Categories and functors in mathematics.
Vladimir Voevodsky

Contents
1 Introduction. . . . . . . ... 1
2 Homotopy theory . . . . . . . . . . . ... . ... .. ... 3
3 Categories and functors. . . . . . . . . . . ... ... ... 6
4 The category of algebraic equations . . . . . . . . ... .. .. 10
) Homotopies in the world of equations . . . . . . . .. ... .. 13
6 Conclusion . . . . . . . . . . . 15

1 Introduction.

Contemporary mathematics is probably the most esoteric of all contempo-
rary sciences. Never in my life have I met a non mathematician who would
have a slightest idea of what research mathematicians are interested in today.
In fact “today” in this context means something like “in the last fifty years”
since it seems that the public view of the world of pure mathematics reflects
hardly any of the conceptual changes which occured in the second half of the
twenties century. This makes the task of explaining a piece of new mathe-
matics especially difficult because somewhere around 1950-60 mathematics
lived through a revolution comparable to the revolution which happened in
the physics in the first half of the century. Today when I think about how I
can explain my own work I find myself in a position of someone who has to
talk about the ideas underlying the unified theory of electro-weak interaction
to an audience which never heard of either quantum mechanics or relativity
theory.

In the first third of the century mathematics went through a period when
it was very concerned with its foundations. This period largely ended by 1940
leaving behind among other things a way to deal with the foundational ques-
tions which felt rigorous enough to most working mathematicians. According
to it all mathematical objects should be defined as sets with structures and
all theorems about these objects should be deduced using the standard rules
of logical inference from these definitions and the axioms of set theory. The
most prominent illustration of both the power and the limitations of this
approach can be found in the work of a group of French mathematicians



writing together under the name of Nicola Bourbaki who created a series
of volumes where the fundamental objects of mathematics were carefully
defined in terms of the set theory and the theorems reflecting their major
properties were rigorously proved in the context of these definitions. The
parts of this work which deal with abstract algebra and topology still remain
in my opinion to be the best expositions of the foundations of these subjects.

The success of the set-theoretic approach led to an explosion in the num-
ber of different species of structures considered by mathematicians. Together
with new species of purely algebraic, topological and analitical structures a
lot of composite species appeared such as topological groups for which it was
impossible to tell which of the major branches of mathematics they were
objects of. Some species of structures did not look like anything previously
known at all. For each species constructions producing new structures of
this species from already known ones had to be invented and while a lot of
similarities between such constructions for different species should have been
apparent there was no formal way to use these similarities or to transfer
constructions from the world of one species to the world of another.

Together with the number and complexity of constructions producing new
structures of given species from old ones grew the number and complexity
of constructions which produced structures of one species from structures of
another.

The revolution which happened in 50-60 was a result of a discovery of
a new organizing principle which eventually led to a development of a new
view of the world of mathematical objects. From this new perspective the set
theory loses its central position and mathematical objects are viewed not as
collections of elements or points together with explicitly defined structures
relating this points to each other but as black boxes without predetermined
internal structure which can be distinguished from each other only in terms
of properties of their interaction with other objects of the same species. This
development was made possible by a discovery that all mathematical objects
of given species can be organized into a “society” whose basic structure is
independent of the type of objects which it consists of. This structure can
be formalized and theorems can be proven about the relations between prop-
erties of objects defined in terms of their “social position”. Since objects of
entirely different species can have the same social positions in their respective
societies such theorems have universal significance and specialize to results
about structures of many unrelated species.

In 1945 there appeared a paper by Samuel Eilenberg and Saunders MacLane



called “General theory of natural equivalences” [1]. In this paper the authors
defined yet another two new species of structures which they called categories
and functors. In several years it became apparent that these two species of
structures provide a basis for the most important since the development of
the set-theoretic approach organizational innovation in mathematics. Today
we can say that the special role of categories and functors is due to two main
circumstances. The fisrt one is that to virtually any species of mathematical
structure there corresponds a category (i.e. a structure of the species “cate-
gory”) and to virtually any natural construction which produces a structure
of one species from a structure of another there corresponds a functor. More-
over this correspondence is such that questions about structures of a given
species can be reformulated as questions about the category corresponding
to this species of structures and a similar statement holds for constructions
and functors. The second one which is more prosaic but equaly important is
that categories and functors can be visualized in a way which is helpful for
the solution of problems which arise from questions about different species
of structures. This visualization is based on the concept of a commutative
diagram which was .... introduced.....

