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Abstract. In this paper we study the singular perturbation of
∫

(1−|∇u|2)2
by ε2|∇2u|2. This problem, which could be thought as the natural second
order version of the classical singular perturbation of the potential energy∫

(1 − u2)2 by ε2|∇u|2, leads, as in the first order case, to energy concen-
tration effects on hypersurfaces. In the two dimensional case we study the
natural domain for the limiting energy and prove a compactness theorem in
this class.

1 Introduction

This paper is devoted to the asymptotic behaviour of the functionals

Fε(u) :=
1
2

∫
Ω

(
ε|∇2u|2 +

(1 − |∇u|2)2
ε

)
dx Ω ⊂ Rn

asε ↓ 0. In the two dimensional casen = 2 we define a space of functions
which seems to be the natural domain for the limiting energy and prove the
equicoercivity ofFε in this space.

The problem of studying the behaviour ofFε asε ↓ 0 was raised more
than 10 years ago by P. Aviles and Y. Giga in [7], in connection with the
theory of smectic liquid crystals; more recently, G. Gioia and M. Ortiz con-
sidered in [19] the same functionals in the two dimensional case to model the
energy deformation of thin film blisters undergoing a biaxial compression.
In their modelε is proportional to the thickness of the blister,u denotes the
vertical displacement and, neglecting the horizontal displacement, using the
classical von Ḱarmán theory of plates they proved thatε2|∇2u|2 represents
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Fig. 1. The one dimensional ansatz

(under suitable isotropy assumptions) the bending energy of the film, while
the elastic energy is represented by

(
1 − |∇u|2)2. Hence,εFε is a singular

perturbation of the elastic energy of the film.
It is clear that any admissible function for the limit problem must satisfy

the eikonal equation

|∇u| = 1 Ln-a.e. inΩ . (1.1)

There are several heuristic arguments suggesting that the limit energy can
concentrate on hypersurfaces: the strongest one is perhaps the analogy with
the first order Modica–Mortola functionals (see [17], [16])

Mε(u) :=
∫

Ω

(
ε|∇u|2 +

(1 − u2)2

ε

)
dx ,

whoseΓ -limit is a constant multiple of the area functional. Notice that in
Mε there appears a “two well” potential, while the potential inFε has a
single well, the unit circle. Notice also thatFε(u) = Gε(∇u), where

Gε(v) :=
1
2

∫
Ω

(
ε|∇v|2 +

(1 − |v|2)2
ε

)
dx ,

and, if we don’t take into account the constraint thatcurl v = 0, it is easy
to prove that theΓ -limit of Gε is identically0 (see for instance [20] or the
general formula given in [4]). Taking into account the zero curl constraint,
instead, leads to the following ansatz, illustrated in Fig. 1: near to a jump
discontinuity of the gradient the optimal transition layer is obtained keep-
ing constant the tangential component of the gradients and making a sharp
transition between the two normal ones.
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This ansatz, first stated in [7], formally leads to the limiting energy

1
6

∫
J∇u

|∇+u− ∇−u|3 dHn−1 , (1.2)

whereJ∇u is the jump set of∇u and∇±u are the traces on both sides of
the jump set.

The rigorous study of the asymptotic behaviour ofFε is a very challeng-
ing mathematical problem, because many standard methods available for
the analysis of first order problems are of difficult use in the second order
ones (for instance truncation arguments). Ifn > 2 there is presently no idea
on what the function space for the limit problem should be.

In the two dimensional case, the first significant progress was made by
R.W. Kohn and W. Jin (see [13], [14]), who realized that the divergence of
the vector field

Σu :=
(
u1

(
1 − u2

2 − 1
3
u2

1

)
,−u2

(
1 − u2

1 − 1
3
u2

2

))
,

namely(1−|∇u|2)(u11−u22), can be used to estimate from belowFε; they
used this estimate to compute the limit asε ↓ 0 of the minimum problems

min
{
Fε(u) : u ∈ W 2,2(Ω), u|∂Ω = 0,

∂u

∂ν
= −1

}
(1.3)

(hereν is the outer normal to∂Ω) in some particular cases; their results
are in agreement with the conjecture that the limit energy is given by (1.2).
The Kohn–Jin argument implies that, for the limit problem, any admissible
function must have the property thatdivΣu (in the sense of distributions)
is representable by a measure. By the eikonal constraint,Σu reduces to

Ξu :=
2
3
(
u3

1,−u3
2
)
.

Aviles and Giga went further in [9], noticing that, by rotation invariance, the
same property holds for the fields

Ξξηu :=
2
3

((
∂u

∂ξ

)3

ξ −
(
∂u

∂η

)3

η

)

where(ξ, η) is any orthonormal basis ofR2. They proved that the supre-
mum of the divergences of all these vector fields provides a functional
J : W 1,3(Ω) → [0,∞] which is lower semicontinuous with respect to
the strongW 1,3(Ω) convergence and which coincides with (1.2) ifu solves
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(1.1) and∇u has bounded variation inΩ. Moreover, refining the Kohn–Jin
argument, they proved that

J(u) ≤ lim inf
h→∞

Fεh
(uh)

for any sequence(uh) converging tou in W 1,3(Ω). Hence,Γ − lim inf Fε

(in theW 1,3(Ω) topology) is finite only ifJ(u) < ∞, and this strongly
suggests that

AGe(Ω) :=
{
u ∈ W 1,3(Ω) : (1.1) holds andJ(u) < ∞ }

is the natural function space for the limiting problem.
In our paper we answer to several questions raised in [9], the first one

being whetherAGe(Ω) coincides with

BV 2
e (Ω) :=

{
u ∈ W 1,3(Ω) : (1.1) holds and∇u ∈ BV (Ω,R2)

}
.

We show by a counterexample that there exist functions inAGe(Ω) such
that∇u has not locally bounded variation inΩ. This negative result shows
that a separate study is required for the spaceAGe(Ω), for which the existing
theory ofBV functions can be used only as a useful analogy.

The second question raised in [9] concerns the compactness properties
ofAGe(Ω) with respect to the strongW 1,3(Ω) convergence. We prove that
for any constantM > 0 the sublevel sets

{u ∈ AGe(Ω) : J(u) ≤ M}
are compact. SinceJ is lower semicontinuous with respect to the strong
W 1,3(Ω)convergence, this provides existence of minimizers for the problem

(P) min {J(u) : u ∈ AGe(Ω), u ≥ 0, u|∂Ω = 0} .
A still open conjecture actually states that the distance function from∂Ω is
the minimizer in(P). Our compactness theorem also takes into account the
case when the eikonal equation is fulfilled only in the limit, and shows that
the functionalsFε are equicoercive, i.e., any sequence(uh) with Fεh

(uh)
bounded andεh ↓ 0 has a subsequence(uh(k)) converging to someu ∈
AGe(Ω). This result is of interest in view of the fact thatΓ -convergence
implies converge of minimizers to minimizers (and of the minimum values
as well) only if the functionals are equicoercive.

We also study inBV 2
e (Ω) the functionals

Jρ(u) := cρ

∫
J∇u

∣∣∇+u− ∇−u
∣∣ρ+1

dH1 ,

wherecρ is a suitable normalization constant (c2 = 1/6). As shown in
[9], these functionals formally arise from a variant ofFε, in which theρ-
th power of |∇u|2 − 1 is taken into account. Positively answering to a
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conjecture in [9], we prove that for anyρ > 2 the functionalJρ is not lower
semicontinuous, thus showing that in this case a microstructure arises and
the one-dimensional ansatz is violated. The lower semicontinuity forρ < 2
is still an open problem.

