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Abstract. In this paper we study the singular perturbatiorf 6f — | Vu|?)?

by £2|V2u|2. This problem, which could be thought as the natural second
order version of the classical singular perturbation of the potential energy
(1 —u?)? by £2|Vul?, leads, as in the first order case, to energy concen-
tration effects on hypersurfaces. In the two dimensional case we study the
natural domain for the limiting energy and prove a compactness theorem in
this class.

1 Introduction

This paper is devoted to the asymptotic behaviour of the functionals

_ 2\2
F.(u) == 1 e|V2ul? + U=Vel)™N e ocme
2 N g

ase | 0. In the two dimensional case= 2 we define a space of functions
which seems to be the natural domain for the limiting energy and prove the
equicoercivity ofF in this space.

The problem of studying the behaviour Bf ase | 0 was raised more
than 10 years ago by P. Aviles and Y. Giga in [7], in connection with the
theory of smectic liquid crystals; more recently, G. Gioia and M. Ortiz con-
sidered in[19] the same functionals in the two dimensional case to model the
energy deformation of thin film blisters undergoing a biaxial compression.
In their modek is proportional to the thickness of the blisterdienotes the
vertical displacement and, neglecting the horizontal displacement, using the
classical von Krman theory of plates they proved th&t{V2u|? represents
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Fig. 1. The one dimensional ansatz

(under suitable isotropy assumptions) the bending energy of the film, while
the elastic energy is represented iy |Vu]2)2. HencegF. is a singular
perturbation of the elastic energy of the film.

Itis clear that any admissible function for the limit problem must satisfy
the eikonal equation

|[Vu| =1 L™a.e.inf2. (1.1)

There are several heuristic arguments suggesting that the limit energy can
concentrate on hypersurfaces: the strongest one is perhaps the analogy with
the first order Modica—Mortola functionals (see [17], [16])

M. (u) := /Q <€|Vu]2+(1_€u2)2> dx

whosel-limit is a constant multiple of the area functional. Notice that in
M. there appears a “two well” potential, while the potentialiip has a
single well, the unit circle. Notice also that (u) = G.(Vu), where

G.(v) := ;/Q (5|W|2+(1_i_”|2)2> dx |

and, if we don't take into account the constraint thatlv = 0, it is easy

to prove that thd -limit of G, is identically0 (see for instance [20] or the
general formula given in [4]). Taking into account the zero curl constraint,
instead, leads to the following ansatz, illustrated in Fig. 1: near to a jump
discontinuity of the gradient the optimal transition layer is obtained keep-
ing constant the tangential component of the gradients and making a sharp
transition between the two normal ones.
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This ansatz, first stated in [7], formally leads to the limiting energy

1
- IVTu—VuPdH™ 1, (1.2)
6 JVu

where Jy, is the jump set oV« andV*u are the traces on both sides of
the jump set.

The rigorous study of the asymptotic behavioufbis a very challeng-
ing mathematical problem, because many standard methods available for
the analysis of first order problems are of difficult use in the second order
ones (for instance truncation argumentsj t& 2 there is presently no idea
on what the function space for the limit problem should be.

In the two dimensional case, the first significant progress was made by
R.W. Kohn and W. Jin (see [13], [14]), who realized that the divergence of
the vector field

1 1
2= (“1 <1 —uj — 3U%> U2 (1 —uf - 3u§>> )

namely(1 — |Vu|?)(u11 —ua2), can be used to estimate from beldw they
used this estimate to compute the limitzag 0 of the minimum problems

min {Fg(u) s u € W2(0), ulag =0, gu =-1 } (1.3)
v

(herev is the outer normal t@{2) in some particular cases; their results
are in agreement with the conjecture that the limit energy is given by (1.2).
The Kohn-Jin argument implies that, for the limit problem, any admissible
function must have the property thdity 2« (in the sense of distributions)

is representable by a measure. By the eikonal constraimteduces to

2
Zu = (uz{’, —u%) .

Aviles and Giga went further in [9], noticing that, by rotation invariance, the
same property holds for the fields

- '_2 ou 3 ou\’
ST g (ag) 5‘(&7) 1

where (¢, 7) is any orthonormal basis @&2. They proved that the supre-
mum of the divergences of all these vector fields provides a functional
J : WH3(02) — [0,00] which is lower semicontinuous with respect to
the strong¥13(£2) convergence and which coincides with (1.2) olves
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(1.1) andVu has bounded variation if?. Moreover, refining the Kohn-Jin
argument, they proved that

J(u) < liminf Fy, (up)
h—o00

for any sequencéu;,) converging tow in W13(£2). Hence,I” — lim inf F.
(in the W13(£2) topology) is finite only if.J(u) < oo, and this strongly
suggests that

AG(92) == {u e WH3(£2) : (1.1) holds and/(u) < oo }

is the natural function space for the limiting problem.
In our paper we answer to several questions raised in [9], the first one
being whether G, (£2) coincides with

BV2(2) := {ue W"(2): (1.1) holds andVu € BV (£2,R?) } .

We show by a counterexample that there exist functiond@h (£2) such
thatVu has not locally bounded variation {@. This negative result shows
that a separate study is required for the spéGe((2), for which the existing
theory of BV functions can be used only as a useful analogy.

The second question raised in [9] concerns the compactness properties
of AG.(£2) with respect to the stronig’!3(£2) convergence. We prove that
for any constanf\/ > 0 the sublevel sets

{ue AG(2): J(u) < M)}

are compact. Sincd is lower semicontinuous with respect to the strong
W13 (£2) convergence, this provides existence of minimizers for the problem

(P) min {J(u) : u € AGe(2), u >0, ulpp =0} .

A still open conjecture actually states that the distance function éréhs
the minimizer in(?). Our compactness theorem also takes into account the
case when the eikonal equation is fulfilled only in the limit, and shows that
the functionalst; are equicoercive, i.e., any sequertag) with F, (up)
bounded and;, | 0 has a subsequencey, ;) converging to somer €
AG.(£2). This result is of interest in view of the fact thAtconvergence
implies converge of minimizers to minimizers (and of the minimum values
as well) only if the functionals are equicoercive.

We also study inBBV,2(£2) the functionals

Jp(u) := cp/ IV Hu— v u T ant,
JVu
wherec, is a suitable normalization constant (= 1/6). As shown in
[9], these functionals formally arise from a variantigf, in which thep-
th power of|[Vu|? — 1 is taken into account. Positively answering to a
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conjecture in [9], we prove that for apy> 2 the functional/, is not lower
semicontinuous, thus showing that in this case a microstructure arises and
the one-dimensional ansatz is violated. The lower semicontinuity for2

is still an open problem.

