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Abstract

We show that for a Schrödinger operator with bounded potential on a manifold

with cylindrical ends, the space of solutions that grows at most exponentially at

infinity is finite dimensional and, for a dense set of potentials (or, equivalently,

for a surface for a fixed potential and a dense set of metrics), the constant func-

tion 0 is the only solution that vanishes at infinity. Clearly, for general potentials

there can be many solutions that vanish at infinity.

One of the key ingredients in these results is a three circles inequality (or

log convexity inequality) for the Sobolev norm of a solution u to a Schrödinger

equation on a product N � Œ0; T �, where N is a closed manifold with a certain

spectral gap. Examples of such N ’s are all (round) spheres S
n for n � 1 and all

Zoll surfaces.

Finally, we discuss some examples arising in geometry of such manifolds and

Schrödinger operators. c� 2007 Wiley Periodicals, Inc.
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Many problems in geometric analysis are about the space of solutions of non-

linear PDEs, like solutions of the Yang-Mills equation, the Einstein equation, the

Yamabe equation, the harmonic map equation, the minimal surface equation, etc.

For such problems it is often of interest to estimate how many solutions there are

and be able to say something about their properties. Infinitesimally, the space

of nearby solutions to a given solution solves a linear PDE, which is often a

Schrödinger equation. For this reason it is therefore very useful when one can

say that the space of solutions (with some constraints at infinity) to a Schrödinger

equation is finite dimensional and even more significant when one can say that the

trivial solution, that is, the function that is identically 0, is the only such solution.

The first case corresponds to the “tangent space” being finite dimensional and the

second case corresponds to the space of solutions being infinitesimally rigid. We

will return to some specific examples later in the introduction after stating our main

results.

Let M be a complete, noncompact, .n C 1/–dimensional Riemannian manifold

with finitely many ends E1; : : : ; Ek . Suppose also that M n Sk
j D1 Ej has compact

closure and each end is cylindrical. By cylindrical we will mean different things

depending on whether n D 1, in which case more general ends will be allowed,

or n � 2. For n � 2 we assume that each end Ei is isometric to a product of a

closed manifold Ni and a half-line Œ0; 1/, whereas for n D 1 we assume only that

each end is bi-Lipschitz to S
1 � Œ0; 1/ and has bounded geometry. Recall that a

surface (or manifold) has bounded geometry if its sectional curvature is bounded

above and below and the injectivity radius is bounded away from 0.

We will consider Schrödinger operators L D �M C V on the manifold M and

on each cylindrical end use coordinates .�; t/. Given a constant ˛, let H˛.M / D
H˛.M; L/ be the linear space of all solutions u of Lu D 0 that grow slower than

exp.˛r/, where r is the distance to a fixed point. That is, for any fixed point p

(0.1) lim sup
r!1

max
@Br .p/

e�˛r juj D 0

where Br.p/ is the intrinsic ball of radius r and center p. Note that H0.M / is the

set of solutions that vanish at infinity.

One of our main results is the next theorem about the solutions of Schrödinger

operators on manifolds with cylindrical ends, where the cross section of each end

has a (infinite) sequence of eigenvalues �mi
for the Laplacian with

(0.2) �mi
� �mi �1 ! 1:
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Similar conditions on the spectral gaps have been used in other analytic problems

(cf. [3, 4]), and this particular condition is satisfied on any round sphere S
n for

n � 1. On S
n, the eigenvalues occur with multiplicity in clusters with the mth

cluster at m2 C .n � 1/ m. The spectral gap condition is also satisfied on any Zoll

surface (normalized so the closed geodesics have length 2�). The eigenvalues of a

Zoll surface occur in clusters, where the eigenvalues in the mth cluster all lie in the

interval

(0.3) Jm D Œ.m C ˇ=4/2 � K; .m C ˇ=4/2 C K�

for constants K and ˇ; see Guillemin [20] and Colin de Verdière [17]. Notice that

the gap between Jm and JmC1 grows linearly in m, as did the spectral gaps for S
n,

thus giving the required spectral gap.1

THEOREM 0.1 Let M be a complete, noncompact, .n C 1/–dimensional manifold

with finitely many cylindrical ends satisfying (0.2).

(i) If V is a C 0;1 bounded2 function3 (potential) on M , then H˛.M; �M CV /

is finite dimensional for every ˛I the bound for dim H˛ depends only on

M , ˛, and kV kC 0;1 .

(ii) For a dense set of C 0;1 bounded potentials, H0 contains only the constant

function 0I for a surface this is equivalent to that, for a fixed potential,

there is a dense set of metrics (with finitely many cylindrical ends) where

H0 D f0g.

Even the special case of our theorem where M D S
1 � R is a flat cylinder

is of interest. In that case we can define spaces HC and H� of solutions to the

Schrödinger equation where HC are the solutions that vanish at C1 and H� the

space that vanishes at �1, and thus H0 is the intersection of the two. In this case

both HC and H� can be infinite dimensional, as can be seen when V � 0 by

considering separation-of-variable solutions:

fekt cos.k�/ and ekt sin.k�/ j k 2 Z; k < 0g � HC;(0.4)

fekt cos.k�/ and ekt sin.k�/ j k 2 Z; k > 0g � H�:(0.5)

In particular, one can easily construct (nongeneric) compactly supported potentials

V on the flat cylinder S
1 � R where H0 is nontrivial by patching together expo-

nentially decaying solutions on each end.

1 Weyl’s asymptotic formula gives for a general closed n-dimensional manifold that �m � m2=n,

which shows that (0.2) cannot be expected for a general closed manifold for n � 2.
2 A function f is in C 0;1 if it is both bounded and Lipschitz. The C 0;1 norm is

kf kC 0;1 D sup
M

jf j C sup
x¤y2M

jf .x/ � f .y/j
jx � yj :

3 We will prove that both parts (i) and (ii) of the theorem also hold for bounded potentials V

whenever the cross section of each end is a round S
n, n � 1, or a Zoll surface.
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One of the key ingredients is a three circles inequality (or log convexity in-

equality) for the Sobolev norm of a solution u to a Schrödinger equation on a

product N � Œ0; T �, where N satisfies (0.2). We will state the first of the three

circles theorems next when N is a sphere or a Zoll surface and the dependence of

the constants is cleanest; see Theorem 4.6 below for the statement for a general N

satisfying (0.2).

THEOREM 0.2 Let N D S
n for any n � 1 or a Zoll surface. There exists a constant

C > 0 depending on N and kV kC 0;1 so that if u is a solution to the Schrödinger

equation �u C V u D 0 on N � Œ0; T � and ˛ satisfies

(0.6) ˛ � 1

T

�
log

I.T /

I.0/

�
;

then its W 1;2 norm at 0 < t < T satisfies the following three circles type inequality

(logarithmic convexity type inequality)

(0.7) log I.t/ � C C .C C j˛j/t C log I.0/:

Here4

(0.8) I.s/ D
Z

N �fsg

.u2 C jruj2/d�:

Our argument actually gives a stronger bound than we record in Theorem 4.6,

but we have tailored the statement to fit our geometric applications.

Even if the potential is merely bounded and not Lipschitz, we get the following

estimate:

THEOREM 0.3 Let N D S
n for any n � 1 or a Zoll surface. There exists a constant

C > 0 depending on N and kV kL1 so that if u is a solution to the Schrödinger

equation �u C V u D 0 on N � Œ0; T � and ˛ satisfies

(0.9) ˛ � 1

T

�
log

R
N �fT g u2R
N �f0g u2

�
;

then its L2 norm at 0 < t < T satisfies

(0.10) log

� Z
N �ftg

u2 d�

�
� C C .C C j˛j/t C log I.0/:

One of the main reasons why such estimates are useful is that they show that if

a solution grows/decays initially with at least a certain rate (the constant C in (0.7)

and (0.10) gives a threshold), then it will keep growing/decaying indefinitely.

As an immediate corollary of the general version of Theorem 0.2 where N is

only assumed to satisfy (0.2), i.e., Theorem 4.6 (and Schauder estimates), we get

the following:

4 In (0.7) and in what follows, ru denotes the full gradient of u and not only its tangential part.
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COROLLARY 0.4 Let N be a closed n-dimensional manifold satisfying (0.2). Given

˛ 2 R, there exists a constant � > 0 depending on ˛, the C 0;1 norm of V , and N

so that if u 2 H˛.N � Œ0; 1//, then its W 1;2 norm grows at most exponentially

with the estimate

(0.11)

Z
N �ftg

.u2 C jruj2/d� � �e�t 2 t lN �f0g.u
2 C jruj2/d�:

Remark 0.5. The corollary also holds for bounded potentials V whenever N is an

n-dimensional sphere or a Zoll surface; in this case, we apply Theorem 0.3.

One of the motivations of this paper is as a step towards classifying the possible

limits of sequences of embedded minimal surfaces in a 3-manifold. The papers

[12, 13, 14, 15, 16] give a rather complete classification for R
3 and, in particular,

show that the limits are smooth laminations by flat parallel planes. Moreover, [10]–

[16] give a similar picture locally (i.e., in a fixed small ball) in any 3-manifold

except that the limits can now have singularities (even for a ball in R
3; see [11]).

This is because the arguments in [15, 16] to rule out singularities of the limits were

global. In fact, examples constructed in [6] show that the limits can be singular

even in a compact 3-manifold with positive scalar curvature. This paper is a first

step towards understanding what happens to these singular limits as we vary the

metric on the 3-manifold. The corresponding problem in one dimension less, i.e.,

for geodesics in a surface, was settled in [7].

0.1 Examples from Geometry

Let † � M 3 be a smooth surface (possibly with boundary) in a complete

Riemannian 3-manifold M and with orientable normal bundle. Given a function �

in the space C 1
0 .†/ of infinitely differentiable (i.e., smooth), compactly supported

functions on †, consider the one-parameter variation

(0.12) †t;� D fexpx.t�.x/n†.x// j x 2 †g:
Here n† is the unit normal to † and exp is the exponential map on M .5 The so-

called first variation formula of area is the equation (integration is with respect to

the area of †)

(0.13)
d

dt

ˇ̌̌
ˇ
tD0

Area.†t;�/ D
Z
†

�H;

where the mean curvature H of † is the sum of the principal curvatures �1 and

�2.6 The surface † is said to be a minimal surface (or just minimal) if

(0.14)
d

dt

ˇ̌̌
ˇ
tD0

Area.†t;�/ D 0 for all � 2 C 1
0 .†/

5 For instance, if M D R
3, then expx.v/ D x C v.

6 When † is noncompact, †t;� in (0.13) is replaced by 	t;� , where 	 is any compact set con-

taining the support of �.
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or, equivalently by (0.13), if the mean curvature H is identically 0. Thus † is

minimal if and only if it is a critical point for the area functional.

Since a critical point is not necessarily a minimum, the term “minimal” is mis-

leading, but it is time honored. A computation shows that if † is minimal, then

(0.15) d2dt2

ˇ̌̌
ˇ
tD0

Area.†t;�/ D �
Z
†

�L†�;

where L†� D �†� C jAj2� C RicM .n†; n†/� is the second variational (or

Jacobi) operator. Here �† is the Laplacian on †, RicM .n†; n†/ is the Ricci cur-

vature of M in the direction of the unit normal to †, and A is the second funda-

mental form of †. So A is the covariant derivative of the unit normal of † and

jAj2 D �2
1 C �2

2 .

For us, the key is that the second variational operator is a Schrödinger operator

with potential V D jAj2 C Ric.n†; n†/.

A useful example to keep in mind is that of the catenoid. The catenoid is the

complete embedded minimal surface in R
3 that is given by conformally embedding

the flat two-dimensional cylinder into R
3 by

(0.16) .�; t/ ! .� cosh t sin �; cosh t cos �; t/:

A calculation shows that pulling back the second variational operator to the flat

cylinder gives a rotationally symmetric Schrödinger operator with potential

(0.17) V.�; t/ D V.t/ D 2 cosh�2.t/:

A minimal surface † is said to be stable if

(0.18)
d2

dt2

ˇ̌̌
ˇ
tD0

Area.†t;�/ � 0 for all � 2 C 1
0 .†/:

The Morse index of † is the index of the critical point † for the area functional, that

is, the number of negative eigenvalues (counted with multiplicity) of the second

derivative of area; i.e., the number of negative eigenvalues of L.7 Thus † is stable

if the index is 0. If � D 0, then � is said to be a Jacobi field.

Suppose that M 3 is a fixed, closed 3-manifold with a bumpy8 metric with pos-

itive scalar curvature, and let †i be a sequence without repeats, i.e., with †i ¤ †j

for i ¤ j , of embedded minimal surfaces of a given fixed genus. After possibly

passing to a subsequence, one expects that it converges to a singular lamination9

that looks like one of the two illustrated in Figures 0.1 and 0.2:

7 By convention, an eigenfunction � with eigenvalue � of L is a solution of L� C �� D 0.
8 Bumpy means that no closed minimal surface † has 0 as an eigenvalue of L†, and the space of

such metrics is of Baire category by a result of B. White [27].
9 A lamination is a foliation except for that it is not assumed to foliate the entire manifold.
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singular
points

FIGURE 0.1. One of the two possible singular laminations in half of a

neighborhood of a strictly stable 2-sphere. There are two leaves, namely,

the strictly stable 2-sphere and half of a cylinder. The cylinder accu-

mulates towards the 2-sphere through catenoid-type necks. In fact, the

lamination has two singular points over which the necks accumulate.

One expects that any singular limit lamination has only finitely

many leaves. Each closed leaf is a strictly stable 2-sphere. Each

noncompact leaf has only finitely many ends, and each end accu-

mulates around exactly one of the closed leaves. The accumulation

looks almost exactly as in either Figure 0.1 or Figure 0.2.

Indeed, the lamination in Figure 0.1 can happen as a limit of fixed genus embed-

ded minimal surfaces in a 3-manifold, see [6] (even in a 3-manifold with positive

scalar curvature); cf. also with B. White [26].

For us, the key is that (see Section 1):

Each noncompact leaf is conformally a Riemann surface with finitely many cylin-

drical ends,

and under the conformal change,

the second variational operator becomes a Schrödinger operator with Lipschitz

bounded potential.

One would like to understand the moduli space of such noncompact minimal

surfaces. Infinitesimally, the space of nearby noncompact minimal surfaces with

finitely many ends, each as Figure 0.1 or 0.2, are solutions of the second variational

equation on the initial surface. Thus, we are led to analyze the solutions of this

Schrödinger equation.

0.2 Schrödinger Operators on R
nC1

Theorem 0.3 implies a three circles inequality and also a corresponding strong

unique continuation theorem for a Euclidean operator

(0.19) L D �RnC1 � .n � 1/jxj�1@jxj C V.x/;
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singular
points

FIGURE 0.2. One of the two possible singular laminations in half of a

neighborhood of a strictly stable 2-sphere. There are two leaves, namely,

the strictly stable 2-sphere and half of a cylinder. The cylinder accumu-

lates towards the 2-sphere and is obtained by gluing together two op-

positely oriented double spiral staircases. Each double spiral staircase

winds tighter and tighter as it approaches the 2-sphere and thus never

actually reaches the 2-sphere.

where @jxj is the radial derivative and the potential V.x/ satisfies

(0.20) jV.x/j � C jxj�2:

This unique continuation does not follow from the well-known sharp result for

potentials V 2 L.nC1/=2.RnC1/ of Jerison and Kenig [23]. It also does not follow

from the unique continuation result of Garofalo and Lin [18], which holds when

jxj2 jV.x/j goes to 0 at a definite rate. To our knowledge, the sharpest unique

continuation results for Euclidean operators of this general form are given in Pan

and Wolff [24]. In that paper, they consider operators �RnC1 C W.x/ 	 rRnC1 C
V.x/, where V satisfies (0.20) for some constant and W satisfies jxj jW.x/j � C0

for a fixed small constant C0.

To see why Theorem 0.3 applies to the operator L, it will be convenient to work

in “exponential polar coordinates” .� D x=jxj; t D log jxj/ 2 S
n � R. In these

coordinates, the chain rule gives

@jxj D e�t@t ;(0.21)

@2
jxj D e�2t .@2

t � @t /:(0.22)

Using this, we can rewrite the Euclidean Laplacian �RnC1 as

(0.23) �RnC1 D @2
jxj C n

jxj @jxj C jxj�2�Sn D e�2t�Sn�R C e�2t .n � 1/@t :

Therefore, the Euclidean operator L can be written

(0.24) e2tL D �Sn�R C e2tV.et�/:

In particular, if V satisfies (0.20), then the operator e2tL can be written as �Sn�RC
QV , where the potential QV is bounded. It follows that Theorem 0.3 applies to an

operator L satisfying (0.20).
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0.3 Outline of the Paper

In Section 2, on the half-cylinder N � Œ0; 1/ with coordinates .�; t/, we in-

troduce notation for the Fourier coefficients (or spectral projections) of a function

f .�; t/ on each cross section t D constant.

In Section 3, we specialize to the case of a cylinder N � R and a rotationally

symmetric potential V.�; t/ D V.t/. This is meant only to explain some of the

ideas in a simple case and the results will not be used elsewhere. Given a solution u

of the Schrödinger equation, an easy calculation shows that the Fourier coefficients

of u satisfy an ODE as a function of t . It follows from a Riccati comparison

argument that any sufficiently high Fourier coefficient of u grows exponentially

at either plus infinity or minus infinity. In particular, if the solution u vanishes at

both plus and minus infinity, then all sufficiently high Fourier coefficients vanish.

