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Abstract

We introduce the notion of a (Π, λ)-structure on a C-system and show that C-
systems with (Π, λ)-structures are constructively equivalent to contextual categories
with products of families of types. We then show how to construct (Π, λ)-structures
on C-systems of the form CC(C, p) defined by a universe p in a locally cartesian closed
category C from a simple pull-back square based on p. In the last section we prove a
theorem that asserts that our construction is functorial.

1 Introduction

The concept of a C-system in its present form was introduced in [7]. The type of the C-
systems is constructively equivalent to the type of contextual categories defined by Cartmell
in [3] and [2] but the definition of a C-system is slightly different from the Cartmell’s foun-
dational definition.

In this paper we consider what might be the most important structure on C-systems - the
structure that corresponds, for the syntactic C-systems, to the operations of dependent prod-
uct, λ-abstraction and application. A C-system formulation of this structure was introduced
by John Cartmell in [2, pp. 3.37 and 3.41] as a part of what he called a strong M.L. structure.
It was studied further by Thomas Streicher in [4, p.71] who called a C-system (contextual
category) together with such a structure a “contextual category with products of families of
types”.

We first show that the structure that Cartmell defined is equivalent to another structure,
which we call a (Π, λ)-structure. The proof of this equivalence consists of Constructions
2.5 and 2.6 (of mappings in both directions) and Lemmas 2.7 and 2.8 showing that these
mappings are mutually inverse.

Then we consider the case of C-systems of the form CC(C, p) introduced in [6]. They are

defined, in a functorial way, by a category C with a final object and a morphism p : Ũ → U
in C together with the choice of pull-backs of p along all morphisms in C. A morphism with
such choices is called a universe in C. An important feature of this construction is that the
C-systems CC(C, p) corresponding to different choices of pull-backs and different choices of
final objects are canonically isomorphic. This fact makes it possible to say that CC(C, p) is
defined by C and p.
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We provide several intermediate results about CC(C, p) when C is a locally cartesian closed
category leading to the main result of this paper - Construction 3.7 that produces a (Π, λ)-
structure on CC(C, p) from a simple pull-back square based on p. This construction was
first announced in [5]. It and the ideas that it is based on are among the most important
ingredients of the construction of the univalent model of the Martin-Lof type theory.

In this paper we continue to use the diagrammatic order of writing composition of morphisms,
i.e., for f : X → Y and g : Y → Z the composition of f and g is denoted by f ◦ g.

2 Products of families of types and (Π, λ)-structures

Let CC be a C-system. Recall that we let Õb(CC), or simply Õb, denote the set:

Õb = {s : ft(X) → X | l(X) > 0 and s ◦ pX = Idft(X)}

For n ∈ N denote by Ob≥n the set of objects of CC of length ≥ n and by Õb≥n the subset

of Õb(CC) that consists of elements s : ft(X) → X such that l(X) ≥ n.

Let further Obn(Γ) be the set of elements ∆ in Ob such that ftn(∆) = Γ and Õbn(Γ) the

set of elements s ∈ Õb such that s : ft(∆) → ∆ where ∆ ∈ Obn(Γ). For n = 0 we will

abbreviate Õb0(Γ) as Õb(Γ). Note that in view of the definition of Õb we have Õb(X) = ∅
if l(X) = 0.

For f : Γ′ → Γ the functions ∆ 7→ f ∗(∆, n) and s 7→ f ∗(s, n), defined in [7] as iterated
canonical pull-backs of objects and sections respectively, give us functions:

Obn(Γ) → Obn(Γ
′)

Õbn(Γ) → Õbn(Γ
′)

which we will write simply as f ∗.

Let us note also that if ∆,∆′ ∈ Ob(Γ), u : ∆ → ∆′ is a morphism over Γ and f : Γ′ → Γ is
a morphism then, using the fact the the canonical squares are pull-back, we get a morphism
f ∗(∆) → f ∗(∆′) that we denote by f ∗(u).

The structure of “products of families of types” is defined in [2, pp.3.37 and 3.41] and also
considered in [4, p.71]. Let us remind this definition here.

