≤ min{mce, 1} and hence
we can use the same argument as in the proof of Theorem 13.3 to achieveˆ

K
|Du|2(1+q) ≤ CE1+q−ω . (17.6)

The subtlety is in losing at most (E + A2)ω in the radius of the ball; as usual, the price to
pay is a slightly worse estimate, cf. (17.6) with (13.3). Since |B1−(E+A2)ω \K| ≤ E1+ω, if we
choose q small enough we easily reach the estimate

‖Du‖L2+2q(B1−(E+A2)ω ) ≤ CE
1
4 .

In particular, if we set in this case K∗ := {x ∈ B1−(E+A2)ω : Gs(u(x), T0) ≤ C̄(E + A2) 1
4 }

then from Morrey’s embedding follows that K∗ = B1−(E+A2)ω , provided C̄ is chosen large
enough. (17.3) is thus trivially true and the rest of the argument remains unchanged.

We now come to claim (ii). By the constancy theorem, it is easy to see that
p](T C1−2(E+A2)ω ∩ Si) = Qi

q
B1−2(E+A2)ω

y
mod(p) ,

for some integer Qi ∈ {−(Q− 1), . . . ,−1, 0, 1, . . . , Q}. However, recall that for x ∈ K̄:
• the support S of the current Zi(x) := 〈T,p, x〉 C1−2(E+A2)ω ∩ Si consists of at most
Q points;
• either all points in S have positive integer multiplicity, or they all have negative integer
multiplicity;
• M(Zi(x)) ≤ Q.

We thus conclude that each Qi is nonzero and that |Qi| = M(Zi(x)). Now, since M(〈T,p, x〉) =
Q, we must have ∑ |Qi| = Q. On the other hand∑

i

p](T C1−2(E+A2)ω ∩ Si) = p](T C1−2(E+A2)) = Q
q
B1−2(E+A2)ω

y
mod(p) .
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Hence ∑iQi = Q mod(p). Hence we conclude that either all Qi’s are positive or they are all
negative. �

Before coming to the proofs of the Lemmas 16.7 and (16.17), we wish to make the following
elementary remark, which will be used throughout the rest of the paper:

Proposition 17.3. There are dimensional constants ε(m,n) > 0 and C(m,n) > 0 with the
following property. Consider an oriented m-dimensional plane π ⊂ Rm+n and an oriented
(m + d)-dimensional plane Π ⊂ Rm+n, where d ∈ {0, . . . , n}. Let π′ ⊂ Π be an oriented
m-dimensional plane for which |π − π′| = minτ⊂Π |π − τ |, and assume|π − π′| < ε. Then

|π − pΠ(π)|no = |π − pΠ(π)| ≤ C|π − π′| .
In particular:
(Eq) if α and β are m-dimensional oriented planes of Rm+n for which |α− β| is smaller

than a positive geometric constant, then |α− β|no = |α− β|.

The proposition is a simple geometric observation, and its proof is left to the reader.

Proof of Lemma 16.7. The argument given in [10, Section 4] of [10, Lemma 1.5] for the
existence of the global extension of Σ and the minimality of T 0 in the extended manifold
works in our case as well, with straightforward modifications.

We now come to the proof of (16.9), which again follows that given in [10, Section 4] of [10,
Lemma 1.5], but needs some extra care. First of all, by Assumption 16.5 and Remark 16.6,
A ≤ C0m

1/2
0 ≤ C0. Then, by the monotonicity formula, ‖T 0‖(B1) ≥ c0 > 0 and so there is

q ∈ spt(T 0) ∩B1 such that

| ~T 0(q)− π0|2no ≤ C0
Eno(T 0,B1, π0)
‖T 0‖(B1) ≤ C0m0 .

Now, both ~T 0(q) and − ~T 0(q) orient a plane contained in TqΣ. We can thus apply Proposition
17.3 provided m0 is sufficiently small. From it we conclude that pTqΣ(π0) is an m-dimensional
plane with |pTqΣ(π0)−π0| ≤ C0m

1/2
0 . From this inequality we then conclude following literally

the final arguments of [10, Proof of Lemma 1.5]. �

Proof of Lemma 16.8. We follow the proof of [10, Lemma 1.6] given in [10, Section 4]. First
of all we notice that, once (16.10) and (16.11) are established, (16.12) follows from Theorem
17.1, since we clearly have that Eno(T,C11

√
m/2, π0) ≤ CEno(T 0,B6

√
m, π0). Moreover, recall

that there is a set of full measure A ⊂ B5
√
m such that 〈T,pπ0 , x〉 is an integer rectifiable

current for every x ∈ A. For any such x we have thus 〈T,pπ0 , x〉 = ∑J(x)
i ki(x) JpiK where

p1, . . . , pJ(x) is a finite collection of points and each ki(x) is an integer. In particular we must
have ∑i ki(x) = Q mod(p) and since 1 ≤ Q ≤ p

2 , at least one ki(x) must be nonzero, which
means in turn that spt(〈T,pπ0 , x〉) 6= ∅. Hence we conclude that spt(T )∩p−1

π0 (x) 6= ∅ for every
x ∈ A, and by the density of A we conclude that spt(T ) ∩ p−1

π0 (x) 6= ∅ for every x ∈ B5
√
m.

We next come to (16.10) and (16.11). As in the proof of [10, Lemma 1.6], we argue by
contradiction and assume that one among (16.10) and (16.11) fails for a sequence T 0

k of
currents which satisfy Assumption 16.5 with ε2 = ε2(k) ↓ 0. The compactness property given
by Proposition 4.2 ensures the existence of a subsequence, not relabeled, converging to a
current T 0

∞ in the F p
K norm for every compact K ⊂ B6

√
m: in fact Proposition 4.2 ensures

also that T 0
∞ is area minimizing mod(p) in a suitable (m+ n̄)-dimensional plane (the limit of
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the Riemannian manifolds Σk) and that the varifolds induced by T 0
k converge to the varifold

induced by T 0
∞. In particular, ∂T 0

∞ = 0 mod(p) in B6
√
m and the tangent plane to T 0

∞ is
parallel to π0 ‖T 0

∞‖-almost everywhere.
Observe that by upper semicontinuity of the density, (16.5) implies that 0 is a point of

density Q for T 0
∞. On the other hand (16.6) implies that ‖T 0

∞‖(B6
√
m) ≤ Qωm(6

√
m)m.

Hence, by the monotonicity formula, T 0
∞ must be a cone. Observe that if q ∈ spt(T 0

∞) is a
point where the approximate tangent space πq exists, since T 0

∞ is a cone, we must have that
q ∈ πq. Thus q ∈ π0 for ‖T 0

∞‖-a.e. q, which in turn implies that spt(T 0
∞) ⊂ π0. In conclusion

T 0
∞ = QJB6

√
mK mod(p), and moreover the varifold convergence holds in the whole Rm+n.

Again by the monotonicity formula, spt(T 0
k ) is converging locally in the sense of Hausdorff

to spt(T 0
∞). In particular if we set Tk := T 0

k B23
√
m/4, for k large Tk will have no boundary

mod(p) in C11
√
m/2. Hence it must be (16.11) which fails for an infinite number of k’s. On the

other hand we certainly have (pπ0)]Tk C11
√
m/2 = QkJB11

√
m/2K mod(p). Notice that by the

varifold convergence we have ‖T 0
k ‖(C11

√
m/2 \B23

√
m/4)→ 0 as k →∞. In particular the limit

of the currents (pπ0)]Tk C11
√
m/2 is the same as the limit of the currents (pπ0)]T 0

k C11
√
m/2

and thus it must be Qk = Q mod(p) for k large enough. �

18. Tilting of planes and proof of Proposition 16.13

Following [10], the first important technical step in the proof of the existence of the center
manifold is to gain a control on the tilting of the optimal planes as the cubes get refined. The
following proposition corresponds to [10, Proposition 4.1].

Proposition 18.1 (Tilting of optimal planes). Assume that the hypotheses of Assumptions
16.5 and 16.10 hold, that Ce ≥ C? and Ch ≥ C?Ce, where C?(M0, N0) is the constant of the
previous section. If ε2 is sufficiently small, then

(i) BH ⊂ BL ⊂ B5
√
m for all H,L ∈ W ∪S with H ⊂ L.

Moreover, if H,L ∈ W ∪S and either H ⊂ L or H ∩ L 6= ∅ and `(L)
2 ≤ `(H) ≤ `(L), then

the following holds, for C̄ = C̄(β2, δ2,M0, N0, Ce) and C = C(β2, δ2,M0, N0, Ce, Ch):
(ii) |π̂H − πH | ≤ C̄m

1/2
0 `(H)1−δ2;

(iii) |πH − πL| ≤ C̄m
1/2
0 `(L)1−δ2;

(iv) |πH − π0| ≤ C̄m
1/2
0 ;

(v) h(T,C36rH (pH , π0)) ≤ Cm1/2m
0 `(H) and spt(T ) ∩C36rH (pH , π0) ⊂ BH ;

(vi) For π = πH , π̂H , h(T,C36rL(pL, π)) ≤ Cm
1/2m
0 `(L)1+β2 and spt(T ) ∩C36rL(pL, π) ⊂

BL.
In particular, the conclusions of Proposition 16.13 hold.

Proof. First of all we observe that, if we replace (ii), (iii) and (iv) with
(ii)no |π̂H − πH |no ≤ C̄m

1/2
0 `(H)1−δ2 ,

(iii)no |πH − πL|no ≤ C̄m
1/2
0 `(L)1−δ2 , and

(iv)no |πH − π0|no ≤ C̄m
1/2
0 ,

then the arguments given in the [10, Proof of Proposition 4.1] can be followed literally with
minor adjustments. Indeed those arguments depend only on:

• the monotonicity formula;
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• the triangle inequality |α− γ| ≤ |α− β|+ |β − γ|;
• the elementary geometric observation that, for every subset E and every pair of
m-planes α and β, we have the inequality

h(T,E, α) ≤ h(T,E, β) + Cdiam (E)|α− β| ,

where C is a geometric constant.
However, it can be easily verified that all such properties remain true if we replace | · | with
| · |no.

We next come to (ii), (iii) and (iv). First observe that both πH and the (oriented) m-plane
with the same support and opposite orientation belong to TpHΣ. For this reason, the definition
of πH implies that |πH − π̂H |no = |πH − π̂H |, thus allowing us to infer (ii) from (ii)no.