It follows from this that the space H0 is finite dimensional, and similarly for H˛

when ˛ > 0.

In Section 4, we prove the three circles theorem for Lipschitz potentials, i.e.,

Theorem 0.2. Unlike the case of rotationally symmetric potentials, the individual

Fourier coefficients will no longer satisfy a useful ODE, but we will still be able

to show that the simultaneous projection of a solution u onto all sufficiently large

Fourier eigenspaces satisfies a useful differential inequality.

To give a feel for the proof, we will now outline the argument. For each t 2
Œ0; T �, let Œu�j .t/ be the j th Fourier coefficient of a solution u restricted to the t th

slice. Define functions of t by

Lm D
m�1X
j D0

Œ.Œu�0j /2 C .1 C �j /Œu�2j � and Hm D
1X

j Dm

Œ.Œu�0j /2 C .1 C �j /Œu�2j �

and note that the sum of the two is the Sobolev norm. A computation shows that

they satisfy the two differential inequalities H00
m � .4�m � C /Hm � CLm and

L00
m � .4�m�1 C C /Lm C CHm for some constant C depending only on the

Lipschitz norm of the potential and in particular not on m. Subtracting the second

inequality from the first and using the spectral gap yields that ŒHm � Lm�00 �
.4�m�1 C 2�/ŒHm � Lm� for some positive constant � and m sufficiently large.

We then use this differential inequality and the maximum principle applied to the

function f .t/ D e�˛t ŒHm � Lm�, where ˛ is the logarithmic growth rate of the

Sobolev norm from t D 0 to t D T to conclude that Hm.t/ is bounded in terms

of e˛tI.0/ C Lm.t/. Inserting this back into the first-order differential inequality

that Lm satisfies easily gives a bound for Lm.t/ (and hence for Hm.t/ and I.t/) in

terms of e˛tI.0/. Unraveling it all yields the desired three circles inequality, i.e.,

Theorem 0.2. In Section 5, we prove a three circles inequality when the potential

V is bounded, i.e., Theorem 0.3.

Using the results of Section 5, we will show in Section 6 that the space H˛ is fi-

nite dimensional on a manifold with finitely many ends, each of which is isometric

to a half-cylinder. In Section 7, we show that the space H0 is zero dimensional for
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a dense set of potentials. Example 7.4 shows an instance where the set of potentials

with H0 D f0g is not open.

In Section 8, we prove a uniformization theorem that allows us to reduce the

general case of surfaces with cylindrical ends to the case where the ends are iso-

metric to flat half-cylinders. Together with the results of Sections 5, 6, and 7, this

proves the main theorem.

1 Examples from Geometry

In this section, we will show that for each noncompact leaf of the singular min-

imal lamination constructed in [6] (see Figure 0.1) our main results, Theorem 0.1

and Theorem 0.2, apply. Namely, we show the following proposition:

PROPOSITION 1.1 Each noncompact leaf of the singular minimal lamination con-

structed in [6] is conformally a Riemann surface with finitely many cylindrical

ends and, after this conformal change, the second variational operator becomes

a Schrödinger operator with bounded potential. In fact, the conformal change

of metric that we give below will directly make each end isometric to a flat half-

cylinder.

Suppose, therefore, that M 3 is a closed 3-manifold with a Riemannian metric

g, and L a minimal lamination consisting of finitely many leaves, as constructed

in [6]. Each compact leaf is a strictly stable 2-sphere, and each noncompact leaf

has only finitely many ends, each end a half infinite cylinder spiraling into one of

the strictly stable 2-spheres as in Figure 0.1. To prove the proposition, it is enough

to show that we can conformally change the metric on each end † to make it a

flat cylinder and then show that, in this conformally changed metric, the second

variational operator becomes a Schrödinger operator with bounded potential.

In this example, we can parametrize a neighborhood of the strictly stable 2-

sphere by S
2 � .�"; "/ and on S

2 use spherical coordinates .�; �/; r 2 .�"; "/

denotes the (signed) distance to the strictly stable 2-sphere. In these coordinates

the metric g takes the form

(1.1) dr2 C 
2.r/.d�2 C sin2 � d�2/

(see equation (2) in [6]). Moreover, 
 is a smooth function with 
.0/ D 1, 
0.0/ D
0, and 
00 > 0.

The minimal half-cylinder † is S
1-invariant; i.e., it is the preimage of a curve

�1 on the strip Œ0; �� � .�"; "/ under the projection map

(1.2) .�; �; r/ 7! .�; r/:

As first remarked by Hsiang and Lawson in [22] (cf. with section 2 of [6]), since

† is a critical point for the area functional, �1 is a critical point for the functional

(1.3) F.�1/ D
Z

�1

length.S1 � f�1.t/g/ D
Z

�1

2�
.r.t// sin.�.t//:
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the geodesic �1 in
the upper half–strip

r D 0

FIGURE 1.1. The projection of the half-infinite cylinder † in M is an

infinite geodesic �1 in the upper half-strip with the degenerate metric

(1.4).

Therefore, �1 is an infinite geodesic for the degenerate metric

(1.4) 
2.r/ sin2 �.dr2 C 
2.r/d�2/;

accumulating towards the geodesic segment fr D 0g; see Figure 1.1.

If we assume that t 7! .�.t/; r.t// is the parametrization of �1 by arc length

(t > 0) in the degenerate metric (1.4), then

(1.5)

�
dr

dt

�2

C 
2.r/

�
d�

dt

�2

D 
�2.r/ sin�2 �:

Therefore, if we parameterize † by .t; �/ 7! .�.t/; r.t/; �/, the induced metric on

† is

d�2 D
��

dr

dt

�2

C 
2.r/

�
d�

dt

�2�
dt2 C 
2.r/ sin2 � d�2

D 
�2.r/ sin�2 � dt2 C 
2.r/ sin2 � d�2:(1.6)

Let 
 be a new parametrization of �1 so that

(1.7)
dt

d

D 
2.r.t// sin2.�.t//:

It follows that in the coordinates .
; �/ the metric on † takes the form

(1.8) 
2.r.
// sin2 �.
/
�
d
2 C d�2/I

i.e., .
; �/ is a conformal parametrization with conformal factor h D 
.r/ sin �.

To complete the proof of Proposition 1.1, it only remains to show that the

second variational operator L D �d�2 C .jAj2 C RicM .n†; n†// on † has the

same kernel as a Schrödinger operator QL with bounded potential in the confor-

mally changed metric ds2 D h�2 d�2. We will do this in the next lemma for the

operator QL D h2 L.
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LEMMA 1.2 In the conformally changed metric ds2 D h�2 d�2 (i.e., the flat met-

ric on the half cylinder), the operator QL D h2L is a Schrödinger operator with

bounded potential.

PROOF: Since ds2 D h�2 d�2, we have �ds2 D h2�d�2 , and therefore QL D
�ds2 C h2.jAj2 C RicM .n†; n†// is a Schrödinger operator in the metric ds2; cf.

(8.7). Since both RicM .n†; n†/ and h are bounded, to prove the proposition, it

suffices to show that h2jAj2 is bounded.

In what follows, we will denote by Pr and P� the derivatives dr
d�

and d�
d�

, respec-

tively. According to (1.5) and (1.7), we have

(1.9) . Pr/2 C 
2.r/. P�/2 D 
2.r/ sin2 � D h2:

Set

(1.10)
A�� D �g.n†; r@�

@� /; A�� D �g.n†; r@�
@� /;

A�� D �g.n†; r@�
@� /:

By minimality, A�� D �A�� , and hence

(1.11) h2jAj2 D h2Œh�4.A2
�� C A2

�� C 2A2
�� /� D 2h�2ŒA2

�� C A2
�� �:

It can be readily checked that the normal n D n† is given by

n D Pr@� � 
2.r/ P�@r

.
2.r/. Pr/2 C 
4.r/. P�/2/1=2

D 
�2.r/ sin�1 �. Pr@� � 
2.r/ P�@r/:

(1.12)

Moreover, since @� also lies in the linear span of @r and @� and the level sets of �

are totally geodesic in the metric g, it follows easily that A�� D 0. Finally,

A�� D �
�2.r/ sin�1 �Œ Prg.@� ; r@�
@� / � 
2.r/ P�g.@r ; r@�

@� /�

D �
�2.r/ sin�1 �

�
� Pr

2
@�.g.@� ; @� // C 
2.r/ P�

2
@r.g.@� ; @� //

�

D �
�2.r/ sin�1 �.�
2.r/ Pr sin � cos � C 
3.r/ P�
0.r/ sin2 �/

D Pr cos � � 
.r/
0.r/ P� sin �(1.13)

and

h4jAj2 D 2. Pr cos � � 
.r/
0.r/ P� sin �/2

� 4Œ. Pr/2 cos2 � C h2.
0.r//2. P�/2�

� 4h2Œ1 C .
0.r//2�;(1.14)

where the last inequality follows from (1.9). The desired bound on h2jAj2 now

follows. �
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Next, consider the Jacobi fields generated by sequences of spiraling cylinders

f†ng of the form above. Then these Jacobi fields grow at most exponentially in 
 .

DEFINITION 1.3 We let M be the Riemannian manifold S
2 � .�"; "/ with the met-

ric g of (1.1). Any isometry ˆ of the standard S
2 can be extended to an isometry

of M in an obvious way, i.e., by mapping .´; r/ 2 S
2 � .�"; "/ to .ˆ.´/; r/. We

denote by G the set of such isometries. Finally, we denote by S the set of minimal

S
1-invariant cylinders spiraling into S

2 � f0g. That is, 	 is an element of S if and

only if there exist a minimal cylinder † and a ˆ 2 G such that 	 D ˆ.†/ and

† is the lifting of a curve �1 under the projection map (1.2).

Loosely speaking, the set of Jacobi fields generated by sequences of elements

of S gives the tangent space to S. More precisely, let f†kg be a sequence of

elements of S that converges to † 2 S. Consider a sequence of increasing compact

domains �0 � �1 � 	 	 	 � † exhausting †. For each i we select "i sufficiently

small, and we consider the portion Ti of the "i -tubular neighborhood of † that is

“lying above” �i , that is,

(1.15) Ti D fexpx.sn†.x// j x 2 �i ; s 2 .�"i ; "i /g:
Let i be given. By the standard regularity theory for minimal surfaces, for k large

enough †k \ Ti is a graph over �i , i.e.,

(1.16) †k \ Ti D fexpx.uk.x/n†.x// j x 2 �ig
for some smooth function uk .

We normalize uk to fk D uk=kukkL2.�0/. Then, a subsequence, not relabeled,

converges to a nontrivial smooth function f on † solving QLf D 0, where QL is the

operator of Lemma 1.2. We denote by T†S the space of functions cf , where f is

generated with the procedure above and c is a real number.

LEMMA 1.4 There exists a constant ˛ such that the following holds: Consider any

† 2 S with the rescaled flat metric ds2 as in Lemma 1.2. Then T†S � H˛.†/.

PROOF: Without loss of generality we can assume that † is the lifting of a

curve �1 through the projection (1.2). Therefore, we use on † the coordinates

.�; 
/ introduced in Lemma 1.2.

Let G be the Lie algebra generating G and define the linear space

V D fg.X; n†/ j X 2 Gg:
Clearly, V is a space of bounded smooth functions on †. Moreover, V gives the

Jacobi fields generated by minimal surfaces of the form fˆn.†/g for sequences

fˆng � G converging to the identity. Therefore, any element f 2 T†S can be

written as v C w, where v belongs to V and w is a function of T†S independent

of the variable � .

We sketch a proof of this fact for the reader’s convenience. Let f be a nontrivial

element of T†S that arises as a rescaled limit of a sequence of S
1-invariant minimal

cylinders †k as above. Then †k D ˆk.	k/, where
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 fˆkg is a sequence of isometries converging to the identity and


 	k are liftings of curves �k through the projection (1.2).

Let i be a given natural number. For k sufficiently large, †k \ Ti has the form

(1.17) †k \ Ti D ˚
expx.uk.x/n†.x// j x 2 �ig

and uk=kukkL2.�0/ converges to f .

On the other hand, by the standard theory of minimal surfaces, the Hausdorff

distance between 	k \ Ti and † \ Ti and ˆk.	k/ \ Ti and 	k \ Ti converge to 0.

Hence, for k sufficiently large, 	k \ Ti is a graph over �i and ˆ.	k/ \ Ti is a

graph over 	k . Thus we can find functions vk and wk such that

Ti \ 	k D fexpx.wkn†.x// j Qx 2 �ig;(1.18)

Ti \ ˆk.	k/ D fexpexpx.wkn†.x//.vkn�k
.x//g:(1.19)

Note that wk is a function independent of � . Moreover, up to subsequences we can

assume that wk=kwkkL2.�0/ converges to a function w. Such a w belongs to T†S

and depends only on the variable 
 . Finally, up to subsequences, we can assume

that vk=kvkkL2.�0/ converges to an element v of V .

By the theory of minimal surfaces, the Hausdorff distances between 	k \ Ti

and †\Ti and ˆk.	k/\Ti and 	k \Ti are controlled by kukkL2.�0/. Moreover,

uk D wk C vk C o.kukkL2.�0//. Since f is the limit of uk=kukkL2.�0/, f must

be a linear combination of v and w.

Having shown the desired decomposition for any element of T†S, since V is

a space of bounded functions, it suffices to show the existence of ˛ � 0 such that

every function f 2 T†S independent of � belongs to H˛.†/. For any such f we

have, by Lemma 1.2, f 00.
/ D �V.
/f .
/. Since V is bounded, this gives the

inequality

(1.20) jf 00j � kV k1 jf j D ajf j:
Consider the nonnegative locally Lipschitz function g.
/ D jf 0.
/j C jf .
/j and

set ˛ D maxfa; 1g. Then

(1.21) g0 � jf 00j C jf 0j � ajf j C jf 0j � ˛g:

Hence, from Gronwall’s inequality, we get jf .
/j � g.
/ � g.0/e˛� for 
 � 0,

which is the desired bound. �

2 Spectral Projection on a Closed Manifold

Suppose now that N n is an n-dimensional closed Riemannian manifold and

�N is the Laplacian on N . We will generally use � as a coordinate on N . Fix

an L2.N /-orthonormal basis of �N eigenfunctions �0; �1; : : : with eigenvalues

0 D �0 < �1 � 	 	 	 , so that

(2.1) �N �j D ��j �j :
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Given an arbitrary L2 function f on N , we will let Œf �j denote the inner product

of f with �j ,

(2.2) Œf �j D
Z
N

f .�/�j .�/d�:

In analogy to the special case where N D S
1 (see below), we will often refer to

this as the j th Fourier coefficient, or j th spectral projection. It follows that

(2.3) f .�/ D
1X

j D0

Œf �j �j .�/:

It will often be important to understand how the Fourier coefficients of a func-

tion f .�; t/ on the half-cylinder N � Œ0; 1/ vary as a function of t . To keep track

of these coefficients, we define Œf �j .t/ by

(2.4) Œf �j .t/ D
Z
N

f .�; t/�j .�/d�:

The simplest example of spectral projection is when N is the unit circle S
1 with

the standard orthonormal basis of eigenfunctions

(2.5) �0 D 1p
2�

;

�
�2kC1 D 1p

�
sin.k�/

�
k�0

;

�
�2k D 1p

�
cos.k�/

�
k�1

;

with eigenvalues �0 D 0 and �2kC1 D �2k D k2. In this case, the Œf �j ’s are the

Fourier coefficients of the function f .

3 Dimension Bounds for Rotationally Symmetric Potentials

on Cylinders

In this section we bound the dimension of the space H˛ for a rotationally sym-

metric potential on a flat cylinder. In the rotationally symmetric case, things be-

come particularly simple, but, nevertheless, it illustrates some of the ideas needed

for the actual argument. We include some simple ODE comparison results that will

also be used later in the paper.

We will assume that M is a cylinder N � R with global coordinates .�; t/ and

that the function V depends only on t , i.e., that V.�; t/ D V.t/ and that V.t/ is

bounded.

The first result is that the space of functions that vanish at infinity in the kernel

of � C V is finite dimensional (we state and prove this only for H0; arguing

similarly gives dimension bounds for any H˛ where the bound depends also on ˛):

PROPOSITION 3.1 The linear space H0 has dimension at most

(3.1) 2jfj j �j � sup V gj:
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In particular, when N D S
1, the dimension is 0 if sup V < 0 and is bounded by

4
p

sup V.t/ C 2 otherwise.

The key for this is that the Fourier coefficients Œu�j .t/ of a solution u, defined

in the previous section, satisfy the ODE

(3.2) w00.t/ D .�j � V.t//w.t/:

The proposition will follow by first showing that if u is in HC and the j th

Fourier coefficient for �j > sup V is nonzero,10 then u grows exponentially at

�1 and likewise for H�. Thus if u lies in H0, so that it lies in the intersection

of HC and H�, then all j th Fourier coefficients must be 0 for �j > sup V and

hence u lies in a finite-dimensional space. The exponential growth will follow

from Corollary 3.3 below. This corollary records a consequence of the standard

Riccati comparison argument in a convenient form that will also be needed later.

The standard proof is included for completeness.

