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Abstract

We introduce the notion of a (Π, λ)-structure on a C-system and show that C-
systems with (Π, λ)-structures are constructively equivalent to contextual categories
with products of families of types. We then show how to construct (Π, λ)-structures
on C-systems of the form CC(C, p) defined by a universe p in a locally cartesian closed
category C from a simple pull-back square based on p. In the last section we prove a
theorem that asserts that our construction is functorial.

1 Introduction

The concept of a C-system in its present form was introduced in [9]. The type of the C-
systems is constructively equivalent to the type of contextual categories defined by Cartmell
in [4] and [3] but the definition of a C-system is slightly different from the Cartmell’s foun-
dational definition.

In this paper we consider what might be the most important structure on C-systems - the
structure that corresponds, for the syntactic C-systems, to the operations of dependent prod-
uct, λ-abstraction and application. A C-system formulation of this structure was introduced
by John Cartmell in [3, pp. 3.37 and 3.41] as a part of what he called a strong M.L. structure.
It was studied further by Thomas Streicher in [6, p.71] who called a C-system (contextual
category) together with such a structure a “contextual category with products of families of
types”.

We first show that the structure that Cartmell defined is equivalent to another structure,
which we call a (Π, λ)-structure. The proof of this equivalence consists of Constructions
2.5 and 2.6 (of mappings in both directions) and Lemmas 2.7 and 2.8 showing that these
mappings are mutually inverse.

Then we consider the case of C-systems of the form CC(C, p) introduced in [8]. They are

defined, in a functorial way, by a category C with a final object and a morphism p : Ũ → U
in C together with the choice of pull-backs of p along all morphisms in C. A morphism with
such choices is called a universe in C. An important feature of this construction is that the
C-systems CC(C, p) corresponding to different choices of pull-backs and different choices of
final objects are canonically isomorphic. This fact makes it possible to say that CC(C, p) is
defined by C and p.
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We provide several intermediate results about CC(C, p) when C is a locally cartesian closed
category leading to the main result of this paper - Construction 4.3 that produces a (Π, λ)-
structure on CC(C, p) from a simple pull-back square based on p. This construction was
first announced in [7]. It and the ideas that it is based on are among the most important
ingredients of the construction of the univalent model of the Martin-Lof type theory.

The methods of this paper are fully constructive. It is also written in the formalization-ready
style that is in such a way that no long arguments are hidden even when they are required
only to substantiate an assertion that may feel obvious to readers who are closely associated
with a particular tradition of mathematical thought.

In this paper we continue to use the diagrammatic order of writing composition of morphisms,
i.e., for f : X → Y and g : Y → Z the composition of f and g is denoted by f ◦ g.

I am grateful to the Department of Computer Science and Engineering of the University of
Gothenburg and Chalmers University of Technology for its the hospitality during my work
on the paper.

2 Products of families of types and (Π, λ)-structures

Let CC be a C-system. Recall that we let Õb(CC), or simply Õb, denote the set:

Õb = {s : ft(X)→ X | l(X) > 0 and s ◦ pX = Idft(X)}

For n ∈ N denote by Ob≥n the set of objects of CC of length ≥ n and by Õb≥n the subset

of Õb(CC) that consists of elements s : ft(X)→ X such that l(X) ≥ n.

Let further Obn(Γ) be the set of elements ∆ in Ob such that l(∆) ≥ n+ l(Γ) and ftn(∆) = Γ

and Õbn(Γ) the set of elements s ∈ Õb such that s : ft(∆) → ∆ where ∆ ∈ Obn(Γ). For

n = 0 we will abbreviate Õb0(Γ) as Õb(Γ). Note that in view of the definition of Õb we have

Õb(X) = ∅ if l(X) = 0.

For f : Γ′ → Γ the functions ∆ 7→ f ∗(∆, n) and s 7→ f ∗(s, n), defined in [9] as iterated
canonical pull-backs of objects and sections respectively, give us functions:

Obn(Γ)→ Obn(Γ′)

Õbn(Γ)→ Õbn(Γ′)

which we will write simply as f ∗.

Let us note also that if ∆,∆′ ∈ Ob(Γ), u : ∆ → ∆′ is a morphism over Γ and f : Γ′ → Γ is
a morphism then, using the fact the the canonical squares are pull-back, we get a morphism
f ∗(∆)→ f ∗(∆′) that we denote by f ∗(u).

The structure of “products of families of types” is defined in [3, pp.3.37 and 3.41] and also
considered in [6, p.71]. Let us remind this definition here.

Definition 2.1 The structure of products of families of types on a C-system CC is a col-
lection of data of the form:
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1. for every Γ ∈ Ob a function ΠΓ : Ob2(Γ)→ Ob1(Γ), which we write simply as Π,

2. for every Γ and B ∈ Ob2(Γ) a morphism ApB : p∗A(Π(B)) → B over A, where A =
ft(B),

such that:

1. for any Γ and B ∈ Ob2(Γ) the map λinvAp : Õb(Π(B))→ Õb(B) defined as:

s 7→ p∗A(s) ◦ ApB

is a bijection,

2. for any f : Γ′ → Γ the square

Ob2(Γ)
ΠΓ

−−−→ Ob1(Γ)

f∗
y yf∗

Ob2(Γ′)
ΠΓ′

−−−→ Ob1(Γ′)

commutes,

3. for any for any Γ, B ∈ Ob2(Γ) and f : Γ→ Γ′ one has f ∗(ApB) = Apf∗(B).

We will show in the next section how to construct products of families of types on C-systems
of the form CC(C, p). For this construction we first need to introduce another structure on
C-systems and show that this other structure is equivalent to the structure of products of
families of types.

Definition 2.2 Let CC be a C-system. A pre-(Π, λ)-structure on CC is a pair of functions

Π : Ob≥2 → Ob

λ : Õb≥2 → Õb

such that:

1. ft(Π(Γ)) = ft2(Γ),

2. ∂(λ(s)) = Π(∂(s)).

For a pre-(Π, λ)-structure (Π, λ) and Γ ∈ Ob the function Π defines, in view of the first
condition of Definition 2.2, a function

ΠΓ : Ob2(Γ)→ Ob1(Γ)

and the function λ defines, in view of the first and the second conditions of Definition 2.2, a
function

λΓ : Õb2(Γ)→ Õb1(Γ)
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The second condition also implies that the square:

Õb2(Γ)
λΓ

−−−→ Õb1(Γ)

∂

y y∂
Ob2(Γ)

ΠΓ

−−−→ Ob1(Γ)

(1)

commutes. One can easily see that the notion of a pre-(Π, λ)-structure could be equally
formulated as two families of functions ΠΓ and λΓ such that the squares (1) commute.

Definition 2.3 A pre-(Π, λ)-structure is called a (Π, λ)-structure if the following conditions
hold:

1. for any Γ ∈ Ob≥2 the square (1) is a pull-back square,

2. for any f : Γ′ → Γ the square

Ob2(Γ)
ΠΓ

−−−→ Ob1(Γ)

f∗
y yf∗

Ob2(Γ′)
ΠΓ′

−−−→ Ob1(Γ′)

(2)

commutes,

3. for any f : Γ′ → Γ the square

Õb2(Γ)
λΓ

−−−→ Õb1(Γ)

f∗
y yf∗

Õb2(Γ′)
λΓ′

−−−→ Õb1(Γ′)

(3)

commutes.

Note that the first condition can be equivalently formulated by saying that the functions

λΓ : Õb(Γ)→ Õb(Π(Γ))

defined by λ are bijections.

We are going to show that, for a given family of functions ΠΓ, the type of (Π, λ)-structures
over ΠΓ is equivalent to the type of products of families of types over the same ΠΓ.

We first reformulate the structure of products of families slightly. Instead of considering
p∗A(Π(B)) we will consider an object that is isomorphic (but not equal!) to it, namely
p∗Π(B)(A). Our structure will then be a family of maps Π as before together with, for every

Γ and B ∈ Ob2(Γ), a morphism Ap′B : p∗Π(B)(A) → B over A such that the map λinv′Ap′ :

Õb(Π(B))→ Õb(B) defined as:

s 7→ q(s, p∗Π(B)(A)) ◦ Ap′B
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is a bijection. This can be seen on the following diagram that also contains other elements
that will be needed in the construction below.