Definition 2.1 The structure of products of families of types on a C-system CC is a col-
lection of data of the form:

1. for every Γ ∈ Ob a function ΠΓ : Ob2(Γ) → Ob1(Γ), which we write simply as Π,

2. for every Γ and B ∈ Ob2(Γ) a morphism ApB : p∗A(Π(B)) → B over A, where A =
ft(B),

such that:
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1. for any Γ and B ∈ Ob2(Γ) the map λinvAp : Õb(Π(B)) → Õb(B) defined as:

s 7→ p∗A(s) ◦ ApB
is a bijection,

2. for any f : Γ′ → Γ the square

Ob2(Γ)
ΠΓ

−−−→ Ob1(Γ)

f∗
y yf∗

Ob2(Γ
′)

ΠΓ′

−−−→ Ob1(Γ
′)

commutes,

3. for any for any Γ, B ∈ Ob2(Γ) and f : Γ → Γ′ one has f ∗(ApB) = Apf∗(B).

We will show in the next section how to construct products of families of types on C-systems
of the form CC(C, p). For this construction we first need to introduce another structure on
C-systems and show that this other structure is equivalent to the structure of products of
families of types.

Definition 2.2 Let CC be a C-system. A pre-(Π, λ)-structure on CC is a pair of functions

Π : Ob≥2 → Ob

λ : Õb≥2 → Õb

such that:

1. ft(Π(Γ)) = ft2(Γ),

2. ∂(λ(s)) = Π(∂(s)).

For a pre-(Π, λ)-structure (Π, λ) and Γ ∈ Ob the function Π defines, in view of the first
condition of Definition 2.2, a function

ΠΓ : Ob2(Γ) → Ob1(Γ)

and the function λ defines, in view of the first and the second conditions of Definition 2.2, a
function

λΓ : Õb2(Γ) → Õb1(Γ)

The second condition also implies that the square:

Õb2(Γ)
λΓ−−−→ Õb1(Γ)

∂

y y∂
Ob2(Γ)

ΠΓ

−−−→ Ob1(Γ)

(1)

commutes. One can easily see that the notion of a pre-(Π, λ)-structure could be equally
formulated as two families of functions ΠΓ and λΓ such that the squares (1) commute.
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Definition 2.3 A pre-(Π, λ)-structure is called a (Π, λ)-structure if the following conditions
hold:

1. for any Γ ∈ Ob≥2 the square (1) is a pull-back square,

2. for any f : Γ′ → Γ the square

Ob2(Γ)
ΠΓ

−−−→ Ob1(Γ)

f∗
y yf∗

Ob2(Γ
′)

ΠΓ′

−−−→ Ob1(Γ
′)

(2)

commutes,

3. for any f : Γ′ → Γ the square

Õb2(Γ)
λΓ−−−→ Õb1(Γ)

f∗
y yf∗

Õb2(Γ
′)

λΓ
′

−−−→ Õb1(Γ
′)

(3)

commutes.

Note that the first condition can be equivalently formulated by saying that the functions

λΓ : Õb(Γ) → Õb(Π(Γ))

defined by λ are bijections.

We are going to show that, for a given family of functions ΠΓ, the type of (Π, λ)-structures
over ΠΓ is equivalent to the type of products of families of types over the same ΠΓ.

We first reformulate the structure of products of families slightly. Instead of considering
p∗A(Π(B)) we will consider an object that is isomorphic (but not equal!) to it, namely
p∗Π(B)(A). Our structure will then be a family of maps Π as before together with, for every

Γ and B ∈ Ob2(Γ), a morphism Ap′B : p∗Π(B)(A) → B over A such that the map λinv′Ap′ :

Õb(Π(B)) → Õb(B) defined as:

s 7→ q(s, p∗Π(B)(A)) ◦ Ap′B
is a bijection. This can be seen on the following diagram that also contains other elements
that will be needed in the construction below.

B
q(s,p∗

Π(B)
(B,2),2)

−−−−−−−−−→ p∗Π(B)(B, 2)
q(pΠ(B),B,2)−−−−−−−→ B

pB

y y ypB
A

q(s,p∗
Π(B)

(A))

−−−−−−−→ p∗Π(B)(A)
q(pΠ(B),A)−−−−−−→ A

pA

y y pA

y
Γ

s−−−→ Π(B)
pΠ(B)−−−→ Γ

(4)
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We now state the problem which we will provide a construction for:

Problem 2.4 Let CC be a C-system and let Π be a family of functions

ΠΓ : Ob2(Γ) → Ob1(Γ)

given for all Γ ∈ Ob such that the corresponding squares of the form (2) commute.