We conclude noticing that we still don’t know whether (1.2) is the lim-
iting energy or not mainly because of two reasons: the first one is that this
representation of (u) is known to be true only iV« has locally bounded
variation inf2. The second one is that we still don't know whether any func-
tionu € AG.(£2) can be approximated by functions € W22(2) in such
a way thatF;(u.) converge taJ(u) ase | 0 (the so-called” — lim sup
inequality). In some sense, both problems are related to the conjecture that
the limiting energy concentratesly on lines, a conjecture supported by
the computations done in specific examples by Kohn and Jin. We hope to
be able to attack these problems in a forthcoming paper.

Added in proof. After the completion of this paper we learned of an in-
dependent work by A.Desimone, R.W.Kohn, SilMdr and F.Otto closely
related to ours (see [10]); they obtain the compactness theorem with a dif-
ferent argument.

2 Notation and preliminary results

In this paper? denotes an open setRy and£? and# ! denote respectively
the Lebesgue measureRY and the Hausdorff-dimensional measure in
R?. Given a Radon measuyein £2 and a Borel seB C (2, the restriction
uL B is the Radon measusgz, i.e.

plB(A) := u(ANB) for any Borel setd C (2.

For anyv € L{ (£2,RP) and anyz € {2 theapproximate limitof v at

loc

x, denoted by (z), is the unique: € RP satisfying

limgQ/ lu(y) — z|dy =0.
o0 JBy(x)

We denote byS, the set ofapproximate discontinuitpoints, i.e., the set
of points where the approximate limit does not exist. Analogouslyptiee
sided approximate limits™ (x), v~ (z) atz are vectors, b € R? satisfying

lim _2/ U —aldy=0
im o B;f(x)| (y) —aldy

and lim Q_Q/ lu(y) —bldy =0 ,
o0 By (@)
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where B¥ (z) = {y € By(z) : +(y —x,v) > 0} are the two half balls
corresponding to some unit vector We denote byJ, c S, the set of
approximate jumpoints, i.e., all pointa: € S, such that the approximate
limits v* (z) exists for some unit vecter, denoted by, (). For anyz € J,,

the triplet

(v (2),v™ (2), vo(2))
is uniquely determined, up to a permutatiorfof (z), v~ (x)) and a change
of sign of v, (). We use sometimes the abbreviatjofw)]™ for thejump
v (z) — v (z) of v atz € J,.

We now recall some facts aboBit” functions which will be used mainly
in Sect. 3 (see [11] as a general referenceldn and [2], [3] for the de-
composition of derivative). We denote BV ({2, R™) the space oR™-
valued functions with bounded variationp, i.e. the space of all functions
v € L'(02,R™) whose distributional derivative is representable by a fi-
nite Radon measure 2. This measure, with values ihx m matrices 2
columns,m rows) will be denoted byDv. The measurév can be split
in three mutually singular parts: the first one is the absolutely continuous
part with respect taC?, whose density, denoted Byv, can also be inter-
preted as a differential af, in an approximate sense. Another part/of
is the jump part, denoted b ;v and defined a®vL J,; this part of the
derivative is absolutely continuous with respec#éL_.J, and its density
is (vt —v7) ® 1, (herea @ b denotes the x m matrix tensor product of
a € R™ andb € R?). Finally, the remaining part of the derivative, denoted
by D.v, is called Cantor part; the measutgwv is singular with respect to
£? and vanishes on any Borel sefinite with respect td{'. Summarizing,
we have

Dv =Dyv+ Dev+ Djv = Yol? + Do+ (vt —v)® v T, .
It can also be proved that! (S, \ J,) = 0, hencey is definedH!-a.e. out of

J,,. Since|Dv| vanishes orH!-negligible setsy is defined D,v| + | D.v|-
a.e.inf2.

3 The Aviles—Giga space

Let (¢, 7) be an orthonormal basis 82 andu € W,=*(£2); we define

loc

1 1
Denu = ug <1 —u727 — 3u§> §—uy (1 —ug — BU%) n

wherewug, u, are abbreviations for the partial derivatives alahgnd
respectively. Hencels,u is a locally integrable vector field if? which

coincides with 5

Zeyu 1= 3 (g€ —uym)
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if u satisfies the eikonal equation (1.1).

Using the divergences of these fields we can define a space of functions
already considered implicitely in [9]; for this reason we call it the Aviles—
Giga space.

Definition 3.1 (Aviles—Giga space)We say that: € W,(£2) belongs to
AG(02) if div X, u is (representable by) a measurefinfor any orthonor-
mal basis(¢, ) of R2.
We denote bydG.((2) the class of all functions € AG(S2) such that
|Vu| =1 £2-a.e.inf2.

In the following we denote byey, e2) the canonical basis &2 and by

( 1 1 ) (—1 1 )
ag=\—,—1, g = —F—=,—&=

Ve e ERNVEIRVE:

the basis obtained froffe;, e2) under a anti clockwise rotation af/4. As

for the first order derivative in the sense of distributions (with directions

instead of orthonormal bases), only these two bases are sufficient to recover
the divergences of all vector fields, u.

Theorem 3.2 For anyu € W7 (£2) we have
Yenu = (o8 20) Xe eyu + (5in 20) X ., u

with ¢ = (cosf,sinf), n = (—sinf,cosh). In particular u € AG((2)
if and only ifdiv X, .,u and div X, .,u are both representable by finite
measures irf2.

The proof of this theorem follows by long but straightforward compu-
tations, so we omit it. Motivated by this theorem, for ang AG(£2) we
define theR2-valued measure

Tu = (I'u, I*u) == (div X, ey, div X2, cyu)

Notice that, according to Theorem 3|2y is the supremum gfliv X, u|
among all orthonormal basé€sg,n) of R?; the latter is the functionall
considered by Aviles and Giga in [9].

The following closure and lower semicontinuity theorem is a direct con-
sequence of Theorem 3.2.

Theorem 3.3 (Lower semicontinuity) Let (u,) C AG(S2) be strongly
converging irWI}Jf’(Q) tow. If|Iuy,|(§2) are equibounded, thene AG(£2),
the measuresu;, weakly converge tdw in §2 and hence

|Tu|($2) < liminf |Tup|(£2) .
h—o0
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Proof. Since the fieldsZ,, ., u;, converge taX, .,u in Ll (12, R?), their
divergences converge in the sense of distributions. $ireg|(2) are equi-
bounded, it follows thadliv X, ., u is representable by a finite measure in
2 and I'u;, weakly converge tol'u ash — oo. The proof forI?uy, is
analogous. O

We now computdw in several cases of interest. Since

1 1
Drenti = ( (1 —d- 3u%) s (1 —ul- 3)) .G

if Vu belongs to a Sobolev space the pointwise divergence of the field is
given by (1 — |Vu|?)(u11 — u22); analogously, representing with a long but
straightforward computatio®’, ., in the canonical basis dt?, we get

2 2

Yooyt = | ug — fug’,ul — fu:l" (3.2)
3 3

whose pointwise divergence 21 — |Vu|?)uj2. Assuming enough inte-

grability of the second derivatives these expressions for the divergences are

integrable and give also the divergence in the sense of distributions.