B
q(s,p∗

Π(B)
(B,2),2)

−−−−−−−−−→ p∗Π(B)(B, 2)
q(pΠ(B),B,2)
−−−−−−−→ B

pB

y y ypB
A

q(s,p∗
Π(B)

(A))

−−−−−−−→ p∗Π(B)(A)
q(pΠ(B),A)
−−−−−−→ A

pA

y y pA

y
Γ

s−−−→ Π(B)
pΠ(B)−−−→ Γ

(4)

We now state the problem which we will provide a construction for:

Problem 2.4 Let CC be a C-system and let Π be a family of functions

ΠΓ : Ob2(Γ)→ Ob1(Γ)

given for all Γ ∈ Ob such that the corresponding squares of the form (2) commute.

To construct a bijection between the following two types of structure:

1. for every Γ and B ∈ Ob2(Γ) a bijection

λB : Õb(B)→ Õb(Π(B))

such that for every morphism f : Γ′ → Γ the square

Õb(B)
λB−−−→ Õb(Π(B))

f∗
y yf∗

Õb(f ∗(B))
λf∗(B)−−−→ Õb(Π(f ∗(B)))

defined by f , commutes.

2. for every Γ ∈ Ob and B ∈ Ob2(Γ) a morphism Ap′B : p∗Π(B)(A) → B over A, where

A = ft(B), such that the map

λinv′Ap′ : Õb(Π(B))→ Õb(B)

defined as:
s 7→ q(s, p∗Π(B)(A)) ◦ Ap′B

is a bijection and such that for every morphism f : Γ′ → Γ and B ∈ Ob2(Γ) one has
f ∗(Ap′B) = Ap′f∗(B).
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We will construct the solution in four steps - first a function from structures of the first kind
to structures of the second, then a function in the opposite direction and the two lemmas
proving that the first function is a left and a right inverse to the second.

Construction 2.5 Let us show how to construct a structure of the second kind from a
structure of the first kind. To define Ap′ consider the digram of Π’s defined by the diagram
(4):

Π(B) Π(p∗Π(B)(B, 2)) Π(B)y y y
Γ

s−−−→ Π(B)
pΠ(B)−−−→ Γ

(5)

Note that since Π is stable under pull-backs we have

Π(p∗Π(B)(B, 2)) = p∗Π(B)(Π(B))

and therefore the diagonal δΠ(B) gives us an element in Õb(Π(p∗Π(B)(B, 2))). Applying to it

the inverse of our λ we get an element ap : Õb(p∗Π(B)(B, 2)). Define:

Ap′B = ap ◦ q(pΠ(B), B, 2)

Let us prove that these morphisms satisfy the conditions of bijectivity and the stability under
pull-backs. We need to show that the mappings λinv′Ap′ : Õb(Π(B))→ Õb(B) defined as:

s 7→ q(s, p∗Π(B)(A)) ◦ Ap′B

are bijective. We already have bijective mappings ΛB : Õb(B)→ Õb(Π(B)) given by our λ.
It is sufficient to show that the mappings λinv′Ap′ are inverse to the ones given by λ from at
least one side as any inverse to a bijection is a bijection.

We do it in two steps. First let

λinv′′(s) = s∗(ap, 2) = q(s, p∗Π(B)(A))∗(ap)

Let us show that λinv′′ = λinv′Ap′ . Indeed:

q(s, p∗Π(B)(A))∗(ap) = q(s, p∗Π(B)(A))∗(ap) ◦ q(s, p∗Π(B)(B, 2), 2) ◦ q(pΠ(B), B, 2) =

q(s, p∗Π(B)(A)) ◦ ap ◦ q(pΠ(B), B, 2) = q(s, p∗Π(B)(A)) ◦ Ap′B
Now we have:

λ(λinv′′(s)) = λ(s∗(ap, 2)) = s∗(λ(ap), 1) = s∗(δΠ(B), 1) = s.

It remains to check that the mappings Ap′ are stable under the base change. Since the base
change of morphisms commutes with compositions this follows if we know that ap is stable
and q(−,−, 2) is stable. The second fact is verified easily from the axioms of a C-system
and the first follows from the stability of δ and the pull-back and the assumption that λ is
stable under pull-back.
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Construction 2.6 Let us now construct a structure of the first kind from a structure of
the second. This is straightforward since a construction of the second kind gives is bijections
λinv′Ap′ and the inverse to these bijections are bijections required for the structure of the
first kind. The fact that the bijections that we obtain in this way are stable under the pull-
backs follows from the fact that the pull-backs commute with compositions, that they take
morphisms of the form q(−,−, 1) to morphisms of the same form and from our assumption
that morphisms Ap′ are stable under composition.

Let us denote the map of Construction 2.5 by C1 and the map of Construction 2.6 by C2.

Lemma 2.7 For a structure of the first kind λ one has C2(C1(λ)) = λ.

Proof: This is immediate since in Construction 2.5 we proved that the λinv′Ap′ that we have
constructed are bijections by showing that they are inverses to the λ’s that we started with
and in Construction 2.6 we defined λ’s as inverses to λinv′Ap′ .

Lemma 2.8 For a structure of the second kind Ap′ one has C1(C2(Ap′)) = Ap′.

Proof: This amounts to checking that

λinv′Ap′(∆Π(B)) ◦ q(pΠ(B), B, 2) = Ap′B

Opening up the definition of λinv′ we get the equation

q(δΠ(B), p
∗
p∗

Π(B)
(Π(B))(p

∗
Π(B)(A))) ◦ Ap′p∗

Π(B)
(B,2)q(pΠ(B), B, 2) = Ap′B

We have for any f : Γ′ → Γ:

Ap′f∗(B,2) ◦ q(f,B, 2) = q(q(f,Π(B)), p∗Π(B)(A)) ◦ Ap′B

and our equation becomes

q(δΠ(B), p
∗
p∗

Π(B)
(Π(B))(p

∗
Π(B)(A))) ◦ q(q(pΠ(B),Π(B)), p∗Π(B)(A)) ◦ Ap′B = Ap′B

Which follows from:

q(δΠ(B), p
∗
p∗

Π(B)
(Π(B))(p

∗
Π(B)(A))) ◦ q(q(pΠ(B),Π(B)), p∗Π(B)(A)) =

q(δΠ(B) ◦ q(pΠ(B),Π(B)), p∗Π(B)(A)) = q(Id, p∗Π(B)(A)) = Id.

This completes our construction for Problem 2.4.
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3 More on the C-systems of the form CC(C, p)

Let us start by considering a general (pre-)category C. Let p : Ũ → U be a morphism in C.
Recall from [8] that a universe structure on p is a choice of pull-back squares of the form

(X;F )
Q(F )−−−→ Ũ

pX,F

y yp
X

F−−−→ U

for all X and all morphisms F : X → U . A universe in C is a morphism with a universe
structure on it and a universe category is a category with a universe and a choice of a final
object pt.

We may use the notation (X;F1, . . . , Fn) for (. . . (X;F1); . . . Fn).

For f : W → X and g : W → Ũ we will denote by f ∗ g the unique morphism such that

(f ∗ g) ◦ pX,F = f

(f ∗ g) ◦Q(F ) = g

When we need to distinguish canonical squares of different universes we may write (X;F )p,

f ∗p g etc. For X ′
f→ X

F→ U we let Q(f, F ) denote the morphism

(pX′,f◦F ◦ f) ∗Q(f ◦ F ) : (X ′; f ◦ F )→ (X;F )

Lemma 3.1 The square

(X ′; f ◦ F )
Q(f,F )−−−−→ (X;F )

pX′,f◦F

y ypX,F
X ′

f−−−→ X

is a pull-back square.