Next, recall that we have |π̂H−π0| = |π̂H−π0|no, cf. Remark 16.4. Hence (iv)no implies (iv).
Now, combining (iv) for two planesH and L as in statement (iii) of the proposition, we conclude
that |πH − πL| ≤ |πH − π0|+ |πL − π0| ≤ Cm

1/2
0 . Hence, again assuming that ε2 is sufficiently

small, we can apply Proposition 17.3, in particular conclusion (Eq): |πH − πL| = |πH − πL|no.
Thus (iii) is a consequence of (iii)no. �

Arguing as in [10, Section 4.3] we get the following existence theorem with very minor
modifications (the only adjustment that needs to be taken into consideration is that the
identities [10, (4.9)], [10, (4.10)] and the subsequent analogous ones must be replaced with the
same equalities mod(p)):

Proposition 18.2 (Existence of interpolating functions). Assume the conclusions of the
Proposition 18.1 apply. The following facts are true provided ε2 is sufficiently small. Let
H,L ∈ W ∪S be such that either H ⊂ L or H ∩ L 6= ∅ and `(L)

2 ≤ `(H) ≤ `(L). Then,
(i) for π = πH , π̂H , (pπ)]T C32rL(pL, π) = Q JB32rL(pL, π))K mod(p) and T satisfies the

assumptions of 15.1 in the cylinder C32rL(pL, π);
(ii) Let fHL be the πH-approximation of T in C8rL(pL, πH) and hHL := (η ◦ fHL) ∗ %`(L)

be its smoothed average. Set κH := π⊥H ∩ TpHΣ and consider the maps

x 7→ h̄(x) := pTpHΣ(h) ∈ κH
x 7→ hHL(x) := (h̄(x),ΨpH (x, h̄(x))) ∈ κH × (TpH (Σ))⊥ .

Then there is a smooth gHL : B4rL(pL, π0)→ π⊥0 s.t. GgHL = GhHL C4rL(pL, π0).

Definition 18.3. hHL and gHL will be called, respectively, tilted (H,L)-interpolating function
and (H,L)-interpolating function.

Observe that the tilted (L,L)-interpolating function and the (L,L)-interpolating function
correspond to the tilted L-interpolating function and to the L-interpolating function of
Definition 16.18. Obviously, Lemma 16.17 is just a particular case of Proposition 18.2. As in
Definition 16.18, we will set hL := hLL and gL := gLL.

19. The key construction estimates

Having at disposal the Existence Proposition 18.2 we can now come to the main estimates
on the building blocks of the center manifold, which in fact correspond precisely to [10,
Proposition 4.4] and are thus restated here only for the reader’s convenience.
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Proposition 19.1 (Construction estimates). Assume the conclusions of Propositions 18.1
and 18.2 apply and set κ = min{β2/4, ε0/2}. Then, the following holds for any pair of cubes
H,L ∈Pj (cf. Definition 16.18), where C = C(β2, δ2,M0, N0, Ce, Ch):

(i) ‖gH‖C0(B) ≤ Cm
1/2m
0 and ‖DgH‖C2,κ(B) ≤ Cm

1/2
0 , for B = B4rH (xH , π0);

(ii) if H ∩L 6= ∅, then ‖gH − gL‖Ci(BrL (xL,π0)) ≤ Cm
1/2
0 `(H)3+κ−i for every i ∈ {0, . . . , 3};

(iii) |D3gH(xH)−D3gL(xL)| ≤ Cm1/2
0 |xH − xL|κ;

(iv) ‖gH − yH‖C0 ≤ Cm
1/2m
0 `(H) and |πH − T(x,gH(x))GgH | ≤ Cm

1/2
0 `(H)1−δ2 ∀x ∈ H;

(v) if L′ is the cube concentric to L ∈ W j with `(L′) = 9
8`(L), then

‖ϕi − gL‖L1(L′) ≤ Cm0 `(L)m+3+β2/3 for all i ≥ j .

The proof of Theorem 16.19 assuming the validity of Proposition 19.1 is given in [10, Section
4.4, Proof of Theorem 1.17]. As for the proof of Proposition 19.1, we discuss briefly why the
arguments given in [10, Section 5] apply in our case as well. First of all, the key tool in the
proof, namely [10, Proposition 5.2], is valid under our assumptions for the following reason.
The proof given in [10, Section 5.1] is based on the following facts:

• The first variation of T vanishes, and this allows to estimate the first variation of
Gf = GfHL as in [10, Eq. (5.4)];
• The estimates claimed in [10, Eqs. (5.5)–(5.9)] are valid because of Theorem 15.1 and
the Taylor expansion of [7, Corollary 13.2].
• Using the decomposition δGf = δ(Gf+ B+) + δ(Gf− B−) +Qδ(Gη◦f B0) we can
show the validity of [10, Eq. (5.11)].

The three ingredients above are then used to show the first estimate of [10, Proposition 5.2],
namely [10, Eq. (5.1)]. The derivation of the remaining part of [10, Proposition 5.2] is then a
pure PDE argument based only on [10, Eq. (5.1)].

In [10, Section 5.2] the [10, Proposition 4.4] is used to derive [10, Lemma 5.3], which in
fact includes the conclusions (i) and (ii) of Proposition 19.1. This derivation does not depend
anymore on the underlying current and thus the proof given in [10, Section 5.2] works literally
in our case as well. The remaining part of Proposition 19.1 is derived from [10, Lemma 5.5].
The latter is based solely on the estimates on the Lipschitz approximation (which are provided
by Theorem 15.1) and on [10, Lemma 5.5], whose role is taken, in our setting, by [7, Lemma
16.1].

20. Existence and estimates on the M-normal approximation

Corollary 16.22 can be proved following the argument of [10, Section 6.1]. The only
adjustement needed is in the argument for claim (iii). Following the one of [10, Section 6.1]
we conclude that at every q ∈ Φ(Γ), if we denote by π the oriented tangent plane toM at q,
then the current Q JπK is the unique tangent mod(p) of T at q, in the sense of Corollary 6.3.
We then can use Proposition 4.2 to conclude that Θ(T, q) = Q.

For Theorem 16.24 we can repeat the arguments of [10, Section 6.2] in order to prove the
existence of the M-normal approximation and the validity of (16.22) and (16.23). As for
(16.25) we can repeat the arguments of [10, Section 6.3], whereas in order to get (16.24) we
make the following adjustments to the first part of [10, Section 6.3]. The paragraphs leading to
[10, Eq. (6.11)] are obviously valid in our setting. However [10, Eq. (6.11)] must be replaced
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with the following analogous estimateˆ
p−1(L)

|~TF (x)− ~M(p(x))|2nod‖TF ‖(x)

≤
ˆ

p−1(L)
|~T (x)− ~M(p(x))|2nod‖T‖(x) + Cm1+γ2

0 `(L)m+2+γ2

≤
ˆ

p−1(L)
|~T (x)− ~πL|2nod‖T‖(x) + Cm0`(L)m+2−2δ2 (20.1)

From this one we proceed as in the rest of [10, Section 6.3] using the Taylor expansion of [7,
Proposition 13.3] in place of [9, Proposition 3.4].

21. Separation and splitting before tilting

The arguments for Proposition 16.26 and Corollary 16.27 can be taken from [10, Section
7.1], modulo using Theorem 17.1 in place of [10, Theorem A.1].

We next come to the proof of Proposition 16.29. A first important ingredient is the Unique
continuation property of [10, Lemma 7.1], which we will now prove it is valid for AQ(Rn)
minimizers as well.

Lemma 21.1 (Unique continuation for Dir-minimizers). For every η ∈ (0, 1) and c > 0,
there exists γ > 0 with the following property. If w : Rm ⊃ B2 r → AQ(Rn) is Dir-minimizing,
Dir (w,Br) ≥ c and Dir (w,B2r) = 1, then

Dir (w,Bs(q)) ≥ γ for every Bs(q) ⊂ B2r with s ≥ η r.

Proof. We follow partially the argument of [10, Section 7.2] for [10, Lemma 7.1]. In particular,
the second part of the argument, which reduces the statement to the following claim, can be
applied with no alterations:
(UC) if Ω is a connected open set and w ∈W 1,2(Ω,AQ(Rn)) is Dir-minimizing in any every

bounded Ω′ ⊂⊂ Ω, then either w is constant or
´
J |Dw|

2 > 0 for every nontrivial open
J ⊂ Ω.

However, the proof given in [10, Section 7.1] of (UC) when w ∈W 1,2(Ω,AQ(Rn)) cannot be
repeated in our case, since it uses heavily the fact that the singular sets of AQ(Rn)-valued
Dir-minimizers cannot disconnect the domain, a property which is not enjoyed by AQ(Rn)-
valued Dir-minimizers. We thus have to modify the proof somewhat, although the tools used
are essentially the same.

Assume by contradiction that there are a connected open set Ω ⊂ Rm, a map w ∈
W 1,2
loc (Ω,AQ(Rn)) and a nontrivial open subset J ⊂ Ω such that
(a) w is Dir-minimizing on every open Ω′ ⊂⊂ Ω;
(b) w is not constant, and thus

´
Ω′ |Dw|

2 > 0 for some Ω′ ⊂⊂ Ω;
(c)
´
J |Dw|

2 = 0.
Observe first that, from the classical unique continuation of harmonic functions, either η ◦w is
constant, or it has positive Dirichlet energy on any nontrivial open subset of Ω. Since however
the Dirichlet energy of η ◦ w is controlled from above by that of w, (c) excludes the second
posssibility. Thus η ◦ w is constant and hence, without loss of generality, we can assume
η ◦ w ≡ 0.

Next assume, without loss of generality, that J is connected. Clearly, w is constantly equal
to some P ∈ AQ(Rn) on J . Since, without loss of generality, we could “flip the signs of the
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Dirac masses” which constitute the values of u, we can always assume that P = (∑i JPiK , 1).
We then distinguish two cases.

First Case. The diameter of spt(P ) is positive, namely |Pi − Pj | > 0 for some i 6= j. In
this case consider the interior U of the set {w = P}. We want to argue that U = Ω, which
contradicts (b). Since Ω is open and connected, it suffices to show that ∂U ∩Ω = ∅. In order to
show this, consider a point x ∈ ∂U . If x ∈ Ω, using the continuity of the map w, we know that
in a sufficiently small ball Bρ(x) there is an AQ(Rn)-valued map z such that w(y) = (z(y), 1)
for all y ∈ Bρ(x). As such, z must be a Dir-minimizer to which we can apply [10, Section 7.2]:
since

´
J ′ |Dz|

2 = 0 for some nontrivial open J ′ ⊂ Bρ(x), we must have that z is constant on
Bρ(x). But then we would have Bρ(x) ⊂ U , thus contradicting the assumption that x ∈ ∂U .