We conclude noticing that we still don’t know whether (1.2) is the lim-
iting energy or not mainly because of two reasons: the first one is that this
representation ofJ(u) is known to be true only if∇u has locally bounded
variation inΩ. The second one is that we still don’t know whether any func-
tionu ∈ AGe(Ω) can be approximated by functionsuε ∈ W 2,2(Ω) in such
a way thatFε(uε) converge toJ(u) asε ↓ 0 (the so-calledΓ − lim sup
inequality). In some sense, both problems are related to the conjecture that
the limiting energy concentratesonly on lines, a conjecture supported by
the computations done in specific examples by Kohn and Jin. We hope to
be able to attack these problems in a forthcoming paper.

Added in proof. After the completion of this paper we learned of an in-
dependent work by A.Desimone, R.W.Kohn, S.Müller and F.Otto closely
related to ours (see [10]); they obtain the compactness theorem with a dif-
ferent argument.

2 Notation and preliminary results

In this paperΩ denotes an open set inR2 andL2 andH1 denote respectively
the Lebesgue measure inR2 and the Hausdorff1-dimensional measure in
R2. Given a Radon measureµ in Ω and a Borel setB ⊂ Ω, the restriction
µ B is the Radon measureχBµ, i.e.

µ B(A) := µ(A ∩B) for any Borel setA ⊂ Ω .

For anyv ∈ L1
loc(Ω,R

p) and anyx ∈ Ω theapproximate limitof v at
x, denoted bỹv(x), is the uniquez ∈ Rp satisfying

lim
%↓0

%−2
∫

B%(x)
|u(y) − z| dy = 0 .

We denote bySv the set ofapproximate discontinuitypoints, i.e., the set
of points where the approximate limit does not exist. Analogously, theone
sided approximate limitsv+(x), v−(x) atx are vectorsa, b ∈ Rp satisfying

lim
%↓0

%−2
∫

B+
% (x)

|u(y) − a| dy = 0

and lim
%↓0

%−2
∫

B−
% (x)

|u(y) − b| dy = 0 ,
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whereB±
% (x) = {y ∈ B%(x) : ±〈y − x, ν〉 ≥ 0} are the two half balls

corresponding to some unit vectorν. We denote byJv ⊂ Sv the set of
approximate jumppoints, i.e., all pointsx ∈ Sv such that the approximate
limits v±(x) exists for some unit vectorν, denoted byνv(x). For anyx ∈ Jv

the triplet (
v+(x), v−(x), νv(x)

)
is uniquely determined, up to a permutation of(v+(x), v−(x)) and a change
of sign ofνv(x). We use sometimes the abbreviation[v(x)]+− for the jump
v+(x) − v−(x) of v atx ∈ Jv.

We now recall some facts aboutBV functions which will be used mainly
in Sect. 3 (see [11] as a general reference onBV and [2], [3] for the de-
composition of derivative). We denote byBV (Ω,Rm) the space ofRm-
valued functions with bounded variation inΩ, i.e. the space of all functions
v ∈ L1(Ω,Rm) whose distributional derivative is representable by a fi-
nite Radon measure inΩ. This measure, with values in2 ×m matrices (2
columns,m rows) will be denoted byDv. The measureDv can be split
in three mutually singular parts: the first one is the absolutely continuous
part with respect toL2, whose density, denoted by∇v, can also be inter-
preted as a differential ofv, in an approximate sense. Another part ofDv
is the jump part, denoted byDjv and defined asDv Jv; this part of the
derivative is absolutely continuous with respect toH1 Jv and its density
is (v+ − v−) ⊗ νv (herea⊗ b denotes the2 ×m matrix tensor product of
a ∈ Rm andb ∈ R2). Finally, the remaining part of the derivative, denoted
by Dcv, is called Cantor part; the measureDcv is singular with respect to
L2 and vanishes on any Borel setσ-finite with respect toH1. Summarizing,
we have

Dv = Dav +Dcv +Djv = ∇vL2 +Dcv + (v+ − v−) ⊗ νvH1 Jv .

It can also be proved thatH1(Sv \Jv) = 0, hencẽv is definedH1-a.e. out of
Jv. Since|Dv| vanishes onH1-negligible sets,̃v is defined|Dav| + |Dcv|-
a.e. inΩ.

3 The Aviles–Giga space

Let (ξ, η) be an orthonormal basis ofR2 andu ∈ W 1,3
loc (Ω); we define

Σξηu := uξ

(
1 − u2

η − 1
3
u2

ξ

)
ξ − uη

(
1 − u2

ξ − 1
3
u2

η

)
η

whereuξ, uη are abbreviations for the partial derivatives alongξ and η
respectively. Hence,Σξηu is a locally integrable vector field inΩ which
coincides with

Ξξηu :=
2
3
(
u3

ξξ − u3
ηη
)
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if u satisfies the eikonal equation (1.1).
Using the divergences of these fields we can define a space of functions

already considered implicitely in [9]; for this reason we call it the Aviles–
Giga space.

Definition 3.1 (Aviles–Giga space)We say thatu ∈ W 1,3
loc (Ω) belongs to

AG(Ω) if divΣξηu is (representable by) a measure inΩ for any orthonor-
mal basis(ξ, η) of R2.
We denote byAGe(Ω) the class of all functionsu ∈ AG(Ω) such that
|∇u| = 1 L2-a.e. inΩ.

In the following we denote by(e1, e2) the canonical basis ofR2 and by

ε1 :=
(

1√
2
,

1√
2

)
, ε2 :=

(−1√
2
,

1√
2

)
the basis obtained from(e1, e2) under a anti clockwise rotation ofπ/4. As
for the first order derivative in the sense of distributions (with directions
instead of orthonormal bases), only these two bases are sufficient to recover
the divergences of all vector fieldsΣξηu.

Theorem 3.2 For anyu ∈ W 1,3
loc (Ω) we have

Σξηu = (cos 2θ)Σe1e2u+ (sin 2θ)Σε1ε2u

with ξ = (cos θ, sin θ), η = (− sin θ, cos θ). In particular u ∈ AG(Ω)
if and only if divΣe1e2u and divΣε1ε2u are both representable by finite
measures inΩ.

The proof of this theorem follows by long but straightforward compu-
tations, so we omit it. Motivated by this theorem, for anyu ∈ AG(Ω) we
define theR2-valued measure

Iu = (I1u, I2u) := (divΣe1e2u, divΣε1ε2u) .

Notice that, according to Theorem 3.2,|Iu| is the supremum of|divΣξηu|
among all orthonormal bases(ξ, η) of R2; the latter is the functionalJ
considered by Aviles and Giga in [9].

The following closure and lower semicontinuity theorem is a direct con-
sequence of Theorem 3.2.

Theorem 3.3 (Lower semicontinuity) Let (uh) ⊂ AG(Ω) be strongly
converging inW 1,3

loc (Ω) tou. If |Iuh|(Ω)are equibounded, thenu ∈ AG(Ω),
the measuresIuh weakly∗ converge toIu in Ω and hence

|Iu|(Ω) ≤ lim inf
h→∞

|Iuh|(Ω) .
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Proof. Since the fieldsΣe1e2uh converge toΣe1e2u in L1
loc(Ω,R

2), their
divergences converge in the sense of distributions. Since|I1uh|(Ω) are equi-
bounded, it follows thatdivΣe1e2u is representable by a finite measure in
Ω andI1uh weakly∗ converge toI1u ash → ∞. The proof forI2uh is
analogous. ut

We now computeIu in several cases of interest. Since

Σe1e2u =
(
u1

(
1 − u2

2 − 1
3
u2

1

)
,−u2

(
1 − u2

1 − 1
3
u2

2

))
, (3.1)

if ∇u belongs to a Sobolev space the pointwise divergence of the field is
given by(1− |∇u|2)(u11 −u22); analogously, representing with a long but
straightforward computationΣε1ε2u in the canonical basis ofR2, we get

Σε1ε2u =
(
u2 − 2

3
u3

2, u1 − 2
3
u3

1

)
(3.2)

whose pointwise divergence is2(1 − |∇u|2)u12. Assuming enough inte-
grability of the second derivatives these expressions for the divergences are
integrable and give also the divergence in the sense of distributions.