Proof: Consider the diagram

(X ′; f ◦ F )
Q(f,F )−−−−→ (X;F )

Q(F )−−−→ Ũ

pX′,f◦F

y ypX,F yp
X ′

f−−−→ X
F−−−→ U

The composition of two squares of this diagram equals the square with the sides pX′,f◦F ,
f ◦ F , Q(f ◦ F ) and p, which is a pull-back square. The right hand side square in this
diagram is a pull-back square. This implies that the left hand side square is a pull-back
square.
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Lemma 3.2 For f ′ : X ′′ → X ′, f : X ′ → X and F : X → U one has

Q(f ′, f ◦ F ) ◦Q(f, F ) = Q(f ′ ◦ f, F )

Proof: Both sides of the equality are morphisms to (X;F ), therefore it is sufficient to verify
that

Q(f ′, f ◦ F ) ◦Q(f, F ) ◦Q(F ) = Q(f ′ ◦ f, F ) ◦Q(F )

and
Q(f ′, f ◦ F ) ◦Q(f, F ) ◦ pX,F = Q(f ′ ◦ f, F ) ◦ pX,F

For the first one we have

Q(f ′, f ◦ F ) ◦Q(f, F ) ◦Q(F ) = Q(f ′, f ◦ F ) ◦Q(f ◦ F ) = Q(f ′ ◦ f ◦ F )

and
Q(f ′ ◦ f, F ) ◦Q(F ) = Q(f ′ ◦ f ◦ F )

and for the second one we have

Q(f ′, f ◦ F ) ◦Q(f, F ) ◦ pX,F = Q(f ′, f ◦ F ) ◦ pX′,f◦F ◦ f = pX′′,f ′◦f◦F ◦ f ′ ◦ f

and
Q(f ′ ◦ f, F ) ◦ pX,F = pX′′,f ′◦f◦F ◦ f ′ ◦ f.

The construction of the sets of objects Obn of length n of the C-system CC(C, p) presented
in [8] can be described as follows. One defines, by induction on n, pairs (Obn, intn : Obn →
C) where Obn is a set and intn is a function from Obn to objects of C. One starts with
Ob0 = Hom(pt, pt) and int0 mapping Ob0 to pt. Then

Obn+1 = qΓ∈ObnHom(intn(Γ), U)

and
intn+1(Γ, F ) = (intn(Γ);F )

The morphisms in CC(C, p) are defined by

HomCC(C,p)(Γ,Γ
′) := HomC(int(Γ), int(Γ′))

Problem 3.3 To construct, for all Γ ∈ Ob(CC(C, p)) bijections

u1,Γ : Ob1(Γ)→ HomC(int(Γ), U)

ũ1,Γ : Õb1(Γ)→ HomC(int(Γ), Ũ)

such that:
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1. for Γ ∈ Ob one has
u1((Γ, F )) = F (6)

and if l(Γ) > 0 then
Γ = (ft(Γ), u1(Γ)) (7)

2. for s ∈ Õb one has
ũ1(s) = s ◦Q(u1(∂(s))) (8)

and
s = Idft(∂(s)) ∗ ũ1(s) (9)

u1 and ũ1 are natural in Γ i.e. for any f : Γ′ → Γ one has:

u1(f ∗(T )) = f ◦ u1(T ) (10)

ũ1(f ∗(s)) = f ◦ ũ1(s) (11)

one has
u1(∂(s)) = ũ1(s) ◦ p (12)

Construction 3.4 By definition

Ob1(Γ) = {Γ′ ∈ Ob|ft(T ) = Γ and l(Γ′) ≥ 1 + l(Γ)}.

Then l(Γ′) = l(Γ) + 1 and by the inductive construction of Obn(CC(C, p)) we have that
Γ′ = (ft(Γ′), F ) where F : int(ft(Γ′))→ U . Since ft(Γ′) = Γ we may set u1(T ) = F .

Define the function
u!

1 : Hom(int(Γ), U)→ Ob1(Γ)

by the rule u!(F ) = (Γ, F ). Verification that u1 and u!
1 are inverse to each other is straight-

forward. Formulas (6) and (7) follow easily from the construction.

To define ũ1 we can use the formula (8) if we show that the composition in the formula is
defined. The source of Q(u1(∂(s))) is (ft(∂(s)), u1(∂(s))) = (Γ, u1(∂(s))). By definition

Õb1(Γ) = {s : ft(Γ′)→ Γ′| l(Γ′) > 0, s ◦ pΓ′ = Id, ft(Γ′) = Γ}

Since l(Γ′) > 0 we have by (7) that

Γ′ = (ft(Γ′), u1(Γ′)) = (Γ, u1(Γ′)) = (Γ, u1(∂(s)))

i.e. the target of s equals the source of Q(u1(∂(s))) and the composition is well-defined.

Define a map
ũ!

1 : Hom(int(Γ), Ũ)→ Õb1(Γ)

by the rule ũ!
1(f) = IdΓ ∗ f .
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That the maps ũ1 and ũ!
1 are inverse to each follows from the fact that the canonical square

(Γ;u1(∂(s)))
Q(u1(∂(s)))−−−−−−→ ŨypΓ,u1(∂(s))

yp
Γ

u1(∂(s))−−−−→ U

(13)

is a pull-back square.

The proofs of the naturality of u1 and ũ1 with respect to morphisms in Γ follow easily from
the definition of the canonical squares in CC(C, p).
Formula (12) is a corollary of the commutativity of the square (13).

We will now construct bijections u2,Γ and ũ2,Γ similar to the bijections u1,Γ and ũ1,Γ but

having as sources Ob2(Γ) and Õb2(Γ).

For any V ∈ C we define a functor Dp(−, V ) given on objects by

Dp(X, V ) := qF :X→UHom((X;F ), V )

whose action on morphisms is given by

Dp(f, V ) : (F1, F2) 7→ (f ◦ F1, Q(f, F1) ◦ F2)

The sets Dp(X, V ) are also functorial in V according to the formula

Dp(X, g)(F1, F2) = (F1, F2 ◦ g)

and for f : X → X ′, g : V → V ′ we have

Dp(f, V ) ◦Dp(X, g) = Dp(X
′, g) ◦Dp(f, V

′)

Problem 3.5 To construct for all Γ ∈ Ob(CC(C, p)) bijections

u2,Γ : Ob2(Γ)→ Dp(int(Γ), U)

ũ2,Γ : Õb2(Γ)→ Dp(int(Γ), Ũ)

such that:

1. u2,Γ(Γ, F1, F2) = (F1, F2),

2. u2,Γ(T ) = (u1,Γ(ft(T )), u1,ft(T )(T ))

3. ũ2,Γ(s) = (u1,Γ(ft(∂(s))), ũ1,ft(∂(s))(s))
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4. for f : Γ′ → Γ one has
u2(f ∗(T )) = Dp(f, U)(u2(T ))

u2(f ∗(s)) = Dp(f, Ũ)(ũ2(s))

5. u2(∂(s)) = Dp(int(Γ), p)(ũ2(s))

Construction 3.6 The first bijection is the composition of the bijection

Ob2(Γ)→ qΓ′∈Ob1(Γ)Ob1(Γ′)

with the bijection defined by (Γ′,Γ′′) 7→ (u1(Γ′), u1(Γ′′)) since int(Γ) = (int(ft(Γ);u1(Γ))).
Similarly, the second bijection

ũ2,Γ : Õb2(Γ)→ qF :int(Γ)→UHom((int(Γ);F ), Ũ)

is the composition of the bijection

Õb2(Γ)→ qΓ′∈Ob1(Γ)Õb1(Γ′)

with the bijection (Γ′, s) 7→ (u1(Γ′), ũ1(s)).

The proofs of the equations are straightforward.

When C is a locally cartesian closed category, the functors Dp(−, V ) become representable
providing us with a way to describe operations such as Π and λ on CC(C, p) in terms of
morphisms between objects in C.
For a morphism p : Ũ → U in a locally cartesian closed category and an object V of this
category let

Ip(V ) := HomU((Ũ , p), (U × V, pr1))

and let
prIp(V ) = p4pr1 : Ip(V )→ U

be the morphism that defines Ip(V ) as an object over U .

Note that Ip depends on the choice of a locally cartesian closed structure on C. On the other
hand, the construction of the functors Dp(X, V ) requires a universe structure on p but do
not require a locally cartesian closed structure on C.
The computations below are required in order to establish the connections between the
constructions that use the locally cartesian closed structure and the constructions that use
universe structures.

Let p : Ũ → U be a universe and V an object of C. We assume that C is equipped with a
locally cartesian closed structure. For F : X → U there is a unique morphism

ιF : (X;F )→ (X, f)×U (Ũ , p)

such that ιF ◦ pr1 = pX,F and ιF ◦ pr2 = Q(F ) which is a particular case of the morphisms
ι, ι′ of Lemma 8.1.
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The evaluation morphism in the case of Ip(V ) is of the form

evIp : (Ip(V ), prIp(V ))×U (U × V, pr1)→ U × V

Define a morphism
stp(V ) : (Ip(V ); prIp(V ))→ V

as the composition:
stp(V ) := ιprIp(V ) ◦ evIp(V ) ◦ pr2

We will need to use some properties of these morphisms.

