Calculus of Variations

Simple proof of two-well rigidity

Camillo De Lellis ${ }^{\text {a }}$, László Székelyhidi Jr. ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Mathematik, Universität Zürich, CH-8057 Zürich
${ }^{\mathrm{b}}$ Departement Mathematik, ETH Zürich, CH-8092 Zürich

Received 13 March 2006; accepted after revision 4 July 2006
Available online 25 July 2006
Presented by John M. Ball

Abstract

We give a short proof of the rigidity estimate of Müller and Chaudhuri for two strongly incompatible wells. Making strong use of the arguments of Ball and James our approach shows that incompatibility for gradient Young measures can be used to reduce rigidity estimates for several wells to one-well rigidity. To cite this article: C. De Lellis, L. Székelyhidi Jr., C. R. Acad. Sci. Paris, Ser. I 343 (2006). © 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Une démonstration simple d'une estimation de rigidité pour deux puits. Nous donnons une démonstration simple d'une estimation de rigidité de Müller et Chaudhuri pour deux puits fortement incompatibles. Nous employons un argument de Ball et James pour montrer que l'incompatibilité pour les mesures de Young engendrées par des gradients permet de réduire les estimations de rigidité pour plusieurs puits à celles pour un puit. Pour citer cet article : C. De Lellis, L. Székelyhidi Jr., C. R. Acad. Sci. Paris, Ser. I 343 (2006).
© 2006 Académie des sciences. Published by Elsevier SAS. All rights reserved.

1. Introduction

A crucial ingredient in rigorous derivations of plate theories from three-dimensional elasticity $[3,6]$ is a quantitative rigidity estimate in terms of the bulk energy of deformations close to zero-energy configurations. In nonlinear elasticity one usually considers sets of the form $K=\bigcup_{i=1}^{m} \mathrm{SO}(3) A_{i}$ as the set of deformations which carry zero bulk energy. The different copies of $\mathrm{SO}(n)$ are called energy wells. In the rigid situation, when the only deformations with zero energy (i.e. maps $u: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ satisfying $\nabla u \in K$) are affine maps, it is of interest to find estimates on the precise rate of convergence of approximating sequences. The starting point of such an analysis is the rigidity estimate of Friesecke, James and Müller [6], which says that for any Lipschitz domain $\Omega \subset \mathbb{R}^{n}$ and for any $\left.p \in\right] 1, \infty[$, there exists a constant $C(p, \Omega)$ so that

$$
\begin{equation*}
\inf _{R \in \operatorname{SO}(n)}\|\nabla u-R\|_{L^{p}(\Omega)} \leqslant C(p, \Omega)\|\operatorname{dist}(\nabla u, K)\|_{L^{p}(\Omega)} \quad \text { for all } u \in W^{1, p}\left(\Omega, \mathbb{R}^{n}\right), \tag{1}
\end{equation*}
$$

[^0]where $K=\mathrm{SO}(n)$ (Friesecke, James and Müller proved in [6] only the case $p=2$ of (1), but the corresponding inequalities for $p \in] 1, \infty[$ can be obtained by minor modifications of the arguments, see for instance Section 2.4 of [5]).

Building on the methods developed in [6], Chaudhuri and Müller in [2] obtained the corresponding rigidity estimate for the case of two strongly incompatible wells $K=\mathrm{SO}(n) A_{1} \cup \mathrm{SO}(n) A_{2}$. An important ingredient in the proof of Chaudhuri and Müller is the result of Matos in [8] that under certain conditions on the matrices A_{1} and A_{2} the exact solutions of the inclusion problem $\nabla u \in K$ are solutions of a certain strongly elliptic system. We also note that Matos used this observation in [8] to deduce incompatibility for gradient Young measures in the sense of Definition 1.1 below.

Our aim in this Note is to give a simple proof of how under the condition of incompatibility for gradient Young measures the rigidity estimate of the two-well problem reduces to the rigidity estimate [6] for the one-well problem. Our argument is very much based on the unpublished but well-known argument of Ball and James [1] for obtaining a transition-layer estimate for approximate solutions to differential inclusions with incompatible wells. Indeed, our estimate in Theorem 1.2 is very similar in spirit to the transition-layer estimate. In what follows we will use the shorthand notation $d_{K}^{p}(\cdot)$ for $(\operatorname{dist}(K, \cdot))^{p}$.