The main goal of my own mathematical work is to transfer the construc-
tions developed in the field of mathematics which is called homotopy theory
to another field which is called algebraic geometry and to use them to an-
swer a bunch of interrelated questions known as the motivic conjectures. In
what follows I will try to explain what the first half of the previous sentence
mean. [ was not able to find any way to give an explanation of what mo-
tivic conjectures are about. The main goal of this paper however is not to
tell about homotopy theory or algebraic geometry but to use the elementary
concepts of these two theories to illustrate how the ideas of categories and
functors are used in real mathematics to connect seemingly unrelated fields
and ultimately to use the techniques based on the intuition peculiar to one
field to deal with problems of another.

2 Homotopy theory

Homotopy theory is a branch of mathematics which originated as a part of
topology. From the very beginning topologists were interested in classifica-
tion problems and in order to classify any kind of objects one first of all
needs to be able to distinguish different objects from each other by some
well defined properties. Every visualizable object has two obvious numeri-



cal properties. One is its dimension - a point is different from an interval
because the point has dimension zero and the interval has dimension one.
Another one is what mathematicians call the number of connected compo-
nents i.e. the number of separate pieces which the object consists of. For
example a triangle has one connected component while the object formed by
two concentric circles has two.

The key idea of homotopy theory is that there are “higher” analogs of
the number of connected components and the information which these higher
analogs provide is often sufficient to distinguish objects of different shapes.
The definition of these higher invariants given below is a good illustration of
the set-theoretic method. First we have to introduce a species of sets with
structures which will be our formal models for visualizable objects. This can
be done in many ways. The structures of the most classical and convenient
for us species used for this purpose are called metric spaces. A metric space
X is a set together with a function d from the set of pairs of elements of X to
the real numbers. Elements of X are often called points of X and the value
d(x,y) of the function d on a pair (x,y) is called distance bewteen the points
x and y. In order for a set together with such a function to be a metric space
d should satisfy some simple axioms which are abstractions of the properties
of the usual distance in space (see ....). Any subset of the set of points of a
metric space is itself a metric space. Together with the standard structure
of the metric space on the Cartesian space R" of n-tuples of real numbers
defined by the Euclidean distance

d((zr, 2, W1 wn)) = (o — 02+ + (0 — ya)?

this gives a natural metric space structure on any subset of R". Thus we can
talk about metric spaces corresponding to standard subsets such as cubes,
spheres, balls etc.

Intuitively we say that two points of a visualizable object belong to the
same connected component if there is a “path” inside this object from one
point to another. Let us define a path in metric space X as a function ~ from
the unit interval [0, 1] of the real line to X such that the function (in the
usual sense) of two variables x and y given by d((x),~(y)) is continuous. A
“path” in the intuitive sense associated with such a function is given by the
set of points of the form ~(x) for z in [0, 1]. The condition that the function
d(y(z),v(y)) is continuous guarantees that it does not break anywhere.

For any point  of X define its connected component as the set of all
points y such that there exists a path v in X which starts in z and ends in
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y i.e. such that y(0) = = and (1) = y. One can check that the connected
components of two different points either do not intersect each other at all
or coincide. Thus the set of all points of X gets divided in a unique way into
subsets such that any two points inside each subset can be connected by a
path but no paths exist between points of different subsets. These subsets are
called the connected components of X. If there is finitely many of them as
usually happens with the metric spaces we associate to visualizable shapes
we can talk about the number of connected components. In general this
need not to be the case but we still can consider the set of all connected
components. This set which is denoted by m(X) is the most important
homotopy theoretic invariant of X.