LEMMA 3.2 If w is a function on Œ0; 1/ that satisfies the ODE inequality w00 �
K2 w, w.0/ > 0, and wK is a positive solution to the ODE w00

K D K2 wK with

.log w/0.0/ � .log wK/0.0/;

then w is positive and for all t � 0

(3.3) .log w/0.t/ � .log wK/0.t/:

PROOF: Fix some b > 0 so that w is positive on Œ0; b/. We will show that (3.3)

holds for t 2 Œ0; b/. Once we have shown this, we can integrate (3.3) from 0 to t

to get

log w.t/ � log w.0/ C
Z t

0

.log wK/0.t/dt

D log w.0/ C log wK.t/ � log wK.0/;

(3.4)

so that w.b/ D limt!b exp.log w.t// > 0. It follows that the set ft j w.t/ > 0g is

both open and closed in Œ0; 1/, so that w.t/ > 0 for all t � 0. Consequently, (3.3)

holds for all t � 0.

It remains to show that (3.3) holds for t 2 Œ0; b/. To see this, set v D .log w/0

and vK D .log wK/0, so that v and vK satisfy the Riccati equations

(3.5) v0 C v2 � K2 � 0 and v0
K C v2

K � K2 D 0:

The claim now follows from the Riccati comparison argument. Namely, by (3.5)

the function

(3.6) .v � vK/ exp

� Z
.v C vK/

�

is monotone nondecreasing. �

10 The spaces HC and H� were defined right after Theorem 0.1.



1556 T. H. COLDING, C. DE LELLIS, AND W. P. MINICOZZI II

COROLLARY 3.3 Let K be a positive constant. Suppose that w satisfies the ODE

inequality w00 � K2 w and w.0/ > 0.

(i) If w0.0/ � 0 and w is defined on Œ0; 1/, then w.t/ � w.0/ cosh.Kt/ for

t � 0.

(ii) If w0.0/ � 0 and w is defined on .�1; 0�, then w.t/ � w.0/ cosh.Kt/ for

t � 0.

Moreover, we also have:

(iii) If 0 > w0.0/ > �K w.0/ and w is defined on Œ0; 1/, then for t � 0 we

have

(3.7) w.t/ � Kw.0/ C w0.0/

2K
eKt C Kw.0/ � w0.0/

2K
e�Kt :

PROOF: If we set wK D cosh.Kt/, then w00
K D K2 wK , wK is positive ev-

erywhere, and .log wK/0.0/ D 0. The first claim now follows from the lemma by

integrating (3.3). The second claim follows from applying the first claim to the

“reflected function” w.�t /.

To get the third claim, define the positive function wK by

(3.8) wK D Kw.0/ C w0.0/

2K
eKt C Kw.0/ � w0.0/

2K
e�Kt ;

so that w00
K D K2 wK , wK.0/ D w.0/, and w0

K.0/ D w0.0/. The last claim now

also follows from the lemma by integrating (3.3). �

PROOF OF PROPOSITION 3.1: Suppose that w is solution of (3.2) on R with

�j > sup V . If w is not identically 0, then we can apply either (i) or (ii) in Corol-

lary 3.3 to get that w grows exponentially at either C1 or �1 (or both). In

particular, the j th Fourier coefficient Œu�j .t/ of a solution u 2 H0 must be 0 for

every �j > sup V .

Since each Fourier coefficient of u satisfies a linear second-order ODE as a

function of t , it is determined by its value and first derivative at one point (say 0).

It follows that any function u 2 H0 is completely determined by the values and

first derivatives at 0 of its j th Fourier coefficients for �j � sup V . �

The next corollary is used in Appendix A, but not in the proof of our main

theorem.
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COROLLARY 3.4 If w.t/ is a solution of (3.2) on Œ0; 1/ with �j > sup V , then

either

(i) w.t/ grows exponentially at C1 at least as fast as et
p

	j �sup V , or

(ii) w.t/ decays exponentially at C1 at least as fast as e�t
p

	j �sup V .

PROOF: It suffices to prove that (ii) must hold whenever (i) does not. Assume

therefore that w.t/ does not grow exponentially at C1. It follows from the first

and third claims in Corollary 3.3 that at any t with w.t/ > 0 we must have

(3.9) w0.t/ � �
q

�j � sup V w.t/;

since it would otherwise be forced to grow exponentially from t on. Integrating

this gives (ii) as long as we know that w ¤ 0 from some point on. (If w < 0 from

some point on, then we would apply the argument to �w.)

To complete the proof, recall that w can have only one zero unless, of course,

w vanishes identically. This follows from integrating

.ww0/0 D .w0/2 C .�j � V /w2 � .w0/2

between any two zeros. �

3.1 A Geometric Example

We will next consider an example that illustrates the previous results. Namely,

consider the rotationally symmetric potential V.t/ on the two-dimensional flat

cylinder S
1 � R

(3.10) V.t/ D 2 cosh�2.t/:

Since the potential V is rotationally symmetric, the space of solutions u of �u D
�V u can be written as linear combinations of separation-of-variables solutions

w0.t/, sin.k�/wk.t/, and cos.k�/wk.t/, where wk is in the two-dimensional space

of solutions to the ODE (3.2) with �j D k2. Furthermore, Corollary 3.3 implies

that every wk with k2 > 2 D sup jV j must grow exponentially at plus or minus

infinity. Hence, to find the space of bounded solutions, we need only check the

solutions of (3.2) for k D 0 and k D 1. When k D 0, we get

(3.11)
sinh.t/

cosh.t/
and 1 � t

sinh.t/

cosh.t/
I

the first is bounded, while the second grows linearly. When k D 1, we get an

exponentially growing solution together with an exponentially decaying solution

(3.12)
sinh.2t/ C 2t

cosh.t/
and

1

cosh.t/
:

It follows that the space of bounded solutions is spanned by

(3.13) N1 D sin.�/

cosh.t/
; N2 D � cos.�/

cosh.t/
; N3 D sinh.t/

cosh.t/
;
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while the space H0 is spanned by N1 and N2.

This Schrödinger operator arises geometrically as a multiple of the Jacobi op-

erator (i.e., the second variational operator) on the catenoid. The catenoid is the

conformal minimal embedding of the cylinder into R
3 given by

(3.14) .�; t/ ! .� cosh t sin �; cosh t cos �; t/:

It follows that the unit normal is given by

(3.15) n D .sin �; � cos �; sinh t /

cosh t
D .N1; N2; N3/;

so that N1, N2, and N3 are the Jacobi fields that come from the coordinate vector

fields. The other (linearly growing) k D 0 solution is the Jacobi field that comes

from dilation.

The above discussion completely determined all polynomially growing func-

tions in the kernel of the Schrödinger operator L D � C 2 cosh�2.t/ on the cylin-

der. Since the kernel of L is the 0 eigenspace of L, this naturally leads us to ask

what the entire spectrum of L is.11 We will show that the spectrum12 of L is

(3.16) f�1g [ Œ0; 1/:

To see this, first use Weyl’s theorem to see that the essential spectrum is Œ0; 1/

since the potential V vanishes exponentially on both ends. Furthermore, we saw

above that the positive function cosh�1.t/ is an eigenfunction of L with eigen-

value �1; this positivity implies that �1 is the lowest eigenvalue. It remains to

show that there is no discrete spectrum between �1 and 0. This will follow from

standard spectral theory once we show that the constant function u D 0 is the only

polynomially growing solution u of

(3.17) Lu D �u

for 0 < � < 1. It follows from Corollary 3.4 that such a u must vanish exponen-

tially at both plus and minus infinity. Consequently, every Fourier coefficient Œu�j
is an exponentially decaying solution of

(3.18) Œu�00j C 2 cosh�2.t/Œu�j D .� C �j /Œu�j ;

where the �j ’s are the eigenvalues of S
1. In particular, since the �j ’s are integers

and � is not, it follows that � C �j ¤ 1. A standard integration-by-parts argu-

ment13 then shows that Œu�j must be L2.R/-perpendicular to the positive function

11 The spectrum of L is the set of �’s such that .L C �/ W W 2;2 ! L2 does not have a bounded

inverse (note the sign convention); the simplest way that this can occur is when � is an eigenvalue of

L, i.e., when there exists u	 2 W 2;2 n f0g with Lu D ��u. We refer to [25] for the definitions and

results in spectral theory that we use here.
12 Note that this is not the same as the spectrum of the Jacobi operator on the catenoid since

the two operators differ by multiplication by a positive function (which is why they have the same

kernel).
13 The exponential decay guarantees that the integrals are well-defined and the boundary terms

go to 0.
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cosh�2.t/; hence, Œu�j must have a zero. After possibly reflecting in t , we can

assume that Œu�j .t0/ D 0 for some t0 � 0. Since tanh.t/ satisfies the ODE (3.18)

with � C �j D 0 and vanishes only at 0, the lowest eigenvalue of the operator

@2
t C 2 cosh�2.t/ on any subdomain of the half-line Œ0; 1/ must be nonnegative.

We will use two consequences of this:


 First, Œu�j .t/ cannot vanish for t > t0 unless it vanishes identically; sup-

pose therefore that Œu�j .t/ � 0 for t � t0.


 Second, the solution w of the ODE (3.18) with � C �j D 0 and initial

values w.t0/ D 0 and w0.t0/ D 1 must be positive for all t � t0.

Note that we have already shown in (3.11) that any such w grows at most linearly

in t . Hence, since Œu�j vanishes exponentially, we know that

(3.19) lim
t!1

ŒwŒu�0j � w0Œu�j �.t/ ! 0

Since ŒwŒu�0j � w0Œu�j �0 D .� C �j /wŒu�j , the fundamental theorem of calculus

gives that

(3.20) .� C �j /

Z 1

t0

w.t/Œu�j .t/ dt D 0;

where we also used that w.t0/ D Œu�j .t0/ D 0. Since w > 0 and Œu�j � 0

on Œt0; 1/, we conclude that Œu�j vanishes identically as claimed, completing the

proof of (3.16).

4 General Lipschitz Bounded Potentials:

The Three Circles Inequality

Throughout this section, u will be a solution of

(4.1) �u D �V u

on a product N � Œ0; t �, where the potential V will be Lipschitz but is no longer

assumed to be rotationally symmetric.

The results of Section 3 in the rotationally symmetric case where V D V.t/

were stated on an entire cylinder, but the corresponding results for the half-cylinder

motivate the general results of this section. Namely, the ODE (3.2) for the Fourier

coefficients of u as a function of t implies that the j th Fourier coefficient must

either grow or decay exponentially if �j > sup V . This same analysis holds even

on a half-cylinder when V is rotationally symmetric. We will prove similar results

in this section for a general bounded potential V D V.�; t/, but things are more

complicated since multiplication by V.�; t/ does not preserve the eigenspaces of

�N (i.e., �j .�/).14

The main result of this section is Theorem 4.6 below, which shows a three

circles inequality for the Sobolev norm of a solution of a Schrödinger equation

14 The reason that the ODE (3.2) is so simple is that the j th Fourier coefficient of V.t/u.�; t/ is

just V.t/ times the j th Fourier coefficient of u.�; t/.
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on a product N � Œ0; T � where N has the required spectral gaps. This will give

Theorem 0.2 in the special case where N is a round sphere or a Zoll surface. See

the upshot to Section 4 in the introduction for an overview of the proof.

4.1 The Fourier Coefficients of u

As in the rotationally symmetric case, it will be important to understand how

the Fourier coefficients Œu�j .t/ and its derivatives grow or decay as a function of t .

The next lemma gives the ODEs that govern how the Fourier coefficients Œu�j .t/

grow or decay as functions of t ; cf. the similar ODE (3.2) in the rotationally sym-

metric case.

LEMMA 4.1 The Fourier coefficients Œu�j .t/ satisfy

Œu�0j .t/ D Œut �j .t/;(4.2)

Œu�00j .t/ D �j Œu�j .t/ � ŒV u�j .t/;(4.3)

Œu�000j .t/ D �j Œu�0j .t/ � Œ@t .V u/�j .t/:(4.4)

PROOF: Differentiating Œu�j .t/ immediately gives the first claim. To get the

second claim, first differentiate again to get

(4.5) Œu�00j .t/ D
Z
N

ut t .�; t/�j .�/d�:

Next, bring in the equation ut t D ��N u � V u and integrate by parts twice to get

Œu�00j .t/ D �
Z

N �ftg

�j �N u d� �
Z

N �ftg

V u�j d�

D �j Œu�j .t/ � ŒV u�j .t/:(4.6)

Differentiating again gives

(4.7) Œu�000j .t/ D �j Œu�0j .t/ � Œ@t .V u/�j .t/:

�

As mentioned above, (4.3) implies exponential growth (or decay) of Œu�j .t/

when V is rotationally symmetric and �j > sup V . However, this is not the case

for a general bounded V since the “error term” ŒV u�j .t/ need not be bounded

by Œu�j .t/. We will get around this in the next subsection by considering all of

the Œu�j ’s above a fixed value at the same time. To get a well-defined quantity

when we do this, we will have to sum the squares of the Œu�j ’s. Unfortunately, the

second derivative of Œu�2j includes a nonlinear first-order term, which makes it less

convenient to work with than Œu�j , so we will have to consider a slightly different

quantity. To see why, observe that when V D 0, then

(4.8) @2
t Œ.Œu�0j /2 C �j Œu�2j � D 4�j Œ.Œu�0j /2 C �j Œu�2j �:
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Equation (4.8) suggests looking at the quantity .Œu�0j /2C�j Œu�2j , but it will be more

convenient to look at the slightly different quantity .Œu�0j /2 C .1 C �j /Œu�2j . This is

because .Œu�0j /2C�j Œu�2j is a piece of the L2 norm of ru, but .Œu�0j /2C.1C�j / Œu�2j
also includes part of the L2 norm of u and hence corresponds to the full W 1;2 norm

of u; see equation (4.26) below.

LEMMA 4.2 The quantity Œ.Œu�0j /2 C .1 C �j /Œu�2j � satisfies the ODEs

@t

�
.Œu�0j /2 C .1 C �j /Œu�2j

	 D .4�j C 2/Œu�j Œu�0j � 2Œu�0j ŒV u�j ;(4.9)

@2
t Œ.Œu�0j /2 C .1 C �j /Œu�2j � D .4�j C 2/

�
.Œu�0j /2 C .1 C �j /Œu�2j

	
(4.10)

� .4�j C 2/Œu�2j � .6�j C 2/Œu�j ŒV u�j

C 2ŒV u�2j � 2Œu�0j Œ@t .V u/�j :

PROOF: Using Lemma 4.1, we get

1

2
.Œu�2j /0 D Œu�j Œu�0j ;(4.11)

1

2
.Œu�2j /00 D �j Œu�2j C .Œu�0j /2 � Œu�j ŒV u�j :(4.12)

Similarly, differentiating .Œu�0j /2 gives

1

2
@t .Œu�0j /2 D �j Œu�j Œu�0j � Œu�0j ŒV u�j ;(4.13)

1

2
@2

t .Œu�0j /2 D .�j Œu�j � ŒV u�j /2 C Œu�0j .�j Œu�0j � Œ@t .V u/�j /:(4.14)

The lemma follows by combining (4.11) with (4.13) and then (4.12) with (4.14).

�

The terms on the last line of (4.10) are the error terms that vanish when V D 0.

4.2 Projecting onto High Frequencies

In contrast to the rotationally symmetric case, the ODEs in the previous sub-

section do not imply exponential growth or decay of the individual Fourier coeffi-

cients. This is because the error terms involve the Fourier coefficients of V u and

cannot be absorbed. To get around this, we will instead consider simultaneously

all of the Fourier coefficients from some point on. To be precise, we fix a large

nonnegative integer m and let Hm.t/ be the “high frequency” part of the norm of

u.t; �/ given by

(4.15) Hm.t/ D
1X

j Dm

�
.Œu�0j /2.t/ C .1 C �j /Œu�2j .t/



:
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Likewise, let Lm.t/ be the left over “low frequency” part

(4.16) Lm.t/ D
m�1X
j D0

�
.Œu�0j /2.t/ C .1 C �j /Œu�2j .t/



:

Note that Hm.t/ is the contribution on the slice N � ftg to the square of the

W 1;2.N � Œ0; T �/ norm of the L2.N /-projection of the function u to the eigen-

spaces from m to 1. Likewise, Lm.t/ is the N �ftg part of the square of the W 1;2

norm of the L2.N /-projection of the function u to the eigenspaces below m.

The next lemma gives the key differential inequalities for Hm.t/ and Lm.t/.

LEMMA 4.3

H
00
m.t/ � .4�m � 6/Hm.t/ � 3

Z
N �ftg

Œ.V u/2 C jr.V u/j2�d�;(4.17)

L
00
m.t/ � .4�m�1 C 6/Lm.t/ C 5

Z
N �ftg

Œ.V u/2 C jr.V u/j2�d�:(4.18)

PROOF: We will first prove the bound for H00
m.t/ and then argue similarly for

L00
m.t/. Applying Lemma 4.2 and then summing over j gives

H00
m D

1X
j Dm

.4�j C 2/
�
.Œu�0j /2 C .1 C �j /Œu�2j

	 �
1X

j Dm

Œ.4�j C 2/Œu�2j �

�
1X

j Dm

�
.6�j C 2/Œu�j ŒV u�j � 2ŒV u�2j C 2Œu�0j ŒV u�0j

	
:

(4.19)

The first sum on the first line is at least .4�m C 2/Hm, while the second is at least

�4Hm.

