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Abstract. This short note derives some geometric conditions
that Migdal’s constrained vortex surfaces have to satisfy, from
which corresponding rigidity results can be drawn. The note will
appear as appendix in a forthcoming article by Migdal, cf. [2].

In this note we prove a series of restrictions that Migdal’s con-
strained vortex surfaces have to satisfy. These restrictions come from
elementary computations of differential geometric nature: combined
with some standard facts in topology and in the theory of harmonic
functions, they imply a number of restrictions on the behavior of these
surfaces, which can be interpreted as suitable “rigidity theorems”. The
note is mathematically self-contained, while for the origin of the con-
cept, its relevance in the theory of turbulent flows, and several other
(mathematical and physical) aspects, which are due to the work of
Migdal in the last decades, we refer the reader to the forthcoming
report [2]. The present note, which is seperately available on the web-
pages of the authors, will in fact appear as an appendix to the latter
work.

1. CVS conditions: geometric interpretation and
instability in the compact case

Let S ⊂ R3 be a (sufficiently smooth) complete connected surface.
We denote by S− the region enclosed by S, and set S+ := R3\(S∪S−).

According to Migdal’s definition, a CVS (constrained vortex surface)
solution to the Euler equations is a pair of (sufficiently smooth) velocity
fields (v−, v+) defined on S− and S+, respectively, such that

div v+ = div v− = 0 (1)

curl v+ = curl v− = 0 (2)

v+ , v− are tangent to S (3)

(Dv+ +Dv−) · (v+ − v−) = 0 (4)

|v+|2 − |v−|2 is locally constant on S. (5)

Moreover, the constrained vortex surface has to satisfy the following
stability condition

〈D(v+ + v−) · n , n〉 < 0 , (6)
1
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where n is the exterior normal to S and 〈a, b〉 denotes the scalar product
of the vectors a and b.

We have the following geometric characterization of (3), (4) and (5).

Theorem 1.1. Conditions (3), (4), (5) are satisfied iff{
A(v−, v−) = A(v+, v+)

[v+, v−] = 0 ,
(7)

where A is the second fundamental form of S, and [v+, v−] is the Lie
bracket, i.e.

[v+, v−] = Dv+ · v− −Dv− · v+ .

Remark 1.2. Recall that the Lie Bracket [v+, v−] = (Dv+ · v−−Dv− ·
v+)|S is tangent to S because v+ and v− are tangent to S.

Proof. Condition (5) is equivalent to

(Dv+ · v+ −Dv− · v−)|S is parallel to n . (8)

We rewrite (4) as I + II = 0, where

I = Dv+ · v+ −Dv− · v−
II = −Dv+ · v− +Dv− · v+ ,

and observe that I is normal to S, as a consequence of (8), while II is
tangent to S. Indeed,

〈II, n〉 = A(v+, v−)− A(v−, v+) = 0 .

In particular I+II = 0 iff I = 0 and II = 0. It is immediate to rewrite
the two conditions as (7).

�

Regarding the stability condition (6), we can prove the following
rigidity result.

Theorem 1.3. If S ⊂ R3 is a smooth compact closed surface and
v+, v− a pair of vector fields that satisfy the conditions (1) and (3),
then ∫

S
〈D(v+ + v−) · n , n〉 = 0 . (9)

In particular, (6) cannot hold.

The same argument allows for a similar conclusion when S is a
smooth compact surface with boundary ∂S and v+ + v− is tangent
to the boundary.

Theorem 1.4. Assume S ⊂ R3 is a smooth compact surface with
smooth boundary ∂S and v+, v− a pair of vector fields that satisfy the
conditions (1) and (3). If in addition v+ + v− is tangent to ∂S, then∫

S
〈D(v+ + v−) · n , n〉 = 0 . (10)
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In particular, (6) cannot hold.

