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1. Introduction

One can do motivic homotopy theory in the context of different motivic homotopy categories. One can vary the topology
on the category of schemes used to define the homotopy category or one can vary the category of schemes itself considering
only schemes satisfying certain conditions. The category obtained by taking smooth schemes and the Nisnevich topology
seems to play a distinguished role in the theory because of the Gluing Theorem (see [7]) and some other, less significant, nice
properties. On the other hand, in the parts of the motivic homotopy theory dealing with the motivic cohomology it is often
desirable to be able to work with all schemes instead of just the smooth ones. For example, the motivic Eilenberg-MacLane
spaces are naturally representable (in characteristic zero) by singular schemes built out of symmetric products of projective
spaces but we do not know of any explicit way to represent these spaces by simplicial smooth schemes.

The goal of this paper is to show that, under the resolution of singularities assumption, the pointed motivic homotopy
category of smooth schemes over a field with respect to the Nisnevich topology is almost equivalent to the pointed motivic
homotopy category of all schemes over the same field with respect to the cdh-topology. More precisely, we show that the
inverse image functor

L} - Ho((Sm/k)nis, A') = Ha((Sch/K)can, A")

from the former category to the later one is a localization and if f is a morphism such that Lz} (f) is an isomorphism then
the first simplicial suspension of f is an isomorphism. This implies in particular that the corresponding s-stable and T-stable
motivic homotopy categories are equivalent.

The present paper is a continuation of [9] and it uses the formalism developed there. In the first section we define the
standard cd-structures on the category of Noetherian schemes and prove that they are complete, regular and bounded.
In the next section we prove some simple results about the homotopy categories of sites with interval with completely
decomposable topologies. Our results also imply that the motivic homotopy categories defined with respect to the standard
topologies are homotopy categories of almost finitely generated closed model structures (see [6]). In the last section we
apply these results to prove the comparison theorem.

Everywhere below a scheme means a Noetherian scheme.
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2. The standard cd-structures on categories of schemes

Let us consider the following two cd-structures on the category of Noetherian schemes.
Upper cd-structure or Nisnevich cd-structure where a square of the form

B—Y

l l” (0

A—205 X
is distinguished if it is a pull-back square such that p is etale, e is an open embedding and p~' (X —e(A)) — X —e(A)
is an isomorphism. Here X — e(A) is considered with the reduced scheme structure.

Lower cd-structure or proper cdh-structure where a square of the form (1) is distinguished if it is a pull-back square such
that p is proper, e is a closed embedding and p~!' (X — e(A)) — X — e(A) is an isomorphism.

Remark 2.1. These cd-structures owe their names to the fact that the behavior of the functors of inverse image f* and f',
which have upper indexes, with respect to etale morphisms is very similar to the behavior of the functors of direct image f..
and f,, which have lower indexes, with respect to proper morphisms.

The topology associated with the upper cd-structure is called the upper cd-topology. We will show below (see
Proposition 2.17) that it coincides with the Nisnevich topology. In particular, an etale morphism f : X — Y is an upper
covering if and only if for any y in Y the fiber p~'(y) contains a k,-rational point. The topology associated with the lower
cd-structure is called the lower cd-topology or proper cdh-topology. By Proposition 2.18 a proper morphism of schemes
p : X — Y isalower cd-covering if and only if for any point y in Y the fiber p~!(y) contains a ky-rational point.

The intersection of the upper and lower cd-structures is equivalent to the additive cd-structure where a square is
distinguished if it is of the form

) —— Y

l l (2)

X —— X]]Y

A presheaf F is a sheaf in the topology associated with the additive cd-structure if and only if
FX]JY)=Fe0O x F(Y)

and F(¥) = pt.

The union of the upper and lower cd-structures is the combined cd-structure. A square is distinguished in it if it is an upper
distinguished or a lower distinguished square. Proposition 2.17 and the definition given in [8, Section 4.1] imply that the
associated topology is the cdh-topology.

If we consider only squares where both e and p are monomorphisms the upper and lower cd-structures become:

Plain upper cd-structure or Zariski cd-structure where a square of the form (1) is distinguished if both p and e are open
embeddings and X = p(Y) U e(A). The associated topology is the Zariski topology.

Plain lower cd-structure where a square of the form (1) is distinguished if both p and e are closed embeddings and X =
p(Y) Ue(A). The associated topology is the closed analog of the Zariski topology.