Definition 1.1. Let $K_{1}, K_{2} \subset \mathbb{R}^{m \times n}$ be disjoint compact sets. We say that K_{1}, K_{2} are incompatible for gradient Young measures if whenever v_{x} is a gradient Young measure on some connected domain Ω such that supp $v_{x} \subset K_{1} \cup K_{2}$ for almost every $x \in \Omega$, then

$$
\operatorname{supp} v_{x} \subset K_{1} \quad \text { for a.e. } x \in \Omega \quad \text { or } \quad \operatorname{supp} v_{x} \subset K_{2} \quad \text { for a.e. } x \in \Omega .
$$

Theorem 1.2. Suppose $K_{1}, K_{2} \subset \mathbb{R}^{m \times n}$ are disjoint compact sets which are incompatible for gradient Young measures and let $K=K_{1} \cup K_{2}$. Let $p \in\left[1, \infty\left[\right.\right.$ and $\Omega \subset \mathbb{R}^{n}$ be a connected Lipschitz domain. Then there exists a constant $C=C(p, \Omega)$ such that

$$
\begin{equation*}
\min \left(\int_{\Omega} d_{K_{1}}^{p}(\nabla u) \mathrm{d} x, \int_{\Omega} d_{K_{2}}^{p}(\nabla u) \mathrm{d} x\right) \leqslant C(p, \Omega) \int_{\Omega} d_{K}^{p}(\nabla u) \mathrm{d} x \quad \text { for all } u \in W^{1, p}\left(\Omega, \mathbb{R}^{m}\right) \tag{2}
\end{equation*}
$$

Remark 1. Note that (2) holds even in the critical case $p=1$, in contrast with estimate (1) (see [4]).
Proof. By a truncation argument it suffices to prove the inequality for maps with $\|\nabla u\|_{L^{\infty}(\Omega)} \leqslant M$ for some constant M depending on Ω, K and p. Indeed, since K is compact, we can choose positive constants R and C such that $|A| \leqslant C d_{K}(A)$ for every $A \in \mathbb{R}^{m \times n}$ with $|A| \geqslant R$. By Proposition A. 1 of [6] there exists a constant $C=C(p, \Omega)$ such that, for every $v \in W^{1, p}(\Omega)$ there exists $u \in W^{1, \infty}(\Omega)$ satisfying the following properties:
(i) $\|\nabla u\|_{L^{\infty}} \leqslant C R$;
(ii) $|\{x \in \Omega: u(x) \neq v(x)\}| \leqslant C R^{-p} \int_{\{x \in \Omega:|\nabla v|(x)>R\}}|\nabla v|^{p} \mathrm{~d} x$;
(iii) $\|\nabla v-\nabla u\|_{L^{p}}^{p} \leqslant C \int_{\{x \in \Omega:|\nabla v|(x)>R\}}|\nabla v|^{p} \mathrm{~d} x$.

Recall that $d_{K}(A) \leqslant d_{K_{i}}(A) \leqslant C(1+|A|)$. Hence, from (i)-(iii) and the choice of R, it follows easily that $\int d_{K}^{p}(\nabla u) \mathrm{d} x \leqslant C \int d_{K}^{p}(\nabla v) \mathrm{d} x$ and $\int d_{K_{i}}^{p}(\nabla v) \mathrm{d} x \leqslant C \int d_{K_{i}}^{p}(\nabla u) \mathrm{d} x+C \int d_{K}^{p}(\nabla v) \mathrm{d} x$. These inequalities show that it suffices to prove (2) for functions u which enjoy the L^{∞} bound (i).

Next we note that, without loss of generality, we can assume that Ω is of the form

$$
\begin{equation*}
\left\{\left(x^{\prime}, x_{n}\right)=\left(x_{1}, \ldots, x_{n-1}, x_{n}\right): x^{\prime} \in\right] 0,1\left[^{n-1}, f\left(x^{\prime}\right)<x_{n}<1\right\} \tag{3}
\end{equation*}
$$

for some Lipschitz function f and some orthonormal system of coordinates x_{1}, \ldots, x_{n}. Indeed every connected Lipschitz set Ω can be written as union of finitely many Lipschitz domains $\Omega_{1}, \ldots, \Omega_{N}$ of the form (3) so that $\Omega_{i} \cap \Omega_{i+1} \neq \emptyset$.