Remark 1.5. Clearly Theorem 1.3 can be thought as the particular case
of Theorem 1.4 has empty boundary. The smoothness needed by the
proof given below is that the surface and its boundary are both C1 (i.e.
they have a tangent at every point, which in turn varies continuosly),
and that the vector fields are C1, i.e. continuously differentiable.

Proof of Theorem 1.4. Fix a point p ∈ S and choose a local orthonor-
mal frame around p consisting of e1, e2, n, where the vectors e1 and e2

are tangent to S. Note that, since both v+ and v− are divergence free
we have that D(v+ + v−) is a trace-free matrix, and thus

〈D(v+ +v−) ·n, n〉 = −〈D(v+ +v−) ·e1, e1〉−〈D(v+ +v−) ·e2, e2〉 . (11)

Let g be the Riemannian scalar product induced on S by the Eu-
clidean one, and denote by ∇S the corresponding Levi-Civita connec-
tion. Recall that the latter coincides with the connection induced by
the Euclidean connection. This amounts to say that, if X, Y and Z are
tangent vector fields to S, then

g(∇SYX,Z) = 〈DX · Y, Z〉 .
If we apply this to Y = Z = ei and X = v+ +v−, (11) can be rewritten
as

g(∇Se1(v+ +v−), e1)+g(∇Se2(v+ +v−), e2) = −〈D(v+ +v−) ·n , n〉 . (12)

Notice now that the left hand side of (12) is the divergence in S of the
tangent vector field v+ + v−, namely we have

divS (v+ + v−) = −〈D(v+ + v−) · n , n〉 . (13)

Next, by Gauss theorem, the fact that S is has a smooth boundary
implies that ∫

S
divS (v+ + v−) = −

∫
∂S

(v+ + v−) · ν , (14)

where we denote by ν the smooth unit vector field on ∂S which is
tangent to S, orthogonal to ∂S and points “inwards”, i.e. towards S.
Since v+ + v− is parallel to ∂S, the integrand in the right hand side of
(14) vanishes identically, which allows us to conclude (10). �

2. Rigidity of the CVS condition for closed surfaces

We prove rigidity results for closed connected CVS surfaces without
imposing the stability condition (6). We prove that

(A) there are no CVS solutions with S homeomorphic to the sphere;
(B) if S has genus bigger than 1, then S cannot be real analytic;
(C) if S has genus 1, then there are no axisymmetric solutions.

The precise formulation of (A) is the following:
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Theorem 2.1. If (v−, v+) satisfies the CVS conditions (1), (2), (3),
(4), (5), and S is homeomorphic to the sphere, then v+ = 0 and v− = 0.

Point (B) is a consequence of a more general fact which we state in
the following theorem.

Theorem 2.2. The following holds:

(i) If S is a smooth closed connected CVS surface with genus dif-
ferent than 1, then |v+|2 = |v−|2.

(ii) If S is any smooth CVS surface and |v+|2 = |v−|2, then for any
point q ∈ S one of the following conditions must necessarily
hold:
(a) The Gauss curvature of S is 0 at q;
(b) v+(q) = v−(q);
(c) v+(q) = −v−(q).

From the above theorem we draw the following simple

Corollary 2.3. Assume S is a closed smooth connected CVS surface
with genus strictly higher than 1. Then either v+ = v− on some non-
trivial open subset of S, or v+ = −v− on some nontrivial open subset
of S.

Proof. In fact, if the sets {v+ = v−} and {v+ = −v−} contain no
interior points, then the Gauss curvature would vanish on a dense set,
and by continuity it must vanish anywhere. But it is well known that
a surface with vanishing Gauss curvature cannot be closed. �

The condition is even more stringent if S is real analytic, i.e. it can
be described as the graph of a function with a converging Taylor series
around any point, up to rotation of the coordinates.

Corollary 2.4. Assume S is a closed real analytic connected CVS
surface with genus strictly higher than 1. Then either v+ = v− on S,
or v+ = −v− on S.