So far we defined the notion of connected components for the species of
sets with structures which we have choosen as models of visualizable objects.
We can now define the higher analogs of m(X) as follows. Fix a point x of X.
Denote by Q'(X, z) the set of all paths in X which begin and end in z. For
two paths 71, 72 in Q'(X, z) consider the function f, ., (t) = d(71(t), 2(¢)).
This is a function on the unit interval [0, 1] and we may consider its average
value d(71,72) given by the integral

d(, %) = /O o

This formula gives us a function on pairs of elements of the set Q'(X, z) and
it is easy to verify that it satisfies the axioms of a metric space. Note that
this metric space is not really visualizable anymore even if X is a model of
a simple shape like a circle but we can still apply our definition of the set of
connected component to it. The set 7o(Q' (X, z)) is denoted by 71 (X, z) and
it is the first one of the higher analogs of 7y which homotopy theory studies.
To define all the rest of them denote by * the point of Q!(X, z) which is the
“trivial” path from z to x i.e. the path 7 given by ~(¢) = x for all ¢ in [0, 1].
Now we can define inductively for n > 2

Q(X,z) = QX 2), %)

and
(X, 2) = mo (" (X, x)).

The most famous problem of classical homotopy theory is to compute the
number of elements in the sets 7, (5™, ) where S™ is the sphere of dimension
m and z is a point on it (the answer does not depend on the choice of x).
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These sets are known to be finite for .... and it is also known that for any
m > 2 there is infinitely many n’s for which 7,(S™, ) has more than one
element. As of today the number of elements in ,(S™, x) is computed for
all reasonably small n but no good answer for general m and n is known.

3 Categories and functors

The word “category” in mathematics is used to refer to a particular species
of structures and not to the Aristotelian categories of philosophy. Because of
the importance of this species I will give its precise set-theoretic definition.
This definition is rather involved and may be hard to comprehend but the
last fifty years of mathematics has shown that it is well worth the effort.

A category C is a structure which consists of a class 0b(C) whose elements
are called objects of C together with a set Mor(X,Y’) given for each pair
of objects X, Y of C together with a function given for any three objects
X, Y, Z of C from the set of pairs (f,g) where f is in Mor(X,Y) and g
is in Mor(Y,Z) to the set Mor(X,Z). Elements of Mor(X,Y) are called
morphisms from X to Y and the value of this function on a pair (f,g) is
denoted by g o f and called the composition of f and g. In order for these
data to give a category the composition should satisfy two conditions. The
first one says that for any three morphisms f, g, h such that the compositions
hog and go f are defined the two possible triple compositions h o (g o f)
and (hog)o f coincide. This condition is called the associativity axiom. The
second one says that for any object X there is a morphism ix from X to
itself such that for any Y and any f from Y to X one has iy o f = f and for
any Z and any g from X to Z one has goix = f. This condition is called the
identity axiom and the morphisms ix are called identity morphisms. One
can prove that for each X there is exactly one identity morphism iy.

As the reader might have noticed I used the word “class” for the collection
of all objects of a category and the word “set” for the collection of morphisms
from one object to another. In the orthodox set-theoretic tradition the word
“set” is a technical term which refers to an object whose existence can be
logically inferred from the axioms of the set theory. There are situations
when it turns out to be impossible to associate a set in this sense to an
intuitively accessible collection of objects. For example the classical “Russel
paradox” is a proof of the fact that the there is no set corresponding to
the collection of all possible sets. To refer to general collections of objects
without claiming them to be sets mathematicians use the word “class”. One



can thus talk about the class of all sets or the class of all metric spaces but
not about the set of all sets or the set of all metric spaces.

Each category structure on a class of objects defines a notion of isomor-
phism for objects of this class. An isomorphism from X to Y is a morphism
f such that there exists a morphism g from Y to X inverse to f i.e. such
that go f =1x and fog =1iy. Two objects of a category which are isomor-
phic (i.e. such that there exists an isomorphism between them) are totaly
indistinguishable in categorical terms. Any property defined using only the
language of objects, morphisms and compositions which holds for one object
will also hold for the other. In a sense the converse is also true. Any property
which depends only on the isomorphism class of an object can be expressed
in purely categorical terms.