We will now handle each of the three “error terms” in the second line. First, the

Cauchy-Schwarz inequality gives

2

1X
j Dm

.1 C �j /jŒu�j ŒV u�j j �
1X

j Dm

.1 C �j /
�
Œu�2j C ŒV u�2j

	

� Hm C
Z

N �ftg

Œ.V u/2 C jrN .V u/j2�d�;(4.20)

where the second inequality used the standard relation between the Fourier coef-

ficients of a function on N and those of its derivative. The second error term is

clearly nonnegative. For the last error term, we again use the Cauchy-Schwarz
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inequality to get

2

1X
j Dm

jŒu�0j ŒV u�0j j �
1X

j Dm

Œ.Œu�0j /2 C .ŒV u�0j /2�

� Hm C
Z

N �ftg

.@t .V u//2 d�:

(4.21)

Substituting the bounds (4.20) and (4.21) into (4.19) gives

H
00
m � .4�m � 6/Hm � 3

Z
N �ftg

Œ.V u/2 C jrN .V u/j2�d�

�
Z

N �ftg

.@t .V u//2 d�;

(4.22)

giving the bound for H00
m.

The bound for L00
m.t/ follows similarly except that the second term on the first

line of (4.19) now has the right sign and the term corresponding to the second error

term for Hm now has the wrong sign. We bound this term by

(4.23) 2

m�1X
j D0

ŒV u�2j � 2

Z
N �ftg

.V u/2 d�:

�

COROLLARY 4.4 There is a constant C depending only on kV kC 0;1 (but not on

m/ so that

H
00
m � .4�m � C /Hm � CLm;(4.24)

L00
m � .4�m�1 C C /Lm C CHm:(4.25)

PROOF: Integrating by parts on the closed manifold N and using that r D
rN C @t gives

(4.26)

Z
N �ftg

Œu2 C jruj2�d� D
1X

j D0

Œ.1 C �j /Œu�2j C .Œu�0j /2� D Lm C Hm:

It is easy to see that there is a constant c depending on kV kC 0;1 so thatZ
N �ftg

Œ.V u/2 C jr.V u/j2�d� � c

Z
N �ftg

Œu2 C jruj2�d�

D c.Lm C Hm/;

(4.27)

where the equality used (4.26). The corollary follows from using this bound on the

error terms in Lemma 4.3. �
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4.3 Taking Advantage of Gaps in the Spectrum

The next proposition proves a differential inequality for an integer m where

�m � �m�1 is large.

PROPOSITION 4.5 There exists a constant � > 0 depending on kV kC 0;1 so that

if m is an integer with �m � �m�1 > �, then

(4.28) .Hm � Lm/00 � .4�m�1 C 2�/.Hm � Lm/:

PROOF: To see this, apply Corollary 4.4 to get C depending only on kV kC 0;1

so that

.Hm � Lm/00 � .4�m � C /Hm � CLm � .4�m�1 C C /Lm � CHm

D .4�m�1 C 2C /.Hm � Lm/ C 4.�m � �m�1 � C /Hm:(4.29)

�

4.4 The Three Circles Inequality

We will next use Proposition 4.5 to prove the three circles inequality. In fact,

we will prove a more general inequality than the one stated in Theorem 0.2. To

state this, let N be any closed n-dimensional Riemannian manifold satisfying (0.2)

and set

(4.30) I.s/ D
Z

N �fsg

.u2 C jruj2/d�:

THEOREM 4.6 There exists a constant C > 0 depending on kV kC 0;1 so that if ˛

satisfies

(4.31) ˛ � 1

T

�
log

I.T /

I.0/

�
;

then

(4.32) log I.t/ � C C .c3 C C C j˛j/ t C log I.0/;

where the constant c3 is given by15

(4.33) c3 D min
m

˚
2�

1=2
m�1 � j˛j

ˇ̌
�m � �m�1 > C and 2�

1=2
m�1 > j˛j�:

Before getting to the proof of Theorem 4.6, we will make a few remarks. First,

when we have equality in (4.31), then Theorem 4.6 also applies to the reflected

function Nu.t/ D u.T �t / with �˛ in place of ˛. Next, observe that (4.32) simplifies

considerably when

(4.34) ˛ D 1

T

�
log

I.T /

I.0/

�
� 0:

15 The only place where we use the spectral gaps given by (0.2) is to get an m satisfying (4.33).
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Namely, when (4.34) holds, then we get

(4.35) log I.t/ � C C .c3 C C /t C t

T
log I.T / C T � t

T
log I.0/:

PROOF OF THEOREM 4.6: We will first use the spectral gap to bound Hm.t/

in terms of Lm.t/ and Hm.0/ for some fixed m. The key for this is that Proposi-

tion 4.5 gives a constant � > 0 depending on kV kC 0;1 so that if m is an integer

with

(4.36) �m � �m�1 � �;

then we have

(4.37) .Hm � Lm/00 � .4�m�1 C 2�/.Hm � Lm/:

Fix some m so that (4.36) holds and

(4.38) 4�m�1 > ˛2:

On the interval Œ0; T �, we define a function f by

(4.39) f .t/ D e�˛t .Hm � Lm/.t/I
then

f .0/ D .Hm � Lm/.0/;(4.40)

f .T / � .Hm C Lm/.0/

.Hm C Lm/.T /
.Hm � Lm/.T / � .Hm C Lm/.0/;(4.41)

f 0 D e�˛t Œ.Hm � Lm/0 � ˛.Hm � Lm/�;(4.42)

f 00 D e�˛t Œ.Hm � Lm/00 � 2˛.Hm � Lm/0 C ˛2.Hm � Lm/�:(4.43)

By the maximum principle, at an interior maximum t0 2 .0; T / for f , f 0.t0/ D 0

and f 00.t0/ � 0. Hence, by (4.42) and (4.43)

(4.44) .Hm � Lm/00.t0/ � ˛2.Hm � Lm/.t0/:

However, this contradicts (4.37) and (4.38) if f .t0/ > 0, so we conclude that f

does not have a positive interior maximum. Therefore, for all t 2 Œ0; T �, we have

that

(4.45) f .t/ � maxf0; f .0/; f .T /g � .Hm C Lm/.0/ D I.0/:

This implies that .Hm � Lm/.t/ � e˛tI.0/, and hence

(4.46) Hm.t/ � Lm.t/ C e˛tI.0/:

To complete the proof, we will substitute (4.46) into a differential inequality

for Lm.t/ and use this to prove an exponential upper bound for Lm.t/. To get the
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differential inequality, recall that (4.9) in Lemma 4.2 givesˇ̌
@t Œ.Œu�0j /2 C .1 C �j /Œu�2j �

ˇ̌
D

ˇ̌
.4�j C 2/Œu�j Œu�0j � 2ŒV u�j Œu�0j

ˇ̌
� 2.1 C �j /1=2

�
.Œu�0j /2 C .1 C �j /Œu�2j

	 C ŒV u�2j C .Œu�0j /2:(4.47)

Summing this up to .m � 1/ and bounding the .V u/ terms as in (4.27) gives

(4.48) jL0
m.t/j � �

2�
1=2
m�1 C C

	
Lm.t/ C CHm.t/;

where C depends only on kV kC 0;1 . Using the bound (4.46), we get

jL0
m.t/j � c1Lm.t/ C C e˛tI.0/;(4.49)

where we set

(4.50) c1 D 2
�
�

1=2
m�1 C C

	
to simplify notation. In particular, the function

(4.51) Lm.t/e�c1t C C

c1 � ˛
I.0/e.˛�c1/t

is nonincreasing on Œ0; T �; we conclude that

(4.52) Lm.t/ � ec1t
Lm.0/ C C

c1 � ˛
I.0/.ec1t � e˛t / � c2ec1tI.0/;

where we have set c2 D .1 C C
c1�j˛j

/ � 1. Substituting (4.52) into (4.46) gives a

bound for I.t/ D Hm.t/ C Lm.t/:

(4.53) I.t/ � 2Lm.t/ C e˛tI.0/ � 2c2ec1tI.0/ C e˛tI.0/ � .2c2 C 1/ec1tI.0/;

where the last inequality used that c1 > j˛j. The theorem follows from (4.53). �

We will next apply the three circles inequality of Theorem 4.6 to prove uniform

estimates for the W 1;2 norm of an at most exponentially growing solution u on

the half-cylinder N � Œ0; 1/, i.e., to prove Corollary 0.4.16 As in the statement of

Theorem 4.6, we will let I.s/ denote the W 1;2 of u on N � fsg.

PROOF OF COROLLARY 0.4: We will assume that ˛ > 0 (we can do this since

H˛ � H N̨ whenever ˛ � N̨ ). We will first use the definition of H˛ to bound I.T /

for large values of T and then use the three circles inequality to bound I.t/ in terms

of I.0/ and I.T /.

The interior Schauder estimates (theorem 6:2 in [19]) give a constant C de-

pending only on the C ˇ norm of V , where ˇ 2 .0; 1/ is fixed, so that for all t � 1

(4.54) I.t/ D
Z

N � ftg.u2 C jruj2/d� � C sup
N �Œt�1;tC1


juj2:

16 A similar argument, with Theorem 0.3 in place of Theorem 4.6, gives a corresponding result

on spheres and Zoll surfaces even when V is just bounded.
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If we also bring in the definition of H˛, i.e., (0.1), then we get that

(4.55) lim sup
T !1

.e�2˛.T C1/I.T // D 0:

Note that the bound (4.55) applies only in the limit as T goes to 1 and hence does

not give the corollary. However, it does give a sequence Tj ! 1 with

(4.56)
log I.Tj / � log I.0/

Tj
� 2˛:

Applying the three circles inequality of Theorem 4.6 on Œ0; Tj � gives

(4.57) log I.t/ � C.1 C t / C 2˛t C log I.0/;

and exponentiating this gives the corollary. �

Note that � in Corollary 0.4 also has to depend on the norm of V and not just

on ˛. In particular, � may have to be chosen positive even when ˛ is 0. This

can easily be seen by the following example for the one-dimensional Schrödinger

equation: Suppose that ‰ W R ! R is a smooth monotone nondecreasing function

with

(4.58)
‰.x/ D �1 for x < �1; ‰.x/ D x on Œ0; `�;

‰.x/ D ` C 1 for x > `:

Then u.x/ D e‰.x/ satisfies the Schrödinger equation u00 D ..‰0/2 C‰00/u D V u

for a bounded potential V with compact support. However, u is constant on

each end but grows exponentially on Œ0; `�. Similarly, one can easily construct

a bounded (but no longer with compact support) potential so that the correspond-

ing Schrödinger equation has a solution that grows exponentially on Œ0; `�, yet at

infinity the solution vanishes.

4.5 Unique Continuation

Rather than stating the most general three circles inequality possible, we have

tailored the statement of Theorem 4.6 to fit our geometric applications. We will

show here how to modify the proof to get strong unique continuation for the oper-

ator L on N � Œ0; 1/ since this is of independent interest:

PROPOSITION 4.7 If u is a solution on N � Œ0; 1/, where N satisfies (0.2), and

(4.59) lim inf
T !1

log I.T /

T
D �1;

then u is the constant solution u D 0.

PROOF: Observe that Theorem 4.6 implies that if I.0/ D 0, then u is the con-

stant solution u D 0 (this also follows from [2]). Therefore, it suffices to show

that I.0/ D 0. We will argue by contradiction, so suppose that I.0/ > 0. After

replacing u by I �1=2.0/u, we can assume that I.0/ D 1.
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Choose some m0 so that Hm.0/ < Lm.0/ for all m � m0. Using the spectral

gaps of N and Proposition 4.5, we can choose an arbitrarily large integer m > m0

with

(4.60) .Hm � Lm/00 � .4�m�1 C 1/.Hm � Lm/:

The rapid decay given by (4.59) guarantees that we can find T > 0 with

(4.61)
log I.T /

T
< �4�

1=2
m�1:

On the interval Œ0; T �, we define a function f by

(4.62) f .t/ D e2	
1=2
m�1t .Hm � Lm/.t/:

Using first that m � m0 and then using (4.61), we get that

(4.63) f .0/ < 0 and f .T / � e2	
1=2
m�1tI.T / < e�2	

1=2
m�1T :

Using the maximum principle as in (4.37)–(4.44), we see that f cannot have a

positive interior maximum and hence that

(4.64) .Hm � Lm/.t/ � e�2	
1=2
m�1

.tCT /:

Combining this with the bound (4.48) for L0
m gives

(4.65) jL0
m.t/j � �

2�
1=2
m�1 C C

	
Lm.t/ C C e�2	

1=2
m�1.tCT /;

where C depends only on kV kC 0;1 . It follows that the function

(4.66) eŒ2	
1=2
m�1CC 
tLm.t/ C eC t�2	

1=2
m�1T

is nondecreasing on Œ0; T �. Evaluating this function at 0 and T gives

(4.67) Lm.0/ � eŒ2	
1=2
m�1CC 
T Lm.T / C eC T �2	

1=2
m�1T � 2eC T �2	

1=2
m�1T :

However, since �m�1 can be arbitrarily large and C is fixed (i.e., does not depend

on m), we conclude that Lm.0/ D 0. Finally, this gives the desired contradiction

since I.0/ D Lm.0/ C Hm.0/ D 1 and Lm.0/ > Hm.0/. �

5 A Three Circles Theorem for Bounded Potentials

We will show in this section that Theorem 0.2 holds even for potentials that

are just bounded; i.e., the potential V does not have to be Lipschitz. This is The-

orem 0.3. This result will require larger spectral gaps than were needed for the

arguments in the Lipschitz case. Throughout this section, u will be a solution of

(5.1) �u D �V u

on a product N � Œ0; t �, where the potential V is bounded but is not assumed to be

Lipschitz.

The main place where the Lipschitz bound entered previously was when we

took second derivatives of jruj2. To avoid doing this, we will work with the
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L2 norm of the spectral projections of a solution u. Namely, we fix a large non-

negative integer m and let NHm.t/ and NLm.t/ be the “high frequency” and “low

frequency” parts, respectively, of u.t; �/ given by

(5.2) NHm.t/ D
1X

j Dm

Œu�2j .t/ and NLm.t/ D
m�1X
j D0

Œu�2j .t/:

Note that NH1=2
m is the L2 norm of the projection of u to the eigenspaces from m

to 1.

As in Section 4, we will derive a second-order ODE for NHm.t/ and use this to

control its growth. Unfortunately, the ODE (4.12) for the quantity Œu�2j , and thus

also for NHm.t/, is not as nice as for Œut �
2
j C �j Œu�2j because of the Œut �

2
j term on

the right-hand side. We will use the next lemma to get around this.

COROLLARY 5.1 Given t1 < t2, we get that

(5.3) .Œut �
2
j � �j Œu�2j /.t2/ � .Œut �

2
j � �j Œu�2j /.t1/ D �2

Z t2

t1

.ŒV u�j Œut �j /dt:

PROOF: Differentiating .Œut �
2
j � �j Œu�2j / and then using Lemma 4.1 gives

@t .Œut �
2
j � �j Œu�2j / D 2.�j Œu�j � ŒV u�j /Œut �j � 2�j Œu�j Œut �j

D �2ŒV u�j Œut �j :
(5.4)

The corollary now follows from the fundamental theorem of calculus. �

The next lemma will give the key differential inequality for NHm.t/. To state

this, it will be useful to define J.t/ to be the square of the L2 norm of u on N �ftg,

i.e.,

(5.5) J.t/ D
Z

N �ftg

u2 d�:

LEMMA 5.2

NH00
m.t/ � .4�m � 1/ NHm.t/ �

Z
N �ftg

.V u/2 d�

� 2

Z
N �ft0g

jruj2 d� � J 0.t/ C J 0.t0/

� 2

Z
N �.t0;t/

Œ.V 2 C jV j/u2�:

(5.6)
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PROOF: Applying Lemma 4.1 and then summing over j gives

NH00
m D 2

1X
j Dm

ŒŒut �
2
j C �j Œu�2j � Œu�j ŒV u�j �(5.7)

D 2

1X
j Dm

�
2�j Œu�2j � Œu�j ŒV u�j C .Œut �

2
j � �j Œu�2j /.t0/

� 2

Z t

t0

.ŒV u�j Œut �j /ds

�
;

where the second equality used Corollary 5.1.

We will now handle each of the three “error terms” in the second line. First, the

Cauchy-Schwarz inequality gives

(5.8) 2

ˇ̌̌
ˇ

1X
j Dm

Œu�j ŒV u�j

ˇ̌̌
ˇ �

1X
j Dm

�
Œu�2j C ŒV u�2j

	 � NHm C
Z

N �ftg

.V u/2 d�;

where the second inequality used the standard relation between the Fourier coef-

ficients of a function on N and its L2 norm. The second error term is bounded

by

2

ˇ̌̌
ˇ

1X
j Dm

.Œut �
2
j � �j Œu�2j /

ˇ̌̌
ˇ.t0/ � 2

1X
j D0

.�j Œu�2j C Œut �
2
j /.t0/

D 2

Z
N �ft0g

jruj2 d�;

(5.9)

where the equality used the standard relation between the Fourier coefficients of

a function on N and those of its derivative. Similarly, for the last error term, the

Cauchy-Schwarz inequality gives

(5.10) 4

ˇ̌̌
ˇ

1X
j Dm

Z t

t0

.ŒV u�j Œut �j /ds

ˇ̌̌
ˇ � 2

Z t

t0

� Z
N �fsg

Œ.V u/2 C .ut /
2�d�

�
ds:

The first term in (5.10) is of the right form, but it will be convenient to get a

lower-order bound for the .ut /
2 term. To do this, we use Stokes’ theorem to get

(5.11) 2

Z
N �.t0;t/

Œjruj2 � V u2� D J 0.t/ � J 0.t0/;

so we get that

(5.12) 2

Z
N �.t0;t/

.ut /
2 � 2

Z
N �.t0;t/

jruj2 D J 0.t/ � J 0.t0/ C 2

Z
N �.t0;t/

V u2:
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Finally, substituting the bounds (5.8)–(5.10) and (5.12) into (5.7) gives the lemma.