Therefore, arguing by contradiction, we assume the existence of a Lipschitz open set Ω of the form (3) and a sequence of maps $u_{j}: \Omega \rightarrow \mathbb{R}^{m}$ with $\left\|\nabla u_{j}\right\|_{L^{\infty}(\Omega)} \leqslant M$ and $\left\|d_{K}\left(\nabla u_{j}\right)\right\|_{L^{\infty}(\Omega)} \leqslant M$ such that

$$
\begin{equation*}
\min \left(\int_{\Omega} d_{K_{1}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x, \int_{\Omega} d_{K_{2}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x\right) \geqslant j \int_{\Omega} d_{K}^{p}\left(\nabla u_{j}\right) \mathrm{d} x \tag{4}
\end{equation*}
$$

Let $L:=2 \operatorname{Lip}(f)$. We denote by $Q_{1}=Q_{1}(0)$ the box $]-1,1\left[{ }^{n-1} \times\right]-L, L\left[\right.$ and by $Q_{r}(x)$ the boxes $x+r Q_{1}$. It is then easy to check that the following connectedness property holds:
(C) For any sequence of points $x_{j} \in \Omega$ and any sequence of positive numbers $r_{j} \leqslant \operatorname{diam}(\Omega)$, there exists a subsequence of the sets $U_{j}=\frac{1}{r_{j}}\left(\Omega-x_{j}\right) \cap Q_{1}$ converging in measure to a connected open set U such that
$-|U| \geqslant \gamma>0$ for some constant γ independent of r_{j} and x_{j};

- $\forall \delta \in] 0, \gamma\left[\right.$ there exists a connected open set \widetilde{U} with $|U \backslash \widetilde{U}|<\delta$ and $\widetilde{U} \subset U \cap U_{j}$ for j large enough.

By considering a suitable subsequence we may assume that ∇u_{j} generates a gradient Young measure v_{x}. From (4) and the uniform Lipschitz bound we deduce that supp $v_{x} \subset K$ a.e., hence by incompatibility supp $v_{x} \subset K_{2}$ a.e., say. Therefore there exists $c>0$ such that

$$
\begin{equation*}
\int_{\Omega} d_{K_{1}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x \geqslant c \quad \text { for all } j \quad \text { and } \quad \int_{\Omega} d_{K_{2}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x \rightarrow 0 \quad \text { as } j \rightarrow \infty . \tag{5}
\end{equation*}
$$

Next, we define $S_{j}:=\left\{x \in \Omega: d_{K_{1}}\left(\nabla u_{j}\right) \leqslant d_{K_{2}}\left(\nabla u_{j}\right)\right\}$ and $f_{j}, g_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f_{j}:=\chi_{S_{j}} d_{K_{2}}^{p}\left(\nabla u_{j}\right), g_{j}:=$ $\chi_{\Omega \backslash S_{j}} d_{K_{1}}^{p}\left(\nabla u_{j}\right)$. If $\left|S_{j}\right|=0$ for some $j>1$, then $d_{K}\left(\nabla u_{j}(x)\right)=d_{K_{2}}\left(\nabla u_{j}(x)\right) \leqslant d_{K_{1}}\left(\nabla u_{j}(x)\right)$ a.e. in Ω, in contradiction with (4). Therefore we may assume that $\left|S_{j}\right|>0$. Using the definition of S_{j} we have $\int_{\Omega} f_{j}=\int_{\Omega} d_{K_{2}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x-$ $\int_{\Omega \backslash S_{j}} d_{K_{2}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x=\int_{\Omega} d_{K_{2}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x-\int_{\Omega \backslash S_{j}} d_{K}^{p}\left(\nabla u_{j}\right) \mathrm{d} x$, hence (4) implies that $\int_{\Omega} f_{j} \geqslant(j-1) \int_{\Omega} d_{K}^{p}\left(\nabla u_{j}\right) \mathrm{d} x$. On the other hand (5) implies $\int_{\Omega} f_{j} \rightarrow 0$, and consequently

$$
\int_{\Omega} f_{j}+\int_{\Omega} g_{j}=\int_{S_{j}} d_{K_{2}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x+\int_{\Omega \backslash S_{j}} d_{K_{1}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x \geqslant \int_{S_{j}} d_{K_{1}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x+\int_{\Omega \backslash S_{j}} d_{K_{1}}^{p}\left(\nabla u_{j}\right) \mathrm{d} x \geqslant c .
$$

Therefore, by taking a subsequence if necessary, we may assume that

$$
\begin{equation*}
\int_{\Omega}\left(f_{j}-g_{j}\right) \leqslant-\frac{c}{2} . \tag{6}
\end{equation*}
$$