Any combination of the additive, upper, lower, plain upper and plain lower cd-structures is called a standard cd-structure.
There are nine standard cd-structures: the five generating ones, the combined cd-structure and the combinations of the
plain upper with plain lower, plain upper with lower and plain lower with upper cd-structures. They form the following
lattice where arrows indicate inclusions

additive — p.upper —_ upper
p.lower ——— p — p.lower + upper
lower ——— lower + p.upper ——— cdh

The topology associated with the combination of the lower and the plain upper cd-structures lower + p.upper is considered
in [2]. The goal of this section is to prove the following theorem.
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Theorem 2.2. All the standard cd-structures are complete, regular and bounded on the category Sch/S of schemes of finite type
over a Noetherian scheme S of finite dimension. In addition the upper and plain upper cd-structures are complete, regular and
bounded on the category Sm/S of smooth schemes (of finite type) over a Noetherian scheme S of finite dimension.

For the category of all schemes the theorem follows from statements 2.3, 2.13 and 2.14 which are proved below. The same
arguments apply for Sm/S and the upper and plain upper cd-structures.

Lemma 2.3. The standard cd-structures are complete on the category of schemes or schemes of finite type over a base. In addition
the upper and plain upper cd-structures are complete on the category of smooth schemes over a base and the lower and plain lower
cd-structures are complete on the category of proper schemes over a base.

Proof. It follows immediately from [9, Lemma 2.5]. O

Let us show now that the standard cd-structures considered on the category of schemes of finite dimension are bounded.
A sequence of points X, ..., Xs of a topological space X is called an increasing sequence (of length d) if x; # x;;1 and
X; € cl(xi11) where cl(x;;1) is the closure of the point x;,; in X. For a scheme X define D4(X) as the class of open embeddings
j : U — X such that for any z € X — U there exists an increasing sequence z = Xg, X1, . . . , X4 of length d. The density
structure defined by the classes Dy is called the standard density structure on the category of schemes. It is locally of finite
dimension on the category of schemes of finite dimension and the dimension of a scheme with respect to it is the dimension
of the corresponding topological space.

Lemma24. IfU,V € Dy(X) thenU NV € Dy(X).
Lemma 2.5. Let U € Dq(X) and V be an open subscheme of X. Then U NV € Dy(V).

Proof. Let x be a point of V outside of U N V. Considered as a point of X it has an increasing sequence x = Xxg, . . ., X with
Xx; € X.Butsince xo € V we have x; € V because xo € cl(x;) and V is open. 0O

Lemma 2.6. Let Xq, X1, X» be an increasing sequence on a scheme X and Z be a closed subset of X such that x, lies outside Z. Then
there exists an increasing sequence xo, X7, X, such that x| lies outside Z.

Proof. Replacing X by the local scheme of x, in the closure of x, we may assume that any point of X contains xg in its closure
and in turn lies in the closure of x,. It remains to show that the complement to Z contains at least one point which is not
equal to x,. If it were false we would have x, = X — Z i.e. x, would be a locally closed point. This contradicts our assumption
since by [4, 5.1.10(ii)] a locally closed point on a locally Noetherian scheme has dimension < 1. O

Lemma 2.7. Let X be a scheme, U a dense open subset of X and xo, . . ., X4 any increasing sequence in X. Then there exists an
increasing sequence Xo, X, . . ., Xy such that x; € U foralli > 1.

Proof. We may assume that d > 0.If x4 is contained in U set x; = x4. Otherwise let x be a point of U such that x;_; € cl(xq)
which exists since U is dense. Since x4 is not in U, x4_1 is not in U and thus x, # x4_1 and o, X1, . . ., X}; is again an increasing
sequence. Assume by induction that we constructed X;H, ...,X; € U such that xo, ..., x;, xlfH, ..., X} is an increasing
sequence. By Lemma 2.6 for any increasing sequence yy, y1, y> and a closed subset Z which does not contain y, there exists
an increasing sequence o, y, ¥» such that Z does not contain y;. Applying this result to the sequence x;_1, x;, xlf_H and

Z =X — U we constructx;. O

Lemma 2.8. Let X be a scheme and Y a constructible subset in X. Then any point y' of the closure cl(Y) of Y in X belongs to the
closure of a point y of Y.