Proposition 3.4 If u € W2’3/2(Q) then

loc
Mu=(1—|Vul?)(uir —ug2)L?, IPu=2(1—|Vul|?)u2L?

In particular [Iu| = |1 — [Vu[?| |A1 — X2|£?, whereA, A, are the eigen-
values ofV2u.

Proof. The Sobolev embedding theorem implies thet:| € L (2),
hence(1 — |Vu|?)|V2u| is locally integrable in2, by Holder inequality. A
smoothing argument also proves that

diVZeleQU = (1 — ’VU‘Q)('LLH - UQ2)£2 s
divE.,c,u = 2(1 — |Vu|?)uio L2
in the sense of distributions. The last part of the statement can be obtained

noticing that the modulus of the difference between the eigenvalues of a
symmetric matrixA is

VAL — Ag? + 4] A2
O

Now we analyzdu in the case wheWw is bounded and is a function
with bounded variation. To this aim, in the following proposition we recall
some facts about measure distributional derivatives of second order.
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Proposition 3.5 (BV gradients) Letu € W!(§2) and assume thalu €
BV (£2,R?). ThenD?u = DVu is a symmetric matrix valued measure with
finite total variation inf2 representable as

D?u = D?u+ D*u + Djzu
= V2uLlL? + H|D?u| + (VTu — V) @ v H L Jyu,
where

(i) V?u(x)is a symmetric matrix fo£?-a.e.x € £2;
(i) H(z)is a unit symmetric matrix with rank 1 foD?u|-a.e.x € §2;
(iii) vyu(z)is parallel toVTu(x) — V- u(z) for H'-a.e.x € Jy,.

Proof. The decomposition ab?« in three parts is a general property/®y
functions, and sincé®?u is symmetric all these parts (being mutually sin-
gular) are symmetric. Statement (i) follows by the idenfityu = V2uL?.
Statement (i) follows by Alberti rank one theorem (see [1]) and finally state-
ment (iii) can be proved noticing that a tensor produgtb is symmetric if
and only ifa is parallel tob. O

The chain rule for the computation of the derivativefof v with u €
BV and f Lipschitz and continuously differentiable has been first proved
in [21] (see also [5] for the case whehis not C1); it turns out that the
“diffuse” part of derivative, made by absolutely continuous part and Cantor
part, obeys to the classical chain rule, while the jump part obeys to the natural
transformation rule for jumps.

Proposition 3.6 (VolI'pert chain rule) Letv € BVj,.({2,R?) and letf €
C'(RP) with bounded gradient. Then = f o v € BVj,({2) and

{ Vw = (Vf(v),Vv), D.w = (Vf(v),D.)
Djw = (f(vT) = fv7) vuH' L J, .

If Vu is bounded inf2 and belongs t@3V (12, R?) the measurdu can
computed using Vol'pert chain rule iBV; using (3.1) and (3.2) we obtain

Iul(2\ Jo) = (1= [Vul?) (Duw = Daypu)L(2\ Jeu)  (3.3)

TPul(2\ Jyy) =2 (1 - \%12) Dipul (2\Jy,).  (3.4)
Moreover, for any orthonormal bas(g, n) of R? we have
divZe, ul Jy, = (3.5)
{[(Zequ, O1F (6, v9) = U Zequ ] (n,v0) | HI L T
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In particular, (3.3), (3.4) and (3.5) imply the following result. kob € R?
andv € S! we define?(a, b, v) as the supremum of

[%<1—ﬁ—;ﬁ)—Q<1—ﬁ—;@ﬂ<gw
- [an <1 - ag - ;ai> — by (1 - bg - ;b%)] (n,v) (3.6)

among all orthonormal basés, n) of R? (herea, is the component of
along¢ anday,, b, b, are defined analogously). We set
b—a

@@ﬁp:@(mabd> Va,be R% a#b. (3.7)

Lemma 3.7 Let® be defined as in (3.7). Then

1
@@ﬁp:aa—mm—3mﬁ—mw?+m—mﬂ.

Proof. Firstofallwe compute the expressionin (3.6) with- (a—b)/|a—b|
in the following Cartesian system: the unit veatprwhich gives the:; axis,
is perpendicular ta — b and such thata, e;) > 0; the unit vectores is,
obviously, perpendicular te; and such thafa, ea) > 0. In this system of
coordinates we have

a:(T’,S) s b:(ra_t) ) fz(m,y) ) 77:(—?/,90) )

wherer, s, t, z, y are real numbers such that> 0,s > 0,¢ > 0 and
z?+y? = 1.Now we substitute; = rz+sy, be = re—ty, a, = —ry+sz,
by = —ry —tx, ({,v) = y and(n,v) = z in (3.6) to obtain:

y|:(7’x+8y) (1 (52— ry)? — (m_gsy)Z>

~ (rz — ty) (1 — (~te—ry)?* - W)]

- [ (1= e - 25708
+ (tz +ry) (1 — (rz —ty)* — W)]

and a straightforward computation gives

<3 — g(TQ + 5%) — 2(7"2 +t2) + 7(8 zt)2> .

s+t

(v = 2%) =3
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It is now obvious that the maximum of this expression is

1

gls+1l 6 —3(r* +5%) = 3(r* + %) + (s + 1)?] .
Finally we observe that + ¢ = |a — b|, 72 + s? = |a|? andr? + 2 = |b|?;
this completes the proof. O

Theorem 3.8 (Representation of Iu|) Letu € W1>°(£2) be such that
Vu € BV (£2,R?). Thenu € AG(£2) and

Tu| = 1= [Vul2| |\ — Aol £2 + ]1 - |VNu\2‘ D24

1
+6]V+u —V7ul |6 = 3|VTul* - 3|V ul?
+HViu— Vul | H L Iy,
where)\; are the eigenvalues &fu.

Proof. Let D?u = H|D?u| be a polar representation @#*u, setA =
2\ Jv, and notice thatl (z) = VZu(z)/|V?u(z)| for L2-a.e.x € 2
while, by Theorem 3.5(ii), the rank df (z) is 1 for | D?u|-a.e.z; by (3.3)
and (3.4), we get

Mul A= (1 - y%ﬁ) (Hy1 — Hap)|D?ulL A
PulA=2 (1 - |%]2) Hys|D?u|L A
so that, arguing as in Proposition 3.4, we obtain
[ulL A = |1 = [Vul?| i = ool | D*ulL A

wherepuq, o are the eigenvalues df; since the norm off is 1, the dif-
ferencelpy — po|is 1 |D2ul-a.e. in2 and is|\; — \o|/|V?u| £2-a.e. ing2;
since
|D?u|L A = |V?u|L£? + | D?u|
the representation ¢fu|L A follows.
In order to represenfu| on A we notice that (3.5) gives

[Tu|L Jyy = U (VTu, Vou, v, H L Ty,

becausélu| = sup |divXe,u| among all orthonormal basés, ) of R?.
Since is odd with respect te andvy,, is parallel to]Vu] ™ the represen-
tation of|Ju| on Jy,, is achieved. 0

If wis a solution of (1.1) the absolutely continuous part and the Cantor
part of D%« give no contribution and we obtain the following result, first
proved in [9].
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Theorem 3.9 If u satisfies (1.1) an&u € BV (2, R?) thenu € AG.(12)
and

1
[Tu| = |V u =V uPH L . (3-8)

Unfortunately the converse in Theorem 3.8 is not true, not evendf
AG.(£2):indeed, we will show that there exist functions AG.({2) such
that Vu has not locally bounded variation 2. More precisely, we show
how a functionu : R? — R which belongs toAG.(U) for every bounded
open sel/ C R? and such tha¥Vu ¢ BW,.(R? R?) can be constructed.