Lemma 3.7 Let f : V → V ′ be a morphism, then one has

Q(Ip(f), prIp(V
′)) ◦ stp(V ′) = stp(V ) ◦ f

Proof: Let pr = prIp(V ), pr′ = prIp(V
′), ι = ιpr, ι

′ = ιpr′ , ev = evIp(V ) and ev′ = evIp(V
′).

Then we have to verify that the outer square of the following diagram commutes:

(Ip(V ); pr)
ι−−−→ (Ip(V ), pr)×U (Ũ , p)

ev−−−→ U × V pr2−−−→ V

Q(Ip(f),pr′)

y Ip(f)×Id
Ũ

y IdU×f
y yf

(Ip(V
′); pr′)

ι′−−−→ (Ip(V
′), pr′)×U (Ũ , p)

ev′−−−→ U × V ′ pr2−−−→ V ′

The commutativity of the left square is a particular case of Lemma 8.1. The commutativity
of the right square is an immediate corollary of the definition of IdU×f . The commutativity
of the middle square is a particular case of the axiom of locally cartesian closed structure
that says that morphisms evX,Y are natural in Y .

Problem 3.8 Let (C, p, pt) be a locally cartesian closed universe category. To construct, for
all X, V ∈ C, bijections

η!
X,V : Hom(X, Ip(V ))→ Dp(X, V )

that are natural in X and V , i.e., such that for g : X → Ip(V ) one has:

1. for all f : V → V ′ one has Dp(X, f)(η!(g)) = η!(g ◦ Ip(f)),

2. for all f : X ′ → X one has Dp(f, V )(η!(g)) = η!(f ◦ g).

Construction 3.9 For g : X → Ip(V ) we set

η!
X,V (g) := (g ◦ prIp(V ), Q(g, prIp(V )) ◦ stp(V ))

To see that this is a bijection observe first that it equals to the composition

Hom(X, Ip(V ))→ qF :X→UHomU((X,F ), (Ip(V ), prIp(V )))→ qF :X→UHom((X;F ), V )
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where the first map is of the form g 7→ (g ◦ prIp(V ), g) and the second is the sum over all
F : X → U of maps g 7→ Q(g, prIp(V )) ◦ stp(V ). The first of these two maps is a bijection.
It remains to show that the second one is a bijection for every F .

By definition of the Hom structure we know that for each F the map

HomU((X,F ), (Ip(V ), prIp(V )))→ HomU(((X,F )×U (Ũ , p),−), (U × V, pr1))

given by g 7→ (g × IdŨ) ◦ evIp(V ) is a bijection. We also know that the map

HomU(((X,F )×U (Ũ , p), F � p), (U × V, pr1))→ Hom((X,F )×U (Ũ , p), V )

is a bijection. Since ιF is an isomorphism the composition with it is a bijection. Now we
have two maps

HomU((X,F ), (Ip(V ), prIp(V )))→ Hom((X;F ), V )

given by g 7→ ιF ◦ (g× IdŨ) ◦ evIp(V ) ◦ pV and g 7→ Q(g, prIp(V )) ◦ stp(V ) of which the first
one is the bijection. It remains to show that these maps are equal. For this it is sufficient to
show that

Q(g, prIp(V )) ◦ ιprIp(V ) = ιF ◦ (g × IdŨ)

which follows easily from computing compositions with the projections pr1 to Ip(V ) and pr2

to Ũ .

We now have to check the behavior of η! with respect to morphisms in X and V .

Let pr = prIp(V ) and pr′ = prIp(V
′). For f : V ′ → V and f : X → Ip(V ) we have

Dp(X, f)(η!(g)) = Dp(X, f)(g ◦ pr,Q(g, pr) ◦ stp(V )) = (g ◦ pr,Q(g, pr) ◦ stp(V ) ◦ f)

and
η!(g ◦ Ip(f)) = (g ◦ Ip(f) ◦ pr′, Q(g ◦ Ip(f), pr′) ◦ stp(V ′))

We have pr = Ip(f) ◦ pr′ because Ip(f) is a morphism over U . It remains to check that

Q(g, pr) ◦ stp(V ) ◦ f = Q(g ◦ Ip(f), pr′) ◦ stp(V ′)

By Lemma 3.2 we have

Q(g ◦ Ip(f), pr′) = Q(g, pr) ◦Q(Ip(f), pr′)

and the remaining equality

Q(g, pr) ◦ stp(V ) ◦ f = Q(g, pr) ◦Q(Ip(f), pr′) ◦ stp(V ′)

follows from Lemma 3.7.

Consider now f : X ′ → X. Then

Dp(f, V )(η!(g)) = Dp(f, V )(g◦pr,Q(g, pr)◦stp(V )) = (f◦g◦pr,Q(f, g◦pr)◦Q(g, pr)◦stp(V ))

η!(f ◦ g) = (f ◦ g ◦ pr,Q(f ◦ g, pr) ◦ stp(V ))

and the required equality follows from Lemma 3.2.
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Let ηX,V = (η!
X,V )−1. For future computations it will be convenient to have the following

lemma.

Lemma 3.10 The bijections ηX,V are natural in X and V , i.e., for any d ∈ Dp(X, V ) one
has:

1. for all f : V → V ′ one has η(d) ◦ Ip(f) = η(Dp(X, f)(d)),

2. for all f : X ′ → X one has f ◦ η(d) = η(Dp(f, V )(d)).

Proof: Elementary computation from (1) and (2) of Problem 3.8.

We now have bijection-descriptions of Ob2 and Õb2 of the following form.

Problem 3.11 For a locally cartesian closed closed C and a universe p : Ũ → U in C to
construct for any Γ ∈ Ob(CC(C, p)) bijections

µ : Ob2(Γ)→ HomC(int(Γ), Ip(U))

and
µ̃ : Õb2(Γ)→ HomC(int(Γ), Ip(Ũ))

that are natural in Γ and such that with respect to these bijections ∂ corresponds to compo-
sition with Ip(p).

Construction 3.12 Compose bijections u2 and ũ2 with the bijection η of Construction 3.9
in the case V = U and V = Ũ respectively.

Remark 3.13 The previous constructions related to Ob2 and Õb2 can be easily generalized
to Obn and Õbn for all n > 1. For example there are natural bijections

un,Γ : Obn+1(Γ)→ Hom(int(Γ), Inp (U))

ũn,Γ : Õbn+1(Γ)→ Hom(int(Γ), Inp (Ũ))

where Inp is the n-th iteration of the functor Ip.

4 (Π, λ)-structures on the C-systems CC(C, p)

We will show now how to construct (Π, λ)-structures on C-systems of the form CC(C, p) for
locally cartesian closed (pre-)categories4 C.

4For the discussion of the difference between a category and a pre-category see the introduction to [9]
and [1].
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Definition 4.1 Let C be a locally cartesian closed category, pt be a final object in C and
p : Ũ → U a universe. A Π-structure on p is a pair of morphisms

P̃ : Ip(Ũ)→ Ũ

P : Ip(U)→ U

such that the square

Ip(Ũ)
P̃−−−→ ŨyIp(p)

yp
Ip(Ũ)

P−−−→ U

(14)

is a pull-back square.

Problem 4.2 Let C be a locally cartesian closed category, pt be a final object in C and
p : Ũ → U a universe. Let (P̃ , P ) be a Π-structure on p. To construct a (Π, λ)-structure on
CC(C, p).

Construction 4.3 Let Γ ∈ Ob(CC(C, p)). For T ∈ Ob2(Γ) set

ΠP (T ) = u−1
1 (µ(T ) ◦ P )

and for s ∈ Õb2(Γ) set

λP̃ (s) = ũ−1
1 (µ̃(s) ◦ P̃ )

These gives us maps
ΠP : Ob2(Γ)→ Ob1(Γ)

λΠ̃ : Õb2(Γ)→ Õb1(Γ)

The naturality of µ and µ̃ relative to morphisms f : Γ′ → Γ implies that these maps are
natural with respect to such morphisms. One also verifies easily that ∂(λP̃ (s)) = ΠP (∂(s)).
Therefore the squares

Õb2(Γ)
λ
P̃−−−→ Õb1(Γ)

∂

y y∂
Ob2(Γ)

ΠP−−−→ Ob1(Γ)

(15)

for a pre-(Π, λ)-structure on CC(C, p) that also satisfies the second and the third condition
of the definition of a (Π, λ)-structure.