Proof. Since Y is constructible it is of the form Y = U ,Y; where each Y; is open in a closed subset of X (see e.g.
[5, Prop. 2.3.3]). It is clearly sufficient to prove our statement for each Y;. As a topological space Y; corresponds to a Noetherian
scheme. Thus there exists finitely many points y; in Y such that any point of Y is in the closure of one of the y;’s. If a point
y'in cl(Y) has an open neighborhood U which does not contain any of the points y; then U does not contain any point of
Y which contradicts the assumption that y € cl(Y). Thus y belongs to the closure of {y;} which coincides with the union of
closures of points y; since there is finitely many of them. O

Lemma 2.9. Letf : X — Y be a morphism of finite type of Noetherian schemes and assume that there exists an open subset U in
Y such that f~1(U) is dense in X and f~1(U) — U has fibers of dimension zero. Then for any d > 0 and V € Dy(X) there exists
W e Dy(Y) such that f~1(W) C V.

Proof. We may clearly assume that d > 0.Let Z = X — V. We have to show that Y — cl(f(Z)) € D4(Y) i.e. that for any
y in cl(f (Z)) there exists an increasing sequence y = Yo, ..., Yq in Y. Since f is of finite type f(Z) is constructible and in
particular any point of cl(f (Z)) is in the closure of a point in f (Z) by Lemma 2.8. Thus we may assume that y belongs to f (Z)
i.e.y = f(x) where x is in Z. By Lemma 2.7 we can find an increasing sequence x = Xg, X1, . . ., X4 for x such that fori > 0 we
have x; € f~1(U). Theny = f(xo), . .., f(x4) is an increasing sequence i.e. f (x;) # f(x;+1). Indeed fori > 0 it follows from
the fact that the fibers of f over U are of dimension zero. For i = 0 we have two cases. If f(xg) € U then the same argument
as fori > 0 applies. If f(xo) is not in U then f (xg) # f(xy) since f(x;) € U. O
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Proposition 2.10. The upper cd-structure and the plain upper cd-structures on the category of Noetherian schemes of finite
dimension are bounded with respect to the standard density structure.

Proof. We will only consider the upper cd-structure. The plain case is similar. Let us show that any upper distinguished
square is reducing with respect to the standard density structure (see [9, Definition 2.21]). Let our square be of the form

Wj—V>V

Lk

U;)

and let Wy € Dy_1(W), Uy € Dq(U), Vo € Dy(V). Applying Lemma 2.9 to the morphism j[ [ p we can find Xo € Dg(X)
such that j(Up) U p(Vy) C Xo. Replacing X with X, and applying Lemma 2.5 we may assume that Uy = U and Vy = V. Let
Z=W —W,,C=X—UandsetX =X — (CNcl(pjy(2))). Let us show that the square

Wy —— jv(Wp)

l | @

u —— X

is upper distinguished. It is clearly a pull-back square, the right vertical arrow is etale and the lower horizontal one is an open
embedding. It is also obvious that p~1(X’ — U) Njy (Wp) = (X’ — U). To finish the proof it remains to show that X’ € Dy(X).
Let x be a point of X outside of X’ i.e. a point of C N cl(pjy (Z)). Since pjy (Z) N C = @ there exists x' = pjy(¥) € pjy(Z) such

thatx € cl(x’) and X’ # x. Lety = yo, ..., Y41 be an increasing sequence for y in W which exists since Wy € Dg_1(W). The
morphism q = pjy has fibers of dimension zero and therefore q(yo), ..., q(¥4_1) is an increasing sequence for x". Thus we
get an increasing sequence x, (o), . .., q(y4—1) for x of length d. O

Proposition 2.11. The lower cd-structure and the plain lower cd-structures on the category of Noetherian schemes of finite
dimension are bounded with respect to the standard density structure.

Proof. We will only consider the case of the lower cd-structure. The plain case is similar. Consider a lower distinguished
square

iy
B—Y

Q= l l" : (5)

A—i>X

Ifwe replace Y by the scheme-theoretic closure of the open subscheme p~! (X —A) we get another lower distinguished square
which is a refinement of the original one. This square satisfies the condition of Lemma 2.12 and therefore it is reducing. O

Lemma 2.12. A lower distinguished square of the form (5) such that the subset p~'(X — A) is dense in Y is reducing with respect
to the lower cd-structure.

