Abstract

In 1989, Babai, Nisan and Szegedy [BNS92] gave a construction of a pseudorandom generator for logspace, based on lower bounds for multiparty communication complexity. The seed length of their pseudorandom generator was $2^{\Omega(\sqrt{\log n})}$, because the best lower bounds for multiparty communication complexity are relatively weak. Subsequently, pseudorandom generators for logspace with seed length $O(\log^2 n)$ were given by [N92] and [INW94].

In this paper, we show how to use the pseudorandom generator construction of [BNS92] to obtain a third construction of a pseudorandom generator with seed length $O(\log^2 n)$, achieving the same parameters as [N92] and [INW94]. We achieve this by concentrating on protocols in a restricted model of multiparty communication complexity that we call the conservative one-way unicast model and is based on the conservative one-way model of [DJS98]. We observe that bounds in the conservative one-way unicast model (rather than the standard Number On the Forehead model) are sufficient for the pseudorandom generator construction of [BNS92] to work.

Roughly speaking, in a conservative one-way unicast communication protocol, the players speak in turns, one after the other in a fixed order, and every message is visible only to the next player. Moreover, before the beginning of the protocol, each player only knows the inputs of the players that speak after she does and a certain function of the inputs of the players that speak before she does. We prove a lower bound for the communication complexity of conservative one-way unicast communication protocols that compute a family of functions obtained by compositions of strong extractors. Our final pseudorandom generator construction is related to, but different from the constructions of [N92] and [INW94].

*Weizmann Institute of Science, Rehovot, Israel. Email: anat.ganor@weizmann.ac.il. Supported by an ISF grant and by the I-CORE Program of the Planning and Budgeting Committee.

†Weizmann Institute of Science, Rehovot, Israel, and the Institute for Advanced Study, Princeton, NJ. Email: ran.raz@weizmann.ac.il. Supported by an ISF grant, by the I-CORE Program of the Planning and Budgeting Committee and by NSF grant numbers CCF-0832797, DMS-0835373.
1 Introduction

The problem of derandomizing space bounded computations has attracted a lot of attention over the last few decades. The main question is whether or not randomized logspace is the same as logspace. This question has a long history, [AKS87], [BNS92], [N92], [INW94], [NZ96], [SZ99], to mention a few, showing how randomized logspace machines can be simulated by deterministic ones. Savitch [S70] showed that nondeterministic space machines can be simulated in deterministic space s^2, implying in particular that $RL \subseteq L^2$. Subsequently, Saks and Zhou [SZ99] showed that $BPL \subseteq L^{3/2}$, which is currently the best known bound on the power of randomization in the context of logspace computation.

One way to simulate a randomized, space bounded computation with a deterministic one is using a space pseudorandom generator. Roughly speaking, a space pseudorandom generator converts, efficiently, a short truly random seed into a long string that looks random to machines with limited space. A major open problem in the theory of pseudorandomness is to construct an explicit pseudorandom generator that stretches a uniformly random seed of length $O(\log n)$ to n bits that cannot be distinguished from uniform by any logspace machine with input length n. Such a generator would imply that $RL = L$. Nisan [N92] constructed space pseudorandom generators that convert $O(\log^2 n)$ random bits to $\text{poly}(n)$ bits that look random to any logspace machine. Subsequently, [INW94] showed a different construction with the same parameters. Since [N92] and [INW94], no better seed length was obtained for derandomizing general logspace machines. There were other constructions of space pseudorandom generators for more restricted classes of space bounded computations, such as [RR99], [BRRY10], [BV10], [KNP10], [GMRTV12], [BDVY13] and [RSV13].

In this paper, we give a new construction of a space pseudorandom generator for general logspace machines, with seed length $O(\log^2 n)$, achieving the same parameters as [N92] and [INW94]. Our pseudorandom generator construction is based on a lower bound for a certain model of multiparty communication complexity, relying on the pseudorandom generator construction of Babai, Nisan and Szegedy [BNS92]. The pseudorandom generator of [BNS92] has seed length $2^{\Theta(\sqrt{\log n})}$. The proof that their construction gives a pseudorandom generator relies on a lower bound for multiparty communication complexity. [BNS92] gave a lower bound for the multiparty communication complexity of protocols in the Number On the Forehead (NOF) model with blackboard communication. In this model, each player knows all inputs except her own input and the communication is done by writing messages on a blackboard (broadcast) so that every player sees all the previous communication. For this model, [BNS92] gave a lower bound of $\Omega(n^2/2^k)$ (where n is the length of each input and k is the number of players). Improving this lower bound is a major open problem.

We observe that the pseudorandom generator construction of [BNS92] can be based on lower bounds for a restricted model of multiparty communication complexity. For this model we are able to obtain improved lower bounds, resulting in a pseudorandom generator with seed length $O(\log^2 n)$.