�

We get the following immediate corollary of Lemma 5.2; note that the square

of the W 1;2 norm of the projection to the low frequencies, i.e., Lm, appears in the

bound.

COROLLARY 5.3 There exists a constant C depending only on sup jV j so that

NH00
m � .4�m � C / NHm � NH0

m � 3I.t0/ � C NLm � 2. NLmLm/1=2

� C

Z t

t0

Œ NHm.s/ C NLm.s/�ds:
(5.13)

PROOF: To bound the first “error term” from Lemma 5.2, bound V by sup jV j
to get

(5.14)

Z
N �ftg

.V u/2 d� � sup jV j2
Z

N �ftg

u2 d� D sup jV j2Œ NHm.t/ C NLm.t/�:

Similarly, the last error term is bounded by

(5.15) 2

Z
N �.t0;t/

Œ.V 2 CjV j/u2� � 2.sup jV jCsup jV j2/

Z t

t0

Œ NHm.s/C NLm.s/�ds:

The second error term 2
R

N �ft0g jruj2 d� is trivially bounded by 2I.t0/. This

leaves only the two J 0 terms. Use Cauchy-Schwarz to bound the second of these

by

(5.16) jJ 0.t0/j D 2

ˇ̌̌
ˇ

Z
N �ft0g

uut d�

ˇ̌̌
ˇ �

Z
N �ft0g

.u2 C u2
t /d� � I.t0/:

To bound J 0.t/, observe first that

j NL0
mj D 2

ˇ̌̌ m�1X
j D0

Œu�j Œut �j

ˇ̌̌
� 2

h m�1X
j D0

Œu�2j

i1=2h m�1X
j D0

Œut �
2
j

i1=2

� 2. NLmLm/1=2;

(5.17)

so we get

(5.18) J 0 D NH0
m C NL0

m � NH0
m C 2. NLmLm/1=2:

The corollary now follows from Lemma 5.2. �

The next lemma gives the key differential inequality for Lm that will be used

later to get an upper bound for Lm.t/ (a similar but slightly less sharp bound was

given in (4.48)).
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LEMMA 5.4 There exists a constant C > 0 depending only on sup jV j so that

(5.19) jL0
mj � 2.�m�1 C 1/1=2

Lm C C

q
NLm C NHm

p
Lm:

PROOF: To get the differential inequality, recall from (4.47) that Lemma 4.2

gives

@t

�
.Œu�0j /2 C .1 C �j /Œu�2j

	
D .4�j C 2/Œu�j Œu�0j � 2Œu�0j ŒV u�j

� 2.�j C 1/1=2
�
Œut �

2
j C .�j C 1/Œu�2j

	 C 2jŒV u�j Œut �j j:(5.20)

Summing this up to .m � 1/ and then using the Cauchy-Schwarz inequality for

series gives

(5.21) jL0
mj � 2.�m�1 C 1/1=2Lm C C

p
J

p
Lm;

where the constant C depends only on sup jV j. �

5.1 Exponentially Weighted sup Bounds for NHm, NLm, and Lm

We will next record an immediate consequence of Corollary 5.3 where the last

three terms in (5.13) are bounded in terms of the sup norms of NHm, NLm, and Lm

against an exponential weight. To make this precise, for each constant ˛ > 0, we

define the exponentially weighted sup norm bounds Nh˛;m, Ǹ
˛;m, and `˛;m by

Nh˛;m D max
Œ0;T 


Œ NHm.t/e�˛t �;(5.22)

Ǹ
˛;m D max

Œ0;T 

Œ NLm.t/e�˛t �;(5.23)

`˛;m D max
Œ0;T 


ŒLm.t/e�˛t �:(5.24)

Clearly, by definition, we have that

(5.25) NHm.t/ � Nh˛;me˛t ; NLm.t/ � Ǹ
˛;me˛t ; Lm.t/ � `˛;me˛t :

Substituting these bounds into the differential inequality for NHm gives the fol-

lowing:

COROLLARY 5.5 There exists a constant C depending only on sup jV j so that for

˛ � 1

NH00
m � .4�m � C / NHm � NH0

m � 3I.t0/

� ŒC. Ǹ
˛;m C Nh˛;m/ C 2. Ǹ

˛;m`˛;m/1=2�e˛t :
(5.26)

PROOF: The corollary will follow directly from Corollary 5.3 by using (5.25)

to bound the last three terms in (5.13). The bounds on NLm and . NLmLm/1=2 follow

immediately from (5.25). Finally, to bound the last term in (5.13), note that

(5.27)

Z t

t0

Œ NHm.s/ C NLm.s/�ds � . Nh˛;m C Ǹ
˛;m/

Z t

t0

e˛sds �
Nh˛;m C Ǹ

˛;m

˛
e˛t :
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The corollary now follows from substituting these bounds into (5.13). �

5.2 Taking Advantage of Gaps in the Spectrum

Fix a constant � � 1 to be chosen (depending only on sup jV j) and then choose

a constant N̨ � � with

(5.28) ˛ � 1

T

�
log

I.T /

I.0/

�
� N̨ ;

and so that there exists m with

2.�m�1 C 1/1=2 C 1 � N̨ ;(5.29)

N̨2 C N̨ � 4�m � �:(5.30)

We will use the spectral gaps to show that such an N̨ always exists when N is a

round sphere of a Zoll surface.

PROPOSITION 5.6 If N̨ � 1 satisfies (5.28), (5.29), and (5.30) for some constant

� � 1 depending only on sup jV j, then for all t 2 Œ0; T �

(5.31)

Z
N �ftg

u2 d� � CI.0/e N̨ t ;

where C depends only on sup jV j.
The proof of Proposition 5.6 will be divided into four steps. First, we bound

Ǹ
N̨ ;m in terms of ` N̨ ;m and I.0/. Second, we use (5.29) to bound ` N̨ ;m in terms of

Ǹ
N̨ ;m, Nh N̨ ;m, and I.0/. Third, we combine these to bound both Ǹ

N̨ ;m and ` N̨ ;m in

terms of Nh N̨ ;m and I.0/. Finally, we substitute these bounds into the differential

inequality for NH00
m to bound Nh N̨ ;m in terms of I.0/. In this last step, Nh N̨ ;m will show

up on both sides of the inequality, but (5.30) will allow us to absorb the terms on

the right-hand side.

PROOF OF PROPOSITION 5.6:

Bounding Ǹ
N̨ ;m. To bound Ǹ

N̨ ;m, use (5.17) to get

(5.32) j NL0
mj � 2. NLmLm/1=2 � 2 NL1=2

m ` N̨ ;me N̨ t=2:

On the interval Œ0; T �, we define a function f1.t/ D e� N̨ t NLm.t/, so that

f1.0/ � I.0/ and f1.T / � I.0/;(5.33)

f 0
1 D e� N̨ t Œ NL0

m � N̨ NLm�:(5.34)

Observe that the maximum of f1 on Œ0; T � is precisely Ǹ
N̨ ;m. Hence, if the maxi-

mum of f1.t/ occurs at a point s in the interior .0; T /, then we get

(5.35) N̨ Ǹ
N̨ ;me N̨s D N̨ NLm.s/ D NL0

m.s/ � 2 Ǹ1=2
N̨ ;m`

1=2
N̨ ;me N̨s:



1574 T. H. COLDING, C. DE LELLIS, AND W. P. MINICOZZI II

Combining this with the fact that f1 � I.0/ at both endpoints gives that

(5.36) Ǹ
N̨ ;m � 4

N̨2
` N̨ ;m C I.0/:

Bounding ` N̨ ;m. Substituting the bound (5.25) for NHm into Lemma 5.4 gives

(5.37) jL0
m.t/j � 2.�m�1 C 1/1=2

Lm.t/ C C

q
Nh N̨ ;m C Ǹ

N̨ ;m e N̨ t=2
p
Lm.t/:

Consequently, if the maximum of f2.t/ D e� N̨ tLm.t/ occurs at a point s in the

interior .0; T /, then we get

(5.38)

N̨` N̨ ;me N̨s D N̨Lm.s/

D L
0
m.s/

� 2.�m�1 C 1/1=2` N̨ ;me N̨s C C. Nh N̨ ;m C Ǹ
N̨ ;m/1=2`

1=2
N̨ ;me N̨s;

so we would get that

(5.39) . N̨ � 2.�m�1 C 1/1=2/` N̨ ;m � C. Nh N̨ ;m C Ǹ
N̨ ;m/1=2`

1=2
N̨ ;m:

Using (5.29), we would then get that

(5.40) ` N̨ ;m � C. Nh N̨ ;m C Ǹ
N̨ ;m/;

where the constant C depends only on sup jV j. Combining this with the fact that

e� N̨ tLm.t/ � I.0/ at the endpoints, we get that

(5.41) ` N̨ ;m � C. Nh N̨ ;m C Ǹ
N̨ ;m/ C I.0/:

Bounding both ` N̨ ;m and Ǹ
N̨ ;m in terms of Nh N̨ ;m and I.0/. If we substitute the

bound (5.36) into (5.41), then we get

(5.42) ` N̨ ;m � CI.0/ C C

�
Nh N̨ ;m C 4

N̨2
` N̨ ;m

�
:

As long as N̨2 � 8C , then we can absorb the ` N̨ ;m-term on the right to get

(5.43) ` N̨ ;m � 2CI.0/ C 2C Nh N̨ ;m:

Finally, substituting this back into (5.36) gives

(5.44) Ǹ
N̨ ;m � 2I.0/ C Nh N̨ ;m:

Bounding Nh N̨ ;m in terms of I.0/. The starting point is to substitute the bounds

(5.43) and (5.44) into Corollary 5.5 to get

NH00
m � .4�m � C / NHm � NH0

m � 3I.0/

� ŒC. Ǹ
˛;m C Nh˛;m/ C 2. Ǹ

˛;m`˛;m/1=2�e N̨ t

� .4�m � C / NHm � NH0
m � C Œ Nh˛;m C I.0/�e N̨ t ;
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where C depends only on sup jV j and we absorbed the 3I.0/ term into the last

term. Define a function f3.t/ D e� N̨ t NHm.t/ on Œ0; T � so that f3 is bounded by

I.0/ at 0 and T and

f 0
3 D e� N̨ t Œ NH0

m � N̨ NHm�;(5.45)

f 00
3 D e� N̨ t Œ NH00

m � 2 N̨ NH0
m C N̨2 NHm�:(5.46)

At an interior maximum s 2 .0; T / for f3, we have f 0
3.s/ D 0 and f 00

3 .s/ � 0.

Hence, by (5.45) and (5.46)

NH0
m.s/ D N̨ NHm.s/ D N̨ Nh N̨ ;me N̨s;(5.47)

NH00
m.s/ � N̨2 NHm.s/ D N̨2 Nh N̨ ;me N̨s:(5.48)

Combining these with (5.45) and multiplying through by e� N̨s would give

(5.49) .4�m � C / Nh N̨ ;m � N̨ Nh N̨ ;m � C. Nh N̨ ;m C I.0// � N̨2 Nh N̨ ;m:

If we now substitute (5.30) into this, then we would get that

(5.50) Nh N̨ ;m � .4�m � 2C � N̨2 � N̨ / Nh N̨ ;m � CI.0/:

On the other hand, if the maximum of f3 occurs at 0 or T , then we would get
Nh N̨ ;m � I.0/ so we conclude that (5.50) holds in either case. Combining all of this

gives that

(5.51) max
Œ0;T 


�
e� N̨ t

Z
N �ftg

u2 d�

�
� Nh N̨ ;m C Ǹ

N̨ ;m � CI.0/:

�

5.3 Choosing N̨

We will now show that Proposition 5.6 implies Theorem 0.3. The difference

between the bounds in Proposition 5.6 and those in Theorem 0.3 is that the con-

stant N̨ in Proposition 5.6 depends on the spectral gaps for the manifold N . On the

other hand, when N D S
n (or a Zoll surface), we can use the explicit eigenvalue

gaps to bound .j N̨ j � j˛j/ uniformly. Namely, since the mth cluster of eigenvalues

on S
n occurs at

(5.52) bm D m2 C .n � 1/m;

we get that

(5.53) bm�1 D m2 C .n � 3/m C 2 � n and

.bm�1 C 1/1=2 D m C n � 3

2
C O.m�1/;

where O.m�1/ denotes a term that is bounded by C m�1 for all m ¤ 0. This gives

(5.54) 4bm � .2.bm�1 C 1/1=2 C 1/2 � .2.bm�1 C 1/1=2 C 1/ D 2m C O.1/:
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The key point is that the coefficient of the leading-order term is positive, so there

exists some m0 depending only on � and n so that both (5.29) and (5.30) hold for

all m � m0 with

(5.55) N̨ D 2.bm�1 C 1/1=2 C 1:

Next, let m1 be the smallest positive integer with

(5.56) 2.bm1�1 C 1/1=2 C 1 � ˛:

Since .bm�1 C 1/1=2 grows linearly in m, 2.bm1�1 C 1/1=2 C 1 � ˛ has a uniform

bound. Finally, let m be the maximum of m0 and m1, and define N̨ by (5.55). It

follows that we get a uniform bound for j N̨ j � j˛j that depends only on � and n.

A similar argument applies for Zoll surfaces. In particular, this discussion

shows that Proposition 5.6 gives Theorem 0.3.

5.4 The Frequency Function

The frequency function often gives an alternative approach to proving a three

circles inequality for second-order elliptic equations. This method is predicated

upon having a function whose Hessian is diagonal, such as jxj2 on R
nC1 or the

function t on N �R (see, e.g., [9]). However, we will see that this method does not

yield our three circles inequality but instead requires some integrability of V as in

[18]. For simplicity and clarity, we will restrict ourselves to the case S
1 � R.

The frequency function U.t/ measures the logarithmic rate of growth of a func-

tion u. Namely, if we set J.s/ D R
S1�fsg u2 d� , then the frequency is given by

(5.57) U.t/ D @t log J.t/ D J 0.t/

J.t/
:

This is useful because U.t/ is a monotone nondecreasing function of t if u is har-

monic17 and

(5.58) lim
t!�1

Z

S1�ftg

jruj2 d� D 0:

To see why U is monotone, first differentiate J to get that

J 0.s/ D 2

Z

S1�fsg

.uut /d�;(5.59)

J 00.s/ D 2

Z

S1�fsg

.u2
t C u2

� /d�;(5.60)

17 Equation (5.58) rules out functions like the linear function t where the frequency is not

monotone.
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where we used in the second equation that ut t D �u�� and integration by parts on

S
1. To get this in a better form, observe that since ut t D �u��

(5.61) @s

Z

S1�fsg

.u2
t � u2

� /d� D �2

Z

S1�fsg

@� .utu� /d� D 0:

Since we assumed that ru vanishes at �1 in (5.58), it follows that

(5.62)

Z

S1�fsg

u2
t d� D

Z

S1�fsg

u2
� d�:

Plugging this into formula (5.60) for J 00 gives

(5.63) J 00.s/ D 4

Z

S1�fsg

u2
t d�:

It now follows from the Cauchy-Schwarz inequality that .J 0/2 � JJ 00, so we

conclude that U 0 D ŒJ 00J � .J 0/2�=J 2 � 0 as claimed.

Suppose now that u is no longer harmonic but instead satisfies the Schrödinger

equation �u D �V u. In this case, we get that

(5.64) J 00.s/ D 2

Z

S1�fsg

.u2
t C u2

� � V u2/d�;

introducing the “error term” � R
S1�fsg V u2 d� in J 00.s/ and giving an estimate of

the form

(5.65) .log J /00 D U 0 � �C sup jV j:
However, this lower bound is not integrable in t , so U can decrease by an

arbitrarily large amount over a long enough stretch. We will see next that this

method does not yield the three circles inequality of Theorem 0.2, i.e.,

(5.66) log I.t/ � C.1 C t / C t

T

ˇ̌̌
ˇlog

I.T /

I.0/

ˇ̌̌
ˇ C log I.0/:

Namely, integrating (5.65) from s to T gives

(5.67) U.s/ � U.T / C C.T � s/;

and integrating this from 0 to t gives

(5.68) log J.t/ D log J.0/ C
Z t

0

U.s/ds � log J.0/ C t .U.T / C C T /:

To see why (5.66) is sharper than (5.68), suppose that jU.T /j and jlog I.T /j=T are

uniformly bounded, but let T go to infinity. In this case, the upper bound in (5.66)

goes to log I.0/ C C.1 C t /, whereas the upper bound in (5.68) goes to infinity.
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It is interesting to note that N. Garofalo and F.-H. Lin [18] proved unique con-

tinuation in a similar setting by using the frequency function under the stronger

assumption that

(5.69)

Z
R

. sup
S1�fsg

jV j/ds < 1:

6 Dimension Bounds on a Manifold with Cylindrical Ends

In this section, we consider functions u in H0 that solve the Schrödinger equa-

tion �u D �V u for a general bounded potential V on a manifold M with finitely

many cylindrical ends, each of which is the product of a half-line with a round

sphere or a Zoll surface.18 In particular, M can be decomposed into a bounded

region � together with a finite collection of ends E1; : : : ; Ek where


 � has compact closure and


 each Ej is isometric to Nj � Œ0; 1/, where Nj is either a sphere or a Zoll

surface.

The main result of this section is that H˛.M / is finite dimensional for every

˛ 2 R.

