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A B S T R A C T

In this thesis we focus on different problems in the Calculus of Variations and Geometric
Measure Theory, with the common peculiarity of dealing with anisotropic energies. We can
group them in two big topics:

1. The anisotropic Plateau problem:

Recently in [37], De Lellis, Maggi and Ghiraldin have proposed a direct approach to
the isotropic Plateau problem in codimension one, based on the “elementary” theory
of Radon measures and on a deep result of Preiss concerning rectifiable measures.

In the joint works [44],[38],[43] we extend the results of [37] respectively to any
codimension, to the anisotropic setting in codimension one and to the anisotropic
setting in any codimension.

For the latter result, we exploit the anisotropic counterpart of Allard’s rectifiability
Theorem, [2], which we prove in [42]. It asserts that every d-varifold in Rn with
locally bounded anisotropic first variation is d-rectifiable when restricted to the set of
points in Rn with positive lower d-dimensional density. In particular we identify a
necessary and sufficient condition on the Lagrangian for the validity of the Allard type
rectifiability result. We are also able to prove that in codimension one this condition is
equivalent to the strict convexity of the integrand with respect to the tangent plane.

In the paper [45], we apply the main theorem of [42] to the minimization of anisotropic
energies in classes of rectifiable varifolds. We prove that the limit of a minimizing
sequence of varifolds with density uniformly bounded from below is rectifiable.
Moreover, with the further assumption that all the elements of the minimizing sequence
are integral varifolds with uniformly locally bounded anisotropic first variation, we
show that the limiting varifold is also integral.

2. Stability in branched transport:

Models involving branched structures are employed to describe several supply-demand
systems such as the structure of the nerves of a leaf, the system of roots of a tree
and the nervous or cardiovascular systems. Given a flow (traffic path) that transports
a given measure µ− onto a target measure µ+, along a 1-dimensional network, the
transportation cost per unit length is supposed in these models to be proportional to a
concave power α ∈ (0, 1) of the intensity of the flow. The transportation cost is called
α-mass.

In the paper [27] we address an open problem in the book [15] and we improve the
stability for optimal traffic paths in the Euclidean space Rn with respect to variations
of the given measures (µ−,µ+), which was known up to now only for α > 1− 1

n . We
prove it for exponents α > 1− 1

n−1 (in particular, for every α ∈ (0, 1) when n = 2), for
a fairly large class of measures µ+ and µ−.



The α-mass is a particular case of more general energies induced by even, subadditive,
and lower semicontinuous functions H : R→ [0,∞) satisfying H(0) = 0. In the paper
[28], we prove that the lower semicontinuous envelope of these energy functionals
defined on polyhedral chains coincides on rectifiable currents with the H-mass.



Z U S A M M E N FA S S U N G

In dieser Arbeit behandeln wir verschiedene Probleme der Variationsrechnung und der
Geometrischen Masstheorie, wobei wir jeweils die anisotropen Energien betrachten. Wir
können die Probleme in zwei grosse Themen unterteilen:

1. Das anisotrope Plateau Problem:

Vor kurzer Zeit haben De Lellis, Maggi und Ghiraldin in [37] eine direkte Betra-
chtungsweise des isotropen Plateau Problems in der Kodimension eins eingeführt,
basierend auf der “elementaren” Theorie der Radonmasse und einem tiefgreifenden
Ergebnis von Preiss über rektifizierbare Masse.

In den gemeinsamen Arbeiten [44],[38],[43] erweitern wir die Ergebnisse von [37]
jeweils auf eine beliebige Kodimension, auf den anisotropen Fall in der Kodimension
eins und auf den anisotropen Fall in jeder Kodimension.

Für das letztere Resultat nutzen wir das anisotrope Gegenstück von Allards Rekti-
fizierbarkeitstheorem, [2], das wir in [42] beweisen. Es sagt aus, dass jeder d-Varifold
in Rn mit lokal beschränkter anisotroper erster Variation d-rektifizierbar ist, wenn
er auf die Menge von Punkten in Rn mit positiver niedriger d-dimensionaler Dichte
beschränkt wird. Insbesondere identifizieren wir eine notwendige und hinreichende
Bedingung an die Anisotropie für die Gültigkeit des Rektifizierbarkeitstheorem heraus.
Wir beweisen ausserdem, dass diese Bedingung in Kodimension eins gleichbedeutend
zu der strengen Konvexität des Integrands in Bezug auf die Tangentialebene ist.

In der Arbeit [45] wenden wir den Hauptsatz von [42] auf die Minimierung anisotroper
Energien in Klassen von rektifizierbaren Varifolds an. Wir beweisen, dass der Gren-
zwert einer Minimierungsfolge von Varifolds mit gleichmässig von unten begrenzter
Dichte rektifizierbar ist. Darüber hinaus zeigen wir unter der weiteren Annahme,
dass alle Elemente der Minimierungsfolge integrale Varifolds mit gleichmässig lokal
beschränkter anisotroper erster Variation sind, und wir zeigen, dass der Grenzwert
der Folge auch integral ist.

2. Stabilität im verzweigten Transport:

Modelle mit verzweigten Strukturen werden eingesetzt, um mehrere Supply-Demand-
Systeme wie die Struktur der Nerven eines Blattes, das System der Wurzeln eines
Baumes oder Nerven- oder Herz-Kreislauf-Systeme zu beschreiben. Bei gegebenem
Fluss, der ein bestimmtes Mass µ− über ein 1-dimensionales Strom auf ein Zielmass
µ+ transportiert, werden die Transportkosten pro Längeneinheit in diesen Modellen
proportional zu einer konkaven Potenzfunktion der Potenz α ∈ (0, 1) der Intensität des
Flusses sein. Die Transportkosten nennen wir α-Masse.

In der Arbeit [27] beziehen wir uns auf ein offenes Problem im Buch [15] und
verbessern die Stabilität für optimale Transporte im euklidischen Raum Rn, bezo-
gen auf Variationen der gegebene Masse (µ−,µ+), die bisher nur für α > 1 − 1

n



bekannt war. Wir beweisen es für Exponenten α > 1− 1
n−1 (insbesondere für jedes

α ∈ (0, 1) wenn n = 2) und für eine grosse Klasse von Massen µ+ und µ−.

Die α-Masse ist ein besonderer Fall von allgemeineren Energien, die durch gerade,
subadditive und unterhalbstetige Funktionen H : R → [0,∞) mit H(0) = 0 generiert
werden. In der Arbeit [28] beweisen wir, dass die unterhalbstetige Hülle dieser auf
polyedrischen Strömen definierten Energiefunktionen auf rektifizierbaren Strömen
dasselbe ist wie die H-Masse.



To strive, to seek, to find, and not to yield — A. L. Tennyson, Ulysses
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1
I N T R O D U C T I O N

1.1 the anisotropic plateau problem

The famous Plateau Problem can be roughly stated as follows:

Given a (d− 1)-dimensional boundary in Rn, find a d-dimensional surface with least area among all
the surfaces spanning the given boundary.

This problem stands at the crossroads of several mathematical disciplines, such as Cal-
culus of Variations, Geometric Measure Theory, Analysis of PDE and Differential Geometry,
and its study has produced many beautiful ideas which have found applications in all of
these subjects.

To give a precise meaning to it, one needs to formalize mathematically the concepts of
“surface”, “spanning a given boundary” and “area”.

The interest to the problem began in the XVIII century, when Minimal Surfaces where
introduced. An immersed surface is said to be minimal if its mean curvature vector is
constantly zero. The problem of finding a surface of least area stretched across a given closed
contour has been posed first in [62] by Lagrange in 1762. This question is nowadays known
as Plateau Problem from the physicist who investigated empirically the singularity of soap
bubbles in R3. He deduced the so-called Plateau laws: soap films always meet in threes
along an edge called a Plateau border, and they do so at an angle of arccos(−1/2) = 120◦.
These Plateau borders meet in fours at a vertex, and they do so at an angle of arccos(−1/3)
(the tetrahedral angle). These are the only possible singularities of soap bubbles.

The Plateau problem has been answered in a reasonable way only around 1930 from the
independent works of Douglas, [48], and Rado, [78]. These results rely on the celebrated
Lichtenstein theorem, namely in dimension two one can always find conformal parametriza-
tions. This tool is crucial in their approach. Indeed they minimize the Dirichlet energy, which
has better functional analytic properties than the area functional. Since for conformally
parametrized surfaces the two functionals are equal, they recover a minimum also for the
area.

Lichtenstein theorem is false in general for higher dimensions, posing the new issue of
finding another formulation or proof for the higher dimension case. During the last sixty
years a considerable amount of effort in Geometric Measure Theory has been devoted to this
task. In particular we recall the notions of sets of finite perimeter [33, 34], of currents [51] and
of varifolds [2, 4, 7], introduced respectively by De Giorgi, Federer, Fleming, Almgren and
Allard. The classes of the aforementioned objects were endowed with appropriate topologies,
in order to guarantee good compactness properties and the semicontinuity of the functionals
to minimize, ensuring the existence of a minimizers through the use of the direct method of
calculus of variations.
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The need of a Regularity Theory for minimal surfaces has been first encountered in con-
nection with these existence results. The minimizers are a-priori just “generalized surfaces”.
Nevertheless they come out to be more regular than expected. For instance a codimension
one minimizing current in Rn is smooth and embedded for n 6 7, has isolated singularities
for n = 8 and has a relative-codimension 7 singular set for n > 8.

We immidiately realize that these regularity properties are too strong for the modelization
of soap bubbles, which can have lines and points of singularity when n = 3, as already
observed in the Plateau laws. In order to better model this natural phenomenon, several
mathematicians have started to address the Plateau problem in a set-theoretical formulation:
the competitor surfaces are just closed sets and the area functional is simply the Hausdorff
measure. This theory was introduced by Reifenberg with homological spanning conditions
and further developed by Harrison, David and others (cf. [77, 56, 55, 31, 30]).

In [37], De Lellis, Maggi and Ghiraldin have proved a compactness result for general
classes of closed sets of codimension one. This approach turns out to have application to
several formulations of the Plateau problem.

1.1.1 Personal contributions and content of Part I

The content of the first part of the thesis is the following:

Content of Chapter 3

In Chapter 3 we present our joint works [44, 38, 43].
In joint work with De Philippis and Ghiraldin in [44], we extend the results in [37] to

any codimension. More precisely, we prove that every time the class of competitors for the
Plateau problem consists of d-rectifiable sets and it is closed by Lipschitz deformations,
then the infimum is achieved by a set K which is, away from the “boundary”, an analytic
manifold outside a closed set of Hausdorff dimension at most (d− 1).

The idea of the proof is to associate to a minimizing sequence of sets (Kj) the sequence of
measures µj := Hd Kj. By standard functional analysis we get that µj converges weakly?

(up to subsequences) to a measure µ. As a first step, via deformation theorem, monotonicity
formula and Preiss’ theorem, we show that µ = θHd K, where K is a d-rectifiable set. As a
second step, for Hd-a.e. x, we “project” a diagonal sequence of blow-ups µx,r

j of µj on the
approximate tangent space TxK of K at x, proving that θ(x) = 1 . Finally, we prove that K is
a stationary varifold and that it is smooth outside a closed set of relative codimension one
(this follows by Allard’s regularity theorem and a stratification argument). Simple examples
show that this regularity is actually optimal.

In joint work with De Lellis and Ghiraldin [38], we extend the result [37] to the minimiza-
tion of anisotropic energies in codimension one. Namely, given a Lagrangian

F : Rn ×G(n− 1,n) 3 (x, T) 7→ F(x, T) ∈ (0,∞),

the anisotropic energy associated to an (n− 1)-rectifiable set K becomes

F(K) :=
∫
K

F(x, TxK)dHn−1(x).
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The Lagrangians are required to satisfy an ellipticity condition (which can be thought as a
convexity property of F). We remark that these elliptic integrands have useful applications in
many fields, for instance in Finsler Geometry or in the study of crystal structures (and more
in general in Materials science).

The new strategy adopted in [38] does not need to implement Preiss’ theorem, obtaining
an argument conceptually easier even in the isotropic case. The idea is to get the rectifiability
of the limiting measure µ using the theory of Caccioppoli sets. Indeed the existence of a non-
trivial purely unrectifiable part of µ would allow to construct, via isoperimetric inequality
on the sphere, some local competitors with vanishing energy, which would violate a proven
uniform lower density bound.

In joint work with De Philippis and Ghiraldin, in [43] we extend the aforementioned
results to the minimization of an elliptic integrand in any codimension. We cannot rely on
[38], since the theory of Caccioppoli sets and the isoperimetric inequality are strictly linked
to the codimension one case. We use instead the new anisotropic counterpart of Allard’s
rectifiability theorem, that we prove in [42], see Chapter 4.

Three applications of these results are an easy solution to the formulation of the Plateau
problem proposed by Harrison and Pugh in [56], an easy proof of the existence in any
codimension of sliding minimizers, introduced by David in [31, 30] and an easier solution to
Reifenberg’s homological formulation of the Plateau problem.

Content of Chapter 4

As already observed in the previous chapter, an important tool in the proof of [43] is a
rectifiability result, which we prove in [42] and we present in Chapter 4. This is the sharp
anisotropic counterpart of Allard’s rectifiability theorem, [2], which asserts that every d-
varifold in Rn with locally bounded (isotropic) first variation is d-rectifiable when restricted
to the set of points in Rn with positive lower d-dimensional density.

It is a natural question whether the aforementioned result holds for varifolds whose first
variation with respect to an anisotropic integrand is locally bounded. In joint work with
De Philippis and Ghiraldin [42], we answer positively to this question. In particular we
identify a necessary and sufficient condition on the Lagrangian for the validity of the Allard
type rectifiability result. We are also able to prove that in codimension one this condition is
equivalent to the strict convexity of the integrand with respect to the tangent plane.

The original proof of Allard in [2] for the area integrand heavily relies on the monotonicity
formula, which is strongly linked to the isotropy of the area integrand, [3]. A completely
different strategy must hence be used. In particular we provide a new independent proof of
Allard’s rectifiability theorem.

We briefly describe the main idea. Assume for simplicity V has positive lower d-dimensional
density at ‖V‖-almost every point. We use the notion of tangent measure introduced by
Preiss, [76], in order to understand the local behavior of a varifold V with locally bounded
anisotropic first variation. Indeed, at ‖V‖-almost every point, we show that every tangent
measure is translation invariant along at least d (fixed) directions, while the positivity of
the lower d-dimensional density ensures that there exists at least one tangent measure that
is invariant along at most d directions. The combination of these facts allows to show that
the “Grassmannian part” of the varifold V at x is a Dirac delta δTx on a fixed plane Tx. A
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key step is then to show that ‖V‖ � Hd: this is achieved by using ideas borrowed from [5]
and [41]. Once this is obtained, a simple rectifiability criterion, based on the results in [76],
allows to show that V is d-rectifiable. This result can have many applications and further
developments. See for instance Chapter 5.

Content of Chapter 5

In Chapter 5 we present our paper [45], where we apply the main theorem of [42] to the
minimization of anisotropic energies in classes of rectifiable varifolds. We prove that the
limit of a minimizing sequence of varifolds with density uniformly bounded from below is
rectifiable. Moreover, with the further assumption that the minimizing sequence is made of
integral varifolds with uniformly locally bounded anisotropic first variation, we show that
the limiting varifold is also integral. We remark that every sequence of integral varifolds
enjoying a uniform bound on the mass and on the isotropic first variation is precompact in
the space of integral varifolds. This has been proved by Allard in [2, Section 6.4]. One of the
main theorems of our work [45] is indeed an anisotropic counterpart of the aforementioned
compactness result, under the assumption that the limiting varifold has positive lower
density. The idea is to blow-up every varifold of the converging sequence in a point in which
the limiting varifold V has Grassmannian part supported on a single d-plane S (note that
this property holds ‖V‖-a.e. by [42]). Along a diagonal sequence we get that the projections
on S converge in total variation to an L1 function on S. This function is integer valued thanks
to the integrality assumption on the sequence and coincides with the density of the limiting
varifold in the blow-up point, which is consequently an integer. Since the argument holds
true for ‖V‖-a.e. point, the limiting varifold turns out to be integral.

1.2 stability in branched transport

The transport problem consists in finding an optimal way to transport a measure µ− to
a measure µ+. Sometimes one is interested to have a mathematical model of transport in
which it is better to carry the mass in a grouped way rather than in a separate way. The
first deep analysis of this natural phenomena is due to D’Arcy Thompson, in his work [29].
Recently, this approach has been used for branched networks, which are very common in
nature: one may just think to the way plants and trees absorb solar energy, or to the way the
oxygen is irrigated to the blood and to how this is distributed to the human body throw the
ramified bronchial and cardiovascular systems. To translate this principle in mathematical
terms, one can consider costs which are proportional to a power α ∈ (0, 1) of the flow and
use the concavity of x→ xα. Obviously the bigger is α and the less powerful is the grouping
effect, and in particular, in the limit case α = 1, there is absolutely no benefit to group mass.

Different formulations have been introduced to model the branched transport problem:
one of the first proposal came by Gilbert in [53], who considered finite directed weighted
graph G with straight edges e ∈ E(G) connecting two discrete measures, and a weight
function w : E(G)→ (0,∞). The cost of G is defined to be:∑

e∈E(G)

w(e)αH1(e). (1.1)
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Later Xia has extended this model to a continuous framework using Radon vector measures
(namely 1-dimensional currents), see [85].

In [64, 13], new objects called traffic plans have been introduced and studied. Roughly
speaking, a traffic plan is a measure on the set of 1-Lipschitz paths, where each path
represents the trajectory of a single particle. These formulations were proved to be equivalent
(see [15] and references therein) and in particular the link is encoded in a deep result, due to
Smirnov, on the structure of acyclic, normal 1-dimensional currents (see Theorem 7.9).

As usual for a minimization problem, one of the main tasks is the existence of a minimizer.
In the ambient space Rn, the optimal transports have been proven to have finite cost for all
α strictly bigger than the critical exponent 1− 1

n . A natural immediately related question, of
special relevance in view of numerical simulations, is whether the optima are stable with
respect to variations of the initial and final distribution of mass. For α > 1− 1

n , the stability
is already known in the literature to be true (see [15]).

1.2.1 Personal contributions and content of Part II

The content of the second part of the thesis is the following:

Content of Chapter 7

In joint work with Colombo and Marchese [27], we improve the stability of the optimal
transports for the aforementioned concave costs to α > 1− 1

n−1 , for a fairly general class of
measures to be transported, positively answering to the open problem formulated in [15,
Problem 15.1]. The proof is based on slicing techniques, which allow to bring the problem in
the good regime for the exponent.

The result is remarkable since it fully answers, in particular, to the stability in R2 (since
1− 1

n−1 = 0). This is fairly satisfactory since many applications in engineering and numerical
modeling are precisely in R2. We address the stability in the framework of 1-currents. The
original definition of “cost” of a traffic path slightly differs from the α-mass defined in
Chapter 7. Indeed in [85, Definition 3.1] the author defines the cost of a traffic path as
the lower semi-continuous relaxation on the space of normal currents of the functional
(1.1) defined on polyhedral chains. In [86, Section 3], the author notices that, in the class of
rectifiable currents, his definition of cost coincides with the α-mass. The proof of this fact is
only sketched in [82, Section 6] and we prove it in detail in [28], see Chapter 8. In Chapter 7,
we don’t need to rely on this fact, but we stick to the notion of cost given by the α-mass. We
prove independently that the α-mass is lower semi-continuous.

Content of Chapter 8

In joint work with Colombo, Marchese and Stuvard [28], we prove an explicit formula for
the lower semicontinuous envelope of some functionals defined on real polyhedral chains.
More precisely, denoting by H : R→ [0,∞) an even, subadditive, and lower semicontinuous
function with H(0) = 0, and by ΦH the functional induced by H on polyhedral k-chains,
we prove that the lower semicontinuous envelope of ΦH coincides on rectifiable k-currents
with the H-mass. The validity of such a representation has recently attracted some attention.

5



For instance, as already observed in the previous chapter, it is clearly assumed in [85] for
the choice H(x) = |x|α, with α ∈ (0, 1) (see also [73], [15], [75]) and in [25] in order to define
suitable approximations of the Steiner problem, with the choice H(x) = (1+ β|x|)1R\{0},
where β > 0 and 1A denotes the indicator function of the Borel set A.

We finally remark that in the last section of [82] the author sketches a strategy to prove an
analogous version of our result in the framework of flat chains with coefficients in a normed
abelian group G. Motivated by the relevance of such theorem for real valued flat chains, the
ultimate aim of our note [28] is to present a self-contained complete proof of it when G = R.

6



Part I

T H E A N I S O T R O P I C P L AT E A U P R O B L E M





2
N O TAT I O N O F PA RT I

In this chapter we summarize the notation that will be used in Part I. We will always work
in Rn and 1 6 d 6 n will always be an integer number. For any subset X ⊆ Rn, we denote
X its closure, Int(X) its interior and Xc := Rn \X its complementary set.

We are going to use the following notation: Qx,l denotes the closed cube centered in the
point x ∈ Rn, with edge length l and we set

Rx,a,b := x+
[
−
a

2
,
a

2

]d
×
[
−
b

2
,
b

2

]n−d
and Br(x) = Bx,r := {y ∈ Rn : |y−x| < r}. (2.1)

When cubes, rectangles and balls are centered in the origin, we will simply write Ql, Ra,b

and Br and in particular we will call B := B1 the unitary ball. Cubes and balls in the subspace
Rd × {0}n−d are denoted with Qdx,l and Bdx,r respectively.

For a matrix A ∈ Rn ⊗Rn, A∗ denotes its transpose. Given A,B ∈ Rn ⊗Rn we define
A : B := tr A∗B =

∑
ijAijBij, so that |A|2 = A : A.

2.0.1 Measures and rectifiable sets

Given a locally compact metric space Y, we denote by M+(Y) the set of positive Radon
measures in Y, namely the set of measure on the σ-algebra of Borel sets of Y that are locally
finite and inner regular. In particular we consider the subset of Borel probability measures
P(Y) ⊂M+(Y), namely µ ∈ P(Y) if µ ∈M+(Y) and µ(Y) = 1.

For a Borel set E ⊂ Y, µ E is the restriction of µ to E, i.e. the measure defined by
[µ E](A) = µ(E∩A) for every Borel set A ⊂ Y.

Consider an open set Ω ⊂ Rn. For an Rm-valued Radon measure µ ∈ M(Ω, Rm) we
denote by |µ| ∈M+(Ω) its total variation and we recall that, for all open sets U ⊂ Ω,

|µ|(U) = sup

{∫ 〈
ϕ(x),dµ(x)

〉
: ϕ ∈ C∞c (U, Rm), ‖ϕ‖∞ 6 1

}
.

Eventually, we denote by Hd the d-dimensional Hausdorff measure and for a d-dimensional
vector space T ⊂ Rn we will often identify Hd T with the d-dimensional Lebesgue measure
Ld on T ≈ Rd.

A set K ⊂ Rn is said to be Hd-rectifiable or simply d-rectifiable if it can be covered, up to
an Hd-negligible set, by countably many C1 d-dimensional submanifolds. In the following
we will only consider Hd-measurable sets. Given a d-rectifiable set K, we denote TxK the
approximate tangent space of K at x, which exists for Hd-almost every point x ∈ K, [79,
Chapter 3]. A positive Radon measure µ ∈M+(Ω) is said to be d-rectifiable if there exists a
d-rectifiable set K ⊂ Ω such that µ = θHd K for some Borel function θ : Rn → R+.

For µ ∈M+(Ω) we consider its lower and upper d-dimensional densities at x:

Θd∗ (x,µ) = lim inf
r→0

µ(Br(x))

ωdrd
, Θd∗(x,µ) = lim sup

r→0

µ(Br(x))

ωdrd
,

9



10 notation of part i

where ωd = Hd(Bd) is the measure of the d-dimensional unit ball in Rd. In case these two
limits are equal, we denote by Θd(x,µ) their common value. Note that if µ = θHd K with
K rectifiable, then θ(x) = Θd∗ (x,µ) = Θd∗(x,µ) for µ-a.e. x, see [79, Chapter 3].

If η : Rn → Rn is a Borel map and µ is a Radon measure, we let η#µ = µ ◦ η−1 be the
push-forward of µ through η. Let ηx,r : Rn → Rn be the dilation map, ηx,r(y) = (y− x)/r.
For a positive Radon measure µ ∈M+(Ω), x ∈ sptµ∩Ω and r� 1, we define

µx,r =
1

µ(Br(x))
(ηx,r

# µ) B. (2.2)

The normalization in (2.2) implies, by the Banach-Alaoglu Theorem, that for every sequence
ri → 0 there exists a subsequence rij → 0 and a Radon measure σ ∈M+(B), called tangent
measure to µ at x, such that

µx,rij
∗
⇀ σ.

We collect all tangent measures to µ at x into Tan(x,µ) ⊂M+(B).

2.0.2 Varifolds and integrands

We denote by G(n,d) the Grassmannian of (un-oriented) d-dimensional linear subspaces in
Rn (often referred to as d-planes) and given any set E ⊂ Rn we denote by G(E) = E×G(n,d)
the Grassmannian bundle over E. We will often identify a d-dimensional plane T ∈ G(n,d)
with the matrix T ∈ (Rn ⊗Rn)sym representing the orthogonal projection onto T .

Consider an open set Ω ⊂ Rn. A d-varifold on Ω is a positive Radon measure V on G(Ω)

and we will denote with Vd(Ω) the set of all d-varifolds on Ω.
Given a diffeomorphism ψ ∈ C1(Ω, Rn), we define the push-forward of V ∈ Vd(Ω) with

respect to ψ as the varifold ψ#V ∈ Vd(ψ(Ω)) such that∫
G(ψ(Ω))

Φ(x,S)d(ψ#V)(x,S) =
∫
G(Ω)

Φ(ψ(x),dxψ(S))Jψ(x,S)dV(x,S),

for every Φ ∈ C0c(G(ψ(Ω))). Here dxψ(S) is the image of S under the linear map dxψ(x)
and

Jψ(x,S) :=
√

det
((
dxψ

∣∣
S

)∗ ◦ dxψ∣∣S)
denotes the d-Jacobian determinant of the differential dxψ restricted to the d-plane S, see [79,
Chapter 8]. Note that the push-forward of a varifold V is not the same as the push-forward
of the Radon measure V through a map ψ defined on G(Ω) (the latter being denoted with
an expressly different notation: ψ#V).

To a varifold V ∈ Vd(Ω), we associate the measure ‖V‖ ∈M+(Ω) defined by

‖V‖(A) = V(G(A)) for all A ⊂ Ω Borel.

Hence ‖V‖ = π#V , where π : Ω×G(n,d)→ Ω is the projection onto the first factor and the
push-forward is intended in the sense of Radon measures. By the disintegration theorem for
measures, see for instance [12, Theorem 2.28], we can write

V(dx,dT) = ‖V‖(dx)⊗ µx(dT),
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where µx ∈ P(G(n,d)) is a (measurable) family of parametrized non-negative measures on
the Grassmannian such that µx(G(n,d)) = 1.

A d-dimensional varifold V ∈ Vd(Ω) is said d-rectifiable if there exist a d-rectifiable set K
and a Borel function θ : Rn → R+ such that

V = θHd (K∩Ω)⊗ δTxK. (2.3)

We denote with Rd(Ω) ⊆ Vd(Ω) the subset of the d-rectifiable varifolds.
Moreover we say that a d-rectifiable varifold V is integral, or equivalently V ∈ Id(Ω), if in

the representation (2.3), the density function θ is also integer valued.
If V ∈ Rd(Ω), we represent it as in (2.3) and we can extend the notion of push forward

with respect to maps ψ : Rn → Rn which are merely Lipschitz as follows (see [79, Section
15]):

ψ#V := θ̃Hd ψ(K)⊗ δTxψ(K), where θ̃(x) :=
∫
ψ−1(x)∩K θdH

0.

We remark that θ̃ is defined for Hd-a.e. point of ψ(K) and we observe that the following
equality holds (see [79, Section 15]):

‖ψ#V‖(A) =
∫
ψ(K)∩A

θ̃dHd =

∫
K∩ψ−1(A)

θJKψdH
d, ∀ Borel set A ⊆ Rn, (2.4)

where JKψ(y) denotes the Jacobian determinant of the tangential differential dKψy : TyK→
Rn, see [79, Sections 12 and 15].

We will use the notation

Θd∗ (x,V) = Θd∗ (x, ‖V‖) and Θd∗(x,V) = Θd∗(x, ‖V‖)

for the upper and lower d-dimensional densities of ‖V‖. In case Θd∗ (x,V) = Θd∗(x,V), we
denote their common value Θd(x,V).

We will associate to any d-varifold V , its “at most d-dimensional” part V∗ defined as

V∗ := V {x ∈ Ω : Θd∗ (x,V) > 0}×G(n,d). (2.5)

Note that

‖V∗‖ = ‖V‖ {x ∈ Ω : Θd∗ (x,V) > 0}

and thus, by the Lebesgue-Besicovitch differentiation Theorem [12, Theorem 2.22], for ‖V∗‖
almost every point (or equivalently for ‖V‖ almost every x with Θd∗ (x,V) > 0)

lim
r→0

‖V∗‖(Br(x))
‖V‖(Br(x))

= 1. (2.6)

In particular,

Θd∗ (x,V∗) > 0 for ‖V∗‖-a.e. x. (2.7)

We will call concentration set of V ∈ Rd(Ω) the set

conc(V) := {x ∈ Ω : Θd∗ (x,V) > 0},
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and we will equivalently say that V is concentrated on conc(V).
Let ηx,r(y) = (y− x)/r, as in (2.2) we define

Vx,r :=
rd

‖V‖(Br(x))
(
(ηx,r)#V

)
G(B), (2.8)

where the additional factor rd is due to the presence of the d-Jacobian determinant of the
differential dηx,r in the definition of push-forward of varifolds. Note that, with the notation
of (2.2):

‖Vx,r‖ = ‖V‖x,r.

The normalization in (2.8) implies, by the Banach-Alaoglu Theorem, that for every sequence
ri → 0 there exists a subsequence rij → 0 and a varifold V∞ ∈ Vd(B), called tangent varifold
to V at x, such that

Vx,rij
∗
⇀ V∞.

We collect all tangent varifold to V at x into Tan(x,V).
The anisotropic integrand that we consider is a C1 function

F : G(Ω) −→ (0,+∞). (2.9)

We assume the existence of two positive constants λ,Λ such that

0 < λ 6 F(x, T) 6 Λ <∞ for all (x, T) ∈ G(Ω). (2.10)

Given x ∈ Ω, we will also consider the “frozen” integrand

Fx : G(n,d)→ (0,+∞), Fx(T) := F(x, T). (2.11)

Given a d-rectifiable set K ⊂ Ω and an open subset U ⊂ Rn, we define:

F(K,U) :=
∫
K∩U

F(x, TxK)dHn−1(x) and F(K) := F(K, Rn). (2.12)

It will be also convenient to look at the frozen energy: for y ∈ Ω, we let

Fy(K,U) :=
∫
K∩U

Fy(TxK)dH
n−1(x).

Given a d-varifold V ∈ Vd(Ω) and an open subset U ⊂ Rn, we define its anisotropic energy
as

F(V ,U) :=
∫
G(Ω∩U)

F(x, T)dV(x, T) and F(V) := F(V , Rn).

For a vector field g ∈ C1c(Ω, Rn), we consider the family of functions ϕt(x) = x+ tg(x),
and we note that they are diffeomorphisms of Ω into itself for t small enough. The anisotropic
first variation of V ∈ Vd(Ω) is defined as

δFV(g) :=
d

dt
F
(
ϕ#
tV ,Ω

)∣∣∣
t=0

.



notation of part i 13

It can be easily shown, see Appendix 4.6, that

δFV(g) =

∫
G(Ω)

[
〈dxF(x, T),g(x)〉+BF(x, T) : Dg(x)

]
dV(x, T), (2.13)

where the matrix BF(x, T) ∈ Rn ⊗Rn is uniquely defined by

BF(x, T) : L := F(x, T)(T : L) +
〈
dTF(x, T), T⊥ ◦ L ◦ T + (T⊥ ◦ L ◦ T)∗

〉
=: F(x, T)(T : L) +CF(x, T) : L for all L ∈ Rn ⊗Rn.

(2.14)

Note that, via the identification of a d-plane T with the orthogonal projection onto it, G(n,d)
can be thought as a subset of Rn ⊗Rn and this gives the natural identification:

TanTG(n,d) =
{
S ∈ Rn ⊗Rn : S∗ = S, T ◦ S ◦ T = 0, T⊥ ◦ S ◦ T⊥ = 0

}
,

see Appendix 4.6 for more details. We are going to use the following properties of BF(x, T)
and CF(x, T), which immediately follow from (2.14):

|BF(x, T) −BF(x,S)| 6 C(d,n, ‖F‖C1)
(
|S− T |+ω(|S− T |)

)
, (2.15)

CF(x, T) : v⊗w = 0 for all v,w ∈ T , (2.16)

where ω is the modulus of continuity of T 7→ dTF(x, T) (i.e.: a concave increasing function
with ω(0+) = 0). We also note that trivially

|δFV(g)| 6 ‖F‖C1(sptg)‖g‖C1‖V‖(spt(g)), (2.17)

and that, if Fx is the frozen integrand (2.11), then (2.13) reduces to

δFxV(g) =

∫
G(Ω)

BF(x, T) : Dg(y)dV(y, T).

Moreover, if we define the Lagrangian Fx,r(z, T) := F(x+ rz, T), then

BF(x+ rz, T) = BFx,r(z, T) for all (z, T) ∈ G(Rn). (2.18)

We say that a varifold V has locally bounded anisotropic first variation if δFV is a Radon measure
on Ω, i.e. if

|δFV(g)| 6 C(K)‖g‖∞ for all g ∈ C1c(Ω, Rn) with spt(g) ⊂ K ⊂⊂ Ω.

Furthermore, we will say that V is F-stationary if δFV = 0.





3
E X I S T E N C E A N D R E G U L A R I T Y R E S U LT S F O R T H E A N I S O T R O P I C
P L AT E A U P R O B L E M

3.1 introduction

Plateau problem consists in looking for a surface of minimal area among those surfaces
spanning a given boundary. A considerable amount of effort in Geometric Measure Theory
during the last sixty years has been devoted to provide generalized concepts of surface, area
and of “spanning a given boundary”, in order to apply the direct methods of the calculus
of variations to the Plateau problem. In particular we recall the notions of sets of finite
perimeter [33, 34], of currents [51] and of varifolds [2, 4, 7], introduced respectively by De
Giorgi, Federer, Fleming, Almgren and Allard. A more “geometric” approach was proposed
by Reifenberg in [77], where Plateau problem was set as the minimization of Hausdorff
d-dimensional measure among compact sets and the notion of spanning a given boundary
was given in term of inclusions of homology groups.

Any of these approach has some drawbacks: in particular, not all the “reasonable” bound-
aries can be obtained by the above notions and not always the solutions are allowed to have
the type of singularities observed in soap bubbles (see the Plateau laws mentioned in the
Introduction 1.1). Recently in [56] Harrison and Pugh, see also [55], proposed a new notion
of spanning a boundary, which seems to include reasonable physical boundaries and they
have been able to show existence of least area surfaces spanning a given boundary.

In the recent paper [37], De Lellis, Maggi and Ghiraldin have introduced a more general
framework to solve the Plateau problem, using a deep result of Preiss concerning rectifiable
measures. Roughly speaking they showed, in the codimension one case, that every time one
has a class which contains “enough” competitors (namely the cone and the cup competitors,
see [37, Definition 1]) it is always possible to prove that the infimum of the Plateau problem
is achieved by the area of a rectifiable set. They then applied this result to provide a new
proof of Harrison and Pugh theorem as well as to show the existence of sliding minimizers,
a new notion of minimal sets proposed by David in [31, 30] and inspired by Almgren’s
(M, 0,∞), [8].

In the following sections 3.3,3.4 and 3.5, we extend the result [37] respectively to any
codimension, to the anisotropic setting in codimension one and to the full generality of the
anisotropic problem in any codimension. Moreover, we use our results to get easy solutions
to the formulations introduced by Harrison and Pugh in [56], by David in [31, 30] and by
Reifenberg in [77]. We present them respectively in the sections 3.6,3.7 and 3.8.

3.2 setting and preliminaries

In the entire Chapter 3, we will asume that the anisotropy introduced in (2.9) is defined on
the whole G(Rn), i.e. Ω = Rn.

15
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In order to precisely state the main results of Chapter 3, let us introduce some notations
and definitions.

Definition 3.1 (Lipschitz deformations). Given a ball Bx,r, we let D(x, r) be the set of
functions ϕ : Rn → Rn such that ϕ(z) = z in Rn \ Bx,r and which are smoothly isotopic
to the identity inside Bx,r, namely those for which there exists an isotopy λ ∈ C∞([0, 1]×
Rn; Rn) such that

λ(0, ·) = Id, λ(1, ·) = ϕ, λ(t,h) = h ∀ (t,h) ∈ [0, 1]× (Rn \Bx,r) and

λ(t, ·) is a diffeomorphism of Rn ∀t ∈ [0, 1].

We finally set D(x, r) := D(x, r)
C0 ∩ Lip(Rn), the intersection of the Lipschitz maps with the

closure of D(x, r) with respect to the uniform topology.

Observe that, in the definition of D(x, r), it is equivalent to require any Ck regularity on
the isotopy λ, for k > 1, as Ck isotopies supported in Bx,r can be approximated in Ck by
smooth ones also supported in the same set.

The following definition describes the properties required on comparison sets: the key
property for K ′ to be a competitor of K is that K ′ is close in energy to sets obtained from K

via deformation maps as in Definition 3.1. This allows a larger flexibility on the choice of the
admissible sets, since a priori K ′ might not belong to the competition class.

Definition 3.2 (Deformed competitors and deformation class). Let K ⊂ Rn \H be relatively
closed and Bx,r ⊂⊂ Rn \H. A deformed competitor for K in Bx,r is any set of the form

ϕ (K) where ϕ ∈ D(x, r).

A family P(F,H) of relatively closed d-rectifiable subsets K ⊂ Rn \H is called a deformation
class if for every K ∈P(F,H), for every x ∈ K and for a.e. r ∈ (0, dist(x,H))

inf
{

F(J) : J ∈P(F,H) , J \Bx,r = K \Bx,r
}
6 F(L) (3.1)

whenever L is any deformed competitor for K in Bx,r.

Once we fix a closed set H, we can formulate Plateau problem in the class P(F,H):

m0 := inf
{

F(K) : K ∈P(F,H)
}

. (3.2)

We will say that a sequence (Kj) ⊂P(F,H) is a minimizing sequence if F(Kj) ↓ m0.

3.3 isotropic plateau problem in higher codimension

In this section we present our paper [44] in joint work with De Philippis and Ghiraldin,
where we extend the isotropic result [37] to any codimension. More precisely we fix F ≡ 1
and we prove that the infimum m0 in (3.2) for a deformation class is achieved by a compact
set K which is, away from the “boundary”, an analytic manifold outside a closed set of
Hausdorff dimension at most (d− 1), see Theorem 3.3 below for the precise statement.
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Although the general strategy of the proof is the same of [37], some non-trivial modifi-
cations have to be done in order to deal with sets of any co-dimension. In particular, with
respect to [37], we use the notion of deformation class introduced in Definition 3.2, the main
reason being the following: one of the key steps of the proof consists in showing a precise
density lower bound for the measure obtained as limit of the sequence of Radon measures
naturally associated to a minimizing sequence (Kj), see Steps 1 and 4 in the proof of Theo-
rem 3.3. In order to obtain such a lower bound, instead of relying on relative isopermetric
inequalities on the sphere as in [37] (which are peculiar of the codimension one case), we
use the deformation theorem of David and Semmes in [32] to obtain suitable competitors,
following a strategy already introduced by Federer and Fleming for rectifiable currents, see
[51] and [8]. Moreover, since our class is essentially closed by Lipschitz deformations, we
are actually able to prove that any set achieving the infimum is a stationary varifold and
that, in addition, it is smooth outside a closed set of relative codimension one (this does
not directly follows by Allard’s regularity theorem, see Step 7 in the proof of Theorem 3.3).
Simple examples show that this regularity is actually optimal.

The following theorem is the main result of Section 3.3 and establishes the behavior of
minimizing sequences for the isotropic Plateau problem in any codimension. Notice that
since F ≡ 1, just through this section we will denote P(H) := P(F,H). The Definifion 3.2
and the Plateau problem (3.2) are obviously understood with F(K) = Hd(K).

Theorem 3.3. Let H ⊂ Rn be closed and P(H) be a deformation class in the sense of Definition
3.2. Assume the infimum in Plateau problem (3.2) is finite and let (Kj) ⊂P(H) be a minimizing
sequence. Then, up to subsequences, the measures µj := Hd Kj converge weakly? in Rn \H to a
measure µ = Hd K, where K = sptµ is a countably d-rectifiable set. Furthermore:

(a) the integral varifold naturally associated to µ is stationary in Rn \H;

(b) K is a real analytic submanifold outside a relatively closed set Σ ⊂ K with dimH(Σ) 6 d− 1.

In particular, lim infjHd(Kj) > Hd(K) and if K ∈P(H), then K is a minimum for (3.2).

3.3.1 Preliminary results

Let us recall the following deep structure result for Radon measures due to Preiss [76, 35],
which will play a key role in the proof of Theorem 3.3.

Theorem 3.4. Let d be an integer and µ a locally finite measure on Rn such that the d-density
Θ(x,µ) exists and satisfies 0 < Θ(x,µ) < +∞ for µ-a.e. x. Then µ = Θ(·,µ)Hd K, where K is a
countably Hd-rectifiable set.

In order to apply Preiss’ Theorem, we will rely on the monotonicity formula for minimal
surfaces, which roughly speaking can be obtained by comparing the given minimizer with a
cone. To this aim let us introduce the following definition:

Definition 3.5 (Cone competitors). For a set K ⊂ Rn we define the cone competitor in Bx,r

as the following set

Cx,r(K) =
(
K \Bx,r

)
∪
{
λx+ (1− λ)z : z ∈ K∩ ∂Bx,r , λ ∈ [0, 1]

}
. (3.3)
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Let us note that in general a cone competitor in Bx,r is not a deformed competitor in Bx,r.
On the other hand, as in [37], we can show that:

Lemma 3.6. Given a deformation class P(H) in the sense of Definition 3.2, for any K ∈ P(H)

countably Hd-rectifiable and for every x ∈ K, the set K verifies the following inequality for a.e.
r ∈ (0, dist(x,H)):

inf
{
Hd(J) : J ∈P(H) , J \Bx,r = K \Bx,r

}
6 Hd(Cx,r(K)).

Proof. Without loss of generality, let us consider balls Br centered at 0 with Br ⊂⊂ Rn \H.
We assume in addition that K∩ ∂Br is Hd−1-rectifiable with Hd−1(K∩ ∂Br) <∞ and that r
is a Lebesgue point of t ∈ (0,∞) 7→ Hd−1(K∩ ∂Bt). All these conditions are fulfilled for a.e.
r and, again by scaling, we can assume that r = 1 and use B instead of B1. For s ∈ (0, 1) let
us set

ϕs(r) =


0 , r ∈ [0, 1− s) ,
r−(1−s)

s , r ∈ [1− s, 1] ,

r , r > 1 ,

and φs(x) = ϕs(|x|)
x
|x| for x ∈ Rn. In this way, one easily checks that φs : Rn → Rn ∈

D(0, 1).
Since φs(K∩B1−s) = {0}, we need to show that

lim sup
s→0+

Hd
(
φs(K∩ (B \B1−s))

)
6

Hd−1(K∩ ∂B)
d

= Hd(Cx,r(K)) .

Let x0 ∈ K∩ ∂Bt and let us fix an orthonormal base ν1, . . . ,νd of the approximate tangent
space Tx0K such that νi ∈ Tx0K∩ Tx0∂Bt for i 6 d− 1. Let

JKdφs =
∣∣∣( d∧Dφs)(Tx0K)

∣∣∣ = |Dφs(ν1)∧ · · ·∧Dφs(νd)|

be the d-dimensional tangential Jacobian of φs with respect to K. A simple computation
shows that

JKdφs(x) 6
(ϕs(|x|)

|x|

)d
+ |νd · x̂|ϕ ′s(|x|)

(ϕs(|x|)
|x|

)d−1
6 1+ |νd · x̂|ϕ ′s(|x|)

(ϕs(|x|)
|x|

)d−1
, for Hd-a.e. x ∈ K .

(3.4)

Here x̂ = x/|x| and in the last inequality we have exploited that ϕ(r) 6 r for r ∈ [1− s, 1].
Using that |νd · x̂| is the tangential co-area factor of the map f(x) = |x|, we find with the aid
of the area and co-area formulas,

Hd
(
φs(K∩ (B \B1−s))

)
=

∫
K∩(B\B1−s)

JKdφs dH
d

=

∫
K∩(B\B1−s)∩{|νd·x̂|6=0}

JKdφs dH
d +

∫
K∩(B\B1−s)∩{|νd·x̂|=0}

JKdφs dH
d

6
∫1
1−s

dt

∫
K∩∂Bt

JKdφs

|νd · x̂|
dHd−1 +Hd

(
K∩ (B \B1−s)∩ {|νd · x̂| = 0}

)
,

(3.5)
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since |JKdφs| 6 1 where |νd · x̂| = 0. Using

lim
s→0

Hd
(
K∩ (B \B1−s)

)
= 0 ,

the second term in (3.5) can be ignored. Moreover, being t = 1 a Lebesgue point of t ∈
(0,∞) 7→ Hd−1(K∩ ∂Bt), we have

lim
s→0

1

s

∫1
1−s

|Hd−1(K∩ ∂Bt) −Hd−1(K∩ ∂B)|dt = 0 .

Thanks to this and to the estimate (3.4), we infer from (3.5) that

lim sup
s→0+

Hd(ϕs(K∩B)) 6 Hd−1(K∩∂B) lim sup
s→0+

1

s

∫1
1−s

(ϕs(t)
t

)d−1
dt =

Hd−1(K∩ ∂B)
d

,

as required.

Another key result we are going to use is a deformation theorem for closed sets due to
David and Semmes [32, Proposition3.1], analogous to the one for rectifiable currents [79, 50].
We provide a slightly extended statement for the sake of forthcoming proofs.

Before stating the theorem, let us introduce some further notation. Given a closed cube
Q = Qx,l and ε > 0, we cover Q with a grid of closed smaller cubes with edge length ε� l,
with non empty intersection with Int(Q) and such that the decomposition is centered in x
(i.e. one of the subcubes is centered in x). The family of this smaller cubes is denoted Λε(Q).
We set

C1 :=
⋃

{T ∩Q : T ∈ Λε(Q), T ∩ ∂Q 6= ∅} ,

C2 :=
⋃

{T ∈ Λε(Q) : (T ∩Q) 6⊂ C1, T ∩ ∂C1 6= ∅} ,

Q1 := Q \ (C1 ∪C2)

(3.6)

and consequently
Λε(Q

1 ∪C2) :=
{
T ∈ Λε(Q) : T ⊂ (Q1 ∪C2)

}
.

For each nonnegative integer m 6 n, let Λε,m(Q1 ∪ C2) denote the collection of all m-
dimensional faces of cubes in Λε(Q1 ∪C2) and Λ∗ε,m(Q1 ∪C2) will be the set of the elements
of Λε,m(Q1 ∪ C2) which are not contained in ∂(Q1 ∪ C2). We also let Sε,m(Q1 ∪ C2) :=⋃
Λε,m(Q1 ∪C2) be the m-skeleton of order ε in Q1 ∪C2.

Theorem 3.7. Let r > 0 and E be a compact subset of Q such that Hd(E) < +∞ and Q ⊂ Bx0,r.
There exists a map Φε,E ∈ D(x0, r) satisfying the following properties:

(1) Φε,E(x) = x for x ∈ Rn \ (Q1 ∪C2);

(2) Φε,E(x) = x for x ∈ Sε,d−1(Q
1 ∪C2);

(3) Φε,E(E∩ (Q1 ∪C2)) ⊂ Sε,d(Q
1 ∪C2)∪ ∂(Q1 ∪C2);

(4) Φε,E(T) ⊂ T for every T ∈ Λε,m(Q1 ∪C2), with m = d, ...,n;
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(5) either Hd(Φε,E(E)∩ T) = 0 or Hd(Φε,E(E)∩ T) = Hd(T), for every T ∈ Λ∗ε,d(Q
1);

(6) Hd(Φε,E(E∩ T)) 6 k1Hd(E∩ T) for every T ∈ Λε(Q1 ∪C2);

where k1 depends only on n and d (but not on ε).

Proof. Proposition 3.1 in [32] provides a map Φ̃ε,E ∈ D(x0, r) satisfying properties (1)-(4) and
(6). We want to set

Φε,E := Ψ ◦ Φ̃ε,E,

where Ψ will be defined below. We first define Ψ on every T ∈ Λε,d(Q
1 ∪C2) distinguishing

two cases

(a) if either Hd(Φ̃ε,E(E)∩ T) = 0 or Hd(Φ̃ε,E(E)∩ T) = Hd(T) or T 6∈ Λ∗ε,d(Q
1), then we

set Ψ|T = Id;

(b) otherwise, since Φ̃ε,E(E) is compact, there exists yT ∈ T and δT > 0 such that BδT (yT )∩
Φ̃ε,E(E) = ∅; we define

Ψ|T (x) = x+α(x− yT )min
{
1,

|x− yT |

δT

}
,

where α > 0 such that the point x+α(x− yT ) ∈ (∂T)× {0}n−d.