Second Case. The remaining possibility is that P = Q Jη ◦ w(x)K = Q J0K (which equals
both (Q J0K , 1) and (Q J0K ,−1), since the latter points are identified in AQ(Rn)). Define
therefore

K := {w = Q J0K} ,

and (since K ⊃ J) observe that |K| > 0. Consider now the set K̃ of points x ∈ Rm such that

0 < lim
k→∞

|K ∩Brk(x)|
ωmrmk

< 1 for some rk ↓ 0+ , (21.1)

and notice that K̃ ⊂ K since w is continuous. The set K̃ is necessarily nonempty. If it were
empty, we could first apply the classical characterization of Federer of sets of finite perimeter,
cf. [15, Theorem 4.5.11], to infer that K is a set of finite perimeter, and subsequently we could
then apply the classical structure theorem of De Giorgi to conclude that, since the reduced
boundary of K would be empty, D1K = 0. The latter would imply that 1K is constant on
the connected set Ω, namely that Ω \K has zero Lebesgue measure, which in turn would
contradict (b).

Fix a point x ∈ K̃. Clearly it must be
´
Bρ(x) |Dw|

2 > 0 for every ρ > 0, otherwise w would
be constant in a neighborhood of x and thus x would be an interior point of K. Denoting
Ix,w(·) the frequency function of w at x as in [7, Definition 9.1], from [7, Theorem 9.2] we
must then have

∞ > I0 := lim
r↓0

Ix,w(r) > 0 .

Define then the maps y 7→ wr(y), whose positive and negative parts are given by

w±r (y) :=
∑
i

q
r−I0 w±i (r y + x)

y
,

and observe that a subsequence of {wrk}k∈N, not relabeled, is converging to a nontrivial
w0 ∈ W 1,2

loc (Rm,AQ(Rn)) which minimizes the Dirichlet energy on every Ω′ ⊂⊂ Rm and is
I0-homogeneous.

Next define the sets Krk := r−1
k (K − x), where the maps wrk vanish identically, and observe

that, by (21.1), lim infk |Krk ∩B1| > 0. Since the sets Krk ∩B1 are compact we can, without
loss of generality, assume that they convergence in the sense of Hausdorff to some set K0. The
limiting map w0 vanishes on such set because the wrk are converging locally uniformly to w0.
On the other hand it is elementary to see that the Lebesgue measure is upper semicontinuous
under Hausdorff convergence and we thus conclude |K0| > 0.
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We can now repeat the procedure above on some point y 6= 0 where the Lebesgue density of
K0 does not exist or it is neither zero nor one. We find thus a corresponding tangent function
w1 that has all the properties of w0, namely

• it is nontrivial,
• it vanishes identically on a set of positive measure,
• it is I1-homogeneous for some positive constant I1,
• and it minimizes the Dirichlet energy on any bounded open set.

In addition w1 is invariant under translations along the direction y
|y| . Assuming, after rotations,

that such vector is em = (0, 0, . . . , 0, 1), the function w1 depends therefore only on the variables
x1, . . . , xm−1 and can thus be treated as a function defined over Rm−1. Iterating m− 2 more
times such procedure we achieve finally a function wm−1 : R → AQ(Rn) with the following
properties:

(A) wm−1 is identically Q J0K on some set of positive measure;
(B)
´ −1

1 |Dwm−1|2 > 0;
(C) wm−1 is Dir-minimizing on ]a, b[ for every 0 < a < b <∞;
(D) wm−1 is α-homogeneous for some positive α > 0;
(E) η ◦ wm−1 ≡ 0.

Because of (A) and (D), wm−1 must be identically equal to Q J0K on at least one of two
half-lines ]−∞, 0] and [0,∞[. Without loss of generality we can assume this happens on the
]−∞, 0[. Let now wm−1(1) = (∑i JciK , ε), where ε ∈ {−1, 1}. By (D) we then have

wm−1(x) =
(∑

i

JcixαK, ε

)
∀x ≥ 0 .

Observe that, because of (B), at least one of the ci’s is nonzero. Therefore ε cannot be equal
to 1, otherwise wm−1 would give an AQ(Rn)-valued Dir-minimizer on the real line with a
singularity, which is not possible. However, since (Q J0K , 1) = (Q J0K ,−1), if ε equals −1 we
reach precisely the same contradiction. This completes the proof. �

We keep following the strategy of [10, Section 7.2] towards a proof of Proposition 16.29.
First of all, we introduce some useful notation.

Definition 21.2. Let w : E → AQ(Rn), let E+, E− and E0 be the canonical decomposition
of E induced by w and let w+, w− and η ◦w the corresponding maps, as in [7, Definition 2.7].
For any f : E → Rn we denote by w ⊕ f (resp. w 	 f) the AQ(Rn)-valued map which

• on E+ coincides with (w+ ⊕ f, 1) (resp. (w+ 	 f, 1)),
• on E− coincides with (w− ⊕ f,−1) (resp. (w− 	 f,−1)),
• and on E0 coincides with Q Jη ◦ w + fK (resp. Q Jη ◦ w − fK.

Moreover we use the shorthand notation w̄ for w 	 η ◦ w.

We next show that if the energy of an AQ(Rn)-valued Dir-minimizer w does not decay
appropriately, then the map must “split”, in other words w̄ cannot be too small compared to
η ◦ w. As in [10, Section 7.2], we fix λ > 0 such that

(1 + λ)(m+2) < 2δ2 , (21.2)

and we claim the following analog of [10, Proposition 7.2].
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Proposition 21.3 (Decay estimate for Dir-minimizers). For every η > 0, there is γ > 0 with
the following property. Let w : Rm ⊃ B2r → AQ(Rn) be Dir-minimizing in every Ω′ ⊂⊂ B2r
such that ˆ

B(1+λ)r

Gs
(
Dw,Q JD(η ◦ w)(0)K

)2 ≥ 2δ2−m−2 Dir (w,B2r) . (21.3)

Then, if we let w̄ be as in Definition 21.2, the following holds:

γDir (w,B(1+λ)r) ≤ Dir (w̄, B(1+λ)r) ≤
1
γ r2

ˆ
Bs(q)

|w̄|2 ∀ Bs(q) ⊂ B2 r with s ≥ η r . (21.4)

The proof of [10, Proposition 7.2] can be literally followed for our case using the Unique
continuation Lemma 21.1 in combination with the next simple algebraic computation (which
is the counterpart of [10, Lemma 7.3]).

Lemma 21.4. Let B ⊂ Rm be a ball centered at 0, w ∈ W 1,2(B,AQ(Rn)) Dir-minimizing
and w̄ as in Definition 21.2 We then have

Q

ˆ
B
|D(η ◦ w)−D(η ◦ w)(0)|2 =

ˆ
B
Gs(Dw,Q JD(η ◦ w)(0)K)2 −Dir (w̄, B) . (21.5)

The detail of the necessary modifications to the argument in [10, Proof of Proposition 7.2]
towards proving Proposition 21.3 are left to the reader; we will instead show how to prove the
lemma above.

Proof. Let u := η ◦ w and observe that it is harmonic. Thus, using the mean value property
of harmonic functions and a straightforward computation we get

Q

ˆ
B
|Du−Du(0)|2 = Q

ˆ
B
|Du|2 −Q|B||Du(0)|2 . (21.6)

On the other hand, using again the mean value property of harmonic functions, it is easy to
see thatˆ

B
Gs(Dw,Q JDu(0)K)2 =

∑
ε=+,−

ˆ
Bε
G(Dwε, Q JDu(0)K)2 +Q

ˆ
B0

|Du−Du(0)|2

and ˆ
Bε
G(Dwε, Q JDu(0)K)2 =

ˆ
Bε

(|Dwε|2 − 2QDu : Du(0) +Q|Du(0)|2) .

In particular, we get
ˆ
B
Gs(Dw,Q JDu(0)K)2 =

ˆ
B
|Dw|2 +Q|B||Du(0)|2 − 2QDu(0) :

ˆ
B
Du

and again by the mean value property we conclude
ˆ
B
Gs(Dw,Q JDu(0)K)2 =

ˆ
B
|Dw|2 −Q|B||Du(0)|2 . (21.7)
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Combining (21.6) and (21.7) we thus getˆ
B
Gs(Dw,Q JD(η ◦ w)(0)K)2 −Q

ˆ
B
|D(η ◦ w)−D(η ◦ w)(0)|2

=
ˆ
B
Gs(Dw,Q JDu(0)K)2 −Q

ˆ
B
|Du−Du(0)|2 =

ˆ
B
|Dw|2 −Q

ˆ
B
|Du|2

=
ˆ
B
|Dw|2 −Q

ˆ
B
|D(η ◦ w)|2 . (21.8)

Next, a simple algebraic computations showsˆ
B
|Dw|2 =

∑
ε=+,−

ˆ
Bε
|Dwε|2 +Q

ˆ
B0

|D(η ◦ w)|2

=
∑

ε=+,−

(ˆ
Bε
|Dw̄ε|2 +Q|D(η ◦ wε)|2

)
+Q

ˆ
B0

|D(η ◦ w)|2

=
ˆ
B
|Dw̄|2 +Q

ˆ
B
|D(η ◦ w)|2 (21.9)

Clearly, (21.8) and (21.9) give (21.5) and conclude the proof. �

Proof of Proposition 16.29. Having at hand the analogs of the tools used in [10, Section 7.3],
we can following the argument given there for [10, Proposition 3.4]. In the first step of the
proof (namely [10, Step 1, p. 548]) we use [7, Corollary 13.2] in place of [9, Corollary 3.3],
we use Theorem 15.1 in place of [8, Theorem 2.4] and we replace E with Eno in the various
formulas. We also replace G with Gs in case p = 2Q. We then follow [10, Step 2, p. 550],
where we use Lemma 21.1 and Proposition 21.3 in place of [10, Lemma 7.1 & Proposition
7.2] in case p = 2Q. In the final [10, Step 3, p. 551] we use the reparametrization Theorem
[7, Theorem 15.1] in place of the corresponding [9, Theorem 5.1] and measure the distance
between m-planes using | · |no in place of | · |. �

22. Persistence of multiplicity Q points

The proofs of Proposition 16.30 and Proposition 16.31 can be easily adapted to our case
from [10, Proofs of Proposition 3.5 & Proposition 3.6] once we prove the following analog of
[8, Theorem 2.7]:

Theorem 22.1 (Persistence of Q-points). For every δ̂, C? > 0, there is s̄ ∈]0, 1
2 [ such that, for

every s < s̄, there exists ε̂(s, C∗, δ̂) > 0 with the following property. If T is as in Theorem 15.1,
Eno := Eno(T,C4 r(x)) < ε̂, r2A2 ≤ C?Eno and Θ(T, (p, q)) = Q at some (p, q) ∈ Cr/2(x),
then the approximation f of Theorem 14.1 satisfiesˆ

Bsr(p)
G�(f,Q Jη ◦ fK)2 ≤ δ̂smr2+mEno , (22.1)

where � = s if p = 2Q or � = otherwise.