Let us fix j for the moment. For a.e. $x \in S_{j}, \frac{1}{\left|Q_{r}(x)\right|} \int_{Q_{r}(x)} f_{j} \rightarrow f_{j}(x)$ and $\frac{1}{\left|Q_{r}(x)\right|} \int_{Q_{r}(x)} g_{j} \rightarrow 0$ as $r \rightarrow 0$, by Lebesgue's differentiation theorem. Hence $\frac{1}{\left|Q_{r}(x)\right|} \int_{Q_{r}(x)}\left(f_{j}-g_{j}\right) \rightarrow d_{K_{2}}^{p}\left(\nabla u_{j}(x)\right)>0$ as $r \downarrow 0$, by the definition of S_{j} and since K_{1} and K_{2} are disjoint. On the other hand as $r \rightarrow \operatorname{diam}(\Omega)$ by (6) we have

$$
\begin{equation*}
\frac{1}{\left|Q_{r}(x)\right|} \int_{Q_{r}(x)}\left(f_{j}-g_{j}\right) \rightarrow \frac{1}{(\operatorname{diam} \Omega)^{n}} \int_{\Omega}\left(f_{j}-g_{j}\right) \leqslant-\frac{c}{2(\operatorname{diam} \Omega)^{n}} \tag{7}
\end{equation*}
$$

Since $r \mapsto \frac{1}{\left|Q_{r}(x)\right|} \int_{Q_{r}(x)}\left(f_{j}-g_{j}\right)$ is continuous, we deduce the existence of a radius $r(x) \in(0, \operatorname{diam} \Omega)$ for which $\int_{Q_{r(x)}(x)} f_{j}=\int_{Q_{r(x)}(x)} g_{j}$. The set of boxes $\left\{Q_{r(x)}(x): x \in S_{j}\right\}$ forms a cover for S_{j}, so by the Besicovitch covering theorem there are finitely many subfamilies of disjoint boxes $\mathcal{Q}_{k} \subset\left\{Q_{r(x)}(x): x \in S_{j}\right\}$ for $k=1, \ldots, N$ such that $\bigcup_{k=1}^{N} \mathcal{Q}_{k}$ forms a cover for S_{j} (though usually stated for balls, the Besicovitch covering theorem holds for cubes as well, see for instance [7] Theorem 1.1, and hence even for our boxes, since the linear transformation $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}, x_{n} / L\right)$ maps them into cubes $)$. Then $\sum_{k=1}^{N} \sum_{Q \in \mathcal{Q}_{k}} \int_{Q} f_{j} \geqslant \int_{\Omega} f_{j}$, so there exists k such that

$$
\begin{equation*}
\sum_{Q \in \mathcal{Q}_{k}} \int_{Q} f_{j} \geqslant \frac{1}{N} \int_{\Omega} f_{j} \geqslant \frac{1}{N}(j-1) \int_{\Omega} d_{K}^{p}\left(\nabla u_{j}\right) \mathrm{d} x \geqslant \frac{1}{N}(j-1) \sum_{Q \in \mathcal{Q}_{k}} \int_{Q \cap \Omega} d_{K}^{p}\left(\nabla u_{j}\right) \mathrm{d} x . \tag{8}
\end{equation*}
$$

Therefore there exists a box $Q=Q_{r_{j}}\left(x_{j}\right) \in \mathcal{Q}_{k}$ such that

$$
\begin{equation*}
\int_{Q_{r_{j}}\left(x_{j}\right)} f_{j}=\int_{Q_{r_{j}}\left(x_{j}\right)} g_{j} \geqslant \frac{1}{N}(j-1) \int_{Q_{r_{j}}\left(x_{j}\right) \cap \Omega} d_{K}^{p}\left(\nabla u_{j}\right) \mathrm{d} x \tag{9}
\end{equation*}
$$

Let $U_{j}=\frac{1}{r_{j}}\left(\Omega-x_{j}\right) \cap Q_{1}, \Sigma_{j}=\frac{1}{r_{j}}\left(S_{j}-x_{j}\right) \cap Q_{1}$ and $v_{j}: U_{j} \rightarrow \mathbb{R}^{m}$ be defined as

$$
v_{j}(x)=\frac{u_{j}\left(r_{j}\left(x-x_{j}\right)\right)-\left(u_{j}\right)_{x_{j}, r_{j}}}{r_{j}}
$$

where $\left(u_{j}\right)_{x_{j}, r_{j}}$ denotes the average of u_{j} in $Q_{r_{j}}\left(x_{j}\right) \cap \Omega$. Then $\left\|\nabla v_{j}\right\|_{L^{\infty}\left(U_{j}\right)} \leqslant M$ and

$$
\begin{equation*}
\int_{\Sigma_{j} \cap U_{j}} d_{K_{2}}^{p}\left(\nabla v_{j}\right)=\int_{U_{j} \backslash \Sigma_{j}} d_{K_{1}}^{p}\left(\nabla v_{j}\right) \geqslant \frac{j-1}{N} \int_{U_{j}} d_{K}^{p}\left(\nabla v_{j}\right) . \tag{10}
\end{equation*}
$$