To verify that it satisfies the first condition one verifies that the bijections µ̃, µ, ũ1 and
u1 define an isomorphism from the square (15) to the square obtained from (14) by taking
Hom-sets Hom(int(Γ),−). Since the later square is pull-back and a square isomorphic to a
pull-back square is a pull-back square the square (15) is a pull-back square and (ΠP , λP̃ ) is
a (Π, λ)-structure.
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5 More on universe category functors I

Let (C, p, pt) and (C, p′, pt′) be two universe (pre-)categories. Recall from [8] that a functor of

universe categories from (C, p, pt) to (C, p′, pt′) is a triple Φ = (Φ, φ, φ̃) where Φ is a functor

C → C ′ and φ : Φ(U) → U ′, φ̃ : Φ(Ũ) → Ũ ′ are two morphisms such that Φ takes the final
object to a final object, pull-back squares based on p to pull-back squares and such that the
square

Φ(Ũ)
φ̃−−−→ Ũ ′

Φ(p)

y yp′
Φ(U)

φ−−−→ U ′

(16)

is a pull-back square.

For X, V in C we have the functoriality map

Φ : Hom(X, V )→ Hom(Φ(X),Φ(V ))

Problem 5.1 For a universe category functor Φ = (Φ, φ, φ̃), to define, for all X, V ∈ C,
morphisms

Φ2 : Dp(X, V )→ Dp′(Φ(X),Φ(V ))

Construction 5.2 Let (F1 : X → U, F2 : (X;F1) → V ) be an element in Dp(X, V ).
Consider (Φ(X); Φ(F1) ◦ φ). Since the square (16) is a pull-back square there is a unique

morphism q such that q ◦ φ̃ = Q(Φ(F1) ◦φ) and q ◦Φ(p) = pΦ(X),Φ(F1)◦φ ◦Φ(F1) and then the
left hand side square in the diagram

(Φ(X); Φ(F1) ◦ φ)
q−−−→ Φ(Ũ)

φ̃−−−→ Ũ ′ypΦ(X),Φ(F1)◦φ Φ(p)

y yp′
Φ(X)

Φ(F1)−−−→ Φ(U)
φ−−−→ U ′

is a pull-back square. Together with the fact that Φ takes pull-back squares based on p to
pull-back squares we obtain a unique morphism, which is an isomorphism,

ι : (Φ(X); Φ(F1) ◦ φ)→ Φ(X;F1)

such that
ι ◦ Φ(pX,F1) = pΦ(X),Φ(F1)◦φ (17)

ι ◦ Φ(Q(F1)) ◦ φ̃ = Q(Φ(F1) ◦ φ) (18)

and we define:
Φ2(F1, F2) := (Φ(F1) ◦ φ, ι ◦ Φ(F2))
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We will need the following properties of the maps below.

Lemma 5.3 Let Φ be as above, f : X ′ → X be a morphism and V be an object of C. Then
the square

Dp(X, V )
Dp(f,V )−−−−→ Dp(X

′, V )

Φ2

y Φ2

y
Dp′(Φ(X),Φ(V ))

Dp′ (Φ(f),Φ(V ))
−−−−−−−−−→ Dp′(Φ(X ′),Φ(V ))

commutes.

Proof: We have to show that for any d ∈ Dp(X, V ) one has

Dp′(Φ(f),Φ(V ))(Φ2(d)) = Φ2(Dp(f, V )(d))

Let d = (F1, F2). Then

Dp′(Φ(f),Φ(V ))(Φ2(d)) = Dp′(Φ(f),Φ(V ))(Φ(F1) ◦ φ, ι ◦ Φ(F2)) =

(Φ(f) ◦ Φ(F1) ◦ φ, q′ ◦ ι ◦ Φ(F2))

and
Φ2(Dp(f, V )(F1, F2)) = Φ2(f ◦ F1, q ◦ F2) =

(Φ(f ◦ F1) ◦ φ, ι′ ◦ Φ(q ◦ F2))

where

ι : (Φ(X); Φ(F1) ◦ φ)→ Φ(X;F1) ι′ : (Φ(X ′); Φ(f ◦ F1) ◦ φ)→ Φ(X ′; f ◦ F1)

q : (X ′; f ◦ F1)→ (X;F1) q′ : (Φ(X ′); Φ(f) ◦ Φ(F1) ◦ φ)→ (Φ(X); Φ(F1) ◦ φ)

are the morphisms defined in Construction 5.2. We have

Φ(f) ◦ Φ(F1) ◦ φ = Φ(f ◦ F1) ◦ φ

and it remains to check that

q′ ◦ ι ◦ Φ(F2) = ι′ ◦ Φ(q ◦ F2)

or that q′◦ι = ι′◦Φ(q). The codomain of both morphisms is Φ(X;F1) that by our assumption
on Φ is a pull-back of p′ and Φ(F1)◦φ. Therefore it is sufficient to verify that the compositions

of these two morphisms with the projections to Ũ ′ and Φ(X) coincide.

This is done by a direct computation from definitions.

Lemma 5.4 Let Φ be as above, X an object of C and f : V → V ′ a morphism. Then the
square

Dp(X, V )
Dp(X,f)−−−−→ Dp(X, V

′)

Φ2

y yΦ2

Dp′(Φ(X),Φ(V ))
Dp(Φ(X),Φ(f))−−−−−−−−→ Dp′(Φ(X),Φ(V ′))

commutes.
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Proof: Let d = (F1, F2) ∈ Dp(X, V ). We have to show that

Φ2(Dp(X, f)(F1, F2)) = Dp(Φ(X),Φ(f))(Φ2(F1, F2))

We have:

Φ2(Dp(X, f)(F1, F2)) = Φ2((F1, F2 ◦ f)) = (Φ(F1) ◦ φ, ι ◦ Φ(F2 ◦ f)) =

(Φ(F1) ◦ φ, ι ◦ Φ(F2) ◦ Φ(f)) = Dp(Φ(X),Φ(f))(Φ2(F1, F2))

Note that in the problem below no assumption is made about the compatibility of Φ with
the locally cartesian closed structures on C and C ′.

Problem 5.5 Assume that C and C ′ are locally cartesian closed universe categories. For Φ
as above and V ∈ C to construct a morphism

χΦ(V ) : Φ(Ip(V ))→ Ip′(Φ(V ))

Construction 5.6 Let
η : Dp(X, V )→ Hom(X, Ip(V ))

η′ : Dp′(X
′, V ′)→ Hom(X ′, Ip′(V

′))

be bijections from Construction 3.9. We define:

χΦ(V ) := η′(Φ2(η!(IdIp(V ))))

for X = Ip(V ) and X ′ = Φ(Ip(V )).

Let us show that χΦ are natural in V .

Lemma 5.7 For Φ as above let f : V1 → V2 be a morphism. Then the square

Φ(Ip(V1))
χ(V1)−−−→ Ip′(Φ(V1))

Φ(Ip(f))

y yIp′ (Φ(f))

Φ(Ip(V2))
χ(V2)−−−→ Ip′(Φ(V2))

commutes.

Proof: We have:

χ(V1) ◦ Ip′(Φ(V1)) = η′(Φ2(η!(IdX1))) ◦ Ip′(Φ(f)) = η′(Dp(X1,Φ(f))(Φ2(η!(IdX1))))

where X = Ip(V1), by Lemma 3.10(1). Then

η′(Dp(X1,Φ(f))(Φ2(η!(IdX1)))) = η′(Φ2(Dp(X1, f)(η!(IdX1)))) =
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η′(Φ2(η!(IdX1 ◦ Ip(f))) = η′(Φ2(η!(Ip(f))))

where the first equality holds by Lemma 5.4 and the second by Problem 3.8(1).

On the other hand:

Φ(Ip(f)) ◦ χ(V2) = Φ(Ip(f)) ◦ η′(Φ2(η!(IdX2))) =

η′(Dp′(Φ(Ip(f)),Φ(X2))(Φ2(η!(IdX2))))

by Lemma 3.10(2). Then

η′(Dp′(Φ(Ip(f)),Φ(X2))(Φ2(η!(IdX2)))) = η′(Φ2(Dp(Ip(f), X2)(η!(IdX2)))) =

η′(Φ2(η!(Ip(f) ◦ IdX2))) = η′(Φ2(η!(Ip(f))))

where the first equality holds by Lemma 5.4 and the second by Problem 3.8(2). This finishes
the proof of Lemma 5.7.