In order to show Theorem 22.1 we can follow literally [8, Section 9]. Indeed the proof in [8,
Section 9] relies on the Hölder estimates for Dir minimizers (which are valid in the AQ(Rn)
case by [7, Theorem 8.1]), the estimates on the Lipschitz approximation (given by Theorem
15.1 and the classical monotonicity formula in the slightly improved version of [8, Lemma A.1].
Although the latter is stated for stationary integral currents in a Riemannian manifold, it is
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easy to see that the proof is in fact valid for stationary varifolds and as such can be applied
to mod(p) area-minimizing currents. We formulate the precise theorem here for the reader’s
convenience.

Lemma 22.2. There is a constant C depending only on m, n and n̄ with the following
property. If Σ ⊂ Rm+n is a C2 (m+ n̄)-dimensional submanifold with ‖AΣ‖∞ ≤ A, U is an
open set in Rm+n and V an m-dimensional integral varifold supported in Σ which is stationary
in Σ∩U , then for every ξ ∈ Σ∩U the function ρ 7→ exp(CA2ρ2)ρ−m‖V ‖(Bρ(ξ)) is monotone
on the interval ]0, ρ̄[, where ρ̄ := min{dist(x, ∂U), (CA)−1}.

Remark 22.3. The proof of Theorem 22.1 can also be given following the alternative argument
of Spolaor in [23], which uses the Hardt-Simon inequality and the classical version by Allard
of Moser’s iteration for subharmonic functions on varifolds. While Spolaor’s argument is more
flexible and indeed works for integral currents which are not minimizing but sufficiently close
to minimizing ones in a suitably quantified way, we prefer to adhere to the strategy of [8]
because it is more homogeneous to our notation and terminology.

23. Proof of Proposition 16.32

The proof follows the one of [10, Proposition 3.7] given in [10, Section 9] with minor
modifications. The necessary tools used there, namely the splitting before tilting Propositions,
the height bound and the reparametrization theorem are all available from the previous
sections.
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Part 4. Blow-up and final argument

24. Intervals of flattening

Our argument for Theorem 3.3 is by contradiction, and we start therefore fixing a current T ,
a submanifold Σ, an open set Ω, an integer 2 ≤ Q ≤ p

2 , positive reals α and η and a sequence
rk ↓ 0 of radii as in Proposition 7.7. In this section we proceed as in [11, Section 2] and define
appropriate intervals of flattening ]sj , tj ], which are intervals over which we will construct
appropriate center manifolds. These intervals, which will be ordered so that tj+1 ≤ sj will
satisfy several properties, among which we anticipate the following fundamental one: aside
from finitely many exceptions, each radius rk belongs to one of the intervals. In particular, if
they are finitely many, then 0 is the left endpoint of the last one, whereas if they are infinitely
many, then tj ↓ 0. The definition of these intervals is taken literally from [11, Section 2.1], the
only difference being that we take advantage of Theorem 16.19 in place of [10, Theorem 1.17].
However we repeat the details for the reader’s convenience.

Without loss of generality we assume that B6
√
m(0) ⊂ Ω, and we fix a small parameter

ε3 ∈]0, ε2[, where ε2 is the constant appearing in (16.8) of Assumption 16.5. Then, we take
advantage of Proposition 7.7 and of a simple rescaling argument to assume further that:

T0Σ = Rm+n̄ × {0} , Θ(T, 0) = Q , ∂T B6
√
m(0) = 0 mod(p) , (24.1)

‖T‖(B6
√
mρ(0)) ≤

(
Q (6
√
m)m + ε2

3

)
ρm for all ρ ≤ 1 , (24.2)

c(Σ ∩B7
√
m(0)) ≤ ε3 . (24.3)

We next define
R :=

{
r ∈]0, 1] : Eno(T,B6

√
mr(0)) ≤ ε2

3

}
, (24.4)

Observe that {0} ∪ R is a closed set and that, since Eno(T,B6
√
mrk

) → 0 as k ↑ ∞, rk ∈ R
for k large enough.

The intervals of flattening will form a covering of R. We first define t0 as the maximum of
R. We then define inductively s0, . . . , tj , sj in the following way.

Let us first assume that we have defined tj and we wish to define sj (in particular this
part is applied also with j = 0 to define s0). We first consider the rescaled current Tj :=
((ι0,tj )]T ) B6

√
m, Σj := ι0,tj (Σ)∩B7

√
m; moreover, consider for each j an orthonormal system

of coordinates so that, if we denote by π0 the m-plane Rm × {0}, then Eno(Tj ,B6
√
m, π0) =

Eno(Tj ,B6
√
m) (alternatively we can keep the system of coordinates fixed and rotate the

currents Tj).

Definition 24.1. We letMj be the corresponding center manifold constructed in Theorem
16.19 applied to Tj and Σj with respect to the m-plane π0. The manifold Mj is then the
graph of a map ϕj : π0 ⊃ [−4, 4]m → π⊥0 , and we set Φj(x) := (x, ϕj(x)) ∈ π0 × π⊥0 . We
then let W (j) be the Whitney decomposition of [−4, 4]m ⊂ π0 as in Definition 16.9, applied to
Tj . We denote by pj the orthogonal projection on the center manifoldMj , which, given the
C3,κ estimate on ϕj , is well defined in a “slab” Uj of thickness 1 as defined in point (U) of
Assumption 16.21.

Next we distinguish two cases:
(Go) For every L ∈ W (j),

`(L) < csdist(0, L) , (24.5)
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where cs := 1
64
√
m
, see Proposition 16.32. In this case we set sj = 0. Observe that in

this case the origin is included in the set Γj defined in (16.17).
(Stop) Assuming that (Go) fails, we fix an L with maximal diameter among those cubes of

W (j) which violate the inequality (24.5). We then set

sj := tj
`(L)
cs

. (24.6)

Observe that, in both cases, for every ρ > r̄ := sj/tj we have

`(L) < csρ for all L ∈ W (j) with L ∩Bρ(0, π0) 6= ∅. (24.7)
We next come to the definition of tj+1 once we know sj . If sj = 0, then we stop the

procedure and we end up with finitely many intervals of flattening. Otherwise we let tj+1
be the maximum of R∩]0, sj ]. Note that, since the vanishing sequence {rk} belongs to R
except for finitely many elements, clearly the latter set is nonempty and thus tj+1 is a positive
number. Observe also that, by (16.18) of Proposition 16.13 and using that 2−N0 < cs by
(16.16), we have `(L) ≤ 2−6−N0 ≤ cs

64 . Thus,
sj
tj
< 2−5. This ensures that, in case (Go) never

holds (i.e. the intervals of flattening are infinitely many), tj ↓ 0.

Definition 24.2. We denote by F the (finite or countable) family of intervals of flattening as
defined above.

The following proposition is the analog of [11, Proposition 2.2] and, since the proof is a minor
modification of the one given in [11, Section 2.2] we omit it. Using the notation of Definition
16.12 we introduce the subfamilies W

(j)
e ,W

(j)
h and W

(j)
n . Recall also that, given two sets A and

B, we have defined their separation as the number sep(A,B) := inf{|x− y| : x ∈ A, y ∈ B}.

Proposition 24.3. Assuming ε3 sufficiently small, then the following holds:
(i) sj < tj

25 and the family F is either countable and tj ↓ 0, or finite and Ij =]0, tj ] for
the largest j;

(ii) the union of the intervals of F cover R, and for k large enough the radii rk in
Proposition 7.7 belong to R;

(iii) if r ∈] sjtj , 3[ and J ∈ W
(j)
n intersects B := pπ0(Br(qj)), with qj := Φj(0), then J is in

the domain of influence W
(j)
n (H) (see Definition 16.28) of a cube H ∈ W

(j)
e with

`(H) ≤ 3 cs r and max {sep (H,B), sep (H,J)} ≤ 3
√
m`(H) ≤ 3r

16;

(iv) Eno(Tj ,Br) ≤ C0ε
2
3 r

2−2δ2 for every r ∈] sjtj , 3[.
(v) sup{dist(x,Mj) : x ∈ spt(Tj) ∩ p−1

j (Br(qj))} ≤ C0 (mj
0) 1

2m r1+β2 for every r ∈] sjtj , 3[,
where mj

0 := max{c(Σj)2,Eno(Tj ,B6
√
m)}.

25. Frequency functions and its variations

As in [11, Section 3] we introduce the following Lipschitz (piecewise linear) weight

φ(r) :=


1 for r ∈ [0, 1

2 ],
2− 2r for r ∈ ]1

2 , 1],
0 for r ∈ ]1,+∞[.
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For every interval of flattening Ij =]sj , tj ] ∈ F , we let Nj be the normal approximation of
Tj on the center manifold Mj of Thereom 16.24. As in [11, Section 3] we introduce the
corresponding frequency functions and state the main analytical estimate, which allows us to
exclude infinite order of contact of the normal approximations with the center manifoldsMj .

Definition 25.1 (Frequency functions). For every r ∈]0, 3] we define:

Dj(r) :=
ˆ
Mj

φ

(
dj(q)
r

)
|DNj |2(q) dq and Hj(r) := −

ˆ
Mj

φ′
(
dj(q)
r

) |Nj |2(q)
d(q) dq ,

where dj(q) is the geodesic distance onMj between q and Φj(0), and dq is short for dHm(q).
If Hj(r) > 0, we define the frequency function Ij(r) := rDj(r)

Hj(r) .

Theorem 25.2 (Main frequency estimate). If ε3 is sufficiently small, then there exists a
geometric constant C0 such that, for every [a, b] ⊂ [ sjtj , 3] with Hj |[a,b] > 0, we have

Ij(a) ≤ C0(1 + Ij(b)). (25.1)

To simplify the notation, in this section we drop the index j and omit the measure Hm in
the integrals over regions ofM. The proof exploits four identities collected in Proposition
25.4, which is the analog of [11, Proposition 3.5] and whose proof will be discussed in the next
sections. Following [11, Section 3] we introduce further auxiliary functions in order to express
derivatives and estimates on the functions D, H and I. We also remind the reader that in
principle we must distinguish two situations:

• If Q < p
2 , then the normal approximations are AQ(Rm+n)-valued maps and thus all

the quantities considered here coincide literally with the ones defined in [11, Section 3];
• If Q = p

2 , then the normal approximations take values in AQ(Rm+n); in this case we
use the notational conventions of [7, Subsection 7.1] and thus, although at the formal
level the definitions of the various objects are identical, the notation is underlying the
fact that all integrals involved in the computations must be split into three domains to
be reduced to integrals of expressions involving the AQ(Rm+n)-valued maps N+, N−

and Q Jη ◦NK.