First of all, for any integen > 1 we define

g _ntmi T
2 4’
then we construct a lozendg] whose vertices, denoted by, B, Cy,
D,,, have the following coordinates:

4, = <_1_1,o> . B <0, <1+1) tan0n>
n n
1 1

Cy = <1+,0) . D= <0,—<1+>tan9n>.
n n

BetweenRy and R we construct lozengeB? (1 < i < 2[(n + 1)/2])
homothetics tak{ as follows (see Fig. 2): setting, = (1/n — 1/(n +
1))/(2[(n+1)/2]), where [] denotes the integer part, the coordinates of the
vertices ofRR} are

A} = (—1 1 —l—ian,0>
n

1
C' = (1 + - — ian,O)
n
1 .
B!' = <0, (1 + - — zan> tan 9n>
n
1 .
D} = (O, — (1 + - - zan> tan9n> .
n

Now let us define the vector field, in the following way.
We drawR¥F (1 < k < n,0 < i < 2[(n+ 1)/2]) and the axegz; = 0}.
These lines divid®? in a finite number of connected components. We put
zn, = (—V2,v/2) /2 in the unbounded connected component of the first
guadrant and in the other regions we defineoy reflection along the lines
drawn (with the additional conditiofx,,| = 1).
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Fig. 2. The vector fieldz, /3

The functionz,, : R?> — R?is piecewise constant and mirror symmetric
with respect to both the axes. Let us see what are the valugsiothe first
guadrant; if we denote hy,, the angle between,, and ther; axis we have:

— ¢, =7 — m/4(k + 1) in the region which lies betweeRf; andR%; . ;;
—n = m — 7/4k in the region betweeRs, | andR};;
—¢n =™ —m/4(k + 1) in the region betweeRs, ), andR;*.

Itis easy to verify that the functiaon, so defined is a gradient: lef, be the
function such tha’u,, = z,, andu,,(0,0) = 0. Thenu,, € W,>>°(R?) and
|Vu,| = 1 £2-a.e.; this implies that there exists a functior "> (R2)

loc

such thatu,, — u in Wlf;f(Rz) for anyp < occ. For every neighborhoot
of the segmenL, = {|z1] < 1, z2 = 0} we haveVul|ga\y = Vuu|g2\p
for n large enough. This means tHat € BV,.(R? \ U, R?) and hence
thatu € AG(R%2\ U).

Now we want to show that € AG(U) for every bounded open skt
SinceVu, — Vu £?-a.e. inR? it follows that (dcu,)? — (O¢u)® L?-a.e.
for every¢ € R2 Thendiv X¢,u, converge taliv X¢,u in the sense of
distributions for every orthonormal basi& ) of R2.
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We notice that for any pair of unit vectors b we havela — b| =
2| sin(p/2)|, wherey is the angle between them. Hence Theorem 3.8 gives

6|div2§nun|(U)§6|Iun|(U)=/ [V 2| an?
Jv

Un

< 8H! ({z122 =0} NTY})
n 2[(k+1)/2]

1 kY i3 T
+8; ; HY(U N ORF)sin <8k(k+1)>
> k+2
< -
= Ky +K2; (2k(k + 1))3

where K, and K3 are two constants. This proves thit X¢,u is repre-
sentable by a measure with finite total variatiordin

It is easy to prove thalu ¢ BV (U, R?) whenevetU N L # {. If we
call U, the open set bounded W} we have thaVu, |z, = Vuling, -

SoVu € BV (U \ U,,R?) and

|DVu|(U\U,) = |DVu,|(U\TU,) 2/ B [V, t] dH!
(O\Un)NIvu,
n 2[(k+1)/2] i
H! (UmaR )
> —_—.
DD

Butsincel/N L is notempty there exists a strictly positive constasuich that
HYUNORE) > aif kislarge enough. Thisimplies th&w ¢ BV (U, R?).

4 Compactness

The main result of this paper is the following compactness theorem.

Theorem 4.1 (Compactness) et 2 ¢ R? be open and bounded and let
(up) C AG(£2) be such that

(i) the total variations Iuy|(f2) and||uy|/1 are equibounded;

(i) |Vup| — 1in L3(£02).
Then (u;) has a subsequence strongly convergingift3(£2) to u €
AG.(9).

This result, together with Theorem 3.3, implies that the minimum prob-
lem

min {|Tu[(2) : ue AG.(£2), u >0, u|apn = 0}
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has at least one solution for any bounded operfXsetotice that we cannot
write the Neumann boundary conditionin (1.3) because a theory of traces for
the functions iMAG,(2) is still to be developed; however, due to the eikonal
constraint, the condition > 0 in {2 could heuristically be considered as a
substitute of the Neumann boundary condition.

The proof of Theorem 4.1 is based on some preliminary results, some of
which have an independent interest. The first one is a Jensen-type inequality.

Lemma 4.2 (Nonconvex Jensen inequalityJror any probability measure
win[—1,1] = I we have

[ #aute) = < / tdu(t>)3

provided\ = [} ¢ du(t) satisfie2A3 + 312 > 1.

Proof. Let A be such tha2\3 + 3A2 > 1, let M be the set of probability
measures id and let

A::{,U,E.M: /Itda(t):)\}.