To construct a bijection between the following two types of structure:

1. for every Γ and B ∈ Ob2(Γ) a bijection

λB : Õb(B) → Õb(Π(B))

such that for every morphism f : Γ′ → Γ the square

Õb(B)
λB−−−→ Õb(Π(B))

f∗
y yf∗

Õb(f ∗(B))
λf∗(B)−−−→ Õb(Π(f ∗(B)))

defined by f , commutes.

2. for every Γ ∈ Ob and B ∈ Ob2(Γ) a morphism Ap′B : p∗Π(B)(A) → B over A, where

A = ft(B), such that the map

λinv′Ap′ : Õb(Π(B)) → Õb(B)

defined as:
s 7→ q(s, p∗Π(B)(A)) ◦ Ap′B

is a bijection and such that for every morphism f : Γ′ → Γ and B ∈ Ob2(Γ) one has
f ∗(Ap′B) = Ap′f∗(B).

We will construct the solution in four steps - first a function from structures of the first kind
to structures of the second, then a function in the opposite direction and the two lemmas
proving that the first function is a left and a right inverse to the second.

Construction 2.5 Let us show how to construct a structure of the second kind from a
structure of the first kind. To define Ap′ consider the digram of Π’s defined by the diagram
(4):

Π(B) Π(p∗Π(B)(B, 2)) Π(B)y y y
Γ

s−−−→ Π(B)
pΠ(B)−−−→ Γ

(5)
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Note that since Π is stable under pull-backs we have

Π(p∗Π(B)(B, 2)) = p∗Π(B)(Π(B))

and therefore the diagonal δΠ(B) gives us an element in Õb(Π(p∗Π(B)(B, 2))). Applying to it

the inverse of our λ we get an element ap : Õb(p∗Π(B)(B, 2)). Define:

Ap′B = ap ◦ q(pΠ(B), B, 2)

Let us prove that these morphisms satisfy the conditions of bijectivity and the stability under
pull-backs. We need to show that the mappings λinv′Ap′ : Õb(Π(B)) → Õb(B) defined as:

s 7→ q(s, p∗Π(B)(A)) ◦ Ap′B

are bijective. We already have bijective mappings ΛB : Õb(B) → Õb(Π(B)) given by our λ.
It is sufficient to show that the mappings λinv′Ap′ are inverse to the ones given by λ from at
least one side as any inverse to a bijection is a bijection.

We do it in two steps. First let

λinv′′(s) = s∗(ap, 2) = q(s, p∗Π(B)(A))
∗(ap)

Let us show that λinv′′ = λinv′Ap′ . Indeed:

q(s, p∗Π(B)(A))
∗(ap) = q(s, p∗Π(B)(A))

∗(ap) ◦ q(s, p∗Π(B)(B, 2), 2) ◦ q(pΠ(B), B, 2) =

q(s, p∗Π(B)(A)) ◦ ap ◦ q(pΠ(B), B, 2) = q(s, p∗Π(B)(A)) ◦ Ap′B
Now we have:

λ(λinv′′(s)) = λ(s∗(ap, 2)) = s∗(λ(ap), 1) = s∗(δΠ(B), 1) = s.

It remains to check that the mappings Ap′ are stable under the base change. Since the base
change of morphisms commutes with compositions this follows if we know that ap is stable
and q(−,−, 2) is stable. The second fact is verified easily from the axioms of a C-system
and the first follows from the stability of δ and the pull-back and the assumption that λ is
stable under pull-back.

Construction 2.6 Let us now construct a structure of the first kind from a structure of
the second. This is straightforward since a construction of the second kind gives is bijections
λinv′Ap′ and the inverse to these bijections are bijections required for the structure of the
first kind. The fact that the bijections that we obtain in this way are stable under the pull-
backs follows from the fact that the pull-backs commute with compositions, that they take
morphisms of the form q(−,−, 1) to morphisms of the same form and from our assumption
that morphisms Ap′ are stable under composition.