Functors are structure preserving functions from one category to another.
More precisely a functor F' from a category C to a category D is a func-
tion from the class of objects of C to the class of objects of D which is
usually also denoted by F' together with functions Fxy from Mor(X,Y)
to Mor(F(X),F(Y)) given for each pair of objects X, Y of C such that
Fyyz(g) o F)Qy(f) = FX,Z(g o f) and nyx<ix) = iF(X)- It follows immedi-
ately from this definition that functors take isomorphisms to isomorphisms
and thus if X and Y are isomorphic in C then F/(X) and F(Y') are isomorphic
in D.

As I said in the introduction to all or almost all species of mathematical
objects one can associate categories. A typical example of a category associ-
ated to a species is the category of sets (denoted Sets). Its objects are sets,
morphisms from X to Y are functions from X to Y and the composition is
the usual composition of functions i.e. g o f is the function from X to Z
given on an element x of X by g(f(x)). A function from one set to another is
an isomorphism in this category if and only if it is a bijection. In particular
two finite sets are isomorphic if and only if they have the same number of
elements.

Another such example is the category of metric spaces and continuous
functions. The class of objects of this category is the class of all metric
spaces. The set of morphisms in this category from a metric space X to
a metric space Y is the set of all continuous functions from X to Y. A
continuous function f from X to Y is a function from the set of points of X
to the set of points of Y such that for any point x of X and any € > 0 there
exists & > 0 such that for any point 2’ whose distance to x is not greater
than ¢ the distance from its image f(2’) in Y to the image f(z) of x is not
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greater than e. This is of course just the usual (¢, d)-formulation of continuity
adapted to general metric spaces. If f is a continuous function from X to Y
and ¢ is a continuous function from Y to Z then the function g o f from X
to Z is again continuous. This gives us composition of continuous functions
and one checks easily that the category axioms are satisfied in this case. Two
metric spaces which are isomorphic in this catgeory are called homeomorphic.
We denote this category by MSp.

A structure of a category on the class of all objects of given species is not
determined by the species itself. In the case of metric spaces we could define
another category with the same class of objects taking morphisms to be the
distance preserving functions instead of the continuous ones. A distance
presering function from X to Y is a function f from the set of points of X
to the set of points of Y such that d(x,z") = d(f(x), f(z’)). Such functions
can also be composed and the category axioms hold in this case as well.
Two metric spaces isomorphic in this catgeory are called isometric. For
example two circles of different radius are homeomorphic but not isometric
which shows that our categories are substantially diffrent. Everywhere below
talking about the catgeory of metric spaces I will refer to the category of
metric spaces and continuous functions.

The construction of the homotopy set m(X) described in the previous
section associates a set to any metric space X. As we now know both metric
spaces and sets can be considered as objects of categories and it turns out
that this construction gives an example of a functor from MSp to Sets. To
check that 7 is a functor one has to verify that for any continuous map
f : X — Y of metric spaces and any two points x, 2’ in X which can be
connected by a path the points f(x) and f(z’) can be connected by a path
in Y. This follows from the fact that for a path v in X the function from
the unit interval to Y given by ¢ — f(y(¢)) is a path in Y.

Similarly the higher homotopy sets m,(X, z) give examples of functors
but since their construction starts with a metric space together with a point
they are functors not from the category of metric spaces but from a slightly
different category of metric spaces with a distinguished point MSp, whose
objects are pairs (X, x) where X is a metric space and x is a point of X
and morphisms from (X, z) to (Y,y) are continuous functions f from X to
Y such that f(z) =y.

Because 7, are functors they take homeomorphic spaces to isomorphic
sets and therefore the number of elements in the homotopy sets of two home-
omorphic spaces is the same. For example one can see that the boundary of
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a cube (or more generally of any convex polyhedron) is homeomorphic to the
sphere of the same dimension and therefore they have the same number of
elements in their homotopy sets. This inference is one of the classic examples
of categorical thinking.