The second step is to define Ψ on every T ′ ∈ Λε,d+1(Q
1 ∪C2). Without loss of generality, we

can assume T ′ centered in 0. We divide T ′ in pyramids PT ,T ′ with base T ∈ Λε,d(Q
1 ∪C2)

and vertex 0. Assuming T ⊂ {xd+1 = −ε2 , xd+2, ..., xn = 0} and T ′ ⊂ {xd+2, ..., xn = 0}, we set

Ψ|PT ,T ′
(x) = −

2xd+1
ε

Ψ|T

(
−

x

xd+1

ε

2

)
.

We iterate this procedure on all the dimensions till to n, defining it well in Q1 ∪C2. Since
Ψ|∂(Q1∪C2) = Id, we can extend the map as the identity outside Q1 ∪C2. In addition, one

can easily check that Ψ ∈ D(x0, r) and thus, since Φ̃ε,E ∈ D(x0, r) and the class D(x0, r) is
closed by composition, this concludes the proof.

Later we will need to implement the above deformation of a set E on a rectangle rather
than a cube. The deformation theorem can be proved for very general cubical complexes,
[6]; however, for the sake of exposition, we limit ourselves to the simple case of a rect-
angular complex, which can be deduced by Theorem 3.7 through a bi-Lipschitz (linear)
transformation of Rn. More precisely, let us consider a closed rectangle

R := [0, `1]× · · · × [0, `n] `1 6 · · · 6 `n

and a tiling of Rn made of rectangle ε-homothetic to R. Let ΛRε (R) denote the family of the
translated and ε scaled copies of R and let us set

CR1 :=
⋃{

T ∩ R : T ∈ ΛRε (R), T ∩ ∂R 6= ∅
}

,

CR2 :=
⋃{

T ∈ ΛRε (R) : (T ∩ R) 6⊂ CR1 , T ∩ ∂CR1 6= ∅
}

,

R1 := R \ (CR1 ∪CR2 ).
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As before, for each nonnegative integer m 6 n, we let ΛRε,m(R1 ∪CR2 ) denote the collection
of all m-dimensional faces of rectangles in ΛRε (R1 ∪ CR2 ) and ΛR∗ε,m(R1 ∪ CR2 ) will be the
set of the elements of ΛRε,m(R1 ∪ CR2 ) which are not contained in ∂(R1 ∪ CR2 ). We also
let SRε,m(R1 ∪ CR2 ) :=

⋃
ΛRε,m(R1 ∪ CR2 ) be the m-skeleton of order ε in R1 ∪ CR2 . Then the

following theorem is an immediate consequence of Theorem 3.7:

Theorem 3.8. Let r > 0 and E be a compact subset of R such that Hd(E) < +∞ and R ⊂ Bx0,r.
There exists a map Φε,E ∈ D(x0, r) satisfying the following properties:

(1) Φε,E(x) = x for x ∈ Rn \ (R1 ∪CR2 );

(2) Φε,E(x) = x for x ∈ SRε,d−1(R
1 ∪CR2 );

(3) Φε,E(E∩ (R1 ∪CR2 )) ⊂ SRε,d(R
1 ∪CR2 )∪ ∂(R1 ∪CR2 );

(4) Φε,E(T) ⊂ T for every T ∈ ΛRε,m(R1 ∪CR2 ), with m = d, ...,n;

(5) either Hd(Φε,E(E)∩ T) = 0 or Hd(Φε,E(E)∩ T) = Hd(T), for every T ∈ ΛR∗ε,d(R
1);

(6) Hd(Φε,E(E∩ T)) 6 k1Hd(E∩ T) for every T ∈ ΛRε (R1 ∪CR2 );

where k1 depends only on n, d and `n/`1 (but not on ε).

Note that this time the constant k1 depends also from the ratio `n/`1. In the sequel we will
apply this construction only to rectangles where this ratio is between 1 and 4: 1 6 `n/`1 6 4,
thus obtaining a constant k1 actually depending just on n and d.

3.3.2 Proof of Theorem 3.3

Proof of Theorem 3.3. Up to extracting subsequences we can assume the existence of a Radon
measure µ on Rn \H such that

µj
∗
⇀ µ , as Radon measures on Rn \H , (3.7)

where µj = Hd Kj. We set K = sptµ and we remark that K∩H = ∅, since µ ∈M+(R
n \H).

We divide the argument in several steps.

Step one: We show the existence of θ0 = θ0(n,d) > 0 such that

µ(Bx,r) > θ0ωdr
d , ∀x ∈ K and r < dx := dist(x,H). (3.8)

To this end, it is sufficient to prove the existence of β = β(n,d) > 0 such that

µ(Qx,l) > β l
d , x ∈ K and l < 2dx/

√
n .

Let us assume by contradiction that there exist x ∈ sptµ and l < 2dx/
√
n such that

µ(Qx,l)
1
d

l
< β.
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We claim that this assumption, for β chosen sufficiently small depending only on d and n,
implies that for some l∞ ∈ (0, l)

µ(Qx,l∞) = 0, (3.9)

which is a contradiction with the property of x to be a point of sptµ. In order to prove (3.9),
we assume that µ(∂Qx,l) = 0, which is true for a.e. l.

To prove (3.9), we construct a sequence of nested cubes Qi = Qx,li such that, if β is
sufficiently small, the following holds:

(i) Q0 = Qx,l;

(ii) µ(∂Qx,li) = 0;

(iii) setting mi := µ(Qi) then:

m
1
d

i

li
< β;

(iv) mi+1 6 (1− 1
k1

)mi, where k1 is the constant in Theorem 3.7 (6);

(v) (1− 4εi)li > li+1 > (1− 6εi)li, where

εi :=
1

kβ

m
1
d

i

li
(3.10)

and k = max{6, 6/(1− (k1−1k1 )
1
d )} is a universal constant;

(vi) limimi = 0 and limi li > 0.

Following [32], we are going to construct the sequence of cubes by induction: the cube
Q0 satisfies by construction hypotheses (i)-(iii). Suppose that cubes until step i are already
defined.

Setting mji := Hd(Kj ∩Qi), we cover Qi with the family Λεili(Qi) of closed cubes with
edge length εili as described in Section 3.3.1 and we set Ci1 and Ci2 for the corresponding
sets defined in (3.6). We define Qi+1 to be the internal cube given by the construction, and
we note that Ci2 and Qi+1 are non-empty if, for instance,

εi =
1

kβ

m
1
d

i

li
<
1

k
6
1

6
,

which is guaranteed by our choice of k. Observe moreover that Ci1 ∪Ci2 is a strip of width at
most 2εili around ∂Qi, hence the side li+1 of Qi+1 satisfies (1− 4εi)li 6 li+1 < (1− 2εi)li.

Now we apply Theorem 3.7 to Qi with E = Kj and ε = εili, obtaining the map Φi,j =
Φεili,Kj . We claim that, for every j sufficiently large,

m
j
i 6 k1(m

j
i −m

j
i+1) + oj(1). (3.11)
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Indeed, since (Kj) is a minimizing sequence, by the definition of deformation class we have
that

m
j
i 6 mi + oj(1) 6 Hd

(
Φi,j

(
Kj ∩Qi

))
+ oj(1)

= Hd
(
Φi,j

(
Kj ∩Qi+1

))
+Hd

(
Φi,j

(
Kj ∩ (Ci1 ∪Ci2)

))
+ oj(1)

6 k1H
d
(
Kj ∩ (Ci1 ∪Ci2)

)
+ oj(1) = k1(m

j
i −m

j
i+1) + oj(1).

The last inequality holds because Hd
(
Φi,j

(
Kj ∩Qi+1

))
= 0 for j large enough: otherwise,

by property (5) of Theorem 3.7, there would exist T ∈ Λ∗εili,d(Qi+1) such that Hd(Φi,j(Kj ∩
T)) = Hd(T). Together with property (ii), this would imply

ldi ε
d
i = Hd(T) 6 Hd

(
Φi,j

(
Kj
)
∩Qi

)
6 k1H

d
(
Kj ∩Qi

)
6 k1m

j
i → k1mi

and therefore, substituting (3.10),
mi
kdβd

6 k1mi,

which is false if β is sufficiently small (mi > 0 because x ∈ spt(µ)). Passing to the limit in j
in (3.11) we obtain (iv):

mi+1 6
k1 − 1

k1
mi. (3.12)

Since li+1 > (1− 4εi)li, we can slightly shrink the cube Qi+1 to a concentric cube Q ′i+1
with l ′i+1 > (1− 6εi)li > 0, µ(∂Q ′i+1) = 0 and for which (iv) still holds, just getting a lower
value for mi+1. With a slight abuse of notation, we rename this last cube Q ′i+1 as Qi+1.

We now show (iii). Using (3.12) and condition (iii) for Qi, we obtain

m
1
d

i+1

li+1
6

(
k1 − 1

k1

) 1
d m

1
d

i

(1− 6εi)li
<

(
k1 − 1

k1

) 1
d β

1− 6εi
.

The last quantity will be less than β if(
k1 − 1

k1

) 1
d

6 1− 6εi = 1−
6

kβ

m
1
d

i

li
. (3.13)

In turn, inequality (3.13) is true because (iii) holds for Qi, provided we choose k > 6/
(
1−

(1− 1/k1)
1
d

)
. Furthermore, estimating ε0 < 1/k by (iii) and (v), we also have εi+1 6 εi.

We are left to prove (vi): limimi = 0 follows directly from (iv); regarding the non
degeneracy of the cubes, note that

l∞
l0

:= lim inf
i

li
l0

>
∞∏
i=0

(1− 6εi) =

∞∏
i=0

1− 6

kβ

m
1
d

i

li


>
∞∏
i=0

1− 6m
1
d

0

kβl0
∏i−1
h=0(1− 6εh)

(
k1 − 1

k1

) i
d


>
∞∏
i=0

(
1−

6

k(1− 6ε0)i

(
k1 − 1

k1

) i
d

)
,
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where we used εh 6 ε0 in the last inequality. Since ε0 < 1/k, the last product is strictly
positive, provided

k >
6

1−
(
k1−1
k1

) 1
d

,

which is guaranteed by our choice of k. We conclude that l∞ > 0, which ensures claim (3.9).

Step two: We fix x ∈ K, and prove that

r 7→ µ(Bx,r)

rd
is increasing on (0,dx). (3.14)

The proof amounts to prove a differential inequality for the function f(r) := µ(Bx,r). In turn,
this inequality is obtained in a two step approximation: first one exploits the rectifiability of
the minimizing sequence (Kj) and property (3.1) to compare Kj with the cone competitor
Cx,r(Kj), see (3.3). The comparison, a priori, is only allowed with elements of P(H), so for
almost every r < dx the following holds:

fj(r) = Hd(Kj) −Hd(Kj \Bx,r) 6 m0 + oj(1) −Hd(Kj \Bx,r)

6 oj(1) + inf
K ′∈P(H)

Hd(K ′) −Hd(Kj \Bx,r) 6 oj(1) + inf
K ′∈P(H)

K ′\Bx,r=Kj\Bx,r

Hd(K ′ ∩Bx,r),

where fj(r) := Hd(Kj ∩Bx,r). Nevertheless, Kj can be compared with its cone competitor, up
to an error infinitesimal in j, thanks to Lemma 3.6. We recover

fj(r) 6 inf
K ′∈P(H)

K ′\Bx,r=Kj\Bx,r

Hd(K ′ ∩Bx,r) 6 oj(1) +Hd(Cx,r(Kj)∩Bx,r)

6 oj(1) +
r

d
Hd−1(Kj ∩ ∂Bx,r) = oj(1) +

r

d
f ′j(r) .

(3.15)

We want to pass to the limit in j in order to obtain the desired monotonicity formula. To this
aim, we observe that by Fatou’s lemma, if we set g(t) := lim infj f ′j(t), then

f(r) − f(s) = µ(Bx,r \Bx,s) >
∫r
s

g(t)dt , provided µ(∂Bx,r) = µ(∂Bx,s) = 0 .

This shows that Df > gL1. On the other hand, using the differentiability a.e. of f and letting
s ↑ r, we also conclude f ′ > g L1-a.e., whereas Df > f ′L1 is a simple consequence of the
fact that f is an increasing function.

We can now pass to the limit on j in (3.15) to yeld f(r) 6 r
dg(r) 6

r
df
′(r) for a.e. r < dx.

The positivity of the measure D log(f) implies the claimed monotonicity formula.

Step three: By (3.8) and (3.14), the d-dimensional density of the measure µ, namely:

θ(x) = lim
r→0+

f(r)

ωdrd
> θ0 ,

exists, is finite and positive µ-almost everywhere. Preiss’ Theorem 3.4 implies that µ =

θHd K̃ for some countably Hd-rectifiable set K̃ and some positive Borel function θ. Since K
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is the support of µ, then Hd(K̃ \K) = 0. On the other hand, by differentiation of Hausdorff
measures, (3.8) yields Hd(K \ K̃) = 0. Hence K is d-rectifiable and µ = θHd K.

Step four: We prove that θ(x) > 1 for every x ∈ K such that the approximate tangent space to
K exists (thus, Hd-a.e. on K). For further use (see step 7 below) we actually prove a slightly
more general results: θ(x) > 1 for every x ∈ K \H such that there exists a sequence rk ↓ 0
for which

µx,rk

rdk

∗
⇀ θ(x)Hd π , as k→ +∞ (3.16)

where π is a d-dimensional plane. Here the measures µx,r are defined as µx,r(A) = µ(x+ rA)

for every Borel set A, rather than the definition given in (2.2).
Let us assume without loss of generality that x = 0 and π = {xd+1 = ... = xn = 0}. Note

that µx,r are supported on (K− x)/r and that (3.16) and the lower density estimates (3.8)
imply that the support of µx,rk has to converge in the Kuratowski sense to the support of
Hd π. In particular, for every ε > 0, there are infinitely many small ρ > 0 such that

K∩Bρ ⊂
{
y ∈ Rn : |yd+1|, ..., |yn| <

ε

100
ρ
}

. (3.17)

Let us now assume, by contradiction, that θ(0) < 1. Thanks to (3.14) and (3.17) we can
slightly tilt ρ to find r > 0 and α < 1 such that µ(∂Qr) = 0 and

µ(Qr)

rd
6 α < 1, K∩ (Qr \ Rr,εr) = ∅ , (3.18)

where Rr,εr is defined as in (2.1). In particular, since µj are weakly converging to µ, we get
that for j > j(r)

µj(Qr)

rd
6 α < 1 and µj(Qr \ Rr,εr) = oj(1), (3.19)

We now wish to clear the small amount of mass appearing in the complement of Rr,εr:
we achieve this by repeatedly applying Theorem 3.8. We set Qr ∩ {xd+1 > ε

2 r} =: R, and
we apply Theorem 3.8 to this rectangle with E = K0j := Kj, obtaining the map ϕ1,j. We
recall that the obtained constant k1 for the area bound is universal, since it depends on the
side ratio of R, which is bounded from below by 1 and from above by 4, provided ε small
enough. We set K1j := ϕ1,j(K

0
j ) and repeat the argument with Qr ∩ {xd+1 6 −ε2 r} =: R and

E := K1j , obtaining the map ϕ2,j. We again set K2j := ϕ2,j(K
1
j ) and iterate this procedure to

the rectangles Qr ∩ {xd+2 > ε
2 r}, ...,Qr ∩ {xn 6 −ε2 r}. After 2(n− d) iteration, we set

K
2(n−d)
j := ϕ2(n−d),j ◦ ... ◦ϕ1,j(Kj).

We are going to use the cube Qr(1−√ε) because, taking ε small enough, then
√
ε > 4Cε,

where C > 1 is the side ratio considered before. This allows us to claim that

Hd(K
2(n−d)
j ∩ (Qr(1−√ε) \ Rr(1−√ε),6εr)) = 0. (3.20)
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Otherwise there would exist a d-face of a smaller rectangle T ⊂ (Qr \ Rr,εr) such that

Hd(K
2(n−d)
j ∩ T) = Hd(T) > εdrd ,

which would lead to the following contradiction for j large:

εdrd 6 Hd(T) 6 Hd
(
K
2(n−d)
j ∩ (Qr \ Rr,εr)

)
6 k2(n−d)1 Hd

(
Kj ∩ (Qr \ Rr,εr)

)
= oj(1).

In particular, we cleared any measure on every slab

n⋃
i=d+1

{
3εr < |xi| < (1−

√
ε)
r

2

}
∩Qr(1−√ε).

We want now to construct a map P ∈ D(0, r), collapsing Rr(1−√ε),6εr onto the tangent plane.
To this end, for x ∈ Rn, x = (x ′, x ′′) with x ′ ∈ Rd and x ′′ ∈ Rn−d, we set

‖x ′‖ := max{|xi| : i = 1, . . . ,d} ‖x ′′‖ := max{|xi| : i = d+ 1, . . . ,n} (3.21)

and we define P as follows:

P(x) =


(
x ′,g(‖x ′‖) (‖x

′′‖−3εr)+
1−6ε

x ′′

‖x ′′‖ + (1− g(‖x ′‖))x ′′
)

if max{‖x ′‖, ‖x ′′‖} 6 r/2

Id otherwise,
(3.22)

where g : [0, r/2]→ [0, 1] is a compactly supported cut off function such that

g ≡ 1 on [0, r(1−
√
ε)/2] and |g ′| 6 10/r

√
ε .

It is not difficult to check that P ∈ D(0, r) and that LipP 6 1+C
√
ε, for some dimensional

constant C.
We now set K̃j := P(K

2(n−d)
j ), which verifies, thanks to (3.20),

Hd
(
K̃j ∩

(
Q(1−

√
ε)r \Q

d
(1−
√
ε)r

))
= 0 (3.23)

and

Hd
(
K̃j ∩

(
Qr \Qr(1−

√
ε)

))
6 (1+C

√
ε)dHd

(
K
2(n−d)
j ∩

(
Qr \Qr(1−

√
ε)

))
6 (1+C

√
ε)k

2(n−d)
1 Hd

(
Kj ∩

(
Qr \ (Qr(1−

√
ε) ∪ Rr,εr)

))
+ (1+C

√
ε)Hd

(
Kj ∩

(
Rr,εr \Qr(1−

√
ε)

))
6 oj(1) + (1+C

√
ε)Hd

(
Kj ∩

(
Rr,εr \Qr(1−

√
ε)

))
,

(3.24)

where in the last inequality we have used (3.19). Moreover, by using (3.18), (3.19) and (3.23),
we also have that, for ε small and j large:

Hd(K̃j ∩Qdr(1−√ε))
rd(1−

√
ε)d

=
Hd(K̃j ∩Qr(1−√ε))

rd(1−
√
ε)d

6 (1+C
√
ε)
Hd(K

2(n−d)
j ∩Qr)
rd

6 (1+C
√
ε)
Hd(Kj ∩Qr) + oj(1)

rd

6 α+ oj(1) < 1.

(3.25)
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As a consequence of (3.25) and the compactness of K̃j, there exist y ′j ∈ Qd(1−√ε)r and δj > 0
such that, if we set yj := (y ′j, 0), then

K̃j ∩Bdyj,δj = ∅ and Bdyj,δj ⊂ Q
d
(1−
√
ε)r. (3.26)

After the last deformation, our set K̃j ∩Qr(1−√ε) is contained in the tangent plane and we

want to use the property (3.26) to collapse K̃j ∩Qr(1−√ε) into
(
∂Qd

(1−
√
ε)r

)
× {0}n−d. To

this end, for every j ∈N let us define the following Lipschitz map:

ϕj(x) =


(
x ′ + z ′j,x, x ′′

)
if x ∈ Rr(1−√ε),r

x otherwise,

with

z ′j,x := min

1,
∣∣∣x ′ − y ′j∣∣∣
δj

 (r− 4‖x ′′‖)+
r

γj,x(x
′ − y ′j),

where γj,x > 0 is such that x ′ + γj,x(x ′ − y ′j) ∈ ∂Qd(1−√ε)r × {0}n−d and ‖x ′′‖ is defined in

(3.21). One can easily check that ϕj ∈ D(0, r). Moreover, setting ϕj(K̃j) =: K ′j, we have that

K ′j \Qr = Kj \Qr

and

Hd(K ′j ∩Qr(1−√ε)) = 0, (3.27)

thanks to (3.23), since

Hd
(
∂Qd(1−

√
ε)r × {0}n−d

)
= 0.

Since P(H) is a deformation class, by (3.1) there exists a sequence of competitors (Jj)j∈N ⊂
P(H) such that Jj \ B0,r = Kj \ B0,r and Hd(Jj) = Hd(K ′j) + oj(1). Hence, thanks to (3.24)
and (3.27), we get

Hd(Kj) −Hd(Jj) > Hd(Kj) −Hd(K ′j) − oj(1) = Hd(Kj ∩Qr) −Hd(K ′j ∩Qr) − oj(1)

> Hd
(
Kj ∩Qr(1−√ε)

)
+Hd

(
Kj ∩ (Rr,εr \Qr(1−

√
ε))
)
+

− oj(1) − (1+C
√
ε)Hd

(
Kj ∩ (Rr,εr \Qr(1−

√
ε))
)

> Hd
(
Kj ∩Qr(1−√ε)

)
−C
√
εHd

(
Kj ∩ (Rr,εr \Qr(1−

√
ε))
)
− oj(1).

Passing to the limit as j→∞ and using (3.7), (3.8) and (3.18), we get

lim inf
j

Hd(Kj) > lim inf
j

Hd(Jj) + µ(Qr(1−
√
ε)) −C

√
εrd

> lim inf
j

Hd(Jj) + (θ0(1−
√
ε)d −C

√
ε)rd.



28 existence and regularity results for the anisotropic plateau problem

Since, for ε small, this is in contradiction with Kj be a minimizing sequence, we finally
conclude that θ(0) > 1.

Step five: We now show that θ(x) 6 1 for every x ∈ K such that the approximate tangent
space to K exists. Again, for further purposes, we will actually show that θ(x) 6 1 for every
x ∈ K \H such that (3.16) holds. Arguing by contradiction, we assume that θ(x) = 1+ σ > 1.
As usually, we assume that x = 0 and π = {y : yd+1, ...,yn = 0}. By the monotonicity of the
density established in Step 2, for every ε > 0 we can find r > 0 such that

K∩Qr ⊂ Rr,εr , 1+ σ 6
µ(Qr)

rd
6 1+ σ+ ε σ. (3.28)

Since Hd Kj converges to µ we have

Hd(Kj ∩Qr) >
(
1+

σ

2

)
rd , Hd((Kj ∩Qr) \ Rr,εr) <

σ

4
rd. ∀j > j0(r) , (3.29)

Consider the map P : Rn → Rn ∈ D(0, r) with LipP 6 1+C
√
ε defined in (3.22), which col-

lapses Rr(1−√ε),εr onto the tangent plane. By exploiting the fact that P(H) is a deformation
class, we find that

Hd(Kj ∩Qr) − oj(1) 6 Hd(P(Kj ∩ R(1−√ε)r,εr))︸ ︷︷ ︸
I1

+Hd(P(Kj ∩ (Rr,εr \ R(1−
√
ε)r,εr)))︸ ︷︷ ︸

I2

+Hd(P(Kj ∩ (Qr \ Rr,εr)))︸ ︷︷ ︸
I3

.

By construction, I1 6 rd, while, by (3.29),

I3 6 (LipP)dHd(Kj ∩ (Qr \ Rr,εr)) < (1+C
√
ε)d

σ

4
rd .

Hence, as j→∞,(
1+

σ

2

)
rd 6 rd + lim inf

j→∞ I2 + (1+C
√
ε)d

σ

4
rd ,

that is,(1
2
−

(1+C
√
ε)d

4

)
σ 6 lim inf

j→∞ I2
rd

. (3.30)

By (3.28), we finally estimate that

lim sup
j→∞ I2 6 (1+C

√
ε)d µ(Qr \Q(1−

√
ε)r)

6 (1+C
√
ε)d
(
(1+ σ+ εσ) − (1+ σ)(1−

√
ε)d
)
rd. (3.31)

By choosing ε sufficiently small, (3.30) and (3.31) provide the desired contradiction. In
particular, by combining this with the previous step we deduce that θ = 1 for every x such
that K admits an approximate tangent space at x, that is for Hd almost every x. Classical
argument in measure theory then implies that µ = Hd K.
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Step six: We now show that the canonical density one rectifiable varifold associated to K is
stationary in Rn \H. In particular, applying Allard’s regularity theorem, see [79, Chapter
5], we will deduce that there exists an Hd-negligible closed set Σ ⊂ K such that Γ = K \ Σ is
a real analytic manifold. Since being a stationary varifold is a local property, to prove our
claim it is enough to show that for every ball B ⊂⊂ Rn \H we have

Hd(K) 6 Hd(φ(K)) (3.32)

whenever φ is a diffeomorphism such that spt{φ− Id} ⊂ B. Indeed, by exploiting (3.32) with
φt = Id + tX, X ∈ C1c(B) we deduce the desired stationarity property.

To prove (3.32) we argue as in [37, Theorem 7]. Given ε > 0 we can find δ > 0 and a
compact set K̂ ⊂ K∩B with Hd((K \ K̂)∩B) < ε such that K admits an approximate tangent
plane TxK at every x ∈ K̂,

sup
x∈K̂

sup
y∈Bx,δ

|∇φ(x) −∇φ(y)| 6 ε , sup
x∈K̂

sup
y∈K̂∩Bx,δ

d(TxK, TyK) < ε , (3.33)

where d is a distance on G(d), the d-dimensional Grassmanian. Moreover, denoting by Sx,r

the set of points in Bx,r at distance at most ε r from x+ TxK, then K∩Bx,r ⊂ Sx,r for every
r < δ and x ∈ K̂. By Besicovitch covering theorem we can find a finite disjoint family of closed
balls {Bi} with Bi = Bxi,ri ⊂ B ⊂⊂ Rn \H, xi ∈ K̂, and ri < δ, such that Hd(K̂ \

⋃
i Bi) < ε.

By exploiting the construction of Step four, we can find j(ε) ∈N and maps Pi : Rn → Rn

with Lip (Pi) 6 1+C
√
ε and Pi = Id on Bci , such that, for a certain Xi ⊂ Si = Sxi,εri ,

Pi(Xi) ⊂ Bi ∩ (xi + TxiK) ,

Hd
(
Pi
(
(Kj ∩Bi) \Xi

))
6 C
√
εωd r

d
i , ∀j > j(ε) .

(3.34)

Denoting with JTd the d-dimensional tangential jacobian with respect to the plane T and
by JKd the one with respect to K and exploiting (3.33), (3.34), the area formula and that
ωd r

d
i 6 Hd(K∩Bi) (by the monotonicity formula), and setting αi = Hd((K \ K̂)∩Bi), we

get

Hd(φ(Pi(Kj ∩Xi))) =
∫
Pi(Kj∩Xi)

J
TxiK

d φ(x)dHd(x) 6 (J
TxiK

d φ(xi) + ε)ωd r
d
i

6 (J
TxiK

d φ(xi) + ε)H
d(K∩Bi) 6 (J

TxiK

d φ(xi) + ε) (H
d(K̂∩Bi) +αi)

6
∫
K̂∩Bi

(JKdφ(x) + 2ε) dH
d(x) + ((Lipφ)d + ε)αi

= Hd(φ(K̂∩Bi)) + 2εHd(K̂∩Bi) + ((Lipφ)d + ε)αi ,
(3.35)

where in the last identity we have used the area formula and the injectivity of φ. Since
Pi = Id on Bci , φ = Id on Bc, Bi ⊂ B and the balls Bi are disjoint, the map φ̃ which is
equal to φ on B \∪iBi, equal to the identity on Bc and equal to φ ◦ Pi on Bi is well defined.
Moreover, by (3.35), we get

Hd(φ̃(Kj)) 6 Hd(φ(K)) +Cε
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where C depends only on K. By exploiting the definition of deformation class, we get that

Hd(K) 6 Hd(φ̃(Kj)) + oj(1) 6 Hd(φ(K)) +Cε+ oj(1).

Letting j→∞ and ε→ 0 we obtain (3.32).

Step seven: We finally address the dimension of the singular set. Recall that, by monotonicity,
the density function

Θd(K, x) = lim
r→0

Hd(K∩Bx,r)

ωdrd

is everywhere defined in Rn \H and equals 1 Hd-almost everywhere in K. Fixing x ∈ K and
a sequence rk ↓ 0, the monotonicity formula, the stationarity of Hd K and the compactness
theorem for integral varifolds [2, Theorem 6.4] imply that (up to subsequences)

Hd
(
K− x

rk

)
⇀ V locally in the sense of varifolds, (3.36)

where

(a) V is a stationary integral varifold: in particular Θd(‖V‖,y) > 1 for y ∈ spt(V);

(b) V is a cone, namely (δλ)#V = V , where δλ(x) = λx, λ > 0;

(c) Θd(‖V‖, 0) = Θd(K, x) > Θd(‖V‖,y) for every y ∈ Rn.

Recall that the tangent varifold V depends (in principle) on the sequence (rk). We denote
by TanVar(K, x) the (nonempty) set of all possible limits V as in (3.36), varying among all
sequences along which (3.36) holds. Given a cone W we set

Spine(W) := {y ∈ Rn : Θd(‖W‖,y) = Θd(‖W‖, 0)}. (3.37)

By [9, 2.26], Spine(W) is a vector subspace of Rn, see also [84, Theorem 3.1]. We can stratify
K in the following way: for every k = 0, . . . ,n we let

Ak := {x ∈ K : for all V ∈ TanVar(K, x), dim Spine(V) 6 k}.

Clearly A0 ⊂ · · · ⊂ Ad = · · · = An; moreover the following holds: dimHAk 6 k, see [9, 2.28]
and [84, Theorem 2.2]. In order to prove our claim, we need to show that Ad \Ad−1 ⊂ K \Σ,
where Σ, as in Step six. To this end we note that the monotonicity formula for stationary
varifolds implies that if W is a d-dimensional stationary cone with dim Spine(W) = d,
then ‖W‖ = Θd(‖W‖, 0)Hd T for some d-dimensional plane 1 T . In particular since every
x ∈ Ad \Ad−1 admits at least one flat tangent varifold, for every such x there exists a
sequence rk satisfying

Hd
K− x

rk
→ mHd T ;

moreover m = Θd(K, x) by (c). But then, the very same proof of Step five above implies
that Θd(K, x) = 1. Thus every x ∈ Ad \Ad−1 satisfies the hypotheses of Allard’s regularity
Theorem [2, Regularity Theorem, Section 8], implying that K ∩ Qx, r2 is a real analytic
submanifold. Equivalently x 6∈ Σ and this concludes the proof.

1 Indeed up to a rotation spt(W) = Spine(W)× Γ , where Γ is a cone in Rn−d. If Γ 6= {0} then Θd(‖W‖, 0) >
Θd(‖W‖,y) for any y ∈ Spine(W) \ {0}, which contradicts (3.37).
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3.4 anisotropic plateau problem in codimension one

The anisotropic Plateau problem aims at finding an energy minimizing surface spanning a
given boundary when the energy functional is more general than the usual surface area (as
in the standard Plateau problem) and is obtained integrating a general Lagrangian F over
the surface. In particular, the integrand depends on the position and the tangent space to
the surface.

As in the case of the area integrand, [33, 51, 77, 7, 32, 56, 37, 44], many definitions of
boundary conditions (both homological and homotopical), as well as the type of competitors
(currents, varifolds, sets) have been considered in the literature. An important existence,
regularity and almost uniqueness result in arbitrary dimension and codimension was
achieved by Almgren in [7], using refined techniques from geometric measure theory. In
more recent times, Harrison and Pugh in [57, 58] investigated the anisotropic Plateau
problem under a suitable cohomological definition of boundary.

In this section we present the result of our work [38]. We adopt the same strategy as
in [37, 44], namely we prove a general compactness theorem for minimizing sequences in
general classes of (n− 1)-rectifiable sets. More precisely, we consider the measures naturally
associated to any such sequence and we show that, if a sufficiently large class of deformations
are admitted, any weak limit is induced by a rectifiable set, thus providing compactness and
semicontinuity under very little assumptions.

One main difficulty in our approach is to prove the rectifiability of the support of the
limiting measure. As already observed, the key ingredient in [37, 44] to obtain such rectifia-
bility is the classical monotonicity formula for the mass ratio of the limiting measure, which
allows to apply Preiss’ rectifiability theorem for Radon measures [76, 35]. Such a strategy
does not seem feasible for general anisotropic integrands, where the monotonicity of the
mass ratio is unlikely to be true, as pointed out in [3]. The main goal of this section is to
show how, in codimension one, the rectifiability of the limiting measure follows from the
theory of Caccioppoli sets, bypassing the monotonicity formula and the deep result of Preiss.
In particular, we are able to prove the results analogous to those of [37] with a strategy
which has some similarities with the one used in [7].

The most general case of any codimension and anisotropic energies is addressed in the next
Section, which describes our paper [42]. It uses however different and more sophisticated
PDE techniques.

3.4.1 Preliminary assumtpions

We next outline a set of flexible requirements for P(F,H), which is more specific for the
codimension one case. These conditions will replace the ones of Definition 3.1 and Definition
3.2.

Definition 3.9 (Cup competitors). Let K ⊂ Rn \H and Bx,r ⊂⊂ Rn \H. We introduce the
following equivalence relation among points of Bx,r \K:

y0 ∼K,x,r y1 ⇐⇒ ∃γ ∈ C0([0, 1],Bx,r \K) : γ(0) = y0, γ(1) = y1, γ(]0, 1[) ⊂ Bx,r
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(where x and r are clear from the context we will omit them and simply write ∼K). We
enumerate as {Γi(K, x, r)} the equivalence classes in ∂Bx,r/ ∼K,x,r (where the index i varies
either among all natural numbers or belongs to a finite subset of them). The cup competitor
associated to Γi(x, r) for K in Bx,r is(

K \Bx,r
)
∪
(
(∂Bx,r) \ Γi(K, x, r)

)
. (3.38)

For further reference we also introduce the sets

Ωi(K, x, r) = {z ∈ Bx,r \K : ∃y ∈ Γi(K, x, r) such that z ∼K,x,r y} . (3.39)

The dependence on K, x and r will be sometimes suppressed if clear from the context. It is
easy to see that the associated sets Ωi(K, x, r) are connected components of Bx,r \K (possibly
not all of them).

Definition 3.10 (Good class). A family P(F,H) of relatively closed subsets K ⊂ Rn \H is
called a good class if for any K ∈P(F,H), for every x ∈ K and for a.e. r ∈ (0, dist(x,H)) the
following holds:

inf
{

F(J) : J ∈P(F,H) , J \Bx,r = K \Bx,r
}
6 F(L) (3.40)

whenever L is any cup competitor for K in Bx,r.

Remark 3.11. Observe that the definition of cup competitors is a slight modification of that of
[37], where Γi(K, x, r) were taken to be connected components of ∂Bx,r \K: observe however
that, for every cup competitor in [37], we can find a cup competitor as above which has at
most the same area, since each Γi(K, x, r) is a union of connected components of ∂Bx,r \K

and each connected component of ∂Bx,r \ K is contained in at least one Γi(K, x, r). Finally
good classes in our paper [38] do not assume any kind of comparisons with cones, as it is
the case of [37].

The point of our work [38] is that the notion of good class is enough to ensure that any
weak∗ limit of a minimizing sequence is a rectifiable measure and that a suitable lower
semicontinuity statement holds for energies F which satisfy the usual ellipticity condition of
[50, 5.1.2], cf. Theorem 3.13 below. In particular, as shown in [50, 5.1.3-5.1.5], the convexity
of the integrand F is a sufficient condition and we take it therefore as definition in this
section (notice that in the next section we will replace this assumption with more useful
requirements to address the higher codimesion case).

Definition 3.12 (Elliptic anisotropy, [50, 5.1.2-5.1.5]). F is elliptic if its even and positively
1-homogeneous extension to Rn × (Λn−1(R

n) \ {0}) is C2 and it is uniformly convex in the
T variable on compact sets.

Actually the only points required in the proof of Theorem 3.13 are the lower semicontinuity
of the functional F under the usual weak convergence of reduced boundaries of Caccioppoli
sets and the following estimate on the oscillation of F over compact sets W ⊂⊂ Rn:

sup
x,y∈WS,T∈G(n,n−1)

|F(x, T) − F(y,S)| 6 ωW(|x− y|+ ‖T − S‖), (3.41)
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where ωW is a modulus of continuity which depends upon G(W) and ‖ · ‖ is the standard
metric on G(n,n− 1) defined as in [79, Chapter 8, Section 38]. In particular the C2 regularity
of the definition above can be considerably relaxed.

A minimizing sequence {Kj} ⊂P(F,H) in Problem (3.2) satisfies the property F(Kj)→ m0,
and throughout the section we will assume m0 to be finite.

3.4.2 Main theorem

We have all the definitions to state the main theorem of Section 3.4.

Theorem 3.13. Let H ⊂ Rn be closed and P(F,H) be a good class in the sense of Definition 3.10.
Let {Kj} ⊂P(F,H) be a minimizing sequence and assume m0 <∞. Then, up to subsequences, the
measures µj := F(·, T(·)Kj)Hn−1 Kj converge weakly? in Rn \H to a measure µ = θHn−1 K,
where K = sptµ is an (n− 1)-rectifiable set and θ > c0 for some constant c0(F,n).

Moreover, if F is elliptic as in Definition 3.12, then lim infj F(Kj) > F(K) (that is θ(x) >
F(x, TxK)) and in particular, if K ∈ P(F,H), then K is a minimum for Problem (3.2) and thus
θ(x) = F(x, TxK).

Indeed the measure µ above is an (n− 1)-dimensional rectifiable varifold. Since the proof
of Theorem 3.13 does not exploit Preiss’ rectifiability Theorem, when the Lagrangian is
constant (i.e. up to a factor it is the area functional F ≡ 1) and we require the stronger
energetic inequality in (3.40) to hold for any cup competitors as in (3.38) [37, Equation 1.2],
then the same strategy gives a simpler proof of the conclusions of [37, Theorem 2], except
for the monotonicity formula in [37, Equation (1.5)].

Finally, we remark that it is possible to obtain the useful additional information θ(x) =
F(x, TxK) in Theorem 3.13 even when we cannot directly infer that K = sptµ belongs to the
class P(F,H), provided we allow the class of competitors to be also a deformation class as
in Definition 3.2.

Proposition 3.14. Assume that F is elliptic as in Definition 3.12 and that H, P(F,H), {Kj}, µ and
K are as in Theorem 3.13. If in addition P(F,H) is a deformation class in the sense of Definition 3.2,
then θ(x) = F(x, TxK) for Hn−1-a.e. x ∈ K.

3.4.3 Proof of Theorem 3.13

Parts of the proofs follow the isotropic case treated in [37]: we will be brief on these
arguments, hoping to convey the main ideas and in order to leave space to the original
content.

The proof of Theorem 3.13 goes as follows: we consider the natural measures (µj) asso-
ciated to a minimizing sequence (Kj) and extract a weak limit µ. We first recall that, as a
consequence of minimality, µ enjoys density upper and lower bounds on spt(µ), leading to
the representation µ = θHn−1 spt(µ): this part follows almost verbatim the proof of [37].
Then, via an energy comparison argument, we exclude the presence of purely unrectifiable
subsets of spt(µ), which is the core novelty of the note. We then show that, if the Lagrangian
is elliptic, then the energy is lower semicontinuous along (Kj). Finally, if we assume also
that P(F,H) is a deformation class, we show that θ(x) = F(x, TxK).
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Proof of Theorem 3.13: density bound

We prove lower ad upper density bounds for the limiting measure µ:

Lemma 3.15 (Density bounds). Suppose that P(F,H) is a good class, that {Kj} ⊂P(F,H) is a
minimizing sequence for problem (3.2) and that

µj = F(·, T(·)K)Hn−1 Kj
∗
⇀ µ

in Rn \H. Then the limit measure µ enjoys density upper and lower bounds:

θ0ωn−1r
n−1 6 µ(Bx,r) 6 θ

−1
0 ωn−1r

n−1 , ∀x ∈ sptµ , ∀r < dx := dist(x,H) (3.42)

for some positive constant θ0 = θ0(n, F) > 0.

Proof. The density lower bound can be proved as in [37, Theorem 2, Step 1] with the use
of cup competitors only, since the energy F is comparable to the Hausdorff measure by
(2.10). The notion of cup competitors in Definition 3.10 slightly differs from the notion in
[37, Definition 1], however the key fact is that the latter have larger energy, cf. Remark 3.11.
The existence of a density upper bound is trivially true, since we can use a generic sequence
{Γj} of cup competitors associated to {Kj} in Bx,r. Observe that at least one Γj exists as long
as ∂Bx,r \ Kj 6= ∅: on the other hand for a.e. radius r we have lim infjHn−1(Kj) < ∞ and
we can assume the existence of a subsequence for which the Γj exist. Hence, by almost
minimality

µ(Bx,r) 6 lim sup
j

µj(Bx,r) 6 lim sup
j

F(∂Bx,r \ Γj)

6 lim sup
j

ΛHn−1(∂Bx,r \ Γj) 6 Λσn−1 r
n−1 .

(3.43)

We remark that, if the requirement of being a good class were substituted by that of being
a deformation class, the density lower bound could be proven as in Theorem 3.3, Step 1: note
that although the bound in (3.8) is claimed for the area functional, the argument requires
only the two-sided comparison of (2.10). Moreover, the upper bound could be obtained as in
(3.43), but using the slightly different cup competitors defined in [37, Definition 1], which
are proven to be deformed competitors in [37, Theorem 7, Step 1].

Proof Theorem 3.13: rectifiability

Up to extracting subsequences, we can assume the existence of a Radon measure µ on
Rn \H such that

µj
∗
⇀ µ , as Radon measures on Rn \H . (3.44)

We set K = sptµ and from the differentiation theorem for Radon measures, see for instance
[68, Theorem 6.9], and Lemma 3.15 we deduce that

µ = θHn−1 K, (3.45)
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where K is a relatively closed set in Rn \ H and θ : K → R+ is a Borel function with
c0 6 θ 6 C0.

We decompose K = R∪N into a rectifiable R and a purely unrectifiable N (see [79, Chapter
3, Section 13.1]) and assume by contradiction that Hn−1(N) > 0. Then, there is x ∈ K such
that

Θn−1(R, x) = lim
r→0

Hn−1(R∩Bx,r)

ωn−1rn−1
= 0, Θ∗n−1(N, x) = a > 0. (3.46)

Without loss of generality, we assume that x = 0. The overall aim is to show that at 0 the
density lower bound of Lemma 3.15 would be false, reaching therefore a contradiction.

For every ρ > 0, we let Ωi(ρ), with i ∈N, be sets of (3.39) (where we omit the dependence
on K and x). Observe that the Ωi(ρ) are sets of finite perimeter (see for instance [50,
4.5.11]). If we denote, as usual, by ∂∗Ωi(ρ) their reduced boundaries (in Bx,ρ), we know that
∂∗Ωi(ρ) ⊂ K. Moreover:

(a) by the rectifiability of the reduced boundary (cf. [50, 4.5.6]), ∂∗Ωi(ρ) ⊂ R;

(b) each point x ∈ ∂∗Ωi(ρ) belongs to at most another distinct ∂∗Ωj(ρ), because at any
point y ∈ ∂∗Ω of a Caccioppoli set Ω its blow-up is a half-space, cf. [50, 4.5.5].

Since in what follows we will often deal with subsets of the sphere ∂Bρ, we will use the
following notation:

• ∂∂BρA is the topological boundary of A as subset of ∂Bρ;

• ∂∗∂BρA is the reduced boundary of A relative to ∂Bρ.

Using the slicing theory for sets of finite perimeter we can infer that

Hn−2(∂∗∂Bt(Ωi(ρ)∩ ∂Bt) \ ((∂
∗Ωi(ρ))∩ ∂Bt)) = 0 for a.e. t < ρ. (3.47)

This can be for instance proved identifying Ωi(ρ) and ∂∗Ωi(ρ) with the corresponding
integer rectifiable currents (see [79, Remark 27.7]) and then using the slicing theory for
integer rectifiable currents (cf. [79, Chapter 6, Section 28]). Combining (a), (b) and (3.47)
above we eventually achieve∑

i

Hn−2 ∂∗∂Bt(Ωi(ρ)∩ ∂Bt) 6 2H
n−2 R∩ ∂Bt for a.e. t < ρ. (3.48)

Step 1. In this first step we show that, for every ε0 > 0 and every r0 > 0 small enough,
there exists ρ ∈]r0, 2r0[ satisfying

max
i

{
Hn−1(Γi(ρ))

}
> (σn−1 − ε0)ρ

n−1. (3.49)

Indeed, by (3.46), we consider r0 so small that Hn−1(R∩Bs(x)) 6 ε0sn−1 for every s 6 2r0.
We first claim the existence of a closed set R ⊂]r0, 2r0[ of positive measure such that the
following holds ∀ρ ∈ R:
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(i)

lim
σ∈R,σ→ρ

Hn−2(R∩ ∂Bσ) = Hn−2(R∩ ∂Bρ);

(ii) Hn−1(K∩ ∂Bρ) = 0;

(iii) Hn−2(R∩ ∂Bρ) 6 Cε0ρn−2.

The existence of a set of positive measure R ′ such that (iii) holds at any ρ ∈ R ′ is an obvious
consequence of the coarea formula and of Chebycheff’s inequality, provided the universal
constant C is larger than 2n−1. Moreover, condition (ii) holds at all but countable many radii.
Next, since the map t 7→ Hn−2(R∩ ∂Bt) is measurable, by Lusin’s theorem we can select a
closed subset R of R ′ with positive measure for which (i) holds at every radius.

Fix now a point ρ ∈ R of density 1 for R: it turns out that ρ satisfies indeed condition
(3.49). In order to show that estimate, we first choose (ρk) ⊂ R, ρk ↑ ρ such that (3.48) holds
for t = ρk. Observe that, for every sequence of points xk ∈ ∂Bρk ∩Ωi(ρ) converging to
some x∞, we have that x∞ ∈ Γi(ρ)∪ (K∩ ∂Bρ), otherwise there would exist τ > 0 such that
Bτ(x∞)∩Ωi(ρ) = ∅, against the convergence of xk to x∞. In particular, rescaling everything
at radius ρ, for every η > 0 there exists k(η) such that, for all k > k(η)

Ek,i :=
ρ

ρk
(Ωi(ρ)∩ ∂Bρk) ⊂ Uη (Γi(ρ)∪ (K∩ ∂Bρ))∩ ∂Bρ =: Γi,η,

where Uη denotes the η-tubular neighborhood.
Observe that Hn−1(Γi,η) ↓ Hn−1(Γi(ρ)) as η ↓ 0, because ∂∂BρΓi(ρ) ⊂ K ∩ ∂Bρ and (ii)

holds. On the other hand, for every η > 0, we can take Λη compact subset of Γi(ρ) with
Hn−1(Γi(ρ) \Λη) < η and Uα(Λη) ∩ Bρ ⊂ Ωi(ρ) for some small α(η) > 0. Therefore, for
ρ− ρk < α(η), the following holds

Ek,i ⊃ Λη.

Since Λη ⊂ Ek,i ⊂ Γi,η for every k > k(η), Λη ⊂ Γi(ρ) ⊂ Γi,η and Hn−1(Γi,η \Λη) ↓ 0 as
η ↓ 0, we easily deduce that Ek,i → Γi(ρ) in L1(∂Bρ). Moreover, by (3.48)∑

i

Hn−2(∂∗∂Bρk
(Ωi(ρ)∩ ∂Bρk)) 6 2H

n−2(R∩ ∂Bρk). (3.50)

The L1 convergence shown above, the lower semicontinuity of the perimeter and the defini-
tion of Ek,i imply that∑

i

Hn−2(∂∗∂BρΓi(ρ)) 6 lim inf
k

∑
i

Hn−2(∂∗∂BρEk,i)

= lim inf
k

(
ρ

ρk

)n−2∑
i

Hn−2(∂∗∂Bρk
(Ωi(ρ)∩ ∂Bρk)).

Plugging (3.50), conditions (i) and (iii) in the previous equation, we get∑
i

Hn−2(∂∗∂BρΓi(ρ)) 6 2 lim inf
k

Hn−2(R∩ ∂Bρk) = 2H
n−2(R∩ ∂Bρ) 6 Cε0ρn−2.
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Let us denote by Γ0(ρ) the element of largest Hn−1 measure among the Γi(ρ): applying the
isoperimetric inequality [37, Lemma 9] in ∂Bρ we get

σn−1ρ
n−1 −Hn−1(Γ0(ρ)) =

∑
i>1

Hn−1(Γi(ρ)) 6 C
(
Hn−2(R∩ ∂Bρ

)
)
n−1
n−2 6 Cε

n−1
n−2

0 ρn−1,

namely Hn−1(Γ0(ρ)) > (σn−1 −Cε
n−1
n−2

0 )ρn−1, which proves (3.49).

Step 2. In this second step we let Γ j0(ρ) be a ∼Kj-equivalence class of largest Hn−1-measure
in ∂Bρ \Kj and we claim that:

lim inf
j

Hn−1(Γ j0(ρ)) > Hn−1(Γ0(ρ)), (3.51)

(where, consistently, Γ0(ρ) is a ∼K-equivalence class of largest measure in ∂Bρ \ K; note
that the latter estimate, combined with Step 1, implies, for ε0 sufficiently small and j

sufficiently large, that such equivalence classes of largest Hn−1 measure are indeed uniquely
determined).