Proof. Let Yy € Dy(Y), Ag € D4(A), By € Dy_1(B). Applying Lemma 2.9 to p and U = X — A we conclude that there exists
Xo € Dy(X) such that p(Yy) C Xo. Applying the same lemma to i we find an open subset X; € D4(X) such that i(Ag) C X;.
Then by Lemma 2.4 X; N Xy € Dy(X) and replacing X by X; N Xp and using Lemma 2.5 we may assume that Ay = A and
Yo = Y.Let X' = X — piy(B — Bp). To finish the proof it is enough to check that X’ € Dy(X) and define Q' as the pull-back
of Q to X’. According to Lemma 2.9 applied again to p and U = X — A it is enough to check that Y — iy (B — By) € Dy(Y).
Since By € Dy_1(B) and iy is a closed embedding it is enough to check that Y — ig(B) is dense in Y. This follows from our
assumption since Y — izg(B) = p~!(X —A). O

Since all generating cd-structures on the category of Noetherian schemes are bounded by the same density structure any
combination of such structures is also bounded by this density structure. We get the following result.

Proposition 2.13. The standard cd-structures on the category of Noetherian schemes of finite dimension are bounded.

Finally let us show that all the standard cd-structures are regular. It is clearly sufficient to consider the “generating”
cd-structures. Then any combination of them will also be regular.

Lemma 2.14. The additive, upper, plain upper, lower and plain lower cd-structures are regular.
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Proof. The additive case is obvious. Let us show that the upper, palin upper, lower and plain lower cd-structures satisfy
the conditions of [9, Lemma 2.11]. The first two conditions are obvious. Consider the third condition in the upper case. The
square

B — Y

a=| | | (6)

BXxsB — Y xx Y
is a pull-back square. Since p is etale, and in particular unramified, the diagonal Y — Y Xy Y is an open embedding. The
morphism Bx,B — Y xx Y is an open embedding because e is an open embedding. The condition that p~! (X —e(A)) — X —
e(A) is a universal homeomorphism implies that for a pair of geometric points y1, y, of Y such that p(y1) = p(y2) € X —e(A)
one has y; = y,. Therefore,
YXxxY=Bx4B)UY
i.e. (6) is a (plain) upper distinguished square.
Consider the third condition in the lower case. The square (6) is a pull-back square. Since p is proper, and in particular
separated, the diagonal Y — Y xx Y is a closed embedding. The morphism B x4 B — Y xx Y is a closed embedding because
e is a closed embedding. The condition that p~'(X — e(A)) — X — e(A) is a universal homeomorphism implies that for a
pair of geometric points y1, y, of Y such that p(y;) = p(y2) € X — e(A) one has y; = y,. Therefore,
YXXy=(BXAB)UY

i.e. (6) is a (plain) lower distinguished square. O

Definition 2.15. Letf : X —> Xbea morphism of schemes. A splitting sequence for f is a sequence of closed embeddings
V=Zp1—>2Zn— - —>7Z1>Z=X

such that forany i = 0, ..., n the projection
(Zi = Ziy) xx X = (Zi = Zir1)

has a section.

Lemma 2.16. A morphism o[ﬁnite type of Noetherian schemes f : X — X has a splitting sequence if and only if for any point x
of X there exists a point X of X such that f (x) = x and the corresponding morphism of the residue fields is an isomorphism.

Proof. The “only if” part is obvious. The “if” part follows easily by the Noetherian induction (cf. [7, Lemma 3.1.5, p. 97]). O

Proposition 2.17. An etale morphism f : X —> Xisa covering in the upper cd-topology if and only if for any point x of X there
exists a point X of X such that f (x) = x and the corresponding morphism of the residue fields is an isomorphism.

Proof. Since the upper cd-structure is complete any upper cd-covering has a refinement which is a simple covering which
immediately implies the “only if” part of the proposition. To prove the “if” part we have to show, in view of Lemma 2.16,
that any etale morphism f : X — X which has a splitting sequence Z, — --- — Zy = X is an upper cd-covering. We
will construct an upper distinguished square of the form (1) based on X such that the pull-back of f to Y has a section and
the pull-back of f to A has a splitting sequence of length less than n. The result then follows by induction on n. We take
A = X — Z,. To define Y consider the section s of f, : X Xx Zy — Z, which exists by definition of a splitting sequence.
Since f is etale and in particular unramified the image of s is an open subscheme. Let W be its complement. The morphism
X xx Zy — X is a closed embedding thus the image of W is closed in X. We take Y = X — W. One verifies immediately that
the pull-back square defined by A — X and Y — X is upper distinguished. The pull-back of f to Y has a section and the
pull-back of f to A has a splitting sequence of length n — 1. This finishes the proof of the proposition. O

Proposition 2.17 implies that the topology associated with the upper cd-structure on the category of Noetherian schemes is
the Nisnevich topology.