Definition 1 (Conservative One-way Unicast Communication Protocol). Let P be a deterministic, multiparty communication protocol for k players p_1, \ldots, p_k. For a function $f : B \times A_1 \times \cdots \times A_k \to B$, we say that P is a conservative one-way unicast communication protocol with respect to f if for an input $b, a_1, \ldots, a_k \in B \times A_1 \times \cdots \times A_k$ the following holds:

1. For every $i \in [k]$, before the beginning of the protocol, the i^{th} player only knows a_{i+1}, \ldots, a_k
and the (truth table\(^1\) of the) function \(f_i: A_i \times \cdots \times A_k \rightarrow B\), defined by:

\[
f_i(z_i, \ldots, z_k) = f(b, a_1, \ldots, a_{i-1}, z_i, \ldots, z_k)
\]

for every \(z_i, \ldots, z_k \in A_i \times \cdots \times A_k\).

2. The players communicate one after the other in the fixed order \(p_1, p_2, \ldots, p_k\).

3. For every \(1 \leq i < k\), the \(i^{th}\) message is visible only to \(p_{i+1}\). The message of the last player is the output of the protocol.

Usually, we will take \(f\) to be the function that the players are trying to compute. Note that the \(i^{th}\) player doesn’t know \(b, a_1, \ldots, a_{i−1}\) as in the NOF model, but she does know the relevant information on \(b, a_1, \ldots, a_{i−1}\) that is needed to compute the function \(f(b, a_1, \ldots, a_{i−1}, z_i, \ldots, z_k)\) for every \(z_i, \ldots, z_k \in A_i \times \cdots \times A_k\).

Our definition of conservative one-way unicast communication protocols is based on definitions by Damm, Jukna and Sgall [DJS98]. [DJS98] defined conservative communication protocols as protocols satisfying item (1) in Definition 1, and conservative one-way communication protocols as protocols satisfying items (1), (2) in Definition 1, where the communication is done by writing messages on a blackboard (broadcast) so that every player sees all the previous communication. The motivation of [DJS98] to study the conservative one-way model was different than ours. They studied this model as an interesting communication model in its own right, without relating it to pseudorandom generators for logspace computations.

[DJS98] proved lower bounds for the communication complexity of conservative one-way (blackboard) communication protocols that compute the pointer jumping problem. For \(k = \Theta((n/\log n)^{1/k})\), [DJS98] proved a lower bound of \(\Omega(n/k^2)\), and for \(k \leq \log^* n - \omega(1)\), they proved a lower bound of \(n \log(k-1) n(1 - o(1))\) (where \(k\) is the number of players and \(n\) is the length of each input). The conservative one-way model was further studied by Chakrabarti in [C07], where the \(\Omega(n/k^2)\) lower bound due to [DJS98] was extended so that it applies for all \(k\).

The unicast setting, where the players communicate by sending messages to each other over private channels, was studied in the context of message-passing models of multiparty communication. These models have been used extensively in distributed computing, for example in [FLPS85], [KSSV06], [KDG03], and [BEOPV13]. Message passing models are also used to study privacy and security in multiparty computations.

For conservative communication protocols (satisfying item (1) in Definition 1) it is convenient to consider composed functions as we define next.

Definition 2 (Composed Functions). For a function \(f : \{0,1\}^m \times \{0,1\}^n \rightarrow \{0,1\}^m\) and \(1 < i \in \mathbb{N}\), the \(i^{th}\) composition of \(f\) is a function \(f^{(i)} : \{0,1\}^{m+i} \rightarrow \{0,1\}^m\) defined for every \(a_0 \in \{0,1\}^m\), \(a_1, \ldots, a_i \in \{0,1\}^n\) as

\[
f^{(i)}(a_0, a_1, \ldots, a_i) = f(f^{(i-1)}(a_0, a_1, \ldots, a_{i-1}), a_i)
\]

where \(f^{(1)}(a_0, a_1) = f(a_0, a_1)\). In addition, we define \(f^{(0)}(a_0) = a_0\).

Let \(f^{(k)}\) be the \(k^{th}\) composition of a function \(f : \{0,1\}^m \times \{0,1\}^n \rightarrow \{0,1\}^m\). Note that for every input \((a_0, a_1, \ldots, a_k) \in \{0,1\}^{m+kn}\) and every \(i \in [k]\), if the \(i^{th}\) player knows \(f^{(i-1)}(a_0, a_1, \ldots, a_{i-1})\), then she also knows the function \(f^{(k)}_i\) defined in item (1) in Definition 1.

\(^1\)The truth table is not counted as part of the length of the input
Therefore, for the sake of proving lower bounds for the communication complexity of conservative communication protocols with respect to $f^{(k)}$, it is enough to assume that for an input $(a_0, a_1, \ldots, a_k) \in \{0,1\}^{m+kn}$, for every $i \in [k]$, before the beginning of the protocol, the i^{th} player only knows a_{i+1}, \ldots, a_k and $f^{(i-1)}(a_0, a_1, \ldots, a_{i-1})$.