Recall thatΩ0(ρ) is associated to Γ0(ρ) according to (3.39). Let us consider δ > 0 sufficiently
small and Γ̄ ⊂⊂ Γ0(ρ) verifying

Hn−1(Γ̄) > Hn−1(Γ0(ρ)) − δ . (3.52)

Next, by compactness, we can uniformly separate Γ̄ and K, that is we can pick η > 0

sufficiently small so that

V :=
⋃

s∈[ρ−η,ρ]

s

ρ
Γ̄ =
{
x ∈ Bρ \Bρ−η : ρ

x

|x|
∈ Γ̄
}
⊂⊂ Bρ \K . (3.53)

Next we choose an open connected subset of Ω0(ρ) with smooth boundary, denoted by
Ω(ρ), such that

|Ω0(ρ) \Ω(ρ)| < δη. (3.54)

The set Ω(ρ) can be constructed as follows:

• first one considers Λ ⊂⊂ Ω0(ρ) compact with |Ω0(ρ) \Λ| < δη: this can be achieved
for instance looking at a Whitney subdivision of Ω0(ρ), taking the union of the cubes
with side length bounded from below by a small number;

• Λ can be enlarged to become connected by adding, if needed, a finite number of arcs
at positive distance from ∂Ω0(ρ);

• we can finally take a C∞ function f : Rn → R such that f|Rn\Ω0(ρ) = 0, f|Λ = 1 and
0 6 f 6 1: by the Morse-Sard Theorem, one can choose t ∈]0, 1[ such that {f = t} is a
C∞ submanifold.

• the connected component of {f > t} containing Λ satisfies the required assumptions.
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Since Ω(ρ) ⊂⊂ Ω0(ρ), by weak convergence Hn−1(Kj ∩Ω(ρ))→ 0; moreover since Ω(ρ) is
smooth and connected, it satisfies the isoperimetric inequality

|Ω(ρ) \Ωj(ρ)| 6 Iso(Ω(ρ))(Hn−1(Ω(ρ)∩Kj))
n
n−1 = oj(1) . (3.55)

where Ωj(ρ) is the connected component of Ω(ρ) \ Kj of largest volume and Iso(Ω(ρ)) is
the isoperimetric constant of the smooth connected domain Ω(ρ) (for the isoperimetric
inequality see [50, Theorem 4.5.2(2)] and use the fact that ∂∗Ωj(ρ) ⊂ Kj, which has been
observed above).

Obviously (3.53) implies Hn−1(Kj ∩ V) → 0 and, by projecting Kj ∩ V on ∂Bρ via the
radial map Π : Bρ 3 x 7→ ρ

|x|x ∈ ∂Bρ, we easily get that the set

Γ̄ j := {y ∈ Γ̄ : Π−1(y)∩ V ∩Kj = ∅}

verifies

Hn−1(Γ̄ j) = Hn−1(Γ̄) −Hn−1(Π(Kj ∩ V))
> Hn−1(Γ̄) − (LipΠ|Bρ\Bρ−η)

n−1Hn−1(Kj ∩ V) = Hn−1(Γ̄) − oj(1).
(3.56)

We deduce from (3.56) that

|V ∩Π−1(Γ̄ j)| = |V |− |V \Π−1(Γ̄ j)| > |V |− ηHn−1(Γ̄ \ Γ̄ j) > |V |− oj(1). (3.57)

The previous inequality, (3.53), (3.54) and (3.55) in turn imply that

|V \ (Ωj(ρ)∩Π−1(Γ̄ j))| 6 |V \Ωj(ρ)|+ |V \Π−1(Γ̄ j)|

(3.53),(3.57)
6 |Ω0(ρ) \Ω(ρ)|+ |Ω(ρ) \Ωj(ρ)|+ oj(1)

(3.54),(3.55)
6 ηδ+ oj(1).

(3.58)

If x ∈ V ∩Ωj(ρ) ∩ Π−1(Γ̄ j), then x ∼Kj Π(x) using as a path simply the radial segment
[x,Π(x)[; moreover we can always connect two points belonging to V ∩Ωj(ρ)∩Π−1(Γ̄ j) with
a path inside Ωj(ρ). But, by (3.58), the endpoints Π(x) of these segments must cover all
but a small fraction Gj of Γ̄ j of measure oj(1). Indeed we can estimate the complement set
Gj := Π(V \ (Ωj(ρ)∩Π−1(Γ̄ j))) using the coarea formula and the self similarity of the shells:

ρ

n

(
1−

(
1−

η

ρ

)n)
Hn−1(Gj) =

∫ρ
ρ−η

Hn−1
(
t

ρ
Gj

)
dt

6 |V \ (Ωj(ρ)∩Π−1(Γ̄ j))| 6 δη+ oj(1),

which yields, for η small enough (namely smaller than a positive constant η0(n, ρ)),

Hn−1(Gj) 6 2δ+ oj(1) . (3.59)

By concatenating the paths we conclude that Γ̄ j \Gj must be contained in a unique equiv-
alence class Γ ji (ρ). We remark that for the moment we do not know whether Γ ji (ρ) is an
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equivalence class of ∂Bρ \Kj with largest measure. Summarizing the inequalities achieved
so far we conclude

Hn−1(Γ j0(ρ)) > Hn−1(Γ ji (ρ)) > Hn−1(Γ̄ j \Gj)
(3.59)
> Hn−1(Γ̄ j) − 2δ− oj(1)

(3.56)
> Hn−1(Γ̄) − oj(1) − 2δ

(3.52)
> Hn−1(Γ0(ρ)) − oj(1) − 3δ

In particular, letting first j ↑∞ and then δ ↓ 0 we achieve (3.51).

Step 3. We recover a straightforward contradiction since, by the density lower bound (d.l.b.)
proven in Lemma 3.15, the good class property (g.c.p.) of P(F,H), the lower semicontinuity
(l.s.) in the weak convergence (3.44) and the bound (2.10), we get

c0ρ
n−1

d.l.b.
6 µ(Bx,ρ)

l.s.
6 lim inf

j
F(Kj,Bx,ρ)

g.c.p.
6 lim inf

j
F(∂Bx,ρ \ Γ

j
0(ρ))

(2.10)
6 Λ lim inf

j
Hn−1(∂Bx,ρ \ Γ

j
0(ρ)).

Plugging in (3.51) and (3.49) (both relative to the complementary sets), we get

c0ρ
n−1

(3.51)
6 ΛHn−1(∂Bx,ρ \ Γ0(ρ))

(3.49)
6 Λε0ρ

n−1,

which is false for ε0 small enough. We conclude Hn−1(N) = 0, hence the rectifiability of the
set K.

3.4.4 Proof of Theorem 3.13: semicontinuity

We are now ready to complete the proof of Theorem 3.13, namely to show that lim infj F(Kj) >
F(K) and µ = F(x, TxK)Hn−1 K, when the integrand F is elliptic.
We claim indeed that θ(x) > F(x, TxK) for every x where the rectifiable set K has an approxi-
mate tangent plane π = TxK and θ is approximately continuous. Let x be such point and
assume, without loss of generality, that x = 0. We therefore have the following limit in the
weak∗ topology:

θ(r·)Hn−1 K

r

∗
⇀ θ(0)Hn−1 π for r ↓ 0. (3.60)

For a suitably chosen sequence rj ↓ 0, consider the corresponding rescaled sets K̃j := 1
rj
Kj

and rescaled measures µ̃j := F̃jH
n−1 K̃j, where F̃j(y) := F(rjy, TyK̃j). With a diagonal

argument, if rj ↓ 0 sufficiently slow (since the blow-up to π in (3.60) happens on the full
continuous limit r ↓ 0), then we can assume that the µ̃j are converging weakly∗ in Rn to
µ̃ = θ(0)Hn−1 π. Note moreover that µ̃j(B1)→ ωn−1θ(0) because µ̃(∂B1) = 0.

Let Ω̃j be the largest connected component of B1 \ K̃j. As already observed, Ω̃j is a
Caccioppoli set and ∂∗Ω̃j ⊂ K̃j. Up to subsequences, we can assume that Ω̃j converges as a
Caccioppoli set to some Ω̃ whose reduced boundary in B1 must be contained in π. We thus
have three alternatives:
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(i) Ω̃ is the lower or the upper half ball of B1 \ π. In this case, the lower semicontinuity of
the energy F on Caccioppoli sets (which follows from [50, 5.1.2 & 5.1.5]) implies

ωn−1r
n−1F(0,π) 6 lim inf

j→∞
∫
∂∗Ωj∩B1

F(0, Ty∂∗Ωj)dHn−1(y)

= lim inf
j→∞

∫
∂∗Ωj∩B1

F(rjy, Ty∂∗Ωj)dHn−1(y)

6 lim
j→∞

∫
K̃j∩B1

F̃(y)dHn−1(y) = lim
j→∞ µ̃j(B1) = ωn−1θ(0) ,

which is the desired inequality.

(ii) Ω̃ is the whole B1;

(iii) Ω̃ is the empty set.

The third alternative is easy to exclude. Indeed in such case |Ω̃j| converges to 0. On the
other hand, if we consider one of the two connected components of B1 \U1/100(π), say
A, we know that Hn−1(K̃j ∩A) converges to 0 (since µ̃j ⇀∗ θ(0)Hn−1 π). The relative
isoperimetric inequality implies that the volume of the largest connected component of
A \ K̃j converges to the volume of A (cf. the argument for (3.55)).

Consider next alternative (ii). We argue similarly to step 2 of the previous subsection.
Consider a fixed ε > 0 and set Γ̄+ = (∂B1)

+ \U3ε(π), where (∂B1)
+ = ∂B1 ∩ {xn > 0},

having set xn a coodinate direction orthogonal to π: in particular Hn−1(Γ̄+) > σn−1/2−Cε.
Similary to step 2 consider

V =
⋃

1−ε6s61

sΓ̄+

consisting of the segments Sx := [(1− ε)x, x] for every x ∈ Γ̄+. In particular for ε sufficiently
small we have V ⊂ B1 \U2ε(π) and thus we know that

(a) Hn−1(K̃j ∩ V)→ 0;

(b) |V \ Ω̃j|→ 0.

In particular, if we consider, as in step 3 above, the set G̃+
j ⊂ Γ̄

+ of points for which either
Sx ∩ Ω̃j = ∅ or Sx ∩ K̃j 6= ∅, we conclude that Hn−1(G̃+

j ) = oj(1).
If we define symmetrically the sets Γ̄− and G̃−

j , the same argument gives us Hn−1(Γ̄−) >

σn−1/2 − Cε as well as Hn−1(G̃−
j ) = oj(1). Choosing now ε small and an appropriate

diagonal sequence, we conclude the existence of a sequence of sets Γ̃j = Γ̄+ ∪ Γ̄− \ (G̃+
j ∪

G̃−
j ) ⊂ ∂B1 \ K̃j with the property that

• Hn−1(Γ̃j) converges to σn−1;

• any two points x,y ∈ Γ̃j can be connected in B̄1(0) with an arc which does not intersect
K̃j.
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Therefore each Γ̃j must be contained in a unique equivalence class Γi(j)(K̃j, 0, 1). Coming to
the sets Kj by scaling backwards, we find a sequence of sets Γi(j)(Kj, 0, rj) in the equivalence
classes of Definition 3.9 such that

lim
j→∞

Hn−1(∂B0,rj \ Γi(j)(Kj, 0, rj))

rn−1j

= 0 .

Considering the bound F(Kj ∩ Brj) 6 ΛHn−1(∂B0,rj \ Γi(j)(Kj, 0, rj)), we can pass to the
rescaled measures again to conclude µ̃j(B1(0)) = oj(1), clearly contradicting the assumption
that µj(B1(0)) converges to the positive number θ(0).

3.4.5 Proof of Proposition 3.14

We first need the following estimates.

Lemma 3.16. Let K be the (n− 1)-rectifiable set obtained in the previous section. For every x where
K has an approximate tangent plane TxK, let Ox be the special orthogonal transformation of Rn

mapping {x1 = 0} onto TxK and set Q̄x,r = Ox(Qx,r) and R̄x,r,εr = Ox(Rx,rεr).
Then at Hn−1 almost every x ∈ K the following holds: for every ε > 0 there exist r0 = r0(x) 6
1√
n

dist(x,H) such that, for r 6 r0/2,

(λωn−1 − ε)r
n−1 6 µ(Bx,r) 6 (θ(x)ωn−1 + ε)r

n−1,

(θ(x) − ε)rn−1 < µ(Q̄x,r) < (θ(x) + ε)rn−1,
(3.61)

sup
y∈Bx,r0 ,S∈G(n,n−1)

|F(y,S) − F(x,S)| 6 ε. (3.62)

Moreover, for almost every such r, there exists j0(r) ∈N such that for every j > j0:

(θ(x)ωn−1 − ε)r
n−1 6 F(Kj,Bx,r) 6 (θ(x)ωn−1 + ε)r

n−1, (3.63)

(θ(x) − ε)rn−1 6 F(Kj, Q̄x,r) 6 (θ(x) + ε)rn−1, F(Kj,Qx,r \ R̄x,r,εr) < εr
n−1.

(3.64)

Proof. Fix a point x where TxK exists and θ is approximately continuous: for the sake
of simplicity, we can assume x = 0 and that, after a rotation, the approximate tangent
space at 0 coincides with TK = {xn = 0}. For almost every r 6 r0/2 we can suppose that
µ(∂Br) = µ(∂Qr) = µ(∂Rr,εr) = 0; moreover by rectifiability and the density lower bound
(3.42), we also know that Br ∩K ⊂ Uεr(TK) (see the proof above). The second equation in
(3.64) follows than by weak convergence. We also know that, up to further reducing r0, for
r 6 r0/2, (3.45) and [12, Theorem 2.83] imply that

(θ(0)ωn−1 − ε)r
n−1 < µ(Br) < (θ(0)ωn−1 + ε)r

n−1, (3.65)

(θ(0) − ε)rn−1 < µ(Qr) < (θ(0) + ε)rn−1. (3.66)

Again by weak convergence, we recover (3.63) and the first equation in (3.64). Moreover
(3.62) is a consequence of (3.41). Finally (3.61) follows from (3.65), (3.66) and θ > λ, whereas
the latter bound is a consequence of the previous subsection where we have shown θ(x) >
F(x, TxK).
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Assume w.l.o.g. x = 0. Arguing by contradiction, we assume that θ(0) = F(0, T0K) + σ for
some σ > 0 and let ε < min{σ2 , λσ4Λ }. As a consequence of (3.64), there exist r and j0 = j0(r)
such that

F(Kj,Qr) >
(
F(0, T) +

σ

2

)
rn−1 , F(Kj,Qr \ Rr,εr) <

λσ

4Λ
rn−1, ∀j > j0 . (3.67)

Consider the map P ∈ D(0, r) defined in [44, Equation 3.14] which collapses Rr(1−√ε),εr onto
the tangent plane TK and satisfies ‖P− Id‖∞ + Lip (P− Id) 6 C

√
ε. Exploiting the fact that

P(F,H) is a deformation class and by almost minimality of Kj, we find that

F(Kj,Qr) − oj(1) 6 F(P(Kj),P(R(1−√ε)r,εr))︸ ︷︷ ︸
I1

+F(P(Kj),P(Rr,εr \ R(1−
√
ε)r,εr))︸ ︷︷ ︸

I2

+ F(P(Kj),P(Qr \ Rr,εr))︸ ︷︷ ︸
I3

.

By the properties of P and (3.62), we get I1 6 (F(0, TK) + ε)rn−1, while, by (3.67) and
equation (2.10)

I3 6
Λ

λ
(LipP)n−1 F(Kj,Qr \ Rr,εr) < (1+C

√
ε)n−1

σ

4
rn−1 .

Since F(P(Kj),P(Rr,εr \ R(1−
√
ε)r,εr)) 6

Λ
λ (1+C

√
ε)n−1F(Kj,Rr,εr \ R(1−

√
ε)r,εr) and Rr,εr \

R(1−
√
ε)r,εr ⊂ Q(1−

√
ε)r \Qr, by (3.64) we can also bound

I2 = F(P(Kj),P(Rr,εr \ R(1−
√
ε)r,εr)) 6

Λ

λ
(1+C

√
ε)n−1F(Kj,Qr \Q(1−

√
ε)r)

6 C(1+C
√
ε)n−1

(
(F(0, TK)+σ+ε)−(F(0, TK)+σ−ε)(1−

√
ε)n−1

)
rn−1 6 C

√
εrn−1.

Hence, as j→∞, by (3.61)(
F(0, TK) +

σ

2

)
rn−1 6 (F(0, TK) + ε)rn−1 +C

√
εrn−1 + (1+C

√
ε)n−1

σ

4
rn−1 :

dividing by rn−1 and letting ε ↓ 0 provides the desired contradiction.
We obtain that θ(x) 6 F(x, TxK) almost everywhere and, together with the previous step,

µ = F(x, TxK)Hn−1 K.

3.5 anisotropic plateau problem in higher codimension

In this section we present our paper [43], which concludes the series of works on the Plateau
problem presented in Sections 3.3 and 3.4: we here provide a general and flexible existence
result for sets that minimize an anisotropic energy, which can be applied to several notions
of boundary conditions. In the spirit of the previous sections, we use the direct methods of
the calculus of variations to find a minimizing measure via standard compactness arguments,
and then we aim at proving that it is actually a fairly regular surface.

We have employed in Sections 3.3 and 3.4 several techniques to first establish the rectifia-
bility of the limit measure: in the case of the area integrand this property has been deduced
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from the powerful result due to Preiss (see Theorem 3.4), while for the anisotropic case
in codimension one, it has been obtained as a consequence of the theory of sets of finite
perimeter and of the isoperimetric inequality on the sphere.

These two techniques are no longer available in the case of anisotropic problems in higher
codimension (in particular due to the lack of a monotonicity formula). Nevertheless, a
new rectifiability criterion has been obtained in [42, Theorem 1.2], see Theorem 4.2, for
varifolds having positive lower density and a bounded anisotropic first variation, extending
the celebrated rectifiability theorem of Allard [2].

3.5.1 Preliminary assumptions

We will assume throughout this section the following ellipticity condition on the Lagrangian
F, which has been introduced in [7], and that is a geometric version of quasiconvexity, cf.
[71]:

Definition 3.17 (Elliptic anisotropy, [7, 1.2]). The anisotropic Lagrangian F is said to be
elliptic if there exists Γ > 0 such that, whenever x ∈ Rn and D is a d-disk centered in x and
with radius r, then the inequality

Fx(K,Bx,r) − Fx(D,Bx,r) > Γ(H
d(K∩Bx,r) −Hd(D))

holds for every d-rectifiable set K such that K ∩ Bx,r is closed, K ∩ ∂Bx,r = ∂D× {0} and K
cannot be deformed into ∂D× {0} via a map ϕ ∈ D(x, r).

Remark 3.18. Given a d-rectifiable set K and a deformation ϕ ∈ D(x, r), using property (2.10),
we deduce the quasiminimality property

F(ϕ(K)) 6 ΛHd(ϕ(K)) 6 Λ(Lip (ϕ))dHd(K) 6
Λ

λ
(Lip (ϕ))dF(K). (3.68)

Moreover, whenever U ⊂⊂ Rn, the following holds

sup
x,y∈US,T∈G

|F(x, T) − F(y,S)| 6 ωU(|x− y|+ ‖T − S‖), (3.69)

for some modulus of continuity ωU for F in G(U).

We want to employ a generalization of Allard’s rectifiability theorem for anisotropic
energies recently obtained in [42]: in order to do so, we also assume another ellipticity
property on the Lagrangian F, called atomic condition, see Definition 4.1, which guarantees
the validity of Theorem 4.2, proven in the next chapter. This ellipticity condition is equivalent,
in codimension one, to the strict convexity of F (hence to Definition 3.17), as shown in
Theorem 4.3. Unfortunately, in the general codimension case we are not yet able to relate it
to Definition 3.17.

3.5.2 Main theorem

The following theorem is the main result of Section 3.5 and establishes the behavior of
minimizing sequences.
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Theorem 3.19. Let H ⊂ Rn be closed and P(F,H) be a deformation class in the sense of Definition
3.2. Assume the infimum in Plateau problem (3.2) is finite and let (Kj) ⊂P(F,H) be a minimizing
sequence. Then, up to subsequences, the measures µj := F(·, T(·)Kj)Hd Kj converge weakly?

in Rn \ H to the measure µ = F(·, T(·)K)Hd K, where K = sptµ \ H is a d-rectifiable set.
Furthermore the integral varifold naturally associated to µ is F-stationary in Rn \H. In particular,
lim infj F(Kj) > F(K) and if K ∈P(F,H), then K is a minimum for (3.2).

Remark 3.20. We observe that in case the set K provided by the Theorem 3.19 belongs to
P(F,H), it has minimal F energy with respect to deformations in the classes D(x, r) of
Definition 3.1, with x ∈ K and H∩Br(x) = ∅.

While the union of these classes is strictly contained in the class of all Lipschitz deforma-
tions, however such union is rich enough to generate the comparison sets in [8] which are
needed to prove the almost everywhere regularity of K, under the assumption of the strict
ellipticity in Definition 3.17, see [8, III.1 and III.3].

3.5.3 Proof of Theorem 3.19

Since the infimum in Plateau problem (3.2) is finite, there exists a minimizing sequence
(Kj) ⊂P(F,H) and a Radon measure µ on Rn \H such that

µj
∗
⇀ µ , as Radon measures on Rn \H , (3.70)

where µj = F(·, T(·)Kj)Hd Kj. We set K = sptµ and consider also the canonical density one
rectifiable varifolds Vj associated to Kj:

Vj := Hd Kj ⊗ δTxKj .

Since Kj is a minimizing sequence in (3.2) and F > λ, we have the bound (for j large)
‖Vj‖(Rn) 6 2m0

λ , and therefore we can assume that Vj converges to V in the sense of
varifolds.

We now prove that V is F-stationary in Rn \H: arguing by contradiction, if V were not
F-stationary, we would be able to exhibit a competing sequence of sets with strictly lower
energy.

Assume indeed the existence of g ∈ C1c(Rn \H, Rn) such that δFV(g) < 0. By standard
partition of unity argument for the compact set supp(g) in the open set Rn \H, we get the
existence of a ball Bx,r ⊂⊂ Rn \H and a vector field (not relabeled) g ∈ C1c(Bx,r, Rn) such
that δFV(g) = −2c < 0. For an arbitrarily small time T > 0, we gat that (Id + Tg) ∈ D(x, r).
Moreover, there exists an open set Bx,r ⊂ A ⊂ Rn, satisfying ‖(Id + Tg)#V‖(∂A) = 0. We
consequently have

F((Id + Tg)#V ,A) 6 −cT + F(V ,A).

By lower semicontinuity and by the hypothesis on ∂A, for j large enough it holds true:

F((Id + Tg)#Vj,A) −
1

j
6 −cT + F(Vj,A) +

1

j
.
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Note that F((Id + Tg)#Vj,A) = F((Id + Tg)(Kj),A) as well as F(Vj,A) = F(Kj,A): adding to
both members F(Kj, Rn \A) and noting that (Id + Tg)(Kj) \A = Kj \A, we obtain

F((Id + Tg)(Kj), Rn) 6
2

j
− cT + F(Kj, Rn).

Since (Id + Tg) ∈ D(x, r) and Bx,r ⊂⊂ Rn \H, this is a contradiction with the minimizing
property of the sequence (Kj) in the deformation class P(F,H).

The limit varifold V satisfies moreover a density lower bound: there exists θ0 > 0 such
that

‖V‖(Bx,r) > θ0ωdr
d , x ∈ spt ‖V‖ and r < dx := dist(x,H). (3.71)

The proof is similar to Thorem 3.3, Step 1, and we show it in the Appendix 3.5.4. Combining
this property with the F-stationarity in Rn \H and applying Theorem 4.2, we conclude
that V is a d-rectifiable varifold and in turn, that µ = F(V , ·) = θHd K̃ for some countably
Hd-rectifiable set K̃ and some positive Borel function θ. Since K is the support of µ, then
Hd(K̃ \K) = 0. On the other hand, by differentiation of Hausdorff measures, (3.71) yields
Hd(K \ K̃) = 0. Hence K is d-rectifiable and

µ = θHd K. (3.72)

We now proceed to compute the exact value of the density θ: to this end, we need the
following Lemma (see also [38, Lemma 3.2]), whose proof is postponed to the Appendix 3.5.4.

Lemma 3.21. Let K be the d-rectifiable set obtained in the previous section. For every x where K has
an approximate tangent plane TxK, let Ox be the special orthogonal transformation of Rn mapping
{xd+1 = · · · = xn = 0} onto TxK and set Q̄x,r = Ox(Qx,r) and R̄x,r,εr = Ox(Rx,rεr). At almost
every x ∈ K the following holds: for every ε > 0 there exist r0 = r0(x) 6 1√

n+1
dist(x,H) such that,

for r 6 r0/2,

(θ0ωd − ε)r
d 6 µ(Bx,r) 6 (θ(x)ωd + ε)r

d, (θ(x) − ε)rd < µ(Q̄x,r) < (θ(x) + ε)rd,
(3.73)

sup
y∈Bx,r0 ,S∈G

|F(y,S) − F(x,S)| 6 ε, (3.74)

where θ0 = θ0(n,d) is the universal lower bound obtained in (3.71). Moreover, for almost every
such r, there exists j0(r) ∈N such that for every j > j0:

(θ(x)ωd − ε)r
d 6 F(Kj,Bx,r) 6 (θ(x)ωd + ε)r

d, (3.75)

(θ(x) − ε)rd 6 F(Kj, Q̄x,r) 6 (θ(x) + ε)rd, F(Kj, Q̄x,r \ R̄x,r,εr) < εr
d. (3.76)

We are now ready to complete the proof of Theorem 5.2, namely to show that lim infj F(Kj) >
F(K) and moreover µ = F(x, TxK)Hd K.
For the lower semicontinuity, it will be enough to show that θ(x) > F(x, TxK), where x ∈ K
satisfies the properties of Lemma 3.21. Assume w.l.o.g. x = 0. Let us fix ε < r0/2 and choose
a radius r such that both r and (1−

√
ε)r satisfy properties (3.73)-(3.76): in order to apply

the ellipticity assumption in Definition 3.17 of F, we need to compare our set with T0K∩ ∂Br.



46 existence and regularity results for the anisotropic plateau problem

We reach this comparison with the help of a map P ∈ D(0, r) that squeezes a large portion of
Br onto T0K. Before doing this, we need to preliminary deform our competing sequence into
another one, of approximately the same energy, whose associated measures are concentrated
near T0K. In turn this, with the help of the density lower bound 3.71, can be achieved
by applying a polyhedral deformation in B2r outside the slab R0,2r,εr: this construction
is obtained as in Theorem 3.3, Step 4. Once we have ensured that, up to a deformation
φ ∈ D(0, 2r),

Hd(φ(Kj)∩B2r \ R0,2r,εr) = 0 (3.77)

(see equation (3.20)) we can proceed to the squeezing deformation. With abuse of notation,
we will rename this new sequence (φ(Kj)) with (Kj). Consider now a map S satisfying

• S = Id in B1−√ε ∪ (Rn \B1+
√
ε),

• S(∂B∩Uε(T0K)) = ∂B∩ T0K,

• S stretches ∂B \Uε(T0K) onto ∂B \ T0K.

It is not hard to construct an extension S ∈ D(0, 1) fulfilling the previous requirements and
such that S|B1+√ε\B and S|B\B1−√ε are interpolations between the values of S on the three
spheres S|∂B1+√ε , S|∂B and S|B\B1−√ε . One can also assume that ‖S− Id‖∞ + Lip (S− Id) 6

C
√
ε and then obtain the desired map by rescaling P(·) = rS( ·r).

We set K ′j := P(Kj) and since Kj ∩ B(1−
√
ε)r = K ′j ∩ B(1−

√
ε)r, using Remark 3.18 and

property (3.75), we estimate:

F
(
Kj,Br

)
> F

(
K ′j,B(1−

√
ε)r

)
> F

(
K ′j,Br

)
− F

(
K ′j,Br \B(1−

√
ε)r

)
> F(K ′j,Br) −

Λ

λ
Lip (P)dF

(
Kj,Br \B(1−

√
ε)r

)
= F(K ′j,Br) −

Λ

λ
Lip (P)d

(
F(Kj,Br) − F

(
Kj,B(1−

√
ε)r

))
> F(K ′j,Br) −

Λ

λ
Lip (P)d(θ(0)ωd + ε)r

d +
Λ

λ
Lip (P)d(θ(0)ωd − ε)(1−

√
ε)drd

> F(K ′j,Br) −C
√
εrd.

(3.78)

We furthermore observe that K ′j ∩Br cannot be deformed via any map Q ∈ D(0, r) onto
∂Br ∩ T0K. Otherwise, being P(F,H) a deformation class, there would exist a competitor
Jj ∈ P(F,H), εrd-close in energy to K ′′j := Q(P(Kj)), with K ′′j ∩ Br = ∅. Since K ′′j ∩ (Rn \

B(1+
√
ε)r) = Kj ∩ (Rn \B(1+

√
ε)r), using (3.75) and equation (3.68), we would get:

F(Kj) − F(Jj) > F
(
Kj,B(1+

√
ε)r

)
− F

(
K ′′j ,B(1+

√
ε)r

)
− εrd

> F(Kj,Br) + F
(
Kj,B(1+

√
ε)r \Br

)
− F

(
K ′j,B(1+

√
ε)r \Br

)
− εrd

> (θ0ωd − ε)r
d + (θ(0)ωd + ε)((1+

√
ε)d − 1)

(
1−

Λ

λ
Lip (P)d

)
rd − εrd

> (θ0ωd −C
√
ε)rd > 0,
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which contradicts the minimizing property of the sequence {Kj} if ε is small enough.
In order to apply the ellipticity condition in Definition 3.17, we want to costruct another

closed set K̃j such that

(i) K̃j ∩ ∂Br = (∂Br ∩ T0K),

(ii) K̃j ⊂ Br cannot be deformed via any map Q ∈ D(0, r) onto ∂Br ∩ T0K,

(iii) F0(K̃j,Br) = F0(K ′j,Br).

We can achieve this set in the following way

K̃j := (∂Br ∩ T0K)∪ (K ′j ∩Br ∩ R0,r,εr \ {‖x||‖ > r− ‖x⊥‖}),

where x|| and x⊥ denote respectively the projections of x on T0K and its orthogonal linear
subspace. Indeed condition (i) is straightforward by construction, condition (ii) is a direct
consequence of the fact that K ′j ∩ Br cannot be deformed via any map Q ∈ D(0, r) onto
∂Br ∩ T0K. Condition (iii) follows by (3.77) and the properties of the map S, for ε small
enough.

Therefore, the ellipticity of F, (3.74), (3.75), (3.68) and (3.71) imply that

F0(T0K,Br) 6 F0(K̃j,Br) = F0(K ′j,Br) 6 F(K ′j,Br) +Cεr
d. (3.79)

We can now sum up as follows

θ(0)ωdr
d

(3.75)
> F(Kj,Br) − εrd

(3.78)
> F(K ′j,Br) −C

√
εrd

(3.79)
> F0(T0K,Br) −C

√
εrd = F(0, T0K)ωdrd −C

√
εrd

which easily implies the desired inequality θ(0) > F(0, T0K).

To get the last claim, we prove that θ(x) 6 F(x, TxK) for almost every x ∈ K (again
satisfying the setting of Lemma 3.21). We remark that this concluding argument is in the
spirit of Theorem 3.3, Step 5. Take as usual w.l.o.g. x = 0. Arguing by contradiction, we
assume that θ(0) = F(0, T0K) + σ for some σ > 0 and let ε < min{σ2 , λσ4Λ }. As a consequence
of (3.76), there exist r and j0 = j0(r) such that

F(Kj,Qr) >
(
F(0, T) +

σ

2

)
rd , F(Kj,Qr \ Rr,εr) <

λσ

4Λ
rd, ∀j > j0 . (3.80)

Consider the map P ∈ D(0, r) defined in [44, Equation 3.14] which collapses Rr(1−√ε),εr onto
the tangent plane T0K and satisfies ‖P− Id‖∞ + Lip (P− Id) 6 C

√
ε. Exploiting the fact that

P(F,H) is a deformation class and by almost minimality of Kj, we find that

F(Kj,Qr) − oj(1) 6 F(P(Kj),P(R(1−√ε)r,εr))︸ ︷︷ ︸
I1

+F(P(Kj),P(Rr,εr \ R(1−
√
ε)r,εr))︸ ︷︷ ︸

I2

+ F(P(Kj),P(Qr \ Rr,εr))︸ ︷︷ ︸
I3

.
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By the properties of P and (3.74), we get I1 6 (F(0, T0K) + ε)rd, while, by (3.80) and equation
(3.68)

I3 6
Λ

λ
(LipP)d F(Kj,Qr \ Rr,εr) < (1+C

√
ε)d

σ

4
rd .

Since F(P(Kj),P(Rr,εr \ R(1−
√
ε)r,εr)) 6 Λ

λ (1 + C
√
ε)dF(Kj,Rr,εr \ R(1−

√
ε)r,εr) and Rr,εr \

R(1−
√
ε)r,εr ⊂ Q(1−

√
ε)r \Qr, by (3.76) we can also bound

I2 = F(P(Kj),P(Rr,εr \ R(1−
√
ε)r,εr)) 6

Λ

λ
(1+C

√
ε)dF(Kj,Qr \Q(1−

√
ε)r)

6 C(1+C
√
ε)d
(
(F(0, T0K) + σ+ ε) − (F(0, T0K) + σ− ε)(1−

√
ε)d
)
rd 6 C

√
εrd.

Hence, as j→∞, by (3.73)(
F(0, T0K) +

σ

2

)
rd 6 (F(0, T0K) + ε)rd +C

√
εrd + (1+C

√
ε)d

σ

4
rd :

dividing by rd and letting ε ↓ 0 provides the desired contradiction.
We obtain that θ(x) 6 F(x, TxK) almost everywhere and, together with the previous step,

µ = F(x, TxK)Hd K.

3.5.4 Appendix

In this appendix, we prove for the reader’s convenience some results concerning the density
bounds that are used in the proof of the Theorem 3.19. These results are similar to the ones
proven for Theorems 3.3 and 3.13.

Proof of the lower density estimates

Consider the limiting measure µ obtained in (3.70). We show in this section the existence of
θ0 = θ0(n,d) > 0 such that

µ(Bx,r) > θ0ωdr
d , x ∈ sptµ and r < dx := dist(x,H). (3.81)

To this end, it is sufficient to prove the existence of β = β(n,d) > 0 such that

µ(Qx,l) > β l
d , x ∈ sptµ and l < 2dx/

√
n .

Let us assume by contradiction that there exist x ∈ sptµ and l < 2dx/
√
n such that

µ(Qx,l)
1
d

l
< β.

We claim that this assumption, for β chosen sufficiently small depending only on d and n,
implies that for some l∞ ∈ (0, l)

µ(Qx,l∞) = 0, (3.82)

which is a contradiction with the property of x to be a point of sptµ. In order to prove (3.82),
we assume that µ(∂Qx,l) = 0, which is true for a.e. l.

To prove (3.82), we construct a sequence of nested cubes Qi = Qx,li such that, if β is
sufficiently small, the following holds:
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(i) Q0 = Qx,l;

(ii) µ(∂Qx,li) = 0;

(iii) setting mi := µ(Qi) then:

m
1
d

i

li
< β;

(iv) mi+1 6 (1− 1
k2

)mi, where k2 := Λk1
λ and k1 is the constant in Theorem 5.4 (6);

(v) (1− 4εi)li > li+1 > (1− 6εi)li, where

εi :=
1

kβ

m
1
d

i

li
(3.83)

and k = max{6, 6/(1− (k2−1k2 )
1
d )} is a universal constant;

(vi) limimi = 0 and limi li > 0.

Following [32], we are going to construct the sequence of cubes by induction: the cube
Q0 satisfies by construction hypotheses (i)-(iii). Suppose that cubes until step i are already
defined.

Setting mji := F(Kj,Qi), we cover Qi with the family Λεili(Qi) of closed cubes with edge
length εili and we set Ci1 and Ci2 for the corresponding sets defined in (3.6). We define
Qi+1 to be the internal cube given by the construction, and we note that Ci2 and Qi+1 are
non-empty if, for instance,

εi =
1

kβ

m
1
d

i

li
<
1

k
6
1

6
,

which is guaranteed by our choice of k. Observe moreover that Ci1 ∪Ci2 is a strip of width at
most 2εili around ∂Qi, hence the side li+1 of Qi+1 satisfies (1− 4εi)li 6 li+1 < (1− 2εi)li.

Now we apply Theorem 3.7 to Qi with E = Kj and ε = εili, obtaining the map Φi,j =
Φεili,Kj . We claim that, for every j sufficiently large,

m
j
i 6 k2(m

j
i −m

j
i+1) + oj(1). (3.84)

Indeed, since (Kj) is a minimizing sequence, by the definition of deformation class and by
(2.10), we have that

m
j
i 6 mi + oj(1) 6 ΛH

d
(
Φi,j

(
Kj ∩Qi

))
+ oj(1)

= ΛHd
(
Φi,j

(
Kj ∩Qi+1

))
+ΛHd

(
Φi,j

(
Kj ∩ (Ci1 ∪Ci2)

))
+ oj(1)

6 Λk1H
d
(
Kj ∩ (Ci1 ∪Ci2)

)
+ oj(1) = k2(m

j
i −m

j
i+1) + oj(1).

The last inequality holds because Hd
(
Φi,j

(
Kj ∩Qi+1

))
= 0 for j large enough: otherwise,

by property (5) of Theorem 5.4, there would exist T ∈ Λ∗εili,d(Qi+1) such that Hd(Φi,j(Kj ∩
T)) = Hd(T). Together with property (ii) and by (2.10), this would imply

ldi ε
d
i = Hd(T) 6 Hd

(
Φi,j

(
Kj
)
∩Qi

)
6 k1H

d
(
Kj ∩Qi

)
6
k1
λ
m
j
i →

k1
λ
mi
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and therefore, substituting (3.83),
mi
kdβd

6
k1
λ
mi,

which is false if β is sufficiently small (mi > 0 because x ∈ spt(µ)). Passing to the limit in j
in (3.84) we obtain (iv):

mi+1 6
k2 − 1

k2
mi. (3.85)

Since li+1 > (1− 4εi)li, we can slightly shrink the cube Qi+1 to a concentric cube Q ′i+1
with l ′i+1 > (1− 6εi)li > 0, µ(∂Q ′i+1) = 0 and for which (iv) still holds, just getting a lower
value for mi+1. With a slight abuse of notation, we rename this last cube Q ′i+1 as Qi+1.

We now show (iii). Using (3.85) and condition (iii) for Qi, we obtain

m
1
d

i+1

li+1
6

(
k2 − 1

k2

) 1
d m

1
d

i

(1− 6εi)li
<

(
k2 − 1

k2

) 1
d β

1− 6εi
.

The last quantity will be less than β if

(
k2 − 1

k2

) 1
d

6 1− 6εi = 1−
6

kβ

m
1
d

i

li
. (3.86)

In turn, inequality (3.86) is true because (iii) holds for Qi, provided we choose k > 6/
(
1−

(1− 1/k2)
1
d

)
. Furthermore, estimating ε0 < 1/k by (iii) and (v), we also have εi+1 6 εi.

We are left to prove (vi): limimi = 0 follows directly from (iv); regarding the non
degeneracy of the cubes, note that

l∞
l0

:= lim inf
i

li
l0

>
∞∏
i=0

(1− 6εi) =

∞∏
i=0

1− 6

kβ

m
1
d

i

li


>
∞∏
i=0

1− 6m
1
d

0

kβl0
∏i−1
h=0(1− 6εh)

(
k2 − 1

k2

) i
d


>
∞∏
i=0

(
1−

6

k(1− 6ε0)i

(
k2 − 1

k2

) i
d

)
,

where we used εh 6 ε0 in the last inequality. Since ε0 < 1/k, the last product is strictly
positive, provided

k >
6

1−
(
k2−1
k2

) 1
d

,

which is guaranteed by our choice of k. We conclude that l∞ > 0, which ensures claim (3.82).
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Proof of Lemma 3.21

Fix a point x where TxK exists and θ is approximately continuous: for the sake of simplicity,
we can assume x = 0 and that, after a rotation, the approximate tangent space at 0 coincides
with TK = {xd+1 = ... = xn = 0}. For almost every r 6 r0/2 we can suppose that µ(∂Br) =
µ(∂Qr) = µ(∂Rr,εr) = 0; moreover by rectifiability and the density lower bound (3.71), we
also know that Br ∩ K ⊂ Uεr(TK) (for the proof see [37, eq 2.11]). The second equation in
(3.76) follows than by weak convergence. We also know that, up to further reducing r0, for
r 6 r0/2, (3.72) and [12, Theorem 2.83] imply that

(θ(0)ωd − ε)r
d < µ(Br) < (θ(0)ωd + ε)r

d, (3.87)

(θ(0) − ε)rd < µ(Qr) < (θ(0) + ε)rd. (3.88)

Again by weak convergence, we recover (3.75) and the first equation in (3.76). Moreover
(3.74) is a consequence of (3.69). Finally (3.73) follows from (3.87), (3.88) and (3.71).

3.6 application 1: solution to harrison-pugh formulation

We wish to apply Theorems 3.3, 3.13 and 3.19 to three definitions of boundary conditions.
The first class of competitors is the natural generalization of the one considered by Harrison
and Pugh in [56]. The main theorem of this section is Theorem 3.23, which has been first
obtained by De Lellis, Ghiraldin and Maggi in [37] for the isotropic case in codimension
one and then extended by us in joint work in [44],[38] and [43] respectively to the higher
codimension isotropic case, codimension one anisotropic setting and higher codimension
anisotropic case.

3.6.1 Defintion of the class of competitors

Definition 3.22. Let H be a closed set in Rn.
Let us consider the family

CH =
{
γ : Sn−d → Rn \H : γ is a smooth embedding of Sn−d into Rn

}
.

We say that C ⊂ CH is closed by isotopy (with respect to H) if C contains all elements γ ′ ∈ CH
belonging to the same smooth isotopy class [γ] in πn−d(Rn \H) of any γ ∈ C, see [59, Ch.
8]. Given C ⊂ CH closed by isotopy, we say that a relatively closed subset K of Rn \H is a
C-spanning set of H if

K∩ γ 6= ∅ for every γ ∈ C .

We denote by F(H,C) the family of countably Hd-rectifiable sets which are C-spanning sets
of H.

We can prove the following closure property for the class F(H,C):

Theorem 3.23. Let H be a closed subset of Rn and C be closed by isotopy with respect to H. Then:

(a) For any Lagrangian F, F(H,C) is a deformation class in the sense of Definition 3.2.
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(b) If {Kj} ⊂ F(H,C) is a minimizing sequence and K is any set associated to {Kj} by Theorems
3.3, 3.13, 3.19, then K ∈ F(H,C) and thus K is a minimizer.

(c) If d = n− 1, F(H,C) is also a good class in the sense of Definition 3.10. Moreover, the set K
in (b) is an (F, 0,∞)-minimal set in Rn \H in the sense of Almgren [8].

3.6.2 A preliminary Lemma

The proof of Theorem 3.23(c) relies on the following elementary geometric remark.

Lemma 3.24. Assumne d = n− 1. If K ∈ F(H,C), Bx,r ⊂⊂ Rn \H, and γ ∈ C, then either
γ∩ (K \Bx,r) 6= ∅, or there exists a connected component σ of γ∩Bx,r which is homeomorphic to an
interval and whose end-points belong to two distinct equivalence classes Γi(x, r)’s of ∂Bx,r \K in the
sense of Definition 3.10.

Proof of Lemma 3.24. Step one: We first prove the lemma under the assumption that γ and
∂Bx,r intersect transversally. Indeed, if this is the case, then we can find finitely many
mutually disjoint closed arcs Ii ⊂ S1, Ii = [ai,bi], such that γ ∩ Bx,r =

⋃
i γ((ai,bi)) and

γ ∩ ∂Bx,r =
⋃
i{γ(ai),γ(bi)}. Arguing by contradiction we may assume that for every i

there exists an equivalence class Γi(x, r) of ∂Bx,r \ K such that γ(ai),γ(bi) ∈ Γi(x, r). By
connectedness of the associated Ωi(x, r) (see the discussion after Definition 3.10) and the
definition of Γi(x, r), for each i we can find a smooth embedding τi : Ii → Ωi(x, r)∪ Γi(x, r)
such that τi(ai) = γ(ai) and τi(bi) = γ(bi); moreover since n > 1, one can easily achieve
this by enforcing τi(Ii) ∩ τj(Ij) = ∅. Finally, we define γ̄ by setting γ̄ = γ on S1 \

⋃
i Ii,

and γ̄ = τi on Ii. In this way, [γ̄] = [γ] in π1(Rn \H), with γ̄ ∩ K \ Bx,r = γ ∩ K \ Bx,r = ∅
and γ̄ ∩ K ∩ Bx,r = ∅ by construction; that is, γ̄ ∩ K = ∅. Since there exists γ̃ ∈ CH with
[γ̃] = [γ̄] = [γ] in π1(Rn \H) which is uniformly close to γ̄, we infer γ̃∩K = ∅, and thus find
a contradiction to K ∈ F(H,C).

Step two: We prove the lemma for any ball Bx,r ⊂⊂ Rn \H. Since γ is a smooth embedding,
by Sard’s theorem we find that γ and ∂Bx,s intersect transversally for a.e. s > 0. In particular,
given ε small enough, for any such s ∈ (r− ε, r) we can construct a smooth diffeomorphism
fs : Rn → Rn such that fs = Id on Rn \Bx,r+2ε and fs(y) = x+ (r/s)(y− x) for y ∈ Bx,r+ε,
in such a way that

fs → Id uniformly on Rn as s→ r− . (3.89)

We claim that one can apply step one to fs ◦ γ. Indeed, the facts that fs ◦ γ ∈ C and fs ◦ γ
and ∂Bx,r intersect transversally are straightforward; moreover, since dist(γ,K∩ ∂Bx,r) > 0

and by (3.89) one easily entails that (fs ◦ γ)∩K \Bx,r = ∅. Hence, by step one, there exists
a proper circular arc I = [as,bs] ⊂ S1 such that fs(γ(as)) ∈ Γi(x, r) and fs(γ(bs)) ∈ Γj(x, r)
where Γi(x, r) 6= Γj(x, r) are two equivalence classes of ∂Bx,r \K and (fs ◦ γ)(as,bs) ⊂ Bx,r.
Up to subsequences, we can assume that as → ā, bs → b̄ and the arc [as,bs] converges to
[ā, b̄]. It follows that γ(ā) and γ(b̄) must be belong to distinct equivalence classes of ∂Bx,r \K,
otherwise, by (3.89), fs(γ(as)) and fs(γ(bs)) would belong to the same equivalence class for
some s close enough to r. By (3.89), we also have γ([ā, b̄]) ⊂ Bx,r.
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3.6.3 Proof of Theorem 3.23

Step one: We start by proving that F(H,C) is a deformation class in the sense of Definition
3.2: let K̃ ∈ F(H,C), x ∈ K̃, r ∈ (0, dist(x,H)) and ϕ ∈ D(x, r). We show that ϕ(K̃) ∈ F(H,C)
arguing by contradiction: assume that γ(Sn−d) ∩ϕ(K̃) = ∅ for some γ ∈ C and, without
loss of generality, suppose also that γ(Sn−d)∩ (K̃ \Bx,r) = ∅. By Definition 3.1 there exists a
sequence

(ϕj) ⊂ D(x, r) such that lim
j
‖ϕj −ϕ‖C0 = 0.

Since γ(Sn−d) is compact and ϕj = Id outside Bx,r, for j sufficiently large γ(Sn−d)∩ϕj(K̃) =
∅; moreover ϕj is invertible, hence ϕ−1

j

(
γ(Sn−d)

)
∩ K̃ = ∅. But the property for ϕj of being

isotopic to the identity implies ϕ−1
j ◦ γ ∈ C, which contradicts K̃ ∈ F(H,C). This proves (a).

Step two: By step one, given a minimizing sequence {Kj} ⊂ F(H,C), we can find a set K with
the properties stated in Theorems 3.3, 3.13, 3.19. In order to prove the statement in (b), we
just need to show that K ∈ F(H,C). Suppose by contradiction that some γ ∈ C does not
intersect K. Since both γ and K are compact, there exists a positive ε such that the tubular
neighborhood U2ε(γ) does not intersect K and is contained in Rn \H. Hence µ(U2ε(γ)) = 0,
and thus

lim
j→∞Hd(Kj ∩Uε(γ)) = 0 . (3.90)

Observe that there is a diffeomorphism Φ : Sn−d ×Dε → Uε(γ) such that Φ|Sn−d×{0} = γ,
where Dρ := {y ∈ Rd : |y| < ρ}. Denote by γy the parallel curve Φ|Sn−d×{y}. Then γy ∈ [γ] ∈
πn−d(R

n \H) for every y ∈ Dε. Thus we must have Kj ∩ (γ× {y}) 6= ∅ for every y ∈ Dε
and every j ∈ N. If we set π̂ : Sn−d ×Dε → Dε to be the projection on the second factor
and define π : Uε(γ)→ Dε as π̂ ◦Φ−1, then π is a Lipschitz map. The coarea formula then
implies

Hd(Kj ∩Uε(γ)) >
ωd ε

d

(Lip (π))d
> 0 ,

which contradicts (3.90). This shows that K ∈ F(H,C), as claimed in (b).

Step three: From now on assume that d = n− 1. We show that F(H,C) is a good class in the
sense of Definition 3.10. To this end, we fix V ∈ F(H,C) and x ∈ V , and prove that for a.e.
r ∈ (0, dist(x,H)) one has V ′ ∈ F(H,C), where V ′ is a cup competitor of V in Bx,r. We thus
fix γ ∈ C and, without loss of generality, we assume that γ∩ (V \Bx,r) = ∅. By Lemma 3.24, γ
has an arc contained in Bx,r homeomorphic to [0, 1] and whose end-points belong to distinct
equivalence classes of ∂Bx,r \ V ; we denote by σ : [0, 1]→ Bx,r a parametrization of this arc.
Since V ′ must contain all but one Γi(x, r), either σ(0) or σ(1) belongs to γ∩ V ′ ∩ ∂Bx,r.

