Found 139 results
Author [ Title(Desc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
De Lellis C., Otto F., Westdickenberg M..  2004.  Minimal entropy conditions for Burgers equation.. Quarterly of Applied Mathematics. 62:687–700.PDF icon Min_Ent.pdf (300.62 KB)
Colding T.H, De Lellis C..  2003.  The min-max construction of minimal surfaces.. Surveys in differential geometry, Vol.VIII (Boston MA, 2002). :75–107.PDF icon MinMax92.pdf (439.52 KB)PDF icon Errata_MinMax_survey.pdf (180.52 KB)
Carlotto A., De Lellis C..  2019.  Min-max embedded geodesic lines on asymptotically conical surfaces. J. Differential Geom.. 112(3):411-445.PDF icon Geodesic_lines.pdf (600.18 KB)
De Lellis C., Ramic J..  2018.  Min-max theory for minimal hypersurfaces with boundary. Annales de l'Institut Fourier. 68(5):1909–1986.PDF icon Min_Max_80.pdf (644.21 KB)
De Lellis C., Spadaro E..  2015.  Multiple valued functions and integral currents. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5). 14(4):1239-1269.PDF icon complementi_R.pdf (427.54 KB)
N
De Lellis C.  2020.  The Nash-Kuiper Theorem and the Onsager conjecture. ICCM Not.. 8(1):17-26.PDF icon Bejing-5.pdf (353.58 KB)
De Lellis C., Inauen D., L. Székelyhidi Jr..  2018.  A Nash-Kuiper theorem for $C^{1,\frac15-\delta}$ immersions of surfaces in $3$ dimensions. Revista matemática iberoamericana. 34:1119–1152.PDF icon Nash_1.2_21.pdf (426.05 KB)
De Lellis C, De Philippis G, Hirsch J.  2022.  Nonclassical minimizing surfaces with smooth boundary. J. Differential Geom.. 122PDF icon Infinite_Topology_23.pdf (333.68 KB)
De Lellis C, Kwon H.  2022.  On Non-uniqueness of Hoelder continuous globally dissipative Euler flows. Anal. PDE. 15PDF icon nuqE21.pdf (525.33 KB)
Ambrosio L., De Lellis C..  2004.  A note on admissible solutions of 1D scalar conservation laws and 2D Hamilton-Jacobi equations.. Journal of Hyperbolic Differential Equations. 1:813–826.PDF icon laxsbv11.pdf (195.04 KB)
De Lellis C..  2008.  A note on Alberti's rank-one theorem.. Transport Equations and Multi-D Hyperbolic Conservation Laws. 5:61–74.PDF icon giovanni23.pdf (186.07 KB)PDF icon Errata_R1.pdf (85.14 KB)
De Lellis C., Focardi M., Ruffini B..  2014.  A note on the Hausdorff dimension of the singular set for minimizers of the Mumford-Shah functional. Advances in Calculus of Variations. 7:539–545.PDF icon StimaSing20130417.pdf (273.62 KB)
De Lellis C..  2017.  Notes on hyperbolic systems of conservation laws and transport equations.. Handbook of Differential Equations: Evolutionary Equations, Volume 3 . PDF icon hde51.pdf (749.93 KB)PDF icon Errata_HDE.pdf (111.37 KB)
O
De Lellis C..  2008.  ODEs with Sobolev coefficients: the Eulerian and the Lagrangian approach.. Discrete and Continuous Dynamical Systems. Series S. 1:405–426.PDF icon Eul_vs_Lag.pdf (277.64 KB)
Brue' E, Colombo M, Crippa G, De Lellis C, Sorella M.  2023.  Onsager critical solutions of the forced Navier-Stokes equations. Comm. Pure Appl. Anal. . PDF icon anomalous_dissipation6.pdf (490.38 KB)
De Lellis C..  2018.  The Onsager theorem. Celebrating the 50th Anniversary of the Journal of Differential Geometry - Lectures given at the Geometry and Topology Conference at Harvard University in 2017. :71–102.PDF icon JDG_11.pdf (403.91 KB)
Buckmaster T., De Lellis C., L. Székelyhidi Jr., Vicol V..  2019.  Onsager's conjecture for admissible weak solutions. Communications on Pure and Applied Mathematics. 72:229–274.PDF icon Onsager101.pdf (528.14 KB)PDF icon Errata-Onsager.pdf (90.35 KB)
De Lellis C., Müller S..  2005.  Optimal rigidity estimates for nearly umbilical surfaces.. Journal of Differential Geometry. 69:75–110.PDF icon StJDG.pdf (379.65 KB)PDF icon Errata-umbilical.pdf (118.13 KB)
Almgren F, Browder W, Caldini G, De Lellis C.  2024.  Optimal smooth approximation of integral cycles. PDF icon Optimal smooth approximation.pdf (465.23 KB)
De Lellis C., Westdickenberg M..  2003.  On the optimality of velocity averaging lemmas.. Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire. 20:1075–1085.PDF icon OptAnn.pdf (142.3 KB)
De Lellis C..  2008.  Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio [after Ambrosio, DiPerna, Lions].. Séminaire Bourbaki. 2006/2007:175–203.PDF icon Exp.972.C.DeLellis.pdf (248.93 KB)
Crippa G., De Lellis C..  2006.  Oscillatory solutions to transport equations.. Indiana University Mathematics Journal. 55:1–13.PDF icon Gian_Ind.pdf (221.59 KB)
P
Ambrosio L., De Lellis C., Schmidt T..  2018.  Partial regularity for mass-minimizing currents in Hilbert spaces.. Journal für die Reine und Angewandte Mathematik. 2018:99–144.PDF icon Hilbert_regularity.pdf (578.92 KB)
Conti S., De Lellis C., Müller S., Romeo M..  2003.  Polyconvexity equals rank-one convexity for connected isotropic sets in $\Bbb M^{2\times 2}$.. Comptes Rendus Mathématique. Académie des Sciences. Paris. 337:233–238.PDF icon PolyCRAS.pdf (149.28 KB)
Brue' E, Colombo M, De Lellis C.  2021.  Positive solutions of transport equations and classical nonuniqueness of characteristic curves. Arch. Ration. Mech. Anal. . 240(2):1055-1090.PDF icon nonunique-flow-20.pdf (398.69 KB)