In our paper, we prove lower bounds for the communication complexity of conservative one-way unicast communication protocols with respect to a certain composed function $f^{(k)}$. Therefore, we replace item (1) in Definition 1 by the assumption that for an input $(a_0, a_1, \ldots, a_k) \in \{0,1\}^{m+kn}$, for every $i \in [k]$, before the beginning of the protocol, the i^{th} player only knows a_{i+1}, \ldots, a_k and $f^{(i-1)}(a_0, a_1, \ldots, a_{i-1})$.

An Example - The Pointer Jumping Problem

In the pointer jumping problem for k players, the input is k functions $\Pi_1, \ldots, \Pi_k : [r] \rightarrow [r]$ and an additional input $i_0 \in [r]$. The players need to output $\Pi_k \circ \cdots \circ \Pi_1(i_0)$. Let S_r denote the set of all functions from $[r]$ to $[r]$ and let $f : [r] \times S_r \rightarrow [r]$ be the function defined by $f(i, \Pi) = \Pi(i)$ for every $i \in [r]$ and $\Pi \in S_r$. Note that the pointer jumping problem for k players is the k^{th} composition of f. In a conservative communication protocol (satisfying item (1) in Definition 1) with respect to the pointer jumping problem, for every $i \in [k]$, before the beginning of the protocol, the i^{th} player only knows Π_{i+1}, \ldots, Π_k and $f^{i-1}(i_0, \Pi_1, \ldots, \Pi_{i-1}) = \Pi_{i-1} \circ \cdots \circ \Pi_1(i_0).$

1.1 Main Result

We say that a communication protocol P computes a function $f : \{0,1\}^n \rightarrow \{0,1\}^m$ with bias $\delta > 0$ if

$$\Pr_{x \in \{0,1\}^n} [f(x) = P(x)] \geq 2^{-m} + \delta$$

We denote the length of the longest message sent during the execution of P by $L(P)$ (on the worst case input, not including the last message which is the output of the protocol).

Let $Ext : \{0,1\}^m \times \{0,1\}^n \rightarrow \{0,1\}^m$ be a (t, ε) strong extractor (see Definition 10). We refer to the k^{th} composition of Ext, denoted $Ext^{(k)}$, as a (t, ε) composed strong extractor. Composed strong extractors are closely related to alternating extractors, which are used in [DW09], with cryptographic applications.

Our lower bound is for the length of the longest message communicated during any conservative one-way unicast communication protocol that computes a composed strong extractor with bias $\delta > 0$.

Theorem 3. Let $Ext^{(k)} : \{0,1\}^{m+nk} \rightarrow \{0,1\}^m$ be a (t, ε) composed strong extractor and let P be a conservative one-way unicast communication protocol with respect to $Ext^{(k)}$ that computes $Ext^{(k)}$ with bias $\delta > 0$, such that $\varepsilon < \delta \cdot 2^{-(k+2)}$. Then,

$$L(P) \geq n - t - k - \log \frac{1}{\delta} - 2$$

In fact, we prove a slightly stronger version of Theorem 3 in which we consider projections of the composed strong extractor (see Theorem 17). Using this lower bound together with the pseudorandom generator construction of Babai, Nisan and Szegedy [BNS92], we obtain a space
pseudorandom generator that converts $O(\log^2 n)$ random bits to $\text{poly}(n)$ bits that look random to any logspace machine (see Section 4).

Comparison with [N92] and [INW94]

The pseudorandom generator construction of [INW94] is also based on a recursive composition of extractors. However, their generator is different from the one presented here. The recursive composition used in [INW94] is different from the composition in Definition 2. Moreover, [INW94] use extractors that output $O(\log^2 n)$ bits, whereas here we use extractors that output $O(\log n)$ bits.

The pseudorandom generator construction of [N92] is based on a recursive composition of hash functions. This is done by a composition similar to the one in Definition 2. We note that hashing can be viewed as an application of an extractor. However, when viewing the hashing as an application of an extractor, the composition of [N92] does not fit our definition of a composed extractor. In particular, in our definition of a composed extractor, the recursion is done by replacing the seed of the extractor with the output of the extractor from the previous composition, whereas in [N92], the recursion is done by replacing the source of the extractor with the output of the extractor from the previous composition.

2 Preliminaries

2.1 General Notation

Let $[n]$ be the set of numbers $\{1, 2, \ldots, n\}$. For a binary string $x \in \{0, 1\}^*$ and an index $i \in \mathbb{N}$, let x_i be the i^{th} bit of x. For a set of indexes $S = \{i_1, \ldots, i_k\} \subseteq [\|x\|]$, let x_S be the string x_{i_1}, \ldots, x_{i_k}.