Let us denote the map of Construction 2.5 by C1 and the map of Construction 2.6 by C2.
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Lemma 2.7 For a structure of the first kind λ one has C2(C1(λ)) = λ.

Proof: This is immediate since in Construction 2.5 we proved that the λinv′Ap′ that we have
constructed are bijections by showing that they are inverses to the λ’s that we started with
and in Construction 2.6 we defined λ’s as inverses to λinv′Ap′ .

Lemma 2.8 For a structure of the second kind Ap′ one has C1(C2(Ap′)) = Ap′.

Proof: This amounts to checking that

λinv′Ap′(∆Π(B)) ◦ q(pΠ(B), B, 2) = Ap′B

Opening up the definition of λinv′ we get the equation

q(δΠ(B), p
∗
p∗
Π(B)

(Π(B))(p
∗
Π(B)(A))) ◦ Ap′p∗

Π(B)
(B,2)q(pΠ(B), B, 2) = Ap′B

We have for any f : Γ′ → Γ:

Ap′f∗(B,2) ◦ q(f,B, 2) = q(q(f,Π(B)), p∗Π(B)(A)) ◦ Ap′B
and our equation becomes

q(δΠ(B), p
∗
p∗
Π(B)

(Π(B))(p
∗
Π(B)(A))) ◦ q(q(pΠ(B),Π(B)), p∗Π(B)(A)) ◦ Ap′B = Ap′B

Which follows from:

q(δΠ(B), p
∗
p∗
Π(B)

(Π(B))(p
∗
Π(B)(A))) ◦ q(q(pΠ(B),Π(B)), p∗Π(B)(A)) =

q(δΠ(B) ◦ q(pΠ(B),Π(B)), p∗Π(B)(A)) = q(Id, p∗Π(B)(A)) = Id.

This completes our construction for Problem 2.4.

3 (Π, λ)-structures on the C-systems CC(C, p)

We will show now how to construct (Π, λ)-structures on C-systems of the form CC(C, p) for
cartesian closed (pre-)categories4 C.
We will say that a cartesian closed structure on a (pre-)category consists of the choices of
a final object, binary products and for every X, Y in C of a pair (Hom(X, Y ), coev) where
Hom(X, Y ) is an object and coevY : Y → Hom(X, Y × X) is a morphism such that for
every Z the map

Hom(Y ×X,Z) → Hom(Y,Hom(X,Z))

given by f 7→ coevY ◦ Hom(X, f), is a bijection. A cartesian closed (pre-)category is a
(pre-)category together with a Cartesian closed structure on it5.

4For the discussion of the difference between a category and a pre-category see the introduction to [7]
and [1].

5One can also define cartesian closed structures in terms of morphisms eval : X ×Hom(X,Y ) → Y but
the coev formulation will be more convenient for our computations below.
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Remark 3.1 On a general pre-category there can be many non-isomorphic cartesian closed
structures, i.e., there are can be pairs of cartesian closed structures S1, S2 such that the
cartesian closed categories (C, S1), (C, S2) are not isomorphic. However any two Cartesian
closed categories of this form will be equivalent under an appropriate definition of an equiv-
alence of cartesian closed categories. Below we will make sure that our construction are
invariant with respect to equivalences of cartesian and locally cartesian closed categories so
that the particular choices of the cartesian closed structures do not affect their outcome.

A (pre-)category C is called a lcc (locally cartesian closed) (pre-)category if all its over-
categories C/X are cartesian closed categories.