Proof. Since both v+ and v− are locally gradients of harmonic functions
which satisfy the Neumann boundary condition, it turns out that their
restrictions to S are real analytic as well. But real analytic functions
which vanish on a nontrivial open set, must vanish identically because
S is connected. �

We finally detail the non existence result (C) for axisymmetric so-
lutions of genus 1. Let us consider a closed simple curve [0, 1] 3 t →
γ(t) = (γr(t), γz(t)) ∈ (0,∞)2, and the associated torus of rotation
S ⊂ R3, parametrized by

(t, θ)→ (γr(t) cos θ, γr(t) sin θ, γz(t)) . (15)

We use polar coordinates (x, y, z) = (r cos θ, r sin θ, z). Recall that ∂
∂r

,
1
r
∂
∂θ

, ∂
∂z

is an orthonormal frame.
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We look for CVS solutions with axisymmetry. The general Ansatz
is the following.

v− := α
1

r2

∂

∂θ
= ∇θ

v+ := a(r, z)
∂

∂r
+ b(r, z)

1

r

∂

∂θ
+ c(r, z)

∂

∂z
,

for some α ∈ R and C1 functions a, b and c.

Theorem 2.5. Let S be given by (15), for some simple closed curve
γ = (γr, γz) of class C2. If (v−, v+) is an axisymmetric pair that satis-
fies the CVS conditions (1), (2), (3), (4), (5), then either v+ = v− on
S, or v+ = −v− on S.

2.1. Proof of Theorem 2.1. Since S− is simply connected we can
write v− = ∇Φ− for some harmonic function Φ−, whose gradient is
tangent to S. A simple integration by parts gives∫

S−

|v−|2 dx =

∫
S−

|∇Φ−|2 dx =

∫
S

Φ−∇Φ− · n dx = 0 , (16)

where n denotes the exterior normal to S. We deduce that v− = 0.
Thanks to Theorem 2.2(i) we deduce that v+ = 0 on S. Since v+ is
harmonic, the unique continuation principle implies that v+ vanishes
identically.

2.2. Proof of Theorem 2.2. Let us begin by proving (i). A well-
known theorem in topology implies that any tangent vector field to a
closed surface S with genus different than 1 must necessarily vanish at
some point. This excludes that the constant in (5) is positive (because
then v+ would never vanish) or negative (because then v− would never
vanish).

Let us pass to the proof of (ii). The key ingredient is the following
lemma, whose proof is postponed at the end of this section.

Lemma 2.6. Let Σ ⊂ R3 be a smooth surface and let U ⊂ Σ be an
open set. Assume the existence of smooth velocity fields u,w defined
on U and tangent to Σ. If

(i) u(p), w(p) 6= 0 and gp(v, w) = 0 for any p ∈ U , where g is the
metric induced by the ambient space R3;

(ii) [u,w] = 0 in U ;
(iii) u and v are gradients in U , i.e. there exist α, β : U → R such

that gp(u, ·) = dpα and gp(v, ·) = dpβ for any p ∈ U .

Then, the Gaussian curvature of Σ is zero in U .

Let us explain how to prove Theorem 2.2(ii) given Lemma 2.6. Fix
q such that v+(q) 6= v−(q) and v+(q) 6= v−(q) and let U be a neighbor-
hood of q where v+− v− and v+ + v− never vanish. Since |v+|2 = |v−|2,
we have gp(u,w) = 0 for any p ∈ U . Theorem 1.1 implies that
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[v+, v−] = 0, hence [u,w] = 0 in U . Moreover, (2) imply that v+

and v− are irrotational in S+ and S−, respectively, and (3) says that
v+ and v− are tangent to S. This implies that, v+ and v− are locally
gradients in S. In particular u and w are locally gradients in U . We are
in position to apply Lemma 2.6 with Σ = S, which implies that K = 0
in U , where K denotes the Gaussian curvature of S. This implies in
particular that the Gauss curvature of S vanishes at q.