2.1.1 Functions

For a function $f : \{0, 1\}^n \rightarrow \{0, 1\}^m$ and a subset $S \subseteq [m]$ of size m', where $m' \leq m$, the projection of f on S, denoted f_S, is a function from $\{0, 1\}^n$ to $\{0, 1\}^{m'}$ defined as $f_S(x) = (f(x))_S$ for every $x \in \{0, 1\}^n$. To simplify notation, for $i \in [m]$, we define $f_i = f_{\{i\}}$. For two functions $f : \mathcal{A} \rightarrow \mathcal{B}$ and $h : \mathcal{B} \rightarrow \mathcal{C}$, let $h \circ f$ be the function from \mathcal{A} to \mathcal{C} defined as $h(f(a))$ for every $a \in \mathcal{A}$.

2.1.2 Distributions and Random Variables

We write $x \in_R \mathcal{X}$ if x is chosen uniformly at random from \mathcal{X}. For a distribution D and a subset S of the support of D, let $D(S)$ be the sum $\sum_{s \in S} D(s)$. For a random variable X and an event E, we write $X|E$ to denote X conditioned on E. We write $X \in \mathcal{X}$ if X is distributed over the set \mathcal{X}. For two random variables X and Y, we write $X \sim Y$ if X and Y have the same distribution. Slightly abusing notation, given a random variable X, we let $x \sim X$ indicate the sampling of x from the distribution of X.
2.2 Statistical Distance

Definition 4 (Statistical Distance). Let D_1 and D_2 be two distributions over the same space Ω. Their statistical distance is

$$\|D_1 - D_2\| = \max_{S \subseteq \Omega} |D_1(S) - D_2(S)| = \frac{1}{2} \sum_{x \in \Omega} |D_1(x) - D_2(x)|$$

For two random variables $X_1, X_2 \in \Omega$ distributed according to D_1 and D_2 respectively, we define $\|X_1 - X_2\| = \|D_1 - D_2\|$.

Proposition 5. Let $X, X' \in \mathcal{X}$ be two random variables and let $f : \mathcal{X} \rightarrow \mathcal{Y}$ be any deterministic function. Then,

$$\|f(X) - f(X')\| \leq \|X - X'\|$$

Proposition 6. Let $X \in \mathcal{X}$, $Y \in \mathcal{Y}$ and $Z \in \mathcal{Z}$ be three random variables, and let U be uniform over \mathcal{X}, independent of X, Y and Z. Then,

$$\|(Z, X) - (Z, U)\| \leq \|(Y, Z, X) - (Y, Z, U)\|$$

2.3 Space Pseudorandom Generators

A deterministic, space $s(n)$ Turing machine uses $s(n)$ space on any input of size n. A non-uniform, space $s(n)$ statistical test is a deterministic, space $s(n)$ Turing machine M and an infinite sequence of binary strings $a = (a_1, \ldots, a_n, \ldots)$ called the advice strings, where the length of a_n is $\exp(s(n))$, for every $n \in \mathbb{N}$. The result of the test on input x, denoted $M^a(x)$, is the result of running M on x when it has access to the advice $a|x|$. The machine M reads the advice as if it is on a normal input tape, and it has a one-way access to the input x (i.e., it can access the next bit of x but it cannot go “back” and review bits it already read). A pseudorandom generator for space bounded computations is required to produce strings that can be used instead of truly random strings in randomized, space bounded computations (while introducing only small additional error). Therefore, a pseudorandom generator must produce strings that look random to any non-uniform, bounded space statistical test. The following is a formal definition. For more information see e.g. [BNS92].

Definition 7. $G = \{ G_n : \{0, 1\}^{m(n)} \rightarrow \{0, 1\}^n \}$ is an ε pseudorandom generator for space $s(n)$ if for every non-uniform, space $s(n)$ statistical test M^a it holds that

$$\left| \Pr_{x \in \{0, 1\}^n} [M^a(x) = 1] - \Pr_{y \in \{0, 1\}^{m(n)}} [M^a(G(y)) = 1] \right| \leq \varepsilon$$

The following is an alternative definition (which is equivalent upto a multiplicative factor of n change in ε).

Definition 8. $G = \{ G_n : \{0, 1\}^{m(n)} \rightarrow \{0, 1\}^n \}$ is an ε pseudorandom generator for space $s(n)$ if for every $i \in [n]$ and for non-uniform, space $s(n)$ statistical test M^a it holds that

$$\left| \Pr_{y \in \{0, 1\}^{m(n)}} [M^a(\text{first } i \text{ bits of } G(y)) = i^{th} \text{ bit of } G(y)] - \frac{1}{2} \right| \leq \varepsilon$$

In this paper, we use Definition 8.
2.4 Strong Extractors

The notion of weak source was first defined by Nisan and Zuckerman [NZ93].

Definition 9 (Min-Entropy). For a random variable X, the min-entropy of X is

$$H_\infty(X) = -\log \max_x \Pr[X = x]$$

An (n, t) source is a random variable in $\{0, 1\}^n$ that has min-entropy at least t.