Proposition 3.4 If u ∈ W
2,3/2
loc (Ω) then

I1u = (1 − |∇u|2)(u11 − u22)L2 , I2u = 2(1 − |∇u|2)u12L2

In particular |Iu| =
∣∣1 − |∇u|2∣∣ |λ1 − λ2|L2, whereλ1, λ2 are the eigen-

values of∇2u.

Proof. The Sobolev embedding theorem implies that|∇u| ∈ L6
loc(Ω),

hence(1 − |∇u|2)|∇2u| is locally integrable inΩ, by Hölder inequality. A
smoothing argument also proves that

divΣe1e2u = (1 − |∇u|2)(u11 − u22)L2 ,

divΣε1ε2u = 2(1 − |∇u|2)u12L2

in the sense of distributions. The last part of the statement can be obtained
noticing that the modulus of the difference between the eigenvalues of a
symmetric matrixA is √

|A11 −A22|2 + 4|A12|2 .
ut

Now we analyzeIu in the case when∇u is bounded and is a function
with bounded variation. To this aim, in the following proposition we recall
some facts about measure distributional derivatives of second order.
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Proposition 3.5 (BV gradients) Letu ∈ W 1,1(Ω) and assume that∇u ∈
BV (Ω,R2). ThenD2u = D∇u is a symmetric matrix valued measure with
finite total variation inΩ representable as

D2u = D2
au+D2

cu+D2
ju

= ∇2uL2 +H|D2
cu| + (∇+u− ∇−u) ⊗ ν∇uH1 J∇u ,

where

(i) ∇2u(x) is a symmetric matrix forL2-a.e.x ∈ Ω;
(ii) H(x) is a unit symmetric matrix with rank 1 for|D2

cu|-a.e.x ∈ Ω;
(iii) ν∇u(x) is parallel to∇+u(x) − ∇−u(x) for H1-a.e.x ∈ J∇u.

Proof. The decomposition ofD2u in three parts is a general property ofBV
functions, and sinceD2u is symmetric all these parts (being mutually sin-
gular) are symmetric. Statement (i) follows by the identityD2

au = ∇2uL2.
Statement (ii) follows by Alberti rank one theorem (see [1]) and finally state-
ment (iii) can be proved noticing that a tensor producta⊗ b is symmetric if
and only ifa is parallel tob. ut

The chain rule for the computation of the derivative off ◦ v with u ∈
BV andf Lipschitz and continuously differentiable has been first proved
in [21] (see also [5] for the case whenf is notC1); it turns out that the
“diffuse” part of derivative, made by absolutely continuous part and Cantor
part, obeys to the classical chain rule, while the jump part obeys to the natural
transformation rule for jumps.

Proposition 3.6 (Vol’pert chain rule) Let v ∈ BVloc(Ω,Rp) and letf ∈
C1(Rp) with bounded gradient. Thenw = f ◦ v ∈ BVloc(Ω) and

∇w = 〈∇f(v),∇v〉, Dcw = 〈∇f(ṽ), Dcv〉

Djw = (f(v+) − f(v−)) νvH1 Jv .

If ∇u is bounded inΩ and belongs toBV (Ω,R2) the measureIu can
computed using Vol’pert chain rule inBV ; using (3.1) and (3.2) we obtain

I1u (Ω \ J∇u) =
(
1 − |∇̃u|2

)
(D11u−D22u) (Ω \ J∇u) (3.3)

I2u (Ω \ J∇u) = 2
(
1 − |∇̃u|2

)
D12u (Ω \ J∇u) . (3.4)

Moreover, for any orthonormal basis(ξ, η) of R2 we have

divΣξηu J∇u = (3.5){
[〈Σξηu, ξ〉]+− 〈ξ, ν∇u〉 − [〈Σξηu, η〉]+− 〈η, ν∇u〉

}
H1 J∇u .



336 L. Ambrosio et al.

In particular, (3.3), (3.4) and (3.5) imply the following result. Fora, b ∈ R2

andν ∈ S1 we defineΨ(a, b, ν) as the supremum of[
aξ

(
1 − a2

η − 1
3
a2

ξ

)
− bξ

(
1 − b2η − 1

3
b2ξ

)]
〈ξ, ν〉

−
[
aη

(
1 − a2

ξ − 1
3
a2

η

)
− bη

(
1 − b2ξ − 1

3
b2η

)]
〈η, ν〉 (3.6)

among all orthonormal bases(ξ, η) of R2 (hereaξ is the component ofa
alongξ andaη, bξ, bη are defined analogously). We set

Φ(a, b) := Ψ

(
a, b,

b− a

|b− a|
)

∀a, b ∈ R2, a 6= b . (3.7)

Lemma 3.7 LetΦ be defined as in (3.7). Then

Φ(a, b) =
1
6
|a− b| ∣∣6 − 3|a|2 − 3|b|2 + |a− b|2∣∣ .

Proof. First of all we compute the expression in (3.6) withν = (a−b)/|a−b|
in the following Cartesian system: the unit vectore1, which gives thex1 axis,
is perpendicular toa − b and such that〈a, e1〉 ≥ 0; the unit vectore2 is,
obviously, perpendicular toe1 and such that〈a, e2〉 ≥ 0. In this system of
coordinates we have

a = (r, s) , b = (r,−t) , ξ = (x, y) , η = (−y, x) ,
wherer, s, t, x, y are real numbers such thatr ≥ 0, s ≥ 0, t ≥ 0 and
x2+y2 = 1. Now we substituteaξ = rx+sy, bξ = rx−ty,aη = −ry+sx,
bη = −ry − tx, 〈ξ, ν〉 = y and〈η, ν〉 = x in (3.6) to obtain:

y

[
(rx+ sy)

(
1 − (sx− ry)2 − (rx+ sy)2

3

)
− (rx− ty)

(
1 − (−tx− ry)2 − (rx− ty)2

3

)]
−
[
x(sx− ry)

(
1 − (rx+ sy)2 − (sx− ry)2

3

)
+ (tx+ ry)

(
1 − (rx− ty)2 − (tx+ ry)2

3

)]
and a straightforward computation gives

(y2 − x2)
s+ t

3

(
3 − 3

2
(r2 + s2) − 3

2
(r2 + t2) +

(s+ t)2

2

)
.
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It is now obvious that the maximum of this expression is

1
6
|s+ t| ∣∣6 − 3(r2 + s2) − 3(r2 + t2) + (s+ t)2

∣∣ .
Finally we observe thats+ t = |a− b|, r2 + s2 = |a|2 andr2 + t2 = |b|2;
this completes the proof. ut
Theorem 3.8 (Representation of|Iu|) Let u ∈ W 1,∞(Ω) be such that
∇u ∈ BV (Ω,R2). Thenu ∈ AG(Ω) and

|Iu| =
∣∣1 − |∇u|2∣∣ |λ1 − λ2|L2 +

∣∣∣1 − |∇̃u|2
∣∣∣ |D2

cu|

+
1
6
|∇+u− ∇−u| ∣∣6 − 3|∇+u|2 − 3|∇−u|2

+|∇+u− ∇−u|2∣∣H1 J∇u ,

whereλi are the eigenvalues of∇2u.