As I said in the introduction one of the most important factors which
contributed to the widespread use of categories in mathematics is the possi-
bility to use visualize them. The trick which allows us to do it is based on
the notion of a commuative diagram in a category. Consider the picture:

| | (1)

This picture is an example of what in mathematics is called a diagram. A
general diagram is a picture which consists of vertices connected by arrows.
If I have a category C a diagram in C is a diagram whose vertices are marked
by objects of C and whose arrows are marked by morphisms between the
corresponding objects. For example a diagram of the form (1) in a category
C may be written as follows

A%B

rlo b )
C — D
g

For any path in a diagram in C i.e. for any sequence of arrows where the
end of one is the beginning of the next the composition of morphisms which
mark these arrows is a morphism from the object marking the beginning of
the path to the object marking the end. If the compositions of morphisms
corresponding to all paths between two vertices coincide a diagram is called
commutative. To say that a diagram of the form (2) is commutative is the
same as to say that go f = ¢’ o f'.

In a sense which can be made precise a category is completely determined
by its commuative diagrams. Thus even though I can not visualize the whole
category of sets or of metric spaces I can easily visualize “parts” of it in the
form of diagrams. If I have four sets A, B , C' and D and four morphisms
fiA=>B g:B—Dand f':A— C,q :C — Dsuchthat gof =g of'I
can visualize the part of the category of sets span by these four objects and
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four morphisms as a square of the form (2). In general if I have finitely many
objects and morphisms between them with some realtions it is often possible
to imagine the part of the category span by these objects and morphisms as
a diagram of some form.

A functor can also be visualizied using the imagery of commutative dia-
grams. If we have a commutative diagram in C say of the form (2) and F is
a functor from C to D then

Fa,B(f)
SkaLALA

F(B)
FA,C(f’)l lFB,D(g) (3)
F(C) —— F(D)

Fe,p(g')
is a commutative diagram in D. The same thing happens with commutative
diagrams of all other types so that we can see a functor from one category
to another as a mapping from commuative diagrams in one category to com-
mutative diagrams in another.

Given a functor F' from C to D and a functor G from D to £ one can
easily define their composition G o F' which is a functor from C to £. All
categories and functors between them almost form a category but not quite
because the collection of all functors bewteen two categories need not be a
set in the sense explained above. As one may guess it is possible to define
the notion of a 2-category such that all categories will form a 2-category
in the same manner as all sets form a category. The ideas associated with
the concept of 2-categories and related concepts of higher categories play
considerable role in contemporary mathematics. However the passage from
categories to higher categories is more of a quantitative than of a qualitative
nature and its significance can not be comapred to the significance of the
leap from set-theoretic to categorical thinking.

4  The category of algebraic equations

The category of metric spaces which we defined in the previous section is
one of many possible models of the world of visualizable objects. In this
section we will define categories of a completely different sort whose objects
are systems of algebraic equations '. These categories form the world of

T believe that I learned the definition which is given below from a book by Yu. I.
Manin called “Affine schemes” which was published by Moscow University in the early
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algebraic geometry.

JFrom school we know two ways of changing a system of equations in
such a way that there is a one-to-one correspondence bewteen the solutions
of the old system and the solutions of the new one. The first of these methods
is to add to one of the equations of the system a multiple of another one.
This procedure does not change the solutions at all. The second one is to
replace the old variables x; by new variables z in such a way that x;’s can
be expressed in terms of x;’s and vice versa. For example the equations
22+ 123 —1=0and (2})*+ 2z} + (24)* = 0 can be obtained from each other
by such a replacement. In this case the set of solutions changes but there is a
bijection bewteen the solutions of the new system and the solutions of the old
one. In this particular example the sets of real solutions of both equations
are circles of radius 1 but the center of the first one is in (0,0) and the center
of the second in (—1,0). If we are only interested in the “geometry” of the
set of solutions which is what algebraic geometry is about it is natural to
consider the systems which can be obtained from each other by one of these
procedures to be equivalent. It turns out that one can construct a category
whose objects are systems of equations such that the transformations of these
two types give isomorphisms in this category and a functor from it to the
category of sets which takes a system of equations to the set of its solution.
Because of these two properties this category is ideally suited for the study
of geometry of the solutions.