Definition 10 (Strong Extractor [NZ96]). A function $\text{Ext} : \{0, 1\}^m \times \{0, 1\}^n \to \{0, 1\}^\ell$ is a (t, ε) strong extractor if for every (n, t) source X and every seed S uniformly distributed over $\{0, 1\}^m$ it holds that

$$\|S, \text{Ext}(S, X) - U\| \leq \varepsilon$$

where U is uniformly distributed over $\{0, 1\}^{m+\ell}$.

2.4.1 Average Min-Entropy and Average-Case Extractors

The following definitions and lemmas appear in [DORS08].

Definition 11 (Average Min-Entropy). For two random variables $X \in \mathcal{X}$ and $Y \in \mathcal{Y}$, the average min-entropy of X given Y is

$$\tilde{H}_\infty(X|Y) = -\log \mathbb{E}_{y \sim Y} \max_{x \in \mathcal{X}} \Pr[X = x|Y = y] = -\log \mathbb{E}_{y \sim Y} \left[2^{-H_\infty(X|Y = y)}\right]$$

Lemma 12. Let X, Y and Z be random variables. If Y has at most 2^ℓ possible values, then

$$\tilde{H}_\infty(X|(Y, Z)) \geq \tilde{H}_\infty((X, Y)|Z) - \ell \geq \tilde{H}_\infty(X|Z) - \ell$$

Definition 13 (Average-case Strong Extractor). A function $\text{Ext} : \{0, 1\}^m \times \{0, 1\}^n \to \{0, 1\}^\ell$ is an average-case (t, ε) strong extractor if for every pair of random variables (W, I) such that $W \in \{0, 1\}^n$ and $\tilde{H}_\infty(W|I) \geq t$, and every seed S uniformly distributed over $\{0, 1\}^m$, it holds that

$$\|I, S, \text{Ext}(S, W) - I, U\| \leq \varepsilon$$

where U is uniformly distributed over $\{0, 1\}^{m+\ell}$.

Lemma 14. For any $\gamma > 0$, if Ext is a $(t - \log 1/\gamma, \varepsilon)$ strong extractor, then Ext is also an average-case $(t, \varepsilon + \gamma)$ strong extractor.

3 Lower Bounds for Conservative One-way Unicast Communication Protocols

For the construction of the pseudorandom generator in Section 4, we will need a lower bound for the communication complexity of a function that outputs a single bit. To this end we consider also projections of composed strong extractors (see notation for projections in Section 2.1).

Definition 15. A function $g : \{0, 1\}^{m+nk} \to \{0, 1\}^m$ is called a (t, ε) projection of a composed strong extractor (PCSE) if $g = \text{Ext}_S^{(k)}$, where $S \subseteq [m]$ is a subset of size m' for $m' \leq m$ and $\text{Ext}_S^{(k)} : \{0, 1\}^{m+nk} \to \{0, 1\}^m$ is a (t, ε) composed strong extractor.
Let $\text{Ext}_S^{(k)} : \{0,1\}^{m+nk} \to \{0,1\}^{m'}$ be a (t,ε) PCSE and let $A_0 \in \{0,1\}^{m}$, $A_1, \ldots, A_k \in \{0,1\}^{m}$ be uniformly and independently distributed. Let P be a conservative one-way unicast communication protocol with respect to $\text{Ext}^{(k)}$, and let M_1, \ldots, M_k be the messages sent during the execution of P on inputs A_0, \ldots, A_k, where the ith player sends M_i, for $i \in [k]$. Fix $\gamma > 0$ and assume that $M_1, \ldots, M_{k-1} \in \{0,1\}^\ell$, for $\ell \leq n - t - \log \frac{1}{\gamma}$. Then,

$$\| (M_k, \text{Ext}_S^{(k)}(A_0, A_1, \ldots, A_k)) - (M_k, U') \| \leq 2^{k+1}(\varepsilon + \gamma)$$

where U' is uniformly distributed over $\{0,1\}^{m'}$.

Proof. To simplify notation, for every $i \in [k]$ we write $\text{Ext}^{(i)}$ instead of $\text{Ext}^{(i)}(A_0, A_1, \ldots, A_i)$ and let $\overline{A}_i = (A_i, \ldots, A_k)$. For $i > k$ we define \overline{A}_i to be the empty string. Let U be uniformly distributed over $\{0,1\}^m$. Recall that U' is uniformly distributed over $\{0,1\}^{m'}$. Then, for every $z \in \{0,1\}^{m'}$, by Proposition 5,

$$\| (\text{Ext}_S^{(k)}|M_k = z) - U' \| \leq \| (\text{Ext}^{(k)}|M_k = z) - U \|$$

Therefore, it is enough to prove that

$$\| (M_k, \text{Ext}^{(k)}) - (M_k, U) \| \leq 2^{k+1}(\varepsilon + \gamma) \tag{1}$$