We will not use a special notation for the forgetting functor from C/X to C and in particular
for Y, Y ′ ∈ C/X we will write HomU(Y, Y

′) both for the internal Hom-object from Y to Y ′

in C/X and for its image in C.
Recall from [6] that for X ∈ C and F : X → U we let (X;F ) denote the pull-back of p along
F and by p(X,F ) : (X;F ) → X the projection. Iterating this construction we get sets Obn
of sequences of the form (F1, . . . , Fn) where F1 : pt → U and Fi+1 : ((pt;F1); . . . ;Fi) → U .
One defines Ob(CC(C, p)) := ⨿Obn and

MorCC(C,p)((F1, . . . , Fn), (G1, . . . , Gm)) :=MorC(((pt;F1); . . . ;Fn), ((pt;G1); . . . ;Gm))

For Γ = (F1, . . . , Fn) we write int(Γ) for the object ((pt;F1); . . . ;Fi) of C. Together with the
obvious maps on the sets of morphisms the map int defines a full embedding of the category
underlying the C-system CC(C, p) to C.
By definition of Ob(CC(C, p)) we have, for any Γ, a bijection Ob1(Γ) → HomC(int(Γ), U)
and by definition of the canonical pull-back squares in CC(C, p) these bijections are natural
in Γ i.e. for any f : Γ′ → Γ the square

Ob1(Γ) −−−→ HomC(int(Γ), U)

f∗
y y

Ob1(Γ
′) −−−→ HomC(int(Γ

′), U)

where the right hand side vertical map is given by the composition with f , commutes.
Similarly, we have bijections Õb1(Γ) → HomC(int(Γ), Ũ) and again one verifies easily that
these bijections are natural in Γ.

In the case when C is an lcc category we can also describe Ob2(Γ) and Õb2(Γ) in similar
terms.

We first present a more general construction. For X ∈ C let Dp(X,V ) be the set of pairs of
the form (F1 : X → U, F2 : (X;F1) → V ).

The sets Dp(X,V ) form a covariant functor in V in the obvious way. They also form a
contravariant functor in X if one defines for f : X ′ → X:

Dp(f, V )(F1, F2) = (f ◦ F1, q ◦ F2)
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where q is the unique morphism that makes the following diagram commute:

(X ′; f ◦ F1)
q−−−→ (X,F1)

Q(F1)−−−→ Ũ

p(X′,f◦F1)

y p(X,F1)

y yp
X ′ −−−→

f
X

F1−−−→ U

(6)

For V ∈ C denote by U ×V the product considered as an object over U . Denote the functor
HomU(Ũ ,−) from C/U to itself by Rp and the functor Rp(U ×−) by Ip.

Problem 3.2 To construct bijections

η : Dp(X,V ) → HomC(X, Ip(V ))

that are natural in X and V .

Construction 3.3 We have

D(X,V ) = ⨿F1:X→UHomU(X ×U Ũ , U × V ).

On the other hand, by definition of HomU we have that for each F1 : X → U the map from

HomU(X × Ũ , U × V ) to HomU(X,HomU(Ũ , U × V )) given by

f 7→ coevX ◦Rp(f)

is a bijection. But also

HomC(X,Rp(U × V )) = ⨿F1:X→UHomU(X,Rp(U × V ))

This gives us isomorphisms of sets:

D(X, V ) → HomC(X,Rp(U × V ))

to verify that they are isomorphisms of functors in X we need to check for each f : X ′ → X,
F1 : X → U and F2 : (X;F1) → V the equation:

f ◦ coevF1 ◦Rp((p(X,F1) ◦ F1)⊠ F2) = coevf◦F1 ◦Rp((p(X′,f◦F1) ◦ f ◦ F1)⊠ (q ◦ F2))

where q is the morphism defined by the diagram (6) above and where for a : A → U and
b : A→ B we let a⊠ b denote the morphism a× b : A→ U ×B as a morphism over U .

We have f ◦ coevF1 = coevf◦F1 ◦Rp(q) and since Rp is functorial it remains to check that

Rp(q ◦ ((p(X,F1) ◦ F1)⊠U F2)) = Rp((p(X′,f◦F1) ◦ f ◦ F1)⊠U (q ◦ F2))

for which it is sufficient to check that

q ◦ ((p(X,F1) ◦ F1)⊠U F2) = (p(X′,f◦F1) ◦ f ◦ F1)⊠U (q ◦ F2)

which follows from the equality p(X′,f◦F1)◦f = q◦p(X;F1) and the property that a◦(b⊠UG) =
(a ◦ b)⊠U (a ◦G).
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Problem 3.4 For a locally cartesian closed closed C and a universe p : Ũ → U in C to
construct for any Γ ∈ Ob(CC(C, p)) bijections

η : Ob2(Γ) → HomC(int(Γ), Ip(U))

and
η̃ : Õb2(Γ) → HomC(int(Γ), Ip(Ũ))

that are natural in Γ and compatible with the function ∂.

