Mixing in high-dimensional expanders

Ori Parzanchevski

February 6, 2015

Abstract

We establish a generalization of the Expander Mixing Lemma for arbitrary (finite) simplicial complexes. The original lemma states that concentration of the Laplace spectrum of a graph implies combinatorial expansion (which is also referred to as mixing, or pseudo-randomness). Recently, an analogue of this Lemma was proved for simplicial complexes of arbitrary dimension, provided that the skeleton of the complex is complete. More precisely, it was shown that a concentrated spectrum of the simplicial Hodge Laplacian implies a similar type of pseudo-randomness as in graphs. In this paper we remove the assumption of a complete skeleton, showing that simultaneous concentration of the Laplace spectra in all dimensions implies pseudo-randomness in any complex. We discuss various applications and present some open questions.

1 Introduction

The spectral gap of a finite graph $G = (V, E)$ is the smallest nontrivial eigenvalue of its Laplace operator. The so-called discrete Cheeger inequalities [Dod84, Tan84, AM85, Alo86] relate the spectral gap to expansion in the graph: If the spectral gap is large, then for any partition $V = A \cup B$ there is a large number of edges connecting a vertex in A with a vertex in B. Nevertheless, a large spectral gap does not suffice to control the number of edges between any two sets of vertices. For example, there exist “bipartite expanders” (see e.g. [LPS88, MSS13]): regular graphs with a large spectral gap, which are bipartite, so that they contain $A, B \subseteq V$ of size $|V|/4$ with no edges between them. The Expander Mixing Lemma remedies this inconvenience, using not only the spectral gap but also the maximal eigenvalue of the Laplacian:

Theorem (Expander Mixing Lemma, [FP87, AC88, BMS93]). Let $G = (V, E)$ be a graph on n vertices. If the nontrivial spectrum of the Laplacian is contained within $[k(1 - \varepsilon), k(1 + \varepsilon)]$, then for any two sets of vertices A, B one has

$$|E(A, B)| - \frac{k}{n} |A| |B| \leq c k \sqrt{|A||B|},$$

where $E(A, B)$ are the edges with one endpoint in A and the other in B.

If k is the average degree of a vertex in G, then $\frac{k}{n} |A| |B|$ is about the expected size of $|E(A, B)|$ (the exact value is $\frac{k}{n-1} |A||B|$). Thus, the Lemma states that a concentrated spectrum indicates a pseudo-random behavior. In light of the Expander Mixing Lemma, we call a graph whose nontrivial Laplace spectrum is contained in $[k(1 - \varepsilon), k(1 + \varepsilon)]$ a (k, ε)-expander.(1)

(1) In [Tao11] this is referred to as a “two-sided (k, ε)-expander”, as the spectrum is bounded on both sides.
In [PRT12] a generalization of the Expander Mixing Lemma is established for finite simplicial complexes of arbitrary dimension, assuming that they have a complete skeleton. Namely, that every possible cell of dimension smaller than the maximal one is in the complex. The Laplace operator which is studied in [PRT12] and in the current paper originates in Eckmann’s work [Eck44]. It is a natural analogue of the Hodge Laplace operator in Riemannian geometry, and it was studied in several prominent works [Gar73, Dod76, Żuk96, Fri98, KRS00, ABM05, DKM09, HJ13], sometimes under the name combinatorial Laplacian. For a complex of dimension d, Eckmann defines d Laplace operators (see §2), with the j-th one acting on the cells of dimension j. We say that X is a (j, k, ε)-expander if the nontrivial spectrum of the j-th Laplacian is contained within $[k(1-\varepsilon), k(1+\varepsilon)]$ (see §2.1 for the precise definition). One then has:

Theorem ([PRT12]). Let X be a d-dimensional complex on n vertices with a complete skeleton, which is a $(d-1, k, \varepsilon)$-expander. For any disjoint $A_0, \ldots, A_d \subseteq V$,

$$|F(A_0, \ldots, A_d)| - \frac{k}{n} |A_0| \cdot \ldots \cdot |A_d| \leq \varepsilon k (|A_0| \cdot \ldots \cdot |A_d|)^{\frac{1}{d+1}}$$

where $F(A_0, \ldots, A_d)$ is the set of d-cells with one vertex in each A_i.

In this paper we prove a mixing lemma for arbitrary (finite) complexes. Our main result is the following:

Theorem 1.1. If a d-dimensional complex X is a (j, k_j, ε_j)-expander for $0 \leq j \leq d-1$, and A_0, \ldots, A_d are disjoint sets of vertices in X then

$$|F(A_0, \ldots, A_d)| - \frac{k_0 \cdots k_{d-1}}{n^d} |A_0| \cdot \ldots \cdot |A_d| \leq c_d k_0 \cdots k_{d-1} (\varepsilon_0 + \ldots + \varepsilon_{d-1}) \max |A_i|,$$

where c_d depends only on d.

In order to understand $F(A_0, \ldots, A_d)$ in the case of general complexes, we study a more general counting problem:

Definition 1.2. Given $A_0, \ldots, A_\ell \subseteq V$, and $j \leq \ell$, a j-gallery in A_0, \ldots, A_ℓ is a sequence of j-cells $\sigma_0, \ldots, \sigma_{\ell-j} \in X^j$, such that σ_i is in $F(A_i, \ldots, A_{i+j})$, and σ_i and σ_{i+1} intersect in a $(j-1)$-cell (which must lie in $F(A_{i+1}, \ldots, A_{i+j})$). We denote the set of j-galleries in A_0, \ldots, A_ℓ by $F^j(A_0, \ldots, A_\ell)$.