By the definition of a conservative one-way unicast communication protocol with respect to $\text{Ext}^{(k)}$, for every $i \in [k]$ it holds that

$$M_i = g_i(\overline{A}_{i+1}, M_{i-1}, \text{Ext}^{(i-1)}) \tag{2}$$

where g_i is some (deterministic) function, and $M_0 = 0^\ell$. We prove by induction on i, that for every $0 \leq i \leq k$,

$$\| (\overline{A}_{i+1}, M_i, \text{Ext}^{(i)}) - (\overline{A}_{i+1}, M_i, U) \| \leq \sum_{j=0}^{i} 2^j(\varepsilon + \gamma)$$

Substituting $i = k$ we get equation (1) as required. For $i = 0$ we have that $\| (\overline{A}_1, M_0, \text{Ext}^{(0)}) - (\overline{A}_1, M_0, U) \| = 0$, and the claim holds. Assume that the claim holds for some $0 \leq i < k$ and let $\Delta = \| (\overline{A}_{i+2}, M_{i+1}, \text{Ext}^{(i+1)}) - (\overline{A}_{i+2}, M_{i+1}, U) \|$. By equation (2) and Proposition 5,

$$\Delta \leq \| (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, \text{Ext}^{(i+1)}) - (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, U) \|$$

By the definition of $\text{Ext}^{(i+1)}$,

$$\Delta \leq \| (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, \text{Ext}(\text{Ext}^{(i)}, A_{i+1})) - (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, U) \|$$

Let S be uniformly distributed over $\{0,1\}^m$. By the triangle inequality,

$$\| (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, \text{Ext}(\text{Ext}^{(i)}, A_{i+1})) - (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, U) \| \leq \| (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, \text{Ext}(\text{Ext}^{(i)}, A_{i+1})) - (\overline{A}_{i+2}, M_i, S, \text{Ext}(S, A_{i+1})) \| + \| (\overline{A}_{i+2}, M_i, S, \text{Ext}(S, A_{i+1})) - (\overline{A}_{i+2}, M_i, S, U) \| + \| (\overline{A}_{i+2}, M_i, S, U) - (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, U) \| \tag{3}$$

$$\| (\overline{A}_{i+2}, M_i, S, \text{Ext}(S, A_{i+1})) - (\overline{A}_{i+2}, M_i, S, U) \| + \| (\overline{A}_{i+2}, M_i, S, U) - (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, U) \| \tag{4}$$

$$\| (\overline{A}_{i+2}, M_i, S, U) - (\overline{A}_{i+2}, M_i, \text{Ext}^{(i)}, U) \| \tag{5}$$
By Lemma 14, Ext is also an average-case $(t + \log 1/\gamma, \varepsilon + \gamma)$ strong extractor. By Lemma 12,
$$\tilde{H}_\infty(A_{i+1} | \overline{A}_{i+2}, M_i) \geq \tilde{H}_\infty(A_{i+1} | \overline{A}_{i+2}) - \ell = H_\infty(A_{i+1}) - \ell = n - \ell \geq t + \log 1/\gamma$$
and therefore, by Definition 13, (4) $\leq \varepsilon + \gamma$. By Propositions 5 and 6,
$$(3), (5) \leq \| (\overline{A}_{i+1}, M_i, Ext^{(i)}) - (\overline{A}_{i+1}, M_i, S) \|$$
By the inductive hypothesis, $\| (\overline{A}_{i+1}, M_i, Ext^{(i)}) - (\overline{A}_{i+1}, M_i, S) \| \leq \sum_{j=0}^{i} 2^j (\varepsilon + \gamma)$. Putting it together we get that
$$\Delta \leq \varepsilon + \gamma + 2 \cdot \sum_{j=0}^{i} 2^j (\varepsilon + \gamma) = \sum_{j=0}^{i+1} 2^j (\varepsilon + \gamma)$$
as required.

Finally, we give a lower bound for the length of the longest message in a conservative one-way unicast communication protocol that computes a projection of a composed strong extractor.

Theorem 17. Let $Ext^{(k)}_S : \{0,1\}^{m+nk} \rightarrow \{0,1\}^{m'}$ be a (t, ε) PCSE and let P be a conservative one-way unicast communication protocol with respect to $Ext^{(k)}_S$ that computes $Ext^{(k)}_S$ with bias $\delta > 0$, such that $\varepsilon < \delta \cdot 2^{-(k+2)}$. Then,
$$L(P) \geq n - t - k - \log \frac{1}{\delta} - 2$$