THEOREM 6.1 The linear space H˛ has dimension at most

(6.1) d D d.˛; sup jV j; �/:

Note that F. Hang and F.-H. Lin [21] proved a similar result under the stronger

hypothesis that sup jV j < � for some sufficiently small � > 0.

6.1 A Consequence of Unique Continuation

We will need an estimate that relates the W 1;2 norm of a solution u on the

boundary of � to its W 1;2 norm inside �. This is given in the next lemma, where

we will use T1.�/ to denote the tubular neighborhood of radius 1 about �.

LEMMA 6.2 Given ˛ � 0, there exists a constant C depending on ˛, �, and

sup jV j so that if u 2 H˛, then

(6.2)

Z
T1.�/

.u2 C jruj2/ � C

Z
@�

.u2 C jruj2/:

PROOF: We will argue by contradiction, so suppose instead that there is a se-

quence of functions uj with �uj D �Vj uj where we have a uniform bound for

sup jVj j, each uj is in H˛.� C Vj /, and

(6.3)

Z
T1.�/

.u2
j C jruj j2/ > j

Z
@�

.u2
j C jruj j2/:

18 A similar argument applies when the ends have spectral gaps as in (0.2) and V is Lipschitz.
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The key to the compactness argument is that Corollary 0.4 gives a constant � > 0

(independent of j ) so that

(6.4)

Z
T1.�/n�

.u2
j C jruj j2/ � �

Z
@�

.u2
j C jruj j2/:

Therefore, after renormalizing the uj ’s, we get that

(6.5)

Z
T1.�/

.u2
j C jruj j2/ D 1 and

Z
T1.�/n�

.u2
j C jruj j2/ <

�

j
:

The interior W 2;p estimates (see, for instance, theorem 9.11 in [19]) then give a

uniform W 2;2.T3=4.�// bound for the uj ’s. By combining this with the Sobolev

inequality (theorem 7.26 in [19]), we get uniform higher Lp bounds on the uj ’s,

and hence on Vj uj , and then elliptic theory again gives a higher W 2;p bound on

the uj ’s. After repeating this a finite number of times (depending on n), we will

get a uniform W 2;p bound for p > .n C 1/. Once we have this, the Sobolev

embedding (theorem 7.26 in [19]) gives a uniform C 1;� bound

(6.6) kuj kC 1;�.T1;2.�// � QC ;

where 
 > 0 and QC does not depend on j . We will refer to this argument as

“bootstrapping.”

It follows from (6.6) that a subsequence of the uj ’s converges uniformly in

C 1.T1=2.�// to a function u and thus, by (6.5), u satisfies

(6.7)

Z
�

.u2 C jruj2/ D 1 and

Z
T1=2.�/n�

.u2 C jruj2/ D 0:

We will see that this violates unique continuation of [2] since u vanishes on an

open set but is not identically 0. Namely, since the uj ’s satisfy

(6.8) j�uj j D jVj j juj j � .sup
j

sup
M

jVj j/juj j � C 0juj j;

it follows that

(6.9) j�uj � C 0juj:
Finally, the differential inequality (6.9) allows us to directly apply [2]. �

6.2 The Proof of Theorem 6.1

By getting an upper bound for the number of W 1;2.@�/-orthonormal functions

in H˛.M /, we will prove Theorem 6.1; cf. [8].
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PROOF OF THEOREM 6.1: Assume that u1; : : : ; ud are functions in H˛.M /

that are W 1;2.@�/-orthonormal, i.e., with

(6.10)

Z
@�

.uiuj C hrui ; ruj i/ D ıij :

It follows from Corollary 0.4 that we can find a set of such functions for any finite

d that is less than or equal to dim.H˛/. Therefore, the theorem will follow from

proving an upper bound on d .

Let U denote the vector space spanned by the uj ’s, and define the projection

kernel K.x; y/ to U on @� � @� by

(6.11) K.x; y/ D
dX

j D1

�
uj .x/uj .y/ C hruj .x/; ruj .y/i
:

Note that
R

@� K.x; x/ D d . We will also need the following standard estimate for

K.x; x/:

(6.12) K.x; x/ � .n C 1/ sup
u2U nf0g

u2.x/ C jruj2.x/R
@�.u2 C jruj2/

:

To see this, observe first that K.x; x/ can be thought of as the trace of a symmetric

quadratic form on U and is therefore independent of the choice of a W 1;2.@�/-

orthonormal basis for U . Since the map taking u 2 U to .u.x/; ru.x// is a

linear map from U to R
nC1, we can choose a new W 1;2.@�/-orthonormal basis

v1; : : : ; vd for U so that vj .x/ and rvj .x/ vanish for every j > .n C 1/. Express-

ing K.x; x/ in this new basis gives

(6.13) K.x; x/ D
nC1X
j D1

.v2
j .x/ C jrvj j2.x//;

and (6.12) follows.

We will use (6.12) to prove a pointwise estimate for K.x; x/. Namely, Lem-

ma 6.2 implies for any u 2 U n f0g that

(6.14)

Z
T1.�/

.u2 C jruj2/ � C

Z
@�

.u2 C jruj2/;

where C depends only on ˛, �, and sup jV j. Applying the bootstrapping argu-

ment of (6.6) to u, i.e., interior W 2;p estimates and the Sobolev embedding (theo-

rems 9.11 and 7.26 in [19]), we get

(6.15) u2.x/ C jruj2.x/ � C

Z
@�

.u2 C jruj2/;
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where the new constant C still depends only on ˛, �, and sup jV j. Substituting

this back into (6.12) and integrating gives

(6.16) d D
Z

@�

K.x; x/ � .n C 1/C Vol.@�/;

a uniform bound giving the desired upper bound for d . �

7 Density of Potentials with H0 D f0g

As in the previous section, we will consider Schrödinger operators �CV where

V is a bounded potential on a fixed manifold M with finitely many cylindrical ends,

each of which is the product of a half-line with a round sphere or a Zoll surface.19

In particular, M can be decomposed into a bounded region � together with a finite

collection of ends E1; : : : ; Ek where


 � has compact closure and


 each Ej is isometric to Nj � Œ0; 1/, where Nj is either a sphere or a Zoll

surface.

The main result of this section, Proposition 7.1, shows that the set of potentials

V where H0 D f0g is dense.

PROPOSITION 7.1 Suppose that L D � C V and f is a nonnegative bounded

function with compact support in � that is positive somewhere. There exists �0 > 0

so that for all � 2 .0; �0/ we have

(7.1) H0.L C � f / D f0g:
One of the key properties that we will need in the proof is that if u and v are

solutions of Lu D Lv D 0, then

(7.2) div.urv � vru/ D 0:

Motivated by this, we define the skew-symmetric bilinear form !. 	 ; 	 / on functions

that are in L2.@�/ and whose normal derivatives are in L2.@�/ by setting

(7.3) !.u; v/ D
Z

@�

.u@nv � v@nu/:

The next lemma uses Stokes’ theorem and (7.2) to prove that if u and v are

solutions of Lu D Lv D 0 on M n � that vanish at infinity, then !.u; v/ D 0.

LEMMA 7.2 If u and v are functions on M n � that satisfy Lu D Lv D 0 and go

to 0 at infinity on each end Ej , then

(7.4) !.u; v/ D 0:

19 A similar argument applies when the ends have spectral gaps as in (0.2) and V is Lipschitz.
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PROOF: Since u and v go to 0 at infinity, the bootstrapping argument of (6.6)

implies that

(7.5) lim
t!1

mX
j D1

Z
Nj �ftg

.u2 C v2 C jruj2 C jrvj2/
ˇ̌
Ej

d� D 0:

The lemma now follows since Stokes’ theorem and (7.2) imply that for any t � 0

we have

(7.6) !.u; v/ D
mX

j D1

Z
Nj �ftg

.u@nv � v@nu/
ˇ̌
Ej

d�:

�

PROOF OF PROPOSITION 7.1: Fix a nonnegative bounded function f having

compact support in �. We will prove the existence of such a �0 > 0 by contra-

diction. Suppose therefore that there exists a sequence �j ! 0 and functions uj

with

(7.7) uj 2 H0.L C �j f / n f0g:
After dividing each uj by its W 1;2 norm on @� (this is nonzero by Lemma 6.2 and

unique continuation [2]), we can assume that

(7.8)

Z
@�

.u2
j C jruj j2/ D 1:

Lemma 6.2 then gives a constant C depending on �, sup jV j, and sup jf j so that

(7.9)

Z
T1.�/

.u2
j C jruj j2/ � C:

The bootstrapping argument (that is, W 2;p estimates and Sobolev embedding;

cf. (6.6)) then gives uniform C 1;� estimates for the uj ’s on the smaller tubular

neighborhood for some 
 > 0. Therefore, there is a subsequence (which we will

still denote uj ) so that uj and ruj converge uniformly in T1=2.�/, and the limiting

function u satisfies the limiting equation20

(7.10) Lu D 0:

Since uj and ruj converge uniformly on @�, we get thatZ
@�

.u2 C jruj2/ D lim
j !1

Z
@�

.u2
j C jruj j2/ D 1;(7.11)

!.u; uk/ D lim
j !1

!.uj ; uk/ D 0;(7.12)

20 Initially we only know that Lu D 0 weakly, but elliptic regularity then implies that u is a

strong solution.
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where the last equality follows from Lemma 7.2 since Luj D Luk D 0 outside

of � and both vanish at infinity on E1; : : : ; Ek (recall that f has compact support

in �). Note that (7.12) would have followed from Lemma 7.2 alone if we had

known that u also vanishes at infinity.

To get a contradiction, we note that

(7.13) div.uruk � ukru/ D ��kf uku;

so that (7.12) and Stokes’ theorem gives

(7.14) 0 D !.u; uk/ D
Z
�

div.uruk � ukru/ D ��k

Z
�

f uuk :

In particular, since �k > 0, we must have

(7.15)

Z
�

f uuk D 0:

Since uk ! u uniformly in �, these integrals converge to the integral of f u2, so

we get that

(7.16)

Z
�

f u2 D 0:

Since f is nonnegative but positive somewhere, we conclude that u vanishes on

an open set and, by unique continuation [2], that u is identically 0. However, this

contradicts (7.11), so we conclude that no such sequence could have existed. The

proposition follows. �

We can now sum up what we have proven so far:

THEOREM 7.3 Theorem 0.1 holds when each end is isometric to a half-cylinder.

Strictly speaking, we have shown the density of potentials where H0 D f0g
but have not yet addressed the density of metrics where H0 D f0g, namely, the

more general case of the theorem that holds for n D 1. However, this is an easy

consequence of what we have already shown. To see this, assume that M is two-

dimensional and change the metric g conformally by e2f , where f is bounded, to

get an equivalence between H0.�g C e2f V / and H0.�e2f g C V / (see (8.7)). So

long as V is not identically 0, this allows us to perturb the potential to a nearby

potential with H0 D f0g. In the remaining case, where V � 0 and the operator

is the Laplacian, it follows from Stokes’ theorem that H0 D f0g. Namely, the

gradient estimate implies that juj C jruj ! 0 at infinity, so Stokes’ theorem gives

that
R jruj2 D 0 and u must be constant; since the only constant that goes to 0 at

infinity is 0, we get H0 D f0g.

Example 7.4 (Set of potentials where H0 D f0g is not open). H0 D f0g is not

an open condition. Namely, it is easy to construct a sequence of potentials Vi on
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R with jVi jC 1 ! 0 as i ! 1 and so that dim H0.Vi / > 0 for each i (note that

H0.0/ D f0g; the limiting Schrödinger equation has potential equal to 0).

To be precise, as we saw right after Theorem 0.1, it is easy to construct a po-

tential V on the line (or the cylinder) such that there exists a solution to the corre-

sponding Schrödinger equation that goes exponentially to 0 at both plus and minus

infinity. (On the cylinder the potential, as well as the solution, can be taken to be

rotationally symmetric, i.e., independent of � .) In fact, the potential can be taken to

be constant (negative) outside a compact set. Pick such a potential and name it V .

On the line look at the rescalings, V�.t/ D �2V.�t/ (on the cylinder rescale just

in the t -direction; everything is rotationally symmetric). Each of the Schrödinger

equations u00 C V�u D 0 has solutions (namely, u�.t/ D u.�t/, where u is a solu-

tion to u00 C V u D 0) that decay exponentially to 0 at plus and minus infinity and

clearly jV�jC 1 ! 0 as � ! 0. Note also that in this example u� converges to the

constant function u.0/ as � goes to 0, which may be taken to be nonzero and is, of

course, in any case, a solution to the limiting Schrödinger equation u00 D 0.

8 Surfaces with More General Ends: The Case n D 1 of Theorem 0.1

We will show in this section that our results apply to a more general class of

surfaces, namely surfaces with bounded curvature, injectivity radius, and finitely

many ends that are each bi-Lipschitz to a half-cylinder. We will prove this by

finding a bi-Lipschitz conformal change of metric on such a surface that makes

each end isometric to a (flat) half-cylinder and then apply our earlier results. For

this, we will need the following proposition:

PROPOSITION 8.1 Suppose that E is topologically a half-cylinder S
1�Œ0; 1/ with

a Riemannian metric satisfying the following bounds:

(B1) The Gauss curvature KE is bounded above and below by jKE j � 1, and

the injectivity radius of E is bounded below by i0 > 0.

(B2) There is a bi-Lipschitz (bijection)

(8.1) F D .�; r/ W E ! S
1 � Œ0; 1/

with jdF j � `0 and jdF �1j � `0.

Then there exists a conformal map ˆ W E ! S
1 � Œ0; 1/ satisfying jdˆjC 1 � C

and jdˆ�1jC 1 � C for a constant C depending only on i0 and `0.

Remark 8.2. There are two natural equivalent norms for the differential dF , de-

pending on whether one thinks of dF.x/ as a vector in R
4 (Hilbert-Schmidt norm)

or as a linear operator on R
2 (operator norm). We will use the Hilbert-Schmidt

norm but will often use that jdF.x/.v/j � jdF.x/j jvj. If ˆ W .†; g/ ! . Q†; Qg/ is

a conformal map between surfaces, then this convention gives that

(8.2) ˆ�. Qg/ D 1

2
jdˆj2g and jdˆ�1j2 ı ˆ D 4jdˆj�2:
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Assuming Proposition 8.1 for the moment, we will now complete the remaining

case of Theorem 0.1 where n D 1 and the end merely has bounded geometry and

is bi-Lipschitz to a flat half-cylinder (as opposed to being isometric to it). Namely,

we prove the following theorem:

THEOREM 8.3 Let † be a complete noncompact surface with finitely many cylin-

drical ends, each of which has bounded geometry and is bi-Lipschitz to a flat half-

cylinder.

(i) If V is bounded (potential) on †, then H˛.†; �† C V / is finite dimen-

sional for every ˛I the bound for dim H˛ depends only on †, ˛, and

kV kL1 .

(ii) There is a dense set of bounded potentials with H0 D f0g. For each fixed

bounded V , there is a dense set of metrics (with finitely many cylindrical

ends) where H0 D f0g.

PROOF: Using Proposition 8.1 we will first show that there exists another met-

ric Qg on † for which each end is a flat cylinder and a conformal diffeomorphism

ˆ W .†; g/ ! .†; Qg/ with jdˆjC 1 � C and jdˆ�1jC 1 � C . To do this, we first

apply Proposition 8.1 to each end Ej of † to get conformal diffeomorphisms

(8.3) ĵ W Ej ! S
1 � R;

with a uniform C 1 bound for every j , i.e., a constant � so that away from @Ej we

have

(8.4) jd ĵ j; jrd ĵ j; jdˆ�1
j j; jrdˆ�1

j j � �:

Note that the pullback metric jd ĵ j2g makes the end Ej into a flat cylinder. It re-

mains to patch these metrics together across the compact part � D †nS
j Ej of †.

Let � be a smooth function on † that is identically 1 on the tubular neighborhood

of radius 1 about � and has compact support in † and then set

(8.5) Qg D .� C .1 � �/�Ej
jd ĵ j2/g:

Here �Ej
is the characteristic function of Ej .

To see how the operator � C V changes under a conformal change of metric,

let † be a surface with a Riemannian metric g, and f a smooth function on †. If u

is a solution of the Schrödinger equation �gu C V u D 0 on †, then u also solves

the equation �e2f guCe�2f V u D 0 for the conformally changed metric. Namely,

(8.6) �e2f gu D dive2f g.re2f gu/ D dive2f g.e�2f rgu/ D e�2f �gu:

From this we see that if g and Qg D e2f g are conformal metrics on a surface †,

then

(8.7) H0.�g C V / D H0.�e2f g C e�2f V /:

In particular, applying (8.7) to the surface † with cylindrical ends with Qg given

by (8.5), so that the ends of .†; Qg/ are isometric to the cylinder, we get that the
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dimension of H0.�g CV / is finite and is equal to 0 for a dense set of potentials V .

More precisely, the finite dimensionality follows from applying Theorem 6.1 to the

operator �e2f g C e�2f V , since the Lipschitz bounds on jdˆj and jdˆj�1 imply

that

(8.8) kdˆj�2V kC 1. Qg/ � C kV kC 1.g/:

Arguing similarly, the zero dimensionality for a dense set of potentials V follows

from (8.8) and the density for the metric Qg proven in Theorem 7.3. �

It remains to use the bi-Lipschitz map F to find a bi-Lipschitz conformal map ˆ

from each end to a flat half-cylinder. This will be accomplished in the next two sub-

sections. The first subsection proves the existence of a conformal diffeomorphism

ˆ and proves an L1 estimate, bounding the second component of ˆ above and be-

low in terms of r (see (8.1)). The second subsection proves the uniform Lipschitz

estimates on the conformal factor jdˆj2 and its inverse.