![Figure 1.1: A 0-gallery, a 1-gallery and a 2-gallery in A_0, \ldots, A_3.](image)

At the heart of our analysis is the following lemma, which estimates the size of $F^{j+1}(A_0, \ldots, A_\ell)$ in terms of that of $F^j(A_0, \ldots, A_\ell)$. Since $F(A_0, \ldots, A_\ell)$ is $F^\ell(A_0, \ldots, A_\ell)$ and $F^0(A_0, \ldots, A_\ell) = A_0 \times \ldots \times A_\ell$, repeatedly applying the lemma allows us to estimate $|F(A_0, \ldots, A_d)|$ in terms of $|F^0(A_0, \ldots, A_d)| = |A_0| \cdot \ldots \cdot |A_d|$.
Lemma 1.3 (Descent Lemma). Let A_0, \ldots, A_ℓ be sets of vertices in X, such that each $i+1$ tuple $A_i, A_{i+1}, \ldots, A_{i+j+1}$ consists of disjoint sets. If X is an (i, k_i, ε_i)-expander for $i = j-1, j = j$, then

$$\left| F^{j+1} (A_0, \ldots, A_\ell) \right| = \left(\frac{k_j}{k_{j-1}} \right)^{\ell-j} \left| F^j (A_0, \ldots, A_\ell) \right| \leq (\ell - j) k_j^{\ell-j} (\varepsilon_j + \varepsilon_{j-1}) \sqrt{|F (A_0, \ldots, A_j)| |F (A_{j-1}, \ldots, A_\ell)|}. $$

Building upon this we obtain a more general pseudo-randomness result for galleries, of which Theorem 1.1 is a special case:

Proposition 1.4. For any $j < \ell$, there exists $c_{j, \ell}$ such that if X is an (i, k_i, ε_i)-expander for $0 \leq i \leq j$ and A_0, \ldots, A_ℓ are disjoint sets of vertices in X then

$$\left| F^{j+1} (A_0, \ldots, A_\ell) \right| - \frac{k_0 k_1 \ldots k_{j-1} k^{\ell-j}}{n^{\ell}} \prod_{i=0}^{\ell} |A_i| \leq c_{j, \ell} k_0 k_1 \ldots k_{j-1} k_j^{\ell-j} (\varepsilon_0 + \ldots + \varepsilon_j) \max |A_i|.$$

The proofs of the descent lemma and its corollaries appear in §3, after giving the required definitions in §2. In §4 we discuss applications of the mixing lemma for geometric expansion (in the sense of [Gro10, FGL12]), chromatic bounds, isoperimetric constants and crossing numbers. We also present the idea of ideal expanders in this section, and list some open problems in §5.

Acknowledgement. I would like to thank Konstantin Golubev, Alex Lubotzky, Doron Puder and Ron Rosenthal for many valuable discussions. I am grateful to acknowledge the support of the National Science Foundation (DMS-1128155), and of The Fund for Math at the Institute for Advanced Study.

2 Simplicial Hodge theory

We describe here briefly the notions we shall need from simplicial Hodge theory. For a more detailed summary we refer the reader to [PRT12, §2].

Let X be a d-dimensional simplicial complex, with vertex set V of size n. For $-1 \leq j \leq d$ we denote by X^j the set of j-cells in X (cells of size $j+1$), and by X^j_\pm the set of oriented j-cells, i.e. ordered cells up to an even permutation. A j-form on X is an antisymmetric function on oriented j-cells:

$$\Omega^j = \Omega^j (X) = \left\{ f : X^j_+ \to \mathbb{R} \mid f (\sigma) = -f (\tau) \ \forall \sigma, \tau \in X^j_\pm \right\},$$

where σ is σ endowed with the opposite orientation. In dimensions 0 and -1 there is only one orientation, and so $\Omega^0 = \mathbb{R}^V$ and $\Omega^{-1} = \mathbb{R} (\sigma) \cong \mathbb{R}$. The j^{th} boundary operator $\partial_j : \Omega^j \to \Omega^{j-1}$ is defined by $(\partial_j f) (\sigma) = \sum_{\nu, \sigma \in X^j} f (\nu \sigma)$. The sequence $\Omega^j \xrightarrow{\partial_j} \Omega^j \xrightarrow{\partial_{j-1}} \ldots$ is a chain complex, i.e. $B_j = \ker \partial_j + \im \partial_j \cong \ker \partial_j \cong Z_j$, and $H^j = Z_j / B_j$ is the j^{th} (real, reduced) homology group of X. We endow each Ω^j with the inner product $(f, g) = \sum_{\sigma \in X^j} f (\sigma) g (\sigma)$, which gives rise to a dual coboundary operator $\delta_j = \partial_j^* : \Omega^{j-1} \to \Omega^j$. The real cohomology of X is $H^j = Z^j / B^j$, where $B^j = \ker \delta_j \cong \im \delta_j \cong Z^j$, and by the fundamental theorem of linear algebra one has $B^j_+ = B^j_-$ and $Z^j_+ = Z^j_-$.

The upper, lower and full Laplacians in dimension j are $\Delta^+_j = \partial_{j+1} \delta_{j+1}$, $\Delta^-_j = \delta_j \partial_j$, and $\Delta_j = \Delta^+_j + \Delta^-_j$, respectively. All of the Laplacians are self-adjoint and decompose with respect
to the orthogonal decompositions $\Omega^j = B^j \oplus Z_j = B_j \oplus Z^j$, and the following properties are simple exercises (unlike their Riemannian counterparts):

\[
Z^j = \ker \Delta^+_j \implies B_j = \text{im} \Delta^+_j \quad Z_j = \ker \Delta^-_j \quad B^j = \text{im} \Delta^-_j
\]

\[
Z^j \cap Z_j = (B_j \oplus B^j)^\perp = \ker \Delta_j \cong H_j \cong H^j \quad \text{(Discrete Hodge Theorem)}.
\]

The dimension of $\ker \Delta_j$ is the jth (reduced) Betti number of X, denoted by β_j.

The combinatorial meaning of the Laplacians is better understood via the following adjacency relations on oriented cells:

1. For two oriented j-cells σ, σ', we denote $\sigma \cap \sigma'$ if σ and σ' intersect in a common $(j-1)$-cell and induce the same orientation on it; for edges this means that they have a common origin or a common endpoint, and for vertices $v \cap v'$ holds whenever $v \neq v'$.

2. We denote $\sigma \sim \sigma'$ if $\sigma \cap \sigma'$, and in addition the $(j+1)$-cell $\sigma \cup \sigma'$ is in X. For vertices this is the standard relation of neighbors in a graph.