Proof. Let $A_0 \in \{0,1\}^m, A_1, \ldots, A_k \in \{0,1\}^n$ be uniformly and independently distributed and let M_1, \ldots, M_k be the messages sent during the execution of the protocol P on inputs A_0, \ldots, A_k, where the i^{th} player sends M_i, for $i \in [k]$. To simplify notation, we write $Ext^{(k)}_S$ instead of $Ext^{(k)}_S(A_0, A_1, \ldots, A_k)$. Since the protocol P computes $Ext^{(k)}_S$ with bias δ,
$$\delta + 2^{-m'} \leq \Pr_{A \in \{0,1\}^{m+nk}} \left[M_k = Ext^{(k)}_S \right]$$
Let U' be uniformly distributed over $\{0,1\}^{m'}$. Since $M_k = Ext^{(k)}_S$ is a statistical test on the distribution $(M_k, Ext^{(k)}_S)$, and the same statistical test on (M_k, U') passes with probability $2^{-m'}$,3
$$\left| \Pr_{A \in \{0,1\}^{m+nk}} \left[M_k = Ext^{(k)}_S \right] - 2^{-m'} \right| \leq \| (M_k, Ext^{(k)}_S) - (M_k, U') \|$$
Assume for simplicity and without loss of generality, that all messages M_1, \ldots, M_{k-1} have the same length, denoted ℓ. Fix $\gamma = \delta \cdot 2^{-(k+2)}$ and assume towards a contradiction that $\ell < n - t - \log \frac{1}{\gamma}$. Then, by Lemma 16,
$$\| (M_k, Ext^{(k)}_S) - (M_k, U') \| \leq 2^{k+1} (\varepsilon + \gamma)$$
We get that $\delta \leq 2^{k+1} (\varepsilon + \gamma)$ and therefore, $\gamma \geq \delta \cdot 2^{-(k+1)} - \varepsilon > \delta \cdot 2^{-(k+2)}$, which contradicts our choice of γ. \square

3We can assume, without loss of generality, that M_k is of length m'.
4 Logspace Pseudorandom Generators

We review the construction of the pseudorandom generator of Babai, Nisan and Szegedy [BNS92]. The generator is based on a function \(f \) that takes \(k \) arguments, each \(r \) bits long, and has high multiparty communication complexity. The \(\varepsilon \) multiparty communication complexity of \(f \), denoted \(C_\varepsilon(f) \), is the communication complexity of the best deterministic communication protocol in the NOF model with blackboard communication that computes \(f \) with bias at least \(\varepsilon \).

The input to the generator consists of \(t \) random strings of length \(r \) each. Fix \(k \leq t \) and let \(S_1, S_2, \ldots, S_{(t)} \) be all \(k \)-subsets of the input strings in anti-lexicographic order (i.e., each \(S_i \) is a set of \(k \) strings, each string is \(r \) bits long, and \(S_i \) appears before \(S_j \) if the last string in the symmetric difference of \(S_i \) and \(S_j \) belongs to \(S_j \)). The output of the generator is \(f(S_1), f(S_2), \ldots, f(S_{(t)}) \).

The proof of the following lemma appears in [BNS92]. We give it for completeness in Appendix A.

Lemma 18. For every \(\varepsilon > 0 \), every function \(f : \{0,1\}^{rk} \rightarrow \{0,1\} \) and every \(s < C_\varepsilon(f)/k \), the above construction gives an \(\varepsilon \) pseudorandom generator for space \(s \) (see Definition 8).

We make few observations on Lemma 18 and its proof, that will allow us to use our lower bound from Section 3:

1. In the multiparty communication protocol used for the proof, the players communicate in a fixed order. Hence, we can consider communication protocols that satisfy item (2) in Definition 1.

2. In the multiparty communication protocol used for the proof, for every \(i < k \), the \(i^{th} \) message, sent by the \(i^{th} \) player, is used only by player \(i+1 \). Therefore, the blackboard is not required and we can consider communication protocols that satisfy item (3) in Definition 1.

3. In the multiparty communication protocol used for the proof, for every \(j \in [k] \), if the \(j^{th} \) player needs to compute \(f(T) \) during the simulation, then it holds that the set \(T \) comes before the set \(S \) in the anti-lexicographic order, and \(y_{i_1}, \ldots, y_{i_{j-1}} \in T \) and \(y_j \notin T \). For every such a set \(T \), the \(j^{th} \) player can compute \(f(T) \) without knowing \(y_{i_1}, \ldots, y_{i_{j-1}} \). It suffices that she knows the strings that were fixed, the input strings \(y_{i_{j+1}}, \ldots, y_{i_k} \) and the function \(f(y_{i_1}, \ldots, y_{i_{j-1}}, z_j, \ldots, z_k) \) for every \(z_j, \ldots, z_k \in \{0,1\}^r \). Hence, we can consider communication protocols that satisfy item (1) in Definition 1.

4. In the multiparty communication protocol used for the proof, all messages have the same length. Hence, we can use a lower bound for the length of the longest message sent during the execution of the protocol.

Note that the function \(f \) from Definition 1 has an additional input string \(b \in B \). We can think of \(b \) as if it is added to all subsets \(S_1, S_2, \ldots, S_{(t)} \). Formally, our adjusted construction is as follows. The input to the generator consists of \(t \) random strings of length \(r \) each and an additional random string \(b \in \{0,1\}^m \). Let \(S_1, S_2, \ldots, S_{(t)} \) be all \(k \)-subsets of the input strings (not including the string \(b \)) in anti-lexicographic order, as in the original construction. For every \(1 \leq j \leq (t) \), let \(S_j = \{y_{i_{j,1}}, \ldots, y_{i_{j,k}}\} \), where \(i_{j,1} > i_{j,2} > \cdots > i_{j,k} \). Then, the \(j^{th} \) bit in the
output of the generator is $f_1(b, y_{i_1}, \ldots, y_{i_k})$. Recall that f_1 returns the first bit of the function f (see notation for projections in Section 2.1).