Definition 25.3. We let ∂r̂ denote the derivative with respect to arclength along geodesics
starting at Φ(0). We set

E(r) := −
ˆ
M
φ′
(
d(q)
r

) Q∑
i=1
〈Ni(q), ∂r̂Ni(q)〉 dq , (25.2)

G(r) := −
ˆ
M
φ′
(
d(q)
r

)
d(q) |∂r̂N(q)|2 dq and Σ(r) :=

ˆ
M
φ
(
d(q)
r

)
|N |2(q) dq . (25.3)

As in [11, Section 3] we observe that the estimate

D(r) ≤
ˆ
Br(Φ(0))

|DN |2 ≤ C0m0 r
m+2−2δ2 for every r ∈

]
s
t , 3
[
. (25.4)

is a consequence of the inequality (16.24) in Theorem 16.24. Consider indeed that (24.7)
bounds the side of each Whitney region L intersecting Br(Φ(0)) and that, on the contact
region K the map N vanishes identically: it suffices therefore to sum the estimates (16.24)
over the aforementioned Whitney regions L.

We are now ready to state the key four identities, cf. [11, Proposition 3.5]:
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Proposition 25.4 (First variation estimates). For every γ3 sufficiently small there is a
constant C = C(γ3) > 0 such that, if ε3 is sufficiently small, [a, b] ⊂ [ st , 3] and I ≥ 1 on [a, b],
then the following inequalities hold for a.e. r ∈ [a, b]:∣∣∣H′(r)− m−1

r H(r)− 2
r E(r)

∣∣∣ ≤ CH(r), (25.5)∣∣∣D(r)− r−1E(r)
∣∣∣ ≤ CD(r)1+γ3 + Cε2

3 Σ(r), (25.6)∣∣∣D′(r)− m−2
r D(r)− 2

r2 G(r)
∣∣∣ ≤ CD(r) + CD(r)γ3D′(r) + Cr−1D(r)1+γ3 , (25.7)

Σ(r) + rΣ′(r) ≤ C r2 D(r) ≤ Cr2+mε2
3. (25.8)

Theorem 25.2 follows from the latter four estimates and from (25.4) through the compu-
tations given in [11, Section 3]. The proofs of the estimates (25.5) and (25.8) given in [11,
Section 3] are valid in our case as well, since they do not exploit the connection between the
approximation and the currents, but they are in fact valid for any map N satisfying I ≥ 1. We
therefore focus on (25.6) and (25.7) which are instead obtained from first variation arguments
applied to the area minimizing current Tj . In our case the current is area minimizing mod(p),
however a close inspection of the proofs in [11] shows that the computations in there can be
transferred to our case because the varifold induced by Tj is stationary (and the required
estimates relating the varifold induced by the graph of Nj in the normal bundle ofMj and
the current Tj have been proved in the previous section).

In the rest of the section we omit the subscript j from Tj ,Σj ,Mj and Nj .

25.1. First variations. We recall the vector field used in [11]. We will consider:
• the outer variations, where X(q) = Xo(q) := φ

(
d(p(q))

r

)
(q − p(q)).

• the inner variations, where X(q) = Xi(q) := Y (p(q)) with

Y (q) := d(q)
r

φ

(
d(q)
r

)
∂

∂r̂
∀ q ∈M .

Note that Xi is the infinitesimal generator of a one parameter family of bilipschitz homeomor-
phisms Φε defined as Φε(q) := Ψε(p(q)) + q − p(q), where Ψε is the one-parameter family of
bilipschitz homeomorphisms ofM generated by Y .

Consider now the map F (q) := ∑
i Jq +Ni(q)K and the current TF associated to its image:

in particular we are using the conventions of [9] in the case Q < p
2 (i.e. when N takes values

in AQ(Rm+n)) and the conventions introduced in [7, Definition 11.2] in the case Q = p
2

(i.e. when N takes values in AQ(Rm+n)). As in [11, Section 3.3] we observe that, although
the vector fields X = Xo and X = Xi are not compactly supported, it is easy to see that
δT (X) = δT (XT ) + δT (X⊥) = δT (X⊥), where X = XT +X⊥ is the decomposition of X in
the tangent and normal components to TΣ.

Then, we have
|δTF (X)| ≤ |δTF (X)− δT (X)|+ |δT (X⊥)|

≤
ˆ

spt(T )\Im(F )

∣∣∣div ~TX
∣∣∣ d‖T‖+

ˆ
Im(F )\spt(T )

∣∣∣div ~TFX
∣∣∣ d‖TF ‖︸ ︷︷ ︸

Err4

+
∣∣∣∣ˆ div ~TX

⊥ d‖T‖
∣∣∣∣︸ ︷︷ ︸

Err5

. (25.9)

In order to simplify the notation we set ϕr(x) := φ
(
d(x)
r

)
. Next, we apply [9, Theorem 4.2] in

the case Q < p
2 (this corresponds exactly to what done in [11, Section 3.3] and [7, Theorem
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14.2] when Q = p
2 to conclude

δTF (Xo) =
ˆ
M

(
ϕr |DN |2 +

Q∑
i=1

Ni ⊗∇ϕr : DNi

)
+

3∑
j=1

Erroj , (25.10)

where the errors Erroj correspond to the terms Errj of [9, Theorem 4.2] in case Q < p
2 and to

the analogous terms in [7, Theorem 14.2] when Q = p
2 . This implies

Erro1 = −Q
ˆ
M
ϕr〈HM,η ◦N〉, (25.11)

|Erro2| ≤ C0

ˆ
M
|ϕr||A|2|N |2, (25.12)

|Erro3| ≤ C0

ˆ
M

(
|N ||A|+ |DN |2

)(
|ϕr||DN |2 + |Dϕr||DN ||N |

)
, (25.13)

where HM is the mean curvature vector ofM. In particular we conclude∣∣∣D(r)− r−1E(r)
∣∣∣ ≤ 5∑

j=1

∣∣∣Erroj ∣∣∣ , (25.14)

where Erro4 and Erro5 denote the terms Err4 and Err5 of (25.9) when X = Xo.
We follow the same arguments with X = Xi, applying this time [9, Theorem 4.3] for Q < p

2
and [7, Theorem 14.3] for Q = p

2 . In particular using the formulas [11, (3.29)&(3.30)] for
divMY and DMY we conclude∣∣∣D′(r)− (m− 2)r−1D(r)− 2r−2G(r)

∣∣∣ ≤ C0D(r) +
5∑
j=1

∣∣∣Errij
∣∣∣ , (25.15)

where

Erri1 = −Q
ˆ
M

(
〈HM,η ◦N〉 divMY + 〈DYHM,η ◦N〉

)
, (25.16)

|Erri2| ≤ C0

ˆ
M
|A|2

(
|DY ||N |2 + |Y ||N | |DN |

)
, (25.17)

|Erri3| ≤ C0

ˆ
M

(
|Y ||A||DN |2

(
|N |+ |DN |

)
+ |DY |

(
|A| |N |2|DN |+ |DN |4

))
, (25.18)

and where Erri4 and Erri5 denote the terms Err4 and Err5 of (25.9) when X = Xi.

25.2. Error estimates. We next proceed as in [11, Section 4]. First of all, since the structure
and estimates on the size of the cubes of the Whitney decomposition are exactly the same,
we can define the regions of [11, Section 4.1] and deduce the same conclusions of [11, Lemma
4.4]. Next, since our estimates in Theorem 16.24 have the same structure of [10, Theorem
2.4], we conclude the validity of all the estimates in [11, Section 4.2]. In turn we can repeat
all the arguments in [11, Section 4.3] to conclude the same estimates for the terms of type
Erro1,Erri1,Erro2,Erri2,Erro3,Erri3,Erro4,Erri4,Erro5. Some more care is needed to handle the term
Erri5. First of all we split the latter error into the terms I1 and I2 of [11, Page 596]. The term
I1 is estimated in the same way. Fo r the term I2 we can use the same argument when Q < p

2
and hence F is AQ-valued. However, we need a small modification in the case Q = p

2 , when F
is AQ-valued.



REGULARITY OF AREA MINIMIZING CURRENTS MOD p 79

As in [11, Page 597] we start by introducing an orthonormal frame ν1, . . . , νl for TqΣ⊥ of
class C2,ε0 (cf. [9, Appendix A]) and set

hjq(~λ) := −
m∑
k=1
〈Dvkνj(q), vk〉

whenever v1 ∧ . . . ∧ vm = ~λ is an m-vector of TqΣ, with v1, . . . , vm orthonormal.
Next, we recall the decomposition ofM intoM+,M− andM0 and correspondingly, we

decompose the image of F into

Im0(F ) := Im(F ) ∩ p−1(M0) (25.19)
Im+(F ) := Im(F ) ∩ p−1(M+) (25.20)
Im−(F ) := Im(F ) ∩ p−1(M−) . (25.21)

If q ∈ Im(F ), as in [11, Page 597] we set

hjp(q) := hjp(q)( ~M(p(q))) and hp(q) =
l∑

j=1
hjp(q) νj(p(q)).

If q ∈ Im0(F ) ∪ Im+(F ), as in [11, Page 597] we set

hjq := hjq(~TF (q)) and hq =
l∑

j=1
hjq νj(q) .

We proceed however differently for q ∈ Im−(F ): in this case we set

hjq := hjq(−~TF (q)) and hq =
l∑

j=1
hjq νj(q) .

Observe that, since for q ∈ Im−(F ) we have −~TF (q) = ~TF−(q), in practice we can follow
precisely the same computations of [11, Page 597] in each of the regions Im0(F ), Im+(F ) and
Im−(F ), to conclude

〈Xi(q), hq〉 = 〈Xi(q), (hq − hp(q))〉 =
∑
j

〈Xi(p(q)), Dνj(p(q)) · ex−1
p(q)(q)〉h

j
p(q)

+
∑
j

〈νj(q), Xi(q)〉
(
hjq − h

j
p(q)

)
+O

(
|q − p(q)|2

)
=
∑
j

〈Xi(p(q)), Dνj(p(q)) · ex−1
p(q)(q)〉h

j
p(q)

+O
(
|~TF (q)− ~M(p(q))|no|q − p(q)|+ |q − p(q)|2

)
, (25.22)

Observe that the only difference with [11, (4.17)] is that |~TF (q) − ~M(p(q))|no replaces
|~TF (q) − ~M(p(q))| in the last line of the above estimate. Next, for q ∈ spt(TF ), we can
bound |q − p(q)| ≤ |N(q)| and |~TF (q)− ~M(p(q))|no ≤ C|DN(p(q))|. We therefore conclude
the estimate

〈Xi(q), hq〉 =
∑
j

〈Xi(p(q)), Dνj(p(q)) · ex−1
p(q)(q)〉h

j
p(q) +O

(
|N |2(p(q)) + |DN |2(p(q))

)
.
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Combining the latter inequality with [7, Theorem 13.1] we can bound

Ii2 =
∣∣∣∣ˆ 〈Xi, hq〉d‖TF ‖

∣∣∣∣ =

∣∣∣∣∣∣
Q∑
i=1

ˆ
M
〈Y, hFi〉JFi

∣∣∣∣∣∣
(25.22)
≤

∣∣∣∣∣∣
ˆ
M

l∑
j=1

Q∑
i=1
〈Y (x), Dνj(x) · ex−1

x (Fi(x))〉hjxdHm(x)

∣∣∣∣∣∣+ C

ˆ
M
ϕr(|N |2 + |DN |2)

We can now proceed as in [11, Page 598] to conclude the same estimate for I2.