Lemma 5.8 For all X, V ∈ C and a ∈ Dp(X, V ) one has

Φ(η(a)) ◦ χΦ(V ) = η′(Φ2(a))

Proof: By definition of χΦ and contravariant functoriality of η′ we have

Φ(η(a)) ◦ χΦ(V ) = Φ(η(a)) ◦ η′(Φ2(η!(Id))) = η′(Dp′(Φ(η(a)),Φ(V ))(Φ2(η!(IdIp(V )))))

By Lemma 5.3 we further have:

η′(Dp′(Φ(η(a)),Φ(V ))(Φ2(η!(Id)))) = η′(Φ2(Dp(η(a), V )(η!(Id))))

It remains to show that Dp(η(a), V )(η!(Id)) = f . Since η is a bijection we may apply it on
both sides and by functoriality of η we get

η(Dp(η(a), V )(η!(Id))) = η(f) ◦ η(η!(Id)) = η(f) ◦ Id = η(f).

6 More on universe category functors II

By [8, Construction 3.3] any universe category functor Φ = (Φ, φ, φ̃) defines a homomorphism
of C-systems

H : CC(C, p)→ CC(C ′, p′)

To define H on objects, one defines by induction on n, for all Γ ∈ Obn(CC(C, p)), pairs
(H(Γ), ψΓ) where H(Γ) ∈ Ob(CC(C ′, p′)) and ψΓ is an isomorphism

ψΓ : int′(H(Γ))→ Φ(int(Γ))
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as follows. For n = 0 one has H(()) = () and ψ() : pt′ → Φ(pt) is the unique morphism that
exists because Φ(pt) is a final object. For (Γ, F ) ∈ Obn+1 one has

H((Γ, F )) = (H(Γ), ψΓ ◦ Φ(F ) ◦ φ)

and ψ(Γ,F ) is the unique morphisms int′(H(Γ, F ))→ Φ(int(Γ, F )) such that

ψ(Γ,F ) ◦ Φ(Q(F )) ◦ φ̃ = Q′(ψΓ ◦ Φ(F ) ◦ φ)

and
ψ(Γ,F ) ◦ Φ(pΓ,F ) = pH((Γ,F )) ◦ ψΓ

The action of H on morphisms is given, for f : Γ→ Γ′, by

H(f) = ψΓ ◦ Φ(f) ◦ ψ−1
Γ′

Let Γ ∈ Ob(CC(C, p)) and consider the bijections of Constructions 3.4 and 3.6.

In order to prove our main functoriality Theorem 7.1 we need describe in more detail the
maps

Ob1(Γ)→ Ob1(H(Γ))

Ob2(Γ)→ Ob2(H(Γ))

and the similar maps on Õb1 and Õb2 that are defined by H.

Lemma 6.1 Let (Φ, φ, φ̃) be universe category functor. Then:

1. for T ∈ Ob1(Γ) one has

u1,H(Γ)(H(T )) = ψΓ ◦ Φ(u1,Γ(T )) ◦ φ

2. for s ∈ Õb1(Γ) one has

ũ1,H(Γ)(H(s)) = ψΓ ◦ Φ(ũ1,Γ(s)) ◦ φ̃

3. for T ∈ Ob2(Γ) one has

u2,H(Γ)(H(T )) = Dp′(ψΓ, U
′)(Dp′(int

′(H(Γ)), φ)(Φ2(u2,Γ(T ))))

4. for s ∈ Õb2(Γ) one has

ũ2,H(Γ)(H(s)) = Dp′(ψΓ, Ũ
′)(Dp′(int

′(H(Γ)), φ̃)(Φ2(ũ2,Γ(s))))
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Proof: In the case of T ∈ Ob1(Γ), if T = (Γ, F ) then

u1(H(T )) = u1(H((Γ, F ))) = u1((H(Γ), ψΓ ◦ Φ(F ) ◦ φ)) = ψΓ ◦ Φ(F ) ◦ φ

In the case of s ∈ Õb1(Γ), if F = u1(∂(s)) then

ũ1(H(s)) = H(s) ◦Q′(u1(H(Γ, F ))) = ψΓ ◦ Φ(s) ◦ ψ−1
(Γ,F ) ◦Q

′(ψΓ ◦ Φ(F ) ◦ φ) =

ψΓ ◦ Φ(s) ◦ Φ(Q(F )) ◦ φ̃ = ψΓ ◦ Φ(s ◦Q(F )) ◦ φ̃ = ψΓ ◦ Φ(ũ1(s)) ◦ φ̃

In the case T ∈ Ob2(Γ), if T = (Γ, F1, F2) then

u2(H(T )) = u2(H((Γ, F1, F2))) = u2((H((Γ, F1)), ψΓ,F1 ◦ Φ(F2) ◦ φ)) =

u2((H(Γ), ψΓ ◦ Φ(F1) ◦ φ, ψΓ,F1 ◦ Φ(F2) ◦ φ)) =

(ψΓ ◦ Φ(F1) ◦ φ, ψΓ,F1 ◦ Φ(F2) ◦ φ)

On the other hand

Dp′(ψΓ,−)Dp′(−, φ)(Φ2(u2(T ))) = Dp′(ψΓ,−)Dp′(−, φ)(Φ2(u2(Γ, F1, F2))) =

Dp′(ψΓ,−)Dp′(−, φ)(Φ2(F1, F2)) = Dp′(ψΓ,−)Dp′(−, φ)(Φ(F1) ◦ φ, ι ◦ Φ(F2)) =

Dp′(ψΓ,−)(Φ(F1) ◦ φ, ι ◦ Φ(F2) ◦ φ) = (ψΓ ◦ Φ(F1) ◦ φ,Q′(ψΓ,Φ(F1) ◦ φ) ◦ ι ◦ Φ(F2) ◦ φ)

therefore we need to show that

ψΓ,F1 ◦ Φ(F2) ◦ φ = Q′(ψΓ,Φ(F1) ◦ φ) ◦ ι ◦ Φ(F2) ◦ φ (19)

Using the fact that the external square of the diagram

Φ(int(Γ, F1))
Φ(Q(F1))−−−−−→ Φ(Ũ)

φ̃−−−→ Ũ ′

Φ(p(Γ,F1))

y yΦ(p)

yp′
Φ(int(Γ))

Φ(F1)−−−→ Φ(U)
φ−−−→ U ′

is a pull-back square we see that equality (19) would follow from the following two equalities:

ψΓ,F1 ◦ Φ(Q(F1)) ◦ φ̃ = Q′(ψΓ,Φ(F1) ◦ φ) ◦ ι ◦ Φ(Q(F1)) ◦ φ̃

and
ψΓ,F1 ◦ Φ(p(Γ,F1)) = Q′(ψΓ,Φ(F1) ◦ φ) ◦ ι ◦ Φ(p(Γ,F1))

For the first equality we have

ψΓ,F1 ◦ Φ(Q(F1)) ◦ φ̃ = Q′(ψΓ ◦ Φ(F1) ◦ φ)

by definition of ψΓ,F1 and

Q′(ψΓ,Φ(F1) ◦ φ) ◦ ι ◦Φ(Q(F1)) ◦ φ̃ = Q′(ψΓ,Φ(F1) ◦ φ) ◦Q′(Φ(F1) ◦ φ) = Q′(ψΓ ◦Φ(F1) ◦ φ)
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where the first equality holds by definition of ι and second by the definition of Q(−,−).

For the second equality we have

ψΓ,F1 ◦ Φ(p(Γ,F1)) = pH(Γ,F1) ◦ ψΓ

by definition of ψΓ,F1 and

Q′(ψΓ,Φ(F1) ◦ φ) ◦ ι ◦ Φ(p(Γ,F1)) = Q′(ψΓ,Φ(F1) ◦ φ) ◦ pΦ(int(Γ)),Φ(F1)◦φ = pH(Γ,F1) ◦ ψΓ

by definitions of Q′ and ι.

