
We denote by e the Euclidean metric on Rn.

Theorem 0.1. For every n ≥ 2 and every α ∈ (0, 1] there is a constant C = C(n, α) with
the following property. Let u ∈ H1(B2,Rn) be such that

‖u]e− e‖L∞(B1) ≤
1

2
. (0.2)

and
detDu ≥ 0 a.e. . (0.3)

Then there is A ∈ SO(n) such that

‖Du− A‖Cα(B1) ≤ C‖u]e− e‖Cα(B2) . (0.4)

Remark 0.5. From now on, |A| will denote the Hilbert-Schmidt norm of the matrix A ∈
Rn×n, namely |A| =

√
trA>A induced by the Hilbert-Schmidt scalar product 〈A,B〉 :=

trA>B. In particular, using standard coordinates in B2 and identifying u]e with the
corresponding n× n matrix, we have |Du|2 = tru]e. Under the assumption (0.2) we thus
conclude immediately that ‖Du‖L∞(B2) ≤ C(n), namely that the map u is Lipschitz.

Remark 0.6. Note that an assumption like (0.3) is needed because it is easy to give examples
of Lipschitz maps whose derivative belong to O(n) almost everywhere but which are not
affine. In fact such maps are “abundant” in an appropriate sense: in particular they form
a residual set in the space X := {u ∈ Lip (B2,Rn) : u]e ≤ e} endowed with the the L∞

distance, which makes X a compact metric space (cf. [2] for the latter and more subtle
results).

The two authors of the paper asked me while preparing their manuscript whether I
could provide a reference or a proof for Theorem 0.1. While I felt that this should be a
well-known “classical fact”, I was unable to find a reference for it. I therefore suggested a
simple argument which reduces (0.4) to an important work of [1] which essentially handles
a corresponding “L2-estimate”. The reduction is given in this appendix. It uses some
elementary facts from Linear Algebra (which are well known and I just include for the
reader’s convenience) and a Morrey-type decay. In what follows we denote by Id the
identity matrix in Rn×n.

Lemma 0.7. We have

dist (A, SO(n)) = dist (A,O(n)) for all A ∈ Rn×n with detA ≥ 0 (0.8)

and
dist (A,O(n)) ≤ |A>A− Id | ∀A ∈ Rn×n . (0.9)

Proof. In order to show (0.8) fix first an arbitrary matrix A with detA ≥ 0. Recalling
the polar decomposition of matrices there is a symmetric S and a O1 ∈ SO(n) such
that A = O1S. Next, recalling that every symmetric matrix is diagonalizable, there is
O2 ∈ SO(n) such that A = O1O

>
2 DO2 for some diagonal matrix D. Next recall that if O is

a diagonal matrix with an even number of entries equal to −1 and the remaining equal to
1, then O ∈ SO(n). If one of the diagonal enties of D is zero, we can then assume without
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loss of generality that all enties of A are nonnegative. Otherwise, if no diagonal entry is
0, we can assume without loss of generality that they are all positive but at most 1. Since
detA > 0, we can exclude that one diagonal entry of D is negative and the others are all
positive. Summarizing the arguments in the two cases, we can assume that all diagonal
entries of D are nonnegative. Since dist (A,O(n)) = dist (OA,O(n)) = dist (AO,O(n)) and
dist (A, SO(n)) = dist (OA, SO(n)) = dist (AO, SO(n)) for every O ∈ SO(n), we conclude
that it suffices to prove (0.8) for a diagonal matrix A which has all nonnegative entries.
Denote them by λ1, . . . , λn. For any O ∈ O(n) we can then compute explicitely

|A−O|2 =
∑
i

λ2
i + n− 2

∑
i

λiOii .

Observe that −1 ≤ Oii ≤ 1 because O is orthogonal. Since λi ≥ 0 for every i we
then conclude |A − O|2 ≥

∑
i λ

2
i + n − 2

∑
i λi = |A − Id |2. This however shows that

dist (A,O(n))2 = |A− Id |2 = dist (A, SO(n))2.
As for (0.9) fix A ∈ Rn×n and let O ∈ O(n) be such that dist (A,O(n)) = |A − O|.

Since both sides of the inequality take the same value for A and O−1A, we can assume
that O = Id. By the minimality condition of Id we must have that A − Id is orthogonal
(in the Hilbert-Schmidt scalar product) to the tangent to O(n) at Id, which is the space of
skew-symmetric matrices. We therefore conclude that A is symmetric and, again applying
the O(n) invariance of the inequality, we can assume w.l.o.g. that it is diagonal. Let
λi = Aii be the diagonal entries and observe that none of them can be negative: if λk < 0
then the matrix B which has Bij = 0 for i 6= j, Bii = 1 for i 6= k and Bkk = −1 satisfies
B ∈ O(n) and |A−B| < |A− Id |. (0.9) is thus reduced to proving∑

i

(λi − 1)2 ≤
∑
i

(λ2
i − 1)2

under the assumption that λi ≥ 0 for every i. This is equivalent to prove (x − 1)2 ≤
(x2 − 1)2 = (x− 1)2(x+ 1)2 for x ≥ 0, which is obvious. �

Proof of Theorem 0.1. Fix x ∈ B1 and let S(x) be the unique positive definite symmetric
matrix such that S(x)2 = u]e(x). Observe that, by (0.2), we have

|S(x)|+ |S(x)−1| ≤ C .

Let v be the map v(y) := u(y)(S(x))−1 and observe further that

dist (Dv(y), SO(n)) ≤dist (Dv(y), O(n)) ≤ |Dv>(y)Dv(y)− Id |
≤|S(x)−1Du>(y)Du(y)S(x)−1 − Id |
=|S(x)−1(Du>(y)Du(y)− S(y)2)S(x)−1|
=|S(x)−1(u]e(y)− u]e(x))S(x)−1|
≤4[u]e]α,B2|x− y|α = 4[u]e− e]α,B2|x− y|α

(where we use the standard notation [f ]α,Ω := sup{ |f(x)−f(y)|
|x−y|α : x, y ∈ Ω}). In particular,

for every r ≤ 1 we can apply the Friesecke-James-Müller inequality, namely [1, Theorem
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3.1], to find a matrix A(x, r) ∈ SO(n) with the property that

−
∫
Br(x)

|Dv − A(x, r)|2 ≤ C−
∫
Br(x)

dist (Dv, SO(n))2 ≤ C[u]e− e]2α,B2
r2α (0.10)

(note that [1, Theorem 3.1] is stated for a general open set U in place of Br(x), with a
constant depending on U ; however an obvious scaling argument shows that the constant
is the same for balls of arbitrary radii). Recalling that

min
c

∫
|f − c|2 =

∫ ∣∣∣∣f −−∫ f

∣∣∣∣2 ,
we conclude

−
∫
Br(x)

∣∣∣∣Du−−∫
Br(x)

Du

∣∣∣∣2 ≤ −∫
Br(x)

|Du− A(x, r)S(x)|2

= −
∫
Br(x)

|(Dv − A(x, r))S(x)|2

≤ 4−
∫
Br(x)

|Dv − A(x, r)|2 ≤ C[u]e− e]2α,B2
r2α .

Morrey’s estimate then implies that Du ∈ Cα(B1) and

[Du]α,B1 ≤ C[u]e− e]α,B2 . (0.11)

On the other hand, again by the Friesecke-James-Müller estimate, there is A ∈ SO(n) such
that

−
∫
B1

|Du− A|2 ≤ C−
∫
B1

dist (Du, SO(n))2 ≤ C‖u]e− e‖2
C0(B1) . (0.12)

(0.11) and (0.12) immediately imply (0.4). �
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