Construction 3.5 When we take X = int(Γ) we get Dp(X,U) = Ob2(Γ) and Dp(X, Ũ) =

Õb2(Γ) with the functoriality in X corresponding to the functions f ∗ and the functoriality

for the projection Õb2(Γ) → Ob2(Γ) corresponding to the operation ∂. Therefore we can
define the required bijections using Construction 3.3.

In the following p2 is the morphism defined by the projection p : Ũ → U .

Problem 3.6 Let C be a locally cartesian closed category with a final object. Let p : Ũ → U
be a morphism with a universe structure on it. Let P , P̃ be a pair of morphisms that make
the square:

HomU(Ũ , U × Ũ)
P̃−−−→ Ũyp2 yp

HomU(Ũ , U × U)
P−−−→ U

(7)

a pull-back square.

To construct a (Π, λ)-structure on CC(C, p).

Construction 3.7 In view of Construction 3.5 any pair (P, P̃ ) that makes square (7) com-
mutative defines a pre-(Π, λ)-structure on CC(C, p) that also satisfies the second and the
third condition of the definition of a (Π, λ)-structure. If this square is a pull-back square
then this pre-(Π, λ)-structure satisfies the first condition of Definition 2.3 and therefore it is
a (Π, λ)-structure.

4 Functoriality properties of the (Π, λ)-structures arising from uni-
verses

Let us outline now the functoriality properties of the (Π, λ) structures of Construction 3.7.

Let (C, p, pt) and (C, p′, pt′) be two (pre-)categories with universes. Recall from [6] that a

functor of categories with universes from (C, p, pt) to (C, p′, pt′) is a triple (Φ, ϕ, ϕ̃) where Φ

is a functor C → C ′ and ϕ : Φ(U) → U ′, ϕ̃ : Ũ → Ũ ′ are two morphisms such that F takes
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the final object to a final object, pull-back squares based on p to pull-back squares and such
that the square

Φ(Ũ)
ϕ̃−−−→ Ũ ′

Φ(p)

y yp′
Φ(U)

ϕ−−−→ U ′

(8)

is a pull-back square. By [6] any such functor defines a homomorphism of C-systems

H : CC(C, p) → CC(C ′, p′)

In order to prove our main functoriality Theorem 4.5 we need describe in more detail the
maps

Ob1(Γ) → Ob1(H(Γ))

Ob2(Γ) → Ob2(H(Γ))

and the similar maps on Õb1 and Õb2. We will be doing it with respect to the identifications:

Ob1(Γ) = Hom(int(Γ), U)

Õb1(Γ) = Hom(int(Γ), Ũ)
Ob2(Γ) = Dp(int(Γ), U)

Õb2(Γ) = Dp(int(Γ), Ũ)

(9)

For X, V in C we have the functoriality map

Φ : Hom(X, V ) → Hom(Φ(X),Φ(V ))

If (Φ, ϕ, ϕ̃) is a functor of categories with universes we also have maps

Φ2 : Dp(X,V ) → Dp′(Φ(X),Φ(V ))

defined as follows. Let (F1 : X → U, F2 : (X;F1) → V ) be an element in Dp(X, V ). Consider
(Φ(X); Φ(F1) ◦ ϕ). Since the square (8) is a pull-back square there is a unique morphism q
that makes the following diagram commutative:

(Φ(X); Φ(F1) ◦ ϕ)
q−−−→ Φ(Ũ)

ϕ̃−−−→ Ũ ′yp(Φ(X);Φ(F1)◦ϕ) Φ(p)

y yp′
Φ(X)

Φ(F1)−−−→ Φ(U)
ϕ−−−→ U ′

and then the corresponding left hand side square is a pull-back square. Together with the
fact that Φ takes pull-back squares based on p to pull-back squares we obtain a canonical
isomorphism

ι : (Φ(X); Φ(F1) ◦ ϕ) → Φ(X;F1)

and we define:
Φ2(F1, F2) := (Φ(F1) ◦ ϕ, ι ◦ Φ(F2))