We will prove that the minimum of, — [, t3 du(t) on Ais \?. SinceA is
a singleton ifA\ = —1, in the following we assume that> —1. Let A’ be
the collection of allu € A whose supportig—1} U [0, 1]. We first prove
that the infimum ofu — [, t* du(t) in A’ equals the infimum inl. Indeed,
if € Awe set

i _/ Fdu(t)5 1 + ado + pL(0, 1]
[_170)
with

a:zl—,u(((),l])%—/

td(t) = (-1,0) + [ tdu(t) > 0.
(-1,0)

[_110)

By constructionz € A’ and

[fdu-no = [ Sau-pe = [ @ odut) = o.
I [—1,0) [1,0)

Denoting byA” the subset ofA’ made by all measures whose support is
{-1,a} for somea > 0, the infimum ofy — [, t* du(t) in A" is equal to
the infimum onA”’; in fact, for anyu € A’ we can set

1

gi=pl{-1} +p((-1,1]) 6, with a:= H((—lal])/(_m] tdu(t)
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to obtain a measurg € A” such that, by Jensen inequaliyﬂf,t3 di(t) <
St dp(t)
Letu € A” and setc = u({—1}); then

Ak

1—-k
and sincga| < 1 we obtain thak < (1 — \)/2 < 1. Hence, we need only
to prove that the function

Flk) = (1-k) (H)g—k k€ [o, 1?]

achieves its minimum at = 0. Indeed, a straightforward computation
shows that"' is convex, and since

F'(0)=2X 43X -1>0
the statement follows. O

The second ingredient in the proof of Theorem 4.1 is Hodge decompo-
sition, together with truncation of gradients. Recent related results on this
topic are given in [15] and [12] (see also [22]). We first show that any vector
field v can be written a& ¢ + ¢, wherep € Wh! and theL! norm ofe
is controlled by|curlv|; a refined version of the decomposition, given in
Corollary 4.4, provides a functiop € W1°,

Theorem 4.3 (Hodge decompositionyor anyv € L' (B, R?) such that
curlv is (representable by) a finite measure ih and anyC' > 1 there
existsp € Wh1(By) such that

/ |v — Vy|dx < C|curlv|(By) . (4.1)

By

Proof. Assume first that, in additiorw € COO(Bl,R2) setu(x) = v(x) —
v(0) and definep € C*°(By) by ¢(z fo x) dt. We compute
¢ L ouy

Oug
8xl( r) = | o l(t:r)t:rl + a—l(m)mg + uy (tx) dt

1
= HOuy — (tx)tzy + ai(t:v)th + uy (tz) dt — / curl u(tzx)txs dx
0 9x1 dio 0

1 d 1
:/ £[tul(m)] dt—/ curl u(tz)txs dz
0 0

1
=wuy(x) — / curl u(tx)txs dx .
0
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An analogous computation fékp/dxo proves that

1
||u—V¢||1§/ / t|z||curl u|(tz) dxdt
0 JB

= 1 @] lul(y) dy dt
= 12 curlu|(y) dy
0 JB:

1
Y
= [ [ ) G ewtulty) vy
B; JO

= IM curl u
—/B</y| g dt) fcurlul(y) dy

- /B (1 yleurtuy) dy < /B Jeurlv](3) dy.

Then,p(z) = ¢(x) + (v(0), z) satisfies (4.1) withC' = 1.
In the general case we fix> 0 andr > 1 such thatr + 2§ < C and
findt € (1, 7] such that,(z) = v(z/t) satisfies

/ |vy — v|dz < §|curlv|(By)
By

(notice that the casgurlv|(B1) = 0 is trivial). The functionv, * p. is
smooth inB; as soon as < t — 1; we choose < ¢t — 1 so small that

/ |vg * pe — v¢| da < d|curlv|(By).
By
By the previous construction we can fipde C*°(B;) such that

/ |y * pe — V| da < |curl (v % po)|(B1) = |(curlvy) * pe|(Bi)
B

< |eurlvy|(By) = t|curlv|(By) < 7|curlv|(By) .
Taking into account our choices tande the proof is achieved. O

Corollary 4.4 There exists a constamtwith the following property: for
v € LY(B;,R?) such thatcurl v is (representable by) a finite measure in
Bi and any\ > 0 there existp € W (B, ;) and a Borel set; C B, 3
such that| V||o < ¢,

L3(E) <

> o

[/Bl (Jv] = AT da + |curlv|(Bl)}

and

/ v — Vel dz < ¢ [|curlv|(B1) +/ 0| da +/ (o] — A)+dx] .
Bis E B
.2)
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Proof. In this proof we denote by; some constants depending only on the
dimension 2 in this case). For any nonnegatifec L'(B;) we denote by
M f its (local) maximal function, defined by

fBg(x) [fldy '

Mf(x) :=sup { v By(z) C Bl} x € By.

We will use the weald.! estimate
EQ({Mf>>\})§C;/ Iflde YA>0 (4.3)
By

which is a straightforward consequence of the definitiodf and Besi-
covitch covering theorem.
Let ¢ be given by Theorem 4.3 with' = 2 and let

F:={x e By;s: M|Ve|(z) <3\} .
We recall the estimate
1 — 5 1 [ Voldy
— ‘90(2) 90(1')’ dz §/ tha( ) ; dt < M‘VQOKZ‘)
0% JB,x) |2 — 2 0 (to)

for any ball B,(x) C B; centered at some point € B; \ S, (see for
instance (2.5) and Theorem 2.3 of [6]). This estimate easily implies that the
restriction ofp to '\ S, is a Lipschitz function, with Lipschitz constant
less thare, A\; we denote by any Lipschitz extension of this function to the
whole of B, /3. By constructiong coincides withy L%-a.e.inF.

Let ' = By 3 \ I; since

M([Vel) < X+ M((Jo] = X)F) + M(Jjv — V)
by (4.3) we infer

rE) < [/B (Ju] = A dx+2|curlv|(Bl)} .

Finally, we prove (4.2). To this aim, sinae = V¢ + ¢ with |le||; <

2|curlv|(B), we need only to estimate the' norm of |[Vy — V¢| on
B /3. We have

/ yw—v¢|d:c:/ |w—v¢|dxg/ o] + [v] + o) da
Bis B B

§/ |v| + caAdx + 2|curlv|(By) .
E
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The final ingredient of our proof of the compactness theorem is the
theory of (gradient) Young measures; although the proof could be written in
a more elementary way without using Young measures, we believe that this
tool reduces in a substantial way the computations, thus making our proof
much more readable.

Let us recall some basic facts, referring for instance to [18] for a more
systematic presentation. Lete [1, 0], let (wy) C L"(£2,R™) be a se-
qguence and let — v, be a measurable map which assigns toamy (2 a
probability measure iR (here measurable means that> [ f(z,y) dv,
is Lebesgue measurable for any bounded B(R™)-measurable function
f); we say thatwy,) generates the Young measurg) if

in [ fwun) o= [ ([ eninm) e @
h—oo J I?) rRm™

for any bounded Cara#fodory functionf (z, y). We will use the following
well known result (see for instance [18], Theorem 3.1):

Theorem 4.5 Letr € (1,00) and let(wy) C L"(£2,R™) be a bounded
sequence. Then

(i) there exists a subsequenie;,;,y) generating a Young measufe; )
such that

/ Ip|" dv.(p) < oo for L2-a.e.x € 2;
R™

(i) if |wy|" are equiintegrable andw;,) generategv, ),then (4.4) holds
for any Caratleodory functionf such that

|f(z,p)| < g(z) +clp[”  V(z,p) € 2 xR™
for somec > 0, g € L(92).