Proposition 2.18. A proper morphism f : X > Xisa covering in the lower cd-topology if and only if for any point x of x there
exists a point X of X such that f (x) = x and the corresponding morphism of the residue fields is an isomorphism.

Proof. Since the lower cd-structure is complete any lower cd-covering has a refinement which is a simple covering which
immediately implies the “only if” part of the proposition. To prove the “if” part we have to show, in view of Lemma 2.16,
that any proper morphism f : X — X which has a splitting sequence Z, — --- — Zy = X is a lower cd-covering. We will
construct a lower distinguished square of the form (1) based on X such that the pull-back of f to Y has a section and the
pull-back of f to A has a splitting sequence of length less than n. The result then follows by induction on n. We take A = Z;.
To define Y consider the section s of f;, : X Xx (X — Z;) — (X — Z;) which exists by definition of a splitting sequence.
Smcef is proper and in particular separated, the image of s is a closed subscheme. Let W be its complement. The morphism
X xx (X —2Z;) = Xisan open embedding thus the image of W is open in X. We take Y = X — W. One verifies immediately
that the pull-back square defined by A — X and Y — X is lower distinguished. The pull-back of f to Y has a section and the
pull-back of f to A has a splitting sequence of length n — 1. This finishes the proof of the proposition. O
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3. Motivic homotopy categories

Recall that in [7] we defined for any site T with an interval I a category H(T, I) which we called the homotopy category of
(T, I). Applying this definition to a category of schemes with some standard topology and taking I to be the affine line
one obtains different motivic homotopy categories. Among these homotopy categories the one denoted in [7] by H(S)
and corresponding to the category of smooth schemes over S with the Nisnevich or upper cd-topology seems to play a
distinguished role. In this section we prove a number of results which provide a new description for the motivic homotopy
categories in the standard topologies and in particular for the category H(S). We start with some results applicable to all
sites with interval with good enough completely decomposable topologies.

Let C be a category with a complete regular bounded cd-structure P (see [9]) and an interval I (see [7, Section 2.3,
p. 85]). Assume in addition that C has a final object and that for any X in C the product X x I exists. We can form the
homotopy category of (C, P, I) in two ways. First, we may define a new cd-structure (P, I) whose distinguished squares are
the distinguished squares of C and squares of the form

b9 — 0

l l

XxI —— X
where X runs through all objects of C and consider the homotopy category of this cd-structure i.e. the localization of
A%PreShv(C) with respect to the class cli(Gp 1)) of G 1)-local equivalences (see [9, around Lemma 3.7]). For reasons of
notation compatibility with [10] we denote it by H(CU<>, G(p ).
On the other hand we may consider the homotopy category H(C;,, I) of the site with interval (C,, I) as defined in [7].
We are going to show that if P is complete, regular and bounded these two constructions agree.

Proposition 3.1. Let (C, I) be a category with an interval which has a final object and such that the products X x I exist. Let P be
a complete, regular and bounded cd-structure on C. Then the categories H(CY=<>, Gep,n) and H(Cy,, I) are naturally equivalent.

Proof. Both categories are defined as localizations of A’ PreShv(C) and we only have to prove that the two localizing classes
coincide. Both localizing classes are defined as “left orthogonals” to the corresponding classes of local objects. Therefore it
is sufficient to prove that the class of G ;-local objects coincides, up to projective equivalences, with the class of objects
whose associated sheaf is I-local in the sense of [7, Def. 2.1]. This follows easily from [9, Prop. 3.8]. O

We will also need the pointed analog of Proposition 3.1. Let PreShv, be the category of pointed presheaves of sets on C. This
category can be identified with the category of radditive functors on the category (CY<>), where CU<> is the category
with finite coproducts freely generated by C and, for a category D with a final object and finite coproducts, D is the full
subcategory of the category of pointed objects in D which consists of objects pointed by a disjoint point. Therefore, in order
to keep the notation compatibility with [10] we should write H((CY<*)_, E..) for the category obtained by the localization
of A°PPreShv, by E. -local equivalences where E is a set of morphisms in A°’PreShv(C). By [10, Cor. 4.21(3)] we know that
a morphism in A°’PreShv, is a E -local equivalence if and only if it is mapped to a E-local equivalence by the functor which
forgets the distinguished point. Therefore, Proposition 3.1 has the following corollary.