From (C), we can assume that a suitable subsequence of U_{j} converges to a connected open set U with $|U| \geqslant \gamma$. Let $\delta \in] 0, \gamma\left[\right.$, to be fixed later. By (C) there exists a connected open set $\widetilde{U} \subset U$ with $|U \backslash \widetilde{U}|<\delta$, and $\widetilde{U} \subset U_{j}$ for sufficiently large j. After taking a further subsequence we may assume that the sequence $\left\{\nabla v_{j}\right\}$ generates a gradient Young measure v_{x} for $x \in \widetilde{U}$. In particular from (10) we deduce that supp $v_{x} \subset K$ for almost every $x \in \widetilde{U}$, hence by incompatibility

$$
\begin{equation*}
\int_{\widetilde{U}} d_{K_{1}}^{p}\left(\nabla v_{j}\right) \mathrm{d} x \rightarrow 0 \quad \text { as } \quad j \rightarrow 0 \quad \text { or } \int_{\widetilde{U}} d_{K_{2}}^{p}\left(\nabla v_{j}\right) \mathrm{d} x \rightarrow 0 \quad \text { as } j \rightarrow 0 . \tag{11}
\end{equation*}
$$

By the Lipschitz bound and (10) we also have $\left|\int_{\Sigma_{j} \cap \widetilde{U}} d_{K_{2}}^{p}\left(\nabla v_{j}\right)-\int_{\tilde{U} \backslash \Sigma_{j}} d_{K_{1}}^{p}\left(\nabla v_{j}\right)\right| \leqslant M^{p}|U \backslash \widetilde{U}| \leqslant M^{p} \delta$. In either case from (11) we deduce that for large enough $j \in \mathbb{N} \int_{\Sigma_{j} \cap \widetilde{U}} d_{K_{2}}^{p}\left(\nabla v_{j}\right) \leqslant 2 M^{p} \delta$ and $\int_{\tilde{U} \backslash \Sigma_{j}} d_{K_{1}}^{p}\left(\nabla v_{j}\right) \leqslant 2 M^{p} \delta$, and also $\int_{\tilde{U}} d_{K}^{p}\left(\nabla v_{j}\right) \leqslant M^{p} \delta$. But then, from the definition of Σ_{j} we get $\int_{\tilde{U}} d_{K_{2}}^{p}\left(\nabla v_{j}\right) \leqslant 3 M^{p} \delta$ and $\int_{\tilde{U}} d_{K_{1}}^{p}\left(\nabla v_{j}\right) \leqslant 3 M^{p} \delta$ for sufficiently large j, which contradicts disjointness of K_{1} and K_{2} if δ is chosen sufficiently small.

References

[1] J.M. Ball, R.D. James, Incompatible sets of gradients and metastability, in preparation.
[2] N. Chaudhuri, S. Müller, Rigidity estimate for two incompatible wells, Calc. Var. Partial Differential Equations 19 (4) (2004) $379-390$.
[3] N. Chaudhuri, S. Müller, Scaling of the energy for thin martensitic films, Preprint MPI-MIS Leipzig 59, 2004.
[4] S. Conti, D. Faraco, F. Maggi, A new approach to counterexamples to L^{1} estimates: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions, Arch. Ration. Mech. Anal. 175 (2005) 287-300.
[5] S. Conti, B. Schweizer, Rigidity and Γ-convergence for solid-solid phase transitions with $\mathrm{SO}(2)$-invariance, Comm. Pure Appl. Math. 59 (2006) 830-868.
[6] G. Friesecke, R.D. James, Müller S., A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55 (11) (2002) 1461-1506.
[7] M. de Guzmán, Differentiation of Integrals in \mathbf{R}^{n}, Lecture Notes in Mathematics, vol. 481, Springer-Verlag, 1975.
[8] J.P. Matos, Young measures and the absence of fine microstructures in a class of phase transitions, Eur. J. Appl. Math. 3 (1) (1992) 31-54.

[^0]: E-mail addresses: camillo.delellis@math.unizh.ch (C. De Lellis), szekelyh@math.ethz.ch (L. Székelyhidi Jr.).