2.2.1. Proof of Lemma 2.6. Fix p ∈ U . We claim that there exists local
coordinates around p

X : W ⊂ R2 → U , (x, y)→ X(x, y) ∈ U ,

such that
∂

∂x
= u ,

∂

∂y
= w .

The claim follows from (ii), indeed we can define

X(x, y) = φxu ◦ φyw(p) ∈ U ,

where φu and φw are the flow maps associated to u and v, respectively.
Observe that X(0, 0) = p. Condition (ii) implies that the flow maps
commute, hence

∂

∂x
X(x, y) = u ◦X(x, y) ,

∂

∂y
X(x, y) = w ◦X(x, y) , (17)

in particular (i), along with the implicit function theorem, says that X
is a local parametrization in a neighborhood of p.

Let h be the metric in the new coordinates (x, y). It turns out that

hx,y = hy,x = g

(
∂

∂x
,
∂

∂y

)
= g(u,w) = 0 (18)

as a consequence of the previous claim and condition (i). We claim
that

∂

∂y
hx,x =

∂

∂x
hy,y = 0 . (19)

It immediately implies that Σ is flat in a neighborhood of p. Indeed,
as a consequence of (19) we can write the metric as

h = a(x)dx2 + b(y)dy2 ,

which is clearly flat.
Let us prove (19). As a consequence of (iii) we get

∂

∂y
hx,x =

∂

∂y
g

(
∂

∂x
,
∂

∂x

)
= 2g

(
∇ ∂

∂y

∂

∂x
,
∂

∂x

)
= 2Hessα

(
∂

∂y
,
∂

∂x

)
(20)
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the symmetry of the Hessian implies

Hessα

(
∂

∂y
,
∂

∂x

)
= Hessα

(
∂

∂x
,
∂

∂y

)
= g

(
∇ ∂

∂x

∂

∂x
,
∂

∂y

)
, (21)

on the other hand we know that g
(
∂
∂x
, ∂
∂y

)
= 0, hence

g

(
∇ ∂

∂x

∂

∂x
,
∂

∂y

)
=

∂

∂x
g

(
∂

∂x
,
∂

∂y

)
− g

(
∂

∂x
,∇ ∂

∂x

∂

∂y

)
= −g

(
∂

∂x
,∇ ∂

∂y

∂

∂x

)
, (22)

where in the last step we used that
[
∂
∂x
, ∂
∂y

]
= 0. By collection (20),

(21), and (22) we deduce

∂

∂y
hx,x = − ∂

∂y
hx,x ,

which implies our claim. We argue in the same way to show that
∂
∂x
hy,y = 0.

2.3. Proof of Theorem 2.5. Without loss of generality we assume
that γ : [0, L] → (0,∞)2 is parametrized by arclength, where L is the
length of γ. Recall that we look for solutions of the form

v− := α
1

r2

∂

∂θ

v+ := a(r, z)
∂

∂r
+ b(r, z)

1

r

∂

∂θ
+ c(r, z)

∂

∂z
,

where α ∈ R and a,b,c are C1 functions.

Lemma 2.7. We have that curl v+ = 0 if and only if b(r, z)r is constant
and

curl

(
a(r, z)

∂

∂r
+ c(r, z)

∂

∂z

)
= 0 . (23)

Proof. We compute

curl v+ =

(
1

r

∂c

∂θ
− ∂b

∂z

)
∂

∂r
+

(
∂a

∂z
− ∂c

∂r

)
1

r

∂

∂θ
+

1

r

(
∂(rb)

∂r
− ∂a

∂θ

)
∂

∂z
.

Since v+ is axisymmetric, we have that curl v+ = 0 if and only if
∂b
∂z

= 0
∂(rb)
∂r

= 0

curl
(
a ∂
∂r

+ c ∂
∂z

)
= 0 .