Using these relations, the Laplacians can be expressed as follows (here the degree of a j-cell is the number of $(j+1)$-cells which contain it):

\[
(\Delta^+_j \varphi)(\sigma) = \deg(\sigma) \varphi(\sigma) - \sum_{\sigma' \sim \sigma} \varphi(\sigma')
\]

\[
(\Delta^-_j \varphi)(\sigma) = (j + 1) \varphi(\sigma) + \sum_{\sigma' \cap \sigma} \varphi(\sigma')
\]

\[
(\Delta_j \varphi)(\sigma) = (\deg \sigma + j + 1) \varphi(\sigma) + \sum_{\sigma' \cap \sigma} \varphi(\sigma')
\]

We also define adjacency operators on Ω^j which correspond to the \sim and \cap relations:

\[
(\mathcal{A}^+_j \varphi)(\sigma) = \sum_{\sigma' \sim \sigma} \varphi(\sigma') , \quad (\mathcal{A}^-_j \varphi)(\sigma) = \sum_{\sigma' \cap \sigma} \varphi(\sigma'),
\]

so that $\Delta^-_j = (j + 1) \cdot I + \mathcal{A}^-_j$ and $\Delta^+_j = D_j - \mathcal{A}^-_j$, where D_j is the degree operator $(D_j f)(\sigma) = \deg(\sigma) f(\sigma)$. Let us remark that these operators can be used to define stochastic processes on j-cells whose properties relate to the homology of the complex - see [PR12, MS13].

2.1 Spectrum

The spectra we are primarily interested in are those of Δ^+_j, for $0 \leq j \leq d - 1$. Since (Ω^j, δ_j) is a co-chain complex, $B^j = \text{im} \delta_j$ must be contained in the kernel of $\Delta^+_j = \delta_{j+1} \delta_{j+1}$, and the zero eigenvalues which correspond to forms in B^j are considered to be the trivial spectrum of Δ^+_j. As $(B^j)^\perp = Z_j$, we call $\text{Spec} \Delta^+_j \mid_{Z_j}$ the nontrivial spectrum of Δ^+_j. Note that zero is a nontrivial eigenvalue of Δ^+_j precisely when $Z_j \cap Z^j \neq 0$, i.e. $\beta_j \neq 0$. For example, the constant functions on V form the trivial eigenfunctions of Δ^+_0. The nontrivial spectrum of Δ^+_j corresponds to Z_0, which are the functions whose sum on all vertices vanishes, and zero is a nontrivial eigenvalue of Δ^+_0 if and only if the complex is disconnected.

Definition. The complex X is a (j, k, ε)-expander if $\varepsilon < 1$ and $\text{Spec} \Delta^+_j \mid_{Z_j} \subseteq [k(1 - \varepsilon), k(1 + \varepsilon)]$. Given $\vec{k} = (k_0, \ldots, k_{d-1})$ and $\vec{\varepsilon} = (\varepsilon_0, \ldots, \varepsilon_{d-1})$, we say that X is a $(\vec{k}, \vec{\varepsilon})$-expander if it is a (j, k_j, ε_j)-expander for all j.
The restriction $\varepsilon_j < 1$ in the definition ensures that X has trivial j-th homology, i.e. $\beta_j = 0$. While some of our results hold for general ε (e.g. Lemma 1.3), or for any global bound on it (e.g. Theorem 1.1), we shall need the stronger assumption for later applications. We remark that it is sometimes convenient to consider the Laplacian Δ_1^{-} as well. This operator acts on $\Omega^{-1} \cong \mathbb{R}$ as multiplication by $n = |V|$, so that every complex is automatically a $(-1, n, 0)$-expander.

3 The main theorems

In this section we assume that X is a d-complex on n vertices, and prove the Descent Lemma (Lemma 1.3) and the mixing lemmas it implies.

Proof of the Descent Lemma. To any disjoint sets of vertices A_0, \ldots, A_j, we associate the characteristic j-form $I_{A_0 \ldots A_j} \in \Omega^j$, which takes ± 1 on j-cells in $F(A_0, \ldots, A_j)$ (according to their orientation), and vanishes elsewhere:

$$ I_{A_0 \ldots A_j}(\sigma) = \begin{cases} \text{sgn}(\pi) & \exists \pi \in \text{Sym}_{\{0 \ldots j\}} \text{ with } \sigma_i \in A_{\pi(i)} \text{ for } 0 \leq i \leq j \\ 0 & \text{otherwise}. \end{cases} $$

Restriction of j-forms to $F(A_0, \ldots, A_j)$ gives an orthogonal projection operator in Ω^j, which we denote by $P_{A_0 \ldots A_j}$:

$$ (P_{A_0 \ldots A_j}\varphi)(\sigma) = \begin{cases} \varphi(\sigma) & \sigma \in F(A_0, \ldots, A_j) \\ 0 & \text{otherwise}. \end{cases} $$

We start our analysis by observing that for disjoint sets A_0, \ldots, A_{j+1} the form $(-1)^j P_{A_0 \ldots A_j} A_j^{\sim} I_{A_0 \ldots A_{j+1}}$ vanishes outside $F(A_0, \ldots, A_j)$, and assigns to each j-cell therein its number of \sim-neighbors in $F(A_1, \ldots, A_{j+1})$. As these neighbors are in correspondence with $(j+1)$-cells in $F(A_0, \ldots, A_{j+1})$, we obtain

$$ |F(A_0, \ldots, A_{j+1})| = |(I_{A_0 \ldots A_j}, P_{A_0 \ldots A_j} A_j^{\sim} I_{A_0 \ldots A_{j+1}})|. \quad (3.1) $$