To give the precise definition of this category I need to say more about
coefficients of the systems which we consider. If I take a system with rational
coefficients and transform it to another system with rational coefficients by a
change of variables which uses with irrational coefficients there is no reason
to expect that the rational solutions of the new system will be in one to one
correspondence with the rational solution of the old one. For example the
equations 22 — 2 = 0 and y?> — 1 = 0 can be obtained from each other by
the change = = /2y but the first of them has no rational solutions and the
second one has two. It means that some systems of equations may be iso-
morphic when considered with say real coefficients but not isomorphic when
considered with the rational ones. Similar things may happen bewteen real
and complex coefficients or rational and intergral coefficients. This means
that to define “the category of systems of algebraic equations” we have to
explicitly specify what coefficients we consider. We could define separately

70-ies but unfortunately I can not check this since I have no way to get hold of it now.
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the categories for integral, rational, real and complex coefficients but this
is not very elegant. To deal with this problem mathematicians invented a
species of sets with structures called commutative rings.

A commutative ring is a set with two operations which are customary
denoted by x+y and zy and called addition and multiplication which satisfy
a collection of axioms mimicing the usual properties of addition and multi-
plication of numbers such as associativity, distributivity and commutativity
(??). Strictly speaking one should denote a ring by a triple (R, +, ) making
explicit refernce to the operations but usually one just writes R. There is, of
course, the category of rings. Its objects are rings and morphisms are homo-
morphisms of rings i.e. functions f : R — S such that f(z+vy) = f(x)+ f(y)
and f(zy) = f(z)f(y). The standard examples of rings are given by different
types of numbers. The sets of integers, rational numbers, real numbers and
complex numbers with their usual addition and multiplication operations all
are commutative rings. In mathematics they are denoted by Z, Q, R and C
respectively. There are infinitely many other commuative rings. For example

the set of all polynomials in variables x1,...,x, over any commuative ring
R with the usual operations of addition and multiplication of polynomials is
a commutative ring denoted by R[z1,...,Z,].

Define a system of algebraic equations over R as a pair (n, (f;)i=1..m)
where n is a non negative integer which signifies the number of variables our
system depends on and f; are polynomials with coefficients in R in variables
x1,...,T,. Note that n may be equal to zero in which case f; are just elements
of R.

For two systems X = (n, (fi)iz1,..m) and Y = (n/, (g;)j=1,.m’) consider
the set A(X,Y) of families of polynomials ¢4, ..., ¢, in variables z,..., x,
such that the polynomials ¢;(¢1(21,...,2n), ..., dn(21,...,2,)) can be ex-
pressed as linear combinations of polynomials f; i.e. such that there exist
polynomials u;; in variables xy, ..., z, satisfying

gj(¢l(x17 v 7-Tn)7 . '7¢n’(-1'17 cee 7-7:71)) = Zuij($l> R axn)fz(xla v axn)

Two elements (¢)i=1,.. s (¢))i=1,...ns of this set are said to be equivalent if
the polynomials ¢; — ¢; are linear combinations of polynomials f;. The set of
equivalence classes with respect to this equivalence is the set of morphisms
from X to Y.

If we have a third system Z = (n”, (hy)g=1,..m) and a morphism from Y’
to Z given by a collection of polynomials 1)1, ..., ¥, then the polynomials
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U1 (z1, ..y Gpr(1, ..oy xy)), L= 1,...,n" give a morphism from X
to Z which is the composition of ¢ and 1. Denote the category which we
defined by Algeqgr. In contemporary algebraic geometry it is known as the
category of affine schemes of finite type over R.

If ¢y(x1,...,2,) is an element in A(X,Y) and (a;);=1.., are elements in
R such that z; = a; is a solution of X then x; = ¢;(a1,...,a,) is a solution
of the system Y. Thus an element in A(X,Y") gives us a function from the
set of solutions of X to the set of solutions of ¥ and one can check that two
equivalent elements give the same function. This gives us a functor from the
category Algeqr to the category of sets which takes a system to its set of
solutions. In particular we conclude that two systems which are isomorphic
as object of this category have isomorphic sets of solutions.