26. Boundedness of the frequency function and reverse Sobolev

We next show the counterpart of [11, Theorem 5.1].
Theorem 26.1 (Boundedness of the frequency functions). Let T be as in Proposition 7.7. If
the intervals of flattening are j0 <∞, then there is ρ > 0 such that

Hj0 > 0 on ]0, ρ[ and lim sup
r→0

Ij0(r) <∞ . (26.1)

If the intervals of flattening are infinitely many, then there is a number j0 ∈ N and a geometric
constant j1 ∈ N such that

Hj > 0 on ] sjtj , 2
−j13[ for all j ≥ j0 , sup

j≥j0
sup

r∈]
sj
tj
,2−j13[

Ij(r) <∞ , (26.2)

sup
{

min
{

Ij(r),
r2 ´
Br |DNj |2´
Br |Nj |2

}
: j ≥ j0 and max

{
sj
tj
,

3
2j1

}
≤ r < 3

}
<∞ (26.3)

(in the latter inequality we understand Ij(r) =∞ when Hj(r) = 0).
Proof. In the first case we can appeal to the same argument as in [11, Page 599]. In the
second case we also proceed as in [11, Page 599] and partition the extrema tj of the intervals
of flattening into two subsets: the class (A) formed by those tj such that tj = sj−1 and the
complementary class (B). As in [11, Page 599] we can assume that j is large enough. In the first
case we proceed as in [11, Page 599] where we substitute [10, Proposition 3.7] with Proposition
16.32. In case (B) by construction there is ηj ∈]0, 1[ such that Eno((ι0,tj )]T,B6

√
m(1+ηj)) > ε2

3.
Up to extraction of a subsequence, we can assume that Tj = (ι0,tj )]T converges to a cone S:
the convergence is strong enough to conclude that the excess of the cone is the limit of the
excesses of the sequence. Moreover (since S is a cone), the excess Eno(S,Br) is independent
of r. We then conclude

ε2
3 ≤ lim inf

j→∞,j∈(B)
Eno(Tj ,B3) .

We then argue as in [11, Page 601] using Lemma 26.2 below in place of [11, Lemma 5.2]. �
Lemma 26.2. Assume the intervals of flattening are infinitely many and rj ∈] sjtj , 3[ is a
subsequence (not relabeled) with limj ‖Nj‖L2(Brj \Brj/2) = 0. If ε3 is sufficiently small, then,
Eno(Tj ,Brj )→ 0.
Proof. The argument is a modification of that of [11, Lemma 5.2], which we include for the
reader’s convenience. First of all note that, by Proposition 24.3, Eno(Tj ,Brj )→ 0 if rj → 0.
Hence, passing to a subsequence, we can assume the existence of a c > 0 such that

rj ≥ c and Eno(Tj ,B6
√
m) ≥ c. (26.4)
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After the extraction of a further subsequence, we can assume the existence of r such thatˆ
Br\B 3r

4

|Nj |2 → 0, (26.5)

and the existence of a mod(p) area-minimizing cone S such that (ι0,tj )]T → S. Recall that
S is a representative mod(p). By (26.4), the cone S cannot be an integer multiple of an
m-dimensional plane.

We argue as in [11, Pages 601-602] and conclude that, ifM is the limit of a subsequence (not
relabeled) of theMj , then there are two radii 0 < s < t such that spt(S)∩Bt(0) \Bs(0) ⊂M.
In particular, by the Constancy Theorem mod(p) we conclude that S Bt(0) \ Bs(0) =
Q0 JM∩Bt(0) \Bs(0)K mod(p) for an integer Q0 with |Q0| ≤ p

2 . Since S is a cone and a
representative mod(p) we can in fact infer that S Bt(0) = Q0 J0K×× JM∩ ∂Bt(0)K mod(p)
(in fact it can be easily inferred from the argument in [11, Pages 601-602] that Q0 = Q,
although this is not needed in our argument). Since J0K×× JM∩ ∂Bt(0)K induces a stationary
varifold and M is the graph of a function with small C3,ε0 norm, we can applied Allard’s
Theorem to conclude that in fact J0K×× JM∩ ∂Bt(0)K is smooth. This implies that the latter
is in fact Jπ ∩Bt(0)K for some m-dimensional plane π, contradicting the fact that S is not a
flat cone. �

Finally, Theorem 26.1 can be used as in [11, Section 5] to show [11, Corollary 5.3], which
we restate in our context for the reader’s convenience.

Corollary 26.3 (Reverse Sobolev). Let T be as in Proposition 7.7. Then, there exists a
constant C > 0 which depends on T but not on j such that, for every j and for every r ∈] sjtj , 1],
there is σ ∈]3

2r, 3r] such thatˆ
Bσ(Φj(0))

|DNj |2 ≤
C

r2

ˆ
Bσ(Φj(0))

|Nj |2 . (26.6)

27. Final contradiction argument

In this section we complete the proof of Theorem 1.4 showing that, by Proposition 7.7,
under the assumption that the theorem is false, we get a contradiction. In particular fix
T,Σ,Ω and rk as in Proposition 7.7. We have already remarked that for each k there is an
interval of flattening Ij(k) =]sj(k), tj(k)] containing rk. We proceed as in [11, Section 6] and
introduce the following new objects:

• We first apply Corollary 26.3 to r = rk
tj(k)

and set s̄k := tj(k)σk, so that s̄k
tj(k)

∈]3
2
rk
tj(k)

, 3 rk
tj(k)

[.
• We set r̄k := 2s̄k

3tj(k)
.

• We rescale our geometric objects, namely
(U1) The currents T̄k, the manifolds Σ̄k and the center manifolds M̄k are given

respectively by

T̄k = (ι0,r̄k)]Tj(k) = ((ι0,r̄ktj(k))]T ) B6
√
m/r̄k

(27.1)
Σ̄k = ι0,r̄k(Σj(k)) = ι0,r̄ktj(k)(Σ) (27.2)
M̄k = ι0,r̄k(Mj(k)) . (27.3)
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(U2) In order to define the rescaled maps N̄k on M̄k we need to distinguish two cases.
When Q < p

2 , the map N̄k takes values in AQ(Rm+n) and is defined by

N̄k(q) =
Q∑
i=1

q
r−1(Nj(k))i(rq)

y
.

In the case Q = p
2 , the map N̄k takes values in AQ(Rm+n) and is defined analo-

gously. The reader might either use the decomposition ofMj(k) intoM+
j(k),M

−
j(k)

and (Mj(k))0 or, using the original notation in [7, Definition 2.2],

N̄k(q) =

 Q∑
i=1

q
r−1(Nj(k))i(rq)

y
, ε(rq)

 ,
where

Nj(k)(q̃) =

 Q∑
i=1

q
(Nj(k))i(q̃)

y
, ε(q̃)


and ε(·) ∈ {−1, 1}.

Without loss of generality we can assume that T0Σ = Rm+n̄×{0}, thus the ambient manifolds
Σ̄k converge to Rm+n̄ × {0} locally in C3,ε0 . Observe in addition that 1

2 <
rk

r̄ktj(k)
< 1 and

hence it follows from Proposition 7.7(ii) that
Eno(T̄k,B 1

2
) ≤ CEno(T,Brk)→ 0.

Indeed Proposition 7.7(ii) implies that T̄k converge to Q Jπ0K both in the sense of varifolds
and in the sense of currents mod(p). Finally, we recall that, by Proposition 7.7(iii)&(iii)s,

Hm−2+α
∞ (DQ(T̄k) ∩B1) ≥ C0r

−(m−2+α)
k Hm−2+α

∞ (DQ(T ) ∩Brk) ≥ η > 0 when Q < p
2

(27.4)

Hm−1+α
∞ (DQ(T̄k) ∩B1) ≥ C0r

−(m−1+α)
k Hm−1+α

∞ (DQ(T ) ∩Brk) ≥ η > 0 when Q = p
2

(27.5)
where α is a positive number and C0 a geometric constant.

As in [11, Section 6] we claim the counterpart of [11, Lemma 6.1], namely Lemma 27.1, which
implies that M̄k converge locally to the flat m-plane π0. We also introduce the exponential
maps ek : B3 ⊂ Rm ' Tq̄kM̄k → M̄k denotes the exponential map at q̄k = Φj(k)(0)/r̄k ( here
and in what follows we assume, w.l.o.g., to have applied a suitable rotation to each T̄k so
that the tangent plane Tq̄kM̄k coincides with Rm × {0}). We are finally ready to define the
blow-up maps N b

k : B3 ⊂ Rm → AQ(Rm+n), when Q < p
2 and N b

k : B3 ⊂ Rm → AQ(Rm+n),
when Q = p

2 :
N b
k(x) := h−1

k N̄k(ek(x)) , (27.6)
where hk := ‖N̄k‖L2(B 3

2
).

Lemma 27.1 (Vanishing lemma). Let T̄k, r̄k,M̄k and Σ̄k be as above. We then have:
(i) min{mj(k)

0 , r̄k} → 0;
(ii) the rescaled center manifolds M̄k converge (up to subsequences) to π0 = Rm × {0} in

C3,κ/2(B4) and the maps ek converge in C2,κ/2 to the identity map id : B3 → B3;
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(iii) there exists a constant C > 0, depending only on T , such that, for every k,
1
h2
k

ˆ
B 3

2

|DN̄k|2 ≤ C
ˆ
B 3

2

|DN b
k|2 ≤ C. (27.7)

Proof. The argument for (i) can be taken from [11, Proof of Lemma 6.1]. As for part (ii)
the argument given in [11, Section 6] for the convergence of the center manifolds can be
shortened considerably observing that it is a direct consequence of Proposition 24.3(v) and
the convergence of the currents T̄k. The C2,κ/2 convergence of the exponential maps follow
then immediately from [11, Proposition A.4]. Finally, (iii) is an obvious consequence of
Corollary 26.3. �

Having defined the blow-up maps, the final contradiction comes from the following state-
ments.