We get the following lemma.

Lemma 19. Fix $\varepsilon > 0$ and a function $f : \{0, 1\}^{m+kr} \rightarrow \{0, 1\}^m$, such that for every conservative one-way unicast communication protocol with respect to f that computes f_1 with bias ε, the length of the longest message is at least C. Then, for every $s < C$, the adjusted construction gives an ε-pseudorandom generator for space s.

Corollary 20. For every constant $c > 0$, there exists an (explicitly given) n^{-c} pseudorandom generator for logspace which converts $O(\log^2 n)$ random bits to $\text{poly}(n)$ bits.

Proof. Let $m = O(\log n)$, $r = O(\log n)$ and let $f : \{0, 1\}^{m+r} \rightarrow \{0, 1\}^m$ be a (t', ε) strong extractor, such that $t' < r - 2 \log n - c \log n - 2$ and $\varepsilon < 1/4n^{c+1}$. For an explicit construction of a strong extractor with such parameters see Theorem 4.2 in [GW97] (for more information see e.g. [NT99], [S02] and [V12]). Let $\delta = n^{-c}$, $k = \log n$ and let P be a conservative one-way unicast communication protocol with respect to $f^{(k)}$ that computes $f_1^{(k)}$ with bias δ. Since $\varepsilon < \delta \cdot 2^{-(k+2)} = 1/4n^{c+1}$, Theorem 17 guarantees that $L(P) \geq r - t' - k - \log \frac{1}{\delta} - 2 = r - t' - \log n - c \log n - 2 > \log n$. By Lemma 19, using the adjusted construction with the PCSE $f_1^{(k)}$ and $t = k \cdot 2^c$ for any constant $c' > 1$, we get a δ pseudorandom generator for space $\log n$, that on a seed of length $m + tr = O(\log^2 n)$ produces a pseudorandom string of length $(\binom{m}{k}) \geq n^{c'}$.

References

A Proof of Lemma 18

Fix \(f : \{0,1\}^r \rightarrow \{0,1\} \), \(\varepsilon > 0 \) and \(s < C_\varepsilon(f)/k \). Assume towards a contradiction that the \(i^{th} \) bit of the output of the generator can be predicted by a non-uniform, space \(s \) statistical test. That is, there exists a non-uniform, space \(s \) statistical test \(M^a \) such that

\[
\Pr_{y \in \{0,1\}^r} [M^a(\text{first } i - 1 \text{ bits of } G(y)) = i^{th} \text{ bit of } G(y)] - \frac{1}{2} > \varepsilon
\]

where \(G \) is the generator that is defined by the construction above. Fix \(y = (y_1, \ldots, y_k) \) \(\in \{0,1\}^r \times \{0,1\}^r \times \{0,1\}^r \) and let the \(i^{th} \) bit of the output of the generator on input \(y \) be \(f(S) \), where \(S = \{y_i_1, y_i_2, \ldots, y_i_k\} \) and \(i_1 > i_2 > \cdots > i_k \). By an averaging argument, we can fix all input strings from \(y \) that are not in \(S \), such that the prediction bias of \(M^a \) is preserved. We describe a multiparty communication protocol for \(k \) players, that computes \(f(S) \) with bias \(\varepsilon \). The model of this multiparty communication protocol is the NOF model with blackboard communication, in which the \(j^{th} \) player knows all input strings except \(y_{i_j} \), for \(j \in [k] \), and the players broadcast their messages. The players simulate the running of \(M^a \) on the first \(i - 1 \) bits of \(G(y) \) as follows. The first player starts the simulation and continues it for as long as she can, that is, as long as she has access to the input bits that the test reads. Then, the first player sends the state of \(M^a \) (i.e., all the memory space used by the machine) to the second player. The second player continues the simulation for as long as she can, and so on. Note that for every \(j \in [k] \), the \(j^{th} \) player can simulate \(M^a \) until the simulation requires the value \(f(T) \) for a set \(T \) that contains \(y_{i_j} \). Moreover, because the sets used to compute the bits of the generator are ordered in antilexicographic order, every set that appears after \(T \), until \(S \) appears, contains \(y_{i_j} \). Therefore, the \(k^{th} \) player can continue the simulation until it reaches a set that contains \(y_{i_1}, y_{i_2}, \ldots, y_{i_k} \), which must be the set \(S \), when the simulation ends and the prediction is made. Sending the space used by the machine \(k - 1 \) times, by each of the first \(k - 1 \) players, results in less than \(ks \) communicated bits. Since \(ks < C_\varepsilon(f) \), we get a contradiction.