Next, let φ be a j-form which is supported on $F(A_1, \ldots, A_{j+1})$, and which assigns to each j-cell σ the number of $(j+1)$-galleries in A_1, \ldots, A_ℓ whose first cell contains σ. By the same considerations as above, $(-1)^j P_{A_0 \ldots A_j} A_j^{\sim} \varphi$ assigns to every j-cell τ in $F(A_0, \ldots, A_j)$ the number of $(j+1)$-galleries in A_0, \ldots, A_ℓ whose first $(j+1)$ cell contains τ. Therefore, $|(I_{A_0 \ldots A_j}, P_{A_0 \ldots A_j} A_j^{\sim} \varphi)| = |F^{j+1}(A_0, \ldots, A_\ell)|$, and we conclude by induction that

$$ |F^{j+1}(A_0, \ldots, A_\ell)| = \left| \left(I_{A_0 \ldots A_j}, \prod_{i=0}^{\ell-j-1} P_{A_i \ldots A_{i+j}} A_j^{\sim} I_{A_{\ell-j} \ldots A_\ell} \right) \right|. \quad (3.2) $$

Since A_i, \ldots, A_{i+j+1} are disjoint, $I_{A_0 \ldots A_{i+j}}$ and $I_{A_{i+j} \ldots A_{i+j+1}}$ are supported on different cells, so that $P_{A_0 \ldots A_{i+j}} TP_{A_{i+j} \ldots A_{i+j+1}} = 0$ for any diagonal operator T. Thus, all the A_j^{\sim} in (3.2) can be replaced by $A_j^{\sim} + T$, and taking $T = k_j I - D_j$ we obtain

$$ |F^{j+1}(A_0, \ldots, A_\ell)| = \left| \left(I_{A_0 \ldots A_j}, \prod_{i=0}^{\ell-j-1} P_{A_i \ldots A_{i+j}} (k_j I - D_j) I_{A_{\ell-j} \ldots A_\ell} \right) \right|. \quad (3.3) $$
Our next step is to approximate this quantity using the lower j-th Laplacian. Denoting $E = k_j I - \Delta_j^+ - \frac{k_j}{k_{j-1}} \Delta_j^-$, the orthogonal decomposition $\Omega^j = Z_j \oplus B^j$ gives

$$E = k_j (P_{Z_j} + P_{B_j}) - \Delta_j^+ - \frac{k_j}{k_{j-1}} \Delta_j^- = k_j P_{Z_j} - \Delta_j^+ + \frac{k_j}{k_{j-1}} (k_{j-1} P_{B_j} - \Delta_j^-).$$

We first observe that $\|k_j P_{Z_j} - \Delta_j^+\| \leq k_j \varepsilon_j$ follows from $\text{Spec} \Delta_j^+ \mid_{Z_j} \subseteq [k_j (1 - \varepsilon_j), k_j (1 + \varepsilon_j)]$ and $\Delta_j^- \mid_{B_j} = 0$. For the lower Laplacian, we have

$$\text{Spec} \Delta_j^- \mid_{B_j} = \text{Spec} \Delta_j^- \mid_{Z_j} = \text{Spec} \Delta_j^- \setminus \{0\} \cong \text{Spec} \Delta_j^+ \setminus \{0\} = \text{Spec} \Delta_j^+ \mid_{(Z_j \setminus \{0\})},$$

(3.4)

where (\ast) follows from the fact that $\Delta_j^- = \partial_j^* \partial_j$ and $\Delta_j^+ = \partial_j \partial_j^*$. As Δ_j^- vanishes on Z_j, we have in total $\|k_{j-1} P_{B_j} - \Delta_j^-\| \leq k_{j-1} \varepsilon_{j-1}$, so that

$$\|E\| \leq \|k_j P_{Z_j} - \Delta_j^+\| + \frac{k_j}{k_{j-1}} \|k_{j-1} P_{B_j} - \Delta_j^-\| \leq k_j (\varepsilon_{j-1} + \varepsilon_j).$$

(3.5)

Let us denote for brevity $P_i = P_{A_{i-1}, \ldots, A_i}$. Using $k_j I - \Delta_j^+ = \frac{k_j}{k_{j-1}} \Delta_j^- + E$, allowing to translate Δ_j^- by diagonal (in fact, scalar) operators, we find that

$$\left(\prod_{i=0}^{\ell-j-1} P_i (k_j I - \Delta_j^+)\right) P_{\ell-j} = \left(\prod_{i=0}^{\ell-j-1} P_i \left(\frac{k_j}{k_{j-1}} \Delta_j^- + E\right)\right) P_{\ell-j}
= \left(\frac{k_j}{k_{j-1}}\right)^{\ell-j} \left(\prod_{i=0}^{\ell-j-1} P_i \Delta_j^-\right) P_{\ell-j}
+ \sum_{m=1}^{\ell-j} \left(\frac{k_j}{k_{j-1}}\right)^{\ell-j-m} \left(\prod_{i=0}^{\ell-j-m-1} P_i \Delta_j^-\right) P_{\ell-j-m} E \left(\prod_{i=\ell-j-m+1}^{\ell-j-1} P_i \left(\frac{k_j}{k_{j-1}} \Delta_j^- + E\right)\right) P_{\ell-j}
= \left(\frac{k_j}{k_{j-1}}\right)^{\ell-j} \left(\prod_{i=0}^{\ell-j-1} P_i \Delta_j^-\right) P_{\ell-j}
+ \sum_{m=1}^{\ell-j} \left(\frac{k_j}{k_{j-1}}\right)^{\ell-j-m} \left(\prod_{i=0}^{\ell-j-m-1} P_i (\Delta_j^- - k_{j-1} I)\right) P_{\ell-j-m} E \left(\prod_{i=\ell-j-m+1}^{\ell-j-1} P_i (k_j I - \Delta_j^+)\right) P_{\ell-j}$$

and plugging this into (3.3) gives

$$|F^{j+1}(A_0, \ldots, A_{\ell})| = \left|\left(\frac{k_j}{k_{j-1}}\right)^{\ell-j} \left\langle I_{A_{\ell-j}} \left(\prod_{i=0}^{\ell-j-1} P_{A_{\ell-j-i} \ldots A_i} \Delta_j^-\right) I_{A_{\ell-j} \ldots A_i}\right\rangle
+ \sum_{m=1}^{\ell-j} \left(\frac{k_j}{k_{j-1}}\right)^{\ell-j-m} \left\langle I_{A_0 \ldots A_{\ell-j}} \left(\prod_{i=0}^{\ell-j-m-1} P_{A_{\ell-j-i} \ldots A_i} (\Delta_j^- - k_{j-1} I)\right) P_{A_{\ell-j-m} \ldots A_{\ell-m}} E \left(\prod_{i=\ell-j-m+1}^{\ell-j-1} P_{A_0 \ldots A_{\ell-j}} (k_j I - \Delta_j^+)\right) I_{A_{\ell-j} \ldots A_{\ell}}\right\rangle\right|. $$