8.1 Uniformization of a Cylindrical End

The next lemma constructs a harmonic function u on a cylindrical end E that is

bounded above and below by the Lipschitz function r , i.e., the second component

of the map F given by (8.1).

LEMMA 8.4 There exist constants C0; C1 > 0 depending on i0 and `0 so that

if E satisfies (B1) and (B2) in Proposition 8.1, then there is a positive harmonic

function u on E that vanishes on @E and satisfies

C �1
0 <

Z
@E

@nu < C0;(8.9)

C �1
1 r.x/ � u.x/ � C1r.x/ for r.x/ � 1;(8.10)

0 < jruj:(8.11)

Remark 8.5. It follows that u and its harmonic conjugate u� together give a proper

conformal diffeomorphism

(8.12) .u�; u/ W E ! 
S
1 � Œ0; 1/;

where the radius 
 is given by

(8.13) 2�
 D
Z

@E

@nu:

To see this, observe that while u� is not a globally well-defined function, it is well-

defined up to multiples of 2�
 . Hence, u� is a well-defined map to the circle of

radius 
 . Finally, note that (8.9) gives upper and lower bounds for 
 .
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PROOF OF LEMMA 8.4: We will construct u as a limit of harmonic func-

tions uj on fr � j g � E as j ! 1. Namely, let uj be the harmonic func-

tion on fr � j g with uj D 0 on @E and uj D j on the other boundary component

fr D j g (note that uj exists and is C 2;˛ to the boundary by standard elliptic theory;

cf. theorem 6.14 in [19]).

We will repeatedly use the following consequences of Stokes’ theorem for any

s between 0 and j (Stokes’ theorem is used in the first and last equality below)

(8.14) s

Z
@E

@nuj D s

Z
fuj Dsg

@nuj D
Z

fuj Dsg

u@nuj D
Z

fuj �sg

jruj j2:

The first step will be to establish the bounds in (8.9) for the function uj for

a constant C0 that does not depend on j . To get the upper bound, use Stokes’

theorem to get

(8.15) j

Z
@E

@nuj D
Z

fr�j g

jruj j2 �
Z

fr�j g

jrr j2 � `2
0 Area.fr � j g/ � 2�`4

0j;

where the first inequality above uses that uj and r have the same boundary values

and harmonic functions minimize energy for their boundary values. (The last two

inequalities in (8.15) used the bi-Lipschitz bound for the map F . We will use this

again several times in the proof without comment.) We conclude that

(8.16)

Z
@E

@nuj � 2�`4
0:

To get the lower bound, note that it follows easily from the maximum principle that

the level set fuj D sg cannot be contractible, so we must have

(8.17) i0 � Length.u�1
j .s//:

Here, length means the one-dimensional Hausdorff measure if u�1
j .s/ is not a col-

lection of smooth curves. However, we will integrate (8.17) with respect to s,

and Sard’s theorem implies that almost every level set is smooth, so this is not an

issue.21 Integrating (8.17) from 0 to j and using the co-area formula gives

(8.18) j i0 �
Z j

0

Length.u�1
j .s//ds D

Z
fr�j g

jruj j:

Plugging this into Cauchy-Schwarz gives

(8.19) j 2i2
0 �

� Z
fr�j g

jruj j
�2

� 2�`2
0j

Z
fr�j g

jruj j2 D 2�`2
0j 2

Z
@E

@nuj ;

21 This is really not an issue here since the argument below for (8.11) also implies that jruj j ¤ 0,

so every level set is smooth.
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where the last equality comes from applying Stokes’ theorem two times, first to

div.uj ruj / and then to change the boundary integral of @nuj on fr D j g into the

boundary integral on @E. We conclude that

(8.20)
i2
0

2�`2
0

�
Z

@E

@nuj :

Hence, we have uniform upper and lower bounds for the flux of the uj ’s; this will

give (8.9) in the limit.

We will next establish the bounds (8.10) for the uj ’s for a constant C1 that does

not depend on j . These uniform estimates will allow us to extract a limit u that also

satisfies (8.10). We will first show the lower bound in (8.10). It will be convenient

to let mj .s/ and Mj .s/ denote the minimum and maximum of uj on fr D sg, i.e.,

mj .s/ D min
frDsg

uj .s/;(8.21)

Mj .s/ D max
frDsg

uj .s/:(8.22)

To get the lower bound, first use Stokes’ theorem and the co-area formula to get

that

s

Z
@E

@nuj D
Z s

0

� Z
frDtg

@nuj

�
dt �

Z s

0

� Z
frDtg

jruj j
�

dt

D
Z

fr�sg

jrr j jruj j:
(8.23)

Next, apply Cauchy-Schwarz to this and then use the bi-Lipschitz bound on F and

the fact that fr � sg � fuj � Mj .s/g to get

s2

� Z
@E

@nuj

�2

�
Z

fr�sg

jrr j2
Z

fr�sg

jruj j2 � 2�`4
0s

Z
fuj �Mj .s/g

jruj j2

D 2�`4
0sMj .s/

Z
@E

@nuj ;(8.24)

where the last equality follows from (8.14) with Mj .s/ in place of s. Combining

this with (8.20) gives the desired linear lower bound for Mj .s/

(8.25) s
i2
0

2�`2
0

� s

Z
@E

@nuj � 2�`4
0Mj .s/:
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To get the upper bound for mj .s/, use the fact that the level sets of uj cannot

be contractible (see (8.17)) and the co-area formula to get

(8.26) i0mj .s/ �
Z mj .s/

0

Length.u�1
j .t//dt D

Z
fuj �mj .s/g

jruj j:

Applying Cauchy-Schwarz and noting that fuj � mj .s/g � fr � sg gives

i2
0 m2

j .s/ � Area.fr � sg/
Z

fuj �mj .s/g

jruj j2

� 2�`2
0s

Z
fuj �mj .s/g

jruj j2

D 2�`2
0smj .s/

Z
@E

@nuj � 4�2`6
0smj .s/;

(8.27)

where the last inequality uses (8.16). We conclude that

(8.28) mj .s/ � 4�2s
`6

0

i2
0

:

As long as we stay away from the boundary of fr � j g, we can apply the Harnack

inequality to the positive harmonic function uj . In particular, the lower bound for

Mj .s/ gives a uniform lower bound for uj and the upper bound for mj .s/ gives a

uniform upper bound for uj .

We will now use these uniform bounds on the uj ’s on each compact set to ex-

tract a limit u. Note first that the upper bounds for the uj ’s in terms of r and

standard elliptic theory (the boundary Schauder estimates; see theorem 6.6 in [19])

give a C 2;˛ bound for the uj ’s on each compact subset of E.22 Therefore, Arzelà-

Ascoli gives a subsequence of the uj ’s that converges uniformly in C 2 on compact

subsets of E to a continuous nonnegative harmonic function u. The uniform con-

vergence implies that u vanishes on @E and u also satisfies (8.9) and (8.10); in

particular, u is not identically 0.

We will prove (8.11) by contradiction. Suppose therefore that jruj vanishes

at some x 2 E. Note that x cannot be in @E because of the Hopf boundary point

lemma (see lemma 3:4 in [19]). Note also that (8.10) implies that u is proper, so the

nodal set u�1.u.x// must be compact. It follows from the standard structure of the

nodal set of a harmonic function on a surface (see, e.g., lemma 4.28 in [10]) and the

fact that E is a topological cylinder that there is at least one connected component

of fy j u.y/ ¤ u.x/g that both has compact closure and does not contain @E in

22 This bound grows with r . In the next subsection, we will come back and prove a Lipschitz

bound for jruj that does not grow with r .
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its boundary. However, this violates the strong maximum principle, and hence we

conclude that jruj ¤ 0. �

8.2 A Uniform Lipschitz Bound on the Conformal Factor

In this subsection, we will prove a uniform Lipschitz bound for jdˆj and

jdˆ�1j for any conformal diffeomorphism ˆ from E satisfying (B1) and (B2)

to the flat half-cylinder S
1 � Œ0; 1/. We will then apply this estimate to the confor-

mal map constructed in the previous subsection to get Proposition 8.1. The desired

Lipschitz estimate is given in the next lemma.

LEMMA 8.6 There is a constant 
 depending on i0 and `0 so that if E satisfies

(B1) and (B2) and ˆ W E ! S
1 � Œ0; 1/ is a conformal diffeomorphism, then

away from the i0-tubular neighborhood of @E we get

(8.29) jdˆjC 1 � 
 and jdˆ�1jC 1 � 
:

We will need two preliminary lemmas in the proof of Lemma 8.6. The first is

the following result of Bloch (see Appendix C):

LEMMA 8.7 Given r0 > 0 and � > 0, there exists a constant B > 0 so that if † is

a surface with jKj � �, the ball Br0
.p/ is a topological disk in † n @†, and f is

a holomorphic function on Br0
.p/, then the image f .Br0

.p// covers some disk of

radius Bjdf .p/j in C.

We will also need a standard Bochner-type formula:

LEMMA 8.8 If f is a holomorphic function on a surface E and jrf j ¤ 0, then

(8.30) � log jrf j D K:

PROOF: Let u and v be the real and imaginary parts of f , so that f D u C iv.

The Cauchy-Riemann equations give jrf j D
p

2jruj and hence

(8.31) � log jrf j D � log jruj:
The Bochner formula for the harmonic function u gives

(8.32) � log jruj2 D 2K C 2jHessuj2
jruj2 � jrjruj2j2

jruj4 :

Fixing a point x and working in geodesic normal coordinates that diagonalize the

Hessian of u at x (so that u11.x/ D � D �u22.x/ and u12.x/ D u21.x/ D 0), we

get

2jHessuj2jruj2 � jrjruj2j2 D 4�2jruj2 � 4uj ujku`u`k

D 4.�2jruj2 � �2.u2
1 C u2

2// D 0;
(8.33)

giving the lemma. �

We can now prove the Lipschitz estimate, i.e., Lemma 8.6.
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PROOF OF LEMMA 8.6: We will first use Lemma 8.7 to get the upper bound

for jdˆj. Given a point x with Bi0=2.x/ � E n @E, let Q̂ W Bi0=2.x/ ! C

denote the composition of ˆ with the covering map from the cylinder to C. The

fact that Bi0=2.x/ is a disk implies that Q̂ is a well-defined holomorphic function.

Furthermore, the fact that ˆ is injective implies that the projection of Q̂ .Bi0=2.x//

to the cylinder is also an injection. However, Lemma 8.7 implies that Q̂ .Bi0=2.x//

covers a disk in C of radius

(8.34) B jr Q̂ .x/j D B jdˆ.x/j;
so we must have

(8.35) B jdˆ.x/j � �;

as desired.

We will next use the upper bound (8.35) together with the fact that jdˆj ¤ 0 to

get a lower bound for log jdˆj and hence an upper bound for jdˆ�1j. We will use

that the map F D .�; r/ maps E to the cylinder with bi-Lipschitz constant `0. The

key for getting the lower bound for log jdˆj is that the function w D log jdˆj D
log jr Q̂ j satisfies j�wj D jKj � 1 (by Lemma 8.8) and

(8.36) c1 D log.1=`0/ � inf
s

max
rDs

w � sup w � log.�=B/ D c2:

The first inequality in (8.36) follows from the fact that the curve ˆ.fr D sg/ wraps

around the cylinder and hence has length at least 2� , so that

(8.37) 2� � Length.ˆ.fr D sg// D
Z

frDsg

jdˆj � 2�`0 max
frDsg

jdˆj:

The last inequality in (8.36) comes from the upper bound (8.35) for jdˆj. Applying

the Harnack inequality23 to the nonnegative function c2 � w centered on a point

where w � c1 gives (away from the i0 tubular neighborhood of @E)

(8.38) sup.c2 � w/ � k1 .c2 � c1/ C k2 sup j�wj � k1 .c2 � c1/ C k2;

where the constants k1 and k2 depend only on i0 and `0. Here we have used that

every point in E is a bounded distance from a point where w � c1 (by (8.36))

to ensure that we apply the Harnack inequality on balls of a fixed bounded size.

Rewriting (8.38) gives the desired lower bound for jdˆj,
(8.39) log jdˆj D w � c2 � k1.c2 � c1/ � k2:

23 The Harnack inequality that we use here is that if w � 0 on B2R, then supBR
w �

C1 infBR
w C C2 supB2R

j�wj where C1 and C2 depend on R, sup jKj, and i0. Using standard

estimates for the exponential map, it suffices to prove that if L is a uniformly elliptic second-order

operator on B2 � R
2 and w � 0 on B2, then supB1

w � C1 infB1
wCC2 supB2

jLwj where C1 and

C2 depend only on the bounds for the coefficients of L. This follows by combining theorems 9.20

and 9.22 in [19].
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We have now established uniform bounds on jdˆj and jdˆ�1j. To get the

Lipschitz bounds, we will first work on the image ˆ.E/ D S
1 � Œ0; 1/ to estimate

jrS1�Œ0;1/ Qwj where

(8.40) Qw D log jdˆ�1j D log 2 � w ı ˆ�1;

where the last equality used Remark 8.2. The L1 estimates above for w imply that

Qw is bounded. In addition, applying the formula for the Laplacian of a conformally

changed metric (see (8.6)) to �w D K gives

(8.41) �S1�Œ0;1/ Qw D �1

2
jdˆ�1j2K ı ˆ�1:

(The factor 1
2

comes from our choice of norm; see Remark 8.2.) In particular, both

j Qwj and j�S1�Œ0;1/ Qwj are uniformly bounded. Therefore, we can directly apply

the Euclidean Cordes-Nirenberg estimate (see, e.g., theorem 12.4 in [19]) to get

(8.42) j QwjC 1;˛ � C.j QwjL1 C j�S1�Œ0;1/ QwjL1/ � C 0:

This gives the desired bound on jrS1�Œ0;1/dˆ�1j and then, using the chain rule,

it also gives the desired bound on jrdˆj. �

Finally, we can combine Lemma 8.4 and Lemma 8.6 to prove Proposition 8.1.

PROOF OF PROPOSITION 8.1: Let u be the positive harmonic function given

by Lemma 8.4, and let u� be its harmonic conjugate. As in Remark 8.5, we con-

clude that the map

(8.43) ˆ D 
�1.u�; u/ W E ! S
1 � Œ0; 1/

is the desired conformal diffeomorphism. Here 
 is defined in (8.13) and bounded

in (8.9). The Lipschitz bounds on jdˆj and jdˆ�1j follow immediately from

Lemma 8.6. �

Appendix A: Growth and Decay

for Generic Rotationally Symmetric

and Periodic Potentials

In this appendix, we introduce the Poincaré map and use it to make some re-

marks about decay and growth for a generic rotationally symmetric potential on

a cylinder; these are not needed elsewhere (nor are the results of Appendix B),

but are included for completeness. This shows, in particular, that for an open and

dense set of periodic potentials with positive operators any solution that vanishes

at infinity decays exponentially.

For a bounded and rotationally symmetric potential on a cylinder N � R, Sec-

tion 3 applies to all but a finite number of small eigenvalues of �N . To understand

the remaining small eigenvalues of �N , we will need to understand the “Poincaré

maps” associated to the ODE. We will define this next. For simplicity, we will

assume throughout both this appendix and the next that V is smooth.
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Given a nonnegative number � and t1 � t2, define the Poincaré map P 	
t1;t2

W
R

2 ! R
2 by

P 	
t1;t2

.a; b/ D .u.t2/; u0.t2// where u00 D .� � V /u(A.1)

and u.t1/ D a; u0.t1/ D b:

In general, if f and g are functions on R, not necessarily periodic, satisfying f 00 D
.� � V /f and g00 D .� � V /g, then

(A.2)
d

dt
det

�
f g

f 0 g0

�
D 0:

It follows from this and the fact that Pt;t is the identity that Pt;tCs is in SL.2; R/

for all t and s � 0.

We will below combine this observation with the simple fact that if A is a matrix

in SL.2; R/, then we have one of the following:

(1) The absolute value of the trace of A is (strictly) greater than 2, so the

characteristic polynomial of A has two distinct real roots, c 2 R and 1=c

where jcj > 1. Such an A is said to be hyperbolic and can be diagonalized

even over R.

(2) The absolute value of the trace of A is (strictly) less than 2, so the char-

acteristic polynomial of A has two distinct complex roots, ei� and e�i�

where 0 < � < � .

(3) The absolute value of the trace of A is equal to 2, so the characteristic

polynomial of A has the root 1 or the root minus 1 with multiplicity 2.

Thus, there exists an orthonormal basis where A can be represented by

(plus or minus)

(A.3)

�
1 �

0 1

�
:

LEMMA A.1 For an open dense set of potentials V on Œ0; `�, the absolute value

of the trace of the Poincaré map P0;` is not equal to 2. In fact, if V is a potential

with jTr.P0;`/j D 2, then there are potentials Vj ! V with Vj .0/ D V.0/ and

Vj .`/ D V.`/ so P
Vj

0;`
is hyperbolic.

To prove the lemma, observe first that since trace is continuous on SL.2; R/, and

the Poincaré map P0;` depends continuously on the potential, the set of potentials

where the absolute value of the trace of P0;` is not 2 is clearly open. Consequently,

to prove Lemma A.1, it is enough to prove density. The density is an easy conse-

quence of the next lemma that allows us to perturb the Poincaré map.