Corollary 3.2. Let (C, I) be a category with an interval which has a final object and such that the products X x I exist. Let P
be a complete, regular and bounded cd-structure on C. Then the categories H((C1<>)_, (Gep,1y)+) and Hy(Cy,, I) are naturally
equivalent.

Specializing to the case of the motivic homotopy categories and using Theorem 2.2 we get the following results.
Proposition 3.3. Let P be a standard cd-structure on the category Sch/S. Then one has

H((Sch/$)!=, Gp a1)) = H((Sch/S)y; . Ag)
H(((Sch/$)!<) 1, (Gp a1))+) = Ha((SCh/S)ey . As).

Proposition 3.4. Let P be a standard cd-structure which is contained in the upper cd-structure. Then one has

H((Sm/$)!=, Gp a1)) = H((SM/S)y. As)
H(((Sm/$)!"<)1, (Gp a1))+) = Ha((SM/S)ey . AS).

These identifications allow one to consider the categories on the right hand side of the equalities in Propositions 3.3, 3.4
as particular cases of the homotopy categories considered in [10] and to apply the results of this paper to these categories.

4. The comparison theorem

Let k be a field. We have an obvious continuous map of sites with intervals
7T (Sch/K)can —> (Sm/K)nis
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which is reasonable by the results of the first section and [9, Prop. 3.9]. Let
Lz} : Ho((Sm/K)nis, A') = Ho((Sch/k)can, A") (7)

be the corresponding inverse image functor on the pointed homotopy categories. For a morphism f in the pointed homotopy
category we denote by

2 =fA Ids;
the first simplicial suspension of f. Let us recall the following definition given in [1].
Definition 4.1. A field k is said to admit resolution of singularities if the following two conditions hold:

1. for any reduced scheme of finite type X over k there exists a proper morphism f : X — X such that X is smooth and f
has a section over a dense open subset of X

2. for any smooth scheme X over k and a proper surjective morphism Y — X which has a section over a dense open subset
of X there exists a sequence of blow-ups with smooth centers X;, — X;—1 — --- — Xo = X and a morphism X;, — Y
over X.

Note that any field satisfying the conditions of Definition 4.1 is perfect. For a functor @ let iso(®) be the class of morphisms
which are mapped to isomorphisms by @.

Theorem 4.2. Let k be a field which admits resolution of singularities. Then the functor Lr} is a localization and for any f in
iso(L}) the morphism X(f) is an isomorphism.

Proof. Let us start with the following construction. The proof of the theorem is completed right before Corollary 4.8.
Define the smooth blow-up cd-structure on the category Sm/k of smooth schemes over k as the collection of pull-back
squares of the form (1) such that e is a closed embedding and p is the blow-up with the center in e(A).

Lemma 4.3. Let k be a field which admits resolution of singularities. Then the smooth blow-up cd-structure on the category of
smooth schemes over k is complete.

Proof. To show that a cd-structure is complete it is sufficient to show that for any distinguished square of the form (1) and
any morphism f : X’ — X the sieve f*(e, p) contains the sieve generated by a simple covering (see [9, Lemma 2.4]). Let
us prove it by induction on dim(X’). If dim(X’) = 0 the sieve f*(e, p) contains an isomorphism. Assume that the statement
is proved for dim(X’) < d and let X’ be of dimension d. The map X’ xx (A[JY) — X’ is proper and has a section over a

dense open subset of X’. Thus by the resolution of singularities assumption we have a sequence of blow-ups with smooth

centers X, Pt X4 2 R X{ = X' such that the pull-back of (e, p) to X, contains an isomorphism and in particular
a sieve generated by a simple covering. Assume by induction that the pull-back of (e, p) to X/ contains a sieve generated by
a simple covering {r; : U — X/} and let us show that the same is true for X; ;. Lete;_; : Z__; — X/_, be the center of the
blow-up X/ — X/_,. The restriction of (e, p) to Z/_; contains a sieve generated by a simple covering {s; : V; — Z/_,} since
dim(Z/_,) < d.Thus the restriction of (e, p) to X;_, contains the sieve generated by {p;_1j, e;_15;} which is a simple covering

by definition. O

Lemma 4.4. The smooth blow-up cd-structure on the category of smooth schemes over any field is bounded with respect to the
standard density structure.