Theorem 27.2 (Final blow-up). Up to subsequences, the maps N b
k converge strongly in L2(B 3

2
)

to:
• a function N b

∞ : B 3
2
→ AQ({0} × Rn̄ × {0}) when Q < p

2 ;
• a function N b

∞ : B 3
2
→ AQ({0} × Rn̄ × {0}) when Q = p

2 .

Such limit is Dir-minimizing in Bt for every t ∈]5
4 ,

3
2 [ and satisfies ‖N b

∞‖L2(B 3
2

) = 1 and

η ◦N b
∞ ≡ 0.

Theorem 27.3 (Large singular set). Let N b
∞ be the map of Theorem 27.2 and define

Υ :=
{
x ∈ B̄1 : N b

∞(x) = Q J0K
}
.

Then

Hm−2+α
∞ (Υ) ≥ η

2 if Q < p
2 , (27.8)

Hm−1+α
∞ (Υ) ≥ η

2 if Q = p
2 , (27.9)

where α and η are the positive constants in (27.4), resp. (27.5).

The two theorems would contradict [12, Theorem 0.11] in case Q < p
2 since, arguing as in

[11, Section 6] we easily conclude that Υ is a subset of the singularities of N b
∞. In the case

Q = p
2 we infer instead from [7, Proposition 10.3] that N∞b = Q Jη ◦N∞b K on the whole B3/2,

which in turn would imply N∞b = Q J0K. This however contradicts ‖N∞b ‖L2(B3/2) = 1.

27.1. Proof of Theorem 27.2. Without loss of generality we may assume that q̄k :=
r̄−1
k Φj(k)(0) coincide all with the origin. We then define a new map F̄k on the geodesic ball
B3/2 ⊂ M̄k distinguishing, as usual, the two cases Q < p

2 and Q = p
2 . In the first case we

follow the definition of [11, Section 7.1], namely we set

F̄k(x) :=
∑
i

q
x+ (N̄k)i(x)

y
.

In the case Q = p
2 the map F̄k takes values in AQ(Rm+n) and it is induced by N̄k in the sense

explained at point (N) of [7, Assumption 11.1]. The argument given in [11, Section 7.1] works
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in our case as well and implies the following estimates (where γ is some positive exponent
independent of k)

Lip(N̄k|B3/2
) ≤ Chγk and ‖N̄k‖C0(B3/2) ≤ C(mj(k)

0 r̄k)γ , (27.10)

Mp((TF̄k
− T̄k) (p−1

k (B 3
2
)) ≤ Ch2+2γ

k , (27.11)ˆ
B 3

2

|η ◦ N̄k| ≤ Ch2
k (27.12)

From these estimates we conclude the strong L2 converge of (a subsequence of) N b
k to a

map N b
∞ on B3/2 taking values, respectively, on AQ({0} × Rn̄ × {0}) (when Q < p

2) and
AQ({0} × Rn̄ × {0}) (when Q = p

2). Moreover it is obvious that ‖N b
∞‖L2(B3/2) = 1 and that

η ◦N b
∞ ≡ 0. Therefore we are only left with proving that N b

∞ is Dir-minimizing.
Proceeding as in the [11, Section 7] we assume, without loss of generality, that the Dirichlet

energy of N b
∞ is nontrivial (otherwise there is nothing to prove). Thus we can assume that

that there exists c0 > 0 such that

c0h2
k ≤
ˆ
B 3

2

|DN̄k|2 . (27.13)

We proceed as in [11, Section 7.2 & Section 7.3]: if there is a radius t ∈
]

5
4 ,

3
2

[
and a function

f on B 3
2
(taking values in AQ(Rn̄) when Q < p

2 , or in AQ(Rn̄) when Q = p
2) such that

f |B 3
2
\Bt = N b

∞|B 3
2
\Bt and Dir(f,Bt) ≤ Dir(N b

∞, Bt)− 2 δ,

for some δ > 0, we then produce competitors Ñk for the maps N̄k satisfying

Ñk ≡ N̄k in B 3
2
\ Bt, Lip(Ñk) ≤ Chγk , |Ñk| ≤ C(mk

0 r̄k)γ ,ˆ
B 3

2

|η ◦ Ñk| ≤ Ch2
k and

ˆ
B 3

2

|DÑk|2 ≤
ˆ
B 3

2

|DN̄k|2 − δh2
k.

Indeed the construction of the maps in [11, Section 7.2 & Section 7.3] uses the left composition
of AQ-valued maps with classical maps in the sense of [12, Section 1.3.1], which in the
AQ-valued case is substituted by the left composition as defined in [7, Subsection 7.3].

Consider next the map F̃k given by F̃k(x) = ∑
i

q
x+ (Ñk)i(x)

y
in the case Q < p

2 and by
the corresponding

(∑
i

q
x+ (Ñk)i(x)

y
, ε(x)

)
in the case Q = p

2 . The current TF̃k
coincides

with TF̄k
on p−1

k (B 3
2
\Bt). Define the function ϕk(q) = distM̄k

(0,pk(q)) and consider for each
s ∈

]
t, 3

2

[
the slices 〈TF̃k

− T̄k, ϕk, s〉. By (27.11) we have
ˆ 3

2

t
Mp(〈TF̃k

− T̄k, ϕk, s〉) ≤ Ch2+γ
k .

Thus we can find for each k a radius σk ∈
]
t, 3

2

[
on which Mp(〈TF̃k

− T̄k, ϕk, σk〉) ≤ Ch2+γ
k .

Recall from Lemma 5.1(i), ∂〈TF̃k
− T̄k, ϕk, σk〉 = 0 mod(p). By the isoperimetric inequality

mod(p) (see [15, (4.2.10)ν ]) there is an integer rectifiable current Sk, which can be assumed to
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be representative mod(p), such that

∂Sk = 〈TF̃k
−T̄k, ϕk, σk〉 mod(p) , M(Sk) = Mp(Sk) ≤ Ch(2+γ)m/(m−1)

k and spt(Sk) ⊂ Σ̄k.

Our competitor current is, then, given by

Zk := T̄k (p−1
k (M̄k \ Bσk)) + Sk + TF̃k

(p−1
k (Bσk)).

The computations given in [11, Section 7.4] would then imply that the p-mass of Zk is strictly
smaller than the mass of T̄k for k large enough, even though T̄k − Zk is a cycle mod(p)
supported in the ambient manifold Σ̄k, which is a contradiction to T̄k being a mass minimizing
current mod(p) in Σ̄k.

27.2. Proof of Theorem 27.3. We argue by contradiction and assume that:

Hm−2+α
∞ (Υ) < η

2 if Q < p
2 (27.14)

Hm−1+α
∞ (Υ) < η

2 if Q = p
2 . (27.15)

Since Υ is compact, we cover Υ with finitely many balls {Bσi(xi)} in such a way that∑
i

ωm−2+α(4σi)m−2+α ≤ η

2 if Q < p
2 , (27.16)

∑
i

ωm−1+α(4σi)m−1+α ≤ η

2 if Q = p
2 (27.17)

Choose a σ̄ > 0 so that the 5σ̄-neighborhood of Υ is covered by {Bσi(xi)}. Denote by Λk the
set of multiplicity Q points of T̄k far away from the singular set Υ:

Λk := {q ∈ DQ(T̄k) ∩B1 : dist(q,Υ) > 4σ̄}.

Clearly,

Hm−2+α
∞ (Λk) ≥

η

2 when Q < p
2 , (27.18)

Hm−1+α
∞ (Λk) ≥

η

2 when Q = p
2 . (27.19)

As in [11, Section 6.2] we denote by V the neighborhood of Υ of size 2σ̄. Agruing as in [11,
Section 6.2, Step 1] we conclude the existence of a positive constant ϑ such that, for every fixed
parameter σ < σ̄, there is a k0(σ) such that the following estimate holds for every k ≥ k0(σ).
In the case Q < p

2 we have

−
ˆ
B2σ(x)

G(N̄k, Q
q
η ◦ N̄k

y
)2 ≥ ϑh2

k ∀ x ∈ Ξk := pM̄k
(Λk), (27.20)

whereas in the case Q = p
2 we have

−
ˆ
B2σ(x)

Gs(N̄k, Q
q
η ◦ N̄k

y
)2 ≥ ϑh2

k ∀ x ∈ Ξk := pM̄k
(Λk). (27.21)

Indeed the argument in [11, Section 6.2] uses only the Hölder continuity of the Dir-minimizing
map N b

∞ (which is a consequence of [12, Theorem 2.9] for Q < p
2 and a consequence of [7,

Theorem 8.1] when Q = p
2) and the strong convergence proved in Theorem 27.2.
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Next, following [11, Section 6.2, Step 2], for every q ∈ Λk we define z̄k(q) = pπk(q) (where
πk is the reference plane for the center manifold related to Tj(k)) and

x̄k(q) := (z̄k(q), r̄−1
k ϕj(k)(r̄kz̄k(q))) .

Observe that x̄k(q) ∈ M̄k. We next claim the existence of a suitably chosen geometric constant
1 > c0 > 0 (in particular, independent of σ) such that, when k is large enough, for each q ∈ Λk
there is a radius %q ≤ 2σ with the following properties:

c0 ϑ

σα
h2
k ≤

1
%m−2+α
q

ˆ
B%q (x̄k(q))

|DN̄k|2, (27.22)

B%q(x̄k(q)) ⊂ B4%q(q) . (27.23)

The argument given in [11, Section 6.2, Step 2] can be routinously modified in our case. In
particular we define the points qk := r̄kq, zk := r̄kz̄k(q) and xk = r̄kx̄k(q) = (zk, ϕj(k)(zk)) and
discuss the three different possibilities depending on whether zk belongs to a cube L ∈ W j(k)

or to the contact set Γj(k).
The first case, zk ∈ L ∈ W

j(k)
h can be excluded with the same argument given in [11, Section

6.2, Step 2], where we replace [10, Proposition 3.1] with Proposition 16.26, because qk is a
multiplicity Q point for the current Tj(k).

Following the argument in [11, Section 6.2, Step 2], when zk ∈ W
j(k)
n ∪ W

j(k)
e we find a

t(q) ≤ σ with the property that

−
ˆ
Bs̄t(q)(x̄k(q))

G�(N̄k, Q
q
η ◦ N̄k

y
)2 ≤ ϑ

4ωmt(q)m−2

ˆ
Bt(q)(x̄k(q))

|DN̄k|2 (27.24)

(where � = s for Q = p
2 and � = for Q < p

2) and

|q − x̄k(q)| < s̄ t(q). (27.25)

In the argument [11, Section 6.2] we take care of substituing [10, Proposition 3.5], [11, Lemma
6.1] and [11, Proposition 3.6] respectively with Proposition 16.30, Lemma 27.1 and Proposition
16.31.