(24)

The first two conditions amount to br = C, for some constant C ∈ R.
The latter amounts to (23). �
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Let us begin by considering the case α 6= 0. Without loss of gen-
erality we can assume α = 1. After imposing curl v+ = 0, we can
write

v+ = a(r, z)
∂

∂r
+ c(r, z)

∂

∂z
+ Cv− =: w+ + Cv− . (25)

To satisfy the CVS conditions we need to impose the following proper-
ties on w+:

(1) divw+ = curlw+ = 0
(2) w+ is tangent to S
(3) |w+|2 + C2−1

r2
= ` in S, for some ` ∈ R

(4) [w+, v−] = 0 in S
(5) A(w+ + Cv−, w+ + Cv−) = A(v−, v−)

We show that (2), (3) and (4) imply that γr is constant.

Condition (4). We compute

[w+, v−] = ∇w+v− −∇v−w+

= ∇a ∂
∂r

+c ∂
∂z

(
1

r2

∂

∂θ

)
− 1

r2
∇ ∂

∂θ

(
a
∂

∂r
+ c

∂

∂z

)
= − 2

r3
a
∂

∂θ
.

Hence, we have to impose

a(γr(t), γz(t)) = 0 , for any t ∈ [0, L] . (26)

Condition (2) and (3). Recall that

n = (γ̇z(t) cos θ, γ̇z(t) sin θ,−γ̇r(t)) ,
where n denotes the exterior normal to S. By using (26), we deduce

w+ = c(r, z)
∂

∂z
, on S , (27)

hence

0 = w+ · n = −c(γr(t), γz(t)) γ̇r(t) .
In particular, by employing (27) and (3) we get

0 = |c(γr(t), γz(t))|2|γ̇r(r)|2 = |w+|2|γ̇r(t)|2

=

(
`+

1− C2

γ2
r (t)

)
|γ̇r(t)|2 .

If either C2 6= 1 or ` 6= 0, then γr = const. This is impossible because
γ is a closed simple curved.

If C2 = 1 and ` = 0, then (3) implies that |w+|2 = 0 on S. It
amounts to v+ = v− when C = 1 and v+ = −v− when C = −1.

The case α = 0. Let us now assume that α = 0. By applying Lemma
2.7 we deduce

v+ = a(r, z)
∂

∂r
+ c(r, z)

∂

∂z
+ C

1

r2

∂

∂θ
=: w+ + C

1

r2

∂

∂θ
.
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In this case, to satisfy the CVS conditions we need to impose the fol-
lowing properties on w+:

(1’) divw+ = curlw+ = 0
(2’) w+ is tangent to S
(3’) |w+|2 + C2

r2
= ` in S, for some ` ∈ R

(4’) A(w+ + C 1
r2

∂
∂θ
, w+ + C 1

r2
∂
∂θ

) = 0.

We show that (4’) forces C = 0. Since w+ is tangent to S, there exists
λ : S → R such that

w+(γ) = λ

(
γ̇r
∂

∂r
+ γ̇z

∂

∂z

)
. (28)

We use the well-known identities

A

(
γ̇r
∂

∂r
+ γ̇z

∂

∂z
, γ̇r

∂

∂r
+ γ̇z

∂

∂z

)
= κ

A

(
∂

∂θ
,
∂

∂θ

)
= γrγ̇z

A

(
γ̇r
∂

∂r
+ γ̇z

∂

∂z
,
∂

∂θ

)
= 0 ,

where κ = γ̈zγ̇r − γ̈rγ̇z is the curvature of γ. We deduce

0 = A

(
w+ + C

1

r2

∂

∂θ
, w+ + C

1

r2

∂

∂θ

)
= λ2κ+

C2

γ3
r

γ̇z (29)

Let us consider t0 ∈ [0, L], a minimum point for γr. Since γ̇r(t0) = 0
and γ is parametrized by arclength, we deduce that γ̇z(t0) 6= 0. Hence,
(29) implies that λ(t0) 6= 0. So, in a small neighborhood of t0 we can
rewrite (29) as

γ̈zγ̇r − γ̈rγ̇z = κ =
C2

λ2γ3
r

γ̇z .