We first prove the compactness theorem under the extra assumptions
that {2 is the unit ballBy, |Iu|(B;) tend to0 andu;, uniformly converge
to a linear function. ; the general case will then be recovered by a simple
blow-up argument, taking into account that, under the rescaling preserving
the eikonal equation,u scales as a length. The information that, |(B;)
is infinitesimal, and not only bounded, will be used in an essential way to
approximate the field&, ., u, and X, ., uy by rotations, by the angte/2,
of suitable gradients; this leads to an integration by parts formula showing
that the eikonal equation is preserved in the limit.

Proposition 4.6 Let (v,) C AG(By) be a sequence such that

(@) |Vuy| converge inL3(B;) to 1;
(b) [Tvp|(B1) — 0ash — oo;



346 L. Ambrosio et al.

(¢) (vp) uniformly converge irB; to a linear functionu(z) = (L, x).
Then|L| = 1.
Proof. Up to a rotation we can assume tiat= (o, 0) with0 < o < 1. We

also assume tha¥v;,| converges td £2%-a.e. inB; and(Vuy,) generate a
Young measurév, ). Setting

B(x) = /Rzp?dvx(p) ;@)= /Rﬁdvx(p)

the equiintegrability of Vu,|? implies that}, andv3,, weakly converge in
L'(By) to 8 and~ respectively. Notice that since

/ (/ ’17|p\2‘ dl/x(p)> dr = lim ’17|Vvh|2} dr =0
By R2 h—o0 B

the measures, are supported on the unit circle fé?-a.e.x € By, hence
(£ and~ are bounded functions.

Step 1In this step we prove that
2 1
Bao) (0= 3000 = 5 @5

for any Lebesgue pointy = (zo1,702) € By/3 of 3 and~. Let us define
the vector fields

1 1
0 (0) = (a1 = oy = ekl (1~ oy~ 5k )

2 2
Py (x) == <vh1 — gvf‘d, —Upo + 3022> .

Notice that, by a straightforward computation, the Jacobian determinant of
the matrixM;, having¥;, @, as rows is

2
—5(2’}211 + 0a)% + (Vi1 + Vi) = (Vg + V7))

hencedet M;, converges te-2/9 £2-a.e. inB;.

Since the components @, are cubic polynomials in the derivatives of
vy, there exists a constang such that®;,| < \o(1 + |[Vuy,|?); sinced, is
the rotation of%,, ., vy, by the angler/2 we get

|cuerh\ = ]div Eewgvh’ < |Ivh\

and hence by Corollary 4.4 with = 2), we can represent;, in B, /3 as
Vi, + e, for suitable functiong, € W0 (By /3) With [|[Vip[[oe < 2o
ande, satisfying

/ ’Eh| dx S C {IU}LKBl) +/ |Lph’d£6 +/ (|lI/h| — )\)+daz]
By /3 Ey B,
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for suitable Borel set&), C B, 3 whose Lebesgue measure can be estimated
with

C

RTRCIEPETTAEY

By

Since|¥,| — A < \o(|Vu]? — 1), the strongL! convergence ofVuy|?
to 1 implies that£?(E},) tends to0 ash — oo. In turn, this fact together
with the equiintegrability of;,| (which is implied by the equiintegrability
of |Vuy|?) gives tha‘thl/3 len| dz tends to) ash — co. Since, taking into
accountthe stron§j®(B; ) convergence dVvy, | to 1, ¥}, weakly converge in
L'(B1,R?) to (2v/3,23/3) ash — oo, if we normalizey;, assuming that
Yn(wo) = 0 we obtain that), uniformly converge in33; ;3 to the function
1o equal to0 atzy and having%(fy, () as gradient. Our choice af, gives

Yool) = S(z0) @1 — 1) + 3 5(x0) (w2 — w02) + o} — zo)).

By a similar argument, sincgy, is the rotation of*, ., v;, by the angle
m/2, we can also represeut, in By;3 as Ve, + n, with 1, — 0in
L'(By/3, R?) and(¢y,) bounded idV!>° (B ;3). Sinced), weakly converge
in L'(B1,R?) to (a — 2/3,27/3) ash — oo, the same is true i /3
for V¢,,. We assume also, possibly extracting a subsequences;leatd
ny, converge td) £2-a.e. inBy 3.

We consider now th&2-valued functionss;, = (v, ¢1,); this family is
bounded inV!> (B, /3, R?) and

2
lim det Vop(z) = —= for L?-a.ex € Bys. (4.6)
h—o0 9

Leto € (0,1/3] and letg(z) = (0 — r)*, with r = |z — x¢|; we can pass
to the limit ash — oc in the identity

- / gdet Vi, dx
BQ(J»’O)
—— [ gdiv néra —tnon)
Be(xo)
= / Yn(g16n2 — godn1) do
BQ(IO)
_ (7
= - — ((x1 — 201)Pn2 — (2 — T02)Pn1) dx
BQ(fEO) r

and use (4.6) and our choiceqf to obtain
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1 / (0 —r)dx
3 JB, (o)
3 o 2 2
:—2/ ¢7 <(m1—x01)7—(a:2—x02 <Oé—,8>>d1}
BQ(IO) " 3 3

ptoo) (afeo) 3o ) [ L2l
# (a3t )t [ im0 g,
2
3

e(z) "

B 2
- 72(960)/ @1 =20 gy 4 o).
B@($O)

r

o 2 3
/ (Q_T>dx:/ (w2 —202)" , _ 70"
By (o) By (xo) r 3

/ (x1 — x01)(z2 — 202) dr— 0
BQ(IO)

r

and

the inequality (4.5) follows.
Step 2In this step we prove that = 1. We fixz in (4.5) and sef = 5(zo).
First, we notice that > 2+/2/3, otherwise the polynomial

P(B) = —2f +af

would be always strictly less thay'3.
Since|Vuy,| converge inL3(B;) to 1, the measure is supported on
0By, hence the measurg B) = v(B x R) is supported o1, 1]. Using

the identities
ﬁ:/ﬁmwm az/twm
R R

and the inequality
3a2+2a323-g> 1

from Lemma 4.2 we conclude th&at> o3. SinceP achieves its maximum
at3a/4, and sincex® > 3a/4 for a > 2\/5/3, we obtain