6
Let us call the term on the first line the main term, and the one on the second line the error term. Note that the form \((-1)^j \mathbb{P}_{A_0 \ldots A_j} \mathcal{A}_j^p \mathbb{1}_{A_1 \ldots A_{j+1}}\) assigns to every \(j\)-cell in \(F(A_0, \ldots, A_j)\) the number of \(j\)-cells in \(F(A_1, \ldots, A_{j+1})\) with which it intersects, so that by definition
\[
\left| \langle \mathbb{1}_{A_0 \ldots A_j}, \mathbb{P}_{A_0 \ldots A_j} \mathcal{A}_j^p \mathbb{1}_{A_1 \ldots A_{j+1}} \rangle \right| = \left| F^j(A_0, \ldots, A_{j+1}) \right|
\]
(compare this with (3.1)). By the same arguments as for \(\mathcal{A}^\sim\) one sees that
\[
\left| F^j(A_0, \ldots, A_\ell) \right| = \left| \langle \mathbb{1}_{A_0 \ldots A_\ell}, \left(\prod_{i=0}^{\ell-j-1} \mathbb{P}_{A_{i+1} \ldots A_\ell} \mathcal{A}_j^p \mathbb{1}_{A_{i+1} \ldots A_\ell} \right) \rangle \right|
\]
so that the main term is precisely \(\left(\frac{k_j}{k_{j-1}} \right)^{\ell-j} \left| F^j(A_0, \ldots, A_\ell) \right|\), our estimate for \(\left| F^j+1(A_0, \ldots, A_\ell) \right|\). Turning to the error term, since \(\text{Spec} \Delta_j^+ \subseteq [0, k_j (1 + \varepsilon_j)]\) we have \(\| k_j I - \Delta_j^+ \| \leq k_j \), and similarly from (3.4) we obtain \(\| \Delta_j^- - k_{j-1} I \| \leq k_j - 1 \). Together with (3.5) this implies that the error term is bounded by
\[
\sum_{m=1}^{\ell-j} \left(\frac{k_j}{k_{j-1}} \right)^{\ell-j-m} \| \mathbb{1}_{A_0 \ldots A_j} \| k_j^{\ell-j-m} k_j (\varepsilon_j - 1 + \varepsilon_j) k_j^{m-1} \| \mathbb{1}_{A_{\ell-j} \ldots A_\ell} \|
\]
\[= (\ell - j) k_j^{\ell-j} (\varepsilon_j - 1 + \varepsilon_j) \sqrt{\left| F(A_0, \ldots, A_\ell) \right| \left| F(A_{\ell-j}, \ldots, A_\ell) \right|}, \]
which concludes the proof.

We remark that a slightly better bound is possible here: one can replace \(k_j I - \Delta_j^+\) in the error term by \(\frac{k_j (1 + \varepsilon_j)}{2} I - \Delta_j^+\), which is bounded by \(\frac{k_j (1 + \varepsilon_j)}{2}\), and likewise for \(\Delta_j^-\) and \(k_{j-1}\). For example, putting \(\varepsilon = \max(\varepsilon_{j-1}, \varepsilon_j)\) this gives the bound
\[
\frac{(\ell - j) k_j^{\ell-j} \varepsilon (1 + \varepsilon)^{\ell-j-1}}{2^{\ell-j-2}} \sqrt{\left| F(A_0, \ldots, A_\ell) \right| \left| F(A_{\ell-j}, \ldots, A_\ell) \right|}
\]
which might be useful when \(\varepsilon\) is small and \(\ell \gg j\).

\(\square\)

Using the Descent Lemma repeatedly gives Proposition 1.4, which for \(j = d - 1\), \(\ell = d\) implies Theorem 1.1:

Proof of Proposition 1.4. We denote \(m = \max |A_i|\) and assume by induction that the proposition holds for \(j - 1\) (and any \(j \leq \ell\)), i.e. that
\[
\left| F^j(A_0, \ldots, A_\ell) - \frac{k_0 \ldots k_j}{n^\ell} k_j^{\ell-j-1} \prod_{i=0}^{\ell} |A_i| \right| \leq |A_{j-1} |(k_0 \ldots k_{j-2} k_j^{\ell-j+1} (\varepsilon_0 + \ldots + \varepsilon_{j-1}) m. \tag{3.6} \]
For \(j = 0\) this indeed holds, in the sense that
\[
\left| F^0(A_0, \ldots, A_\ell) - \frac{k_0 \ldots k_\ell}{n^\ell} \prod_{i=0}^{\ell} |A_i| \right| = 0 \tag{3.7} \]
(recall that every complex is a \((-1,n,0)\)-expander). Let us denote by \(\mathcal{E}\) the discrepancy
\[
\left| F^{j+1}(A_0, \ldots, A_\ell) - \frac{k_0 k_1 \ldots k_{j-1} k_j^{\ell-j}}{n^\ell} \prod_{i=0}^{\ell} |A_i| \right|. \]
Combining the Descent Lemma with (3.6) (or
(3.7), for \(j = 0 \) multiplied by \(\left(\frac{k_j}{\epsilon_{j-1}} \right)^{\ell-j} \) gives

\[
\mathcal{E} \leq (\ell - j) k_j^{\ell-j} (\epsilon_j + \epsilon_{j-1}) \sqrt{|F(A_0, \ldots, A_j)||F(A_{\ell-j}, \ldots, A_{\ell})|}
+ c_{\ell-1,j} k_0 k_1 \ldots k_{j-1} k_j^{\ell-j} (\epsilon_0 + \ldots + \epsilon_{j-1}) m.
\]