The case of s ∈ Õb2(Γ) is strictly parallel to the case of T ∈ Ob2(Γ) with Φ(F2) ◦ φ at the

end of the formulas replaced by Φ(F ′2) ◦ φ̃ where instead of F2 : int(Γ, F1) → U one has

F ′2 : int(Γ, F1)→ Ũ .

For (Φ, φ, φ̃) as above let us denote by

ξΦ : Φ(Ip(U))→ Ip′(U
′)

the composition χΦ(U) ◦ Ip′(φ) and by

ξ̃Φ : Φ(Ip(Ũ))→ Ip′(Ũ
′)

the composition χΦ(Ũ) ◦ Ip(φ̃).

Lemma 6.2 Let (Φ, φ, φ̃) be a universe category functor and Γ ∈ Ob(CC(C, p)). Then one
has:

1. for T ∈ Ob2(Γ)
ηp′(u

′
2(H(T ))) = ψΓ ◦ Φ(ηp(u2(T ))) ◦ ξΦ

2. for s ∈ Õb2(Γ)

ηp′(ũ
′
2(H(s))) = ψΓ ◦ Φ(ηp(ũ2(s))) ◦ ξ̃Φ

Proof: We have

ηp′(u
′
2(H(T ))) = ηp′(Dp′(ψΓ, )(Dp′( , φ)(Φ2(u2(T ))))) = ψΓ ◦ ηp′(Φ2(u2(T ))) ◦ Ip′(φ)

where the first equality holds by Lemma 6.1(3) and the second by Lemma 3.10. Next

ηp′(Φ
2(u2(T ))) ◦ Ip′(φ) = Φ(η(u2(T ))) ◦ χΦ(U) ◦ Ip′(φ) = Φ(η(u2(T ))) ◦ ξΦ

where the first equality holds by Lemma 5.8 and the second one by the definition of ξΦ.

The proof of the second part of the lemma is strictly parallel to the proof of the first part.
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7 Functoriality properties of the (Π, λ)-structures arising from uni-
verses

Let us prove the functoriality properties of the (Π, λ) structures of Construction 4.3.

The notion of a homomorphism of C-systems with (Π, λ)-structures used in the theorem
below is defined in the obvious way.

Theorem 7.1 Let (Φ, φ, φ̃) be as above and let (P, P̃ ), (P ′, P̃ ′) be as in Problem 4.2 for C
and C ′ respectively.

Assume that the squares

Φ(Ip(U))
ξΦ−−−→ Ip′(U

′)

Φ(P )

y yP ′
Φ(U)

φ−−−→ U

(20)

and

Φ(Ip(Ũ))
ξ̃Φ−−−→ Ip′(Ũ

′)

Φ(P̃ )

y yP̃ ′
Φ(Ũ)

φ̃−−−→ Ũ

(21)

commute. Then the homomorphism

H(Φ, φ, φ̃) : CC(C, p)→ CC(C ′, p′)

is a homomorphism of C-systems with (Π, λ)-structures.

Proof: We have to show that for all Γ ∈ Ob(CC(C, p)) and T ∈ Ob2(Γ) we have

Π′(H(T )) = H(Π(T ))

and for all Γ ∈ Ob(CC(C, p)) and s ∈ Õb2(Γ) we have

λ′(H(s)) = H(λ(s))

We will prove the first equality. The proof of the second is strictly parallel to the proof of
the first.

By definition we have:

Π′(H(T )) = (u′1)−1(µ′(H(T )) ◦ P ′) = (u′1)−1(η′(u′2(H(T ))) ◦ P ′)

and
H(Π(T )) = H(u−1

1 (η(u2(T )) ◦ P )) = (u′1)−1(ψΓ ◦ Φ(η(u2(T )) ◦ P ) ◦ φ) =

(u′1)−1(ψΓ ◦ Φ(η(u2(T ))) ◦ Φ(P ) ◦ φ)
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where the second equality holds by Lemma 6.1(1). Let us show that

η′(u′2(H(T ))) ◦ P ′ = ψΓ ◦ Φ(η(u2(T ))) ◦ Φ(P ) ◦ φ

By Lemma 6.2(1) we have

η′(u′2(H(T ))) ◦ P ′ = ψΓ ◦ Φ(η(u2(T ))) ◦ ξΦ ◦ P ′

It remains to show that
ξΦ ◦ P ′ = Φ(P ) ◦ φ

which is our assumption about the commutativity of the square (20).

8 Appendix: some constructions and theorems about categories

Lemma 8.1 Let C be a category. Consider four fiber squares

pbi
prY,i−−−→ Y

prX,i

y yg
X

f−−−→ Z

pb′i
prY ′,i−−−→ Y ′

prX,i

y yg′
X ′

f ′−−−→ Z

where i = 1, 2. Let a : X ′ → X and b : Y ′ → Y be such that a ◦ f = f ′ and b ◦ g = g′.
Let ι : pb1 → pb2 be the unique morphism such that ι ◦ prX2 = prX,1 and ι ◦ prY,1 = prY,2
and similarly for ι′ : pb′1 → pb′2. Let pbi(a, b) : pb′i → pbi be the unique morphisms such that
pbi(a, b) ◦ prX,i = prX′,i ◦ a and pbi(a, b) ◦ prY,i = b ◦ prY ′,i. Then the square

pb′1
pb1(a,b)−−−−→ pb1

ι′

y yι
pb′2

pb2(a,b)−−−−→ pb2

commutes, i.e., pb1(a, b) ◦ ι = ι′ ◦ pb2(a, b).

Proof: Since pb2 is a fiber product it is sufficient to prove that

pb1(a, b) ◦ ι ◦ prX,2 = ι′ ◦ pb2(a, b) ◦ prX,2

and
pb1(a, b) ◦ ι ◦ prY,2 = ι′ ◦ pb2(a, b) ◦ prY,2

For the first one we have:

pb1(a, b) ◦ ι ◦ prX,2 = pb1(a, b) ◦ prX,1 = prX′,1 ◦ a

and
ι′ ◦ pb2(a, b) ◦ prX,2 = ι′ ◦ prX′,2 ◦ a = prX′,1 ◦ a

The verification of the second equality is similar.
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Definition 8.2 A category with fiber products is a category together with, for all pairs of
morphisms of the form f : X → Z, g : Y → Z, fiber squares

(X, f)×Z (Y, g)
pr

(X,f),(Y,g)
2−−−−−−→ Y

pr
(X,f),(Y,g)
1

y yg
X

f−−−→ Z

We will often abbreviate these main notations in various ways. The morphism pr2◦g = pr1◦f
from (X, f)× (Y, g) to Z is denoted by f � g.

Given a category with fiber products, morphisms fi : Xi → Zi, gi : Yi → Zi, i = 1, 2 and
morphisms a : X1 → X2, b : Y1 → Y2, c : Z1 → Z2 such that f1 ◦ c = a ◦ f2 and g1 ◦ c = b ◦ g2

denote by a×c b (which we will abbreviate to a×Z b or even a× b when c = IdZ) the unique
morphism such that

(a×c b) ◦ pr2 = pr2 ◦ b
and

(a×c b) ◦ pr1 = pr1 ◦ a
To show that a×c b exists we need to check that

pr1 ◦ b ◦ g2 = pr1 ◦ a ◦ f2

for which we have

pr2 ◦ b ◦ g2 = pr2 ◦ g1 ◦ c = pr1 ◦ f1 ◦ c = pr1 ◦ a ◦ f2

Lemma 8.3 In the setting introduced above suppose that we have Xi, Yi, Zi, i = 1, 2, 3 and
a1 : X1 → X2, a2 : X2 → X3 and similarly for b1, b2, c1 and c2. Then one has

(a1 ◦ a2)×c1◦c2 (b1 ◦ b2) = (a1 ×c1 b1) ◦ (a2 ×c2 b2)

Proof: Straightforward rewriting to compute the compositions of both sides with prX3,Y3

1

and prX3,Y3

2 .