We multiply the latter by γ̇z, and use the identity γ̈zγ̇z = −γ̈rγ̇r (which
is a consequence of (γ̇r)

2 + (γ̇z)
2 = 1), to get

γ̈r = − C2

λ2γ3
r

(1− (γ̇r)
2) . (30)

Using that γ̈r(t0) ≥ 0 and γ̇r(t0) = 0 we conclude that C = 0.
We now use (3’) to deduce that v+ = 0. Indeed, λ2 = `, since λ

is continuous we deduce that λ is a constant. If λ = 0 then v+ = 0.
If λ 6= 0, then (30) gives κ = 0, which contradicts the fact that γ is
closed.

3. Solutions with cylindrical symmetry

In [1] Migdal finds stable solutions to the CVS equations with linear
growth and vorticity concentrated on a cylinder S ⊂ R3. It turns out
that the cross section of S is noncompact. Given the cylindrical sym-
metry and the linear growth at infinity, that is the best one can hope



10 CAMILLO DE LELLIS AND ELIA BRUÉ

for. Below we show that there are no solutions to the CVS equations
(irrespectively of the stability condition) with cylindrical symmetry,
compact cross section and linear growth.

Consider:

(i) a smooth simple closed curve σ ⊂ R2;
(ii) the bounded simply connected domain Ω− bounded by σ;

(iii) the unbounded domain Ω+ := R2 \ (σ ∪ Ω−);
(iv) the surface S ⊂ R3 given by σ × R;
(v) the cylindrical domains S± := Ω± × R.

We are looking for two bounded vector fields v± : Ω± → R2 and a
quadratic function q : R3 → R with the following properties:

(a) q is harmonic;
(b) the maps u± := (v±, 0) + ∇q : S± → R3 are divergence free,

curl-free and tangent to S;
(c) for any point p ∈ S, the vector u+(p) − u−(p) belongs to the

kernel of Du+(p) +Du−(p).

We claim the following.

Theorem 3.1. v± and q must vanish identically.

We can in fact consider the following more general situation:

(i’) σi, i ∈ {1, . . . , N0}, is an arbitrary finite collection of simple
closed curves which are pairwise disjoint;

(ii’) {Ωj}, j ∈ {1, . . . , N0 + 1} are the connected components of
R2 \

⋃
i σi;

(iii’) The surface S ⊂ R3 is the union of the cylinders Si := σi × R;
(iv’) The cylindrical domains are given by Λj := Ωj × R.

Under these more general assumptions we are looking forN0+1 bounded
vector fields vj : Ωj → R2 and a quadratic function q : R3 → R with
the following properties:

(a’) q is harmonic;
(b’) The maps uj := (vj, 0) + ∇q : Λj → R3 are divergence-free,

curl-free, and tangent to ∂Λj ⊂ S;
(c’) If Λi and Λj have a common boundary Sk, then for any point

p ∈ Sk the vector ui(p)−uj(p) belongs to the kernel of Dui(p)+
Duj(p).

Under these assumptions Theorem 3.1 can be generalized to

Theorem 3.2. vi and q must vanish identically.