Step four: We show that K is an (F, 0,∞)-minimal set, i.e.

F(K) 6 F(ϕ(K))

whenever ϕ : Rn → Rn is a Lipschitz map such that ϕ = Id on Rn \Bx,r and ϕ(Bx,r) ⊂ Bx,r

for some x ∈ Rn \H and r < dist(x,H). To this end, it suffices to show that given such a
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function ϕ, then ϕ(K) ∈ F(H,C). We fix γ ∈ C and directly assume that γ∩ (K \Bx,ρ) = ∅ for
some ρ ∈ (r, dist(x,H)). By Lemma 3.24, there exist two distinct connected components A
and A ′ of Bx,ρ \K and a connected component of γ∩Bx,ρ having end-points p ∈ A∩ ∂Bx,ρ

and q ∈ A ′ ∩ ∂Bx,ρ.
We complete the proof by showing that p = ϕ(p) and q = ϕ(q) are adherent to distinct

connected components of Bx,ρ \ϕ(K). We argue by contradiction, and denote by Ω the
connected component of Bx,ρ \ϕ(K) with p,q ∈ Ω. If h denotes the restriction of ϕ to A,
then the topological degree of h is defined on Rn \ h(∂A), thus in Ω.

Since ϕ = Id in a neighborhood of ∂Bx,ρ, one has deg(h,p ′) = 1 for every p ′ sufficiently
close to p; since the degree is locally constant and Ω is connected, deg(h, ·) = 1 on Ω. In
particular, for every y ∈ Ω, ϕ−1(y) ∩A 6= ∅. We apply this with y = q ′ for some q ′ ∈ Ω
sufficiently close to q. Let w ∈ ϕ−1(q ′): since ϕ = Id on Rn \ Bx,r, if |q ′| > r then w = q ′,
and thus q ′ ∈ A. In other words, every q ′ ∈ Bx,ρ sufficiently close to q is contained in A. We
may thus connect in A any pair of points p ′,q ′ ∈ Bx,ρ which are sufficiently close to p and
q respectively, that is to say, p and q can be connected in A. This contradicts A 6= A ′, and
completes the proof of the fact that K is a (F, 0,∞)-minimal set. This concludes the proof of
(c).

3.7 application 2: solution to david formulation

The second type of boundary condition we want to consider is the one related to the notion
of “sliding minimizers” introduced by David in [31, 30]. The main theorem of this section is
Theorem 3.27, which has been first obtained by De Lellis, Ghiraldin and Maggi in [37] for
the isotropic case in codimension one and then extended by us in joint work in [44] to the
isotropic case in higher codimension.

3.7.1 Defintion of the class of competitors

Just through this section we will assum F ≡ 1 and we will denote P(H) := P(F,H).

Definition 3.25 (Sliding minimizers). Let H ⊂ Rn be closed and K0 ⊂ Rn \H be relatively
closed. We denote by Σ(H) the family of Lipschitz maps ϕ : Rn → Rn such that there exists
a continuous map Φ : [0, 1]×Rn → Rn with Φ(1, ·) = ϕ, Φ(0, ·) = Id and Φ(t,H) ⊂ H for
every t ∈ [0, 1]. We then define

A(H,K0) =
{
K : K = ϕ(K0) for some ϕ ∈ Σ(H)

}
and say that K0 is a sliding minimizer if Hd(K0) = inf{Hd(J) : J ∈ A(H,K0)}.

Remark 3.26. For every K0 ⊂ Rn \H relatively closed and d-rectifiable, A(H,K0) is a defor-
mation class in the sense of Definition 3.2, since D(x, r) ⊂ Σ(H) for every Bx,r ⊂ Rn \H.

Applying Theorem 3.3 to the framework of sliding minimizers we obtain the following
result. Here and in the following Uδ(E) denotes the δ-neighborhood of a set E ⊂ Rn.

Theorem 3.27. Assume that
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(i) K0 is bounded d-rectifiable with Hd(K0) <∞;

(ii) Hd(H) = 0 and for every η > 0 there exist δ > 0 and Π ∈ Σ(H) such that

LipΠ 6 1+ η , Π(Uδ(H)) ⊂ H . (3.91)

Then, given any minimizing sequence (Kj) in the Plateau problem corresponding to P(H) =

A(H,K0) and any set K as in Theorem 3.3, we have

inf
{
Hd(J) : J ∈ A(H,K0)

}
= Hd(K) = inf

{
Hd(J) : J ∈ A(H,K)

}
. (3.92)

In particular K is a sliding minimizer.

Remark 3.28. It is far from obvious to prove the existence of a minimizer in the class A(H,K0).
It is indeed false in general that the sliding minimizer K in Theorem 3.27 belongs to A(H,K0)
(see the discussion in [37, Remark 8]).

3.7.2 Proof of Theorem 3.27

As already observed in Remark 3.26, A(H,K0) is a deformation class and we can therefore
apply Theorem 3.3.
Step one: We show that Hd(Kj) → Hd(K) and thus the first equality in (3.92). We first let
R0 > 0 be such that H ⊂ BR0 and consider the Lipschitz map ϕ(x) := min{|x|,R0}x/|x|.
Obviously ϕ ∈ Σ(H) and we easily compute

Hd(Kj) − ε 6 Hd(ϕ(Kj)) 6 Hd(Kj ∩B2R0) +
1

2d
Hd(Kj \B2R0) .

This implies that Hd(Kj \B2R0)→ 0. In order to prove Hd(Kj)→ Hd(K), we are left to show
that there is no loss of mass at H. To this end, let us fix η > 0, and consider δ > 0 and the
map Π as in (3.91). Then, by Π ∈ Σ(H) and by Hd(Π(Uδ(H))) 6 Hd(H) = 0,

Hd(K) 6 lim sup
j→∞ Hd(Kj) 6 lim sup

j→∞ Hd(Π(Kj)) 6 (1+ η)d lim sup
j→∞ Hd(Kj \Uδ(H))

= (1+ η)d lim sup
j→∞ Hd((Kj ∩B2R0) \Uδ(H))

6 (1+ η)dHd(K∩B2R0) 6 (1+ η)dHd(K) .

The arbitrariness of η implies that lim supjH
d(Kj) = Hd(K).

Step two: To complete the proof, we show the second equality in (3.92), i.e. that K is a
sliding minimizer. By Theorem 3.3, there exists an Hd-negligible closed set S ⊂ K such
that Γ = K \ S is a real analytic hypersurface. We may now exploit this fact to show that
Hd(K) 6 Hd(φ(K)) for every φ ∈ Σ(H), showing that K is a sliding minimizer (and hence
an (Mα, 0,∞)-minimal set). The idea is that, by regularity of Γ , at a fixed distance from the
singular set one can project Kj directly onto K, rather than onto its affine tangent planes
localized in balls. More precisely, since Hd(H∪ S) = 0 and Hd(K) <∞ one has

lim sup
j→∞ Hd(Kj ∩Uδ(H∪ S)) 6 Hd(K∩Uδ(H∪ S)) =: ρ(δ) , (3.93)
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where ρ(δ)→ 0 as δ→ 0+. If Nε(A) denotes the normal ε-neighborhood upon A ⊂ Γ , then,
by compactness of Γδ = Γ \Uδ(H ∪ S), there exists ε < δ such that the projection onto Γ
defines a smooth map p : N2ε(Γδ)→ Γδ. We now define a Lipschitz map

fε,δ : Nε(Γδ)∪Uδ/2(H∪ S)∪ (Rn \Uδ(Γ))→ Rn

by setting fε,δ = p on Nε(Γδ), and fε,δ = Id on the remainder. Observe that

lim
ε↓0

Lip (fε,δ) = 1 <∞ .

For every δ we then choose ε < δ so that f = fε,δ has Lipschitz constant at most 2 and extend
it to a Lipschitz map f̂ on Rn with the same Lipschitz constant. Obviously f̂ belongs to Σ(H).
We can then estimate

Hd(f̂(Kj) \ Γδ) 6 (Lip f̂)dHd
(
Kj \Nε(Γδ)

)
. (3.94)

Observe that Rn \Nε(Γδ) ⊂⊂ Rn \Uε/2(K)∪U2δ(H∪ S) and thus

lim sup
j→∞ Hd

(
Kj \Nε(Γδ)

)
6 Hd(K∩U2δ(H∩ S))

(3.93)
6 ρ(2δ) . (3.95)

Combining (3.94) and (3.95)

lim sup
j

Hd(f̂(Kj) \ Γδ) 6 2
dρ(2δ) .

On the other hand Γδ ⊂ K. Thus, combining (3.94) and (3.95) with a standard diagonal
argument, we achieve a sequence of maps fj ∈ Σ(H) such that Hd(fj(Kj)) \ K) → 0. Since
each Kj equals ψj(K0) for some ψj ∈ Σ(H), we therefore conclude the existence of a sequence
of maps {ϕj} ⊂ Σ(H) such that Hd(ϕj(K0) \K)→ 0.

We are now ready to show the right identity in (3.92). Fix φ ∈ Σ(H). Then

Hd(φ(K)) > lim inf
j→∞ Hd(φ ◦ϕj(K0))

> inf
{
Hd(J) : J ∈ A(H,K0)

}
= Hd(K) .

This shows that K is a sliding minimizer.

3.8 application 3: solution to reifenberg formulation

The third type of boundary constraints we take into account is due to Reifenberg in [77],
and it is given in terms of homology groups. The main theorem of this section is Theorem
3.32, which we got in joint work in [43].

3.8.1 Defintion of the class of competitors and main result

The original formulation of Plateau problem given by Reifenberg in [77] involves an algebraic
notion of boundary described in terms of Čech homology groups. The particular choice of
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an homology theory defined on compact spaces and with coefficient groups that are abelian
and compact has two motivations: with these assumptions the homology is well behaved
under Hausdorff convergence of compact sets, and furthermore it satisfies the classical
axioms of Eilenberg and Steenrod, enabling the use of the Mayer-Vietoris exact sequence [49,
Chapter X].

Let G be a compact Abelian group and let K be a closed set in Rn. For every m > 0 we
denote with Ȟm(K;G) (often omitting the explicit mention of the group G) the mth-Čech
homology groups of K with coefficients in G, [49, Chapter IX].

Recall that, if H ⊂ K is a compact set, the inclusion map iH,K : H→ K induces a graded
homomorphism between the homology groups (of every grade m, again often omitted)

i∗H,K : Ȟm(H,G)→ Ȟm(K,G).

(For any given continuous maps of compact spaces f : X→ Y, the induced homomorphisms
f∗ between homology groups are functorial). Note, in the next definition, the role of the
dimension d, inherent of our variational problem.

Definition 3.29 (Boundary in the sense of Reifenberg). Let G,H,K be as above and let
L ⊂ Ȟd−1(H,G) be a subgroup. We say that K has boundary L if

Ker(i∗H,K) ⊃ L. (3.96)

Definition 3.30 (Reifenberg class). Given G a compact Abelian group and H ⊂ Rn a compact
set, we let R(H) be the class of closed d-rectifiable subsets K of Rn \H uniformly contained
in a ball B ⊃⊃ H and such that K∪H has boundary L in the sense of Definition 3.29.

Remark 3.31. We remark that R(H) is a deformation class in the sense of Definition 3.2,
for every Lagrangian F. Indeed for every K ∈ R(H), every x ∈ K, r ∈ (0, dist(x,H)) and
ϕ ∈ D(x, r) (which is in particular continuous),

ϕ(K∪H) = ϕ(K)∪H,

and moreover by functoriality Ker((ϕ ◦ iH,K∪H)∗) ⊃ Ker(i∗H,K∪H) ⊃ L, which implies that
ϕ(K) ∈ R(H). We can therefore apply Theorem 3.3 and Theorem 3.19 to the class R(H): we
immediately obtain the existence of a relatively closed subset K of Rn \H satisfying

F(K) = inf
S∈R(H)

{F(S)}.

We address now the question whether K belongs to the Reifenberg class R(H). Recall the
definition of Hausdorff distance between two compact sets C1,C2 of a metric space X:

dH(C1,C2) := inf{r > 0 : C1 ⊂ Ur(C2) and C2 ⊂ Ur(C1)}.

Theorem 3.32. For every minimizing sequence (Kj) ⊂ R(H) the associated limit set given by
Theorem 3.3 or Theorem 3.19 satisfies K ∈ R(H).
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Proof. We wish to construct another minimizing sequence, (K1j ) ⊂ R(H), yielding the same
set K but with the further property that

dH(K1j ∪H,K∪H)→ 0. (3.97)

Step 1: Construction of the new sequence.
From Theorem 3.3 and Theorem 3.19 we know that µj := F(·, T(·)Kj)Hd Kj converge

weakly? in Rn \H to the measure µ = F(·, T(·)K)Hd K. Then, for every ε > 0, there exists
j(ε) big enough so that for every j > j(ε) we get

µj(R
n \Uε(K∪H)) <

εd

Λk1(4n)d
, (3.98)

where we denoted with Uε(K∪H) the ε-tubular neighborhood of K∪H, with Λ the costant
in equation (2.10) and k1 is the costant of Theorem 3.7.

We cover U5ε(K∪H) \U2ε(K∪H) with a complex ∆ of closed cubes with side length equal
to ε
4n contained in U6ε(K∪H) \Uε(K∪H). We can apply an adaptation of the Deformation

Theorem 3.7 relative to the set Kj and obtain a Lipschitz deformation ϕj := ϕ ε
4n ,Kj . Observe

that ϕ(Kj)∩ (U4ε(K∪H) \U3ε(K∪H)) ⊂ ∆d (the d-skeleton of the complex): we claim that

ϕj(Kj)∩ (U4ε(K∪H) \U3ε(K∪H)) ⊂ ∆d−1. (3.99)

Otherwise by Theorem 3.7 ϕj(Kj) ∩ (U4ε(K ∪H) \U3ε(K ∪H)) should contain an entire
d-face of edge length ε

4n , leading together with (3.98) to a contradiction:

εd

(4n)d
6 Hd(ϕ(Kj)∩ (U4ε(K∪H) \U3ε(K∪H))) 6 Λk1Hd(Kj \Uε(K∪H))

6 Λk1F(Kj \Uε(K∪H)) 6 Λk1µj(Rn \Uε(K∪H)) <
εd

(4n)d
.

Set K̃j := ϕj(Kj): by (3.99) and the coarea formula [50, 3.2.22(3)], there exists α ∈ (3, 4) such
that

Hd−1(K̃j ∩ ∂Uαε(K∪H)) = 0. (3.100)

We let

K1j := K̃j ∩Uαε(K∪H) and K2j := K̃j \Uαε(K∪H). (3.101)

Step 2: proof of the property (3.97).
Recall that by construction,

∀ε > 0 K1j ∪H ⊂ U4ε(K∪H). (3.102)

If on the other hand there were x ∈ K∪H \Uε(K
1
j(h) ∪H) for some subsequence j(h), then

necessarily d(x,H) > ε as well as d(x,K1j(h)) > ε: the weak convergence µj(h)
∗
⇀ µ would

then fail the uniform density lower bounds (3.8),(3.71) on B(x, ε/2). This implies (3.97).
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Step 3: boundary constraint of the new sequence. To conclude the proof of Theorem 3.32, we
need to check that (K1j ) ⊂ R(H). By (3.101) we get

K̃j = K
1
j ∪K2j , and K1j ∩K2j = K̃j ∩ ∂Uαε(K)

and (3.100),(3.101) yield

Hd−1((K1j ∪H)∩K2j ) = Hd−1(K1j ∩K2j ) = 0.

Therefore (since there cannot be d− 1 cycles in (K1j ∪H)∩K2j , [60, Theorem VIII 3’]):

Ȟd−1((K
1
j ∪H)∩K2j ) = (0). (3.103)

We furthermore observe that the sets K̃j are obtained as deformations via Lipschitz maps
strongly approximable via isotopies, and therefore belong to R(H). Since the map ϕj
coincides with the identity on H, we have

i
H,K̃j∪H

= ϕj ◦ iH,Kj∪H;

moreover, trivially i
H,K̃j∪H

= i
K1j∪H,K̃j∪H

◦ iH,K1j∪H
. Hence by functoriality

Ker(i∗K1j∪H,K̃j∪H
◦ i∗H,K1j∪H

) = Ker(i∗H,K̃j∪H
) = Ker((ϕj)∗ ◦ i∗H,Kj∪H) ⊃ L.

We claim that i∗K1j∪H,K̃j∪H
is injective: this implies that

Ker(i∗H,K1j∪H
) ⊃ L, (3.104)

namely (K1j ) ⊂ R(H).
Step 4: the map i∗K1j∪H,K̃j∪H

is injective. We can write the Mayer-Vietoris sequence (which

for the Čech homology holds true for compact spaces and with coefficients in a compact
group, due to the necessity of having the excision axiom, [49, Theorem 7.6 p.248]) and use
(3.103):

(0)
(3.103)
= Ȟd−1((K

1
j ∪H)∩K2j )

f−→ Ȟd−1(K
1
j ∪H)⊕ Ȟd−1(K2j )

g−→ Ȟd−1(K̃j ∪H) −→ ...

where f = (i∗ (K1j∪H)∩K2j ,K1j∪H
, i∗ (K1j∪H)∩K2j ,K2j

) and g(σ, τ) = σ − τ. The exactness of the
sequence implies that g is injective: in particular the map g is injective when restricted to
the subgroup Ȟd−1(K1j ∪H)⊕ (0), where it coincides with i∗K1j∪H,K̃j∪H

. This concludes the

proof of Step 4.
Step 5: boundary constraint for the limit set. Setting

Yn :=
⋃
j>n

K1j ∪H,

by (3.97) we get

dH(Yn,K∪H)→ 0. (3.105)
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Therefore K ∪H is the inverse limit of the sequence Yn. Since the sets (K1j ∪H) are in the
Reifenberg class R(H), namely the inclusion (3.104) holds, by composing the two injections
i∗K1n∪H,Yn and i∗H,K1n∪H we obtain that

L ⊂ Ker(i∗H,Yn).

Since the Čech homology with coefficients in compact groups is continuous [49, Definition
2.3], the latter inclusion is stable under Hausdorff convergence, see [49, Theorem 3.1] (see
also [77, Lemma 21A]): therefore, by (3.105), we conclude

L ⊂ Ker(i∗H,K∪H),

and eventually K ∈ R(H).

Remark 3.33. Using the contravariance of cohomology theory, the same results can be
obtained when considering a cohomological definition of boundary, again in the Čech theory,
as introduced in [58]. In particular a new proof of their theorem can be obtained with our
assumption on the Lagrangian as in Definition 4.1.

Note that in the cohomological definition of boundary all the Eilenberg-Steenrod axioms
are satisfied even with a non-compact group G. This allows us to consider as coefficients set
the natural group Z.

Remark 3.34. We observe that any minimizer K as in Theorem 3.32 is also an (F, 0,∞)

minimal set in the sense of [8, Definition III.1]. Indeed the boundary condition introduced in
Definition 3.29 is preserved under Lipschitz maps (not necessarily in D(x, r)). In particular,
by [8, Theorem III.3(7)], if F is smooth and strictly elliptic (Γ in Definition 3.17 is strictly
positive), then K is smooth away from the boundary, outside of a relative closed set of
Hd-measure zero (the Theorem gives actually C1,α almost everywhere regularity for all
α < 1/2 if F ∈ C3 and elliptic).



4
T H E A N I S O T R O P I C C O U N T E R PA RT O F A L L A R D ’ S R E C T I F I A B I L I T Y
T H E O R E M

4.1 introduction

Allard’s rectifiability Theorem, [2], asserts that every d-varifold in Rn with locally bounded
(isotropic) first variation is d-rectifiable when restricted to the set of points in Rn with
positive lower d-dimensional density. It is a natural question whether this result holds for
varifolds whose first variation with respect to an anisotropic integrand is locally bounded.

More specifically, for an open set Ω ⊂ Rn and a positive C1 integrand

F : Ω×G(n,d)→ R>0 := (0,+∞),

it has been observed in (2.13) that the anisotropic first variation of a d-varifold V ∈ Vd(Ω) acts
on g ∈ C1c(Ω, Rn) as

δFV(g)

∫
Ω×G(n,d)

[
〈dxF(x, T),g(x)〉+BF(x, T) : Dg(x)

]
dV(x, T).

In the paper [42], in joint work with De Philippis and Ghiraldin, we answer to the following
question:

Question. Is it true that for every V ∈ Vd(Ω) such that δFV is a Radon measure in Ω, the
associated varifold V∗, defined as in (2.5),

V∗ := V {x ∈ Ω : Θd∗ (x,V) > 0}×G(n,d) (4.1)

is d-rectifiable?

We will show that this is true if (and only if in the case of autonomous integrands) F
satisfies the following atomic condition at every point x ∈ Ω.

Definition 4.1. For a given integrand F ∈ C1(Ω×G(n,d)), x ∈ Ω and a Borel probability
measure µ ∈ P(G(n,d)), let us define

Ax(µ) :=

∫
G(n,d)

BF(x, T)dµ(T) ∈ Rn ⊗Rn. (4.2)

We say that F verifies the atomic condition (AC) at x if the following two conditions are
satisfied:

(i) dim KerAx(µ) 6 n− d for all µ ∈ P(G(n,d)),

(ii) if dim KerAx(µ) = n− d, then µ = δT0 for some T0 ∈ G(n,d).

The following Theorem is the main result of this chapter:

61
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Theorem 4.2. Let F ∈ C1(Ω×G(n,d), R>0) be a positive integrand and let us define

VF(Ω) =
{
V ∈ Vd(Ω) : δFV is a Radon measure

}
. (4.3)

Then we have the following:

(i) If F satisfies the atomic condition at every x ∈ Ω, then for every V ∈ VF(Ω) the associated
varifold V∗ defined in (4.1) is d-rectifiable.

(ii) Assume that F is autonomous, i.e. that F(x, T) ≡ F(T): then every V∗ associated to a varifold
V ∈ VF(Ω) is d-rectifiable if and only if F satisfies the atomic condition.

For the area integrand, F(x, T) ≡ 1, it is easy to verify that BF(x, T) = T where we are
identifying T ∈ G(n,d) with the matrix T ∈ (Rn ⊗Rn)sym representing the orthogonal
projection onto T . Since T is positive semidefinite (i.e. T > 0), it is easy to check that the
(AC) condition is satisfied. In particular Theorem 4.2 provides a new independent proof of
Allard’s rectifiability theorem.

Since the atomic condition (AC) is essentially necessary to the validity of the rectifiability
Theorem 4.2, it is relevant to relate it to the previous known notions of ellipticity (or convexity)
of F with respect to the “plane” variable T . This task seems to be quite hard in the general
case. For d = (n− 1) we can however completely characterize the integrands satisfying
(AC). Referring to Section 4.5 for a more detailed discussion, we recall here that in this case
the integrand F can be equivalently thought as a positive one-homogeneous even function
G : Ω×Rn → R>0 via the identification

G(x, λν) := |λ|F(x,ν⊥) for all λ ∈ R and ν ∈ Sn−1. (4.4)

The atomic condition then turns out to be equivalent to the strict convexity of G, more
precisely:

Theorem 4.3. An integrand F : C1(Ω×G(n,n− 1), R>0) satisfies the atomic condition at x if
and only if the function G(x, ·) defined in (4.4) is strictly convex.

As we said, we have not been able to obtain a simple characterization in the general
situation when 2 6 d 6 (n − 2) (while for d = 1 the reader can easily verify that an
analogous version of Theorem 4.3 holds true). In this respect, let us recall that the study of
convexity notions for integrands defined on the d-dimensional Grassmannian is an active
field of research, where several basic questions are still open, see [24, 23] and the survey [10].

Beside its theoretical interest, the above Theorem has some relevant applications in the
study of existence of minimizers of geometric variational problems defined on class of
rectifiable sets. It can be indeed shown that given an F-minimizing sequence of sets, the limit
of the varifolds naturally associated to them is F-stationary (i.e. it satisfies δFV = 0) and has
density bounded away from zero. Hence, if F satisfies (AC), this varifold is rectifiable and it
can be shown that its support minimizes F, see [43, 45].

We conclude this introduction with a brief sketch of the proof of Theorem 4.2. The original
proof of Allard in [2] (see also [63] for a quantitative improvement under slightly more
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general assumptions) for varifolds with locally bounded variations with respect to the area
integrand heavily relies on the monotonicity formula, which is strongly linked to the isotropy
of the area integrand, [3]. A completely different strategy must hence be used to prove
Theorem 4.2.

The idea is to use the notion of tangent measure introduced by Preiss, [76], in order to
understand the local behavior of a varifold V with locally bounded first variation. Indeed
at ‖V∗‖ almost every point, condition (AC) is used to show that every tangent measure
is translation invariant along at least d (fixed) directions, while the positivity of the lower
d-dimensional density ensures that there exists at least one tangent measure that is invariant
along at most d directions. The combination of these facts allows to show that the “Grassman-
nian part” of the varifold V∗ at x is a Dirac delta δTx on a fixed plane Tx, see Lemma 4.8. A
key step is then to show that ‖V∗‖ � Hd: this is achieved by using ideas borrowed from [5]
and [41]. Once this is obtained, a simple rectifiability criterion, based on the results in [76]
and stated in Lemma 4.5, allows to show that V∗ is d-rectifiable.

4.2 preliminary results

We introduce some preliminary results. The next Lemma shows that Tan(x,µ) is not trivial at
µ-almost every point where µ has positive lower d-dimensional density and that furthermore
there is always a tangent measure which looks at most d-dimensional on a prescribed ball (a
similar argument can be used to show that Tan(x,µ) is always not trivial at µ almost every
point without any assumption on the d-dimensional density, see [12, Corollary 2.43]).

Lemma 4.4. Let µ ∈ M+(Ω) be a Radon measure. Then for every x ∈ Ω such that Θd∗ (x,µ) > 0
and for every t ∈ (0, 1), there exists a tangent measure σt ∈ Tan(x,µ) satisfying

σt(Bt) > t
d. (4.5)

Proof. Step 1: We claim that for every x ∈ Ω such that Θd∗ (x,µ) > 0, it holds

lim sup
r→0

µ(Btr(x))

µ(Br(x))
> td, ∀t ∈ (0, 1). (4.6)

More precisely, we are going to show that{
x ∈ sptµ : (4.6) fails

}
⊂
{
x ∈ sptµ : Θd∗ (x,µ) = 0

}
,

which clearly implies that (4.6) holds for every x ∈ Ω with positive lower d-dimensional
density. Let indeed x ∈ sptµ be such that (4.6) fails, then there exist t0 ∈ (0, 1), ε̄ > 0, and
r̄ > 0 such that

µ(Bt0r(x)) 6 (1− ε̄)td0 µ(Br(x)) for all r 6 r̄.

Iterating this inequality, we deduce that

µ(Btk0 r̄
(x)) 6 (1− ε̄)ktkd0 µ(Br̄(x)) for all k ∈N
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and consequently

Θd∗ (x,µ) 6 lim
k→∞

µ(Btk0 r̄
(x))

ωd(t
k
0 r̄)

d
= 0.

Step 2: Let now x be a point satisfying (4.6) and let t ∈ (0, 1): there exists a sequence rj ↓ 0
(possibly depending on t and on x), such that

td 6 lim sup
r→0

µ(Btr(x))

µ(Br(x))
= lim
j→∞

µ(Btrj(x))

µ(Brj(x))
= lim
j→∞µx,rj(Bt)

where µx,rj is defined as in (2.2). Up to extracting a (not relabelled) subsequence,

µx,rj
∗
⇀ σt ∈ Tan(x,µ).

By upper semicontinuity:

σt(Bt) > lim sup
j

µx,rj(Bt) > t
d

which is (4.5).

In order to prove Theorem 4.2 we need the following rectifiability criterion which is
essentially [52, Theorem 4.5], see also [68, Theorem 16.7]. For the sake of readability, we
postpone its proof to Appendix 4.7.

Lemma 4.5. Let µ ∈M+(Ω) be a Radon measure such that the following two properties hold:

(i) For µ-a.e. x ∈ Ω, 0 < Θd∗ (x,µ) 6 Θd∗(x,µ) < +∞.

(ii) For µ-a.e. x ∈ Ω there exists Tx ∈ G(n,d) such that every σ ∈ Tan(x,µ) is translation
invariant along Tx, i.e.∫

∂eϕdσ = 0 for every ϕ ∈ C1c(B) and every e ∈ Tx.

Then µ is d-rectifiable, i.e. µ = θHd K for some d-rectifiable set K and Borel function θ : Rn →
R>0. Furthermore TxK = Tx for µ-a.e. x.

The following Lemma is based on a simple Lebesgue point argument, combined with the
separability of C0c(G(Ω)), see for instance [36, Proposition 9].

Lemma 4.6. For ‖V‖-almost every point x ∈ Ω and every sequence rj → 0 there is a subsequence
rji such that

Vx,rji
(dy,dT) = ‖V‖x,rji

(dy)⊗µx+yrji (dT)
∗
⇀ σ(dy)⊗µx(dT) =: V∞(dy,dT) ∈ Tan(x,V),

with σ ∈ Tan(x, ‖V‖).
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The key point of the Lemma above is that the “Grassmannian" part µ∞y of a tangent
varifold V∞ equals µx for every y ∈ Ω: it therefore neither depends on the space variable y,
nor on the chosen blow-up sequence (rj). Informally, we could write:

“ Tan(x,V) = Tan(x, ‖V‖)⊗ µx(dT) ".

We furthermore note that, as a consequence of (2.6),

Tan(x, ‖V∗‖) = Tan(x, ‖V‖) and Tan(x,V∗) = Tan(x,V) ‖V∗‖-a.e. (4.7)

We conclude this section with the following simple result which shows that every tangent
varifold to a varifold having locally bounded anisotropic first variation is Fx-stationary
(where Fx is defined in (2.11)).

Lemma 4.7. Let V ∈ Vd(Ω) be a d-dimensional varifold with locally bounded anisotropic first
variation. Then, for ‖V‖-almost every point, every W ∈ Tan(x,V) is Fx-stationary, i.e. δFxW = 0.
Moreover, ifW(dy,dT) = σ(dy)⊗µx(dT) for some σ ∈ Tan(x, ‖V‖) (which by Lemma 4.6 happens
‖V‖-a.e. x), then

∂eσ = 0 for all e ∈ Tx := ImAx(µx)∗ (4.8)

in the sense of distributions, where Ax(µx) is defined in (4.2).

Proof. Let x be a point such that the conclusion of Lemma 4.6 holds true and such that

lim sup
r→0

|δFV |(Br(x))

‖V‖(Br(x))
= Cx < +∞. (4.9)

Note that, by Lemma 4.6 and Lebesgue-Besicovitch differentiation Theorem, [79, Theorem
4.7], this is the case for ‖V‖-almost every point. We are going to prove the Lemma at every
such a point.

Let ri be a sequence such that Vx,ri(dy,dT) ∗
⇀ W(dy,dT) = σ(dy) ⊗ µx(dT), σ ∈

Tan(x, ‖V‖). For g ∈ C1c(B, Rn), we define gi := g ◦ ηx,ri ∈ C1c(Bri(x), Rn) and we com-
pute

δFxVx,ri(g) =

∫
G(B)

BF(x, T) : Dg(y)dVx,ri(y, T)

=
rdi

‖V‖(Bri(x))

∫
G(Bri(x))

BF(x, T) : Dg (ηx,ri(z)) Jηx,ri(z, T)dV(z, T)

=
ri

‖V‖(Bri(x))

∫
G(Bri(x))

BF(x, T) : Dgi(z)dV(z, T)

= ri
δFxV(gi)

‖V‖(Bri(x))
= ri

δFV(gi) + δ(Fx−F)V(gi)

‖V‖(Bri(x))
.

Combining (2.17), (4.9) and since ri‖Dgi‖C0 = ‖Dg‖C0 , we get

|δFxVx,ri(g)| 6 ri
|δFV |(Bri(x))‖g‖∞
‖V‖(Bri(x))

+ ri
‖F− Fx‖C1(Bri(x))‖gi‖C1‖V‖(Bri(x))

‖V‖(Bri(x))
6 riCx‖g‖∞ + ori(1)‖g‖C1 → 0,
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which implies δFxW = 0. Hence, recalling the Definition (4.2) of Ax(µ), for every g ∈
C1c(B, Rn):

0 = δFxW(g) =

∫
B

Ax(µx) : Dg(y)dσ(y).

Therefore Ax(µx)Dσ = 0 in the sense of distributions, which is equivalent to (4.8), since
KerAx(µx) = (ImAx(µx)∗)⊥.

4.3 intermediate lemmata

To prove the sufficiency part of Theorem 4.2, there are two key steps:

(i) Show that the “Grassmannian” part of the varifold V∗ is concentrated on a single
plane;

(ii) Show that ‖V∗‖ � Hd.

In this section we prove these steps, in Lemma 4.8 and Lemma 4.11 respectively.

Lemma 4.8. Let F be an integrand satisfying condition (AC) at every x in Ω and let V ∈ VF(Ω),
see (4.3). Then, for ‖V∗‖-a.e. x ∈ Ω, µx = δT0 for some T0 ∈ G(n,d).

Proof. Let t 6 t(d) � 1 to be fixed later. By Lemmata 4.6, 4.7 and 4.4 and by (4.7), for
‖V∗‖-a.e. x there exist a sequence ri → 0 and a tangent measure σ such that

‖V∗‖x,ri
∗
⇀ σ, (V∗)x,ri

∗
⇀ σ⊗ µx, σ(Bt) > t

d

and
∂eσ = 0 for all e ∈ Tx = ImAx(µx)∗.

Let us now show that if t(d) is sufficiently small, then µx = δT0 . Assume by contradiction
that µx is not a Dirac delta: from the (AC) condition of F, this implies that dim KerAx(µx)∗ <
n−d and consequently that dim(Tx) > d. This means that σ is invariant by translation along
at least d+ 1 directions and therefore there exists Z ∈ G(n,d+ 1), a probability measure
γ ∈ P(Z⊥) defined in the linear space Z⊥ and supported in Bn−d−1

1/
√
2

, and a constant c ∈ R,

such that we can decompose σ in the cylinder Bd+1
1/
√
2
×Bn−d−1

1/
√
2
⊂ Z×Z⊥ as

σ Bd+1
1/
√
2
×Bn−d−1

1/
√
2

= cHd+1 (Z∩Bd+1
1/
√
2
)⊗ γ,

where c 6 2(d+1)/2ω−1
d+1 since σ(B1) 6 1. Taking t(d) < 1

2
√
2

, the ball Bt is contained in the

cylinder Bd+1
1/
√
2
×Bn−d−1

1/
√
2

and hence

td 6 σ(Bt) 6 σ(B
d+1
t ×Bn−d−1

1/
√
2

) 6 C(d)td+1,

which is a contradiction if t(d)� 1.

The next Lemma is inspired by the “Strong Constancy Lemma” of Allard [5, Theorem 4],
see also [41].
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Lemma 4.9. Let Fj : G(B) → R>0 be a sequence of C1 integrands and let Vj ∈ Vd(G(B)) be a
sequence of d-varifolds equi-compactly supported in B (i.e. such that spt‖Vj‖ ⊂ K ⊂⊂ B) with
‖Vj‖(B) 6 1. If there exist N > 0 and S ∈ G(n,d) such that

(1) |δFjVj|(B) + ‖Fj‖C1(G(B)) 6 N,

(2) |BFj(x, T) −BFj(x,S)| 6 ω(|S− T |) for some modulus of continuity independent on j,

(3) δj :=
∫
G(B) |T − S|dVj(z, T)→ 0 as j→∞,

then, up to subsequences, there exists γ ∈ L1(Bd,Hd Bd) such that for every 0 < t < 1∣∣∣(ΠS)#
(
Fj(z,S)‖Vj‖

)
− γHd Bd

∣∣∣(Bdt ) −→ 0, (4.10)

where ΠS : Rn → S denotes the orthogonal projection onto S (which in this Lemma we do not
identify with S).

Proof. To simplify the notation let us simply set Π = ΠS; we will also denote with a prime
the variables in the d-plane S so that x ′ = Π(x). Let uj = Π#

(
Fj(z,S)‖Vj‖

)
∈M+(B

d): then

〈uj,ϕ〉 =
∫
G(B)

ϕ(Π(z))Fj(z,S)dVj(z, T) for all ϕ ∈ C0c(Bd).

Let e ∈ S and, for ϕ ∈ C1c(Bd), let us denote by D ′ the gradient of ϕ with respect to
the variables in S, so that Π∗(D ′ϕ)(Π(z)) = D(ϕ(Π(z))). We then have in the sense of
distributions

−〈∂ ′euj,ϕ〉 = 〈uj,∂ ′eϕ〉 =
∫
G(B)

〈D ′ϕ(Π(z)), e〉Fj(z,S)dVj(z, T)

=

∫
G(B)

〈D ′ϕ(Π(z)), e〉(Fj(z,S) − Fj(z, T))dVj(z, T)

+

∫
G(B)

Fj(z, T)(S− T) : e⊗Π∗(D ′ϕ)(Π(z))dVj(z, T)

+

∫
G(B)

(
CFj(z,S) −CFj(z, T)

)
: e⊗Π∗(D ′ϕ)(Π(z))dVj(z, T)

−

∫
G(B)

〈
dzFj(z, T), eϕ(Π(z))

〉
dVj(z, T)

+

∫
G(B)

〈
dzFj(z, T), eϕ(Π(z))

〉
dVj(z, T)

+

∫
G(B)

(
Fj(z, T)T +CFj(z, T)

)
: e⊗D(ϕ(Π(z)))dVj(z, T),

(4.11)

where we have used that

Id : e⊗Π∗(D ′ϕ)(Π(z)) = S : e⊗Π∗(D ′ϕ)(Π(z)) = 〈D ′ϕ(Π(z)), e〉
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and CFj(z,S) : e⊗Π∗(D ′ϕ)(Π(z)) = 0, since D ′ϕ and e belong to S, see (2.16). Let us define
the distributions

〈Xej ,ψ〉 :=
∫
G(B)

(
(Fj(z,S) − Fj(z, T))Id + Fj(z, T)(S− T)

+ (CFj(z,S) −CFj(z, T))
)
: e⊗Π∗ψ(Π(z))dVj(z, T)

and

〈fej ,ϕ〉 :=
∫
G(B)

〈
dzFj(z, T), eϕ(Π(z))

〉
dVj(z, T),

〈gej ,ϕ〉 := −

∫
G(B)

(〈
dzFj(z, T), eϕ(Π(z))

〉
+
(
Fj(z, T)T +CFj(z, T)

)
: e⊗Π∗D ′ϕ(Π(z))

)
dVj(z, T)

= −δFjVj(eϕ ◦Π).

By their very definition, Xej are vector valued Radon measures in M(Bd1 , Rd) and, by the
uniform bound on the C1 norm of the Fj, (2.15) and assumptions (2) and (3):

sup
|e|=1

|Xej |(B
d
1 )→ 0 as j→∞. (4.12)

Moreover, by the mass bound ‖Vj‖(B) 6 1 and assumption (1), fej and gej are also Radon
measures satisfying

sup
j

sup
|e|=1

|fej |(B
d
1 ) + |gej |(B

d
1 ) < +∞. (4.13)

Letting e vary in an orthonormal base {e1, . . . , ed} of S, we can re-write (4.11) as

D ′uj = div ′Xj + fj + gj, (4.14)

where Xj = (Xe1j , . . . ,Xedj ) ∈ Rd ⊗Rd, fj = (fe1j , . . . , fedj ) and gj = (ge1j , . . . ,gedj ).
Let us now choose an arbitrary sequence εj ↓ 0 and a family of smooth approximation of

the identity ψεj(x
′) = ε−dj ψ(x ′/εj), with ψ ∈ C∞c (B1), ψ > 0. To prove (4.10) it is enough to

show that {vj := uj ?ψεj} is precompact in L1loc(B
d
1 ). Note that by convolving (4.14) we get

that vj solves

Dvj = div Yj + hj, (4.15)

where, to simplify the notation, we have set D = D ′, div = div ′ and

Yj := Xj ?ψεj ∈ C
∞
c (B

d
1 , Rn ⊗Rn), hj = (fj + gj) ?ψεj ∈ C

∞
c (B

d
1 , Rn)

are smooth functions compactly supported in Bd1 . Note that, by (4.12), (4.13) and the positivity
of uj

vj > 0,
∫
|Yj|→ 0 and sup

j

∫
|hj| < +∞.
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We can solve the system (4.15) by taking another divergence and inverting the Laplacian
using the potential theoretic solution (note that all the functions involved are compactly
supported):

vj = ∆
−1div (div Yj) +∆−1divhj. (4.16)

Recall that

∆−1w = E ?w, (4.17)

with E(x) = −cd|x|
2−d if d > 3 and E(x) = c2 log |x| if d = 2, for some positive constants cd,

depending just on the dimension. Hence, denoting by P.V. the principal value,

∆−1div (div Yj)(x) = K ? Yj(x)

:= P.V. cd
∫

Rd

(x− y)⊗ (x− y) − |x− y|2Id
|x− y|d+2

: Yj(y)dy,

and

∆−1divhj(x) = G ? hj(x) := cd

∫
Rd

〈 x− y

|x− y|d
,hj(y)

〉
dy.

By the Frechet-Kolomogorov compactness theorem, the operator h 7→ G ? h : L1c(B
d
1 ) →

L1loc(R
d) is compact (where L1c(Bd1 ) are the L1 functions with compact support in Bd1 ). Indeed,

for M > 1, by direct computation one verifies that∫
BdM

|G ? h(x+ v) −G ? h(x)|dx 6 C|v| log
(
eM

|v|

) ∫
Bd1

|h|dx, ∀v ∈ Bd1 . (4.18)

In particular, {bj := G ? hj} is precompact in L1loc(R
d). The first term is more subtle: the

kernel K defines a Calderon-Zygmund operator Y 7→ K ? Y on Schwarz functions that can
be extended to a bounded operator from L1 to L1,∞, [54, Chapter 4]. In particular we can
bound the quasi-norm of aj := K ? Yj as

[aj]L1,∞(Rd) := sup
λ>0

λ|{|aj| > λ}| 6 C
∫
Bd1

|Yj|→ 0. (4.19)

Moreover, K ? Yj
∗
⇀ 0 in the sense of distributions, since 〈K ? Yj,ϕ〉 = 〈Yj,K ?ϕ〉 → 0 for

ϕ ∈ C1c(Rd). We can therefore write

0 6 vj = aj + bj,

with aj → 0 in L1,∞ by (4.19), aj
∗
⇀ 0 in the sense of distributions and {bj} pre-compact in

L1loc by (4.18). Lemma 4.10 below implies that vj is strongly precompact in L1loc, which is the
desired conclusion.

Lemma 4.10. Let {vj}, {aj}, {bj} ⊂ L1(Rd) such that

(i) 0 6 vj = aj + bj,
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(ii) {bj} strongly precompact in L1loc,

(iii) aj → 0 in L1,∞ and aj
∗
⇀ 0 in the sense of distributions.

Then {vj} is strongly precompact in L1loc.

Proof. It is enough to show that χ|aj|→ 0 in L1 for χ ∈ C∞c (Rd), χ > 0. The first condition
implies that a−j 6 |bj|, hence the sequence {χa−j } is equi-integrable and thus, by (iii) and
Vitali convergence Theorem, it converges to zero in L1loc, hence∫

χ|aj| =

∫
χaj + 2

∫
χa−j → 0,

where the first integral goes to zero by (iii).

The following Lemma is a key step in the proof of Theorem 4.2:

Lemma 4.11. Let F be an integrand satisfying condition (AC) at every x in Ω and let V ∈ VF(Ω),
see (4.3). Then ‖V∗‖ � Hd.

Proof. Since by (2.7), Θd∗ (·,V) > 0 ‖V∗‖-a.e., classical differentiation theorems for measures
imply that

Hd {Θd∗ (·,V) > λ} 6
1

λ
‖V∗‖ ∀λ > 0,

see [68, Theorem 6.9]. Hence Hd {Θd∗ (·,V) > 0} is a σ-finite measure and by the Radon-
Nikodym Theorem

‖V∗‖ = fHd {Θd∗ (·,V) > 0}+ ‖V∗‖s (4.20)

for some psitive Borel function f and ‖V∗‖s is concentrated on a set E ⊂ {Θd∗ (·,V) > 0} such
that Hd(E) = 0: in particular Hd(Π(E)) = 0 whenever Π is an orthogonal projection onto a
d-dimensional subspace of Rn. Hence ‖V∗‖s and fHd {Θd∗ (·,V) > 0} are mutually singular
Radon measure (the fact that they are Radon measures follows trivially from (4.20)).

We are going to show that ‖V∗‖s = 0, which clearly concludes the proof. To this aim, let
us assume by contradiction that ‖V∗‖s > 0 and let us choose a point x̄ ∈ Ω and a sequence
of radii rj → 0 such that:

(i)

lim
j→∞

‖V∗‖s(Brj(x̄))
‖V∗‖(Brj(x̄))

= lim
j→∞

‖V∗‖(Brj(x̄))
‖V‖(Brj(x̄))

= 1. (4.21)

(ii) There exists σ ∈ Tan(x̄, ‖V‖) = Tan(x̄, ‖V∗‖) = Tan(x̄, ‖V∗‖s), with σ B1/2 6= 0.

(iii)

lim sup
j→∞

|δFV |(Brj(x̄))

‖V‖(Brj(x̄))
6 Cx̄ < +∞. (4.22)
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(iv)

Vj := Vx̄,rj
∗
⇀ σ⊗ δS, (4.23)

where S ∈ G(n,d) and ∂eσ = 0 for every e ∈ S.

Here the first, second and third conditions hold ‖V∗‖s-a.e. by simple measure theoretic
arguments and by (2.6) and (4.7), and the fourth one holds ‖V∗‖s-a.e. as well by combining
Lemma 4.7, Lemma 4.8 and (4.7).

Fix a smooth cutoff function χ with 0 6 χ 6 1, spt(χ) ⊂ B1 and χ = 1 in B1/2 and define
Wj := χVj so that

‖Wj‖ = χfHd {Θd∗ (·,V) > 0}+ ‖Wj‖s

where ‖Wj‖s = χ‖V∗‖s. In particular

(ΠS)#‖Wj‖s is concentrated on Ej := ΠS

(
E− x̄

rj

)
∩Bd1 , (4.24)

and thus

Hd(Ej) = 0. (4.25)

Note furthermore that

sup
j

|δFjWj|(R
d) < +∞, (4.26)

where Fj(z, T) = F(x̄+ rjz, T). Indeed for ϕ ∈ C∞c (B1, Rn)

|δFjWj(ϕ)| = |δFj(χVj)(ϕ)|

=
∣∣∣ ∫ rj〈dxF(x̄+ rjz, T),χ(z)ϕ(z)〉dVj(z, T)
+

∫
BF(x̄+ rjz, T) : Dϕ(z)χ(z)dVj(z, T)

∣∣∣
=
∣∣∣ ∫ rj〈dxF(x̄+ rjz, T),χϕ〉dVj(z, T)
+

∫
BF(x̄+ rjz, T) : D(χϕ)(z)dVj(z, T)

−

∫
BF(x̄+ rjz, T) : Dχ(z)⊗ϕ(z)dVj(z, T)

∣∣∣
6 |δFjVj(χϕ)|+ ‖F‖C1‖Vj‖(B1)‖Dχ‖∞‖ϕ‖∞
6 rj

|δFV |(Brj(x̄))

‖V‖(Brj(x̄))
‖ϕ‖∞ + ‖F‖C1‖Vj‖(B1)‖Dχ‖∞‖ϕ‖∞,

so that (4.26) follows from (4.22) and the fact that ‖Vj‖(B1) 6 1. Finally, by (4.23),

lim
j

∫
G(B1)

|T − S|dWj(z, T) = lim
j

∫
G(B1)

|T − S|χ(z)dVj(z, T)

=

∫
G(B1)

|T − S|χ(z)dδS(T)dσ(z) = 0.
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Hence the sequences of integrands {Fj} and of varifolds {Wj} satisfy the assumptions of
Lemma 4.9 (note indeed that BFj(z, T) = BF(x̄+ rjz, T) so that assumption (2) in Lemma 4.9 is
satisfied). Thus we deduce the existence of γ ∈ L1(Hd Bd1 ) such that, along a (not relabelled)
subsequence, for every 0 < t < 1∣∣∣(ΠS)#(F(x̄+ rj(·),S)‖Wj‖) − γHd Bd

∣∣∣(Bdt ) −→ 0. (4.27)

By (4.21) we can substitute ‖Wj‖s for ‖Wj‖ in (4.27) to get∣∣∣(ΠS)#(F(x̄+ rj(·),S)‖Wj‖s) − γHd Bd1

∣∣∣(Bdt ) −→ 0.

By point (ii) above, F(x̄ + rj(·),S)‖Wj‖s
∗
⇀ F(x̄,S)χσ with σ B1/2 6= 0. Recalling that

F(x̄,S) > 0 we then have

0 <
∣∣(ΠS)#(F(x̄,S)χσ)

∣∣(Bd1/2)
6 lim inf

j→∞
∣∣(ΠS)#(F(x̄+ rj(·),S)‖Wj‖s)

∣∣(Bd1/2)
= lim inf

j→∞
∣∣(ΠS)#(F(x̄+ rj(·),S)‖Wj‖s)

∣∣(Ej ∩Bd1/2)
6 lim sup

j→∞
∣∣∣(ΠS)#(F(x̄+ rj(·),S)‖Wj‖s) − γHd Bd

∣∣∣(Ej ∩Bd1/2) = 0,
since (ΠS)#‖Wj‖s is concentrated on Ej and Hd(Ej) = 0, see (4.24) and (4.25). This contra-
diction concludes the proof.