1 3 4 26
2 S P(B) < Pe’)=a" = Za’.
3 3
A simple computation proves that the functipfn) = a* —2a5/3 is strictly
increasing in0, 1], hencef () > f(1) = 1/3 impliesa = 1. ]
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Proof of Theorem 4.1Possibly extracting a subsequence we can assume
that(uy,) weakly converge to some functiarin W13(£2). The weak lower
semicontinuity ofu — |Vu|? implies that Vu| < 1 £2-a.e. inf2. In order

to provestrongconvergence ofuy,) in W13 (£2) we need only to show that

w is a solution of (1.1). In fact, passing to the limitlas— oo in the identity

/ |Vuy, — Vul|? dz = 2/ (1 = (Vuyp, Vu)) dx —i—/ |Vup|? — 1dz
I7) 2 7}

we obtain thatVuy, ) strongly converges t&« in L2(£2, R?) and therefore,
being |Vuy|? equiintegrable, Vitali theorem implies the convergence also
in L3(2, R?).
Let us fix a blow-up point, € (2 satisfying
(i) 1 (By(x0)) /0 is bounded ag | 0;
(il) =z is a Lebesgue point &V u

and let us prove thg®¥u(z()| = 1. Define the rescaled functions

1
uf(y) = sz(xo +o0y) YyEBL 0>0

and notice thaWVu7 (y) = Vuy(zo + 0y). Since
lim sup |Tuf| (B1) = limsup o~ [ Tun| (By(o)) < 0~ 't (By(wo))
h—00 h—00

for o, = 1/iwe can find, by condition (i), integehs so large thajtlufli (By)
is infinitesimal ag — oo. Analogously, since

. 3
hh_}IgO/BlHVuﬂ—l‘ dy

~ lim 9—2/ IVun| 12 dz =0 Vo> 0
h—o0 By(zo

we can also assume thatu;' | converge in.?(B;) to 1. Finally, since for

fixed Vu? weakly converge it (B, R?) to Vu(z+ oy), by condition (ii)

we can choos#; so thatVu;' weakly converge irl*(B;, R?) to Vu(zo).

Then by Proposition 4.6 with; = u;’ we infer thaVu(zo)| = 1. 0O

5 Lower semicontinuity

We have seen in Sect. 3 that— |Iu|({2) is lower semicontinuous with
respect to théV,* (12) convergence, and that
1

|Tu|(2) = / \Vtu — Vul® dH?
6 JVu
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if Vu € BVjo.(£2). In this section we consider, more generally, the lower
semicontinuity of the functionals

Ig(u) == /J IVtu — Voul? di? (5.1)
Vu

in the class
BV2(£2) :={u e Wh>(£2) : (1.1) holds an&vu € BV (£2,R?)}

contained iNAG.(£2).

The interest of these functionals is again related to a singular perturbation
problem: in fact, the formal analysis in [7] and [19], based on the ansatz
of constancy of tangential gradient in the transition layer, suggests these
functionals arise (up to a normalization consta)tfrom thel"-limit of the

functionals
v 2 _ 1 ﬂ_l
/ <e|v2u\2 O h) S I
N &

The main result of the section is thiatis notlower semicontinuous i > 3;
this also shows that fop > 3 the one-dimensional ansatz underlying the
formal analysis is no longer true, and indeed Fig. 2 below shows how this
ansatz can be violated.

Throughout this section we assume for simplicity tifiais bounded
and consider only théV3(£2) convergence (equivalent, by the eikonal
constraint, to any¥1?(£2) strong convergence with < co). We first state
inLemma 5.1 anecessary condition for lower semicontinuity, and then prove
that this condition is violated for any > 3. In the statement of the lemma
we denote byw*v the trace on the boundary ®fv.

Lemmab5.1 Let R = (—a,a) x (—b,b) be a rectangle and assume the
existence of € BV2(R) andy € [0, 2] such that

V*v(z1,b) = V*v(x1, —b) for Ll-a.e.x1 € (—a,a)
V*v(+a,z2) = (£cos p,sinp) for L'-a.e.zs € (—b,b)

and
/ (Vo — Vol dHY < 2b(2cos )P .
Jov

Then the functional is not lower semicontinuous iBV2(£2) for any
bounded open sé? C R?.
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Proof. Without loss of generality, by a scaling argument we can assume
that {2 contains the(—a,a) x (—b,b); letu € BV2(£2) whose gradient

is (cos @, sin ) in the half plane{z; > 0}, is (— cos ¢, sin ¢) in the half
plane{z; < 0} andu(0) = 0. For h > 1 integer we divide the strip
(—a/h,a/h) x (=b,b) in h rectanglesR; with centers(0,y;) and side
length2a/h, 2b/h. Then, we can define

u(xy,x2) if |x1| > a/h;
up (w1, T2) 1=
v(hxl, hxo + yl) if (.%1,.%2) € R;.

By the trace conditions oWv, the gradient ofi;, does not jump acrosiRi;,
hencels(uy) — Ig(u) is given by

h
Z{/ IVtu — V=ul? di? —/ |Vtu —vV—ul? cml}
RiNJvy RiNJvuy

=1

= / (Vto — V=ul? dH — 2b(2cos )? < 0.
R

Since(uy,) converges tau, letting h — oo we find that the lower semicon-
tinuity fails along this sequence. O

Proposition 5.2 The functional; is not lower semicontinuous iBV2((2)
if 3> 3.

Proof. We consider the function(z, x2) = —|z1| in the stripR x (—b, b)
for a positive value). We fix an angled € (0,7/4) and we construct the
functionvy : R x (—b,b) whose gradient is discontinuous along the edges
in Fig. 3 below and which coincides witf{x1, x2) outside the quadrilateral
ABCD.

SettingF'(§) = 13(vg), we are going to study the functidnin (0, 7/4)
in order to show the existence @f € (0, 7/4) such that

I5(vg,) = F(0) < 20710 = I5(v) .

By Lemma 5.1 withy = 0, v = vy, and R equal to the smallest rectan-
gle containing the quadrilateral BC'D, this implies that/z is not lower
semicontinuous.

Taking into account the reflection property of the gradientg#élong
the singularity lines, elementary trigonometry yields

F9) = b[25+2(sin )51+ 25%1 (cos 20)P+ 2% (sin 0)7 1 (cos 0)5“}

= 20+ [2(sin 0)°~1 + (cos 20)° + 27 (sin 0)°~(cos 9)6+1}
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Fig. 3. The gradient of the basic functian

We have immediately that

lim F(9) = 2°t1b = 14(7).
i (0) 5(v)

Being interested in the values of the functiohsnear0, we can operate
the change of variables= sin# and divide by the consta®*!b, thus
reducing to study the function

B+1

F(arcsint) _ B (1- 2752)5 L 9ByB-1 (1- tQ)T

) = =gy
_ op2te (1 | 93tes2te (1- t2)2+%> +(1- 2t2)3+6 ’

where we also replaceddt ¢ for 3. We want to show that there exigts> 0
such thatf (tp) < f(0) = 1.

It is easy to see that the first and second derivatives=at0 of the first
term of the last row vanish because of the fa¢tor, hence we only need
to consider the term(t) = (1 — 2t?)3+¢, whose derivatives are

J(t) = —4t(3+e) (1 - 262

g'(t) = =43 +¢) (1 —262)**°

+ 16823+ €)(2+¢) (1—262) 1

hence,f’(0) = ¢’(0) = 0 and f”(0) = ¢”(0) = —4(3 + &) < 0. It follows
that the functiory is strictly decreasing in a right interval 6= 0, thus for
to > 0 sufficiently small we have (¢y) < f(0) = 1. 0
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6 I'-convergence

In this section we consider the asymptotic behaviouFpohse | 0. We
first prove an a priori estimate oivVu|% and then, repeating essentially
the argument of [9], the lower bound dn— liminf F. (the I"-limits are
computed with respect to tH&-3(£2) topology). Throughout this section
we assume that is a bounded open set with Lipschitz boundary.