Definition 8.4 A locally cartesian closed structure on a (pre-)category C is a collection of
data of the form:

1. A structure of a category with fiber products on C.

2. For all f , g of the form f : X → Z, g : Y → Z, an object HomZ((X, f), (Y, g)) and a
morphism

f4g : HomZ((X, f), (Y, g))→ Z

together with morphisms of the form

Hom((X, f), a) : Hom((X, f), (Y, g))→ Hom((X, f), (Y ′, g′))

for all a : (Y, g)→ (Y ′, g′) over Z, that make Hom((X, f),−) into a functor from C/Z
to C.
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3. For all f , g as above a morphism

ev(X,f),(Y,g) : (HomZ((X, f), (Y, g)), f4g)× (X, f)→ (Y, g)

over Z such that for all h : W → Z the map

adj
(W,h),(X,f)
(Y,g) : HomZ((W,h), (HomZ((X, f), (Y, g)), f4g))→

HomZ(((W,h)× (X, f), h � f), (Y, g))

given by u 7→ (u × IdX) ◦ ev(X,f),(Y,g), is a bijection and such that the morphisms
ev(X,f),(Y,g) are natural in Y .

A locally cartesian closed (pre-)category is a (pre-)category together with a locally cartesian
closed structure on it.

If a locally cartesian closed category is given with a final object pt we will write X × Y for
(X, πX)×pt (Y, πY ) where πX and πY are the unique morphisms from X and Y respectively
to pt.

By definition the objects (Hom((X, f), (Y, g)), f4g) of C/Z are functorial only in (Y, g).
Their functoriality in (X, f) is a consequence of a lemma. For f : X → Z, f ′ : X ′ → Z,
g : Y → Z and h : X ′ → X such that h ◦ f = f ′ let

HomZ(h, (Y, g)) : HomZ((X, f), (Y, g))→ Hom((X ′, f ′), (Y, g))

be the unique map whose adjoint

adj(HomZ(h, (Y, g))) : (HomZ((X, f), (Y, g)), f4g)×Z (X ′, f ′)→ Y

equals (Id(HomZ((X,f),(Y,g)),f4g) × h) ◦ evX,Y . Then one has:

Lemma 8.5 The morphisms HomZ(h, (Y, g)) satisfy the equations

HomZ(h, (Y, g)) ◦ (f ′4g) = f4g

and the equations

HomZ(h1 ◦ h2, (Y, g)) = Hom(h2, (Y, g)) ◦Hom(h1, (Y, g))

HomZ(Id, (Y, g)) = Id

making HomZ(−, (Y, g)) into a contravariant functor from C/Z to itself. In addition, for
each h′ : (Y, g)→ (Y, g′) the square

HomZ((X ′, f ′), (Y, g))
HomZ((X′,f ′),h′)−−−−−−−−−−→ HomZ((X ′, f ′), (Y ′, g′))

HomZ(h,(Y,g))

y yHomZ(h,(Y ′,g′))

HomZ((X, f), (Y, g))
HomZ((X,f),h′)−−−−−−−−−→ HomZ((X, f), (Y ′, g′))

commutes.
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Proof: It is a particular case of [5, Theorem 3, p.100]. The commutativity of the square is
a part of the ”bifunctor” claim of the theorem.

Lemma 8.6 In a locally cartesian closed category let f : X → Z, f ′ : X ′ → Z, g : Y → Z
be objects over Z and let a : X ′ → X be a morphism over Z. Then the square

(Hom((X, f), (Y, g)), f4g)×Z (X ′, f ′)
Id×a−−−→ (Hom((X, f), (Y, g)), f4g)×Z (X, f)

Hom(a,(Y,g))×IdX′
y yev

(HomZ((X ′, f ′), (Y, g)), f ′4g)×Z (X ′, f ′)
ev′−−−→ Y

commutes.

Proof: Let us show that both paths in the square are adjoints to Hom(a, (Y, g)). For the
path that goes through the upper right corner it follows from the definition of Hom(a, (Y, g))
as the morphism whose adjoint is (Id × a) ◦ ev. For the path that goes through the lower
left corner it follows from the definition of adjoint applied to Hom(a, (Y, g)). Indeed, the
adjoint to this morphism is

adj(Hom(a, (Y, g))) = (Hom(a, (Y, g))× IdX′) ◦ ev′

Lemma 8.7 Let C be a locally cartesian closed category. Let Z, (X, f), (Y, g), (W,h) be as
above.

1. Let (Y ′, g′) be an object over Z and a : (Y, g)→ (Y ′, g′) a morphism over Z. Then for
any b ∈ HomZ((W,h), HomU((X, f), (Y, g))) one has

adj(b ◦HomZ((X, f), a)) = adj(b) ◦ a

2. Let (X ′, f ′) be an object over Z and a : (X ′, f ′) → (X, f) a morphism over Z. Then
for any b ∈ HomZ((W,h), HomU((X, f), (Y, g))) one has

adj(b ◦HomZ(a, (Y, g))) = (IdW × a) ◦ adj(b)

3. Let (W ′, h′) be an object over Z and a : (W ′, h′) → (W,h) a morphism over Z. Then
for any b ∈ HomZ((W,h), HomU((X, f), (Y, g))) one has

adj(a ◦ b) = (a× IdX) ◦ adj(b)

Proof: The proof of the first case is given by

adj(b ◦HomZ((X, f), a)) = ((b ◦HomZ((X, f), a))× IdX) ◦ ev(X,f),(Y ′,g′) =

(b× IdX) ◦ (HomZ((X, f), a))× IdX) ◦ ev(X,f),(Y ′,g′) =

28



(b× IdX) ◦ ev(X,f),(Y,g) ◦ a = adj(b) ◦ a
where the second equality holds by Lemma 8.3 and the third equality by the naturality axiom
for morphisms ev(X,f),(Y,g) in (Y, g).

The proof of the second case is given by the following sequence of equalities where we use
the notation Hm for HomZ(a, (Y, g)) as well as a number of other abbreviations:

adj(b ◦Hm) = ((b ◦Hm)× Id) ◦ ev = (b× Id) ◦ (Hm× Id) ◦ ev = (b× Id) ◦ adj(Hm) =

(b× Id) ◦ (Id× a) ◦ ev = (b× a) ◦ ev = (Id× a) ◦ (b× Id) ◦ ev = (Id× a) ◦ adj(b)
The proof of the third case is given by

adj(a ◦ b) = ((a ◦ b)× IdX) ◦ ev(X,f),(Y,g) = (a× IdX) ◦ (b× IdX) ◦ ev(X,f),(Y,g) =

(a× IdX) ◦ adj(b)
where the second equality holds by Lemma 8.3.

Lemma is proved.

Example 8.8 The following example shows that there can be many different structures of
a category with fiber products on a (pre-)category and also many locally cartesian closed
structures.

Let us take as our (pre-)category the (pre-)category preStn whose objects are natural num-
bers and Hom(n,m) = Hom({1, . . . , n}, {1, . . . ,m}).
Since every isomorphism class contains exactly one object every auto-equivalence of this
category is an automorphism. Let F be such an automorphisms. It is easy to see that it
must be identity on the set of objects. Let X = {1, 2}. Consider F on End(X). Since
F must respect unity and compositions, F must take Aut(X) to itself and must act on it
by identity. If 1 and σ are the two elements of Aut(X) we conclude that F (1) = 1 and
F (σ) = σ.

Let us choose now any structure str0 of a category with fiber products on preStn and let us
consider two structures str1 and strσ that are obtained by choosing all the fiber squares as
in str0 and the square for the pair (IdX , IdX) to be, correspondingly, as follows:

X
IdX−−−→ X

IdX

y yIdX
X

IdX−−−→ X

for str1 and

X
σ−−−→ X

σ

y yIdX
X

IdX−−−→ X

for strσ. (22)

The preceding discussion of the auto-equivalences of preStn shows that there is no auto-
equivalence which would transform str1 into strσ.

The (pre-)category preStn also has a locally cartesian closed structure that can be modified
so that its underlying fiber product structures are str1 and strσ. This shows that preStn has
at least two locally cartesian closed structures that are not interchanged by auto-equivalences
of preStn.
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Remark 8.9 The previous example has a continuation in the univalent foundations where
there is a notion of a category and pre-category. There one expects it to be true that the type
of fiber square structures and the type of locally cartesian closed structures on a category
(as opposed to those on a general pre-category) are of h-level 1, i.e., classically speaking are
either empty or contain only one element.

In addition any such structure on a pre-category should define a structure of the same kind
on the Rezk completion of this pre-category with all the different structures on the pre-
category becoming equal on the Rezk completion. In the case of the previous example the
Rezk completion of preStn is the category FSets of finite sets and in view of the univalence
axiom for finite sets the two pull-back squares of 22 will become equal in FSets.
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