Proof. Let D2u = H|D2u| be a polar representation ofD2u, setA =
Ω \ J∇u and notice thatH(x) = ∇2u(x)/|∇2u(x)| for L2-a.e.x ∈ Ω
while, by Theorem 3.5(ii), the rank ofH(x) is 1 for |D2

cu|-a.e.x; by (3.3)
and (3.4), we get

I1u A =
(
1 − |∇̃u|2

)
(H11 −H22)|D2u| A

I2u A = 2
(
1 − |∇̃u|2

)
H12|D2u| A

so that, arguing as in Proposition 3.4, we obtain

|Iu| A =
∣∣∣1 − |∇̃u|2

∣∣∣ |µ1 − µ2||D2u| A

whereµ1, µ2 are the eigenvalues ofH; since the norm ofH is 1, the dif-
ference|µ1 − µ2| is 1 |D2

cu|-a.e. inΩ and is|λ1 − λ2|/|∇2u| L2-a.e. inΩ;
since

|D2u| A = |∇2u|L2 + |D2
cu|

the representation of|Iu| A follows.
In order to represent|Iu| onA we notice that (3.5) gives

|Iu| J∇u = Ψ(∇+u,∇−u, ν∇u)H1 J∇u

because|Iu| = sup |divΣξηu| among all orthonormal bases(ξ, η) of R2.
SinceΨ is odd with respect toν andν∇u is parallel to[∇u]+− the represen-
tation of|Iu| onJ∇u is achieved. ut

If u is a solution of (1.1) the absolutely continuous part and the Cantor
part ofD2u give no contribution and we obtain the following result, first
proved in [9].
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Theorem 3.9 If u satisfies (1.1) and∇u ∈ BV (Ω,R2) thenu ∈ AGe(Ω)
and

|Iu| =
1
6
|∇+u− ∇−u|3H1 J∇u . (3.8)

Unfortunately the converse in Theorem 3.8 is not true, not even ifu ∈
AGe(Ω): indeed, we will show that there exist functionsu ∈ AGe(Ω) such
that∇u has not locally bounded variation inΩ. More precisely, we show
how a functionu : R2 → R which belongs toAGe(U) for every bounded
open setU ⊂ R2 and such that∇u /∈ BVloc(R2,R2) can be constructed.

First of all, for any integern ≥ 1 we define

θn =
1
n + 1

n+1

2
· π
4

;

then we construct a lozengeRn
0 whose vertices, denoted byAn, Bn, Cn,

Dn, have the following coordinates:

An =
(

−1 − 1
n
, 0
)

, Bn =
(

0,
(

1 +
1
n

)
tan θn

)

Cn =
(

1 +
1
n
, 0
)

, Dn =
(

0,−
(

1 +
1
n

)
tan θn

)
.

BetweenRn
0 andRn+1

0 we construct lozengesRn
i (1 ≤ i ≤ 2[(n + 1)/2])

homothetics toRn
0 as follows (see Fig. 2): settingan = (1/n − 1/(n +

1))/(2[(n+1)/2]), where [] denotes the integer part, the coordinates of the
vertices ofRn

i are

An
i =

(
−1 − 1

n
+ ian, 0

)
Cn

i =
(

1 +
1
n

− ian, 0
)

Bn
i =

(
0,
(

1 +
1
n

− ian

)
tan θn

)
Dn

i =
(

0,−
(

1 +
1
n

− ian

)
tan θn

)
.

Now let us define the vector fieldxn in the following way.
We drawRk

i (1 ≤ k ≤ n, 0 ≤ i ≤ 2[(n + 1)/2]) and the axes{xi = 0}.
These lines divideR2 in a finite number of connected components. We put
xn =

(−√
2,

√
2
)
/2 in the unbounded connected component of the first

quadrant and in the other regions we definexn by reflection along the lines
drawn (with the additional condition|xn| = 1).
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A 1

B 1

C 1

D 1

R 1
0

R 1
1 R 1

2

R 2
0

.... ....

.... ....

Fig. 2. The vector fieldxn/3

The functionxn : R2 → R2 is piecewise constant and mirror symmetric
with respect to both the axes. Let us see what are the values ofxn in the first
quadrant; if we denote byϕn the angle betweenxn and thex1 axis we have:
–ϕn = π − π/4(k + 1) in the region which lies betweenRk

2i andRk
2i+1;

–ϕn = π − π/4k in the region betweenRk
2i−1 andRk

2i;
–ϕn = π − π/4(k + 1) in the region betweenRk

2[(n+1)/2] andRk+1
0 .

It is easy to verify that the functionxn so defined is a gradient: letun be the
function such that∇un = xn andun(0, 0) = 0. Thenun ∈ W 1,∞

loc (R2) and
|∇un| = 1 L2-a.e.; this implies that there exists a functionu ∈ W 1,∞

loc (R2)
such thatun → u in W 1,p

loc (R2) for anyp < ∞. For every neighborhoodU
of the segmentL = {|x1| ≤ 1, x2 = 0} we have∇u|R2\U ≡ ∇un|R2\U

for n large enough. This means that∇u ∈ BVloc(R2 \ U,R2) and hence
thatu ∈ AGloc(R2 \ U).

Now we want to show thatu ∈ AG(U) for every bounded open setU .
Since∇un → ∇u L2-a.e. inR2 it follows that(∂ξun)3 → (∂ξu)3 L2-a.e.
for everyξ ∈ R2. ThendivΣξηun converge todivΣξηu in the sense of
distributions for every orthonormal basis(ξ, η) of R2.



340 L. Ambrosio et al.

We notice that for any pair of unit vectorsa, b we have|a − b| =
2| sin(ϕ/2)|, whereϕ is the angle between them. Hence Theorem 3.8 gives

6 |divΣξηun| (U) ≤ 6|Iun|(U) =
∫

J∇un

∣∣[∇un]+−
∣∣3 dH1

≤ 8H1 ({x1x2 = 0} ∩ U})

+8
n∑

k=1

2[(k+1)/2]∑
i=0

H1(U ∩ ∂Rk
i ) sin3

(
π

8k(k + 1)

)

≤ K1 +K2

∞∑
k=1

k + 2
(2k(k + 1))3

whereK1 andK2 are two constants. This proves thatdivΣξηu is repre-
sentable by a measure with finite total variation inU .

It is easy to prove that∇u 6∈ BV (U,R2) wheneverU ∩ L 6= ∅. If we
call Un the open set bounded byRn

0 we have that∇un|U\Un
≡ ∇u|U\Un

.

So∇u ∈ BV (U \ Un,R2) and

|D∇u|(U \ Un) = |D∇un|(U \ Un) ≥
∫

(U\Un)∩J∇un

∣∣[∇un]+−
∣∣ dH1

≥ K3

n∑
k=1

2[(k+1)/2]∑
i=0

H1(U ∩ ∂Rk
i )

k(k + 1)
.

But sinceU∩L is not empty there exists a strictly positive constantasuch that
H1(U∩∂Rk

i ) ≥ a if k is large enough. This implies that∇u /∈ BV (U,R2).

4 Compactness

The main result of this paper is the following compactness theorem.

Theorem 4.1 (Compactness)LetΩ ⊂ R2 be open and bounded and let
(uh) ⊂ AG(Ω) be such that

(i) the total variations|Iuh|(Ω) and‖uh‖1 are equibounded;
(ii) |∇uh| → 1 in L3(Ω).

Then (uh) has a subsequence strongly converging inW 1,3(Ω) to u ∈
AGe(Ω).

This result, together with Theorem 3.3, implies that the minimum prob-
lem

min {|Iu|(Ω) : u ∈ AGe(Ω), u ≥ 0, u|∂Ω = 0}
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has at least one solution for any bounded open setΩ; notice that we cannot
write the Neumann boundary condition in (1.3) because a theory of traces for
the functions inAGe(Ω) is still to be developed; however, due to the eikonal
constraint, the conditionu ≥ 0 in Ω could heuristically be considered as a
substitute of the Neumann boundary condition.

The proof of Theorem 4.1 is based on some preliminary results, some of
which have an independent interest. The first one is a Jensen-type inequality.