To bound \(|F(A_0, \ldots, A_j)| \) we use (3.6) with \(\ell = j \), which gives

\[
|F^j(A_0, \ldots, A_j)| \leq \frac{k_0 \ldots k_{j-1}}{n^j} \prod_{i=0}^{j} |A_i| + c_{j-1,j} k_0 \ldots k_{j-1} (\epsilon_0 + \ldots + \epsilon_{j-1}) m
\leq [1 + c_{j-1,j} (\epsilon_0 + \ldots + \epsilon_{j-1})] k_0 \ldots k_{j-1} m
\leq (1 + j c_{j-1,j}) k_0 \ldots k_{j-1} m.
\]

(here we have used \(\epsilon_i < 1 \), but any global bound for \(\epsilon_i \) would do). The same holds for \(|F(A_{\ell-j}, \ldots, A_{\ell})| \), hence

\[
\mathcal{E} \leq (\ell - j) k_j^{\ell-j} (\epsilon_j + \epsilon_{j-1}) (1 + j c_{j-1,j}) k_0 \ldots k_{j-1} m
+ c_{j-1,j} k_0 k_1 \ldots k_{j-1} k_j^{\ell-j} (\epsilon_0 + \ldots + \epsilon_{j-1}) m
= k_0 k_1 \ldots k_{j-1} k_j^{\ell-j} c_{j-1,j} (\epsilon_0 + \ldots + \epsilon_{j-1}) + (\ell - j) (1 + j c_{j-1,j}) (\epsilon_j + \epsilon_{j-1}) m
\leq c_{j-1,j} + (\ell - j) (1 + j c_{j-1,j}) k_0 k_1 \ldots k_{j-1} k_j^{\ell-j} (\epsilon_0 + \ldots + \epsilon_j) m.
\]

as desired. \(\square \)

4 Applications

Geometric overlap. The following notion of geometric expansion for graphs and complexes originates in Gromov’s work [Gro10] (see also [FGLP, MW14]):

Definition 4.1. Let \(X \) be a \(d \)-dimensional simplicial complex. The geometric overlap of \(X \) is

\[
\text{overlap } X = \min_{\varphi: V \rightarrow \mathbb{R}^d} \max_{x \in \mathbb{R}^d} \# \{ \sigma \in X^d \mid x \in \text{conv} \{ \varphi(v) \mid v \in \sigma \} \} / |X^d|.
\]

In words, \(X \) has overlap \(\geq \epsilon \) if for every simplicial mapping of \(X \) into \(\mathbb{R}^d \) (a mapping induced linearly by the images of the vertices), some point in \(\mathbb{R}^d \) is covered by at least an \(\epsilon \)-fraction of the \(d \)-cells of \(X \).

A theorem of Pach [Pac98] relates pseudo-randomness and geometric overlap, and allows us to show the following:

Proposition 4.2. If \(X \) is a \(d \)-dimensional \((F, e) \)-expander with \(E = \epsilon_0 + \ldots + \epsilon_{d-1} < 1 \), then

\[
\text{overlap } X > \mathcal{P}_d d! (1 - \mathcal{E}) \left(\left(\frac{\mathcal{P}_d}{d+1} \right)^d - c_d \mathcal{E} \right),
\]

where \(\mathcal{P}_d \) is Pach’s constant [Pac98], and \(c_d \) is the constant in Theorem 1.1.
Thus, a family of d-complexes with $\varepsilon_0 + \ldots + \varepsilon_{d-1}$ small enough is a family of geometric expanders. For the proof we shall need the following lemma, which relates the Laplace spectrum to cell density:

Lemma 4.3. Let X be a d-complex with $\beta_j = 0$ for $0 \leq j \leq d - 1$, and let λ_j be the average nontrivial eigenvalue of Δ_j^+, for $-1 \leq j \leq d - 1$ (in particular $\lambda_{-1} = n$). Then, for $0 \leq m \leq d$ the number of m-cells is

$$|X^m| = \frac{\lambda_{m-1}}{m+1} \cdot \prod_{j=1}^{m-2} \left(\frac{\lambda_j}{j+2} - 1 \right) = \frac{\lambda_{m-1} (n-1)}{m+1} \cdot \prod_{j=0}^{m-2} \left(\frac{\lambda_j}{j+2} - 1 \right),$$

(4.1)

and the average degree of an m-cell is

$$\text{avg} \{ \deg \sigma \mid \sigma \in X^m \} = \lambda_m \left(1 - \frac{m+1}{\lambda_{m-1}} \right).$$

(4.2)

Proof. Since the trivial spectrum of Δ_j^+ consists of zeros,

$$|X^m| = \frac{1}{m+1} \sum_{\sigma \in X^{m-1}} \deg \sigma = \frac{1}{m+1} \text{tr} D_{m-1} = \frac{1}{m+1} \text{tr} \Delta_{m-1} = \frac{\lambda_{m-1}}{m+1} \dim Z_{m-1}.$$

Thus, (4.1) is equivalent to the assertion that

$$\dim Z_{m-1} = \prod_{j=1}^{m-2} \left(\frac{\lambda_j}{j+2} - 1 \right).$$

This is true for $m = 0$, and by induction, together with the triviality of the $(m-2)$-th homology we find that

$$\dim Z_{m-1} = \dim \Omega^{m-1} - \dim B_{m-2} = |X^{m-1}| - \dim Z_{m-2} = \frac{\lambda_{m-2}}{m} \prod_{j=1}^{m-3} \left(\frac{\lambda_j}{j+2} - 1 \right) - \prod_{j=1}^{m-3} \left(\frac{\lambda_j}{j+2} - 1 \right) = \prod_{j=1}^{m-2} \left(\frac{\lambda_j}{j+2} - 1 \right)$$

as desired. Formula (4.2) follows from (4.1), as $\text{avg} \{ \deg \sigma \mid \sigma \in X^m \} = \frac{(m+2)|X^{m+1}|}{|X^m|}$. □

We can now proceed:

Proof of Proposition 4.2. Let φ be a simplicial map $X \to \mathbb{R}^d$, and divide $V = X^0$ arbitrarily into parts P_0, \ldots, P_{d+1} of size $\frac{n}{d+1}$. Pach’s theorem \cite{Pac98} then states that there exist $Q_i \subseteq P_i$ of size $|Q_i| = P_i |P_i|$ and a point $x \in \mathbb{R}^{d+1}$, such that $x \in \text{conv} \{ \varphi (v) \mid v \in \sigma \}$ for all $\sigma \in F (Q_0, \ldots, Q_d)$.