5 Homotopies in the world of equations

Let us try now to find parallels between objects of the category of metric
spaces and objects of the category Algeqr. Consider first the space pt which
consists of one point. Up to an isomorphism it is the only object of the
category of metric spaces such that there is exactly one morphism from any
other object to it. In the category Algeqr there is also a unique up to an
isomorphism object with this property namely the system 0 = 0 in the empty
set of variables. The unique morphism from any other system to it is given
by the empty family of polynomials. Denote this object by ptg.

Consider now the morphisms Mor(pt, X') from the point to a metric space
X in the category of metric spaces. This set can be identified with the set
of all points of X by the map which takes a morphism f : pt — X to the
image of f. Thus the analog of the set of points for an object X in the
category Algeqgr is the set of morphisms Mor(ptg, X). If X is a system
of the form (??) then a morphism from ptgr to X is given by a collection of
polynomials 71, ..., Z; in zero variables i.e. a collection of elements of R such
that h;(Z1, ..., Z;) are all zero. Thus morphisms from ptg to any system are
exactly the solutions of this system. We found that the set of solutions of a
system is categorically analogous to the set of points of a space.

Let us try now to define my(X) for an object X of Algeqg. First we have
to find a categorical reformulation of our definition of 7y for metric spaces.
The key ingredient of this definition is the notion of a path. Consider the
unit interval [0,1] as a metric space. A path in X is a function v from
points of [0, 1] to points of X and one can prove that our condition that
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the function d(y(t),~(t')) in two variables is continuous is exactly equivalent
to the condition that 7 is a continuous function between metric spaces. The
points 0 and 1 of the unit interval can be interpreted as morphisms pt — [0, 1].
Let us denote these two morphisms by ig and i; respectively. Then my(X)
can be identified with the set of equivalence classes of morphisms from pt to
X where two morphisms xz, 2" : pt — X are called equivalent if there exists
a morphism v : [0,1] — X such that ig oy = z and 4; oy = 2/. This is our
categorical reformulation of the construction of 7.

To transfer it to the category Algeqr we need to choose an object I in this
category together with two morphisms i, 4, : ptg — I which we will use to
replace the unit interval with its points 0 and 1 in the definition given above.
The candidate for such object was known for many years. It is the object
denoted by A! and called the affine line which corresponds to the system
0 = 0 of equations in one variable ¢. Since any value of ¢ is the solution
of this system the set of morphisms from ptp to A! can be identified with
the set of all elements of R. In particular since any ring has by definition
two distinguished elements called zero and one this set always contains two
distinguished morphisms which we denote as above by ig and ;. If can now
apply the definition of 7, given above replacing the unit interval by A! and
the points 0 and 1 by morphisms ig, ;.

Here we encounter the first problem. In order for our definition of 7y for
metric spaces to work we needed to know that if a point x can be connected by
a path to a point 2’ and 2’ can be connected to z” then x can be connected
to z”. For metric spaces this is true and easy to check. For systems of
equations and the paths defined as morphisms from A' it is false. For the
system zy = 0 in variables z, y the point (0,1) can be connected by a path
to the point (0,0) and (0,0) can be connected to the point (1,0) but there
is no path connecting (1,0) and (0, 1).

While all of the above analogies were known for many years this and other
more complicated problems prevented us from finding a correct definition of
7o and of higher homotopy sets in this context. The first acceptable definition
appeared only a few years ago. It uses complicated categorical techniques
and was made possible by the fact that in the last fifty years definitions of
homotopy sets m, where given for objects of many diffrent categories which
were getting progressively further removed from the context of metric or
topological spaces. However the main underlying idea of this definition is
still the analogy between the unit interval [0, 1] and the affine line A' which
is explain above.
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6 Conclusion

Two elements of modern mathematics distinguish it from other systems of
thought such as formal logic or the systems of philosophy. One is the par-
ticular manner in which it combines the use of the symbolic and the visual
abilities of our minds. Mathematical objects can be vaguely divided into
algebraic and geometric ones depending on which of their two faces the sym-
bolic or the visual one is more prominent. The most interesting results in
mathematics are always obtained with the use of both of these faces.