Lemma 4.2 (Nonconvex Jensen inequality)For any probability measure
µ in [−1, 1] = I we have∫

I
t3 dµ(t) ≥

(∫
I
t dµ(t)

)3

providedλ =
∫
I t dµ(t) satisfies2λ3 + 3λ2 ≥ 1.

Proof. Let λ be such that2λ3 + 3λ2 ≥ 1, let M be the set of probability
measures inI and let

A :=
{
µ ∈ M :

∫
I
t dσ(t) = λ

}
.

We will prove that the minimum ofµ 7→ ∫
I t

3 dµ(t) onA is λ3. SinceA is
a singleton ifλ = −1, in the following we assume thatλ > −1. LetA′ be
the collection of allµ ∈ A whose support is{−1} ∪ [0, 1]. We first prove
that the infimum ofµ 7→ ∫

I t
3 dµ(t) in A′ equals the infimum inA. Indeed,

if µ ∈ A we set

µ̃ := −
∫

[−1,0)
t dµ(t)δ−1 + aδ0 + µ (0, 1]

with

a := 1 − µ ((0, 1]) +
∫

[−1,0)
t dµ(t) = µ ([−1, 0]) +

∫
[−1,0)

t dµ(t) ≥ 0 .

By constructioñµ ∈ A′ and∫
I
t3 d(µ− µ̃)(t) =

∫
[−1,0)

t3 d(µ− µ̃)(t) =
∫

[−1,0)
(t3 − t) dµ(t) ≥ 0 .

Denoting byA′′ the subset ofA′ made by all measures whose support is
{−1, a} for somea ≥ 0, the infimum ofµ 7→ ∫

I t
3 dµ(t) in A′ is equal to

the infimum onA′′; in fact, for anyµ ∈ A′ we can set

µ̃ := µ {−1} + µ ((−1, 1]) δa with a :=
1

µ ((−1, 1])

∫
(−1,1]

t dµ(t)
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to obtain a measurẽµ ∈ A′′ such that, by Jensen inequality,
∫
I t

3 dµ̃(t) ≤∫
I t

3 dµ(t).
Let µ ∈ A′′ and setk = µ({−1}); then

a =
λ+ k

1 − k

and since|a| ≤ 1 we obtain thatk ≤ (1 − λ)/2 < 1. Hence, we need only
to prove that the function

F (k) := (1 − k)
(
λ+ k

1 − k

)3

− k k ∈
[
0,

1 − λ

2

]
achieves its minimum atk = 0. Indeed, a straightforward computation
shows thatF is convex, and since

F ′(0) = 2λ3 + 3λ2 − 1 ≥ 0

the statement follows. ut
The second ingredient in the proof of Theorem 4.1 is Hodge decompo-

sition, together with truncation of gradients. Recent related results on this
topic are given in [15] and [12] (see also [22]). We first show that any vector
field v can be written as∇ϕ + ε, whereϕ ∈ W 1,1 and theL1 norm ofε
is controlled by|curl v|; a refined version of the decomposition, given in
Corollary 4.4, provides a functionϕ ∈ W 1,∞.

Theorem 4.3 (Hodge decomposition)For anyv ∈ L1(B1,R2) such that
curl v is (representable by) a finite measure inB1 and anyC > 1 there
existsϕ ∈ W 1,1(B1) such that∫

B1

|v − ∇ϕ| dx ≤ C|curl v|(B1) . (4.1)

Proof. Assume first that, in addition,v ∈ C∞(B1,R2), setu(x) = v(x) −
v(0) and defineφ ∈ C∞(B1) by φ(x) =

∫ 1
0 〈u(tx), x〉 dt. We compute

∂φ

∂x1
(x) =

∫ 1

0

∂u1

∂x1
(tx)tx1 +

∂u2

∂x1
(tx)tx2 + u1(tx) dt

=
∫ 1

0

∂u1

∂x1
(tx)tx1 +

∂u1

∂x2
(tx)tx2 + u1(tx) dt−

∫ 1

0
curlu(tx)tx2 dx

=
∫ 1

0

d

dt
[tu1(tx)] dt−

∫ 1

0
curlu(tx)tx2 dx

= u1(x) −
∫ 1

0
curlu(tx)tx2 dx .
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An analogous computation for∂φ/∂x2 proves that

‖u− ∇φ‖1 ≤
∫ 1

0

∫
B1

t|x||curlu|(tx) dxdt

=
∫ 1

0

∫
Bt

|y|
t2

|curlu|(y) dy dt

=
∫

B1

∫ 1

0
χBt(y)

|y|
t2

|curlu|(y) dtdy

=
∫

B

(∫ 1

|y|
|y|
t2
dt

)
|curlu|(y) dy

=
∫

B1

(1 − |y|)|curlu|(y) dy ≤
∫

B1

|curl v|(y) dy .

Then,ϕ(x) = φ(x) + 〈v(0), x〉 satisfies (4.1) withC = 1.
In the general case we fixδ > 0 andτ > 1 such thatτ + 2δ ≤ C and

find t ∈ (1, τ ] such thatvt(x) = v(x/t) satisfies∫
B1

|vt − v| dx < δ|curl v|(B1)

(notice that the case|curl v|(B1) = 0 is trivial). The functionvt ∗ ρε is
smooth inB1 as soon asε < t− 1; we chooseε < t− 1 so small that∫

B1

|vt ∗ ρε − vt| dx < δ|curl v|(B1).

By the previous construction we can findϕ ∈ C∞(B1) such that∫
B1

|vt ∗ ρε − ∇ϕ| dx ≤ |curl (vt ∗ ρε)|(B1) = |(curl vt) ∗ ρε|(B1)

≤ |curl vt|(Bt) = t|curl v|(B1) ≤ τ |curl v|(B1) .

Taking into account our choices oft andε the proof is achieved. ut
Corollary 4.4 There exists a constantc with the following property: for
v ∈ L1(B1,R2) such thatcurl v is (representable by) a finite measure in
B1 and anyλ > 0 there existφ ∈ W 1,∞(B1/3) and a Borel setE ⊂ B1/3
such that‖∇φ‖∞ ≤ cλ,

L2(E) ≤ c

λ

[∫
B1

(|v| − λ)+ dx+ |curl v|(B1)
]

and∫
B1/3

|v − ∇φ| dx ≤ c

[
|curl v|(B1) +

∫
E

|v| dx+
∫

B1

(|v| − λ)+dx
]
.

(4.2)
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Proof. In this proof we denote byci some constants depending only on the
dimension (2 in this case). For any nonnegativef ∈ L1(B1) we denote by
Mf its (local) maximal function, defined by

Mf(x) := sup

{∫
B%(x) |f | dy
π%2 : B%(x) ⊂ B1

}
x ∈ B1 .

We will use the weakL1 estimate

L2 ({Mf > λ}) ≤ c1
λ

∫
B1

|f | dx ∀λ > 0 (4.3)

which is a straightforward consequence of the definition ofMf and Besi-
covitch covering theorem.

Letϕ be given by Theorem 4.3 withC = 2 and let

F :=
{
x ∈ B1/3 : M |∇ϕ|(x) ≤ 3λ

}
.

We recall the estimate

1
π%2

∫
B%(x)

|ϕ(z) − ϕ̃(x)|
|z − x| dz ≤

∫ 1

0

∫
Bt%(x) |∇ϕ| dy
π(t%)2

dt ≤ M |∇ϕ|(x)

for any ballB%(x) ⊂ B1 centered at some pointx ∈ B1 \ Sϕ (see for
instance (2.5) and Theorem 2.3 of [6]). This estimate easily implies that the
restriction ofϕ̃ to F \ Sϕ is a Lipschitz function, with Lipschitz constant
less thanc2λ; we denote byφ any Lipschitz extension of this function to the
whole ofB1/3. By construction,φ coincides withϕ L2-a.e. inF .