Proof of Theorem 3.1. Consider the function ϕ(x, y) = q(x, y, 0) and
the vector field ξ−(x, y) = v−(x, y)+∇ϕ(x, y). Observe that v− is curl-
free and, since Ω− is simply connected, there is a potential ζ− : Ω− → R
for ξ−. Now,

∂ζ−
∂ν

= 0 on σ = ∂Ω−. (31)



GEOMETRIC STRUCTURE OF MIGDAL’S CONSTRAINED VORTEX SURFACES11

On the other hand, since ϕ is quadratic, ∆ζ− is a constant. Observe
that, therefore, from ∫

Ω−

∆ζ− =

∫
σ

∂ζ−
∂ν

= 0 , (32)

it turns out that

∆ζ− = ∆ϕ = 0 . (33)

But then we can integrate by parts to conclude∫
Ω−

|∇ζ−|2 =

∫
σ

ζ−
∂ζ−
∂ν

= 0 . (34)

In particular ξ− vanishes identically.
Define next ξ+(x, y) = v+(x, y) +∇ϕ(x, y). (c) implies that ξ+(x, y)

is in the kernel of Dξ+(x, y) for every (x, y) ∈ σ. Assume ζ+ is a
potential for ξ+ in some simply connected domain U ∩Ω+, where U is
the neighborhood of some point (x, y) ∈ σ. Then the latter condition
can be rewritten as

1

2
∇|∇ζ+|2 = 0 on σ ∩ U .

If |∇ζ+| = 0 on σ∩U , then ζ+ is a constant over σ∩U and if we extend
ζ+ to Ω−∩U by setting it equal to the latter constant, we immediately
see that ζ+ is C1 on U and weakly harmonic, hence harmonic. So ζ+

must vanish by unique continuation for harmonic functions. If |∇ζ+| =
c > 0, we conclude that D2ζ+(p) has a nontrivial kernel for every
p ∈ σ ∩ U , but since the trace of the two-dimensional matrix D2ζ+(p)
is zero, we must conclude that D2ζ+ vanishes identically on σ∩U . But
this means that ∂ζ+

∂x
and ∂ζ+

∂y
are both locally constant over σ ∩U . The

assumption that ∂ζ+
∂ν

= 0 on σ ∩ U implies therefore that ∇ζ+ must
vanish identically on σ ∩ U .

Having concluded that both ξ− and ξ+ vanish identically, we immedi-
ately conclude that actually u+ = u− on S and that the corresponding
function u given by defining u = u± on S± is the gradient of a quadratic
harmonic function. Since u must be tangent to S, we see right away
that u must vanish identically. �

Proof of Theorem 3.2. The proof is by induction over the number N0

of curves. The start of the the induction, namely N0 = 1, is in fact
Theorem 3.1. Consider therefore an arbitrary N0 > 1 and assume that
the theorem is correct when N0 is substituted by N0−1. Fix a collection
of curves σi as in (i’) above. Each σi bounds a unique simply connected
domain Ξi in R2, and given that the curves are pairwise disjoint, each σj
with j 6= i is either contained in Ξi or in the interior of its complement.
Since the curves are finitely many it is obvious that one of them is an
“innermost” curve, namely there is a Ξi which does not contain any
curve σj. Without loss of generality we can assume i = 1 and observe
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that Ξ1 must be one of the domains Ωi: again without loss of generality
we can assume it is Ω1. We then denote by Ω2 the only other connected
component of R2 \

⋃
i σi whose boundary intersects σ1 (in fact we must

have σ1 ⊂ ∂Ω2, but observe that the inclusion might be strict). If we
set v− := v1 and v+ := v2, we can now repeat the argument of Theorem
3.1. First of all the potential ζ− exists in our case as well because Ω1 is
simply connected, and hence the conclusions (31)-(32) can all be drawn
in our case as well. The subsequent argument leads to the conclusion
that v+ is in fact a smooth continuation of v− across σ1 ∩ U in any
simply connected neighborhood U of p ∈ σ = σ1: the argument can be
taken verbatim in our case as long as U does not intersect any other
curve σj with j > 1. In particular we conclude that σ1 could actually be
eliminated from the collection of curves because the function ṽ defined
to be v1 in Ω1 and v2 in Ω2 is in fact smooth across σ1. Having reduced
the number of curves by 1 we can apply the inductive assumption and
conclude the validity of the theorem. �
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