We will need the following property of these maps below.
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Lemma 4.1 Let f : X ′ → X be a morphism and d ∈ Dp(X, V ), then one has

Dp′(Φ(f),Φ(V ))(Φ2(d)) = Φ2(Dp(f, V )(d))

Proof: Let d = (F1, F2). Then

Dp′(Φ(f),Φ(V ))(Φ2(d)) = Dp′(Φ(f),Φ(V ))(Φ(F1) ◦ ϕ, ι ◦ Φ(F2)) =

(Φ(f) ◦ Φ(F1) ◦ ϕ, q′ ◦ ι ◦ Φ(F2))

where
ι : (Φ(X); Φ(F1) ◦ ϕ) → Φ(X;F1)

q′ : (Φ(X ′); Φ(f) ◦ Φ(F1) ◦ ϕ) → (Φ(X); Φ(F1) ◦ ϕ)

are the canonical morphisms and

Φ2(Dp(f, V )(F1, F2)) = Φ2(f ◦ F1, q ◦ F2) =

(Φ(f ◦ F1) ◦ ϕ, ι′ ◦ Φ(q ◦ F2))

where
ι′ : (Φ(X ′); Φ(f ◦ F1) ◦ ϕ) → Φ(X ′; f ◦ F1)

q : (X ′; f ◦ F1) → (X;F1)

are canonical morphisms. We have

Φ(f) ◦ Φ(F1) ◦ ϕ = Φ(f ◦ F1) ◦ ϕ

and it remains to check that

q′ ◦ ι ◦ Φ(F2) = ι′ ◦ Φ(q ◦ F2)

or that q′◦ι = ι′◦Φ(q). The codomain of both morphisms is Φ(X;F1) that by our assumption
on Φ is a pull-back of p′ and Φ(F1)◦ϕ. Therefore it is sufficient to verify that the compositions

of these two morphisms with the projections to Ũ ′ and Φ(X) coincide.

This is done by a direct computation from definitions.

Recall from [6, Construction 3.3] that for every Γ we have a canonical isomorphism

ψΓ : int′(H(Γ)) → Φ(int(Γ))

Lemma 4.2 Let (Φ, ϕ, ϕ̃) be a functor between categories with universes. Then, with respect
to the identifications (9) the maps defined by H are of the form:
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1. on Ob1:

Hom(int(Γ), U)
Φ→ Hom(Φ(int(Γ)),Φ(U))

ϕ→ Hom(Φ(int(Γ)), U ′)

ψΓ→ Hom(int(H(Γ)), U ′)

2. on Õb1:

Hom(int(Γ), Ũ)
Φ→ Hom(Φ(int(Γ)),Φ(Ũ))

ϕ→ Hom(Φ(int(Γ)), Ũ ′)

ψΓ→ Hom(int(H(Γ)), Ũ ′)

3. on Ob2:

Dp(int(Γ), U)
Φ2→ Dp(Φ(int(Γ)),Φ(U))

ϕ→ Dp(Φ(int(Γ)), U
′)

ψΓ→ Dp(int(H(Γ)), U ′)

4. on Õb2

Dp(int(Γ), Ũ)
Φ2→ Dp(Φ(int(Γ)),Φ(Ũ))

ϕ→ Dp(Φ(int(Γ)), Ũ
′)

ψΓ→ Dp(int(H(Γ)), Ũ ′)

Proof: It follows immediately from the construction of H given in [6].

Problem 4.3 Assume that C and C ′ are locally cartesian closed categories with universes.
For (Φ, ϕ, ϕ̃) as above and V ∈ C to construct a morphism

ϕ2,V : Φ(Ip(V )) → Ip′(Φ(V ))

Construction 4.4 Let
η : Dp(X, V ) → Hom(X, Ip(V ))

η′ : Dp′(X
′, V ′) → Hom(X ′, Ip′(V

′))

be bijections from Construction 3.3. We define:

ϕ2,V := η′(Φ2(η
−1(IdIp(V ))))

For (Φ, ϕ, ϕ̃) as above let us denote by

ϕ2 : Φ(Ip(U)) → Ip′(U
′)

the composition of ϕ2,U with the morphism defined by ϕ : Φ(U) → U ′ and by

ϕ̃2 : Φ(Ip(Ũ)) → Ip′(Ũ
′)

the composition of ϕ2,Ũ with the morphism defined by ϕ̃ : Φ(Ũ) → Ũ ′.