Theorem 6.1 (Lower bound) For anyu € W22(£2) and anye > 0 we
have

d 2
/Q |Vul|® de < <c+ 52(€Q)> F2(u) 4 eL%(0) (6.1)
for some absolute constantsd, e and

[Tul(A) < F(u) + C(A)e P F2 () |Vl (6.2)

wheneverA is open andd CC {2. In particular, I" — hr%nf F.(u) < o0
3

impliesu € AG.({2) and

I' — liminf F.(u) > |[Tu|(£2).
el0
Proof. Letv = |Vul|: since|Vu| < |V2u|, using Young inequality we get
Rz [ [1-oVel = [ [V@ou)|do
Q Q
with @(t) = f(f |1 — 72| dr. By the Poincag inequality we get
/ [P ov—m|* <CLF*(u) (6.3)
Q

wherem is the mean value of o v on 2. On the other hand, using the
estimatd®(t)| < a(1 — 2)2 + b for suitable constants, b we get

mL2(2) < 2aeF.(u) + bLA(r).

Using this inequality in (6.3) and taking into account tldahas a cubic
behaviour at infinity the inequality (6.1) follows.

The inequality (6.2) follows by Proposition 3.4 and the representation
of the determinant in divergence form: in fact, for ahy C.(£2) such that
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0 < ¢ < 1 and¢ is identically equal td on A, since|V2u/|? is the sum of
the squares of the eigenvalues\ofu we can estimatfu|(A) by

/;¢u—ﬂVuPﬂAy—Aﬂdx

— |Vul?)?
g;/g¢la(xl—A2)2+(l|v|)] dx

9
= F.(u) 6/Q¢)\1)\2 dx = F.(u) 5/Q¢det(v2u) da

=F.(u)+¢ /Q Uy (Uyy Pz — UgyDy) d
< Fo(u) + 26" 2F2 ()| Vol oo Vul2 -

In order to prove the final part of the statement we fix an opedset 2
and use (6.1) and (6.2) to obtain

|Tu|(A) < liminf|Tup|(A) < liminf F;, (up)
h—o00 h—o00

for any sequencés;,) | 0 and any sequende,) C W22(2) converging
to u such thatF;, (uy) is bounded. Eventually, letting 1 (2 we obtain that
u € AG(£2) and the inequality

/ |1 — ]Vuhﬂ dx < 2epFy, (up)
(0]

implies thatu € AG.({2). 0

A simple consequence of Theorem 4.1 and the apriori estimatéwf
is the equicoercivity of.

Theorem 6.2 (Equicoercivity) Let (¢;,) | 0 and letu;, € W%2(£2) such
that F, (u., ) are equibounded. Themy,) has a subsequence strongly con-
verging inWh3(02) tou € AG.(02).

Proof. By (6.2) the sequendg/uy|(A)) is bounded in any open sdtCC

2 and (6.1) gives that Vuy|) is bounded in.6(£2). Since(1 — |Vuy|?)? <
cep, itfollows that| Vuy,|? converge td in L2(§2), hencéVuy, | converge td

in L2(£2). Since(|Vuy|) is bounded inL% (£2) we obtain strong convergence
tolin L"(§2) foranyr < 6, thus the hypotheses of Theorem 4.1 are fulfilled
in any open setdA CC (2. Then, the conclusion follows by a diagonal
argument. 0



Line energies for gradient vector fields in the plane 355

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

G.Alberti: Rank-one properties for derivatives of functions with bounded variation.
Proc. Roy. Soc. Edinburgh Sect. 223(1993), 239-274.

L.Ambrosio: A compactness theorem for a special class of function of bounded varia-
tion. Boll. Un. Mat. Ital. B,3 (1989), 857—881.

L.Ambrosio: Existence theory for a new class of variational problems. Arch. Rational
Mech. Anal.,111(1990), 291-322.

L.Ambrosio: Metric space valued functions with bounded variation. Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4),7 (1990), 439-478.

L.Ambrosio, G.Dal Maso: A general chain rule for distributional derivatives. Proc.
Amer. Math. Soc.108(1990), 691-702.

L.Ambrosio: On the lower semicontinuity of quasi-convex functionalS BV. Non-

linear Analysis, TMA,23(1994), 405-425.

P.Aviles, Y.Giga: A mathematical problem related to the physical theory of liquid
crystals configurations. Proc. Centre Math. Anal. Austral. Nat. UhR(1987), 1-16.
P.Aviles, Y.Giga: The distance function and defect energy. Proc. Roy. Soc. Edinburgh
A, 126(1996), 923-938.

. P.Aviles, Y.Giga: On lower semicontinuity of a defect energy obtained by a singular

perturbation of a Ginzburg—Landau type energy for gradient fields. Proc. Roy. Soc.
Edinburgh Sect. A126(1996), 923-938.

A.Desimone, R.W.Kohn, S.iler, F.Otto: A compactness result in the gradient theory
of phase transitions, submitted to Proc. Roy. Soc. Edinburgh.

L.C.Evans, R.F.Gariepy: Lecture Notes on Measure Theory and Fine Properties of
Functions, Studies in Advanced Math., CRC Press, 1992.

I.Fonseca, S.Mler: A-quasiconvexity, lower semicontinuity and Young measures.
Preprint, Max Planck Institut Leipzig, 1998.

W.Jin: Singular perturbation and the energy of folds. PHD Thesis, Courant Institute,
New York.

W.Jin, R.W.Kohn: Singular perturbation and the energy of folds, submitted to Journal
of Nonlinear Science, 1999.

J.Kristensen: Lower semicontinuity in spaces of weakly differentiable functions. Math.
Annalen313(1999), 653-710.

L.Modica: The gradient theory of phase transitions and the minimal interface criterion.
Arch. Rat. Mech. Anal.98(1987), 123-142.

L.Modica, S. Mortola: Un esempio fii-convergenza. Boll. Un. Mat. Ital. B4(1977),
285-299.

S.Miller: Variational models for microstructure and phase transitions. Lecture Notes
n.2, Max Planck Institut Leipzig, 1998.

M.Ortiz, G.Gioia: The morphology and folding patterns of bucking driven thin-film
blisters. J. Mech. Phy. Solid42 (1994), 531-559.

P. Sternberg: The effect of a singular perturbation on nonconvex variational problems.
Arch. Rat. Mech. Anal.101(1988), 209-260.

A.l.Vol'pert: Space®3V and quasi-linear equations. Math. USSR $B(1967), 225—

267.

K.Zhang: Biting theorems for jacobians and their applications. Ann. Inst. H. Péincar
Analyse non ligaire,7 (1990), 345-365.