LetE = B1/3 \ F ; since

M(|∇ϕ|) ≤ λ+M((|v| − λ)+) +M(|v − ∇ϕ|)
by (4.3) we infer

L2(E) ≤ c1
λ

[∫
B1

(|v| − λ)+ dx+ 2|curl v|(B1)
]
.

Finally, we prove (4.2). To this aim, sincev = ∇ϕ + ε with ‖ε‖1 ≤
2|curl v|(B1), we need only to estimate theL1 norm of |∇ϕ − ∇φ| on
B1/3. We have∫

B1/3

|∇ϕ− ∇φ| dx =
∫

E
|∇ϕ− ∇φ| dx ≤

∫
E

|ε| + |v| + c2λ dx

≤
∫

E
|v| + c2λ dx+ 2|curl v|(B1) .

ut
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The final ingredient of our proof of the compactness theorem is the
theory of (gradient) Young measures; although the proof could be written in
a more elementary way without using Young measures, we believe that this
tool reduces in a substantial way the computations, thus making our proof
much more readable.

Let us recall some basic facts, referring for instance to [18] for a more
systematic presentation. Letr ∈ [1,∞], let (wh) ⊂ Lr(Ω,Rm) be a se-
quence and letx 7→ νx be a measurable map which assigns to anyx ∈ Ω a
probability measure inRm (here measurable means thatx 7→ ∫

f(x, y) dνx

is Lebesgue measurable for any boundedL ⊗B(Rm)-measurable function
f ); we say that(wh) generates the Young measure(νx) if

lim
h→∞

∫
Ω
f (x,wh(x)) dx =

∫
Ω

(∫
Rm

f(x, p) dνx(p)
)
dx (4.4)

for any bounded Carathéodory functionf(x, y). We will use the following
well known result (see for instance [18], Theorem 3.1):

Theorem 4.5 Let r ∈ (1,∞) and let(wh) ⊂ Lr(Ω,Rm) be a bounded
sequence. Then

(i) there exists a subsequence(wh(k)) generating a Young measure(νx)
such that ∫

Rm

|p|r dνx(p) < ∞ for L2-a.e.x ∈ Ω ;

(ii) if |wh|r are equiintegrable and(wh) generates(νx),then (4.4) holds
for any Carath́eodory functionf such that

|f(x, p)| ≤ g(x) + c|p|r ∀(x, p) ∈ Ω × Rm

for somec ≥ 0, g ∈ L1(Ω).

We first prove the compactness theorem under the extra assumptions
thatΩ is the unit ballB1, |Iuh|(B1) tend to0 anduh uniformly converge
to a linear functionu ; the general case will then be recovered by a simple
blow-up argument, taking into account that, under the rescaling preserving
the eikonal equation,Iu scales as a length. The information that|Iuh|(B1)
is infinitesimal, and not only bounded, will be used in an essential way to
approximate the fieldsΣe1e2uh andΣε1ε2uh by rotations, by the angleπ/2,
of suitable gradients; this leads to an integration by parts formula showing
that the eikonal equation is preserved in the limit.

Proposition 4.6 Let (vh) ⊂ AG(B1) be a sequence such that

(a) |∇vh| converge inL3(B1) to 1;
(b) |Ivh|(B1) → 0 ash → ∞;



346 L. Ambrosio et al.

(c) (vh) uniformly converge inB1 to a linear functionu(x) = 〈L, x〉.
Then|L| = 1.

Proof. Up to a rotation we can assume thatL = (α, 0) with 0 ≤ α ≤ 1. We
also assume that|∇vh| converges to1 L2-a.e. inB1 and(∇uh) generate a
Young measure(νx). Setting

β(x) :=
∫
R2
p3
1 dνx(p) , γ(x) :=

∫
R2
p3
2 dνx(p)

the equiintegrability of|∇vh|3 implies thatv3
h1 andv3

h2 weakly converge in
L1(B1) to β andγ respectively. Notice that since∫

B1

(∫
R2

∣∣1 − |p|2∣∣ dνx(p)
)
dx = lim

h→∞

∫
B1

∣∣1 − |∇vh|2∣∣ dx = 0

the measuresνx are supported on the unit circle forL2-a.e.x ∈ B1, hence
β andγ are bounded functions.
Step 1.In this step we prove that

β(x0)
(
α− 2

3
β(x0)

)
≥ 1

3
(4.5)

for any Lebesgue pointx0 = (x01, x02) ∈ B1/3 of β andγ. Let us define
the vector fields

Ψh(x) :=
(
vh2(1 − v2

h1 − 1
3
v2
h2), vh1(1 − v2

h2 − 1
3
v2
h1)
)

Φh(x) :=
(
vh1 − 2

3
v3
h1,−vh2 +

2
3
v3
h2

)
.

Notice that, by a straightforward computation, the Jacobian determinant of
the matrixMh havingΨh, Φh as rows is

−2
9
(v2

h1 + v2
h2)

3 + (v2
h1 + v2

h2)
2 − (v2

h1 + v2
h2)

hencedetMh converges to−2/9 L2-a.e. inB1.
Since the components ofΨh are cubic polynomials in the derivatives of

vh, there exists a constantλ0 such that|Ψh| ≤ λ0(1 + |∇vh|3); sinceΨh is
the rotation ofΣe1e2vh by the angleπ/2 we get

|curlΨh| = |divΣe1e2vh| ≤ |Ivh|
and hence by Corollary 4.4 withλ = 2λ0 we can representΨh in B1/3 as
∇ψh + εh for suitable functionsψh ∈ W 1,∞(B1/3) with ‖∇ψh‖∞ ≤ 2cλ0
andεh satisfying∫

B1/3

|εh| dx ≤ c

[
|Ivh|(B1) +

∫
Eh

|Ψh| dx+
∫

B1

(|Ψh| − λ)+dx
]
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for suitable Borel setsEh ⊂ B1/3 whose Lebesgue measure can be estimated
with

c

λ

[∫
B1

(|Ψh| − λ)+ dx+ |Ivh|(B1)
]
.

Since|Ψh| − λ ≤ λ0(|∇vh|3 − 1), the strongL1 convergence of|∇vh|3
to 1 implies thatL2(Eh) tends to0 ash → ∞. In turn, this fact together
with the equiintegrability of|Ψh| (which is implied by the equiintegrability
of |∇vh|3) gives that

∫
B1/3

|εh| dx tends to0 ash → ∞. Since, taking into

account the strongL3(B1) convergence of|∇vh| to1,Ψh weakly converge in
L1(B1,R2) to (2γ/3, 2β/3) ash → ∞, if we normalizeψh assuming that
ψh(x0) = 0 we obtain thatψh uniformly converge inB1/3 to the function
ψ∞ equal to0 atx0 and having2

3(γ, β) as gradient. Our choice ofx0 gives

ψ∞(x) =
2
3
γ(x0)(x1 − x01) +

2
3
β(x0)(x2 − x02) + o(|x− x0|) .

By a similar argument, sinceΦh is the rotation ofΣε1ε2vh by the angle
π/2, we can also representΦh in B1/3 as ∇φh + ηh with ηh → 0 in
L1(B1/3,R2) and(φh) bounded inW 1,∞(B1/3). SinceΦh weakly converge
in L1(B1,R2) to (α − 2β/3, 2γ/3) ash → ∞, the same is true inB1/3
for ∇φh. We assume also, possibly extracting a subsequence, thatεh and
ηh converge to0 L2-a.e. inB1/3.