4.4 proof of the main theorem

Proof of Theorem 4.2. Step 1: Sufficiency. Let F be a C1 integrand satisfying the (AC) condition
at every x ∈ Ω and let V ∈ VF(Ω), we want to apply Lemma 4.5 to ‖V∗‖. Note that, according
to Lemma 4.11 and (2.7),

Hd {x ∈ Ω : Θd∗ (x, ‖V∗‖) > 0}� ‖V∗‖ � Hd {x ∈ Ω : Θd∗ (x, ‖V∗‖) > 0}.

Since, by [68, Theorem 6.9], Hd
(
{x ∈ Ω : Θd∗(x, ‖V∗‖) = +∞}

)
= 0, we deduce that

0 < Θd∗ (x, ‖V∗‖) 6 Θd∗(x, ‖V∗‖) < +∞ for ‖V∗‖-a.e. x ∈ Ω,

hence assumption (i) of Lemma 4.5 is satisfied. By Lemma 4.8, V∗ = ‖V∗‖ ⊗ δTx for some
Tx ∈ G(n,d), and, combining this with Lemma 4.7 and (4.7), for ‖V∗‖-almost every x ∈ Ω
every σ ∈ Tan(x, ‖V∗‖) is invariant along the directions of Tx, so that also assumption (ii) of
Lemma 4.5 is satisfied. Hence

‖V∗‖ = θHd (K∩Ω),

for some rectifiable set K and Borel function θ. Moreover, again by Lemma 4.5, TxK = Tx for
‖V∗‖-almost every x. This proves that V∗ is d-rectifiable.
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Step 2: Necessity. Let us now assume that F(x, T) ≡ F(T) does not depend on the point, but
just on the tangent plane and let us suppose that F does not verify the atomic condition (AC).
We will show the existence of a varifold V ∈ VF(R

n), with positive lower d-dimensional
density (namely V = V∗), which is not d-rectifiable. Indeed the negation of (AC) means
that there exists a probability measure µ on G(n,d), such that one of the following cases
happens:

1) dim KerA(µ) = dim KerA(µ)∗ > n− d

2) dim KerA(µ) = dim KerA(µ)∗ = n− d and µ 6= δT0 ,

whereA(µ) :=
∫
G(n,d) BF(T)dµ(T) and BF(T) ∈ Rn⊗Rn is constant in x. LetW := ImA(µ)∗,

k = dimW 6 d and let us define the varifold

V(dx,dT) := Hk W(dx)⊗ µ(dT) ∈ Vd(Rn).

Clearly V is not d-rectifiable since either k < d or µ 6= δW . We start by noticing that V = V∗,
indeed for x ∈W

Θd(x,V) = lim
r→0

Hk(Br(x)∩W)

ωdrd
=

1 if k = d

+∞ if k < d.
(4.28)

Let us now prove that V ∈ VF(R
n). For every g ∈ C1c(Rn, Rn), we have

δFV(g) =

∫
W

A(µ) : DgdHk = −
〈
g,A(µ)D(Hk W)

〉
= 0

since D(Hk W) ∈W⊥ = [ImA(µ)∗]⊥ = KerA(µ). Hence V is F-stationary and in particular
V ∈ VF(R

n) which, together with (4.28) concludes the proof.

4.5 proof of the equivalence of the ellipticity definitions in codimension

one

In this section we prove Theorem 4.3. As explained in the introduction, it is convenient to
identify the Grassmannian G(n,n− 1) with the projective space RPn−1 = Sn−1

/
± via the

map

Sn−1 3 ±ν 7→ ν⊥.

Hence an (n− 1)-varifold V can be thought as a positive Radon measure V ∈M+(Ω× Sn−1)

even in the Sn−1 variable, i.e. such that

V(A× S) = V(A× (−S)) for all A ⊂ Ω, S ⊂ Sn−1.

In the same way, we identify the integrand F : Ω×G(n,n− 1)→ R>0 with a positively one
homogeneous even function G : Ω×Rn → R>0 via the equality

G(x, λν) := |λ|F(x,ν⊥) for all λ ∈ R and ν ∈ Sn−1. (4.29)
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Note that G ∈ C1(Ω× (Rn \ {0})) and that by one-homogeneity:

〈deG(x, e), e〉 = G(x, e) for all e ∈ Rn \ {0}. (4.30)

With these identifications, it is a simple calculation to check that:

δFV(g) =

∫
Ω×Sn−1

〈dxG(x,ν),g(x)〉dV(x,ν)

+

∫
Ω×Sn−1

(
G(x,ν)Id − ν⊗ dνG(x,ν)

)
: Dg(x)dV(x,ν),

see for instance [5, Section 3] or [40, Lemma A.4]. In particular, under the correspon-
dence (4.29)

BF(x, T) = G(x,ν)Id − ν⊗ dνG(x,ν) =: BG(x,ν), T = ν⊥.

Note that BG(x,ν) = BG(x,−ν) since G(x,ν) is even. Hence the atomic condition at x can
be re-phrased as:

(i) dim KerAx(µ) 6 1 for all even probability measures µ ∈ Peven(S
n−1),

(ii) if dim KerAx(µ) = 1 then µ = (δν0 + δ−ν0)
/
2 for some ν0 ∈ Sn−1,

where

Ax(µ) =

∫
Sn−1

BG(x,ν)dµ(ν).

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. Since the (AC) condition deals only with the behavior of the frozen
integrand Gx(ν) = G(x,ν), for the whole proof x is fixed and for the sake of readability we
drop the dependence on x.

Step 1: Sufficiency. Let us assume that G : Rn → R is even, one-homogeneous and strictly
convex. We will show that the requirements (i) and (ii) in the (AC) condition are satisfied.
First note that, by one-homogeneity, the strict convexity of G is equivalent to:

G(ν) > 〈dνG(ν̄),ν〉 for all ν̄,ν ∈ Sn−1 and ν 6= ±ν̄. (4.31)

Plugging −ν in (4.31) and exploiting the fact that G is even we obtain

G(ν) > |〈dνG(ν̄),ν〉| for all ν̄,ν ∈ Sn−1 and ν 6= ±ν̄. (4.32)

Let now µ ∈ Peven(S
n−1) be an even probability measure,

A(µ) =

∫
Sn−1

(
G(ν)Id − ν⊗ dνG(ν)

)
dµ(ν)

and assume there exists ν̄ ∈ KerA(µ)∩ Sn−1. We then have

0 = 〈dνG(ν̄),A(µ)ν̄〉

=

∫
Sn−1

{
(G(ν̄)G(ν) − 〈dνG(ν̄),ν〉〈dνG(ν), ν̄〉

}
dµ(ν)

>
∫

Sn−1

{
G(ν̄)G(ν) −

∣∣〈dνG(ν̄),ν〉∣∣∣∣〈dνG(ν), ν̄〉∣∣}dµ(ν)
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where we have used (4.30). Inequality (4.32) implies however that the integrand in the
last line of the above equation is strictly positive, unless ν = ±ν̄ for all ν ∈ sptµ, which
immediately implies that the (AC) condition is satisfied.

Step 2: Necessity. Let us assume that G (or equivalently F) satisfies the (AC) condition, let
ν, ν̄ ∈ Sn−1, ν 6= ±ν̄ and define

µ =
1

4

(
δν + δ−ν + δν̄ + δ−ν̄

)
.

Then the matrix

A(µ) =
1

2
BG(ν) +

1

2
BG(ν̄)

has full rank. In particular the vectors A(µ)ν,A(µ)ν̄ are linearly independent. On the other
hand

2A(µ)ν = BG(ν̄)ν = G(ν̄)ν− 〈dνG(ν̄),ν〉ν̄
2A(µ)ν̄ = BG(ν)ν̄ = G(ν)ν̄− 〈dνG(ν), ν̄〉ν

and thus, these two vectors are linearly independent if and only if

G(ν)G(ν̄) − 〈dνG(ν̄),ν〉〈dνG(ν), ν̄〉 6= 0.

Since G is positive and Sn−1 \ {±ν̄} is connected for n > 3, the above equation implies that

G(ν)G(ν̄) − 〈dνG(ν̄),ν〉〈dνG(ν), ν̄〉 > 0 for all ν 6= ±ν̄. (4.33)

Exploiting that G is even, the same can be deduced also if n = 2. We now show that (4.33)
implies (4.31) and thus the strict convexity of G (actually Step 1 of the proof shows that they
are equivalent). Let ν̄ be fixed and let us define the linear projection

Pν̄ν =
〈dνG(ν̄),ν〉
G(ν̄)

ν̄.

We note that by (4.30) Pν̄ is actually a projection, i.e. Pν̄ ◦ Pν̄ = Pν̄. Hence, setting νt =

tν+ (1− t)Pν̄ν for t ∈ [0, 1], we have Pν̄νt = Pν̄ν. Thus

νt − Pν̄νt = t(ν− Pν̄ν). (4.34)

Hence, if we define g(t) = G(νt), we have, for t ∈ (0, 1),

tg ′(t) = t〈dνG(νt),ν− Pν̄ν〉 = 〈dνG(νt),νt − Pν̄νt〉 > 0,

where in the second equality we have used equation (4.34) and the last inequality follows
from (4.33) with ν = νt, and t > 0. Hence, exploiting also the one-homogeneity of G,

G(ν) = g(1) > g(0) = G(Pν̄ν) =
〈dνG(ν̄),ν〉
G(ν̄)

G(ν̄) = 〈dνG(ν̄),ν〉

which proves (4.31) and concludes the proof.
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4.6 appendix: first variation with respect to anisotropic integrands

In this section we compute the F-first variation of a varifold V . To this end we recall that, by
identifying a d-plane T with the orthogonal projection onto T , we can embed G(n,d) into
Rn ⊗Rn. Indeed we have

G(n,d) ≈
{
T ∈ Rn ⊗Rn : T ◦ T = T , T∗ = T , tr T = d

}
. (4.35)

With this identification, let T(t) ∈ G(n,d) be a smooth curve such that T(0) = T . Differentiat-
ing the above equalities we get

T ′(0) = T ′(0) ◦ T + T ◦ T ′(0), (T ′(0))∗ = T ′(0), tr T ′(0) = 0. (4.36)

In particular from the first equality above we obtain

T ◦ T ′(0) ◦ T = 0, T⊥ ◦ T ′(0) ◦ T⊥ = 0.

Hence

TanTG(n,d) ⊂
{
S ∈ Rn ⊗Rn : S∗ = S, T ◦ S ◦ T = 0, T⊥ ◦ S ◦ T⊥ = 0

}
.

Since dimTanT G(n,d) = dimG(n,d) = d(n− d) the above inclusion is actually an equality.
To compute the anisotropic first variation of a varifold we need the following simple Lemma:

Lemma 4.12. Let T ∈ G(n,d) and L ∈ Rn⊗Rn, and let us define T(t) ∈ G(n,d) as the orthogonal
projection onto (Id + tL)(T) (recall the identification (4.35)). Then

T ′(0) = T⊥ ◦ L ◦ T + (T⊥ ◦ L ◦ T)∗ ∈ TanTG(n,d).

Proof. One easily checks that T(t) is a smooth function of T for t small. Since

T(t) ◦ (Id + tL) ◦ T = (Id + tL) ◦ T ,

differentiating we get

T ′(0) ◦ T = (Id − T) ◦ L ◦ T = T⊥ ◦ L ◦ T . (4.37)

Using that (T ′(0))∗ = T ′(0), T∗ = T , the first equation in (4.36) and (4.37), one obtains

T ′(0) = T ′(0) ◦ T + T ◦ T ′(0)
= T ′(0) ◦ T + (T ′(0) ◦ T)∗ = T⊥ ◦ L ◦ T + (T⊥ ◦ L ◦ T)∗,

and this concludes the proof.

We are now ready to compute the first variation of an anisotropic energy:

Lemma 4.13. Let F ∈ C1(Ω×G(n,d)) and V ∈ Vd(Ω), then for g ∈ C1c(Ω, Rn) we have

δFV(g) =

∫
G(Ω)

[
〈dxF(x, T),g(x)〉+BF(x, T) : Dg(x)

]
dV(x, T), (4.38)

where the matrix BF(x, T) ∈ Rn ⊗Rn is uniquely defined by

BF(x, T) : L := F(x, T)(T : L) +
〈
dTF(x, T), T⊥ ◦ L ◦ T + (T⊥ ◦ L ◦ T)∗

〉
(4.39)

for all L ∈ Rn ⊗Rn.
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Proof. For g ∈ C1c(Ω, Rn) let ϕt(x) = x+ tg(x) which is a diffeomorphism of Ω into itself
for t� 1. We have

δFV(g) =
d

dt
F(ϕ#

tV)
∣∣∣
t=0

=
d

dt

∫
G(Ω)

F(ϕt(x),dϕt(T))Jϕt(x, T)dV(x, T)
∣∣∣
t=0

=

∫
G(Ω)

d

dt
F(ϕt(x), T)dV(x, T)

∣∣∣
t=0

+

∫
G(Ω)

d

dt
F(x,dϕt(T))dV(x, T)

∣∣∣
t=0

+

∫
G(Ω)

F(x, T)
d

dt
Jϕt(x, T)

∣∣∣
t=0

dV(x, T).

Equation (4.38) then follows by the definition of BF(x, T), (4.39), and the equalities

d

dt
F(ϕt(x), T)

∣∣∣
t=0

= 〈dxF(x, T),g(x)〉, (4.40)

d

dt
Jϕt(x, T)

∣∣∣
t=0

= T : Dg(x), (4.41)

d

dt
F(x,dϕt(T))

∣∣∣
t=0

=
〈
dTF(x, T), T⊥ ◦Dg(x) ◦ T + (T⊥ ◦Dg(x) ◦ T)∗

〉
. (4.42)

Here (4.40) is trivial, (4.41) is a classical computation, see for instance [79, Section 2.5],
and (4.42) follows from Lemma 4.12.

4.7 appendix: proof of the rectifiability lemma

In this Section we prove Lemma 4.5. Let us start recalling the following rectifiability criterion
due to Preiss, see [76, Theorem 5.3].

Theorem 4.14. Let µ be a measure on Rn and assume that at µ-a.e. x the following two conditions
are satisfied:

(I) If we set α = αd = 1− 2−d−6 and

Er(x) :=

{
z ∈ Br(x) : ∃s ∈ (0, r) satisfying

µ(Bs(z))

ωdsd
6 α

µ(Br(x))

ωdrd

}
,

then
lim inf
r→0

µ(Er(x))

µ(Br(x))
= 0;

(II) If we set β = βd = 2−d−9d−4 and

Fr(x) := sup
T∈G(n,d)

{
inf

z∈(x+T)∩Br(x)

µ(Bβr(z))

µ(Br(x))

}
,

then
lim inf
r→0

Fr(x) > 0.

Then µ is a d-rectifiable measure.
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Proof of Lemma 4.5. By replacing µ with µ Ω ′, where Ω ′ ⊂⊂ Ω, we can assume that µ is
defined on the whole Rn. We are going to prove that µ verifies conditions (I) and (II) in
Theorem 4.14.

Let us start by verifying condition (I). Given ε,m > 0, let

E(ε,m) :=

{
z ∈ Rn :

µ(Br(z))

ωdrd
> m for all r ∈ (0, ε)

}
,

and, for α = αd as in Theorem 4.14 and γ ∈ (1, 1/α), set

Ê(ε,m) := E(ε,αγm) \

∞⋃
k=1

E
(ε
k

,m
)

.

If x is such that 0 < Θd∗ (x,µ) < +∞, then x ∈ Ê(ε̄, m̄) for some positive ε̄ and m̄ such that
αγm̄ < Θd∗ (x,µ) < m̄, hence

{0 < Θd∗ (x,µ) < +∞} ⊂
⋃
m>0

⋃
ε>0

Ê(ε,m).

Let now x ∈ Ê(ε,m) be a density point for Ê(ε,m):

lim
r→0

µ(Br(x) \ Ê(ε,m))

µ(Br(x))
= 0. (4.43)

Note that x ∈ Ê(ε,m) implies that αγm 6 Θd∗ (x,µ) 6 m < γm. Hence, if (rk)k is a sequence
verifying rk → 0, rk < ε and such that Θd∗ (x,µ) = limk µ(Brk(x))/ωdr

d
k , then, for k large

enough,

Erk(x) ⊂ Brk(x) \ E(ε,αγm) ⊂ Brk(x) \ Ê(ε,m),

which, together with (4.43), proves that µ verifies condition (I).
We now verify condition (II). Let x be a point such that all the tangent measures at x are

translation invariant in the directions of Tx and such that 0 < Θd∗ (x,µ) 6 Θd∗(x,µ) < +∞.
Note that the latter condition implies that for every σ ∈ Tan(x,µ)

Θd∗ (x,µ)
Θd∗(x,µ)

td 6 σ(Bt) 6
Θd∗(x,µ)
Θd∗ (x,µ)

td for all t ∈ (0, 1).

In particular, 0 ∈ sptσ for all σ ∈ Tan(x,µ). Let us choose a sequence ri → 0 and zri ∈
(x+ Tx)∩Bri(x), such that

lim inf
r→0

{
inf

z∈(x+Tx)∩Br(x)

µ(Bβr(z))

µ(Br(x))

}
= lim
i→∞

µ(Bβri(zri))

µ(Bri(x))

> lim
i→∞µx,ri

(
Bβ

(
zri − x

ri

))
,

where µx,ri is defined in (2.2) and β = βd is as in Theorem 4.14. Up to subsequences we
have that

lim
i→∞µx,ri

∗
⇀ σ ∈ Tan(x,µ) and lim

i→∞ zri − xri
= z ∈ B̄∩ Tx.
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Hence

lim inf
r→0

{
inf

zr∈(x+Tx)∩Br(x)

µ(Bβr(zr))

µ(Br(x))

}
> σ(Bβ(z)).

Let z ′ ∈ Bβ/2(z)∩ Tx such that Bβ/2(z ′) ⊂ Bβ(z)∩B. Since σ is translation invariant in the
directions of Tx

σ(Bβ(z)) > σ(Bβ
2
(z ′)) = σ(Bβ

2
(0)) > 0,

where in the last inequality we have used that 0 ∈ sptσ. Thus

lim inf
r→0

Fr(x) > lim inf
r→0

{
inf

z∈(x+Tx)∩Br(x)

µ(Bβr(z))

µ(Br(x))

}
> 0,

implying that also condition (II) in Theorem 4.14 is satisfied. Hence µ is d-rectifiable. In
particular for µ-a.e. x, Tan(x,µ) = {ω−1

d Hd (TxK∩B)}. Since, by assumption, µ is invariant
along the directions of Tx, this implies that Tx = TxK and concludes the proof.





5
C O M PA C T N E S S F O R I N T E G R A L VA R I F O L D S : T H E A N I S O T R O P I C
S E T T I N G

5.1 introduction

The aim of this chapter is to present our paper [45], where we extend the results [37, 44,
38, 43], presented in Chapter 3, to the minimization of an anisotropic energy on classes of
rectifiable varifolds in any dimension and codimension, see Theorem 5.2. The limit of a
minimizing sequence of varifolds with density uniformly bounded from below is proven to
be rectifiable. Moreover, with the further assumption that the minimizing sequence is made
of integral varifolds with uniformly locally bounded anisotropic first variation, the limiting
varifold turns out to be also integral.

We remark that every sequence of rectifiable (resp. integral) varifolds enjoying a uniform
bound on the mass and on the isotropic first variation is precompact in the space of rectifiable
(resp. integral) varifolds. This has been proved by Allard in [2, Section 6.4], see also [79,
Theorem 42.7 and Remark 42.8].

One of the main results of this work is indeed an anisotropic counterpart of the aforemen-
tioned compactness for integral varifolds, in the assumption that the limiting varifold has
positive lower density, see Theorem 5.7.

The additional tool available in the isotropic setting is the monotonicity formula for
the mass ratio of stationary varifolds, which ensures that the density function is upper
semicontinuous with respect to the convergence of varifolds. This property allows the
limiting varifold to inherit the lower density bound of the sequence.

The monotonicity formula is deeply linked to the isotropic case, see [3]. Nonetheless, given
a minimizing sequence of varifolds for an elliptic integrand, we are able to get a density
lower bound for the limiting varifold via a deformation theorem for rectifiable varifolds, see
Theorem 5.4. We can obtain it modifying [32, Proposition 3.1], proved by David and Semmes
for closed sets. Thanks to the density lower bound and the anisotropic stationarity of the
limiting varifold, we can conclude directly its rectifiability applying the main theorem of
[42], see Theorem 4.2.

The integrality result requires additional work, see Lemma 5.7: the idea is to blow-up
every varifold of the minimizing sequence in a point in which the limiting varifold has
Grassmannian part supported on a single d-plane S (note that this property holds ‖V‖-a.e.
by the previously proved rectifiability). Applying a result proved in [42], see Lemma 4.9, on
a diagonal sequence of blown-up varifolds, we get that roughly speaking their projections
on S converge in total variation to an L1 function on S. This function is integer valued thanks
to the integrality assumption on the minimizing sequence and coincides with the density
of the limiting varifold in the blow-up point, which is consequently an integer. Since the
argument holds true for ‖V‖-a.e. point, the limiting varifold turns out to be integral.

81
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5.2 setting

In the entire Chapter 5, we will asume that the anisotropy introduced in (2.9) is defined
on the whole G(Rn), i.e. Ω = Rn. Assume to have a class of varifolds P(F,H) ⊆ Rd(Rn)
encoding a notion of boundary: one can then formulate the anisotropic Plateau problem
with multiplicity by asking whether the infimum

m0 := inf
{

F(V) : V ∈P(F,H)
}

(5.1)

is achieved by some varifold (which is the limit of a minimizing sequence), if it belongs to
the chosen class P(F,H) and which additional regularity properties it satisfies. We will say
that a sequence (Vj)j∈N ⊆P(F,H) is a minimizing sequence if F(Vj) ↓ m0.

We need to introduce some minimal requirements for the class P(F,H). This is an
adaptation of Definition 3.2 to the setting of varifolds.

Definition 5.1 (Deformed competitors and deformation class). Let H ⊆ Rn be a closed set
and V ∈ Rd(Rn). A deformed competitor for V in Bx,r is any varifold

ϕ#V ∈ Rd(Rn) where ϕ ∈ D(x, r) (D(x, r) is as in Definition 3.1).

We say that P(F,H) is a deformation class with respect to H and F if P(F,H) ⊆ Rd(Rn)
and for every V ∈P(F,H) it holds:

• conc(V) is a relatively closed subset of Rn \H;

• for every x ∈ Rn \H and for a.e. r ∈ (0, dist(x,H))

inf
{

F(W) :W ∈P(F,H) ,W G
((
Bx,r

)c)
= V G

((
Bx,r

)c)}
6 F(L),

whenever L is any deformed competitor for V in Bx,r.

5.2.1 The main result

We can now state our main result:

Theorem 5.2. Let F ∈ C1(G(Rn)) be a Lagrangian satisfying the atomic condition as in Definition
4.1 at every point x ∈ Rn and enjoying the bounds (2.10). Let H ⊆ Rn be a closed set and P(F,H)
be a deformation class with respect to H and F. Assume the infimum in Plateau problem (5.1) is finite
and let (Vj)j∈N ⊆P(F,H) be a minimizing sequence. Then, up to subsequences, Vj converges to a
d-varifold V ∈ Vd(Rn) with the following properties:

(a) lim infj F(Vj) > F(V);

(b) if V ∈P(F,H), then V is a minimum for (5.1);

(c) V is F-stationary in Rn \H.

Furthermore:
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(d) if the minimizing sequence (Vj)j∈N enjoys a uniform density lower bound in Rn \H, i.e. there
exists δ > 0 such that:

Θd(x,Vj) > δ, for ‖Vj‖-a.e. x ∈ Rn \H, ∀j ∈N,

then V G(Rn \H) ∈ Rd(Rn) and conc(V) is relatively closed in Rn \H;

(e) if the minimizing sequence (Vj)j∈N satisfies (Vj G(Rn \H))j∈N ⊆ Id(Rn) and

sup
j

|δFVj|(W) <∞, ∀W ⊂⊂ Rn \H, (5.2)

then V G(Rn \H) ∈ Id(Rn).

Remark 5.3. If the assumption (Vj G(Rn \H))j∈N ⊆ Id(Rn) required in the condition (e)

of Theorem 5.2 is satisfied, also condition (d) applies, with the trivial density lower bound
δ = 1.

5.3 preliminary results

A key result we are going to use is a deformation theorem for rectifiable varifolds with
density bigger or equal than one, that we prove in this section. It is the analogous of the
deformation theorem for closed sets, due to David and Semmes [32, Proposition 3.1], see
Theorem 3.7, and of the one for rectifiable currents [79, 50].

The proof relies on the one of [32, Proposition 3.1].
We will use cimilar notation to the one introduced in Section 3.3.1. We recall it for

completeness. Given a closed cube Q = Qx,l and ε > 0, we cover Q with a grid of closed
smaller cubes with edge length ε � l, with non empty intersection with Int(Q) and such
that the decomposition is centered in x (i.e. one of the subcubes is centered in x). The family
of these smaller cubes is denoted Λε(Q). We set

C1 :=
⋃

{T ∩Q : T ∈ Λε(Q), T ∩ ∂Q 6= ∅} ,

C2 :=
⋃

{T ∈ Λε(Q) : (T ∩Q) 6⊆ C1, T ∩ ∂C1 6= ∅} ,

Q1 := Q \ (C1 ∪C2)

(5.3)

and consequently
Λε(Q

1 ∪C2) :=
{
T ∈ Λε(Q) : T ⊆ (Q1 ∪C2)

}
.

For each nonnegative integer m 6 n, let Λε,m(Q1 ∪ C2) denote the collection of all m-
dimensional faces of cubes in Λε(Q1 ∪C2) and Λ∗ε,m(Q1 ∪C2) will be the set of the elements
of Λε,m(Q1 ∪ C2) which are not contained in ∂(Q1 ∪ C2). We also let Sε,m(Q1 ∪ C2) :=⋃
Λε,m(Q1 ∪C2) be the m-skeleton of order ε in Q1 ∪C2.

Theorem 5.4. Given x0 ∈ Rn, r > 0, a closed cube Q ⊆ Bx0,r and V ∈ Rd(Rn) such that:

V = θHd K⊗ δTxK, where θ(x) > 1 for Hd K− a.e. x ∈ Q,

K∩Q is a closed set and ‖V‖(Q) < +∞.

Then there exists a map Φε,V ∈ D(x0, r) satisfying the following properties:
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(1) Φε,V(x) = x for x ∈ Rn \ (Q1 ∪C2);

(2) Φε,V(x) = x for x ∈ Sε,d−1(Q
1 ∪C2);

(3) Φε,V(K∩ (Q1 ∪C2)) ⊆ Sε,d(Q
1 ∪C2)∪ ∂(Q1 ∪C2);

(4) Φε,V(T) ⊆ T for every T ∈ Λε,m(Q1 ∪C2), with m = d, ...,n;

(5) ‖(Φε,V)
#V‖(T) 6 k1‖V‖(T) for every T ∈ Λε(Q1 ∪C2);

(6) either ‖(Φε,V)
#V‖(T) = 0 or ‖(Φε,V)

#V‖(T) > Hd(T), for every T ∈ Λ∗ε,d(Q
1);

where k1 depends only on n and d (but neither on ε nor on V).

Proof. Our map Φε,V can be obtained as the last element of a finite sequence Φn,Φn−1, ...,
Φd,Φd−1 of Lipschitz maps on Rn. The maps Φm with m = d, ...,n will satisfy the
analogous of (1) − (5), with (2) and (3) replaced by

Φm(x) = x for x ∈ Sε,m(Q1 ∪C2),

Φm(K∩ (Q1 ∪C2)) ⊆ Sε,m(Q1 ∪C2)∪ ∂(Q1 ∪C2).

The last map Φd−1 will be constructed in order to satisfy also property (6).
We start with Φn(x) := x, which verifies all the required conditions. Suppose that, for a

given m > d, we have already built Φn,Φn−1, ...,Φm. We want to define Φm−1 as

Φm−1 := ψm−1 ◦Φm, (5.4)

where ψm−1 is a Lipschitz map in Rn given by the following Lemma:

Lemma 5.5. The exists a Lipschitz map ψm−1 : Q
1 ∪C2 → Q1 ∪C2 such that:

ψm−1(x) = x for x ∈ Sε,m−1(Q
1 ∪C2)∪ ∂(Q1 ∪C2),

ψm−1(Φm(K∩ (Q1 ∪C2))) ⊆ Sε,m−1(Q
1 ∪C2)∪ ∂(Q1 ∪C2),

ψm−1(T) ⊆ T for every T ∈ Λε,m(Q1 ∪C2), with m = d, ...,n,

and

‖(ψm−1 ◦Φm)#V‖(T) 6 C‖(Φm)#V‖(T) for every T ∈ Λε(Q1 ∪C2),

where C depends only on m and d.

Assuming Lemma 5.5, we can easily extend ψm−1 to be the identity outside Q1 ∪C2 and
the map Φm−1 defined in (5.4) satisfies the desired properties.

To conclude, we need to construct Φd−1 in order to satisfy also condition (6). We proceed
in a way analogous to the one used in [44, Theorem 2.4], see Theorem 3.7.

We want to set
Φd−1 := Ψ ◦Φd,

where Ψ will be defined below. We first define Ψ on every T ∈ Λε,d(Q
1 ∪C2) distinguishing

two cases



5.3 preliminary results 85

(a) if either ‖(Φd)#V‖(T) = 0 or ‖(Φd)#V‖(T) > Hd(T) or T 6∈ Λ∗ε,d(Q
1), then we set

Ψ|T := Id;

(b) otherwise, since the varifold density Θ(x,V) is bigger or equal than one for ‖V‖-a.e.
x ∈ Q, the same holds for (Φd)#V , because Φd is a Lipschitz map. We infer that

Hd(T) > ‖(Φd)#V‖(T) > Hd(Φd(K∩Q)∩ T).

Since Φd(K∩Q) is compact (K∩Q is compact by assumption), there exists yT ∈ T and
δT > 0 such that BδT ,yT ∩Φd(K∩Q) = ∅; we define

Ψ|T (x) := x+α(x− yT )min
{
1,

|x− yT |

δT

}
,

where α > 0 is such that the point x+α(x− yT ) ∈ (∂T)× {0}n−d.

The second step is to define Ψ on every T ′ ∈ Λε,d+1(Q
1 ∪C2). Without loss of generality, we

can assume T ′ centered in 0. We divide T ′ in pyramids PT ,T ′ with base T ∈ Λε,d(Q
1 ∪C2)

and vertex 0. Assuming T ⊆ {xd+1 = −ε2 , xd+2, ..., xn = 0} and T ′ ⊆ {xd+2, ..., xn = 0}, we set

Ψ|PT ,T ′
(x) := −

2xd+1
ε

Ψ|T

(
−

x

xd+1

ε

2

)
.

We iterate this procedure on all the dimensions till to n, defining it well in Q1 ∪C2. Since
Ψ|∂(Q1∪C2) = Id, we can extend the map as the identity outside Q1 ∪C2.

By construction of Ψ, if we denote

(Ψ ◦Φd)#V = θ̃Hd (Ψ ◦Φd)(K)⊗ δTx(Ψ◦Φd)(K),

we get that θ̃ = 0 in the interior of T , and we can assume this is true also at the boundary
since Hd((∂T)× {0}n−d) = 0 and θ̃ is defined for Hd-a.e. x ∈ (Ψ ◦Φd)(K).

We consequently obtain:

‖(Ψ ◦Φd)#V‖(T) =
∫
(Ψ◦Φd)(K)∩T

θ̃dHd = 0,

and so property (6) is now satisfied.
In addition, one can easily check that Ψ ∈ D(x0, r) and thus, since Φd ∈ D(x0, r) and the

class D(x0, r) is closed by composition, then also Φd−1 ∈ D(x0, r).
This concludes the proof of Theorem 5.4 provided we prove Lemma 5.5.
The proof of Lemma 5.5 can be repeated verbatim as the one of [32, Lemma 3.10], if we

replace [32, Lemma 3.22] with the following:

Lemma 5.6. Let T be an m-dimensional closed cube with m > d and Ṽ ∈ Rd(Rn) such that:

Ṽ = θ̃Hd F⊗ δTxF, where F ⊂ T is a closed d-rectifiable set and ‖Ṽ‖(T) < +∞.

For every z ∈ T \ F, we define εz := d(z, F) > 0. We consider a Lipschitz map ηz,T : T → T , which
satisfies in T \Bz,εz the conditions:

ηz,T (x) ∈ ∂T , ηz,T (x) − x = c(x− z), c = c(x, z, T) > 0, ∀x ∈ T \Bz,εz .
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Then ∫
z∈( 12T)\F

‖(ηz,T )
#Ṽ‖(T)dHm(z) 6 C(diam(T))m‖Ṽ‖(T), (5.5)

where C depends just on m and d.

Proof of Lemma 5.6. For a given point z, if we denote

(ηz,T )
#Ṽ = θ̄Hd ηz,T (F)⊗ δTxηz,T (F),

by (2.4) we compute

‖(ηz,T )
#Ṽ‖(T) =

∫
F

θ̃JFηz,TdH
d. (5.6)

Moreover, for every x ∈ T \Bz,εz , we have

JFηz,T (x,π) 6 C|Dηz,T |
d 6 C

(
lim
y→x

|ηz,T (x) − ηz,T (y)|

|x− y|

)d
6 C

(
lim
y→x

|x− y|diam(T)

|x− y| · |x− z|

)d
6 C

(diam(T))d

|x− z|d
,

(5.7)

where C depends just on m and d. Plugging (5.7) in (5.6), we infer that

‖(ηz,T )
#Ṽ‖(T) 6 C(diam(T))d

∥∥∥∥ 1

| ·−z|d
Ṽ

∥∥∥∥ (T).
Integrating this estimate over

(
1
2T
)
\ F and applying Fubini’s theorem, we get∫

z∈( 12T)\F
‖(ηz,T )

#Ṽ‖(T)dHm(z) 6 C(diam(T))d
∫
T

(∫
T

1

|x− z|d
dHm(z)

)
d‖Ṽ‖(x).

Since the integral in z on the right hand side is finite because m > d and its value is less or
equal than C(diam(T))m−d, we conclude the estimate (5.5) as we wanted to prove.

Lemma 5.6 allows us to prove Lemma 5.5 as for [32, Lemma 3.10]. Our proof is now
concluded.

5.4 an integrality theorem

In this section, we prove an integrality theorem of independent interest, which is going to be
applied in the proof of Theorem 5.2.

Theorem 5.7. Let F ∈ C1(G(Rn), R>0) be a positive integrand satisfying the atomic condition as
in Definition 4.1 at every x ∈ Rn. Let U ⊆ Rn be an open set and (Vj)j∈N ⊆ Id(Rn) be a sequence
of integral varifolds converging to a varifold V . Assume that V enjoys the density lower bound

Θd∗ (x,V) > 0 for ‖V‖-a.e. x ∈ U (5.8)

and that the sequence (Vj)j∈N satisfies

sup
j∈N

|δFVj|(W) <∞, ∀W ⊂⊂ U; (5.9)

then V G(U) ∈ Id(Rn).
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Proof. By the assumption (5.9) and by the lower semicontinuity of the total variation of the
anisotropic first variation with respect to varifolds convergence, we get that (δFV) U is
a Radon measure. Moreover, V enjoys the density lower bound (5.8). Since F satisfies the
atomic condition as in Definition 4.1 at every x ∈ Rn, we are in the hypotheses to apply
Theorem 4.2 and to conclude that V is a d-rectifiable varifold.

We now prove that the limiting varifold V is integral.
Since V G(U) ∈ Rd(Rn), it can be represented as

V G(U) := Θ(·,V)Hd K⊗ δTxK,

where K is a d-rectifiable set, Θ(·,V) ∈ L1(Rn;Hd) and TxK denotes the tangent space of K
at x.

By assumption (5.9), we know that there exists ν ∈ M+(U) such that |δFVj| converges
weakly in the sense of measures to ν in U. By Besicovitch differentiation theorem (see [12,
Theorem 2.22]) we get that for ‖V‖- a.e. point x in U

lim sup
r→0

ν(Bx,r)

‖V‖(Bx,r)
= Cx̄ < +∞. (5.10)

We fix a point x̄ ∈ U such that Θ(x̄,V) and Tx̄K exist, Θ(x̄,V) ∈ (0,+∞) (this is true at ‖V‖-
a.e. point in U by the rectifiability of V G(U)) and such that (5.10) holds. Assume w.l.o.g.
that Tx̄K = Rd × {0}n−d; we denote S := Tx̄K and with ΠS : Rn → S and ΠS⊥ : Rn → S⊥ the
orthogonal projections respectively onto S and S⊥.

There exists a sequence of radii (rk)k∈N ↓ 0 such that ν(∂Bx̄,rk) = 0 and consequently
there exists jk := j(rk) big enough so that

|δFVjk |(Bx̄,rk) = (1+ ork(1))ν(Bx̄,rk). (5.11)

Combining (5.10) and (5.11), we obtain

lim sup
k→∞

|δFVjk |(Bx̄,rk)

‖V‖(Bx̄,rk)
= lim sup

k→∞
ν(Bx̄,rk)

‖V‖(Bx̄,rk)
= Cx̄ < +∞,

and for k big enough we conclude

|δFVjk |(Bx̄,rk) 6 2Cx̄‖V‖(Bx̄,rk). (5.12)

For every k ∈N, we consider the rescaling transformation ηx̄,rk : Rn → Rn, ηx̄,rk(y) = y−x̄
rk

.
We define

Vk :=
(
(ηx̄,rk)#V

)
and Vkj :=

(
(ηx̄,rk)#Vj

)
.

Since Vj ⇀ V , for every k ∈N

Vkj ⇀ Vk as j→∞.

But, since Θ(x̄,V) < +∞, we get that Vk are locally bounded uniformly with respect to k
and we infer

Vk ⇀ Θ(x̄,V)Hd S⊗ δS, as k→∞.
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Via a diagonal argument, up to extract another (not relabeled) subsequence jk, if we define
Ṽk := Vkjk , we get

‖Vjk‖(Bx̄,rk) 6 2‖V‖(Bx̄,rk) 6 4Θ(x̄,V)rdk , (5.13)

‖Ṽk‖(Bd1 ×Bn−d1 \Bd1 ×Bn−d1
2

) = ork(1), (5.14)

‖Ṽk‖(Bd1 ×Bn−d1 ) 6 2Θ(x̄,V), (5.15)

and the convergence

Ṽk ⇀ Θ(x̄,V)Hd S⊗ δS, as k→∞. (5.16)

We consider χ1 ∈ C∞c (Bd√2/2) with χ1 ≡ 1 in Bd1
2

, χ2 ∈ C∞c (Bn−d√
2/2

) with χ2 ≡ 1 in Bn−d
1/2

and

we define χ ∈ C∞c (B1) as χ(x) := χ1(ΠS(x))χ2(ΠS⊥(x)).
We denote Fk(z, T) = F(x̄+ rkz, T) and define the family of varifolds Wk := χṼk equicom-

pactly supported in B1. We claim that

sup
k∈N

|δFkWk|(B1) < +∞. (5.17)

Indeed, we define χk := χ ◦ ηx̄,rk ∈ C∞c (Bx̄,rk) and for every ϕ ∈ C∞c (B1, Rn) we consider
the map ϕk := ϕ ◦ ηx̄,rk ∈ C∞c (Bx̄,rk , Rn), so that

‖χk‖∞ 6 ‖χ‖∞ 6 1, rk‖∇χk‖∞ 6 ‖∇χ‖∞ and ‖ϕk‖∞ 6 ‖ϕ‖∞. (5.18)

Thanks to (2.17) and (2.18), we compute

|δFkWk(ϕ)| = |δFk(χṼ
k)(ϕ)|

=
∣∣∣ ∫ 〈dzFk(z, T),χ(z)ϕ(z)〉dṼk(z, T)
+

∫
BFk(z, T) : Dϕ(z)χ(z)dṼ

k(z, T)
∣∣∣

=
∣∣∣ ∫ 〈dzFk(ηx̄,rk(y), T),χ(ηx̄,rk(y))ϕ(ηx̄,rk(y))〉Jηx̄,rk(y, T)dVjk(y, T)

+

∫
BFk(η

x̄,rk(y), T) : Dϕ(ηx̄,rk(y))χ(ηx̄,rk(y))Jηx̄,rk(y, T)dVjk(y, T)
∣∣∣

(2.18)
=
∣∣∣r1−dk

∫ 〈
dyF(y, T),χk(y)ϕk(y)〉dVjk(y, T)

+ r1−dk

∫
BF(y, T) : Dϕk(y)χk(y)dVjk(y, T)

∣∣∣
=
∣∣∣r1−dk

∫ 〈
dyF(y, T),χk(y)ϕk(y)〉dVjk(y, T)

+ r1−dk

∫
BF(y, T) : D(ϕkχk)(y)dVjk(y, T)

− r1−dk

∫
BF(y, T) : ∇χk(y)⊗ϕk(y)dVjk(y, T)

∣∣∣
(2.17)
6 r1−dk |δFVjk(χkϕk)|+ r

1−d
k ‖F‖C1(Bx̄,rk)

‖Vjk‖(Bx̄,rk)‖∇χk‖∞‖ϕk‖∞,
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which, combined with (5.12), (5.13) and (5.18), gives

|δFkWk(ϕ)|
(5.13),(5.18)

6 r1−dk |δFVjk |(Bx̄,rk)‖ϕ‖∞ + 4‖F‖C1(Bx̄,rk)
Θ(x̄,V)‖∇χ‖∞‖ϕ‖∞

(5.12)
6 2r1−dk Cx̄‖V‖(Bx̄,rk)‖ϕ‖∞ + 4‖F‖C1(Bx̄,rk)

Θ(x̄,V)‖∇χ‖∞‖ϕ‖∞
(5.13)
6
[
4rkCx̄Θ(x̄,V) + 4‖F‖C1(Bx̄,rk)

Θ(x̄,V)‖∇χ‖∞]‖ϕ‖∞.

This inequality implies (5.17). Finally, by (5.16),

lim
k→∞

∫
G(B1)

|T − S|dWk(z, T) = lim
k→∞

∫
G(B1)

|T − S|χ(z)dṼk(z, T)

=

∫
G(B1)

|T − S|Θ(x̄,V)χ(z)dδS(T)dHd S(z) = 0.

Hence the sequence (Wk)k∈N satisfies the assumptions of Lemma 4.9, indeed we observe
that BFk(z, T) = BF(x̄+ rkz, T), so that assumption (2) in Lemma 4.9 is satisfied. Thus we
deduce that there exists γ ∈ L1(Hd Bd1 ) such that, along a (not relabeled) subsequence, for
every 0 < t < 1∣∣∣(ΠS)#(F(x̄+ rk(·),S)‖Wk‖) − γHd Bd1

∣∣∣(Bdt ) −→ 0. (5.19)

Since χ1 ≡ 1 in Bd1/2, thanks to (5.14) we get

(ΠS)#(F(x̄+ rk(·),S)‖Wk‖)(Bd1/2)

= (ΠS)#(F(x̄+ rk(·),S)‖(χ2 ◦ΠS⊥)Ṽk‖)(Bd1/2)

= (ΠS)#(F(x̄+ rk(·),S)‖Ṽk (Bd1 ×Bn−d1 )‖)(Bd1/2) − ork(1),

which we plug in (5.19) to obtain∣∣∣(ΠS)#(F(x̄+ rk(·),S)‖Ṽk Bd1 ×Bn−d1 ‖) − γHd Bd1

∣∣∣(Bd1/2) −→ 0. (5.20)

But, thanks to (5.15)∣∣∣(ΠS)#(F(x̄+ rk(·),S)‖Ṽk Bd1 ×Bn−d1 ‖) − (ΠS)#(F(x̄,S)‖Ṽk Bd1 ×Bn−d1 ‖)
∣∣∣(Bd1/2)

=
∣∣∣(ΠS)#(F(x̄+ rk(·),S)‖Ṽk Bd1 ×Bn−d1 ‖− F(x̄,S)‖Ṽk Bd1 ×Bn−d1 ‖)

∣∣∣(Bd1/2)
6
∣∣∣(F(x̄+ rk(·),S) − F(x̄,S))‖Ṽk Bd1 ×Bn−d1 ‖

∣∣∣(Bd1/2 ×Bn−d1 )

6 sup
z∈Bx̄,2

∣∣∣(F(x̄+ rkz,S) − F(x̄,S))
∣∣∣‖Ṽk‖(Bd1 ×Bn−d1 )

(5.15)
6 2Θ(x̄,V)‖F‖C1(Bx̄,2)

rk −→ 0.

(5.21)

Plugging (5.21) in (5.20), we conclude by triangular inequality that∣∣∣(ΠS)#(F(x̄,S)‖Ṽk Bd1 ×Bn−d1 ‖) − γHd Bd1

∣∣∣(Bd1/2) −→ 0. (5.22)
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Since Ṽk Bd1 ×B
n−d
1 is an integral varifold, then (ΠS)#‖Ṽk Bd1 ×B

n−d
1 ‖ is a d-rectifiable

measure in Rd ≈ S with integer d-density θk(·) ∈ L1(Bd1 , N,Ld). By (5.22), we deduce that

F(x̄,S)θk(·) −→ γ(·) in L1(Bd1/2,Ld)

and consequently, up to subsequences, (θk(x))k ⊂ N converges for Hd-a.e. x ∈ Bd1/2 to
γ(x)
F(x̄,S) ∈N. By (5.16), we also know that

(ΠS)#‖Ṽk Bd1 ×Bn−d1 ‖⇀ Θ(x̄,V)Ld Bd1

and by uniqueness of the limit, we infer that γ(·)
F(x̄,S) ≡ Θ(x̄,V) in Bd1/2. But γ(·)

F(x̄,S) is integer
valued in Bd1/2, so we conclude that Θ(x̄,V) ∈N and that V is an integral varifold.

Remark 5.8. We recall that the isotropic version of Theorem 5.7 above has been proved
in [2, Section 6.4], without the density assumption (5.8), which is a consequence of the
monotonicity formula in the isotropic setting. If one were able to preserve in the limit
varifold V the lower density bound of the sequence Vj of Theorem 5.7, one would get further
applications. For instance, it would positively answer to a question raised by Tonegawa in
the setting of anisotropic mean curvature flows, see [81, Section 4.1, p. 116].

5.5 proof of the main theorem

Up to extracting subsequences, we can assume the existence of V ∈ Vd(Rn) such that

Vj
∗
⇀ V .

We remark that condition (a) of Theorem 5.2 is automatically satisfied by the lower semicon-
tinuity of the functional F(·) with respect to varifolds convergence. This implies straightfor-
wardly also condition (b). For the remaining properties, we divide the argument in several
steps.

5.5.1 Proof of Theorem 5.2: stationarity of the limiting varifold

In this section we prove property (c).
Assume by contradiction that there exists a smooth vector field ψ compactly supported in

Rn \H such that δFV(ψ) < 0. By standard partition of unity argument for the compact set
supp(ψ) in the open set Rn \H, using the linearity of δFV(·), we get the existence of a ball
Bx,r ⊂⊂ Rn \H and of a vector field (not relabeled) ψ ∈ C1c(Bx,r, Rn) such that

δFV(ψ) 6 −2C < 0.

There exists a map ϕ : t ∈ R 7→ ϕt ∈ C∞(Rn, Rn) solving the following ODE:
∂ϕt(x)
∂t = ψ(ϕt(x)) ∀x ∈ Rn,

ϕ0(x) = x ∀x ∈ Rn.
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Notice that one can choose an ε > 0 small enough to have that ϕt ∈ D(x, r) for every t ∈ [0, ε].
We set

Vt := (ϕt)
#V , and Vjt = (ϕt)

#Vj.

By continuity of the functional δFZ(ψ) with respect to Z, up to take a smaller ε > 0, we get
that

δFVt(ψ) 6 −C < 0, ∀t ∈ [0, ε].

Integrating the last inequality, we conclude that

F(Vε) 6 F(V) −Cε. (5.23)

We fix an α ∈ [1, 2] such that

‖Vε‖(∂Bx,αr) = 0, and consequently F(Vε,∂Bx,αr) = 0. (5.24)

We notice that equation (5.24) can be read as

F(V ,∂Bx,αr) = 0, because ϕε = Id in Bcx,r. (5.25)

Since Vjε ⇀ Vε and Vj ⇀ V , thanks to the equalities (5.24) and (5.25), one can infer

F(Vε,Bx,αr) = lim
j

F(Vjε,Bx,αr), and F(V ,Bx,αr) = lim
j

F(Vj,Bx,αr). (5.26)

Moreover, from (5.23) and the fact that ϕε = Id in Bcx,r, we also get

F(Vε,Bx,αr) 6 F(V ,Bx,αr) −Cε. (5.27)

Using (5.26) and (5.27), we infer

lim inf
j

F(Vjε) = lim inf
j

(
F(Vjε,Bx,αr) + F

(
Vjε,
(
Bx,αr

)c))
6 lim sup

j

F(Vjε,Bx,αr) + lim inf
j

F
(
Vjε,
(
Bx,αr

)c)
(5.26)
= F(Vε,Bx,αr) + lim inf

j
F
(
Vjε,
(
Bx,αr

)c)
(5.27)
6 F(V ,Bx,αr) −Cε+ lim inf

j
F
(
Vjε,
(
Bx,αr

)c)
(5.26)
= lim

j
F(Vj,Bx,αr) −Cε+ lim inf

j
F
(
Vjε,
(
Bx,αr

)c)
6 lim inf

j
F(Vj) −Cε.