The notion of a homomorphism of C-systems with (Π, λ)-structures used in the theorem
below is defined in the obvious way.
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Theorem 4.5 Let (Φ, ϕ, ϕ̃) be as above and let (P, P̃ ), (P ′, P̃ ′) be as in Problem 3.6 for C
and C ′ respectively.

Assume that the squares

Φ(Ip(U))
ϕ2−−−→ Ip′(U

′)

Φ(P )

y yP ′

Φ(U)
ϕ−−−→ U

(10)

and

Φ(Ip(Ũ))
ϕ̃2−−−→ Ip′(Ũ

′)

Φ(P̃ )

y yP̃ ′

Φ(Ũ)
ϕ̃−−−→ Ũ

(11)

commute. Then the homomorphism

H(Φ, ϕ, ϕ̃) : CC(C, p) → CC(C ′, p′)

is a homomorphism of C-systems with (Π, λ)-structures.

Proof: We will show that the square

Ob2(Γ)
H−−−→ Ob2(H(Γ))

Π

y yΠ′

Ob1(Γ)
H−−−→ Ob1(Γ)

(12)

commutes. The proof of commutativity of a similar square for Õb and P̃ is obtained by
replacing ϕ with ϕ̃, ϕ2 with ϕ̃2 and the corresponding replacements of U with Ũ .

Consider the map A defined as the composition

Hom(int(Γ), Ip(U))
Φ→ Hom(Φ(int(Γ)),Φ(Ip(U)))

ϕ2→ Hom(Φ(int(Γ)), Ip′(U
′))

ψΓ→ Hom(int(H(Γ)), Ip′(U
′))

Since Π = η ◦ P and Π′ = η′ ◦ P ′ it is sufficient to show that the squares

Dp(int(Γ), U) −−−→ Dp′(int(H(Γ)), U ′)

η

y yη′
Hom(int(Γ), Ip(U))

A−−−→ Hom(int(H(Γ)), Ip′(U
′))

P

y yP ′

Hom(int(Γ), U) −−−→ Hom(int(H(Γ)), U ′)
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where the top and bottom arrows are from Lemma 4.2, commute. The commutativity of
the lower square follows immediately from the assumption that Φ is a functor and from the
commutativity of (10).

To prove the commutativity of the upper square it is sufficient (in view of the naturality of
η′ in the first and second arguments) to prove commutativity of the diagram

Dp(int(Γ), U)
Φ2−−−→ Dp′(Φ(int(Γ)),Φ(U))

η′−−−→ Hom(Φ(int(Γ)), Ip′(Φ(U)))

η

y xϕ2,U
Hom(int(Γ), Ip(U)) Hom(int(Γ), Ip(U))

Φ−−−→ Hom(Φ(int(Γ)),Φ(Ip(U)))

The upper arrow is actually the composition with the morphism ϕ2,U : Φ(Ip(U)) → Ip′(Φ(U)).
Therefore we need to verify, for all a ∈ Dp(int(Γ), U), the equation:

Φ(η(a)) ◦ ϕ2,U = η′(Φ2(a))

By definition of ϕ2,U and contravariant functoriality of η′ we have

Φ(η(a)) ◦ ϕ2,U = Φ(η(a)) ◦ η′(Φ2(η
−1(Id))) = η′(Dp′(Φ(η(a)),Φ(U))(Φ2(η

−1(Id))))

By Lemma 4.1 we further have:

η′(Dp′(Φ(η(a)),Φ(U))(Φ2(η
−1(Id)))) = η′(Φ2(Dp(η(a), U)(η

−1(Id))))

It remains to show that Dp(η(a), U)(η
−1(Id)) = f . Since η is a bijection we may apply it on

both sides and by functoriality of η we get

η(Dp(η(a), U)(η
−1(Id))) = η(f) ◦ η(η−1(Id)) = η(f) ◦ Id = η(f).
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