We consider now theR2-valued functionsϕh = (ψh, φh); this family is
bounded inW 1,∞(B1/3,R2) and

lim
h→∞

det ∇ϕh(x) = −2
9

for L2-a.e.x ∈ B1/3 . (4.6)

Let % ∈ (0, 1/3] and letg(x) = (% − r)+, with r = |x − x0|; we can pass
to the limit ash → ∞ in the identity

−
∫

B%(x0)
gdet ∇ϕh dx

= −
∫

B%(x0)
g div (ψhφh2,−ψhφh1)

=
∫

B%(x0)
ψh(g1φh2 − g2φh1) dx

= −
∫

B%(x0)

ψh

r
((x1 − x01)φh2 − (x2 − x02)φh1) dx

and use (4.6) and our choice ofx0 to obtain
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1
3

∫
B%(x0)

(%− r) dx

= −3
2

∫
B%(x0)

ψ∞
r

(
(x1 − x01)

2γ
3

− (x2 − x02

(
α− 2

3
β

))
dx

= β(x0)
(
α(x0) − 2

3
β(x0)

)∫
B%(x0)

(x2 − x02)2

r
dx

+
(
α− 4

3
β(x0)

)
γ(x0)

∫
B%(x0)

(x1 − x01)(x2 − x02)
r

dx

− 2
3
γ2(x0)

∫
B%(x0)

(x1 − x01)2

r
dx+ o(%3) .

Since ∫
B%(x0)

(%− r) dx =
∫

B%(x0)

(x2 − x02)2

r
dx =

π%3

3

and ∫
B%(x0)

(x1 − x01)(x2 − x02)
r

dx = 0

the inequality (4.5) follows.
Step 2.In this step we prove thatα = 1. We fixx0 in (4.5) and setβ = β(x0).
First, we notice thatα ≥ 2

√
2/3, otherwise the polynomial

P (β) := −2
3
β2 + αβ

would be always strictly less that1/3.
Since|∇uh| converge inL3(B1) to 1, the measureν is supported on

∂B1, hence the measureµ(B) = ν(B × R) is supported on[−1, 1]. Using
the identities

β =
∫
R
t3 dµ(t) , α =

∫
R
t dµ(t)

and the inequality

3α2 + 2α3 ≥ 3 · 8
9
> 1

from Lemma 4.2 we conclude thatβ ≥ α3. SinceP achieves its maximum
at3α/4, and sinceα3 ≥ 3α/4 for α ≥ 2

√
2/3, we obtain

1
3

≤ P (β) ≤ P (α3) = α4 − 2
3
α6 .

A simple computation proves that the functionf(α) = α4−2α6/3 is strictly
increasing in[0, 1], hencef(α) ≥ f(1) = 1/3 impliesα = 1. ut
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Proof of Theorem 4.1. Possibly extracting a subsequence we can assume
that(uh) weakly converge to some functionu inW 1,3(Ω). The weak lower
semicontinuity ofu 7→ |∇u|3 implies that|∇u| ≤ 1 L2-a.e. inΩ. In order
to provestrongconvergence of(uh) in W 1,3(Ω) we need only to show that
u is a solution of (1.1). In fact, passing to the limit ash → ∞ in the identity∫

Ω
|∇uh − ∇u|2 dx = 2

∫
Ω

(1 − 〈∇uh,∇u〉) dx+
∫

Ω
|∇uh|2 − 1 dx

we obtain that(∇uh) strongly converges to∇u inL2(Ω,R2) and therefore,
being |∇uh|3 equiintegrable, Vitali theorem implies the convergence also
in L3(Ω,R2).

Let us fix a blow-up pointx0 ∈ Ω satisfying

(i) µ (B%(x0)) /%2 is bounded as% ↓ 0;
(ii) x0 is a Lebesgue point of∇u

and let us prove that|∇u(x0)| = 1. Define the rescaled functions

u%
h(y) =

1
%
uh(x0 + %y) y ∈ B1, % > 0

and notice that∇u%
h(y) = ∇uh(x0 + %y). Since

lim sup
h→∞

|Iu%
h|(B1) = lim sup

h→∞
%−1|Iuh| (B%(x0)) ≤ %−1µ

(
B%(x0)

)
,

for %i = 1/iwe can find, by condition (i), integershi so large that|Iu%i

hi
|(B1)

is infinitesimal asi → ∞. Analogously, since

lim
h→∞

∫
B1

∣∣|∇u%
h| − 1

∣∣3 dy
= lim

h→∞
%−2

∫
B%(x0)

||∇uh| − 1|3 dx = 0 ∀% > 0

we can also assume that|∇u%i

hi
| converge inL3(B1) to1. Finally, since for%

fixed∇u%
h weakly converge inL3(B1,R2) to∇u(x0+%y), by condition (ii)

we can choosehi so that∇u%i

hi
weakly converge inL3(B1,R2) to ∇u(x0).

Then by Proposition 4.6 withvi = u%i

hi
we infer that|∇u(x0)| = 1. ut

5 Lower semicontinuity

We have seen in Sect. 3 thatu 7→ |Iu|(Ω) is lower semicontinuous with
respect to theW 1,3

loc (Ω) convergence, and that

|Iu|(Ω) =
1
6

∫
J∇u

|∇+u− ∇−u|3 dH1
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if ∇u ∈ BVloc(Ω). In this section we consider, more generally, the lower
semicontinuity of the functionals

Iβ(u) :=
∫

J∇u

|∇+u− ∇−u|β dH1 (5.1)

in the class

BV 2
e (Ω) :=

{
u ∈ W 1,∞(Ω) : (1.1) holds and∇u ∈ BV (Ω,R2)

}
contained inAGe(Ω).

The interest of these functionals is again related to a singular perturbation
problem: in fact, the formal analysis in [7] and [19], based on the ansatz
of constancy of tangential gradient in the transition layer, suggests these
functionals arise (up to a normalization constantcβ) from theΓ -limit of the
functionals ∫

Ω

(
ε|∇2u|2 +

(|∇u|2 − 1
)β−1

ε

)
dx .

The main result of the section is thatIβ isnotlower semicontinuous ifβ > 3;
this also shows that forβ > 3 the one-dimensional ansatz underlying the
formal analysis is no longer true, and indeed Fig. 2 below shows how this
ansatz can be violated.

Throughout this section we assume for simplicity thatΩ is bounded
and consider only theW 1,3(Ω) convergence (equivalent, by the eikonal
constraint, to anyW 1,p(Ω) strong convergence withp < ∞). We first state
in Lemma 5.1 a necessary condition for lower semicontinuity, and then prove
that this condition is violated for anyβ > 3. In the statement of the lemma
we denote by∇∗v the trace on the boundary of∇v.

Lemma 5.1 Let R = (−a, a) × (−b, b) be a rectangle and assume the
existence ofv ∈ BV 2

e (R) andϕ ∈ [0, 2π] such that

∇∗v(x1, b) = ∇∗v(x1,−b) for L1-a.e.x1 ∈ (−a, a)

∇∗v(±a, x2) = (± cosϕ, sinϕ) for L1-a.e.x2 ∈ (−b, b)
and ∫

J∇v

|∇+v − ∇−v|β dH1 < 2b(2 cosϕ)β .

Then the functionalIβ is not lower semicontinuous inBV 2
e (Ω) for any

bounded open setΩ ⊂ R2.
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Proof. Without loss of generality, by a scaling argument we can assume
thatΩ contains the(−a, a) × (−b, b); let u ∈ BV 2

e (Ω) whose gradient
is (cosϕ, sinϕ) in the half plane{x1 > 0}, is (− cosϕ, sinϕ) in the half
plane{x1 < 0} andu(0) = 0. For h ≥ 1 integer we divide the strip
(−a/h, a/h) × (−b, b) in h rectanglesRi with centers(0, yi) and side
length2a/h, 2b/h. Then, we can define

uh(x1, x2) :=

u(x1, x2) if |x1| ≥ a/h;

v(hx1, hx2 + yi) if (x1, x2) ∈ Ri .