(5.28)

Since ϕε ∈ D(x, r), by definition of deformation class, see Definition 5.1, there exists a new
sequence (Ṽj)j∈N ⊆P(F,H), such that

F(Ṽj) 6 F(Vjε) +
Cε

4
,

and passing to the lower limit on j, we get

lim inf
j

F(Ṽj) 6 lim inf
j

F(Vj) −
3Cε

4
,

which contradicts the minimality of the sequence (Vj)j∈N.
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5.5.2 Proof of Theorem 5.2: lower density estimates

In this section we show that if there exists δ > 0 such that

Θd(x,Vj) > δ, for ‖Vj‖-a.e. x ∈ Rn \H, ∀j ∈N,

then there exist θ0 = θ0(n,d, δ, λ,Λ) > 0 such that

‖V‖(Bx,r) > θ0ωdr
d , x ∈ spt ‖V‖ and r < dx := dist(x,H). (5.29)

To this end, by (2.10), it is sufficient to prove the existence of β = β(n,d, δ, λ,Λ) > 0 such
that

F(V ,Qx,l) > β l
d , x ∈ spt ‖V‖ and l < 2dx/

√
n .

We adapt the argument of [44, Theorem 1.3, Step one] to the anisotropic energy and taking
into account the varifolds multiplicity. Let us assume by contradiction that there exist
x ∈ spt ‖V‖ and l < 2dx/

√
n such that

F(V ,Qx,l)
1
d

l
< β.

We claim that this assumption, for β chosen sufficiently small depending only on n,d, δ, λ
and Λ, implies that for some l∞ ∈ (0, l)

F(V ,Qx,l∞) = 0, (5.30)

which is a contradiction with x ∈ spt ‖V‖. In order to prove (5.30), we assume that
F(V ,∂Qx,l) = 0, which is true for a.e. l ∈ R>0.

To prove (5.30), we construct a sequence of nested cubes Qi := Qx,li such that, if β is
sufficiently small, the following holds:

(i) Q0 = Qx,l;

(ii) F(V ,∂Qi) = 0;

(iii) setting mi := F(V ,Qi) then:

m
1
d

i

li
< β;

(iv) mi+1 6 (1− 1
k2

)mi, where k2 := Λk1
λ and k1 is the constant in Theorem 5.4;

(v) (1− 4εi)li > li+1 > (1− 6εi)li, where

εi :=
1

kβ

m
1
d

i

li
(5.31)

and k = max{6, 6/(1− (k2−1k2 )
1
d )} is a universal constant.

(vi) limimi = 0 and limi li > 0.
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Following [32], we are going to construct the sequence of cubes by induction: the cube
Q0 satisfies by construction hypotheses (i)-(iii). Suppose that cubes until step i are already
defined.

Setting mji := F(Vj,Qi), we cover Qi with the family Λεili(Qi) of closed cubes with edge
length εili as described in Section 5.3 and we set Ci1 and Ci2 for the corresponding sets
defined in (5.3). We define Qi+1 to be the internal cube given by the construction, and we
note that Ci2 and Qi+1 are non-empty if, for instance,

εi =
1

kβ

m
1
d

i

li
<
1

k
6
1

6
,

which is guaranteed by our choice of k. Observe moreover that Ci1 ∪Ci2 is a strip of width at
most 2εili around ∂Qi, hence the side li+1 of Qi+1 satisfies (1− 4εi)li 6 li+1 < (1− 2εi)li.

We denote with Kj the concentration set of Vj (that is Vj := θjH
d Kj ⊗ δTxKj), where

θj ∈ L1(Kj; [δ,+∞);Hd)) and apply Theorem 5.4 to Qi, Vδj := 1
δVj and ε = εili, obtaining

the map Φi,j = Φεili,Vδj . Notice that we are in the hypotheses to apply Theorem 5.4, since

the rescaled varifolds Vδj have density bigger or equal than one in Qi, Kj is a relatively
closed subset of Rn \H and Q0 ∩H = ∅.

We claim that, for every j sufficiently large,

m
j
i 6 k2(m

j
i −m

j
i+1) + oj(1). (5.32)

Indeed, since (Vj)j∈N is a minimizing sequence in the class P(F,H), then (Vδj ) is a minimiz-
ing sequence in the class

Pδ(F,H) :=
{
1

δ
W : W ∈P(F,H)

}
.

Since we are just rescaling the density of the varifolds and P(F,H) is a deformation class,
also Pδ(F,H) is a deformation class and by (2.10), we have that

1

δ
m
j
i = F(Vδj ,Qi) 6

1

δ
mi + oj(1) 6 Λ‖(Φi,j)#Vδj ‖(Qi) + oj(1)

= Λ‖(Φi,j)#Vδj ‖(Qi+1) +Λ‖(Φi,j)#Vδj ‖
(
Ci1 ∪Ci2

)
+ oj(1)

6 Λ‖(Φi,j)#Vδj ‖
(
Ci1 ∪Ci2

)
+ oj(1) 6

k2
δ
(mji −m

j
i+1) + oj(1).

The last inequality holds because ‖(Φi,j)#Vδj ‖(Qi+1) = 0 for j large enough: otherwise, by
property (6) of Theorem 5.4, there would exist T ∈ Λ∗εili,d(Qi+1) such that ‖(Φi,j)#Vδj ‖(T) >
Hd(T). Together with property (ii) and by (2.10), this would imply

ldi ε
d
i = Hd(T) 6 ‖(Φi,j)#Vδj ‖(T) 6

k1
δ
‖Vj‖(Qi) 6

k1
δλ
m
j
i →

k1
δλ
mi

and therefore, substituting (5.31),
mi
kdβd

6
k1
δλ
mi,
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which is false if β is sufficiently small (mi > 0 because x ∈ spt(‖V‖)). Passing to the limit in
j in (5.32) we obtain (iv):

mi+1 6
k2 − 1

k2
mi. (5.33)

Since li+1 > (1− 4εi)li, we can slightly shrink the cube Qi+1 to a concentric cube Q ′i+1
with l ′i+1 > (1− 6εi)li > 0, F(V ,∂Q ′i+1) = 0 and for which (iv) still holds, just getting a
lower value for mi+1. With a slight abuse of notation, we rename this last cube Q ′i+1 as
Qi+1.

We now show (iii). Using (5.33) and condition (iii) for Qi, we obtain

m
1
d

i+1

li+1
6

(
k2 − 1

k2

) 1
d m

1
d

i

(1− 6εi)li
<

(
k2 − 1

k2

) 1
d β

1− 6εi
.

The last quantity will be less than β if

(
k2 − 1

k2

) 1
d

6 1− 6εi = 1−
6

kβ

m
1
d

i

li
. (5.34)

In turn, inequality (5.34) is true because (iii) holds for Qi, provided we choose k > 6/
(
1−

(1− 1/k2)
1
d

)
. Furthermore, estimating ε0 < 1/k by (iii) and (v), we also have εi+1 6 εi.

We are left to prove (vi): limimi = 0 follows directly from (iv); regarding the non
degeneracy of the cubes, note that

l∞
l0

:= lim inf
i

li
l0

>
∞∏
i=0

(1− 6εi) =

∞∏
i=0

1− 6

kβ

m
1
d

i

li


>
∞∏
i=0

1− 6m
1
d

0

kβl0
∏i−1
h=0(1− 6εh)

(
k2 − 1

k2

) i
d


>
∞∏
i=0

(
1−

6

k(1− 6ε0)i

(
k2 − 1

k2

) i
d

)
,

where we used εh 6 ε0 in the last inequality. Since ε0 < 1/k, the last product is strictly
positive, provided

k >
6

1−
(
k2−1
k2

) 1
d

,

which is guaranteed by our choice of k. We conclude that l∞ > 0, which ensures claim (5.30).

5.5.3 Proof of Theorem 5.2: rectifiability of the limiting varifold

In this section, we prove condition (d). Indeed, with the assumption on the uniform density
lower bound of the minimizing sequence, by the previous step we know that V enjoys the
denisty lower bound (5.29). Moreover, by condition (c), it is F-stationarity in Rn \H. Since F
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is as in Definition 4.1, we are in the hypotheses to apply Theorem 4.2 and to conclude that
V G(Rn \H) is a d-rectifiable varifold.

Moreover, by the previous step, for every x ∈ spt ‖V‖ \H we have (5.29). It follows that

spt ‖V‖ \H ⊆ conc(V) ⊆ spt ‖V‖.

We conclude that conc(V) \H = spt ‖V‖ \H and consequently that the concentration set is
relatively closed in Rn \H.

5.5.4 Proof of Theorem 5.2: integrality of the limiting varifold

In this section we prove that, under the further assumption that the minimizing sequence is
made of integral varifolds satisfying

sup
j

|δFVj|(W) <∞, ∀W ⊂⊂ (Rn \H),

then V G(Rn \H) is integral. Indeed, we already know that V enjoys the density lower
bound (5.29).

We are in the hypotheses to apply Theorem 5.7 with U := Rn \H and conclude that
condition (e) holds.
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N O TAT I O N O F PA RT I I

We introduce in this chapter the Notation of Part II. Since Part I and Part II address different
problems, the notation for Part II will be self-contained. The main difference with the
notation previously adopted will be the ambient space Rd instead of Rn.

6.0.1 Measures and rectifiable sets

Given a locally compact separable metric space Y, we denote by M(Y) the set of Radon
measures in Y, namely the set of (possibly signed) measures on the σ-algebra of Borel sets of
Y that are locally finite and inner regular. We denote also by M+(Y) the subset of positive
measures and by P(Y) the subset of probability measures, i.e. those poitive measures µ such
that µ(Y) = 1.

We denote by |µ| the total variation measure associated to µ. The negative and positive
parts of µ are the positive measures defined respectively by

|µ|− µ

2
and

|µ|+ µ

2
.

For µ,ν ∈M(Y), we write µ 6 ν in case µ(A) 6 ν(A) for every Borel set A. Given a measure
µ we denote by

spt(µ) :=
⋂

{C ⊂ Y : C is closed and |µ|(Y \C) = 0}

its support. We say that µ is supported on a Borel set E if |µ|(Y \ E) = 0. For a Borel set E, µ E

is the restriction of µ to E, i.e. the measure defined by

[µ E](A) = µ(E∩A) for every Borel set A.

We say that two measures µ and ν are mutually singular if there exists a Borel set E such
that µ = µ E and ν = ν Ec.

For a measure µ ∈ M(Y) and a Borel map η : Y → Z between two metric spaces we let
η]µ ∈M(Z) be the push-forward measure, namely

η]µ(A) := µ(η
−1(A)), for every Borel set A ⊂ Z.

We use Ld and Hk to denote respectively the d-dimensional Lebesgue measure on Rd

and the k-dimensional Hausdorff measure, see [79].
A set K ⊂ Rd is said to be countably k-rectifiable (or simply k-rectifiable) if it can be

covered, up to an Hk-negligible set, by countably many k-dimensional submanifolds of class
C1. At Hk-a.e. point x of a k-rectifiable set E, a notion of (unoriented) tangent k-plane is
well-defined: we denote it by Tan(E, x).

99
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6.0.2 Currents

We recall here the basic terminology related to k-dimensional currents. We refer to the
introductory presentation given in the standard textbooks [79], [61] for further details. The
most complete reference remains the treatise [50].

Let us denote by Λk(Rd) the vector space of k-covectors in Rd. A k-dimensional current
T in Rd is a continuous linear functional on the space Dk(Rd) := C∞c (Rd;Λk(Rd)) of
smooth and compactly supported differential k-forms on Rd. Hence the space Dk(R

d) of k-
dimensional currents in Rd is endowed with the natural notion of weak∗ convergence. For a
sequence (Tn)n∈N of k-dimensional currents converging to a current T , we use the standard
notation Tn ⇀ T . With ∂T we denote the boundary of T , that is the (k− 1)-dimensional
current defined via

〈∂T ,ω〉 := 〈T ,dω〉 for every ω ∈ Dk−1(Rd).

The mass of T , denoted by M(T), is the supremum of 〈T ,ω〉 over all k-forms ω such that
|ω| 6 1 everywhere (here with |ω| we denoted the comass norm of ω).

By the Radon–Nikodým Theorem, a k-dimensional current T with finite mass can be
identified with the vector-valued measure T = ~T‖T‖ where ‖T‖ is a finite positive measure
and ~T is a unit k-vector field. Hence, the action of T on a k-form ω is given by

〈T ,ω〉 =
∫

Rd
〈ω(x),~T(x)〉d‖T‖(x) .

In particular a 0-current with finite mass can be identified with a real-valued Radon
measure and the mass of the current coincides with the total variation (or mass) of the
corresponding measure. We will tacitly use such identification several times through the
next chapters.

For a current T with finite mass, we will denote by spt(T) its support, defined as the
support of the associated measure ‖T‖. A current T is called normal if both T and ∂T have
finite mass; we denote the set of normal k-currents in Rd by Nk(Rd). Given a normal
1-current T , we denote by ∂+T and ∂−T respectively the positive and the negative part of
the (finite) measure ∂T . It is well-known that, if T is a normal current with compact support
and ∂T = µ+ − µ−, (where not necessarily µ+ and µ− are mutually singular) it holds

M(µ+) = M(µ−). (6.1)

In particular:

M(∂T) = 2M(∂−T) = 2M(∂+T). (6.2)

Given a Borel set A ⊆ Rd, we define the restriction of a current T with finite mass to A as

〈T A,ω〉 :=
∫
A

〈ω(x),~T(x)〉d‖T‖(x) .

Notice that the restriction of a normal current to a Borel set is a current with finite mass, but
it might fail to be normal.
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A k-dimensional rectifiable current is a current T = T [E, τ, θ], which can be represented as

〈T ,ω〉 =
∫
E

〈ω(x), τ(x)〉 θ(x)dHk(x) , (6.3)

where E is a k-rectifiable set, τ(x) is a unit simple k-vector field defined on E which at Hk-a.e
x ∈ E spans the approximate tangent space Tan(E, x) and θ : E→ R is a function such that∫
E |θ|dH

k <∞. We denote by Rk(Rd) the space of k-dimensional rectifiable currents in Rd.
Modulo changing sign to the orientation τ, we can always assume that θ takes non-negative
values. We will tacitly make such assumption through the next chapters, unless we specify
elsewhere. It is easy to see that for T ∈ Rk(Rd) it holds

M(T) =

∫
E

θ(x)dHk(x); (6.4)

in particular, any rectifiable current has finite mass. We remark that the rectifiable currents
we are considering all have finite mass and compact support.

A k-dimensional polyhedral chain P ∈ Pk(Rd) is a rectifiable current which can be written
as a linear combination

P =

N∑
i=1

θi[σi], (6.5)

where θi ∈ (0,∞), the σi’s are non-overlapping, oriented, k-dimensional, convex polytopes
(finite unions of k-simplexes) in Rn and [σi] = [σi, τi, 1], τi being a constant k-vector
orienting σi. If P ∈ Pk(Rd), then its flat norm is defined by

F(P) := inf{M(S) + M(P− ∂S) : S ∈ Pk+1(Rn)}.

Flat k-chains can be therefore defined to be the F-completion of Pk(Rd) in Dk(R
d).

We remark that for the spaces of currents considered above the following chain of
inclusions holds:

Pk(Rd) ⊂ Rk(Rd) ⊂ Fk(Rd)∩ {T ∈ Dk(R
d) : M(T) <∞}. (6.6)

The flat norm F extends to a functional (still denoted F) on Dk(R
d), which coincides on

Fk(Rd) with the completion of the flat norm on Pk(Rd), by setting:

F(T) := inf{M(S) + M(T − ∂S) : S ∈ Dk+1(R
d)}. (6.7)

The main reason for our interest on this notion is the fact that the flat norm metrizes the
weak∗ convergence of normal currents in a compact set with equi-bounded masses and
masses of the boundaries. This fact can be easily deduced from [50, Theorem 4.2.17(1)].

In the sequel, we will also use the following equivalent characterization of the flat norm
of a flat chain (cf. [50, 4.1.12] and [70, 4.5]). If T ∈ Fk(Rd) and B ⊂ Rd is a ball such that
spt(T) ⊂ B, then

F(T) = sup{〈T ,ω〉 : ω ∈ Dk(Rd) with ‖ω‖C0(B;Λk(Rd)) 6 1, ‖dω‖C0(B;Λk+1(Rd)) 6 1}. (6.8)
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I M P R O V E D S TA B I L I T Y O F O P T I M A L T R A F F I C PAT H S

7.1 introduction

The branched transport problem is a variant of the classical Monge-Kantorovich problem,
where the cost of the transportation does not depend only on the initial and the final
spatial distribution of the mass that one wants to transfer, but also on the paths along
which the mass particles move. It was introduced to model systems which naturally show
ramifications, such as roots systems of trees and leaf ribs, the nervous, the bronchial and the
cardiovascular systems, but also to describe other supply-demand distribution networks,
like irrigation networks, electric power supply, water distribution, etc. In all of the many
different formulations of the problem, the main feature is the fact that the cost functional
is designed in order to privilege large flows and to prevent diffusion; indeed the transport
actually happens on a 1-dimensional network.

To translate this principle in mathematical terms, one can consider costs which are
proportional to a power α ∈ (0, 1) of the flow. Roughly speaking, it is preferable to transport
two positive masses m1 and m2 together, rather than separately, because (m1 +m2)

α <

mα1 +mα2 . Obviously the smaller is α and the stronger is the grouping effect.
Different costs and descriptions have been introduced in order to model such problem:

one of the first proposals came by Gilbert in [53], who considered finite directed weighted
graphs G with straight edges e ∈ E(G) “connecting” two discrete measures, and a weight
function w : E(G)→ (0,∞). The cost of G is defined to be:∑

e∈E(G)

w(e)αH1(e). (7.1)

Later Xia has extended this model to a continuous framework using Radon vector-valued
measures, or, equivalantly, 1-dimensional currents, called in this context “traffic paths” (see
[85]).

In [64, 13], new objects called “traffic plans” have been introduced and studied. Roughly
speaking, a traffic plan is a measure on the set of Lipschitz paths, where each path represents
the trajectory of a single particle. All these formulations were proved to be equivalent (see
[15] and references therein) and in particular the link between the last two of them is encoded
in a deep result, due to Smirnov, on the structure of acyclic, normal 1-dimensional currents
(see Theorem 7.9).

A rich variety of branched transportation problems can be described through these
objects: in all of them existence [85, 64, 13, 14, 22, 75] and (partially) regularity theory
[86, 21, 46, 47, 69, 87, 18] are well-established. It is, instead, a challenging problem to
perform numerical simulations.

The main reference on the topic is the book [15], which is an almost up-to-date overview
on the results in the field. To witness the current research activity on this topic we refer
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also to the recent works [65], where currents with coefficients in a normed group are used
to propose a rephrasing of the discrete problem which could be considered as a convex
problem, to [19], which proves the equivalence of several formulations of the urban planning
model, including two different regimes of transportation and to [20], which provides a new
convexification of the 2-dimensional problem, used to perform numerical simulations.

Other techniques have been recently introduced, with the aim to tackle this and similar
problems numerically. For instance [72] provides a Modica-Mortola-type approximation
of the branched transportation problem and in [25] the authors introduce a family of
approximating energies, modeled on the Ambrosio-Tortorelli functional (see also [17]).
Numerical simulations with a different aim are implemented in the recent works [67] and
[16]. Here the novel formulations of the Steiner-tree problem and the Gilbert-Steiner problem,
introduced in [66] and [65], are exploited to find numerical calibrations: functional-analytic
tools which can be used to prove the minimality of a given configuration.

A natural question of special relevance in view of numerical simulations, is whether the
optima are stable with respect to variations of the initial and final distribution of mass. In
order to introduce this question more precisely and to state our main result, let us give
some informal definitions. More technical definitions will be introduced in Section 7.2 and
used along this chapter. Nevertheless, the simplified notation introduced here suffices to
formulate the question and our main result.

Given two finite positive measures µ−,µ+ on the set X := BR(0) ⊂ Rd with µ−(X) =

µ+(X), a traffic path connecting µ− to µ+ is a vector-valued measure T = ~T(H1 E), sup-
ported on a set E ⊂ X, which is contained in a countable union of curves of class C1, having
distributional divergence

div T = µ+ − µ−.

The α-mass of T is defined as the quantity

Mα(T) :=

∫
E

|~T(x)|αdH1(x).

We say that T is an optimal traffic path, and we write T ∈ OTP(µ−,µ+) if

Mα(T) 6 Mα(S), for every traffic path S with div S = µ+ − µ−.

We address the following question about the stability of optimal traffic paths, raised in
[15, Problem 15.1].

Question. Let α 6 1− 1
d . Let (µ−n)n∈N, (µ+n)n∈N be finite measures on X and for every n

let Tn ∈ OTP(µ−n ,µ+n), with Mα(Tn) uniformly bounded. Assume that Tn converges to a
vector-valued measure T where div T = µ+ − µ− and µ± are finite measures. Is it true that
T ∈ OTP(µ−,µ+)?

The threshold

α = 1−
1

d
(7.2)

appears in several contexts in the literature. Firstly, when α is above this value any two
probability measures with compact support in Rd can be connected with finite cost (see
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Proposition 7.6). Secondly, above this value the answer to the previous question is positive
and the minimum cost between two given measures is continuous with respect to the weak∗

convergence of measures (see [15, Lemma 6.11 and Proposition 6.12]). Finally, above the
threshold interior regularity holds (see [15, Theorem 8.14]) and actually the stability property
plays an important role in the proof of such result. The finiteness of the cost, as well as the
continuity of the minimum cost, fails for values of α smaller or equal to the value (7.2) (see
[26] for an example of failure of continuity). Surprisingly enough, the stability of optimal
plans still holds, at least under mild additional assumptions. The main result of this chapter
provides a positive answer to the stability question for α below the critical threshold (7.2),
when the supports of the limit measures µ± are disjoint and “not too big”; nothing is instead
assumed on the approximating sequence (µ±n)n∈N.

Theorem 7.1. Let α > 1− 1
d−1 . Let A−,A+ ⊂ X be measurable sets and µ−,µ+ be finite measures

on X with µ−(X) = µ+(X), spt(µ+)∩ spt(µ−) = ∅,

H1(A− ∪A+) = 0 and µ−(X \A−) = µ+(X \A+) = 0. (7.3)

Let (µ−n)n∈N, (µ+n)n∈N be finite measures on X such that µ−n(X) = µ+n(X) and

µ±n ⇀ µ±. (7.4)

For every n ∈ N let Tn ∈ OTP(µ−n ,µ+n) be an optimal traffic path and assume that there exists a
traffic path T and a constant C > 0 such that

Tn ⇀ T and Mα(Tn) 6 C.

Then T is optimal, namely
T ∈ OTP(µ−,µ+).

Remark 7.2. 1. Notice that in the plane (namely, for d = 2) our result cover all possible
exponents α ∈ (0, 1).

2. The actual notion of traffic path as well as the notion of convergence mentioned in
Question 7.1 and denoted in Theorem 7.1 by Tn ⇀ T , are slightly different from those
used in this introduction (see Subsection 6.0.2). For our purposes, it is important to
observe that the convergence of traffic paths Tn to T implies the convergence of div Tn
to div T , weakly in the sense of measures.

3. The assumptions that the supports of µ− and µ+ are disjoint is recurrent in the
literature. For example it is assumed in the proof of interior regularity properties of
optimal traffic plans (see [15, Chapter 8]). Moreover such hypothesis could be dropped
if we assume that either µ− or µ+ are finite atomic measures. However we will not
pursue this in the present chapter.

4. The restriction that µ± are supported on H1-null sets is essential for our proof (even
though we can relax such assumption in some special case, see [26]). On the other hand,
restrictions on the “size” of sets supporting the measures µ± are recurrent assumptions
in previous works (see [15, Chapter 10] and [46]). Requiring (7.3) for supporting Borel
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sets A+ and A− rather than for the (closed) supports of µ±, allows one to apply the
theorem to more cases; for instance, as soon as the limit measures are supported on
any countable set (possibly dense in an open subset of X).

5. There is a subtle reason for our choice to use traffic paths, rather than traffic plans,
which is related to a known issue about the definition of the cost for traffic plans
(see the discussion at the beginning of [15, Chapter 4]). Nevertheless we are able to
prove a weaker version of our main result also for traffic plans: roughly speaking one
should assume additionally the Hausdorff convergence of the supports of µ±n to the
supports of µ±. This problem and other versions of the stability results with weaker
assumptions on µ± in some special settings are addressed in [26].

On the structure of the chapter

A few words are worthwhile concerning the organization of this chapter. In Section 7.2
we introduce the setting and preliminaries and in Section 7.3 we collect some properties
of optimal traffic paths which we use extensively through this chapter. In particular, in
Proposition 7.10 we prove a result about the representation of optimal traffic paths as
weighted collections of curves, which paves the way for several new operations on traffic
paths introduced in this chapter. We conclude Section 7.3 raising the main question on the
stability of optimal traffic paths and recalling the results which are already available in
the literature. Section 7.4 requires some explanation: there we prove a result on the lower
semi-continuity of the transportation cost. Clearly such property is already used by many
other authors. The reason for our attention on that issue is twofold: firstly we want to
throw light on a point that is partially overlooked in some previous works (see Remark 7.5),
secondly we need a stronger (localized) version of the usual semi-continuity. Section 7.5
deserves particular attention at a first reading, since it gives a heuristic presentation of
the proof of Theorem 7.1 and sheds light on several lemmas used therein. We kept the
presentation as informal as possible, so that it is possible to follow the fundamental ideas of
the chapter even without being used to the notions and definitions of Section 7.2. Section 7.6
contains several preliminary lemmas, covering results and new techniques which are the
ingredients of the proof of the main theorem. Eventually, in Section 7.7, we prove Theorem
7.1.

7.2 setting and preliminaries

7.2.1 α-mass

For fixed α ∈ [0, 1), we define also the α-mass of a current T ∈ Rk(Rd)∪Nk(Rd) by

Mα(T) :=


∫
E θ
α(x)dHk(x) if T ∈ Rk(Rd),

+∞ otherwise.
(7.5)
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One elementary property of this functional is its sub-additivity, namely

Mα(T1 + T2) 6 Mα(T1) + Mα(T2) for every T1, T2 ∈ Rk(Rd)∪Nk(Rd). (7.6)

Indeed, the inequality is trivial if T1 or T2 is not rectifiable. In turn, if Ti = T [Ei, τi, θi],
i = 1, 2, the multiplicity θ of T1 + T2 is obtained as the sum of the multiplicities of T1 and T2
with possible signs, so that θ 6 θ1 + θ2. Since moreover the inequality (θ1 + θ2)

α 6 θα1 + θα2
holds for every θ1, θ2 ∈ [0,∞), we deduce that

Mα(T1 + T2) 6
∫
E1∪E2

(θ1 + θ2)
α dHk 6

∫
E1∪E2

θα1 + θα2 dH
k = Mα(T1) + Mα(T2).

7.2.2 Traffic paths

Fix R > 0. Along this chapter, by X we denote the closed ball of radius R in Rd centered at
the origin. Following [85] and [15], given two positive measures µ−,µ+ ∈M+(X) with the
same total variation, we define the set TP(µ−,µ+) of the traffic paths connecting µ− to µ+ as

TP(µ−,µ+) := {T ∈ N1(Rd) : spt(T) ⊂ X,∂T = µ+ − µ−},

and the minimal transport energy associated to µ−,µ+ as

Mα(µ−,µ+) := inf{Mα(T) : T ∈ TP(µ−,µ+)}.

Moreover we define the set of optimal traffic paths connecting µ− to µ+ by

OTP(µ−,µ+) := {T ∈ TP(µ−,µ+) : Mα(T) = Mα(µ−,µ+)}. (7.7)

Given a rectifiable current T with compact support in Rd and a Lipschitz map f : Rd → Rm,
we denote by f]T the push-forward of T according to f, i.e the rectifiable current in Rm

defined by
〈f]T ,ω〉 := 〈T , f]ω〉, for every ω ∈ Dk(Rm)

where f]ω is the pull-back of the form ω.
A consequence of the following proposition is that, in order to minimize the α-mass

among currents with boundary in X, it is not restrictive to consider only currents supported
in X. Indeed the projection onto X reduces the α-mass. See also [39, Lemma 3.2.4 (2)].

Proposition 7.3. Let T ∈ R1(Rd) and let f : Rd → Rm be an L-Lipschitz map. Then Mα(f]T) 6
LMα(T).

Proof. If T = T [E, τ, θ], combining the Area Formula (see [79, (8.5)]) and the fact that (a+
b)α 6 aα + bα for every a,b > 0, we get

Mα(f]T) 6
∫
f(E)

(∫
f−1(y)

θ(x)dH0(x)

)α
dH1(y)

6
∫
f(E)

∫
f−1(y)

θα(x)dH0(x)dH1(y)

=

∫
E

Jf(x)θ
α(x)dH1(x) 6 L

∫
E

θα(x)dH1(x) = LMα(T).

(7.8)
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Remark 7.4. We notice that, given two measures µ−,µ+ ∈ M+(X) with the same total
variation and a rectifiable current R ∈ R1(Rd) with Mα(R) < ∞ and ∂R = µ+ − µ−, there
exists R ′ ∈ R1(X) with ∂R ′ = µ+ − µ− and

Mα(R ′) 6 Mα(R).

More precisely, if R is not supported on X, then one can find R ′ such that

Mα(R ′) < Mα(R).

The proof of this fact is easily obtained by choosing R ′ as the push-forward of the current R
according to the closest-point projection π onto X and applying Proposition 7.3, observing
that π has local Lipschitz constant strictly smaller than 1 at all points of Rd \X.

Remark 7.5 (Comparison with costs studied in the literature). The original definition of “cost”
of a traffic path slightly differs from the α-mass defined above. Indeed in [85, Definition 3.1]
the author defines the cost of a traffic path as the lower semi-continuous relaxation on the
space of normal currents of the functional (7.1) defined on polyhedral chains. In [86, Section
3], the author notices that, in the class of rectifiable currents, his definition of cost coincides
with the α-mass defined in (7.5). The proof of this fact is only sketched in [82, Section 6]
and is proved in detail in [28], see next chapter. To keep the present chapter self-contained,
in our exposition we prefer not to rely on this fact, but we stick to the notion of cost given
by our definition of α-mass. We will prove independently in Section 7.4 that the α-mass is
lower semi-continuous, together with a localized version of this result that does not appear
in the literature. Since several results in previous works (see for instance Theorem 7.6) are
first proven for polyhedral chains and then extended by lower semi-continuity, their validity
in our setting does not rely on the equivalence between the two costs.

7.3 known results on optimal traffic paths

In this section we collect some of the known properties of optimal traffic paths. The pre-
sentation does not aim to be exhaustive, but we only recall the facts used in the proof of
Theorem 7.1.

7.3.1 Existence of traffic paths with finite cost

We begin with the observation that the existence of elements with finite α-mass in TP(µ−,µ+)
is not guaranteed in general. For example in [46, Theorem 1.2] it is proved that there exists
no traffic path with finite α-mass connecting a Dirac delta to the Lebesgue measure on a ball
if α 6 1− 1

d . On the other hand, if the exponent α is larger than such critical threshold, then
not only the existence of traffic paths with finite α-mass is guaranteed, but one also has a
quantitative upper bound on the minimal transport energy.

Theorem 7.6 ([85, Proposition 3.1]). Let α > 1− 1
d and µ−,µ+ ∈ M+(R

d) be two measures
with equal mass M supported on a set of diameter L. Then

Mα(µ−,µ+) 6 Cα,dM
αL,

where Cα,d is a constant depending only on α and d.
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7.3.2 Structure of optimal traffic paths

An important information about the structure of optimal traffic paths (more in general,
about traffic paths of finite α-mass) is their rectifiability, which follows immediately from
the definition of α-mass. Some further piece of information comes from the fact that optimal
traffic paths do not “contain cycles”. A current T with finite mass is called acyclic if there
exists no non-trivial current S such that

∂S = 0 and M(T) = M(T − S) + M(S).

The following theorem states that optimal traffic paths with finite cost are acyclic. Even
though in [73] several definitions of cost are considered, the proof of such theorem is given
exactly for our cost (7.5).

Theorem 7.7 ([73, Theorem 10.1]). Let µ−,µ+ ∈ M+(R
d) and T ∈ OTP(µ−,µ+) with finite

α-mass. Then T is acyclic.

The power of this result relies in the possibility to represent acyclic normal 1-currents
as weighted collections of Lipschitz paths. Before stating this result, we introduce some
notation.

We denote by Lip the space of 1-Lipschitz curves γ : [0,∞)→ Rd. For γ ∈ Lip we denote
by T0(γ), the value

T0(γ) := sup{t : γ is constant on [0, t]}

and by T∞(γ) the (possibly infinite) value

T∞(γ) := inf{t : γ is constant on [t,∞)}.

Given a Lipschitz curve with finite length γ : [0,∞)→ Rd, we call γ(∞) := limt→∞ γ(t). We
say that a curve γ ∈ Lip of finite length is simple if γ(s) 6= γ(t) for every T0(γ) 6 s < t 6
T∞(γ) such that γ is non-constant in the interval [s, t].

To a Lipschitz simple curve with finite length γ : [0,∞)→ Rd, we associate canonically
the rectifiable 1-dimensional current

Rγ := Rγ[Im(γ),
γ ′

|γ ′|
, 1].

It follows immediately from (6.4) that

M(Rγ) = H1(Im(γ)) (7.9)

and it is easy to verify that

∂Rγ = δγ(∞) − δγ(0). (7.10)

Since γ is simple, if it is also non-constant, then γ(∞) 6= γ(0) and M(∂Rγ) = 2.
In the following definition, we consider a class of normal currents that can be written as a

weighted superposition of Lipschitz simple curves with finite length.
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Definition 7.8 (Good decomposition). Let T ∈ N1(Rd) and let π ∈ M+(Lip ) be a finite
nonnegative measure, supported on the set of curves with finite length, such that

T =

∫
Lip
Rγdπ(γ), (7.11)

in the sense of [1, Section 2.3].
We say that π is a good decomposition of T if π is supported on non-constant, simple

curves and satisfies the equalities

M(T) =

∫
Lip

M(Rγ)dπ(γ) =

∫
Lip

H1(Im(γ))dπ(γ) ; (7.12)

M(∂T) =

∫
Lip

M(∂Rγ)dπ(γ) = 2π(Lip ) . (7.13)

Concretely, (7.11) means that, representing T as a vector-valued measure ~T‖T‖, for every
smooth compactly supported vector field ϕ : Rd → Rd it holds∫

Rd
ϕ · ~T d‖T‖ =

∫
Lip

∫∞
0

ϕ(γ(t)) · γ ′(t)dtdπ(γ) (7.14)

The following theorem, due to Smirnov ([80]), shows that any acyclic, normal, 1-dimensional
current has a good decomposition.

Theorem 7.9 ([74, Theorem 5.1]). Let T = ~T‖T‖ ∈ N1(Rd) be an acyclic normal 1-current. Then
there is a Borel finite measure π on Lip such that T can be decomposed as

T =

∫
Lip
Rγdπ(γ)

and π is a good decomposition of T .

In the following proposition we collect some useful properties of good decompositions.
Further properties will be given in Proposition 7.18.

Proposition 7.10 (Properties of good decompositions). If T ∈ N1(Rd) has a good decomposition
π as in (7.11), the following statements hold:

1. The positive and the negative parts of the signed measure ∂T are

∂−T =

∫
Lip
δγ(0)dπ(γ) and ∂+T =

∫
Lip
δγ(∞)dπ(γ). (7.15)

2. If T = T [E, τ, θ] is rectifiable, then

θ(x) = π({γ : x ∈ Im(γ)}) for H1-a.e. x ∈ E. (7.16)
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3. For every π ′ 6 π the representation

T ′ :=

∫
Lip
Rγdπ

′(γ) (7.17)

is a good decomposition of T ′; moreover, if T = T [E, τ, θ] is rectifiable, then T ′ can be written
as T ′ = T [E, θ ′, τ] with θ ′ 6 min{θ,π ′(Lip )}.

4. If Mα(T) <∞, for every ε > 0 there exists δ := δ(T , ε) > 0 such that for every π ′ 6 π with
π ′(Lip ) 6 δ we have

Mα(T ′) 6 ε, (7.18)

where T ′ is defined by (7.17).

Proof. Proof of (1). It follows from the expression in (7.11), from the linearity of the boundary
operator and from (7.10) that

∂T =

∫
Lip
∂Rγdπ(γ) =

∫
Lip
δγ(∞) dπ(γ) −

∫
Lip
δγ(0) dπ(γ) =: S∞ − S0.

By the subadditivity of the mass and by (7.13)

M(S∞) + M(S0) 6
∫

Lip
M(δγ(∞))dπ(γ) +

∫
Lip

M(δγ(0))dπ(γ)

=

∫
Lip

M(∂Rγ)dπ(γ) = M(∂T) = M(S∞ − S0)

From this, we deduce that equality holds in the previous chain of inequalities and that there
is no cancellation between S∞ and S0, namely, they are mutually singular measures. This, in
turn, implies that they represent the positive and negative part of the measure ∂T = S∞ − S0.

Proof of (2). We compute, for every smooth compactly supported test function φ : Rd → R,∫
Rd
φθdH1 E =

∫
Lip

(∫
Rd
φ1ImγdH

1 E

)
dπ =

∫
Rd
φ

(∫
Lip

1Imγdπ

)
dH1 E,

where in the first equality we used [1, Theorem 5.5 (iii)], which states that (7.11) induces an
analogous equality between the associated positive measures, and the fact that π-a.e. γ is
simple.

Proof of (3). We write T = T ′ + (T − T ′) and, since T − T ′ is “parametrized” by π− π ′, we
have that

M(T ′) 6
∫

Lip
M(Rγ)dπ

′(γ), and M(T − T ′) 6
∫

Lip
M(Rγ)d(π− π

′)(γ). (7.19)

We conclude that

M(T) 6 M(T ′) + M(T − T ′)

6
∫

Lip
M(Rγ)dπ

′(γ) +

∫
Lip

M(Rγ)d(π− π
′)(γ) =

∫
Lip

M(Rγ)dπ(γ).
(7.20)
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Since π represents a good decomposition of T , by (7.12) it follows that equality must hold at
each step in the previous inequality. In particular, from (7.19), we deduce that

M(T ′) =

∫
Lip

M(Rγ)dπ
′(γ).

The same argument applied to the current ∂T ′ leads to the proof that the property (7.13)
holds for the good decomposition of T ′.

Since the decomposition (7.17) is good, then, by the formula (7.16), we get that for H1-a.e.
x ∈ E

θ ′(x) = π ′({γ : x ∈ Im(γ)})

6 min
{
π({γ : x ∈ Im(γ)}),π ′(Lip )

}
= min

{
θ(x),π ′(Lip )}.

This concludes the proof of (3).
Proof of (4). By the previous point, applied to the good decomposition of T ′ given in (7.17),

it follows that
θ ′(x) 6 min{θ, δ}.

Therefore
Mα(T ′) 6

∫
E

min{θ(x), δ}α dH1(x)

and the right-hand side converges to 0 as δ→ 0 by the Lebesgue dominated convergence
Theorem.

7.3.3 Stability of optimal traffic paths

Our work [27] addresses Question 7.1, which we can now rephrase in rigorous terms as
follows.

For every n ∈ N, let µ−n ,µ+n ∈ M+(X) with the same mass and let Tn ∈ OTP(µ−n ,µ+n),
with Mα(Tn) uniformly bounded. Assume

Tn ⇀ T , and µ±n ⇀ µ±

where ∂T = µ+ − µ− and µ± ∈M+(X). Is it true that T ∈ OTP(µ−,µ+)?
The answer is relatively simple for α ∈ (1− 1/d, 1], relying on the fact that the minimal

transport energy Mα(νn,ν) metrizes the weak∗-convergence of probability measures νn ⇀

ν, as stated in the following lemma.

Lemma 7.11 ([15, Lemma 6.11]). Let α > 1− 1
d and (νn)n∈N ⊂ P(X) be a sequence of probability

measures weakly converging to ν ∈ P(X). Then we have that

lim
n→∞Mα(νn,ν) = 0.

From Lemma 7.11 one can easily deduce the following stability result for optimal traffic
paths.
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Theorem 7.12 ([15, Proposition 6.12]). Let α > 1− 1
d . Assume that (µ−n)n∈N, (µ+n)n∈N ⊂ P(X)

converge (weakly in the sense of measures) respectively to µ−,µ+ ∈ P(X). Let Tn ∈ OTP(µ−n ,µ+n)
satisfying

sup
n∈N

Mα(Tn) <∞.

If Tn ⇀ T for some current T , then T ∈ OTP(µ−,µ+).

Indeed, assuming by contradiction that Theorem 7.12 does not hold for a sequence Tn ⇀ T ,
we find a contradiction by considering an energy competitor for Tn (n large enough) as
follows. We take the optimal transport Topt for the limit problem and we add two traffic
paths of arbitrarily small energy that connect respectively µ−n to µ−, and µ+ to µ+n . This
strategy fails for α 6 1− 1

d , since Lemma 7.11 does not hold below the critical threshold
(an example of such phenomenon is provided in [26]). For this reason, we develop in the
following sections a more involved strategy to prove the stability of optimal traffic paths.

7.4 lower semi-continuity of the α-mass

This section is devoted to the proof of a lower semi-continuity result for the α-mass. The
statement will be split in two parts. On one side, we prove the lower semi-continuity for
normal currents, which for example allows one to prove the classical existence of optimal
traffic paths in (7.7) (see [15, Proposition 3.41]). On the other side, our strategy of proof of
Theorem 7.1 requires to work with rectifiable currents with boundary of possibly infinite
mass, obtained as restriction of normal rectifiable currents to Borel sets. Therefore for
rectifiable currents we prove a localized version of the usual lower semi-continuity.

Theorem 7.13. Let k > 0, α ∈ (0, 1], (Tn)n∈N be a sequence of k-dimensional currents in X, and T
be a k-dimensional current with

lim
n→∞F(Tn − T) = 0.

1. If the Tn’s and T are rectifiable and A is an open subset of X, then

Mα(T A) 6 lim inf
n→∞ Mα(Tn A). (7.21)

2. If Tn and T are normal, then

Mα(T) 6 lim inf
n→∞ Mα(Tn). (7.22)

Using Theorem 7.13(2) and the compactness of normal currents (see [50, 4.2.17(1)]), the
existence of optimal transport paths in (7.7) follows via the direct method of the Calculus of
Variations.

Corollary 7.14. Let α ∈ (0, 1]. Given two measures µ−,µ+ ∈ M+(X) such that Mα(µ−,µ+) <
+∞, there exists a current T ∈ OTP(µ−,µ+).

The proof of the first part of Theorem 7.13 employs a characterization of rectifiability by
slicing. The proof of the second point is carried out by slicing our rectifiable currents and
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reducing the theorem to the lower semi-continuity of 0-dimensional currents, following some
ideas in [39, Lemma 3.2.14]. For this reason, we need to recall some further preliminaries on
the slicing of currents. Let k 6 d, let I(d,k) be the set of multi-indices of order k in Rd, i.e.
the set of k-tuples (i1, . . . , ik) with

1 6 i1 < . . . < ik 6 d,

let {e1, . . . , ed} be the standard orthonormal basis of Rd, and let VI be the k-plane spanned
by {ei1 , . . . , eik} for every I = (i1, . . . , ik) ∈ I(d,k). Given a k-plane V , we denote pV the
orthogonal projection on V . If V = VI for some I, we simply write pI instead of pVI . Given a
current T ∈ Nk(Rd) with compact support, a Lipschitz function p : Rd → Rk and y ∈ Rk,
we denote by 〈T ,p,y〉 the 0-dimensional slice of T in p−1(y) (see [50, Section 4.3] or [79,
Section 28] for the case k = 1). In this chapter, we will employ the notion of slicing only to
apply two deep known results (contained in Theorem 7.15 and Lemma 7.16). The following
theorem shows that the rectifiability of a current is equivalent to the rectifiability of a suitable
family of slices.

Theorem 7.15 ([83]). Let T ∈ Nk(Rd). Then T ∈ Rk(Rd) if and only if

〈T ,pI,y〉 is rectifiable for every I ∈ I(d,k) and for Hk-a.e. y ∈ VI.

By Gr(d,k) we denote the Grassmannian of k-dimensional planes in Rd and by γd,k we
denote the Haar measure on Gr(d,k), i.e. the unique probability measure on Gr(d,k) which
is invariant under the action of orthogonal transformations (see [61, Section 2.1.4]).

In the following lemma, we collect some known properties of slices and their behaviour
with respect to the α-mass and the flat norm. The bounds (7.23) and (7.24) below are proved
in [39, Corollary 3.2.5(5) and Remark 3.2.11] respectively. The integral-geometric equality is
a consequence of [50, 3.2.26; 2.10.15; 4.3.8] (see also [39, (21)]).

Lemma 7.16. Let R ∈ Rk(Rd) and N ∈ Nk(Rd). Then for every V ∈ Gr(d,k) we have∫
Rk

Mα(〈R,pV ,y〉)dy 6 Mα(R), (7.23)

∫
Rk

F(〈N,pV ,y〉)dy 6 F(N). (7.24)

Moreover, there exists c = c(d,k) such that the following integral-geometric equality holds:

Mα(R) = c

∫
Gr(d,k)×Rk

Mα
(
〈R,pV ,y〉

)
d(γd,k ⊗Hk)(V ,y). (7.25)

Proof of Theorem 7.13(1). Step 1: the case k = 0. Since a 0-dimensional rectifiable current
T = T [E, 1, θ] is a signed, atomic measure, we write

T A =
∑
i∈N

θiδxi
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for (xi)i∈N ⊆ Rd distinct and for (θi)i∈N ⊆ R (with possible signs). Fix ε > 0 and let I ⊆N

be a finite set such that

Mα(T A) −
∑
i∈I

|θi|
α 6 ε if Mα(T A) <∞ (7.26)

and ∑
i∈I

|θi|
α >

1

ε
otherwise. (7.27)

Up to reordering the sequences (xi)i∈N and (θi)i∈N, we may assume that I = {1, ...,N} for
some N := N(ε). Set

r :=
1

4
min
{

min{d(xi, xj) : 1 6 i < j 6 N}, min{d(xi,Ac) : 1 6 i 6 N}
}

.

Since limn→∞ F(Tn − T) = 0, then Tn ⇀ T weakly in the sense of measures. Hence for every
i ∈ {1, ...,N}

M(T B(xi, r)) 6 lim inf
n→∞ M(Tn B(xi, r)), for every i ∈ {1, ...,N}. (7.28)

By (7.28) and the elementary inequality
(∑

i∈N |ai|
)α

6
∑
i∈N |ai|

α for any (ai)i∈N ⊆ R,
we deduce that for every i ∈ {1, ...,N}

|θi|
α 6

(
M(T B(xi, r)

)α
6 lim inf

n→∞
(
M(Tn B(xi, r))

)α
6 lim inf

n→∞ Mα(Tn B(xi, r)).
(7.29)

Adding over i and observing that the balls B(xi, r) are disjoint by the choice of r, we find
that ∑

i∈I
|θi|

α 6 lim inf
n→∞

N∑
i=1

Mα(Tn B(xi, r)) 6 lim inf
n→∞

N∑
i=1

Mα(Tn A).

By (7.26) (or (7.27) in the case that Mα(T A) =∞) and since ε is arbitrary, we find (7.21).
Step 2 (Reduction to k = 0 through integral-geometric equality). We prove now Theorem 7.13(1)

for k > 0. Up to subsequences, we can assume

lim
n→∞Mα(Tn A) = lim inf

n→∞ Mα(Tn A).

Integrating in V ∈ Gr(d,k) the second inequality in Lemma 7.16 we get

lim
n→∞

∫
Gr(d,k)×Rk

F(〈Tn − T ,pV ,y〉)d(γd,k ⊗Hk)(V ,y) 6 lim
n→∞F(Tn − T) = 0.

Since the integrand F(〈Tn − T ,pV ,y〉) is converging to 0 in L1, up to subsequences, we get

lim
n→∞F(〈Tn − T ,pV ,y〉) = 0 for γd,k ⊗Hk-a.e. (V ,y) ∈ Gr(d,k)×Rk.

We conclude from Step 1 that

Mα(〈T ,pV ,y〉 A) 6 lim inf
n→∞ Mα(〈Tn,pV ,y〉 A).
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By [11, (5.15)], for Hk-a.e. y

〈T A,pV ,y〉 = 〈T ,pV ,y〉 A. (7.30)

By (7.30), we get the inequality

Mα(〈T A,pV ,y〉) 6 lim inf
n→∞ Mα(〈Tn A,pV ,y〉). (7.31)

The conclusion follows applying twice the integral-geometric equality (7.25). Indeed, using
the semi-continuity proved for k = 0 and Fatou’s lemma, we get

Mα(T A) = c

∫
Gr(d,k)×Rk

Mα
(
〈T A,pV ,y〉

)
d(γd,k ⊗Hk)(V ,y)

(7.31)
6 c

∫
Gr(d,k)×Rk

lim inf
n→∞ Mα

(
〈Tn A,pV ,y〉

)
d(γd,k ⊗Hk)(V ,y)

6 c lim inf
n→∞

∫
Gr(d,k)×Rk

Mα
(
〈Tn A,pV ,y〉

)
d(γd,k ⊗Hk)(V ,y)

= lim inf
n→∞ Mα(Tn A).

(7.32)

This concludes the proof of Step 2, so the proof of Theorem 7.13(1) is complete.

In order to prove Theorem 7.13(2), the only property which is missing at this stage is the
fact that a normal, non-rectifiable k-current cannot be approximated with rectifiable currents
with uniformly bounded mass, α-mass, and mass of the boundary. This is proved in the
following lemma.