Proof. The same arguments as in the proof of Lemma 2.12 show that any distinguished square of the smooth blow-up
cd-structure is reducing with respect to the standard density structure. O

Lemma 4.5. The smooth blow-up cd-structure on the category of smooth schemes over any field is regular.

Proof. The first two conditions of [9, Definition 2.10] are obviously satisfied. To prove the third one we have to show that
for a distinguished square of the form (1) the map of representable sheaves of the form

p) [ [ 2®B) Xy pB) — p(Y) X pix) (V) (8)

is surjective. Since any smooth scheme has a covering in our topology by connected smooth schemes it is sufficient to show
that the map of presheaves corresponding to (8) is surjective on sections on smooth connected schemes. Let U be a smooth
connected scheme and f, g : U — Y be a pair of morphisms such that p o f = p o g. The scheme Y xy Y is the union of two
closed subschemes namely the diagonal Y and B x4 B (see the proof of the lower case in Lemma 2.14). Since U is smooth
and connected it is irreducible and therefore the closure of the image of f x ginY xyx Y is irreducible. This implies that the
image belongs to either Y or B x4 B and since U is smooth and in particular reduced the morphism f xx g lifts to Y or to
B XA B. O

Consider the topology scdh associated with the sum of the smooth blow-up cd-structure and the upper cd-structure on the
category of smooth schemes over S.

Lemma 4.6. The scdh cd-structure is bounded and regular. If k admits resolution of singularities then it is also complete.
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Proof. Since the sum of two cd-structures bounded by the same density structure is bounded, Proposition 2.10 and
Lemma 4.4 imply that this cd-structure is bounded by the standard density structure on Sm/k. Since the sum of two regular
cd-structures is regular, Lemmas 2.14 and 4.5 imply that it is regular. Since the sum of two complete cd-structures is
complete, Lemmas 2.3 and 4.3 imply that if k admits resolution of singularities then this cd-structure is complete. O

Lemma 4.7. If k admits resolution of singularities the inverse image functor w{ : Shvsqgy(Sm/k) — Shven(Sch/k) is an
equivalence.

Proof. The resolution of singularities assumption implies that any object of Sch/k has a cdh-covering by objects of Sm/k and
that any cdh-covering of an object of Sm/k has a refinement which is a scdh-covering. These two facts together imply that
the inverse and the direct image functors define equivalences of the corresponding categories of sheaves (see [3]). O

The continuous map 7 : (Sch/k)can — (Sm/k)nis factors as a composition 7 = m, o w1 where w1 : (Sch/K)eqn —
(Sm/K)scan and 7y : (Sm/K)scan —> (Sm/k)nis- Both continuous maps are reasonable by the lemmas above and [9, Prop. 3.9].
Therefore, Lm* = LryLz; and a similar equality holds for the inverse images on pointed sheaves.

Lemma 4.7 implies that up to an equivalence the functor Lz coincides with Ly . The later functor is the localization
corresponding to the increase of the cd-structure on Sm/k from Nis to scdh. Therefore, by Corollary 3.2 we have

iso(Lmy ) = ch((Gp1)+ LI (Gscan)+)-
Applying as was explained at the end of the previous section the results of [ 10] we get from [10, Cor. 3.52]:

cli((Gsean) +) = clz((Ga1)+ L (Gsean)+ L Wproj)

where cl3 is the A-closure and Wiroj is the class of pointed projective equivalences.
For any class E and any X one has Idx A cl;(E) C cl;(Idx A E). Therefore,

z{(iso(Lry,)) C el (Z] ((Gan)+) I Z{ ((Gyean)+) LI T (Wprop)).

Since X} (Wpyro)) C Wproj and X! ((Ga1)1) C cl3((Ga1)4), it remains to show that X! ((Gsean)+) C cli((Ga1)+ LI (Gnis)+ LI
Wiroj), This follows from [7, Remark 3.2.30, p.118]. Theorem 4.2 is proved. O

Corollary 4.8. Let k be as above and X and Y be pointed simplicial sheaves on (Sm/k)y;s such that Y is A'-equivalent to the
simplicial loop space of an A'-local object. Then the map

Hom(X,Y) — Hom(Lz*(X), L7 *(Y)),
where the morphisms on the left hand side are in H((Sm/k)yis, A) and on the right hand side in H, ((Sch/k)an, A"), is bijective.
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