We will need a few definitions before stating this perturbation lemma. Namely,

given ` > 0 and a function f on Œ0; `� with f .0/ D f .`/, let P.f; s/ D P0;`.f; s/

denote the Poincaré map from 0 to ` for the perturbed operator @2
t C .V .t/ C

sf .t//.24

24 Note that the perturbed potential agrees at 0 and ` if the original potential V does.
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LEMMA A.2 The linear map from functions on Œ0; `� with f .0/ D f .`/ D 0 to

2 � 2 matrices given by

(A.4) f ! d

ds

ˇ̌̌
ˇ
sD0

P.f; s/

is onto the three-dimensional space of matrices B such that P �1.f; 0/B is trace

free.

PROOF: Let u.s; t/ and v.s; t/ be the solutions of @2
t C .V .t/ C sf .t// with

initial conditions .u; ut /.s; 0/ D .1; 0/ and .v; vt /.s; 0/ D .0; 1/. It follows that

(A.5)
d

ds

ˇ̌̌
ˇ
sD0

P.f; s/ D
�

us vs

uts vts

�
.0; `/:

Note that when s D 0, we have ut t D �V u, vt t D �V v, ust t D �V us � f u,

and vst t D �V vs � f v. It follows that

.usvt � vust /.0; `/ D
Z `

0

@t .usvt � vust /.0; t/dt(A.6)

D
Z `

0

.f uv/.0; t/dt;

.uust � usut /.0; `/ D
Z `

0

@t .uust � usut /.0; t/dt(A.7)

D �
Z `

0

.f u2/.0; t/dt;

.vsvt � vvst /.0; `/ D
Z `

0

@t .vsvt � vvst /.0; t/dt(A.8)

D
Z `

0

.f v2/.0; t/dt;

.uvst � vsut /.0; `/ D
Z `

0

@t .uvst � vsut /.0; t/dt(A.9)

D �
Z `

0

.f uv/.0; t/dt:

These four quantities are the 11, 12, 21, and 22 coefficients, respectively, in the

2�2 matrix obtained by multiplying P �1.0; f / by d
ds

ˇ̌
sD0

P.f; s/. Since u2.0; 	 /,
v2.0; 	 /, and .uv/.0; 	 / are linearly independent25 as functions on Œ0; `� and com-

position by a linear map can only decrease the dimension of a vector space, we

25 To see this, note that the 3 � 3 matrix whose columns are .u2.0; 0/; .u2/t .0; 0/; .u2/t t .0; 0//,

and similarly for v2 and uv, is invertible.
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conclude that the image of d
ds

ˇ̌
sD0

P.f; s/ must be at least three-dimensional. Fi-

nally, since it is contained in a three-dimensional space of matrices, the mapping

must be onto. �

PROOF OF LEMMA A.1: As noted right after the statement of Lemma A.1, it

is enough to show that if the absolute value of the trace of P0;` is 2, then there is

some function f with f .0/ D f .`/ D 0 so that for all s > 0 sufficiently small we

have

(A.10)
ˇ̌
Tr P

V Csf

0;`

ˇ̌
> 2;

where P
V Csf

0;`
is the Poincaré map for the potential V C sf . This follows imme-

diately from two facts. First, Lemma A.2 says that we can choose f to arbitrarily

perturb P0;` in SL.2; R/. Second, if P is a matrix in SL.2; R/ with jTr P j D 2,

then there are matrices Pj 2 SL.2; R/ converging to P with jTr Pj j > 2. Namely,

if we consider SL.2; R/ as the hypersurface x1x4 � x2x3 D 1 in R
4, then the

normal direction and the gradient of trace are

N D .x4; �x3; �x2; x1/;(A.11)

r Tr D .1; 0; 0; 1/:(A.12)

In particular, the projection of r Tr to the tangent space of SL.2; R/ vanishes only

at the identity matrix and minus the identity matrix. It follows that we can perturb

the trace as desired, at least away from (plus or minus) the identity matrix. This is

all that we need, since it is easy to perturb (plus or minus) the identity matrix to a

hyperbolic matrix. �

In the next corollary, we will assume that the potential V is both periodic at

C1 with period `C and that the associated operator @2
t C V is positive at infinity.

That is, we will assume that there exists some T > 0 so that:


 For all t > T , we have that V.t C `C/ D V.t/.


 The only solution of u00 D �V u with at least two zeros on ŒT; 1/ is the

constant 0.

Note that the second condition is equivalent to the lowest eigenvalue26 being pos-

itive on every compact subinterval of ŒT; 1/; this follows from the domain mono-

tonicity of eigenvalues.

COROLLARY A.3 For an open and dense set of `C periodic at C1 potentials V

on R that are also positive at infinity, any solution u 2 HC to the Schrödinger

equation �u D �V.t/u on the cylinder N � R must decay exponentially to 0 at

C1, and likewise for H�.

26 By convention, � is an eigenvalue of @2
t CV on Œa; b� if there is a (not identically zero) solution

u of u00 C V u D ��u with u.a/ D u.b/ D 0.
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PROOF: We will use the positivity of @2
t C V and hence also of @2

t C V � �j

to show first that the eigenvalues of P
	j

T;T C`C
must be real for every j . To see this,

suppose instead that the eigenvalues are ei� and �ei� with 0 < � < � . In this

case, we can choose some positive integer n to make both of the eigenvalues of

(A.13)
�
P

	j

T;T C`C


n D P
	j

T;T Cn`C

as close as we want to �1. In particular, the solution of f 00 D .�j � V /f on

ŒT; T C 2n`C� with initial values f .T / D 1 and f 0.T / D 0 must be negative at

T C n`C and then positive again at T C 2n`C. This contradicts the positivity of

the operator, so we conclude that the eigenvalues must be real.

Applying Lemma A.1, we may assume that P
	j

T;T C`C
has two distinct real

eigenvalues for �j � sup jV j and hence is hyperbolic. To complete the proof,

we will prove the exponential decay of any u 2 HC for such a potential.

By expanding a solution u into its Fourier series, it suffices to prove a uniform

rate of exponential decay for bounded solutions f of f 00 D .�j � V /f on Œ0; 1/.

Here uniform means independent of j . Corollary 3.4 gives this uniform exponen-

tial decay for every j with �j > sup jV j; this does not use the periodicity at C1.

Assume now that �j � sup jV j. It remains to show that if P
	j

T;T C`C
is hyper-

bolic, f vanishes at C1, and f 00 D .�j � V /f on Œ0; 1/, then f decays expo-

nentially to 0 at C1. For simplicity, we will assume that j D 0 and T D 0. The

argument in the general case follows with obvious modifications. Let v1 and v2

be the two eigenvectors of the Poincaré map PT;T C`C
such that v1 corresponds

to the eigenvalue with norm larger than 1. Let f1 and f2 be solutions on R to the

equation f 00 D �V.t/f defined by .fi .0/; f 0
i .0// D vi . It follows that f1 grows

exponentially at C1 and f2 decays exponentially to 0 at C1. Moreover, since

the space of solutions is two-dimensional and f1 and f2 are clearly linearly inde-

pendent, any solution f can be written as a linear combination of f1 and f2. Thus

f D af1 C bf2 for constants a and b. It follows that if f vanishes at C1, then

a D 0 and hence f must decay exponentially at C1. �

Example A.4. We will compute the Poincaré maps in the geometric example from

Section 3.1, where V.t/ is a rotationally symmetric potential on S
1 � R given by

(A.14) V.t/ D 2 cosh�2.t/:

Using the solutions in (3.11), we get that

(A.15) P0;t D
�

1 � t tanh t tanh t

� tanh t � t cosh�2 t cosh�2 t

�
:
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It follows that if s < 0 < t are large, then Ps;t D P0;t ı P �1
0;s is approximately

given by

(A.16)

��1 1 C s � t

0 �1

�
:

Here, “approximately” means up to terms that decay exponentially in s or t .

Appendix B: The Symplectic Form

and the Symplectic Poincaré Maps

Much of the discussion of the previous appendix generalizes to general bounded

potentials that are no longer assumed to be rotationally symmetric. To explain this,

we will need to recall some standard definitions. Let H be a Hilbert space with in-

ner product h 	 ; 	 i and let ! be the canonical symplectic form on H2 D H�H. That

is, if .v1; v2/ and .w1; w2/ are in H2, then !..v1; v2/; .w1; w2// D hv1; w2i �
hv2; w1i. (The skew-symmetric 2-form ! is symplectic since it is nondegenerate.)

By definition a linear map from H2 to itself is said to be a symplectic map if it

preserves !. A linear subspace of H2 is said to be a symplectic subspace if !

restricted to the subspace is nondegenerate and a linear subspace of a symplectic

subspace is said to be isotropic if the restriction of the symplectic form vanishes on

the subspace. An isotropic subspace is said to be Lagrangian when it is maximal,

i.e., is not strictly contained in a larger isotropic subspace. Finally, if W is a finite-

dimensional symplectic subspace of dimension 2n, then it follows from Darboux’s

theorem that !n is a volume form on W and thus if A is a symplectic map from W

to W , then A also preserves the volume form.

Consider now again solutions u of �u D �V u on the half-cylinder N �Œ0; 1/.

The potential V will be smooth and bounded, and is now also allowed to depend

on � 2 N .

The Hilbert space will be L2.N / with the usual inner product whose norm is

the L2 norm. This is because the next lemma will allow us to identify a solution of

�u D �V u with its Cauchy data .u; @tu/ on a slice N � ft0g.

LEMMA B.1 If u. 	 ; t0/ D @tu. 	 ; t0/ D 0, then u is identically 0.

PROOF: We will show first that u and all of its derivatives vanish on N � ft0g.

Since u vanishes on N � ft0g and @t commutes with rN , every partial derivative

with at least one derivative in a direction tangent to N also vanishes. It remains to

check that @n
t u. 	 ; t0/ vanishes for all n � 2. To get this for n D 2, use the equation

�u D �V u to write

(B.1) @2
t u.�; t0/ D ��N u.�; t0/ � V.�; t0/u.�; t0/ D 0:

Similarly, differentiating the equation gives for n > 2 that

(B.2) @n
t u.�; t0/ D �@n�2

t �N u.�; t0/ � @n�2
t ŒV .�; t0/u.�; t0/�:
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By induction, the terms on the right-hand side of the equation all vanish, so we

conclude that @n
t u. 	 ; t0/ also vanishes for all n � 2.

Finally, since the potential V is bounded and u vanishes to infinite order on

N � ft0g, it follows from the theory of unique continuation [2] that u must vanish

everywhere. �

We conclude from the lemma that the linear map that takes a solution u of

�u D �V u to its Cauchy data .u; @tu/ is injective and hence we can identify u

with its Cauchy data on an arbitrary but fixed slice N � ft0g.

Motivated by this, we define the skew-symmetric bilinear form !. 	 ; 	 / on so-

lutions by

(B.3) !.u; v/ D
Z

N �ft0g

.u@nv � v@nu/:

Thus under the Cauchy data identification the space of solutions is identified with (a

subspace of) L2.N /�L2.N / and the skew-symmetric bilinear form is the pullback

of the canonical symplectic form on L2.N / � L2.N /.

As an immediate consequence of Stokes’ theorem and the fact that div.urv �
vru/ D 0 if Lu D Lv D 0, the next lemma shows that the skew-symmetric form

! does not depend on the choice of slice N � ft0g.

LEMMA B.2 If u and v are functions on N � Œt0; t1� that satisfy Lu D Lv D 0,

then

(B.4) !.u; v/ �
Z

N �ft0g

.u@nv � v@nu/ D
Z

N �ft1g

.u@nv � v@nu/:

As an immediate consequence of Lemma B.2, we get that ! vanishes on the

space of solutions of Lu D 0 that vanish at C1; i.e., the image of the map from

H0 to its Cauchy data is an isotropic subspace; cf. Lemma 7.2.

B.1 The Poincaré Map

In the spirit of the previous appendix, we can use solutions of the equation

Lu D 0 to define a Poincaré map that maps the Cauchy data at one time to the

Cauchy data (of the same solution) at a later time. Namely, given t1 � t2, define

the Poincaré map

(B.5) Pt1;t2
W L2.N / � L2.N / ! L2.N / � L2.N /

by

(B.6) Pt1;t2
.f; g/ D .u.	; t2/; @tu.	; t2//

where Lu D 0; u. 	 ; t1/ D f; @tu. 	 ; t1/ D g:

Lemma B.2 then says that the linear map Pt1;t2
preserves the skew-symmetric

form !:
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COROLLARY B.3 The linear Poincaré map Pt1;t2
is symplectic, i.e.,

(B.7) !.f; g/ D !.Pt1;t2
.f /; Pt1;t2

.g//:

B.2 Perturbing the Poincaré Map

We will now consider a one-parameter family of Schrödinger operators

(B.8) L C sf D � C V.�; t/ C sf .�; t/;

together with the associated one-parameter family of Poincaré maps

(B.9) P D P0;`.L C sf / W L2.N / � L2.N / ! L2.N / � L2.N /:

The next lemma will allow us to compute the derivative with respect to s of the

Poincaré map P . In order to state the lemma, it will be convenient to define a map

(B.10) L�1 W L2.N / � L2.N / ! L2.N � Œ0; `�/

that takes a pair of functions .f1; f2/ to the solution u of Lu D 0 with Cauchy

data u. 	 ; 0/ D f1 and @tu. 	 ; 0/ D f2. (Note that this is not defined for all f1 and

f2 since the Cauchy problem in not solvable in general for elliptic equations.)

LEMMA B.4 Given functions .f1; f2/ and .g1; g2/ in L2.N / � L2.N /, we have

!

�
P.f1; f2/;

d

ds

ˇ̌̌
ˇ
sD0

P.g1; g2/

�
D

�
Z

N �.0;`/

fL�1.f1; f2/; L�1.g1; g2/:
(B.11)

PROOF: Let u.s; t; �/ and v.s; t; �/ be solutions of

(B.12) .L C sf /u D .L C sf /v D 0

with initial conditions27

(B.13) .u; @tu/.s; 0; �/ D .f1; f2/.�/ and .v; @tv/.s; 0; �/ D .g1; g2/.�/:

It follows that

!

�
P.f1; f2/;

d

ds

ˇ̌̌
ˇ
sD0

P.g1; g2/

�
D

!
�
.u; @tu/.0; `; 	 /; .vs; @tvs/.0; `; 	 /
:

(B.14)

Equation (B.12) and its s-derivative imply that Lu.0; 	 ; 	 / D 0 and

(B.15) Lvs.0; 	 ; 	 / D �f . 	 ; 	 /v.0; 	 ; 	 /:
In particular,

(B.16) div.urvs � vsru/.0; 	 ; 	 / D �.f uv/.0; 	 ; 	 /:
27 We must assume that these exist, since the Cauchy problem is not generally solvable.



1600 T. H. COLDING, C. DE LELLIS, AND W. P. MINICOZZI II

Since .vs; @tvs/.0; 0; 	 / D .0; 0/, we can use Stokes’ theorem and (B.16) to get

(B.17) !..u; @tu/.0; `; 	 /; .vs; @tvs/.0; `; 	 // D �
Z

N �.0;`/

.f uv/.0; 	 ; 	 /:

�

Note that since ! is a nondegenerate form, Lemma B.4 completely determines

the mapping d
ds

ˇ̌
sD0

P.g1; g2/. Finally, observe that if the potential V is `-periodic

on N � Œ0; 1/, then the map P`;0 maps the Cauchy data of H˛ into itself.

Appendix C: Bloch’s Theorem

The classical Bloch theorem is usually stated for a disk in C. We need a version

of Bloch’s theorem for a topological disk in a surface with bounded curvature.

Since we were unable to find an exact reference for this, we will explain here how

to get the needed version. The following lemma is an immediate consequence of

the classical Bloch theorem (see [1]):

LEMMA C.1 There exists a constant B0 > 0 so that if f is a holomorphic function

on the unit disk D1.0/ � C, then the image f .D1.0// covers some disk of radius

B0jf 0.0/j.
The case jf 0.0/j D 1 appears in [1] and the general case follows from applying

the case jf 0.0/j D 1 to the function g D f =jf 0.0/j. The version of Bloch’s

theorem that we used, i.e., Lemma 8.7, follows by combining Lemma C.1 with the

following uniformization result:

LEMMA C.2 Given r0 > 0 and �, there exists a constant 
 > 0 so that if †

is a surface with jKj � � and the ball Br0
.p/ � † is a topological disk, then

there is a holomorphic diffeomorphism F W D1.0/ ! Br0
.p/ with F.0/ D p and

jdF.p/j > 
.

PROOF: The existence of the holomorphic diffeomorphism F follows imme-

diately from the uniformization theorem. Namely, after extending a neighborhood

of the disk Br0
.p/ � †, we can assume that it sits inside a closed Riemann sur-

face. By the uniformization theorem, the universal cover of the closed Riemann

surface is either the flat plane, the flat disk, or the round sphere. Hence, the topo-

logical disk Br0
.p/ that sits inside the Riemann surface must be conformal to a

topological disk in C (a topological disk in the round sphere is conformal to one in

the plane by stereographic projection) and, by the Riemann mapping theorem, also

conformal to the unit disk D1.0/.

Therefore, the point is to get the lower bound on jdF.p/j. Note first that the

inverse map F �1 is a holomorphic function on Br0
.p/ that is bounded by 1 and

vanishes at p. Since † has curvature bounded below by �� and each component
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of a holomorphic function on a surface is also automatically harmonic, the gradient

estimate of [5] implies that

(C.1) jrF �1.p/j � C sup
Br0

.p/

jF �1j D C

for a fixed constant C depending only on r0 and �. This proves the lemma. �
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