In the case zk ∈ Γj(k) we find a t(q) < σ such that

−
ˆ
Bs̄t(q)(x̄k(q))

G�(N̄k, Q
q
η ◦ N̄k

y
)2 ≤ ϑ

4 h2
k , (27.26)

whereas we observe that (27.25) holds trivially because the left hand side vanishes.
By (27.25), for any %q ∈]st̄(q), 2σ] the inclusion (27.23) holds. The argument is then closed

by showing that (27.22) must hold for at least one %q ∈]s̄t(q), 2σ]. The rest of the argument
in [11, Section 6.2, Step 2] uses the Poincaré inequality in the AQ-valued setting to show that,
under the assumption that (27.22) fails for every % ∈]s̄t(q), 2σ], (27.26) and (27.24) would
be incompatible with (27.20). This argument then settles the proof of the existence of %q
satsifying (27.22)-(27.23) when Q < p

2 . Since the analogous Poincaré inequality can be easily
seen to hold in the AQ-valued case, we easily conclude that the same argument applies when
Q = p

2 exploiting the case � = s for (27.24) and (27.26) against (27.21).
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From (27.22)-(27.23) we can use the covering argument of [11, Step 3] to conclude that the
inequality (27.18) and (27.19) would force a large Dirichlet energy of N̄k on B3/2, in particular

η

2 ≤
C0
c0

σα

ϑh2
k

ˆ
B 3

2

|DN̄k|2 for Q < p
2 , (27.27)

η

2 ≤
C0
c0

σ1+α

ϑh2
k

ˆ
B 3

2

|DN̄k|2 for Q = p
2 , (27.28)

where C0, c0 and ϑ are fixed (namely independent of σ). Therefore, σ can be chosen very
small, with the inequality being satisfied only for k ≥ k(σ). However, the arbitrariness of σ
and (27.7) would be incompatible with η > 0, thus leading to the required contradiction.
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Part 5. Rectifiability of the singular set and structure theorem

28. Rectifiability of the singular set: proof of Theorem 1.8

We start by introducing the term “area minimizing cones mod(p)” for area minimizing
currents mod(p) without boundary mod(p) which have a representative T0 which is a cone
in the sense of Corollary 6.3(iii). Such cone will be called flat if it is supported in some
m-dimensional plane π ⊂ Rm+n. We recall that, by Corollary 6.3, any flat area minimizing
cone mod(p) is congruent mod(p) to Q JπK, where π is an m-dimensional plane and Q is an
integer with 0 ≤ Q ≤ p

2 . For odd p we then conclude that |Q| ≤ p−1
2 .

Recall the definition of k-symmetric cones given in Definition 7.3. Following [19], we
introduce next the following terminology, which introduces a suitable notion of local almost
symmetry for a given integral varifold V .

Definition 28.1. An m-dimensional integral varifold V is (k, ε)-symmetric in the ball Bρ(x)
if there is a k-symmetric cone C such that the varifold distance between C B1(0) and
((ιx,r)]V ) B1(0) is smaller than ε.

Next, given a varifold V with bounded mean curvature in an open set U , for every σ > 0
and ε > 0 we introduce the set

Sk,σε (V ) := {x ∈ spt(V ) ∩ U : V is not (k + 1, ε)-symmetric in Br(x) for r ∈]0, σ]}

The following is then a direct corollary of Lemma 7.6.

Corollary 28.2. Assume that T is as in Theorem 1.4, and consider the varifold v(T ) induced
by T . If p is odd, then for every compact K with K ∩ sptp(∂T ) = ∅ there are constants
ε = ε(m,n, p,K) > 0 and σ = σ(m,n, p,K) > 0 such that

Sing(T ) ∩K ⊂
p−1

2⋃
Q=2

SingQ(T ) ∪ Sm−1,σ
ε (v(T )) ∪ Sm−2(v(T )) .

Proof. Consider a point

q ∈ (Sing(T ) ∩K) \


p−1

2⋃
Q=2

SingQ(T ) ∪ Sm−2(v(T ))

 .

We then know that at least one tangent cone in q is (m− 1)-symmetric but not flat. Therefore
we know from Lemma 7.6 that Θ(T, q) ≥ p

2 . We also know that v(T ) is a varifold with bounded
mean curvature (the L∞ bound depending only on the second fundamental form of Σ) and
that there is a σ0(K) > 0 such that dist(q, sptp(∂T )) ≥ σ0. In particular, by the monotonicity
formula, there is a σ(K,Σ) > 0 such that

‖v(T )‖(Br(q)) ≥
(
p

2 −
1
4

)
ωmr

m ∀r ∈]0, σ] . (28.1)

On the other hand, if v(T ) were (m, ε)-symmetric in Br(q), then there would be a positive
integer Q and an oriented m-dimensional plane JπK such that the varifold distance between
((ιq,r)]v(T )) B1(0) and Qv(JπK) B1(0) is smaller than ε. By the compactness Proposition 4.2
(observing that r−mM(T Br(x)) can be bounded uniformly for x ∈ K), when ε is sufficiently
small, Q JπK must be a representative of an area minimizing current mod(p) and as such we
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must have Q ≤ p−1
2 . In particular, if ε is sufficiently small, we would conclude

‖v(T )‖(Br(q)) ≤
(
p

2 −
3
8

)
ωmr

m .

This is however not possible because of (28.1) and hence we deduce that q ∈ Sm−1,σ
ε (v(T )). �

Proof of Theorem 1.8. Observe that, by Almgren’s stratification theorem, Sm−2(v(T )) has
Hausdorff dimension at most m− 2. Similarly,

p−1
2⋃

Q=2
SingQ(T )

has Hausdorff dimension at most m − 2 by Theorem 1.6. Since by [19, Theorem 1.4],
Sm−1,σ
ε (v(T )) ∩K has finite Hm−1 measure and it is (m − 1)-rectifiable, the claim follows

from Corollary 28.2. �

29. Structure theorem: proof of Corollary 1.9

In this section we prove Corollary 1.9. First of all observe that each connected component
Λi is necessarily a regular submanifold because, by definition, it is contained in the set of
regular interior points of T . Clearly Λi is locally orientable, and it is simple to show that,
since p is odd, there is in fact a smooth global orientation. Clearly T Λi = Qi JΛiK mod(p)
for some integer multiplicity Qi ∈ [−p

2 ,
p
2 ] by the constancy lemma mod(p). On the other hand

we can reverse the orientation to assume that Qi ∈ [1, p2 ]. Point (b) is then obvious because
T U = ∑

i Ti U mod(p) and in fact
‖T‖ U =

∑
i

‖Ti‖ U . (29.1)

Now consider U as in part (a) of the statement and observe that, by the monotonicity formula,
there are constants M(U) and ρ(U) > 0, such that

‖T‖(Br(x)) ≤Mrm ∀x ∈ U and ∀r ∈]0, ρ(U)] .
Fix a Ti and note that, by (29.1),

‖Ti‖(Br(x)) ≤Mrm . (29.2)
Observe that

spt((∂Ti) U) ⊂ Sing(T ) ∩ U =: K ,

and that, by Theorem 1.8, the compact set K satisfies the bound
Hm−1(K) <∞ . (29.3)

We next claim that, by (29.2) and (29.3),
M((∂Ti) U) <∞ .

First of all fix σ = 1
k <

ρ(U)
2 and choose a finite cover of K with balls {Bk

j }j with radii rkj
satisfying 2 rkj ≤ σ = 1

k such that∑
j

ωm−1(rkj )m−1 ≤ 2Hm−1
σ (K) ≤ 2Hm−1(K) .

For each ball Bk
j we choose a smooth cutoff function ϕkj which vanishes identically on Bk

j and
it is identically equal to 1 on the complement of the concentric ball 2Bk

j with twice the radius.
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We choose ϕkj so that 0 ≤ ϕkj ≤ 1 and ‖dϕkj ‖0 ≤ C(rkj )−1, where C is a geometric constant.
We then define

ϕk :=
∏
j

ϕkj .

Recall that
M((∂Ti) U) = sup{∂Ti(ω) : ‖ω‖c ≤ 1 , ω ∈ Dk(U)} .

We therefore fix a smooth (m− 1)-form ω with compact support in U and we are interested
in bounding ∂Ti(ω) = Ti(dω). Observe that ϕk ↑ 1 ‖Ti‖-a.e. on U . Hence we can write

Ti(dω) = lim
k→∞

Ti(ϕkdω) .

On the other hand, since ϕkω is supported in an open set V ⊂⊂ U \K we conclude
Ti(d(ϕkω)) = ∂Ti(ϕkω) = 0 .

Hence we can estimate

|Ti(ϕkdω)| = |Ti(dϕk ∧ ω)| ≤
∑
j

∣∣∣∣∣∣Ti
∏
`6=j

ϕk`dϕ
k
j ∧ ω

∣∣∣∣∣∣
≤ C

∑
j

‖ω‖c ‖dϕkj ‖0 ‖Ti‖(2Bk
j )

(29.2)
≤ CM‖ω‖c

∑
j

(rkj )−1(2rkj )m

≤ CM‖ω‖cHm−1(K) . (29.4)
Letting k ↑ ∞ we thus conclude

|Ti(dω)| ≤ CM‖ω‖cHm−1(K) .
This shows that (∂Ti) U has finite mass. Point (a) follows therefore from the Federer-Fleming
boundary rectifiability theorem.

In order to show (c), consider the set K ′ of points q ∈ K where
• K has an approximate tangent plane TqK;
• q is a Lebesgue point for all Θi’s with Θi(q) ∈ Z.

By a standard blow-up argument, it follows that, for every fixed q ∈ K ′, any limit S of the
currents (ιq,r)](Ti) as r ↓ 0 is an area-minimizing current on Rm+n with boundary either
−Θi(q) JTqKK or +Θi(q) JTqKK. By the boundary monotonicity formula,

‖S‖(B1(0)) ≥ |Θi(q)|
2 ωm .

We therefore conclude that

lim inf
r↓0

‖Ti‖(Br(q))
rm

≥ ωm
|Θi(q)|

2 .

Fix any natural number N . We then conclude from (29.2) that

M ≥ lim
r↓0

‖T‖(Br(q))
rm

≥
N∑
i=1

lim inf
r↓0

‖Ti‖(Br(q))
rm

≥
N∑
i=1

ωm
|Θi(q)|

2 .

In particular we conclude that
∞∑
i=1
|Θi(q)| ≤

2M
ωm

∀q ∈ K ′ .
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This shows that ∑
i

M((∂Ti) U) ≤ 2M
ωm
Hm−1(K) <∞ .

This completes the proof of (c) and of the structure theorem.
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