The second one is the use of axiomatic systems as means for unambigous
communication. To be made known to other people the insights achieved
with the use of the symbolic or the visual face of mathematical objects must
be translated into an axiomatic form. This translation which is often the most
time consuming part of mathematical work is the best way we know to make
it possible for people to find mistakes in each other reasoning. Each time
people attempted to replace axiomatic method as a means of communication
of mathematics by something less rigorous this led to a growing number of
mistakes and ultimately to the state when the whole product of their work
had to be discarded.

The combination of two types of constructions - the ones originated on the
visual side and the ones originated on the symbolic but both expressed in the
axiomatic terms to enable unambigous communication is at the heart of the
mathematical method. Since the oldest objects of mathematics originated as
models of objects of the observable world and most or all of the newer ones
are connected with them by sequences of constructions of one of these two
types the esoteric world of contemporary mathematics taken as a whole is a
direct result of our minds with all their peculiarities trying to make sense of
the reality.

The discovery of the categorical approach gave us a completely new way
to relate mathematical objects of diffrent species to each other which is based
on neither the symbolic nor on the visual faces of these objects but on their
“social” faces. While the intuition underlying these ideas must have always
been present it is only since the middle of this century that the discovery
of the formal definitions of categories, functors and other related concepts
gave us a way to express these relations in axiomatic terms and thus to make
them a part of mathematics.

In the previous four sections I gave an example of such use. We consid-
ered there two main species of mathematical objects. The first one called
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the metric spaces is one of the classic species used to model the properties
of visualizable objects related to their “shape”. It is relatively easy to learn
how to translate the insights provided by the visual intuition into the formal
language of metric spaces. The definition of the set of connected components
of a metric space given above is one example of such a translation. The first
definition of 7m; was obtained by translation of another intuitive idea and the
first definitions of higher , certainly depended on visual intuition as well.
Later on the interplay between the visual intuition and the symbolic com-
putations stimulated by the problem of computing the number of elements
in the stable homotopy sets of spheres led to a multitude of constructions of
both types which today constitute the fields of homotopy theory and alge-
braic topology.

The objects of another species which we considered are systems of alge-
braic equations with coefficients in commutative rings. They give an example
of objects of algebraic type since they primary ability needed to work with
them is the ability of symbolic manipulation. Classical algebraic geometry is
a field of mathematics which studies the geometry of the sets of solutions of
such systems. It developed a complicated machinery which enables one to use
visual intuition based on the geometry of the solutions of equations over real
and complex numbers to answer questions about systems of equations over
general rings. Two most famous theorems in algebraic geometry proven in
the second half of the century the Deligne’s proof of the Weil conjectures and
the Faltings’s proof of the .. conjecture both establish a relations between
the “shape” of the set of complex solutions of a system and the number of
its solution over rings of arithmetical nature.

The homotopy theory of algebraic varieties attempts to transfer the ma-
chinery of the homotopy theory to the world of algebraic geometry. Instead
of looking for constructions relating individual objects of one world to indi-
vidual objects of another it attempts to achieve this transfer using the fact
that both metric spaces (or any other models for visualizable objects) and
algebraic varieties form structures of the same species namely categories. If
we discover a proper way to express all the constructions of homotopy theory
in purely in terms of the model category we work with (say of metric spaces)
we should be able then to apply them directly to any other category with
appropriate additional structures on it which should include the catgeory of
algebraic varieties. As of today we do not have a full knowledge of how this
can be done in general but we know enough to find one by one appropriate
algebro-geometric analogs of main constructions of homotopy theory.
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As T said in the introduction my interest in the homotopy theory for al-
gberaic varieties is stimulated by a number of questions in algebraic geometry
which were posed in the last thirty years and which are collectively refered
to as standard motivic conjectures. A few years ago we succeeded in answer-
ing one of these questions which is called Milnor’s conjecture using this new
machinery. Today we begin to perceive new similarities between the rest of
motivic conjectures and a group of results proven in the homotopy theory in
the 80-ies. If these similarities are not deceiving then the analogy between
the homotopy theory of spaces and the homotopy theory of algebraic vari-
eties is tighter that anyone thought. In any even the facts we already know
make it plausible that both the homotopy theory of spaces and the homotopy
theory of varieties are particular cases of one theory. So far we are unable to
invent such a theory but one day we will.
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