Denoting $\mathcal{K} = k_0 \cdot \ldots k_{d-1}$ and $\mathcal{E} = \varepsilon_0 + \ldots + \varepsilon_{d-1}$, we have by Theorem 1.1

$$|F (Q_0, \ldots, Q_d)| \geq \frac{\mathcal{K}}{n^d} \left(\frac{P_d n^d}{d+1} \right)^{d+1} - c_d 2^{\mathcal{E} + 1} P_d n^d = \frac{\mathcal{K} P_d n^d}{d+1} \left[\left(\frac{P_d}{d+1} \right)^{d} - c_d \mathcal{E} \right],$$

and by the lemma above

$$|X^d| = \frac{\lambda_{d-1}}{d+1} \cdot \prod_{j=1}^{d-2} \left(\frac{\lambda_j}{j+2} - 1 \right) \leq \prod_{j=1}^{d-1} \frac{\lambda_j}{j+2} \leq n \prod_{j=1}^{d-1} k_j \left(1 + \varepsilon_j \right) \leq \frac{n \mathcal{K}}{(d+1)! \left(1 + \mathcal{E} \right)}.$$

This means x is covered by the φ-images of at least a $P_d n! \left(1 - \mathcal{E} \right) \left(\frac{P_d}{d+1} \right)^d - c_d \mathcal{E}$-fraction of the d-cells, and as this is true for all φ the proposition follows. □
Crossing numbers. This is another invariant, of somewhat similar flavor: The m-dimensional crossing number of a d-complex X is the minimal c such that for any simplicial map $X \to \mathbb{R}^m$ there are at least c pairs of disjoint d-cells in X whose images in \mathbb{R}^m intersect. In [GW13, §8.1] Gundert and Wagner use the mixing lemma from [PRT12] to give a lower bound for the 2d-dimensional crossing number of a d-complex with a complete skeleton, and their arguments hold for the general case using Theorem 1.1 and Lemma 4.3.

Chromatic numbers. A d-complex X is weakly c-colorable if there is a coloring of its vertices by c colors so that no d-cell is monochromatic. The weak chromatic number of X, denoted $\chi(X)$, is the smallest c for which X is c-colorable. We will use the mixing property to show that spectral expansion implies a chromatic bound, as is done for graphs in [LPS88]. These results are weaker than Hoffman’s chromatic bound for graphs [Hof70], as they require a two-sided spectral bound, and the chromatic bound obtained is not optimal. A chromatic bound for complexes which generalizes Hoffman’s result was recently obtained in [Gol13].

Proposition 4.4. If X is a d-dimensional (\mathbb{F}, π)-expander, then

$$\chi(X) \geq \frac{1}{(d + 1)^2 c_d \varepsilon + \ldots + \varepsilon_{d-1}} ,$$

where c_d is the constant from Theorem 1.1.

Proof. Coloring X by $\chi = \chi(X)$ colors, there is necessarily a monochromatic set of vertices of size at least $\frac{2}{\chi}$. Take $\frac{2}{\chi}$ of these vertices and partition them arbitrarily into $d + 1$ sets A_0, \ldots, A_d of equal size. By assumption we have $F(A_0, \ldots, A_d) = \emptyset$, so that Theorem 1.1 reads

$$\prod_{i=0}^d |A_i| \leq c_d k_0 \ldots k_{d-1} (\varepsilon_0 + \ldots + \varepsilon_{d-1}) \max |A_i| ,$$

and since $|A_i| = \frac{n}{\chi^2 (d+1)}$, the conclusion follows. \square

Isoperimetric bounds. The Cheeger inequalities for graphs relate $\min \text{Spec} \Delta_{Z_0}^+ | Z_0$ to the Cheeger constant, which is the minimum of $|E(A, B)| / |A| |B|$ over all partitions of the vertices into (nonempty) sets A and B. In [PRT12] one side of these inequalities is generalized to complexes with a complete skeleton. Namely, for any partition A_0, \ldots, A_d of the vertices in a d-complex, the quantity $|F(A_0, \ldots, A_d)| / |A_0| \ldots |A_d|$ is bounded from below in terms of $\min \text{Spec} \Delta_{Z_d}^+ | Z_{d-1}$. In [GP14] we generalize this result to complexes with non-complete skeleton, obtaining:

Theorem ([GP14]). Let X be a d-complex on n vertices, which is a (j, k_j, ε_j)-expander for $0 \leq j \leq d - 2$, and let $\lambda_{d-1} = \min \text{Spec} \Delta_{Z_d}^+ | Z_{d-1}$. Then for any partition A_0, \ldots, A_d of the vertices of X,

$$\frac{|F(A_0, \ldots, A_d)| n^d}{|A_0| \ldots |A_d|} \geq k_0 \ldots k_{d-2} \lambda_{d-1} \left(1 - \varepsilon_{d-2} - C_d \varepsilon_0 + \ldots + \varepsilon_{d-2} \right) \frac{n^{d+1}}{|A_0| \ldots |A_d|} ,$$

where C_d depends only on d.