By the trace conditions on∇v, the gradient ofuh does not jump across∂Ri,
henceIβ(uh) − Iβ(u) is given by

h∑
i=1

{∫
Ri∩J∇u

|∇+u− ∇−u|β dH1 −
∫

Ri∩J∇u

|∇+u− ∇−u|β dH1
}

=
∫

R
|∇+v − ∇−v|β dH1 − 2b(2 cosϕ)β < 0 .

Since(uh) converges tou, lettingh → ∞ we find that the lower semicon-
tinuity fails along this sequence. ut
Proposition 5.2 The functionalIβ is not lower semicontinuous inBV 2

e (Ω)
if β > 3.

Proof. We consider the functioñv(x1, x2) = −|x1| in the stripR× (−b, b)
for a positive valueb. We fix an angleθ ∈ (0, π/4) and we construct the
functionvθ : R × (−b, b) whose gradient is discontinuous along the edges
in Fig. 3 below and which coincides with̃v(x1, x2) outside the quadrilateral
ABCD.

SettingF (θ) = Iβ(vθ), we are going to study the functionF in (0, π/4)
in order to show the existence ofθ0 ∈ (0, π/4) such that

Iβ(vθ0) = F (θ0) < 2β+1b = Iβ(ṽ) .

By Lemma 5.1 withϕ = 0, v = vθ0 andR equal to the smallest rectan-
gle containing the quadrilateralABCD, this implies thatIβ is not lower
semicontinuous.

Taking into account the reflection property of the gradient ofvθ along
the singularity lines, elementary trigonometry yields

F (θ) = b
[
2β+2(sin θ)β−1+ 2β+1(cos 2θ)β+ 22β+1(sin θ)β−1(cos θ)β+1

]
= 2β+1b

[
2(sin θ)β−1 + (cos 2θ)β + 2β(sin θ)β−1(cos θ)β+1

]
.
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C

A

BOD θ

Fig. 3. The gradient of the basic functionv

We have immediately that

lim
θ↓0

F (θ) = 2β+1b = Iβ(ṽ) .

Being interested in the values of the functionsF near0, we can operate
the change of variablest = sin θ and divide by the constant2β+1b, thus
reducing to study the function

f(t) :=
F (arcsin t)

2β+1b
= 2tβ−1 +

(
1 − 2t2

)β + 2βtβ−1 (1 − t2
)β+1

2

= 2t2+ε
(
1 + 23+εt2+ε

(
1 − t2

)2+ ε
2
)

+
(
1 − 2t2

)3+ε
,

where we also replaced3+ε for β. We want to show that there existst0 > 0
such thatf(t0) < f(0) = 1.
It is easy to see that the first and second derivatives att = 0 of the first
term of the last row vanish because of the factort2+ε, hence we only need
to consider the termg(t) = (1 − 2t2)3+ε, whose derivatives are

g′(t) = −4t(3 + ε)
(
1 − 2t2

)2+ε

g′′(t) = −4(3 + ε)
(
1 − 2t2

)2+ε + 16t2(3 + ε)(2 + ε)
(
1 − 2t2

)1+ε
.

hence,f ′(0) = g′(0) = 0 andf ′′(0) = g′′(0) = −4(3 + ε) < 0. It follows
that the functionf is strictly decreasing in a right interval oft = 0, thus for
t0 > 0 sufficiently small we havef(t0) < f(0) = 1. ut
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6 Γ -convergence

In this section we consider the asymptotic behaviour ofFε asε ↓ 0. We
first prove an a priori estimate on|∇u|6 and then, repeating essentially
the argument of [9], the lower bound onΓ − lim inf Fε (theΓ -limits are
computed with respect to theW 1,3(Ω) topology). Throughout this section
we assume thatΩ is a bounded open set with Lipschitz boundary.

Theorem 6.1 (Lower bound) For anyu ∈ W 2,2(Ω) and anyε > 0 we
have ∫

Ω
|∇u|6 dx ≤

(
c+

dε2

L2(Ω)

)
F 2

ε (u) + eL2(Ω) (6.1)

for some absolute constantsc, d, e and

|Iu|(A) ≤ Fε(u) + C(A)ε1/2F 1/2
ε (u)‖∇u‖2 (6.2)

wheneverA is open andA ⊂⊂ Ω. In particular,Γ − lim inf
ε↓0

Fε(u) < ∞
impliesu ∈ AGe(Ω) and

Γ − lim inf
ε↓0

Fε(u) ≥ |Iu|(Ω) .

Proof. Let v = |∇u|: since|∇v| ≤ |∇2u|, using Young inequality we get

Fε(u) ≥
∫

Ω
|1 − v2||∇v| =

∫
Ω

|∇(Φ ◦ v)| dx

with Φ(t) =
∫ t
0 |1 − τ2| dτ . By the Poincar̀e inequality we get∫

Ω
|Φ ◦ v −m|2 ≤ C1F

2
ε (u) (6.3)

wherem is the mean value ofΦ ◦ v on Ω. On the other hand, using the
estimate|Φ(t)| ≤ a(1 − t2)2 + b for suitable constantsa, b we get

mL2(Ω) ≤ 2aεFε(u) + bL2(r) .

Using this inequality in (6.3) and taking into account thatΦ has a cubic
behaviour at infinity the inequality (6.1) follows.

The inequality (6.2) follows by Proposition 3.4 and the representation
of the determinant in divergence form: in fact, for anyφ ∈ C1

c (Ω) such that
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0 ≤ φ ≤ 1 andφ is identically equal to1 onA, since|∇2u|2 is the sum of
the squares of the eigenvalues of∇2u we can estimate|Iu|(A) by∫

Ω
φ(1 − |∇u|2)|λ1 − λ2| dx

≤ 1
2

∫
Ω
φ

[
ε(λ1 − λ2)2 +

(
1 − |∇u|2)2

ε

]
dx

= Fε(u) − ε

∫
Ω
φλ1λ2 dx = Fε(u) − ε

∫
Ω
φ det(∇2u) dx

= Fε(u) + ε

∫
Ω
ux(uyyφx − uxyφy) dx

≤ Fε(u) + 2ε1/2F 1/2
ε (u)‖∇φ‖∞‖∇u‖2 .

In order to prove the final part of the statement we fix an open setA ⊂⊂ Ω
and use (6.1) and (6.2) to obtain

|Iu|(A) ≤ lim inf
h→∞

|Iuh|(A) ≤ lim inf
h→∞

Fεh
(uh)

for any sequence(εh) ↓ 0 and any sequence(uh) ⊂ W 2,2(Ω) converging
tou such thatFεh

(uh) is bounded. Eventually, lettingA ↑ Ω we obtain that
u ∈ AG(Ω) and the inequality∫

Ω

∣∣1 − |∇uh|2∣∣ dx ≤ 2εhFεh
(uh)

implies thatu ∈ AGe(Ω). ut
A simple consequence of Theorem 4.1 and the apriori estimate of|∇u|6

is the equicoercivity ofFε.

Theorem 6.2 (Equicoercivity) Let (εh) ↓ 0 and letuh ∈ W 2,2(Ω) such
thatFεh

(uεh
) are equibounded. Then(uh) has a subsequence strongly con-

verging inW 1,3(Ω) to u ∈ AGe(Ω).

Proof. By (6.2) the sequence(|Iuh|(A)) is bounded in any open setA ⊂⊂
Ω and (6.1) gives that(|∇uh|) is bounded inL6(Ω). Since(1−|∇uh|2)2 ≤
cεh, it follows that|∇uh|2 converge to1 inL2(Ω), hence|∇uh|converge to1
inL2(Ω). Since(|∇uh|) is bounded inL6(Ω) we obtain strong convergence
to1 inLr(Ω) for anyr < 6, thus the hypotheses of Theorem 4.1 are fulfilled
in any open setA ⊂⊂ Ω. Then, the conclusion follows by a diagonal
argument. ut
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