Lemma 7.17. Let (Tn) ⊂ Rk(Rd) and let us assume that

sup
n∈N

{Mα(Tn)} 6 C < +∞.

If limn→∞ F(Tn − T) = 0 for some T ∈ Nk(Rd), then T is in fact rectifiable.

Proof. Step 1: the case k = 0. We prove the lemma for k = 0, recalling that a 0-dimensional
rectifiable current T = T [E, τ, θ], with τ(x) = ±1, is an atomic signed measure (i.e. a measure
supported on a countable set). More precisely, we prove the following claim: let (Tn)n∈N be
a sequence of 0-rectifiable currents Tn = T [En, τn, θn] such that limn→∞ F(Tn − T) = 0 for
some T ∈ N0(Rd) and Mα(Tn) 6 C for some C > 0; then T is 0-rectifiable.

Indeed, fix δ > 0. For any n ∈N

M(Tn {x : θn(x) < δ}) =

∫
En∩{θn<δ}

θn(x)dH
k(x)

6 δ1−α
∫
En∩{θn<δ}

θn(x)
α dHk(x) 6 Mα(Tn)δ

1−α 6 Cδ1−α.

Therefore, up to subsequences the measure Tn {x : θn(x) > δ} converges to a discrete
measure T1 (indeed the support of the measures Tn {x : θn(x) > δ} consists of a finite
number of points, which is uniformly bounded with respect to n, due to the bound on
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Mα(Tn)), and the sequence (Tn {x : θn(x) < δ})n∈N converges to a signed measure T2 of
mass less or equal than Cδ1−α.

By the arbitrariness of δ, we conclude that the measure T2 has arbitrarily small mass and
that the measure T1 is purely atomic. Since T = T1 + T2, the statement follows.

Step 2. We prove the claim for k > 0.
We apply the inequalities in Lemma 7.16 to our sequence (Tn)n∈N to deduce that∫

Rk
Mα(〈Tn,pI,y〉)dy 6 Mα(Tn) 6 C. (7.33)

lim
n→∞

∫
Rk

F(〈Tn − T ,pI,y〉)dy 6 C lim
n→∞F(Tn − T) = 0.

Since the sequence of non-negative functions (F(〈Tn − T ,pI, ·〉))n∈N converges in L1(Rk) to
0, up to a (not relabelled) subsequence, we get the pointwise convergence

lim
n→∞F(〈Tn − T ,pI,y〉) = 0 for Hk-a.e. y ∈ Rk.

Moreover, by Fatou lemma and (7.33) we know that for every I ∈ I(d,k)∫
Rk

lim inf
n→∞ Mα(〈Tn,pI,y〉)dy 6 lim inf

n→∞
∫

Rk
Mα(〈Tn,pI,y〉)dy <∞.

Therefore, we have that

lim inf
n→∞ Mα(〈Tn,pI,y〉) <∞ for Hk-a.e. y ∈ Rk.

Hence we are in the position to apply Step 1 to a.e. slice 〈Tn,pI,y〉 to a y-dependent
subsequence and deduce that

〈T ,pI,y〉 is 0-rectifiable for Hk-a.e. y ∈ Rk, I ∈ I(d,k).

Finally, we employ Theorem 7.15 to infer that this property of the slices implies that T is
rectifiable.

Proof of Theorem 7.13(2). Let (Tn) ⊂ Nk(Rd) and T ∈ Nk(Rd) be such that limn→∞ F(Tn −

T) = 0. If T is rectifiable, then (7.22) follows by Theorem 7.13(1) and the fact that non-
rectifiable currents have infinite α-mass. Otherwise if T is non-rectifiable, then (7.22) follows
from Lemma 7.17.

7.5 ideas for the proof of the main theorem

Since the proof of Theorem 7.1 develops some new geometric ideas in order to construct a
suitable competitor for a minimization problem, we introduce informally the strategy in this
section, assuming some significant simplifications, before entering the technical details of
the actual argument. At the end of this section of heuristics we give some hints on how to
remove the further assumptions.



118 improved stability of optimal traffic paths

We can easily reduce to the case that µ±,µ±n ∈ P(X). By contradiction, we assume that
there exists a sequence Tn ⇀ T of optimizers such that T is not an optimizer, namely there
exists Topt and ∆ > 0 with

Mα(Topt) 6 Mα(T) −∆, ∂Topt = ∂T = µ+ − µ−.

We aim to find a contradiction by defining a suitable competitor T̃n for Tn for some n large
enough, that “almost follows” Topt instead of T , and satisfies the estimates

Mα(T̃n) 6 Mα(Tn) −
∆

8
, ∂T̃n = ∂Tn = µ+n − µ−n .

(1) Covering of A±. First, we choose a countable covering of the sets A± supporting µ±,
denoted by {B±i = B±(xi, ri)}i∈N (see Figure (1a)) such that

∞∑
i=1

ri, Mα
(
T

∞⋃
i=1

B±i

)
, and Mα

(
Topt

∞⋃
i=1

B±i

)
are arbitrarily small. (7.34)

This choice is made possible by the assumption that the measures µ± are supported on sets
of H1-measure 0 and by the fact that Mα is absolutely continuous with respect to H1. We
also select a finite number N± such that

µ±
(( N±⋃

i=1

B±i

)c)
is small. (7.35)

For simplicity, in this section we make the assumption that the balls B±i are pairwise disjoint
and that the coverings are finite, namely the quantity in (7.35) is 0.

Figure 1: Figure (1a) shows the supports of µ+ and µ− and the covering introduced in (1). In Figure
(1b) we represented the traffic path Tn and the selection of its curves that begin (respectively
end) in the first N− (respectively N+) balls.

(2) Representation of Tn. Using Theorem 7.9, we represent each Tn and Topt by a collection
of curves weighted by the probability measures πn and πopt in P(Lip ), namely

Tn =

∫
Lip
Rγ dπn(γ), Topt =

∫
Lip
Rγ dπopt(γ).
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This representation is essential in order to build an energy competitor for the traffic path Tn.
Intuitively, in the competitor that we want to construct, the mass particles, whose original

spatial distribution is represented by µ−n , will move for an initial stretch along the curves in
the support of πn, as long as these curves remain in the balls where they begin. Then, they
will be connected to the curves in the support of πopt via a “cheap” transport supported on
the spheres ∂B−

i . Subsequently the particles will move along the curves in the support of
πopt, until they reach the spheres ∂B+

i . From there, another cheap transport supported on
the spheres will connect them back to the curves in the support of πn and finally they will
be transported to their final destination along the curves of πn. Observe that in the process
we may have changed the final destination of each single particle, but we preserved the
global final particle distribution.

Let us describe now the strategy more in detail. First, we define πseln as the restriction of
πn to curves that start in ∪N−

i=1B
−
i and end in ∪N+

i=1B
+
i . We associate to this πseln a new current

Tseln , as represented in Figure (1b), and we notice that the remaining πn − πseln carries little
mass, by (7.35) and by the fact that ∂Tn ⇀ ∂T . We make the further simplifying assumption
that

Tn − Tseln = 0, (7.36)

even though this is a big simplification since this term cannot be seen as an error in energy.

(3) Construction of a competitor T̃seln for Tseln . We follow the curves representing Tseln from
their starting point, which, by (7.36) is assumed to be in some B−

i with i ∈ {1, ...,N−}, up to
the first time when they touch ∂B−

i . In this way, we define Tsel,−n as in Figure (2a). Similarly,
we define Tsel,+n as the restriction of the curves in Tseln from the last time when they touch
∂B+
i up to their final point in B+

i (see again Figure (2a)).
In a similar way, we define Trestropt restricting the curves representing Topt from the first

time they exit ∪N−

i=1B
−
i up to the last time they enter ∪N+

i=1B
+
i (see Figure (2b)).

Figure 2: In Figure (2a) we mark Tsel,±n and in Figure (2b) we mark Trestropt .

We make the further simplifying assumption that µ±n and µ± have the same quantity of
mass in each of the balls B±i , i = 1, ...,N±, namely

µ±n(B
±
i ) = µ

±(B±i ) for every i = 1, ...,N±, (7.37)

or, in other words, that

∂±T
sel
n (B±i ) = ∂±Tn(B

±
i ) = ∂±Topt(B

±
i ) for every i = 1, ...,N±. (7.38)



120 improved stability of optimal traffic paths

We notice that this also implies that

∂+T
sel,−
n (∂B−

i ) = ∂−T
sel,−
n (B−

i ) = ∂−T
sel
n (B−

i ) = ∂−Topt(B
−
i ) = ∂−T

restr
opt (∂B−

i ) (7.39)

(and a similar equality holds for ∂−T
sel,+
n (∂B+

i )). Indeed, the first equality holds because
the traffic path Tsel,−n transports all the mass inside B−

i on the boundary of B−
i ; the last

inequality holds because πopt-a.e. curve exit from ∪N−

i=1B
−
i , since it has to end in ∪N+

i=1B
+
i .

Next, we consider a traffic path Tconn,−
n that connects ∂+T

sel,−
n to ∂−Trestropt on ∪i∂B−

i . By
(7.39), these two measures can be connected since they have the same mass. Moreover, by a
modification of Theorem 7.6 (see Lemma 7.20), the two measures can be connected with finite
(and actually small) cost, since they are supported on the union of the (d− 1)-dimensional
spheres ∂B−

i , and since by assumption in our theorem we required that α > 1− 1
d−1 . The

cost of this transport is estimated through Lemma 7.20 by

Mα(Tconn,−
n ) 6

N−∑
i=1

Cα,dr
−
i , (7.40)

which is small by (7.34).
In a similar way we define a traffic path Tconn,+

n that connects ∂−T
sel,+
n to ∂+Trestropt on

∪i∂B+
i and enjoys the estimate

Mα(Tconn,+
n ) 6

N+∑
i=1

Cα,dr
+
i . (7.41)

Finally, we define (see Figure (3))

T̃seln := Tsel,−n + Tconn,−
n + Trestropt + Tconn,+

n + Tsel,+n .

Figure 3: The energy competitor T̃seln .

(4) Energy estimate for T̃seln and contradiction. We show finally that the competitor T̃seln has
strictly less energy than Tn. Since by construction it has the same marginals, then we reach a
contradiction. Indeed, by the subadditivity of the α-mass, we have

Mα(T̃seln ) 6 Mα(Tsel,−n ) + Mα(Tconn,−
n ) + Mα(Trestropt ) + Mα(Tconn,+

n ) + Mα(Tsel,+n )
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(7.42)

By the estimates on the energy of the connections in (7.40) and (7.41) and by the smallness
assumptions on the rays, we estimate two terms in the right-hand side of (7.42)

Mα(Tconn,−
n ) + Mα(Tconn,+

n ) 6
∆

4
. (7.43)

Regarding the first and last terms in the right-hand side of (7.42), we estimate them with the
full energy of Tn inside the balls of the coverings

Mα(Tsel,±n ) 6 Mα
(
Tn

(
∪N±i=1 B

±
i

))
. (7.44)

To bound the energy of Trestropt , we first estimate it with the energy of the whole Topt. Thanks
to the energy gap between Topt and T and (7.34), the latter can be estimated choosing the
energy of T inside the coverings below ∆/4:

Mα(Trestropt ) 6 Mα(Topt) 6 Mα(T) −∆ 6 Mα
(
T
((
∪N−

i=1 B
−
i

)
∪
(
∪N+

i=1 B
+
i

))c)
−
3∆

4

By the lower semi-continuity of the α-mass on open sets (see Theorem 7.13(1)) we deduce
that for n large enough

Mα(Trestropt ) 6 Mα
(
Tseln

((
∪N−

i=1 B
−
i

)
∪
(
∪N+

i=1 B
+
i

))c)
−
∆

2
(7.45)

Using (7.43), (7.44), (7.45) to estimate each term in the right-hand side of (7.42) and noticing
that the α-mass is additive on traffic paths supported on disjoint sets, we find that

Mα(T̃seln ) 6Mα
(
Tsel,−n

(
∪N−

i=1 B
−
i

))
+ Mα

(
Tseln

((
∪N−

i=1 B
−
i

)
∪
(
∪N+

i=1 B
+
i

))c)
+ Mα

(
Tsel,+n

(
∪N+

i=1 B
+
i

))
−
∆

4
= Mα(Tseln ) −

∆

4
.

This gives a contradiction to the optimality of the energy of Tn.

Removing some of the simplifying assumptions that we made in the sketch above is a
delicate task and requires new ideas. We briefly describe our strategy.

In (1), we assumed that the balls B±i are mutually disjoint. If this is not the case, we
consider the sets

C±i := B±i \
(
∪i−1j=1 B

±
j

)
as a disjoint cover of the sets A±. Then we modify the definition of Tsel,−n : for every
= 1, ...,N−, we stop every curve starting in C−

i as soon as it touches ∂B−
i . The choice to let

these curves arrive up to ∂B−
i (and not only up to ∂C−

i ) is related to the fact that ∂B−
i has a

nicer geometry than ∂C−
i and in particular ensures that the estimate (7.40) holds. Similarly,

we modify Tsel,+n .

To remove the assumption Tn − Tseln = 0 in (7.36), we consider T̃seln + Tn − Tseln as an
energy competitor for Tn. To make an energy estimate on this object, we notice first that
Tn − Tseln has small pointwise multiplicity (intensity of flow), since its boundary has small
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mass and it is made by simple paths (see Proposition 7.10(2)). Secondly, we prove that the
α-mass, which in general is sub-additive, is “almost additive” between currents which have
multiplicities of very different magnitude at every point (Lemma 7.24) and that a suitable
lower semi-continuity result holds, involving the restriction of the energy to points with
sufficiently large multiplicity (Lemma 7.22).

Finally, we need to remove the assumption (7.37) : this is another delicate point. Given
any ε > 0, by choosing n large enough, we may assume that

∂±T
sel,±
n (B±i ) 6 (1+ ε)∂±Topt(B

±
i ). (7.46)

Then we use the whole (1+ ε)Topt as a transport outside the balls ∪N±i=1B
±
i . In view of (7.46),

this transport might move too much mass from ∪N−

i=1∂B
−
i to ∪N+

i=1∂B
+
i ; however, the amount

of mass in excess is small. Hence, we build another transport with small energy which brings
back the mass in excess thanks to Proposition 7.25.

7.6 preliminaries for the proof of the main theorem

7.6.1 Restriction of curves to open sets

Let A ⊆ Rd be a measurable set. For every γ ∈ Lip , we define the first time OA in which a
curve leaves a set A

OA(γ) := inf{t : γ(t) /∈ A},

and the last time EA in which a curve enters in a set A

EA(γ) := sup{t : γ(t) ∈ Ac}.

We define the restriction of curves on an interval as a map res : Lip × {(s, t) ∈ [0,∞]2 : s 6
t}→ Lip

[res(a,b)(γ)](t) =


γ(a) for t 6 a

γ(t) for a < t < b

γ(b) for t > b.

(7.47)

In the following, we will often consider the restriction of a curve gamma on a certain set, or
more in general, the restriction of γ from an initial time depending on γ itself I(γ) up to a
final time F(γ). In this case, we will shorten res(I, F)(γ) := res(I(γ), F(γ))(γ).

The previous definition allows us to state an additional property of good decompositions.

Proposition 7.18. Let T ∈ N1(Rd) have a good decomposition π as in (7.11), and consider two
measurable functions I, F : Lip → R with I 6 F. Let us assume that

∫
Lip δγ(I(γ))dπ(γ) and∫

Lip δγ(F(γ))dπ(γ) are mutually singular. Then the current

T̃ :=

∫
Lip
Rres(I,F)(γ)dπ(γ) (7.48)
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has the good decomposition

T̃ :=

∫
Lip
Rγdπ̃(γ), with π̃ = (res(I, F))]π.

Moreover, if T = T [E, τ, θ] is rectifiable, then T̃ can be written as T̃ = T [E, τ, θ̃], with θ̃ 6 θ.

Remark 7.19. With the notation of the previous proposition, we notice that the assumptions
that

∫
Lip δγ(I(γ))dπ(γ) and

∫
Lip δγ(F(γ))dπ(γ) are mutually singular in Proposition 7.18 is

equivalent to the existence of two disjoint sets E−,E+ ⊆ Rd such that γ(I(γ)) ∈ E− and
γ(F(γ)) ∈ E+ for π-a.e. γ.

Proof of Proposition 7.18. Proof of the good decomposition property. By Remark 7.19, it is easy to
see that

γ(I(γ)) 6= γ(F(γ)) for π− a.e. γ, (7.49)

and so Rres(I,F)(γ) is a non-constant simple curve, for π-a.e γ. Moreover, setting T =

T̃ + Tresid with

Tresid :=

∫
Lip
Rres(0,I)(γ) + Rres(F,∞)(γ)dπ(γ),

we have, by the sub-additivity of the mass

M(T) 6 M(T̃) + M(Tresid)

6
∫

Lip

(
M(Rres(0,I)(γ)) + M(Rres(I,F)(γ)) + M(Rres(F,∞)(γ))

)
dπ(γ)

=

∫
Lip

M(Rγ)dπ(γ),

(7.50)

where in the last line we use that π-a.e. curve γ is simple. Since, by (7.12), equality holds
between the first and the last term, every inequality should be an equality and in particular

M(T̃) =

∫
Lip

M(Rres(I,F)(γ))dπ(γ) =

∫
Lip

M(Rγ)dπ̃(γ).

In order to obtain the same equality for ∂T̃ , we first notice that, by (7.15), it holds

∂T̃ =

∫
Lip
∂Rres(I,F)(γ)dπ(γ) =

∫
Lip

(
δγ(F(γ)) − δγ(I(γ))

)
dπ(γ).

By assumption, the measures
∫

Lip δγ(I(γ))dπ(γ) and
∫

Lip δγ(F(γ))dπ(γ) are mutually singu-
lar. Hence,

∂−T̃ =

∫
Lip
δγ(I(γ))dπ(γ) and ∂+T̃ =

∫
Lip
δγ(F(γ))dπ(γ),

which yields, by (6.2),

M(∂T̃) = 2M(∂−T̃) = 2π(Lip ) =

∫
Lip

M(∂Rγ)dπ̃(γ).
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This concludes the proof that (7.48) is a good decomposition.

Proof of the estimate on the multiplicity. By the good decomposition property proved above
and the formula (7.16), we get that for H1-a.e. x ∈ E

0 6 θ̃(x) = π̃({γ : x ∈ Im(γ)}) = π({γ : x ∈ Im(res(I, F)(γ))})

6 π({γ : x ∈ Im(γ)}) = θ(x),
(7.51)

where in the inequality we used that if x ∈ Im(res(I, F)(γ)) then x ∈ Im(γ). This concludes
the proof of the claim.

7.6.2 Dimension reduction

The next lemma is a fundamental tool for the proof of our main result. Indeed it allows us
to transport measures which are supported on (d− 1)-dimensional spheres, decreasing the
critical threshold for which we have quantitative upper bounds on the minimal transport
energy (see Theorem 7.6). Its proof is a simple combination of Theorem 7.6 and Proposition
7.3.

Lemma 7.20. Let α > 1− 1
d−1 . Given two measures µ− and µ+ with mass M in Rd supported on

∂B(x, r), there exists a current T ∈ TP(µ−,µ+) such that

Mα(T) 6 Cα,dM
αr,

where Cα,d is a constant depending only on α and d.

Proof. In this proof we denote by Bd−1(0, r) the open ball in Rd−1 centred at 0 with radius r.
Let p ∈ ∂B(x, r) such that µ±({p}) = 0. It is easy to see that there exists a constant C := C(d)

and a 1-Lipschitz function f : Bd−1(0,Cr)→ ∂B(x, r) ⊂ Rd which “wraps” Bd−1(0,Cr) onto
∂B(x, r) \ {p}. More precisely, we can require that

f−1({p}) = ∂Bd−1(0,Cr) and f is injective on Bd−1(0,Cr).

Let ν± := [(f|∂B(x,r)\{p})
−1]]µ

± and observe that f]ν± = µ±. By Theorem 7.6, there exists
S ∈ TP(ν−,ν+) with Mα(S) 6 Cα,dM

α2r.
We observe that T := f]S belongs to TP(µ−,µ+), indeed

∂(f]S) = f]∂S = f]((f|∂B(x,r)\{p})
−1
] µ+ − (f|∂B(x,r)\{p})

−1
] µ−) = µ+ − µ− = ∂S,

and trivially T is supported on ∂B(x, r). The estimate on the α-mass of T follows immediately
from Proposition 7.3.

7.6.3 Covering results

In this subsection we prove two elementary covering results. Referring to the notation
introduced in Section 7.5, Lemma 7.21 allows us to cover the sets A± with balls satisfying
(7.34) such that for every n ∈N almost no curve in the representation of Tn begins or ends
on the corresponding spheres. With Lemma 7.22 we want to guarantee that it is possible
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to cover the sets spt(µ−) and spt(µ+), which by assumption are disjoint, with two disjoint
families of small balls. This time we do not require any smallness assumption on the sum of
the radii, but we want to control the number of balls in each family.

Lemma 7.21. Consider a family of 1-currents T , T ′, (Tn)n∈N ∈ N1(Rd) ∩ R1(Rd), such that
Mα(T), Mα(T ′) < +∞ and ∂±T = ∂±T

′. Given a set A such that H1(A) = 0, and ε > 0, there
exists a covering of A with open balls (B(xi, ri))i∈N such that

∂±T(∂B(xi, ri)) = ∂±Tn(∂B(xi, ri)) = 0 for every i,n ∈N,

Mα
(
T

⋃
i∈N

B(xi, ri)
)
< ε and Mα

(
T ′

⋃
i∈N

B(xi, ri)
)
< ε, (7.52)

and
∞∑
i=1

ri < ε. (7.53)

Proof. We define on Rd the finite measure ν by

ν(E) = Mα(T E) + Mα(T ′ E) for every Borel set E

and we observe that ν vanishes on H1-null sets.
Since H1(A) = 0, for every j ∈N we can find a covering of A with balls {B(x

(j)
i , r(j)i )}i∈N

such that ∑
i∈N

r
(j)
i <

1

2j+1
,

and moreover, since for every point x there are only countably many radii r such that
∂±T(∂B(x, r)) 6= 0 or ∂±Tn(∂B(x, r)) 6= 0 for some n, then we can also assume (possibly
enlarging slightly the previous radii) that

∂±T(∂B(x
(j)
i , r(j)i )) = ∂±Tn(∂B(x

(j)
i , r(j)i )) = 0 for every i,n ∈N.

We define
A(j) =

⋃
i∈N

B(x
(j)
i , 2r(j)i ).

We consider the decreasing sequence of sets and their intersection

(B(j))j∈N :=
⋃
j ′>j

A(j ′), B =
⋂
j∈N

B(j).

We notice that A(j) ⊆ B(j) for every j ∈ N and that H1(B) = 0, because B can be covered
with each B(j), which in turn is made by balls whose radii satisfy the estimate∑

j ′>j

∑
i∈N

r
(j ′)
i <

∑
j ′>j

1

2j
′+1

=
1

2j
.
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We consequently have on the decreasing sequence of sets (B(j))j∈N:

lim
j→∞ν(B(j)) = ν(∩jB(j)) = ν(B)

and we conclude that ν(B) = 0 and that

lim
j→∞ν(A(j)) 6 lim

j→∞ν(B(j)) = 0.

Therefore, choosing j large enough, the covering (B(x
(j)
i , r(j)i ))i∈N satisfies the conditions in

(7.52), (7.53).

Lemma 7.22. Given r > 0 and K ⊂ X, with K compact. There exists a finite number M :=M(X, r)
and a family of balls {B(xi, ri)}Mi=1, covering K, such that

ri <
r

3
, xi ∈ K.

Proof. We cover K with balls B(x, r/4), x ∈ K and, by Vitali’s covering theorem, we can
extract a finite sub-covering, indexed by {1, ...,M} such that the balls {B(xj, r/20)}j=1,...,M are
disjoint and the balls {B(xj, r/4)}j=1,...,M cover K. By the disjointness of {B(xj, r/20)}j=1,...,M

and since these balls are all contained in Ur(X) := {y ∈ Rd : dist(y,X) < r}, it follows that

M|B(0, r/20)| 6 |Ur(X)|,

which completes the proof of the lemma.

7.6.4 A semi-continuity and a quasi-additivity result

In this subsection we collect two results which allow us to get rid of the simplifying
assumption (7.36) in the sketch of Section 7.5. Lemma 7.23 improves Theorem 7.13(1),
allowing us to consider in the right hand side of the inequality (7.21) only the portion of the
currents Tn which have sufficiently high multiplicity. Lemma 7.24 states that the α-mass is
“quasi-additive” if the two addenda have multiplicities of different orders of magnitude.

Lemma 7.23. Let C > 0, A ⊆ Rd an open set, and let T ′ = T [E ′, τ ′, θ ′] ∈ R1(Rd) and T :=

T [E, τ, θ] ∈ R1(Rd) be rectifiable 1-currents with

Mα(T ′), Mα(T) 6 C. (7.54)

Then, for every ε > 0 there exists δ := δ(d,α, ε,C,A, T) > 0 (independent of T ′) such that, if
F(T − T ′) 6 δ,

Mα(T ′ {x ∈ A : θ ′(x) > δ}) > Mα(T A) − ε. (7.55)

Proof. For every δ > 0, by (7.54) it holds

M(T ′ {θ ′ 6 δ}) < δ1−αMα(T ′ {θ ′ 6 δ}) < δ1−αC. (7.56)
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Hence,

F(T − T ′ {θ ′ > δ}) 6 F(T − T ′) + F(T ′ − T ′ {θ ′ > δ})

= F(T − T ′) + F(T ′ {θ ′ 6 δ})

6 F(T − T ′) + M(T ′ {θ ′ 6 δ})

6 F(T − T ′) +Cδ1−α 6 δ+Cδ1−α.

(7.57)

By the lower semi-continuity of the α-mass with respect to the flat convergence (as stated
in Theorem 7.13(1)), there exists δ0 := δ0(d,α, ε,A, T) such that for any rectifiable 1-current
T̃ satisfying F(T̃ − T) 6 δ0 we have Mα(T̃ A) > Mα(T A) − ε. We conclude the proof
choosing δ sufficiently small so that δ+Cδ1−α 6 δ0.

Lemma 7.24. Let ε ∈ (0, 1/4), T1 = T [E1, τ1, θ1], T2 = T [E2, τ2, θ2] ∈ R1(Rd) be rectifiable
1-currents with θ1 < εθ2, H1-a.e. on E1 ∩ E2. Then

(1+ 4εα)Mα(T1 + T2) > Mα(T1) + Mα(T2). (7.58)

Proof. Firstly we observe that on E1 ∩ E2 we have

2ε(θ2 − θ1) > θ1; (1+ 2ε)(θ2 − θ1) > θ2. (7.59)

Now we compute

(1+4εα)Mα(T1 + T2) = (1+ 4εα)Mα(T1 (E1 \ E2))

+ (1+ 4εα)Mα(T2 (E2 \ E1)) + (1+ 4εα)Mα((T1 + T2) (E1 ∩ E2))
> Mα(T1 (E1 \ E2)) + Mα(T2 (E2 \ E1))

+
(
(2ε)α + (1+ 2ε)α

)
Mα((T1 + T2) (E1 ∩ E2)).

We estimate the last term thanks to (7.59) to get(
(2ε)α + (1+ 2ε)α

)
Mα((T1 + T2) (E1 ∩ E2))

>Mα(T1 (E1 ∩ E2)) + Mα(T2 (E1 ∩ E2)).

Putting together the previous two inequalities, we get (7.58).

7.6.5 Absolute continuity of the transportation cost

The next proposition is the fundamental tool to get rid of the simplifying assumption
(7.38) in the sketch of Section 7.5. It ensures that if there exists a traffic path of finite cost
transporting a measure µ− onto a measure µ+, then a transportation between two “small”
sub-measures of µ− and µ+ of equal mass is cheap.

Proposition 7.25. Let µ−,µ+ ∈ M+(X), be non-trivial measures with µ−(X) = µ+(X) < ∞.
Assume

spt(µ−)∩ spt(µ+) = ∅,
with Mα(µ−,µ+) <∞. Then for every ε > 0 there exists δ > 0 such that for every pair of measures
ν− 6 µ− and ν+ 6 µ+ verifying

ν−(X) = ν+(X) 6 δ,

then Mα(ν−,ν+) 6 ε.
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Proof. Without loss of generality, we may assume µ−,µ+ ∈ P(X). By assumption, there exists
T ∈ OTP(µ−,µ+), such that Mα(T) < +∞.

Let T =
∫

Lip Rγ dπ(γ) be a good decomposition of T and define the finite measures
π± ∈M+(Lip ), prescribing their Radon–Nikodým densities w.r.t. π, as

dπ−(γ) :=
dν−

dµ−
(γ(0))dπ(γ), dπ+(γ) :=

dν+

dµ+
(γ(∞))dπ(γ).

We denote

T± = T [E±, τ±, θ±] :=
∫

Lip
Rγdπ

±(γ). (7.60)

Let us consider δ > 0 as fixed. For the moment we only require that δ < δ0 := δ(ε/4) of
Proposition 7.10(4). Further restrictions will be given later. Since π±(Lip ) = ν±(X) 6 δ, from
Proposition 7.10 (3) and (4) we deduce that the decompositions in (7.60) are good and that

Mα(T±) 6
ε

4
. (7.61)

By (7.15) we can write the boundaries of T± in terms of the decomposition as

∂−T
± =

∫
Lip
δγ(0)dπ

±(γ) and ∂+T
± =

∫
Lip
δγ(∞)dπ

±(γ). (7.62)

We apply Lemma 7.22 twice to K := spt(µ±) and r := 1
3dist(spt(µ−), spt(µ+)) to find a finite

covering of spt(µ±) made by at most M(X, r) open balls

B±i := B(x±i , r±i ) i = 1, ...,M±.

For every i = 1, ...,M± let us define

C± :=
⋃
i

B±i .

By the choice of r, the sets C+ and C− are disjoint. Hence, since spt(∂±T) ⊆ C± and since
(7.62) is in force, then π±-a.e. γ ∈ Lip verifies

γ(0) ∈ C− and γ(∞) ∈ C+. (7.63)

We define the rectifiable 1-currents

Tcut,− = T [Ecut,−, τcut,−, θcut,−] :=
∫

Lip
Rres(0,OC−)(γ)dπ

−(γ),

Tcut,+ = T [Ecut,+, τcut,+, θcut,+] :=
∫

Lip
Rres(EC+ ,∞)(γ)dπ

+(γ).
(7.64)

By Proposition 7.18, (7.64) are good decompositions. Here we use a little abuse of notation,
since the good decomposition of Tcut,− would be the push-forward measure(

res(0,OC−)(·)
)
]
π−
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and similarly for Tcut,+. In particular, by point (1) of Proposition 7.10 it holds

∂−T
cut,− =

∫
Lip
δγ(0)dπ

−(γ), ∂+T
cut,− =

∫
Lip
δγ(OC−)dπ

−(γ) (7.65)

Hence we deduce

spt(∂+Tcut,−) ⊆ ∂C− and spt(∂−Tcut,+) ⊆ ∂C+.

By the good decomposition property of Tcut,− and of T− and by Proposition 7.18 for H1-a.e.
x ∈ E− ∩ Ecut,− we have that

θcut,−(x) 6 θ−(x). (7.66)

Thanks to (7.61), we deduce that Tcut,± have small energy

Mα(Tcut,−) =

∫
Ecut,−

(θcut,−)αdH1 6
∫
E−

(θ−)αdH1 = Mα(T−) 6
ε

4
. (7.67)

With similar computations we can prove the same energy estimate for Tcut,+.

Let {y−1 , ...,y−M−}i=1,...,M− ⊆ Rd and {y+1 , ...,y+M+}i=1,...,M+ ⊆ Rd be two sets of distinct
points such that y±i ∈ ∂B

±
i for every i = 1, ...,M±. For every i = 1, ...,M− we define the

weight w±i ∈ (0,∞) as

w−
i := (∂+T

cut,−)
(
∂B−
i \

i−1⋃
j=1

∂B−
j

)
and

w+
i := (∂−T

cut,+)
(
∂B+
i \

i−1⋃
j=1

∂B+
j

)
.

We consider the measures σ± :=
∑M±
i=1w

±
i δy±i

, whose total mass is equal to ν±(X) 6 δ.
Indeed we proved in (7.65), that ∂−Tcut,− = ∂−T− and consequently

σ−(X) = ∂+T
cut,−(X) = ∂−T

cut,−(X) = ∂−T−(X) = ν
−(X) 6 δ

and analogously

σ+(X) = ∂−T
cut,+(X) = ∂+T

cut,+(X) = ∂+T(X) = ν
+(X) 6 δ.

We claim that there exists Tconn,− ∈ TP(∂+Tcut,−,σ−) with

Mα(Tconn,−) 6 C(d,α,X, r)δ.

Similarly, we claim that there exists Tconn,+ ∈ TP(∂−Tcut,+,σ+) with

Mα(Tconn,+) 6 C(d,α,X, r)δ.

Indeed let us consider for every i = 1, ...,M− an optimal traffic path

Tconn,−
i ∈ OTP

(
(∂+T

cut,−)
(
∂B−
i \∪i−1j=1∂B

−
j

)
,wiδy−

i

)
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and observe that, by Lemma 7.20

Mα(Tconn,−
i ) 6 C(d,α)δr.

If we consider now

Tconn,− :=

M−∑
i=1

Tconn,−
i ,

we notice that Tconn,− ∈ TP(∂+Tcut,−,σ−) and by the sub-additivity of the α-mass (7.6) we
obtain that

Mα(Tconn,−) 6
M−∑
i=1

Mα(Tconn,−
i ) 6M−(X, r)C(d,α)δr 6 C(d,α,X, r)δ

and this proves the claim.

Finally we observe that there exists Tgraph ∈ TP
(
σ−,σ+

)
with

Mα(Tgraph) 6 δαC(d,X).

The simplest way to find such traffic path is to connect all the points in the support of σ± to
a fixed point in X. The estimate of its α-mass is trivial. Overall, we find that

Tnew := Tcut,− + Tconn,− + Tgraph + Tconn,+ + Tcut,+ ∈ TP(ν−,ν+)

and its energy is estimated using the sub-additivity (7.6) and the previous estimates (observ-
ing that δ 6 δα for δ 6 1)

Mα(Tnew) 6 C(d,α,X, r)δα +
ε

2
.

By choosing δ sufficiently small, we obtain that the last quantity is less than or equal to ε.
This concludes the proof of the lemma.

Corollary 7.26. Let µ−,µ+ ∈ P(X). Assume

spt(µ−)∩ spt(µ+) = ∅,

with Mα(µ−,µ+) <∞. Then for every pair of sequences (µ−n)n∈N and (µ+n)n∈N with µ−n(Rd) =
µ+n(R

d), µ−n 6 µ−, µ+n 6 µ+ for every n ∈N and with

lim
n→∞µ−(X) − µ−n(X) = 0,

we have that
lim
n→∞Mα(µ−n ,µ+n) = Mα(µ−,µ+).
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Proof. By the lower semi-continuity of the α-mass (Theorem 7.13(1)), we only need to show
that

lim sup
n→∞ Mα(µ−n ,µ+n) 6 Mα(µ−,µ+). (7.68)

Indeed, if we assume (7.68), by Corollary 7.14, and by the compactness of normal cur-
rents (see [50, 4.2.17(1)]) we can consider a sequence of optimizers (Tnk)k∈N, where
Tnk ∈ OTP(µ−nk ,µ+nk) converge to a traffic path T ∈ TP(µ−,µ+) with finite cost and

lim
k→∞Mα(Tnk) = lim inf

n→∞ Mα(Tn).

Hence we compute

Mα(µ−,µ+) 6 Mα(T)
(7.21)
6 lim inf

k→∞ Mα(Tnk) = lim inf
n→∞ Mα(Tn).

In order to prove (7.68), we let T ∈ OTP(µ−,µ+). Since by assumption the measures µ−−µ−n
and µ+ − µ+n are non-negative, are converging to 0 and, for each fixed n, they have the same
mass, we deduce by point (4) of Proposition 7.10 that, denoting by T ′n any optimal path in
OTP(µ− − µ−n ,µ+ − µ+n),

lim
n→∞Mα(T ′n) = 0.

Let Tn = T − T ′n ∈ TP(µ−n ,µ+n). By the sub-additivity of the α-mass (7.6)

Mα(Tn) 6 Mα(T) + Mα(T ′n).

Letting n→∞ we obtain (7.68).

Remark 7.27. From this observation the stability follows as in the case α > 1− 1/d as soon as
the approximating sequences are sub-measures of µ− and µ+ respectively. In particular, if
µ− is a Dirac delta and µ+ is an atomic measure, then an optimal traffic path connecting
µ− to µ+ can be obtained as the limit of the optimal traffic paths connecting the correct
“rescaled” measure of µ− to the discrete measure obtained restricting µ+ to suitable sets of
finitely many points.

7.7 proof of the main theorem

Up to rescaling, we can assume that µ− and µ+ are probability measures. Moreover, without
loss of generality we can assume that µ−n and µ+n are also probability measures and they are
mutually singular. Indeed, assuming the validity of Theorem 7.1 in this special case, it is
easy to deduce its validity in general, using the following argument. Denoting ν−n and ν+n
respectively the negative and the positive part of the measure µ+n −µ−n , since the supports of
µ− and µ+ are disjoint, we have that ν−n ⇀ µ− and ν+n ⇀ µ+. Moreover, since the ambient
is a compact set, ν±n(X) → µ±(X) = 1. Now, denoting ηn := ν−n(X) = ν

+
n(X), we are in the

poisiton to apply Theorem 7.1 in the special case above for the approximating measures
η−1n ν±n , the limiting measures µ±, the optimal traffic paths η−1n Tn and the limit traffic path
T . Since ηn → 1 and Tn ⇀ T is in force, then η−1n Tn ⇀ T is satisfied.
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By contradiction, we assume T is not optimal, i.e.

Mα(T) > Mα(Topt) +∆, (7.69)

for some ∆ > 0 and for some Topt with ∂±Topt = ∂±T .

Step 1: construction of the coverings of A− and A+. Let Cα,d be the constant in Lemma 7.20.
We claim that there exists a (finite or countable) family of balls {B±i = B(x±i , r±i )}i∈I± covering
respectively A− ∩ spt(µ−) and A+ ∩ spt(µ+), such that( ⋃

i∈I−
B−
i

)
∩
( ⋃
i∈I+

B+
i

)
= ∅, (7.70)

∑
i∈I±

r±i <
∆

128Cα,d
, (7.71)

Mα
(
T

⋃
i∈I±

B±i

)
6

∆

128
, Mα

(
Topt

⋃
i∈I±

B±i

)
6

∆

128
, (7.72)

µ±(∂B±i ) = 0, µ±n(∂B
±
i ) = 0 ∀i ∈ I±, n ∈N. (7.73)

For simplicity, we assume I± to be either N or a set of the form {1, ...,M±}. Finally, up to
removing certain balls, we can assume the two coverings to be not redundant, namely, we
can assume that

µ±
(
B±i \

⋃
16j<i

B±j

)
6= 0, ∀i ∈ I±. (7.74)

Since we have removed only balls that do not carry measure, the new set of balls still covers
A− ∩ spt(µ−) and A+ ∩ spt(µ+) up to a set of µ±-measure 0.

We now prove the claim of this Step 1. Let d0 be the distance between spt(µ−) and spt(µ+),
which is positive since the supports spt(µ−) and spt(µ+) are compact and disjoint. Applying
Lemma 7.21 with ε = min{∆/(128Cα,d),∆/128,d0/4} and T ′ = Topt, we can find two finite
coverings satisfying (7.70), (7.71), (7.72), and (7.73).

Step 2: choice of N±. Let ε1 > 0 to be chosen later. We choose N± satisfying

µ±
( N±⋃
j=1

B±j

)
> 1−

ε1
4

.

Step 3: choice of n. Let ε2 > 0 to be chosen later. For every i ∈ I± we define

C±i = B±i \
(
∪i−1j=1 B

±
j

)
.
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By (7.74) the coverings are not redundant, that is, for every i ∈ I±,

µ±(C±i ) > 0. (7.75)

We claim that we can fix n large enough so that the following properties hold:

F(Tn − T) 6 ε2, (7.76)

µ±n(C
±
i ) 6 (1+ ε2)µ

±(C±i ), ∀i = 1, · · · ,N±, (7.77)

µ±n

(
Rd \

N±⋃
i=1

C±i

)
6
ε1
2

. (7.78)

Indeed, since Tn ∈ OTP(µ−n ,µ+n), by Theorem 7.7, Theorem 7.9 and Proposition 7.10(2),
Tn = Tn[En, τn, θn] admits a good decomposition πn ∈ P(Lip ) and its multiplicity θn
verifies θn 6 1. Consequently we get

M(Tn) =

∫
En

θn(x)dH
1(x) 6

∫
En

θαn(x)dH
1(x) 6 Mα(Tn) 6 C.

Moreover
M(∂Tn) = µ

−
n(R

d) + µ+n(R
d) = 2 < +∞.

By the discussion after the definition of flat norm (6.7), the uniform bounds on the mass of
the currents Tn and on the mass of their boundaries guarantees that the weak∗ convergence
implies (7.76), for n sufficiently large. By (7.73) and since µ±n = ∂±Tn weakly converges to
µ± = ∂±T , we observe that

µ±(∂Ci) = 0, ∀i = 1, · · · ,N±

and therefore
lim
n→∞µ±n(C±i ) = µ±(C±i ), ∀i = 1, · · · ,N±.

Since the right-hand side in the previous equality is non-zero thanks to (7.75), we obtain
(7.77) for n large enough.

We fix n large enough to satisfy the conditions in this step. Up to the end of the proof, we
will always refer to this choice of n.

Step 4: good decomposition of Tn and selection. Let us define

πseln := πn

{
γ : γ(0) ∈

N−⋃
i=1

C−
i and γ(∞) ∈

N+⋃
i=1

C+
i

}
. (7.79)

Let us consider Tseln to be the 1-dimensional current obtained from Tn selecting only those
curves that begin inside the first N− balls and end inside the first N+ balls, i.e.

Tseln :=

∫
Lip
Rγ dπ

sel
n (γ).
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Notice that, by Proposition 7.10(3), πseln is a good decomposition of Tseln ; in particular by
Proposition 7.10(1)

∂−T
sel
n =

∫
Lip
δγ(0) dπ

sel
n (γ)

is supported on
⋃N−

i=1C
−
i and it satisfies ∂−Tseln 6 ∂−Tn = µ−n .

For the same reason, πn − πseln is a good decomposition of Tn − Tseln and, denoting by θ̃n
the multiplicity of Tn − Tseln , we have the bound

θ̃n 6 min{θn, (πn − πseln )(Lip )}. (7.80)

Next we estimate

(πn − πseln )(Lip ) = πn

({
γ : γ(0) 6∈

N−⋃
i=1

C−
i or γ(∞) 6∈

N+⋃
i=1

C+
i

})

6 πn
({
γ : γ(0) 6∈

N−⋃
i=1

C−
i

})
+ πn

({
γ : γ(∞) 6∈

N+⋃
i=1

C+
i

})
.

(7.81)

By the good decomposition of Tn (and in particular by (7.15)) for every Borel set A ⊆ Rd

πn
(
{γ : γ(0) ∈ A}

)
= ∂−Tn(A) = µ

−
n(A);

hence, by (7.78)

πn

({
γ : γ(0) 6∈

N−⋃
i=1

C−
i

})
= µ−n

(( N−⋃
i=1

C−
i

)c)
6 ε1/2.

A similar inequality holds for the second term in the right-hand side of (7.81). Overall, it
follows

(πn − πseln )(Lip ) 6 ε1. (7.82)

We also notice that Tn and Tseln are close in flat norm by (7.80) and (7.82)

F(Tn − Tseln ) 6 M(Tn − Tseln ) =

∫
En

θ̃ndH
1

6 ε1−α1

∫
En

θ̃αndH
1 6 ε1−α1

∫
En

θαndH
1 6 Cε1−α1 .

(7.83)

Step 5: restriction of Tn inside the covering. We decompose πseln into the sum of finitely many,
pairwise singular measures πsel,−n,i , according to the starting points of the associated curves,
i.e. for every i = 1, ...,N− we denote

πsel,−n,i := πseln

{
γ : γ(0) ∈ C−

i

}
, (7.84)

and we notice that, using (7.79),

N−∑
i=1

πsel,−n,i = πseln . (7.85)
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We “cut” the current Tseln considering the curves in its decomposition only up to the first
time when they leave the ball where they begin, i.e. we define

Tsel,−n,i :=

∫
Lip
Rres(0,O

B−
i
)(γ) dπ

sel,−
n,i (γ), Tsel,−n :=

N−∑
i=1

Tsel,−n,i . (7.86)

The measure
N−∑
i=1

(res(0,OB−
i
)(·))]πsel,−n,i

is a good decomposition of Tsel,−n : this is a consequence of Remark 7.19 applied to I(γ) :=
γ(0),

F(γ) :=

OB−
i
(γ), if γ(0) ∈ C−

i , for some i = 1, · · · ,N−

0, otherwise
,

E− := (∪N−

i=1B
−
i ) \ (∪

N−

i=1∂B
−
i ) and E+ := ∪N−

i=1∂B
−
i . Notice that the assumption of the Remark

are satisfied in view of (7.73).
Using this fact, by (7.15), (7.85) and (7.86), we get

∂−T
sel,−
n = ∂−T

sel
n . (7.87)

Analogously we define

πsel,+n,j := πseln

{
γ : γ(∞) ∈ C+

j

}
for every j = 1, ...,N+, (7.88)

and we “cut” the current Tseln considering the curves in its decomposition only from the last
time when they enter in the ball where they end, i.e. we define

Tsel,+n,j :=

∫
Lip
Rres(E

B+
j

,∞)(γ) dπ
sel,+
n,j (γ), Tsel,+n =

N+∑
j=1

Tsel,+n,j . (7.89)

Arguing as for (7.87), we get

∂+T
sel,+
n = ∂+T

sel
n , (7.90)

and combining (7.87) and (7.90), we derive

∂Tsel,−n + ∂Tsel,+n = ∂Tseln + ∂+T
sel,−
n − ∂−T

sel,+
n . (7.91)

Step 6: good decomposition of Topt and restriction outside the covering. Let πopt be a good
decomposition of Topt. Let us decompose πopt into the sum of countably many, mutually
singular measures πopt,i,j, according to the starting and the ending points of the associated
curves, i.e., for every i ∈ I− and j ∈ I+ we denote

πopt,i,j := π
{
γ : γ(0) ∈ C−

i and γ(∞) ∈ C+
j

}
.
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We denote by Topt,i,j the traffic path associated to πopt,i,j. Now we “cut” the current Topt
considering the curves in its decomposition only from the first time when they leave the ball
where they begin, up to the last time when they enter in the ball where they end, i.e. we
define

Trestropt,i,j :=

∫
Lip
Rres(O

B−
i

,E
B+
j
)(γ) dπopt,i,j(γ), Trestropt :=

∑
i∈I−,j∈I+

Trestropt,i,j.

Notice that, by Remark 7.19 and (7.70), this formula gives a good decomposition of Trestropt .
Here we use the same abuse of notation, as in (7.64). By Proposition 7.18, we have that the
multiplicity of Trestropt is pointwise bounded by the multiplicity of Topt, so that

Mα
(
Trestropt

((
∪N−

i=1 B
−
i

)
∪
(
∪N+

i=1 B
+
i

))c)
6 Mα(Topt), (7.92)

and by (7.72)

Mα
(
Trestropt

(
∪N±i=1 B

±
i

))
6 Mα

(
Topt

(
∪N±i=1 B

±
i

))
6

∆

128
. (7.93)

We observe that:∑
j∈I+

∂−T
restr
opt,i,j(∂B

−
i ) =

∑
j∈I+

∂−Topt,i,j(C
−
i ) = ∂−Topt(C

−
i ) = µ

−(C−
i ), (7.94)

where the first equality follows because the first (resp. second) term can be seen as the total
mass of the positive (resp. negative) part of the boundary of∑

j∈I+

∫
Lip
R(0,res(O

B−
i
))(γ) dπopt,i,j(γ).

This is true because, by Remark 7.19 and (7.73), this formula gives a good decomposition
(with the usual abuse of notation).

Step 7: connection along the spheres. By Proposition 7.10(1) we have ∂±Tseln 6 ∂±Tn = µ±n .
We deduce that

µ−n(C
−
i ) > ∂−T

sel
n (C−

i )
(7.87)
= ∂−T

sel,−
n (C−

i )

(7.84)
= ∂−T

sel,−
n,i (Rd)

(6.2)
= ∂+T

sel,−
n,i (Rd) = ∂+T

sel,−
n,i (∂B−

i )
(7.95)

and similarly

µ+n(C
+
j ) > ∂−T

sel,+
n,j (∂B+

j ). (7.96)

Combining this with (7.77), it follows that, for every i ∈ I−,

∂+T
sel,−
n,i (∂B−

i ) 6 (1+ ε2)µ
−(C−

i )
(7.94)
= (1+ ε2)

∑
j∈I+

∂−T
restr
opt,i,j(∂B

−
i )

and analogously, for every j ∈ I+,

∂−T
sel,+
n,j (∂B+

j ) 6 (1+ ε2)µ
+(C+

j ) = (1+ ε2)
∑
i∈I−

∂+T
restr
opt,i,j(∂B

+
j ).
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Hence, for every i ∈ I−, we denote

α−
i :=

∂+T
sel,−
n,i (∂B−

i )

(1+ ε2)
∑
j∈I+ ∂−T

restr
opt,i,j(∂B

−
i )
∈ [0, 1] (7.97)

and, for every j ∈ I+,

α+
j :=

∂−T
sel,+
n,j (∂B+

j )

(1+ ε2)
∑
i∈I− ∂+T

restr
opt,i,j(∂B

+
j )
∈ [0, 1]. (7.98)

We define

Tconn,−
n,i ∈ TP

(
∂+T

sel,−
n,i ,α−

i (1+ ε2)
∑
j∈I+

∂−T
restr
opt,i,j

)
(7.99)

to be the traffic path given by Lemma 7.20 (supported on ∂B−
i ). The lemma can be applied

since the two marginals in (7.99) are supported on ∂B−
i and they have same total mass, as a

consequence of (7.97). Its cost is estimated by

Mα
(
Tconn,−
n,i

)
6 Cα,d

(
∂+T

sel,−
n,i (∂B−

i )
)α
r−i 6 Cα,dr

−
i . (7.100)

Analogously, we define a traffic path

Tconn,+
n,j ∈ TP

(
α+
j (1+ ε2)

∑
i∈I−

∂+T
restr
opt,i,j,∂−T

sel,+
n,j

)
, (7.101)

supported on ∂B+
j , whose cost is again estimated by

Mα
(
Tconn,+
n,j

)
6 Cα,d

(
∂−T

sel,+
n,j (∂B+

j )
)α
r+j 6 Cα,dr

+
j . (7.102)

Finally, we define the traffic paths

Tconn,−
n :=

N−∑
i=1

Tconn,−
n,i and Tconn,+

n :=

N+∑
j=1

Tconn,+
n,j .