The proof relies on both Theorem 1.1 and Proposition 1.4 of the present paper, which serve to replace the assumption of a complete $(d - 1)$-skeleton with a pseudo-random one.
Ramanujan complexes. Ramanujan graphs, constructed in [LPS88, Mar88, MSS13] are spectrally optimal expanders. Ramanujan complexes, a natural high dimensional counterpart, were defined and studied in [CSZ03, Li04, LSV05, Sar07], but as yet not from the point of view of the Hodge Laplacian. It is natural to suspect that they are high-dimensional expanders, in the sense of the current paper, but it turns out that the picture if more complicated. For the two-dimensional case, the nontrivial 1-dimensional spectrum is concentrated in two narrow strips:

Theorem ([GP14]). Let X be a two-dimensional Ramanujan complex with n vertices, constant vertex degree $k_0 = 2(q^2 + q + 1)$ and constant edge degree $k_1 = q + 1$ (q is any prime power). If X is not three-colorable then

\[
\Spec_{Z_0} \Delta_0^+ |_{Z_0} \subseteq \left[k_0 \left(1 - \frac{3}{q} \right), k_0 \left(1 + \frac{3}{q} \right) \right] \\
\Spec_{Z_1} \Delta_1^+ |_{Z_1} \subseteq \left[k_1 \left(1 - \frac{2}{\sqrt{q}} \right), k_1 \left(1 + \frac{2}{\sqrt{q}} \right) \right] \cup \left[2k_1 \left(1 - \frac{4}{q} \right), 2k_1 \left(1 + \frac{4}{q} \right) \right] \cup \{3k_1\},
\]

and if X is three-colorable then Δ_0^+ has in addition the eigenvalue $\frac{3k_0}{2}$.

The Δ_1^+-eigenform corresponding to the eigenvalue $3k_1$ is a disorientation (see [PR12, HJ13, GP14]), a two-dimensional analogue of graph bipartition. It is well understood, and would not prevent us from conducting an analysis as the one carried out in this paper. What prevents such an analysis is the strip around $2k_1$, which requires different arguments. In [GP14] we circumvent this problem by observing a quadratic polynomial in Δ_1^+, and conclude a pseudorandom behavior for two-galleries of length four, namely $F^2 (A, B, C, D)$.

Ideal expanders. This is not quite an application, but rather a useful intuition. Let us say that X is an ideal \overline{k}-expander if it is a $(j, k_j, 0)$-expander for $0 \leq j < d - 1$. In this case, the Descent Lemma tell us that

\[
F^{j+1} (A_0, \ldots, A_\ell) = \left(\frac{k_j}{k_{j-1}} \right)^{\ell-j} |F^j (A_0, \ldots, A_\ell)|,
\]

and the number of j-galleries between disjoint sets of vertices is completely determined by their sizes:

\[
|F^j (A_0, \ldots, A_\ell)| = \frac{k_0k_1 \ldots k_{j-2}k_{j-1}^{\ell-j+1}}{n^\ell} \prod_{i=0}^\ell |A_i|
\]

(4.3)

(in particular, $|F (A_0, \ldots, A_d)| = \frac{k_0 \ldots k_{d-1}}{n^d} |A_0| \ldots |A_d|$). For

\[
k_j = \begin{cases} n & 0 \leq j < m \\ 0 & m \leq j < d, \end{cases}
\]

an example of an ideal \overline{k}-expander is given by $K_n^{(m)}$, the m-th skeleton of the complete complex on n vertices. For this complex (4.3) holds trivially, and perhaps disappointingly, these are the only examples of ideal expanders: if X is an ideal \overline{k}-expander on n vertices, and $X^{(j)} = K_n^{(j)}$ (which holds for $j = 0$), one has $k_0 = \ldots = k_{j-1} = n$, and also $k_j \leq n$ by [PRT12, prop. 3.2(2)]. For any vertices v_0, \ldots, v_{j+1}, $\frac{k_0 \ldots k_{j+1}}{n^{j+1}} = |F (\{v_0, \ldots, v_{j+1}\})| \in \{0, 1\}$ then forces either $k_j = n$, which implies that $X^{(j+1)} = K_n^{(j+1)}$ as well, or $k_j = 0$, which means that X has no $(j+1)$-cells at all.
While ideal k-expanders do not actually exist, save for the trivial examples $\mathcal{K} = (n, \ldots, n, 0, \ldots)$, they provide a conceptual way to think of expanders in general: $(\mathcal{K}, \varepsilon)$-expanders spectrally approximate the ideal (nonexistent) k-expander, and the mixing lemma asserts that they approximate it combinatorially as well. This point of view seems close in spirit to that of spectral sparsification [ST11], which proved to be fruitful in both graphs and complexity theory.

5 Questions

Several natural questions arise from this study:

- In [GW12] it is shown that random complexes in the Linial-Meshulam model [LM06] have spectral concentration for appropriate parameters (see also [PRT12, §4.5]). These are complexes with a complete skeleton, which are high-dimensional analogues of Erdős–Rényi graphs. Is there a similar model for general complexes, for which the skeletons are not complete (preferably, where the expected degrees of cells are only logarithmic in the number of vertices), with concentrated spectrum?

- A well known source of excellent expanders are random regular graphs (see, e.g. [Fri08, Pud14]). Can one construct a model for random regular complexes, and are these complexes high-dimensional expanders? This is interesting even for a weak notion of regularity, such as having a bounded fluctuation of degrees, or having all links of vertices isomorphic.

- Bilu and Linial [BL06] have established a converse to the Expander Mixing Lemma, which shows that pseudo-randomness and two-sided spectral concentration are (almost) equivalent. For complexes with a complete skeleton, a converse to the mixing lemma from [PRT12] was recently established in [CMRT14]. Do these converse theorems admit a generalization to the general case?

- Another generalization of the high-dimensional Cheeger inequality for complexes without a complex skeleton appears in [GS14]. Rather than comparing $|F(A_0, \ldots, A_d)|$ with $|A_0| \cdot \cdots \cdot |A_d|$, it is compared with the number of $(d-1)$-spheres with one vertex at each A_i (which for a complete skeleton is $|A_0| \cdot \cdots \cdot |A_d|$), and the smallest nontrivial eigenvalue of Δ^+_{d-1} is used to relate them. Can one prove a mixing lemma along this line of thought, using $\text{Spec} \Delta^+_{d-1}$ alone?

References

[MSS13] A. Marcus, D.A. Spielman, and N. Srivastava, Interlacing families I: Bipartite Ramanujan

School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540
E-mail: parzan@ias.edu