We denote

σ+n := (1+ ε2)

N−∑
i=1

α−
i

∑
j∈I+

∂−T
restr
opt,i,j, (7.103)

σ−n := (1+ ε2)

N+∑
j=1

α+
j

∑
i∈I−

∂+T
restr
opt,i,j, (7.104)

from (7.99), (7.101), (7.86) and (7.89), we infer

Tconn,−
n ∈ TP(∂+Tsel,−n ,σ+n), and Tconn,+

n ∈ TP(σ−n ,∂−Tsel,+n ). (7.105)
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Using the fact that πn ∈ P(Lip ), one gets

σ+n(R
d)

(7.105),(6.1)
= ∂+T

sel,−
n (Rd)

(6.2)
= ∂−T

sel,−
n (Rd)

(7.87)
= ∂−T

sel
n (Rd)

(7.15)
= πseln (Lip )

(7.82)
> 1− ε1.

(7.106)

Using the sub-additivity of the α-mass, we get the energy estimate

Mα
(
Tconn,±
n

) (7.100),(7.102)
6

N±∑
i=1

Cα,dr
±
i

(7.71)
6

∆

128
. (7.107)

Step 8: bringing back the mass in excess. Denoting

ν− := (1+ ε2)
∑

i∈I−,j∈I+
∂−T

restr
opt,i,j, and ν+ := (1+ ε2)

∑
i∈I−,j∈I+

∂+T
restr
opt,i,j, (7.108)

we get that

(1+ ε2)T
restr
opt ∈ TP(ν−,ν+). (7.109)

We define the two non-negative measures

ν−n := ν− − σ+n , ν+n := ν+ − σ−n . (7.110)

Since by (7.97), (7.98) α−
i ,α+

j ∈ [0, 1], comparing (7.105) with (7.108), we get

σ+n 6 ν−, σ−n 6 ν+, ν−n 6 ν−, and ν+n 6 ν+. (7.111)

We claim that

ν−n(R
d) = ν+n(R

d) 6 ε1 + ε2. (7.112)

Indeed we can compute

σ+n(R
d)

(7.105),(6.1)
= ∂+T

sel,−
n (Rd)

(6.2)
= ∂−T

sel,−
n (Rd)

(7.87)
= ∂−T

sel
n (Rd)

(6.2)
= ∂+T

sel
n (Rd)

(7.90)
= ∂+T

sel,+
n (Rd)

(6.2)
= ∂−T

sel,+
n (Rd)

(7.105),(6.1)
= σ−n(R

d),

which, together with (7.110) and the fact that ν−(Rd) = ν+(Rd), implies ν−n(Rd) = ν+n(Rd).
Since σ+n 6 ν−, we can estimate

ν−n(R
d) = ν−(Rd) − σ+n(R

d)
(7.108),(7.94)

6 (1+ ε2)µ
−(Rd) − σ+n(R

d)

(7.106)
6 (1+ ε2) − (1− ε1) = ε1 + ε2,

getting the claim (7.112).
Therefore, by (7.111), (7.112) and (7.109), we can apply Proposition 7.25 to prove the

existence of a path

Tback ∈ TP(ν+n ,ν−n) (7.113)
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with

Mα(Tback) 6
∆

128
, (7.114)

provided ε1 and ε2 are chosen small enough.
From (7.105), (7.109), (7.113), and (7.110) we compute

∂Tconn,−
n + (1+ ε2)∂T

restr
opt + ∂Tback + ∂Tconn,+

n

= σ+n − ∂+T
sel,−
n + ν+ − ν− + ν−n − ν+n + ∂−T

sel,+
n − σ−n

= ∂−T
sel,+
n − ∂+T

sel,−
n .

(7.115)

Step 9: definition of a competitor for Tseln . Eventually we define

T̃seln := Tsel,−n + Tconn,−
n + (1+ ε2)T

restr
opt + Tback + Tconn,+

n + Tsel,+n .

We show that it has the same boundary of Tseln

∂T̃seln = ∂Tseln . (7.116)

Indeed, using (7.91) and (7.115), we get

∂T̃seln = ∂Tsel,−n + ∂Tconn,−
n + (1+ ε2)∂T

restr
opt + ∂Tback + ∂Tconn,+

n + ∂Tsel,+n

(7.91),(7.115)
= ∂Tseln + ∂+T

sel,−
n − ∂−T

sel,+
n + ∂−T

sel,+
n − ∂+T

sel,−
n = ∂Tseln .

(7.117)

Step 10: estimates on the energy of the competitor. In the following we denote by U the union
of our two closed coverings

U± := ∪N±i=1B
±
i U := U+ ∪U−.

We claim that the competitor T̃seln for Tseln enjoys the following estimate

Mα
(
T̃seln Uc

)
6 Mα(Topt) +

∆

4
(7.118)

and that

Mα
((
T̃seln − Tsel,±n

)
U±
)
6
∆

32
. (7.119)

We first focus on (7.118). By their definition, the currents Tconn,±
n , Tsel,±n are supported on

the sets U±; hence, they are supported on sets disjoint from Uc. Using (7.92) and Cε2 6 ∆
8 ,

we can compute

Mα
(
T̃seln Uc

)
= Mα(

(
(1+ ε2)T

restr
opt + Tback

)
Uc)

6 (1+ ε2)
αMα(Trestropt Uc) + Mα(Tback)

6 Mα(Topt) +Cε2 +
∆

128
6 Mα(Topt) +

∆

4
.

(7.120)
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To prove (7.119) (we show it for the choice ± = −), it is enough to show that

Mα
((
T̃seln − Tsel,−n

)
U−
)
6
∆

32
. (7.121)

Using again that the currents Tconn,+
n , Tsel,+n are supported on the set U+, we estimate, by

the subadditivity of the α-mass,

Mα
((
T̃seln − Tsel,−n

)
U−
)
6 Mα

(
Tconn,−
n U− + (1+ ε2)T

restr
opt U− + Tback U−

)
6 Mα

(
Tconn,−
n

)
+ (1+ ε2)

αMα
(
Trestropt U−) + Mα

(
Tback

)
6
∆

32
,

where in the last inequality we used ε2 6 1/4, (7.93), (7.107), (7.114). This concludes the
proof of (7.119).

Step 11: definition of a competitor for Tn. We define Tn := T̃seln + Tn − Tseln as a competitor
for the α-mass optimizer Tn, with the aim to prove that the former has less α-mass than the
latter. Indeed, by (7.117), ∂Tn = ∂Tn and consequently

T̃seln + Tn − Tseln ∈ TP(µ−n ,µ+n).

We split its energy as

Mα(Tn) = Mα
(
Tn U

)
+ Mα

(
Tn Uc

)
(7.122)

For the first term, the additivity of the α-mass on disjoint sets gives

Mα
(
Tn U

)
= Mα

((
T̃seln + Tn − Tseln

)
U+
)
+ Mα

((
T̃seln + Tn − Tseln

)
U−
)
. (7.123)

We estimate each term by means of (7.119); since the proof is the same, we do it for the first
term in the right-hand side

Mα
((
T̃seln + Tn − Tseln

)
U−
)

6 Mα
((
T̃seln − Tsel,−n

)
U−
)
+ Mα

((
Tsel,−n + Tn − Tseln

)
U−
)

6
∆

32
+ Mα

((
Tsel,−n + Tn − Tseln

)
U−
) (7.124)

The latter can be estimated by noticing that it is a “part of an optimum” with

Mα
((
Tsel,−n + Tn − Tseln

)
U−
)
6 Mα

(
Tn U−

)
. (7.125)

Indeed we apply Proposition 7.18 with T = Tseln and T̃ = Tsel,−n , to obtain that

Tseln − Tsel,−n = βTseln , where β : Rd → [0, 1],

and Proposition 7.10(3) with T = Tn and T ′ = Tseln , to obtain that Tseln = ϕTn, where
ϕ : Rd → [0, 1], and therefore

Tn − (Tseln − Tsel,−n ) = Tn −βTseln = (1−ϕβ)Tn, where [1−ϕβ] : Rd → [0, 1].
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We can conclude that

Mα
((
Tsel,−n + Tn − Tseln

)
U−
)
6 sup
x∈Rd

{1−β(x)ϕ(x)}αMα
(
Tn U−

)
6 Mα

(
Tn U−

)
,

which is exactly (7.125).
Putting together (7.123), (7.124), (7.125), we get an estimate for the first term in the

right-hand side of (7.122)

Mα
(
Tn U

)
6
∆

16
+ Mα

(
Tn U

)
. (7.126)

The second term in (7.122) can be instead estimated through the sub-additivity of the
α-mass, the energy bound on the competitor T̃seln in (7.118), and the energy gap in (7.69)

Mα
(
Tn Uc

)
6 Mα

(
T̃seln Uc

)
+ Mα

((
Tn − Tseln

)
Uc
)

6 Mα(Topt) +
∆

4
+ Mα

((
Tn − Tseln

)
Uc
)

6 Mα(T) −
3∆

4
+ Mα

((
Tn − Tseln

)
Uc
)
.

(7.127)

We fix δ obtained from Lemma 7.23 with the choices A = Uc and ε = ∆/8. The conclusion
of the lemma holds for T ′ = Tseln , provided we add the following further constraints on ε1
and ε2:

ε2 6
δ

2
, Cε1−α1 6

δ

2
, ε1 6

δ

4
, 16εα1C 6 δα∆. (7.128)

By sub-additivity of flat norm, (7.76) and (7.83), we find that

F(Tseln − T) 6 F(Tn − T) + F(Tseln − Tn) 6 ε2 +Cε
1−α
1 6 δ.

Using the previous inequality and Lemma 7.23,

Mα(T) = Mα(T Uc) + Mα(T U)

6 Mα
(
Tseln

(
Uc ∩ {θseln > δ}

))
+ Mα(T U) +

∆

8
(7.72)
6 Mα

(
Tseln

(
Uc ∩ {θseln > δ}

))
+
∆

4
.

Substituting the previous inequality in (7.127), we find

Mα
(
Tn Uc

)
6 Mα

(
Tseln

(
Uc ∩ {θseln > δ}

))
−
∆

2
+ Mα

((
Tn − Tseln

)
Uc
)
. (7.129)

We claim that it is possible to apply Lemma 7.24 with T1 =
(
Tn−T

sel
n

)
Uc, T2 = Tseln

(
Uc∩

{θseln > δ}
)
, and ε = ε1/δ. Indeed, by (7.80) Tn − Tseln has multiplicity less than or equal to

ε1 and by (7.128) we have δ > 4ε1. Consequently, by (7.129)

Mα
(
Tn Uc

)
6
(
1+ 4

(ε1
δ

)α)
Mα

(
Tseln

(
Uc ∩ {θseln > δ}

)
+
(
Tn − Tseln

)
Uc
)
−
∆

2

=
(
1+ 4

(ε1
δ

)α)
Mα

(
βTn Uc

)
−
∆

2
,

(7.130)
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where β : Rd → [0, 1]. Since by hypothesis Mα
(
Tn
)
6 C, using (7.128), we find that

Mα
(
Tn Uc

)
6 Mα

(
Tn Uc

)
+ 4
(ε1
δ

)α
C−

∆

2

(7.128)
6 Mα

(
Tn Uc

)
−
∆

4
. (7.131)

Putting together (7.126) and (7.131), we find that

Mα(Tn) 6 Mα
(
Tn U

)
+ Mα

(
Tn Uc

)
−
∆

8
< Mα(Tn),

which is a contradiction to the optimality of Tn.



8
R E L A X AT I O N O F F U N C T I O N A L S O N P O LY H E D R A L C H A I N S

8.1 introduction

Let H : R → [0,∞) be an even, subadditive, and lower semicontinuous function, with
H(0) = 0. The function H naturally induces a functional ΦH on the set Pk(Rd) of polyhedral
k-chains in Rd. For every polyhedral k-chain of the form P =

∑N
i=1 θi[σi] (with non-

overlapping k-simplexes σi), we set

ΦH(P) :=

N∑
i=1

H(θi)H
k(σi).

It is easy to see that the above assumptions on H are necessary for the functional ΦH to be
(well defined and) lower semicontinuous on polyhedral chains with respect to convergence
in flat norm. In this chapter we present our paper [28], a joint work with Colombo, Marchese
and Stuvard, where we prove that the assumptions on H are also sufficient, and moreover
we show that the lower semicontinuous envelope of ΦH coincides on rectifiable k-currents
with the H-mass, namely the functional

MH(R) :=

∫
E

H(θ(x))dHk(x), for every rectifiable k-current R = R[E, τ, θ].

The validity of such a representation has recently attracted some attention. For instance,
it is clearly assumed in [85] for the choice H(x) = |x|α, with α ∈ (0, 1) , in order to prove
some regularity properties of minimizers of problems related to branched transportation
(see also [73], [15], [75] and Remark 7.5 of Chapter 7) and in [25] in order to define suitable
approximations of the Steiner problem, with the choice H(x) = (1+β|x|)1R\{0}, where β > 0
and 1A denotes the indicator function of the Borel set A.

We finally remark that in the last section of [82] the author sketches a strategy to prove an
analogous version of the main theorem of this chapter (Theorem 8.3 below) in the framework
of flat chains with coefficients in a normed abelian group G. Motivated by the relevance
of such result for real valued flat chains, the ultimate aim of our note [28] is to present a
self-contained complete proof of it when G = R.

8.2 setting and main result

Assumptions 1. In what follows, we will consider a Borel function H : R→ [0,∞) satisfying the
following hypotheses:

(H1) H(0) = 0 and H is even, namely H(−θ) = H(θ) for every θ ∈ R;

(H2) H is subadditive, namely H(θ1 + θ2) 6 H(θ1) +H(θ2) for every θ1, θ2 ∈ R;

143
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(H3) H is lower semicontinuous, namely H(θ) 6 lim infj→∞H(θj) whenever θj is a sequence of
real numbers such that |θ− θj|↘ 0 when j ↑∞.

Remark 8.1. Observe that the hypotheses (H2) and (H3) imply that H is in fact countably
subadditive, namely

H

 ∞∑
j=1

θj

 6
∞∑
j=1

H(θj),

for any sequence {θj}
∞
j=1 ⊂ R such that

∑∞
j=1 θj converges.

Remark 8.2. Let H̃ : [0,∞)→ [0,∞) be any Borel function satisfying:

(H̃1) H̃(0) = 0;

(H̃2) H̃ is subadditive and monotone non-decreasing, i.e. H̃(θ1) 6 H̃(θ2) for any 0 6 θ1 6
θ2;

(H̃3) H̃ is lower semicontinuous,

and let H : R→ [0,∞) be the even extension of H̃, that is set H(θ) := H̃(|θ|) for every θ ∈ R.
Then, the function H satisfies Assumption 1.

Let H be as in Assumptions 1. We define a functional ΦH : Pk(Rd) → [0,∞) as follows.
Assume P ∈ Pk(Rd) is as in (6.5). Then, we set

ΦH(P) :=

N∑
i=1

H(θi)H
k(σi). (8.1)

The functional ΦH naturally extends to a functional MH, called the H-mass, defined on
Rk(Rd) by

MH(R) :=

∫
E

H(θ(x))dHk(x), for every R = R[E, τ, θ] ∈ Rk(Rd). (8.2)

We also define the functional FH : Fk(Rd) → [0,∞] to be the lower semicontinuous
envelope of ΦH. More precisely, for every T ∈ Fk(Rd) we set

FH(T) := inf
{

lim inf
j→∞ ΦH(Pj) : Pj ∈ Pk(Rd) with F(T − Pj)↘ 0

}
. (8.3)

The main result of this chapter is the following theorem.

Theorem 8.3. Let H satisfy Assumption 1. Then, FH ≡MH on Rk(Rd).

In order to prove Theorem 8.3, we adopt the following strategy. First, we show that
the functional MH is lower semicontinuous on rectifiable currents, with respect to the flat
convergence, as in the following proposition, with A = Rd.

Proposition 8.4. Let H satisfy Assumption 1, and let A ⊂ Rd be open. Let Tj, T ∈ Rk(Rd) be
rectifiable k-currents such that F(T − Tj)↘ 0 as j→∞. Then

MH(T A) 6 lim inf
j→∞ MH(Tj A). (8.4)



8.3 proof of the lower semicontinuity 145

Next, we observe that, as an immediate consequence of Proposition 8.4 and of the proper-
ties of the lower semicontinuous envelope, it holds

MH(R) 6 FH(R) for every R ∈ Rk(Rd). (8.5)

The opposite inequality, which completes the proof of Theorem 8.3, is obtained as a
consequence of the following proposition, which provides a polyhedral approximation in
flat norm of any rectifiable k-current R with H-mass and mass close to those of the given R.

Proposition 8.5. Let H be any Borel function satisfying (H1) in Assumption 1, and let R ∈ Rk(Rd)
be rectifiable. For every ε > 0 there exists a polyhedral k-chain P ∈ Pk(Rd) such that

F(R− P) 6 ε, ΦH(P) 6 MH(R) + ε and M(P) 6 M(R) + ε. (8.6)

Theorem 8.3 characterizes the lower semicontinuous envelope FH on rectifiable currents
to be the (possibly infinite) H-mass MH. Without further assumptions on H, the lower
semicontinuous envelope FH can have finite values on flat chains which are non-rectifiable
(for instance, the choice H(θ) := |θ| induces the mass functional FH = M). If instead we
add the natural hypothesis that H is monotone non-decreasing on [0,∞), then there is a
simple necessary and sufficient condition which prevents this to happen in the case of flat
chains with finite mass, thus allowing us to obtain an explicit representation for FH on all
flat chains with finite mass.

Proposition 8.6. LetH be as in Assumption 1 and monotone non-decreasing on [0,∞). The condition

lim
θ↘0+

H(θ)

θ
= +∞. (8.7)

holds if and only if

FH(T) =

MH(T) for T ∈ Rk(Rd),

+∞ for T ∈ (Fk(Rd)∩ {T ∈ Dk(R
d) : M(T) <∞}) \ Rk(Rd).

(8.8)

8.3 proof of the lower semicontinuity

This section is devoted to the proof of Proposition 8.4. It is carried out by slicing the rectifiable
currents Tj and T and reducing the proposition to the lower semicontinuity of 0-dimensional
currents. Some of the techniques here adopted are borrowed from [39, Lemma 3.2.14].

We recall some preliminaries on the slicing of currents. Given k 6 d, let I(k,d) be the set
of k-tuples (i1, . . . , ik) with

1 6 i1 < . . . < ik 6 d.

Let {e1, . . . , ed} be an orthonormal basis of Rd. For any I = (i1, . . . , ik) ∈ I(d,k), let VI be
the k-plane spanned by {ei1 , . . . , eik}. Given a k-plane V , we will denote pV the orthogonal
projection onto V . If V = VI for some I, we write pI in place of pVI . Given a current
T ∈ Fk(Rd), a Lipschitz function f : Rd → Rm for some m 6 k and y ∈ Rm, we denote by
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〈T , f,y〉 the (k−m)-dimensional slice of T in f−1(y) (see [50, Section 4.3]). Intuitively, this
can be thought as the “intersection” of the current T with the level set f−1(y).

Let us denote by Gr(d,k) the Grassmannian of k-dimensional planes in Rd, and by γd,k

the Haar measure on Gr(d,k) (see [61, Section 2.1.4]).
In the following lemma, we prove a version of the integral-geometric equality for the

H-mass, which is a consequence of [50, 3.2.26; 2.10.15] (see also [39, (21)]). We observe that
the hypotheses (H2) and (H3) on the function H are not needed here, and indeed Lemma
8.7 below is valid for any Borel function H for which the H-mass MH is well defined.

Lemma 8.7. Let E ⊆ Rd be k-rectifiable. Then there exists c = c(d,k) such that the following
integral-geometric equality holds:

Hk(E) = c

∫
Gr(d,k)

∫
Rk

H0(p−1V ({y})∩ E)dHk(y)dγd,k(V). (8.9)

In particular, if R ∈ Rk(Rd),

MH(R) = c

∫
Gr(d,k)×Rk

MH

(
〈R,pV ,y〉

)
d(γd,k ⊗Hk)(V ,y). (8.10)

Proof. The equality (8.9) is proved in [50, 3.2.26; 2.10.15]. For any Borel set A ⊂ Rd, denoting
f = 1A, (8.9) implies that∫

E

f(x)dHk(x) = c

∫
Gr(d,k)

∫
Rk

∫
E

f(x) 1p−1
V ({y})(x)dH

0(x)dHk(y)dγd,k(V). (8.11)

Since the previous equality is linear in f, it holds also when f is piecewise constant. Since
the measure Hk E is σ-finite, the equality can be extended to any measurable function
f ∈ L1(Hk E). The case f /∈ L1(Hk E) follows from the Monotone Convergence Theorem
via a simple truncation argument.

Taking R = R[E, θ, τ], and applying (8.11) with f(x) = H(θ(x)), we deduce that

MH(R) = c

∫
Gr(d,k)

∫
Rk

∫
E∩p−1

V ({y})
H(θ(x))dH0(x)dHk(y)dγd,k(V).

We observe that the right-hand side coincides with the right-hand side in (8.10) since for
Hk-a.e. y ∈ Rk the 0-dimensional current 〈R,pV ,y〉 is concentrated on the set E ∩ p−1V (y)

and its density at any x ∈ E∩ p−1V (y) is θ(x).

We prove the lower semicontinuity in (8.4) by an explicit computation in the case k = 0.
Then, by slicing, we get the proof for k > 0, too.

Proof of Proposition 8.4. Step 1: the case k = 0. Let Tj := Tj[Ej, τj, θj], T := T [E, τ, θ] ∈ R0(Rd)
be such that F(T − Tj)↘ 0 as j→∞. Since T A is a signed, atomic measure, we write

T A =
∑
i∈N

τ(xi)θ(xi)δxi
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for distinct points {xi}i∈N ⊆ E∩A, orientations τ(xi) ∈ {−1, 1}, and for θ(xi) > 0. Fix ε > 0
and let I ⊂N be a finite set such that

MH(T A) −
∑
i∈I

H(θ(xi)) 6 ε if MH(T A) <∞ (8.12)

and ∑
i∈I

H(θ(xi)) >
1

ε
otherwise. (8.13)

Up to reordering the indexes, we may assume that I = {1, ...,N} for some N = N(ε). Since
H is positive, even, and lower semicontinuous, for every i ∈ {1, . . . ,N} it is possible to
determine ηi = ηi(ε, θ(xi)) > 0 such that

H(θ) > (1− ε)H(θ(xi)) for every |θ− τ(xi)θ(xi)| < ηi. (8.14)

Moreover, for every i ∈ {1, . . . ,N} there exists 0 < ri < min{dist(xi,∂A), 1} such that the balls
B(xi, 2ri) are pairwise disjoint, and moreover such that for every ρ 6 ri it holds∣∣∣∣∣∣τ(xi)θ(xi) −

∑
x∈E∩B(xi,ρ)

τ(x)θ(x)

∣∣∣∣∣∣ 6 ηi
2

. (8.15)

Our next aim is to prove that in sufficiently small balls and for j large enough, the sum of
the multiplicities of Tj (with sign) is close to the sum of the multiplicities of T . In order to do
this, we would like to test the current T − Tj with the indicator function of each ball. Since
this test is not admissible, we have to consider a smooth and compactly supported extension
of it outside the ball, provided we can prove that the flat convergence of Tj to T localizes
to the ball. From this, our claimed convergence of the signed multiplicities follows by the
characterization of the flat norm in (6.8).

To make this formal, we define η0 := min16i6N ηi and r0 := min16i6N ri. Let j0 be such
that

F(T − Tj) 6
η0r0
16

for every j > j0.

By the definition (6.7) of flat norm, there exist Rj ∈ D0(R
d), Sj ∈ D1(R

d) such that
T − Tj = Rj + ∂Sj with M(Rj) + M(Sj) 6

η0r0
8 for every j > j0. Observe that the mass and

the mass of the boundary of both Rj and Sj are finite, and thus by [50, 4.1.12] it holds
Rj ∈ F0(Rd) and Sj ∈ F1(Rd). We want to deduce that for every i ∈ {1, . . . ,N} there exists
ρi ∈

(
r0
2 , r0

)
such that

F((T − Tj) B(xi, ρi)) 6
η0
2

.

Indeed, for any fixed i ∈ {1, . . . ,N} one has that for a.e. ρ ∈
(
r0
2 , r0

)
(T − Tj) B(xi, ρ) = Rj B(xi, ρ) + (∂Sj) B(xi, ρ)

= Rj B(xi, ρ) − 〈Sj, d(xi, ·), ρ〉+ ∂
(
Sj B(xi, ρ)

)
,

(8.16)
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where d(xi, z) := |xi − z| and where the last identity holds by the definition of slicing for
normal currents (cf. [50, 4.2.1]). On the other hand, by [50, 4.2.1] we have∫r0

r0
2

M(〈Sj, d(xi, ·), ρ〉)dρ 6 M(Sj (B(xi, r0) \B(xi,
r0
2
))) 6

η0r0
8

.

Hence, there exists ρi ∈
(
r0
2 , r0

)
such that

M(〈Sj, d(xi, ·), ρi〉) 6
η0
4

. (8.17)

We conclude from (8.16) that

F((T − Tj) B(xi, ρi)) 6 M(Rj B(xi, ρi)) + M(〈Sj, d(xi, ·), ρi〉) + M(Sj B(xi, ρi))
(8.17)
6

η0r0
4

+
η0
4

6
η0
2

.
(8.18)

Using the characterization of the flat norm in (6.8), and testing the currents (T −Tj) B(xi, ρi)
with any smooth and compactly supported function φi : Rd → R which is identically 1 on
B(xi, ρi), we obtain∣∣∣∣∣∣

∑
x∈E∩B(xi,ρi)

τ(x)θ(x) −
∑

y∈Ej∩B(xi,ρi)

τj(y)θj(y)

∣∣∣∣∣∣ 6 η0
2

. (8.19)

Combining (8.19) with (8.15), we deduce by triangle inequality that∣∣∣∣∣∣τ(xi)θ(xi) −
∑

y∈Ej∩B(xi,ρi)

τj(y)θj(y)

∣∣∣∣∣∣ 6 ηi. (8.20)

Finally, using (8.14) and the fact that H is countably subadditive (cf. Remark 8.1), we
conclude that for every j > j0

H(θ(xi)) 6
1

1− ε
H

 ∑
y∈Ej∩B(xi,ρi)

τj(y)θj(y)


6

1

1− ε

∑
y∈Ej∩B(xi,ρi)

H(θj(y))

=
1

1− ε
MH(Tj B(xi, ρi)).

Summing over i, since the balls B(xi, ρi) are pairwise disjoint, we get that

∑
i∈I

H(θi) 6
1

1− ε
lim inf
j→∞

N∑
i=1

MH(Tj B(xi, ρi)) 6
1

1− ε
lim inf
j→∞ MH(Tj A).

By (8.12) (or (8.13) in the case that MH(T A) =∞) and since ε is arbitrary, we find (8.4).
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Step 2 (Reduction to k = 0 through integral-geometric equality). We prove now Proposition 8.4
for k > 0. Up to subsequences, we can assume

lim
j→∞MH(Tj A) = lim inf

j→∞ MH(Tj A).

By [50, 4.3.1], for every V ∈ Gr(d,k) it holds∫
Rk

F(〈Tj − T ,pV ,y〉)dy 6 F(Tj − T), (8.21)

Integrating the inequality (8.21) in V ∈ Gr(d,k) and using that γd,k is a probability
measure on Gr(d,k) we get

lim
j→∞

∫
Gr(d,k)×Rk

F(〈Tj − T ,pV ,y〉)d(γd,k ⊗Hk)(V ,y) 6 lim
j→∞F(Tj − T) = 0.

Since the integrand F(〈Tj − T ,pV ,y〉) is converging to 0 in L1, up to subsequences, we get

lim
j→∞F(〈Tj − T ,pV ,y〉) = 0 for γd,k ⊗Hk-a.e. (V ,y) ∈ Gr(d,k)×Rk.

We conclude from Step 1 that

MH(〈T ,pV ,y〉 A) 6 lim inf
j→∞ MH(〈Tj,pV ,y〉 A) for γd,k ⊗Hk-a.e. (V ,y) ∈ Gr(d,k)×Rk.

(8.22)

By [11, (5.15)], for every V ∈ Gr(d,k) one has 〈T ,pV ,y〉 A = 〈T A,pV ,y〉 for Hk-a.e.
y ∈ Rk.

In order to conclude, we apply twice the integral-geometric equality (8.10). Indeed, using
(8.22) and Fatou’s lemma, we get

MH(T A) = c

∫
Gr(d,k)×Rk

MH

(
〈T A,pV ,y〉

)
d(γd,k ⊗Hk)(V ,y)

6 c
∫
Gr(d,k)×Rk

lim inf
j→∞ MH

(
〈Tj A,pV ,y〉

)
d(γd,k ⊗Hk)(V ,y)

6 c lim inf
n→∞

∫
Gr(d,k)×Rk

MH

(
〈Tj A,pV ,y〉

)
d(γd,k ⊗Hk)(V ,y)

= lim inf
j→∞ MH(Tj A).

(8.23)

This concludes the proof of Step 2, so the proof of Proposition 8.4 is complete.

8.4 proof of the polyhedral approximation

In this section we prove Proposition 8.5. In order to do this, we will consider a family of
pairwise disjoint balls which contain the entire mass of the current R, up to a small error.
Then, we replace in any of these balls the current R with a k-dimensional disc with constant
multiplicity. Afterwards, we further approximate each disc with polyhedral chains.
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We begin with the following lemma, where we prove that, at many points x in the k-
rectifiable set supporting the current R and at sufficiently small scales (depending on the
point), R is close in the flat norm to the tangent k-plane at x weighted with the multiplicity
of R at x.

In this section, given the k-current R = R[E, τ, θ], for a.e. x ∈ E we denote with πx the
affine k-plane through x spanned by the (simple) k-vector τ(x) and with Sx,ρ the k-current

Sx,ρ := [B(x, ρ)∩ πx, τ(x), θ(x)].

Lemma 8.8. Let ε > 0, and let R = R[E, τ, θ] be a rectifiable k-current in Rd. There exists a subset
E ′ ⊂ E such that the following holds:

(i) M(R (E \ E ′)) 6 ε;

(ii) for every x ∈ E ′ there exists r = r(x) > 0 such that for any 0 < ρ 6 r

F(R (E ′ ∩B(x, ρ)) − Sx,ρ) 6 εM(R B(x, ρ)). (8.24)

Proof. Since E is countably k-rectifiable, there exist countably many linear k-dimensional
planes Πi and C1 and globally Lipschitz maps fi : Πi → Π⊥i such that

E ⊂ E0 ∪
∞⋃
i=1

Graph(fi),

with Hk(E0) = 0. We will denote Σi := Graph(fi) ⊂ Rd. For every x ∈
⋃∞
i=1 Σi, we let i(x)

be the first index such that x ∈ Σi. Then, for every i > 1, we define Ri := Ri[E ∩ Σi, τ, θi],
where

θi(x) :=

θ(x) if i = i(x)

0 otherwise.
(8.25)

Clearly, R =
∑∞
i=1 Ri and M(R) =

∑∞
i=1M(Ri). Hence, there exists N = N(ε) such that∑

i>N+1

M(Ri) 6 ε. (8.26)

Now, recall that x is a Lebesgue point of the function θi with respect to the Radon measure
Hk Σi if

lim
r→0

1

Hk(Σi ∩B(x, r))

∫
Σi∩B(x,r)

|θi(y) − θi(x)|dH
k(y) = 0.

We define the set E ′ ⊂ E by

E ′ :=

{
x ∈ E∩

N⋃
i=1

Σi such that x is a Lebesgue point of θi

with respect to Hk Σi for every i ∈ {1, . . . ,N}

}
,

(8.27)
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and we observe that (i) follows from (8.26) and [12, Corollary 2.23].
Let us set

L := max{Lip (fi) : i = 1, . . . ,N}. (8.28)

Fix i ∈ {1, . . . ,N}. For every x ∈ Σi there exists r > 0 such that if Σj ∩B(x,
√
dr) 6= ∅, then

x ∈ Σj for every j ∈ {1, . . . ,N}.
Now, fix any point x ∈ E ′, and fix an index j ∈ {1, . . . ,N} such that x ∈ Σj. If j = i(x), then

θj(x) = θ(x) > 0. Since by the definition of E ′

lim
r→0

M(Rj (Σj ∩B(x, r)))
Hk(Σj ∩B(x, r))

= θj(x), (8.29)

then there exists r > 0 such that for any 0 < ρ 6
√
dr

M(Rj (Σj ∩B(x, ρ)))
Hk(Σj ∩B(x, ρ))

>
θj(x)

2
. (8.30)

Again by [12, Corollary 2.23] applied with µ = Hk Σj and f = θj, there exists a radius r > 0
(depending on x) such that∫

Σj∩B(x,ρ)
|θj(y) − θj(x)|dH

k(y) 6 ε
θj(x)

2
Hk(Σj ∩B(x, ρ))

6 ε
M(Rj (Σj ∩B(x, ρ)))

Hk(Σj ∩B(x, ρ))
Hk(Σj ∩B(x, ρ))

6 εM(Rj B(x, ρ)),

(8.31)

for every 0 < ρ 6
√
dr.

If, instead, j 6= i(x), then θj(x) = 0 and therefore there exists a radius r > 0 (depending on
x) such that for every 0 < ρ 6

√
dr∫

Σj∩B(x,ρ)
θj(y)dH

k(y) 6
εθi(x)(x)

N(1+ L)k
Hk(Σj ∩B(x, ρ))

6
ε

N
θi(x)(x)ωkρ

k

(8.30)
6 2

ε

N
M(Ri(x) B(x, ρ)),

(8.32)

where ωk denotes the volume of the unit ball in Rk.
Fix any point x ∈ E ′ and let i = i(x). By possibly reparametrizing fi|Πi∩B(x,r) from

the k-plane tangent to Σi at x, translating and tilting such a plane, we can assume that
x = 0, Πi = {xk+1 = · · · = xd = 0} and ∇fi(x) = 0. By possibly choosing a smaller radius
r = r(x) > 0, we may also assume that

|∇fi| 6 ε in Πi ∩B(x, r). (8.33)

With these conventions, the current Sx,ρ in the statement reads Sx,ρ = Sx,ρ[B(0, ρ) ∩
Πi, τ(0), θi(0)]. We let Fi : Πi × Π⊥i → Rd be given by Fi(z,w) := (z, fi(z)), and we set
R̃i := (Fi)]Sx,ρ ∈ Rk(Rd).
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By (8.33) and the homotopy formula (cf. [79, 26.23]) applied with g = Fi and f(z,w) :=
(z, 0), we have, denoting C(x, ρ) := (B(x, ρ)∩Πi)×Π⊥i ,

F(R̃i − Sx,ρ) 6 C‖g− f‖L∞(C(x,ρ)) (M(Sx,ρ) + M(∂Sx,ρ))

6 Cερ (M(Sx,ρ) + M(∂Sx,ρ))

6 Cεθ(x)ωkρ
k

6 Cεθ(x)Hk(Σj ∩B(x, ρ))
(8.30)
6 CεM(Ri B(x, ρ)).

(8.34)

Now, observe that, if we denote by ξi the orientation of Σi induced by the orientation of
Πi ×Π⊥i via Fi, the rectifiable current R̃i reads R̃i = R̃i[Σi ∩C(x, ρ), ξi, θi(x)] (cf. [79, 27.2]).
Therefore, we can compute

M(Ri B(x, ρ) − R̃i) 6 M(Ri B(x, ρ) − R̃i B(x, ρ)) + M(R̃i (C(x, ρ) \B(x, ρ)))
(8.31)
6 εM(Ri B(x, ρ)) + M(R̃i (C(x, ρ) \B(x, ρ)))

(8.33)
6 εM(Ri B(x, ρ)) +Cεθi(x)Hk(Σi ∩B(x, ρ))

(8.30)
6 CεM(Ri B(x, ρ)).

(8.35)

Hence, we conclude:

F(R E ′∩B(x, ρ) − Sx,ρ) 6 F(Ri(x) B(x, ρ) − Sx,ρ) +

N∑
j=1
j 6=i(x)

M(Rj B(x, ρ))

(8.32)
6 F(Ri(x) B(x, ρ) − R̃i) + F(R̃i − Sx,ρ) + 2εM(Ri(x) B(x, ρ))

(8.34),(8.35)
6 CεM(R B(x, ρ)).

(8.36)

This proves (8.24).

A straightforward iteration argument yields the following corollary.

Corollary 8.9. Let R = R[E, τ, θ] be a rectifiable k-current in Rd. Then, for Hk-a.e. x ∈ E

lim
r→0

F(R B(x, r) − Sx,ρ)

M(R B(x, r))
= 0. (8.37)

Proof. For every i ∈ N define the set Ei to be the set E ′ given by Lemma 8.8 applied to R
with ε = 2−i−1, and let Fi ⊂ Ei be the set of Lebesgue points of 1Ei (inside Ei) with respect
to θHk E. By [12, Corollary 2.23], the set Fi equals the set Ei up to a set of Hk-measure 0
and for every x ∈ Fi and for ρ sufficiently small (possibly depending on x) it holds

M(R B(x, ρ) − R (Ei ∩B(x, ρ))) =
∫
(E\Ei)∩B(x,ρ)

θdHk

6 2−i−1
∫
E∩B(x,ρ)

θdHk = 2−i−1M(R B(x, ρ)).
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Hence by Lemma 8.8 for every x ∈ Fi there exists ri(x) > 0 such that for every 0 < ρ < ri(x)

F(R B(x, ρ) − Sx,ρ) 6 M(R B(x, ρ) − R (Ei ∩B(x, ρ))) + F(R (Ei ∩B(x, ρ)) − Sx,ρ)

6 2−iM(R B(x, ρ))

and
M(R (E \ Fi)) 6 2

−i−1.

Denoting F :=
⋃
i∈N

⋂
j>i Fj, and noticing that E \ F = E∩ Fc = E∩

⋂
i∈N

⋃
j>i F

c
j is contained

in
⋃
j>i F

c
j for every i ∈N, we have

M(R (E \ F)) 6 lim
i→∞

∞∑
j=i

M(R (E \ Fj)) 6 lim
i→∞

∞∑
j=i

1

2j
= 0

and this implies that Hk(E \ F) = 0. Since every x ∈ F belongs definitively to every Fj
(namely, for every x ∈ F there exists i0(x) ∈ N such that x ∈ Fi for every i > i0(x)), we
obtain (8.37).

Proof of Proposition 8.5. Let R be represented by R = R[E, τ, θ] with θ ∈ L1(Hk E; (0,∞)). We
denote

µ := θHk E.

Moreover, if MH(R) < +∞, we define the positive finite measure

ν := H(θ)Hk E.

Fix ε > 0. We make the following
Claim: There exists a finite family of mutually disjoint balls {Bi}

N
i=1 with Bi := B(xi, ri),

such that the following properties are satisfied:

(i)

ri 6 ε ∀ i = 1, . . . ,N and µ(Rd \ (∪Ni=1Bi)) 6 ε;

(ii) if we denote Ri := R Bi and Si := Sxi,ri , then

F(Ri − Si) 6 εµ(Bi);

(iii)

|µ(Bi) − θ(xi)ωkr
k
i | 6 εµ(Bi), ∀ i = 1, . . . ,N;

(iv) if MH(R) < +∞, then it holds

H(θ(xi))ωkr
k
i 6 (1+ ε)ν(Bi), ∀ i = 1, . . . ,N.

Let us for the moment assume the validity of the claim and see how to conclude the proof
of the proposition.

By point (iii) in the claim we deduce

M(Si) 6 (1+ ε)M(Ri). (8.38)
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and by point (iv) we get

MH(Si) 6 (1+ ε)MH(Ri). (8.39)

On the other hand, we can find a polyhedral chain Pi ∈ Pk(Rd) (supported on πi ∩ Bi,
πi := πxi), such that

F(Pi − Si) 6 εµ(Bi), MH(Pi) 6 MH(Si) and M(Pi) 6 M(Si). (8.40)

Indeed, it is enough to approximate the k-dimensional current Si with simplexes with
constant multiplicity and supported in Bi ∩ πi.

To conclude, we denote P :=
∑N
i=1 Pi and we estimate

F(R− P) 6
N∑
i=1

F(Ri − Pi) + M(R (Rd \ (∪Ni=1Bi)))

(i)

6 ε+

N∑
i=1

F(Ri − Si) +

N∑
i=1

F(Si − Pi)
(ii),(8.40)

6 ε+ 2

N∑
i=1

εµ(Bi) 6 ε+ 2εM(R).

(8.41)

Moreover

MH(P) =

N∑
i=1

MH(Pi)
(8.40)
6

N∑
i=1

MH(Si)
(8.39)
6 (1+ ε)

N∑
i=1

MH(Ri) 6 (1+ ε)MH(R) (8.42)

and

M(P) =

N∑
i=1

M(Pi)
(8.40)
6

N∑
i=1

M(Si)
(8.38)
6 (1+ ε)

N∑
i=1

M(Ri) 6 (1+ ε)M(R). (8.43)

Proof of the Claim: Consider the set F of points x ∈ E such that the following properties
hold:

1. x satisfies

lim
r→0

F(R B(x, r) − Sx,r)

M(R B(x, r))
= 0;

2. denoting ηx,r : Rd → Rd the map y 7→ y−x
r , we have the following convergences of

measures for r→ 0:

µx,r := r
−k(ηx,r)#(µ B(x, r)) ⇀ θ(x)Hk ((x+ span(τ(x)))∩B(0, 1)), (8.44)

and

νx,r := r
−k(ηx,r)#(ν B(x, r)) ⇀ H(θ(x))Hk ((x+ span(τ(x)))∩B(0, 1)). (8.45)
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We observe that properties (1) and (2) hold for µ-a.e. point. Indeed the fact that (1) holds for
µ-a.e. x follows from Corollary 8.9, while the fact that (2) holds for µ-a.e. x is a consequence
of [35, Theorem 4.8]. Moreover, by (8.44) and by (8.45), for every x ∈ F there exists a radius
r(x) < ε such that

|µx,r(B(0, 1)) − θ(x)ωk| 6
ε

2
θ(x)ωk, for a.e. r < r(x).

This inequality implies that

|µ(B(x, r)) − θ(x)ωkrk| 6
ε

2
θ(x)ωkr

k, for a.e. r < r(x), (8.46)

so that in particular

θ(x)
(
1−

ε

2

)
ωkr

k 6 µ(B(x, r)), for a.e. r < r(x).

Plugging the last inequality in the right-hand side of (8.46), we get

|µ(B(x, r)) − θ(x)ωkrk| 6
ε

2− ε
µ(B(x, r)) 6 εµ(B(x, r)), for a.e. r < r(x).

which gives condition (iii) of the Claim.
Analogously, we get that

|ν(B(x, r)) −H(θ(x))ωkrk| 6 εν(B(x, r)), for a.e. r < r(x).

The validity of the claim is then obtained via the Vitali-Besicovitch covering theorem ([12,
Theorem 2.19]).

8.5 proof of the representation on all flat chains with finite mass

In this section we prove Proposition 8.6. We first observe that the condition (8.7) is necessary
for the validity of (8.8). Indeed, consider a map H as in Assumption 1 for which (8.7) does
not hold. It means that there exists a constant C > 0 and a sequence {θi}i∈N converging
to 0 such that H(θi) 6 Cθi for every i ∈ N. We consider now the sequence of polyhedral
k-chains {Pi}i∈N supported in the unit cube [0, 1]n and defined as

Pi :=

Ni∑
j=1

[πji ∩ [0, 1]
d, τ, θi],

where for i fixed, πji are k-planes parallel to {xk+1 = . . . = xd = 0} whose last (d − k)

coordinates are “uniformly distributed” in [0, 1]d−k, τ is a fixed orientation for all the k-
planes πji not depending on i or j and Ni := min{N ∈ N : Nθi > 1}. Since θi → 0, then
Ni →∞. For i large enough, so that θiNi 6 2, we can compute

ΦH(Pi) =

Ni∑
j=1

ΦH([π
j
i ∩ [0, 1]

d, τ, θi]) = NiH(θi) 6 CNiθi 6 2C.
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Nevertheless, since θiNi → 1, then the sequence {Pi}i∈N converges in flat norm to the
k-current T , acting on k-forms as

〈T ,ω〉 =
∫
[0,1]d

〈ω(x), τ〉dLd(x),

which belongs to (Fk(Rd)∩ {T ∈ Dk(R
d) : M(T) <∞}) \ Rk(Rd). Clearly, FH(T) 6 2C.

We show now that, if H is also monotone non-decreasing on [0,∞), then condition (8.7) is
also sufficient to the validity of (8.8). The proof is a consequence of the definition of FH in
(8.3) and the following Lemma (see also [27, Lemma 4.5]):

Lemma 8.10. Assume H is as in Assumption 1, is monotone non-decreasing on [0,∞), and satisfies
(8.7). Let {Rj}j∈N ⊂ Rk(Rd) and let us assume that

sup
j∈N

MH(Rj) 6 C < +∞.

If limj→∞ F(Rj − T) = 0 for some T ∈ Fk(Rd) with finite mass, then T is in fact rectifiable.

Proof. Step 1. We prove the lemma for k = 0, recalling that a 0-dimensional rectifiable current
R = R[E, τ, θ], with τ(x) = ±1, is an atomic signed measure (i.e. a measure supported on a
countable set).

We observe that (8.7) implies that there exists δ0 > 0 such that H(θ) > 0 for every
θ ∈ (0, δ0). We define the monotone non-decreasing function f : [0, δ0)→ [0,+∞) given by

f(θ) :=


supt∈(0,θ]

t

H(t)
if 0 < θ < δ0,

0 if θ = 0.

By assumption (8.7), f is continuous in 0 and H(θ)f(θ) > θ. Fix any δ ∈ (0, δ0). For any
j ∈N

M(Rj {x : θj(x) < δ}) =

∫
Ej∩{θj<δ}

θj(x)dH
k(x) 6

∫
Ej∩{θj<δ}

f(θj(x))H(θj(x))dH
k(x)

6 f(δ)
∫
Ej∩{θj<δ}

H(θj(x))dH
k(x) 6 f(δ)MH(Rj) 6 Cf(δ).

Therefore, up to subsequences the sequence {Rj {x : θj(x) < δ}}j∈N converges to a signed
measure R2 of mass less than or equal to Cf(δ). On the other hand, using the upper bound
on MH(Rj) and the monotonicity of H, we deduce that the measures Rj {x : θj(x) > δ} are
supported on a uniformly (with respect to j) bounded number of points, and converge to a
discrete measure R1. Hence, for any ε > 0, the limit T can be written as the sum of a discrete
measure R1 and of an error R2 with mass less than or equal to ε. Since ε is arbitrary, the
statement follows.

Step 2. We prove the claim for k > 0.
We apply [50, 4.3.1] to the sequence {Rj}j∈N to deduce that for any I ∈ I(d,k)

lim
j→∞

∫
Rk

F(〈Rj − T ,pI,y〉)dy 6 lim
j→∞F(Rj − T) = 0.
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Since the sequence of non-negative functions {F(〈Rj − T ,pI, ·〉)}j∈N converges in L1(Rk) to
0, up to a (not relabelled) subsequence, we get the pointwise convergence

lim
j→∞F(〈Rj − T ,pI,y〉) = 0 for Hk-a.e. y ∈ Rk, for every I ∈ I(d,k).

We apply the Fatou lemma and [39, Corollary 3.2.5(5)] to the sequence {Rj}j∈N to deduce∫
Rk

lim inf
j→∞ MH(〈Rj,pI,y〉)dy 6 lim inf

j→∞
∫

Rk
MH(〈Rj,pI,y〉)dy 6 lim inf

j→∞ MH(Rj) 6 C. (8.47)

Hence the integrand in the left-hand side is finite a.e., namely lim infj→∞MH(〈Rj,pI,y〉) <∞ for Hk-a.e. y ∈ Rk, for every I ∈ I(d,k). Hence we are can apply Step 1 to a.e. slice
〈Rj,pI,y〉 to a y-dependent subsequence and deduce that

〈T ,pI,y〉 is 0-rectifiable for Hk-a.e. y ∈ Rk, for every I ∈ I(d,k). (8.48)

To conclude the proof we employ Theorem [83, Rectifiable slices theorem, pp. 166-167],
see Theorem 7.15, which ensures that a finite mass flat chain T is rectifiable if and only if
property (8.48) holds.
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